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Introduction
It has become important over time that the decay processes could be well de-
scribed and well understood. Since the processes in nature are often too compli-
cated, we have to restrict ourselves to a simple models and their solutions. This
thesis offers purely theoretical description of such a simple model, providing us a
good starting point from which we can push our knowledge further.

We start with introducing the necessary formalism in chapter one. After a
brief summary of some of the main results of scattering theory, we elaborate a bit
more on Freshbach-Fano projection operator formalism. Then the whole theory
is applied to the decay processes.

In chapter two, we introduce our model of one or two metastable state(s)
decaying into a continuum of states. The continuum is bounded from below.
We define the coupling under which the process sets in and we develop a semi-
analytical formula for the time evolution of the system.

Having the equations in hand, in chapter three we start our study of the
system. We will see how the position of the pole of the scattering matrix and
the energy of the metastable state affect the time evolution and the spectral line
shape. In case of two metastable states, we shall see how they affect each other
and we will observe a behaviour known as stabilization effect of resonance and
avoided crossing of resonances.

After rigorous study of the theoretical model, we adjust it to a real problem,
the neon–helium–neon cluster and the interatomic Coulombic decay. We shall see
the time evolution and the spectrum of this trimer prepared in two different states
decaying into one final product. We will concentrate on the area where the two
resonances cross, comparing the decay rates obtained from the adiabatic elimi-
nation of the continuum, from the full time simulation, from direct calculation of
the resonant pole position, and from the spectra.

Atomic units are used in the whole thesis unless stated otherwise.
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1. Brief Review of Scattering
Theory
In this chapter, we introduce the formalism and summarize some of the main
results of scattering theory, which will provide us the necessary support for our
results later on.

The Schrödinger equation reads

H|Ψ(t)⟩ = i
∂

∂t
|Ψ(t)⟩, (1.1)

where |Ψ(t)⟩ is time-dependent wave function, H is Hamiltonian. We split the
Hamiltonian into two parts, free Hamiltonian H0 and potential V ,

H = H0 + V. (1.2)

For the description of the scattering process, the S-matrix operator is intro-
duced. It is defined as an operator that maps the initial state |i⟩ to the final state
|f⟩

S(Ei)|i⟩ = |f⟩, (1.3)

where we have assumed that the so-called asymptotic condition is fulfilled, that
is, for every |i⟩ there exists |Ψ(t)⟩ such that

lim
t→−∞

∥|i⟩ − |Ψ(t)⟩∥ = 0 (1.4)

and for every |f⟩ there exists |Ψ̃(t)⟩ such that

lim
t→+∞

∥|f⟩ − |Ψ̃(t)⟩∥ = 0. (1.5)

We define the S-matrix element Sfi as

Sfi = ⟨Ei|S|Ef⟩δ(Ef − Ei), (1.6)

where |Ei⟩ and |Ef⟩ are eigenfunctions of H0 with eigenvalues Ei and Ef , δ(·) is
Dirac delta distribution.

The S-matrix operator can be decomposed into two parts, a unit matrix and
the T-matrix

Sfi = δfi − 2πiδ(Ef − Ei)Tfi, (1.7)

where
Tfi = ⟨Ei|V |Ef⟩, (1.8)

δfi is the Kronecker delta.
For a single-channel scattering problem, the S-matrix attains simple scalar

form
S(E) = e−2iδ(E), (1.9)

where δ(E) is the phase shift.
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1.1 Resonances
Resonances are recognizable by a rapid change in the phase shift and are closely
related to the poles Eres of the scattering matrix S (or equivalently T) in complex
energy plane E or equivalently kres in the complex momentum plane.

The theory can be developed either in terms of E or k, changing from one to
the other by simple substitution E ↔ k2

2 . We will carry out the theory in both
variables for clarity and justification of the following procedure.

As it is well explained in Ref. [1], the complex plane of E has two areas, where
the poles of the S-matrix can be found:{

bound and virtual states Re[Eres] < 0 & Im[Eres] = 0
resonant states Re[Eres] > 0 & Im[Eres] < 0 . (1.10)

We need to keep in mind that in our case the potential V (E) in 1.2 will be function
of real variable E, thus we will work with analytically continued function of
complex variable V (E) that equals the original one on real axis. With this come
few problems, mainly the existence of branch cut along the positive real axis,
when changing the variable to k. The four areas we obtain from the substitution
are ⎧⎪⎪⎪⎨⎪⎪⎪⎩

bound states Re[k] = 0 & Im[k] > 0
resonant states I Re[k] > 0 & Im[k] < 0
resonant states II Re[k] < 0 & Im[k] < 0
virtual states Re[k] = 0 & Im[k] < 0

(1.11)

The poles of the resonant states have one more quality – they appear in pairs
reflecting each other with respect to the imaginary axis [1].

Since we are particularly interested in how the time evolution of the resonant
wave function is affected by poles of S-matrix, we need to develop a consistent
and solid procedure of finding their position. This task has been already done by
so-called Freshbach-Fano projection operator formalism [2].

1.2 Freshbach-Fano Projection Operator
Formalism

The key idea of Freschbach-Fano formalism is to split the Hilbert space H into
two subspaces, the so-called background scattering subspace P corresponding
to slow and smooth changes in phase shift, and the resonant subspace Q corre-
sponding to rapidly changing phase shift. We require

P ⊕ Q = H . (1.12)

To this end, we define two mutually orthogonal projection operators to these
subspaces, P and Q

Q =
n∑

d=1
|φd⟩⟨φd|, (1.13)

P =
∫

|E ′⟩⟨E ′|dE ′, (1.14)
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where we have assumed that it is possible to describe the resonant part of the
wave function by quadratically integrable functions |φd⟩ and restricted ourselves
to one channel scattering. In the same manner, we can rewrite the full wave
function |Ψ(t)⟩ as a sum of two parts, i.e.

|Ψ(t)⟩ =
n∑

d=1
ad(t, Eφd

)|φd⟩ +
∫

b(t, E ′)|E ′⟩ dE ′, (1.15)

where the coefficients ad(t, Eφd
), b(t, E) are taken such that the normalization

condition
|⟨Ψ(t)|Ψ(t)⟩|2 = 1 (1.16)

is satisfied, Eφd
are the energies of the discrete states,

Eφd
= ⟨φd|H|φd⟩, (1.17)

playing the role of parameters, and the integral runs over all continuum states.
It then holds (parameters Eφd

are omitted for brevity)

Q|Ψ(t)⟩ =
n∑

d=1
ad(t)Q|φ⟩ =

n∑
d=1

ad(t)|φ⟩, (1.18)

P|Ψ(t)⟩ =
∫

b(t, E ′)P|E ′⟩dE ′ =
∫

b(t, E ′)|E ′⟩dE ′, (1.19)

⟨E|φd⟩ = 0. (1.20)

Denoting HQQ = QHQ, HP Q = PHQ etc., we can project the Schrödinger
equation, obtaining

(E − HP P )P|Ψ⟩ = HP QQ|Ψ⟩, (1.21)

(E − HQQ)Q|Ψ⟩ = HQPP|Ψ⟩. (1.22)

Equation 1.21 can be formally solved with respect to the P-component, yielding

P|Ψ⟩ = |E⟩ + (E − HP P + iϵ)−1 HP QQ|Ψ⟩, (1.23)

where ϵ is an infinitesimal positive parameter, and the term |E⟩ is homogeneous
solution to the background scattering problem

(E − HP P )|E⟩ = 0. (1.24)

Inserting 1.23 into 1.22, we obtain

Q|Ψ⟩ =
[
E − HQQ − HQP (E − HP P + iϵ)−1 HP Q

]−1
HQP |E⟩. (1.25)

The operator E −HQQ −HQP (E − HP P + iϵ)−1 HP Q has a unique inversion, since
it has no real eigenvalues for positive energy.

To proceed further, we split the T-matrix into two parts, the background and
the resonant one

T = Tbg + Tres. (1.26)
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We also rewrite Hamiltonian in three parts, the kinetic term K and two potentials
HP P − K and H − HP P

H = K + (HP P − K) + (H − HP P ) . (1.27)

Defining the Green’s function of an operator X, GX(E), and rewriting Schrödinger
equation for |E⟩ and |Ψ⟩ in form of Lippmann-Schwinger equation

K|k⟩ = k2

2 |k⟩, (1.28a)

HP P |E⟩ = E|E⟩ ⇔ |E⟩ = |k⟩ + GK(E) (HP P − K) |E⟩, (1.28b)
H|Ψ⟩ = E|Ψ⟩ ⇔ |Ψ⟩ = |E⟩ + GP P (E) (H − HP P ) |Ψ⟩, (1.28c)

we obtain formula for the two parts of T-matrix (also known as two-potential
formula, see [1])

Tbg =⟨k| (HP P − K) |E⟩, (1.29a)
Tres =⟨E| (H − HP P ) |Ψ⟩ = ⟨E|HP Q|Ψ⟩. (1.29b)

Using equation 1.25, equation 1.29b can be explicitly rewritten

Tres = ⟨E|HP Q

[
E − HQQ − HQP (E − HP P + iϵ)−1 HP Q

]−1
HQP |E⟩, (1.30)

providing us with formula for the poles Eres of the S-matrix

det
[
Eres − HQQ − HQP (Eres − HP P + iϵ)−1HP Q

]
= 0. (1.31)

Defining (equation 1.17 is written again for comprehensiveness)

Eφd
= ⟨φd|H|φd⟩, (1.32)

Vd(E) = ⟨φd|H|E⟩, (1.33)

E = ⟨E|H|E⟩, (1.34)
and taking all other elements of H equal to zero, we can further simplify equation
1.31 by introducing the complex level shift function

Fij(E) = ⟨φi|HQP (E − HP P + iϵ)−1 HP Q|φj⟩, i, j = 1, ..., n (1.35)

where n is the number of discrete states. Using spectral representation of Green’s
function

(E − HP P + iϵ)−1 =
∫

dE ′ |E ′⟩⟨E ′|
E − E ′ + iϵ

(1.36)

and recalling the well-known result from theory of distributions
1

x + iϵ
= v.p.

1
x

− iπδ(x), (1.37)

where v.p. denotes principle value integration, the level shift function can be
expressed as

Fij(E) = ∆ij(E) − i

2Γij(E), (1.38)
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where ∆ij(E) and Γij(E) are level shift and resonance width respectively. They
are given by

Γij(E) = 2πVi(E)∗Vj(E), (1.39)

∆ij(E) = 1
2π

v.p.
∫ Γij(E ′)

E − E ′ dE ′. (1.40)

Thus the problem of finding the position of the resonance pole of the S-matrix is
reduced to solving

det [Eφi
δij + Fij(Eres) − Eresδij] = 0 (1.41)

for n different Eres.
If we want to work in k representation, we simply replace E with k2/2 in all

equations, leading to

Γij(k) = 2πV ∗
i

(
k2

2

)
V ∗

j

(
k2

2

)
, (1.42)

∆ij(k) = 1
2π

v.p.
∫ Γij(E ′)

k2

2 − E ′
dE ′, (1.43)

Fij(k) = ∆ij(k) − i

2Γij(k), (1.44)

with the resonance pole kres in the k-plane given by

det
[
Eφi

δij + Fij

(
k2

res

2

)
− k2

res

2 δij

]
= 0 (1.45)

1.3 Decay Processes
The theory above has one important application - the decay processes. From now
on, we will assume that the system is prepared at t = 0 in one of the discrete
states (labelled d = 1)

|Ψ(t = 0)⟩ = |φ1⟩. (1.46)

Using the results we obtained from the scattering theory, we shall study the time
evolution of the discrete state |φ1⟩ decaying into the continuum |E⟩.

The main quantities concerning us are the time evolution of the probability
of finding the system in |φd⟩ or |E⟩, given by

|⟨φd|Ψ(t)⟩|2 = |ad(t, Eφd
)|2 (1.47)

and
|⟨E|Ψ(t)⟩|2 = |b(t, E)|2. (1.48)

The spectrum |b(t → ∞, E)|2 can be usually easily obtained experimentally by
simply measuring the energies of the products of the decay process.
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1.3.1 Fano Model
Fano model is a simple theory describing decay of one discrete state (leaving out
index d) |φ⟩ into the continuum |E⟩, coupled together with a constant coupling
V = ⟨φ|H|E⟩ = c. This model presupposes that the continuum extends over the
interval (−∞, ∞).

The whole theory is carried out in great detail in [3]. Here we present only
the main result. The probability 1.47 is purely exponential, i.e.

|a(t)|2 = exp(−Γt), (1.49)

Γ being the decay rate of the process. The analytical solution gives [3]

Γ = 2πc2. (1.50)

1.3.2 Generalized Fano Model
The coupling between the discrete state and the continuum states, V = V (E),
is in general case a function of variable E. We will always assume V (E) to be a
real function, but since we will integrate in the complex plane, we need to keep
the formalism as if it were a complex function.

Using the form of the wave function 1.15 for only one discrete state, inserting
it together with 1.32, 1.33, and 1.34 in 1.1, and taking scalar product with |φ⟩
and |E⟩ leads to a set of differential equations for unknown coefficients a(t) and
b(E, t)

i
da(t)

dt
= Eφa(t) +

∫
dE ′b(t, E ′)V (E ′), (1.51a)

i
db(t, E)

dt
= a(t)V ∗(E) + b(E, t)E, (1.51b)

with initial condition (see 1.46)

a(t = 0) = 1, b(t = 0, E). (1.52)

In the limit of energy independent coupling, the probability |a(t)|2 should
converge to 1.49.

1.3.3 Deviations from Exponential Decay
The exponential decay 1.49 is predicted from analytical solution for purely con-
stant coupling V (E) and E ∈ (−∞, ∞) . However, realistic Hamiltonians have
spectrum bounded from below.

Let us assume that the continuum runs only over interval (Emin, ∞). The
coupling V (E) is then separated into two parts, namely

V =
{

V (E) E > Emin

0 E < Emin
. (1.53)

It can be shown [4] that only by mathematical properties such as imposing 1.16
the introduction of threshold in fact causes deviations from the exponential decay.
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Short Times

For very short times, the exponential function 1.49 is in fact the lower constraint
for the time evolution of |a(t)|2

|a(t)|2 > exp(−Γt). (1.54)

Long Times

The limit of long times leads to a different result; |a(t)|2 exhibits power law
behaviour

|a(t)|2 ∼ t−n, (1.55)

for a certain n, and is thus always larger than exp(−Γt) for sufficiently large t.
The time interval where the exponential decay is valid is given (for our case

of s-wave) by [4]

e− 1
2 Γt ≫ 1

4
√

π

Γt−3/2(
(Er − Emin)2 + 1

4Γ2
)5/4 , (1.56)

where Er and Γ are energy and width associated with the resonance respectively
(given by equation 1.41) and Emin is the threshold position. When the left hand
side of 1.56 becomes comparable to the right hand side, the decay behaves ac-
cording to 1.55.

1.3.4 Spectral Line Shape
Now we elaborate a bit more on the problem of the decay spectrum, i.e. the
population of states |E⟩ given by

|⟨E|Ψ(t)⟩|2 = |b(t, E)|2, t → ∞ (1.57)

The resulting function |b(E)|2 is called the spectral line. It is a well-known fact [5]
that if the energy of the decaying state is far above the threshold and the decay
is exponential, i.e. 1.49 holds, we can expect the line shape close to Lorentzian
curve

|b(E)|2 ∼=
Γs

2

(E − Es)2 +
(

Γs

2

)2 , (1.58)

where Γs is the decay rate and Es is the energy of the decaying state. In the
ideal case Γs = Γ(Eres) and Es = ∆(Eres) + Eφ, where Γ(Eres) and ∆(Eres) are
already introduced in equations 1.39 and 1.40.

Note that the result 1.58 is time-independent and therefore well suited for
experimentalists.
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2. The Model
In the previous chapter, we obtained theoretical description of resonances and
poles associated with them. We can now apply the theory on a suitable model.

The equations 2.8 or 2.9 have still one undefined part – the potentials Vi(E).
We take all of the potentials in the same form

Vi(E) =

⎧⎨⎩
√

Ai

2π
E
Bi

exp
(
− E

Bi

)
E > 0

0 E < 0
, (2.1)

where Ai and Bi are parameters of i-th coupling. This form was chosen such that
it is similar to real cases and is continuous. Moreover, using gamma function
Γ(·), incomplete gamma function Γ(·, ·), and confluent hypergeometric function
1F1(·, ·, ·), we can rewrite the level shift function F (k) in terms of variable k2/2 =
E [6]

Fij(k) = −Aij

2π
Γ(2) −k2

2Bij

Γ
(

−1, − k2

2Bij

)
exp

(
− k2

2Bij

)
, (2.2)

where

Aij = 2

√
AiAjBiBj

Bi + Bj

(2.3)

and
Bij = 2 BiBj

Bi + Bj

. (2.4)

The formula 2.2 is valid on real axis, but since all functions are meromorphic, it
can be straightforwardly continued to the complex k-plane.

We can now search for the positions of the poles of the S-matrix operator as
a function of one of the parameters Ai, Bi or Eφi

. Let us choose Eφ1 . The way
to find the positions of the poles is straightforward. We fix all the parameters in
such a way that the coupling near Eφ1 is very small. Therefore we can use first
order perturbation theory to approximate Eresi

∼= Eφi
− i

2Γ1P T
i with (see [3])

Γ1P T
i = 2π|V (Eφi

)|2. (2.5)

This equation is only valid for the probability 1.47 that can be well-approximated
by exponential function. Setting

kapproxi
=
√

2
(

Eφi
− i

2Γ1P T
i

)
, (2.6)

we acquire an approximate position of the pole. We can search for the kresi
in the

vicinity of kapproxi
. Changing one of the parameters slightly, we obtain the pole

position as a function of this parameter, using always the previous position as a
starting point, since the approximation 2.6 does not have to be valid any more
(see figure 2.1).
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Figure 2.1: An example of a deviation of the first order perturbation theory 2.5
(yellow curve) from the actual imaginary part of the pole position (blue curve).
The system has only one discrete state with coupling 2.1 defined by parameters
A = A1 = 20 and B = B1 = 20.

2.1 Isolated Resonance
In the case of only one discrete state |φ⟩, the Hamiltonian is

H =

⎛⎜⎜⎜⎜⎜⎝
Eφ V (E)

. . . 0
V ∗(E) E

0 . . .

⎞⎟⎟⎟⎟⎟⎠ , (2.7)

given in basis of |φ⟩ and |E⟩. Note, that this Hamiltonian satisfies 1.32 – 1.34.
The equations 1.41 and 1.45 reduce to

Eφ + F (Eres) − Eres = 0, (2.8)

Eφ + F (kres) − k2
res

2 = 0. (2.9)

2.2 Two Resonances
The case of two resonances leads to a wave function of the form

|Ψ(t)⟩ = a1(t, Eφ1)|φ1⟩ + a2(t, Eφ2)|φ2⟩ +
∫

b(t, E ′)|E ′⟩ dE ′, (2.10)
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with the Hamiltonian in the basis of discrete and continuum states

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eφ1 0 V1(E)
0 Eφ2 V2(E)

. . . 0
V ∗

1 (E) V ∗
2 (E) E

0 . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.11)

The system of differential equations 1.51 becomes

i
da1(t)

dt
= Eφ1a1(t) +

∫
dE ′b(t, E ′)V1(E ′), (2.12a)

i
da2(t)

dt
= Eφ2a2(t) +

∫
dE ′b(t, E ′)V2(E ′), (2.12b)

i
db(t, E)

dt
= a1(t)V ∗

1 (E) + a2(t)V ∗
2 (E) + b(t, E)E. (2.12c)

The level shift function is now matrix 2x2 and the positions of the poles are given
by full equation 1.41 or 1.45.

2.2.1 Adiabatic Elimination of the Continuum
We may now try to solve the system 2.12 explicitly. Following the procedure in
[7, 8, 9], we substitute

a1 → a1 e−iEφ1 t, (2.13a)
a2 → a2 e−iEφ2 t, (2.13b)
b → b e−iEt (2.13c)

into equations 2.12, simplifying 2.12 to

i
da1(t)

dt
=
∫

dE ′b(t, E ′)V1(E ′)e−i(E′−Eφ1)t, (2.14a)

i
da2(t)

dt
=
∫

dE ′b(t, E ′)V2(E ′)e−i(E′−Eφ2)t, (2.14b)

i
db(t, E)

dt
= a1(t)V ∗

1 (E)e−i(Eφ1 −E′)t + a2(t)V ∗
2 (E)e−i(Eφ2 −E′)t. (2.14c)

Since we know b(0, E) = 0, we can formally integrate 2.14c

b(t, E) = −i
∫ t

−∞
dτ Θ(τ)

[
a1(τ)V ∗

1 (E)e−i(Eφ1 −E)τ + a2(τ)V ∗
2 (E)e−i(Eφ2 −E)τ

]
,

(2.15)
where Θ(·) is Heaviside theta distribution. This distribution is introduced to
ensure that a1(t < 0) = 0, a2(t < 0) = 0, and b(t < 0, E) = 0.

Substituting 2.15 into 2.14a and 2.14b leads to two integro-differential equa-
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tions
da1(t)

dt
= −

∫
dE ′V1(E ′)e−i(E′−Eφ1)t

×
∫ t

−∞
dτ Θ(τ)

[
a1(τ)V ∗

1 (E ′)e−i(Eφ1 −E′)τ + a2(τ)V ∗
2 (E ′)e−i(Eφ2 −E′)τ

]
.

(2.16a)
da2(t)

dt
= −

∫
dE ′V2(E ′)e−i(E′−Eφ2)t

×
∫ t

−∞
dτ Θ(τ)

[
a1(τ)V ∗

1 (E ′)e−i(Eφ1 −E′)τ + a2(τ)V ∗
2 (E ′)e−i(Eφ2 −E′)τ

]
.

(2.16b)

For convergence reasons, we multiply the integrand under the time integral with
1 = eητ−ητ . In the end we take the limit η → 0. We will rewrite the part under
the time integral and take the Taylor expansion near the point t = τ > 0[

Θ(τ)ai(τ)e−ητ
]

e−i(Eφi −E′)τ+ητ

=
[
ai(t) + dai(τ)

dτ

⏐⏐⏐⏐⏐
τ=t

(t − τ) − ηai(t)(t − τ) + ai(t)δ(t)(t − τ)
]

×e−ηte−i(Eφi −E′)τ+η τ .

(2.17)

The term with Dirac distribution δ(·) in 2.17 represents the discontinuity of a1,2(t)
as a function of time at time t = 0. We will not consider this term in the following
because it is almost everywhere zero. The third term in 2.17 disappears when
taking the limit η → 0, leaving us with first and second term. The second term
after integrating per-partes over τ gives contribution of the form

ȧi(t)
∫ ∞

0
dE ′ V ∗

i (E ′)Vj(E ′)
(Eφi

− E ′ + iη)2 . (2.18)

The integral can be calculated explicitly using the exponential integral function
for the couplings 2.1. We will not give the whole formula as it has long and
complicated form. Both real and imaginary part of the integral in 2.18 becomes
of order 10−1 around Eφi

> 80 and of order 10−2 around Eφi
> 120 for Eφ1 = 100,

A1 = 20, A2 = 30, and B1 = B2 = 20. These will be the parameters we use later
on. For these parameters, we can neglect the second term in 2.17 since on the
left hand side of system 2.16 is the derivative ȧi(t) with coefficient one. For area
Eφi

< 80, we have to use numerical integration of equations 2.12 to find the time
evolution of the system.

The first term in the bracket in 2.17 after integrating over τ gives
da1(t)

dt
= − ia1(t)

∫
dE ′V1(E ′)V ∗

1 (E ′) 1
Eφ1 − E ′ + iη

− ia2(t)
∫

dE ′V1(E ′)V ∗
2 (E ′) 1

Eφ2 − E ′ + iη
ei(Eφ1 −Eφ2)t,

(2.19a)

da2(t)
dt

= − ia1(t)
∫

dE ′V2(E ′)V ∗
1 (E ′) 1

Eφ1 − E ′ + iη
e−i(Eφ1 −Eφ2)t

− ia2(t)
∫

dE ′V2(E ′)V ∗
2 (E ′) 1

Eφ2 − E ′ + iη
.

(2.19b)
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The integral
Iklm =

∫
dE ′Vk(E ′)V ∗

l (E ′) 1
Eφm − E ′ + iη

(2.20)

can be calculated explicitly for couplings 2.1. Note that in fact (recalling 1.37)

Iklm = ∆kl(Eφm) − i

2Γkl(Eφm) (2.21)

as defined above. Using notation 2.20, the system 2.19 boils down to

da1(t)
dt

= − i
[
a1(t)I111 + a2(t)I122 ei(Eφ1 −Eφ2)t

]
, (2.22a)

da2(t)
dt

= − i
[
a1(t)I211 e−i(Eφ1 −Eφ2)t + a2(t)I222

]
. (2.22b)

This system can be rewritten as
(

ȧ1
ȧ2

)
= −i

⎛⎝ I111 I122 ei(Eφ1 −Eφ2)t

I211 e−i(Eφ1 −Eφ2)t I222

⎞⎠( a1
a2

)
, (2.23)

with eigenvalues

I± = − i

2

(
I111 + I222 ±

√
(I111 − I222)2 + 4I122I211

)
. (2.24)

The eigenvectors

R1 =
⎛⎝e2i(Eφ1 −Eφ2 )t I111 − I222 +

√
(I111 − I222)2 + 4I122I211

2I211
, 1
⎞⎠ . (2.25a)

R2 =
⎛⎝e2i(Eφ1 −Eφ2 )t I111 − I222 −

√
(I111 − I222)2 + 4I122I211

2I211
, 1
⎞⎠ (2.25b)

are not orthogonal in general. They become orthogonal for either real V (E) and
Eφ1 = Eφ2 (note that in this case I122 = I211) or for Eφ1 and Eφ2 far away form
each other. In the second case, I122 = I211 ∼= 0 and the matrix 2.23 is therefore
diagonal. The resonances then do not influence each other. The imaginary parts
of the eigenvalues I± provide approximations to the decay widths of the two
resonances.

Γ± = 2Im [I±] . (2.26)

The precise decay width Γ of the discrete state can be determined by solving
2.23, which can be done numerically. It should be noted that even in case when
one isolated resonance decays exponentially, when second resonance is added into
the system, the solution of 2.23 is not necessarily exponential decay any more.
The resonances influence each other leading to modification in the decay such as
oscillations of probability 1.47.
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3. Results and Discussion
Now we have full theoretical description of the system; let us just summarize the
results we obtained. The couplings of the system are

Vi(E) =

⎧⎨⎩
√

Ai

2π
E
Bi

exp
(
− E

Bi

)
E > 0

0 E < 0
, (3.1)

which reduces for one discrete state to

V (E) =

⎧⎨⎩
√

A
2π

E
B

exp
(
−E

B

)
E > 0

0 E < 0
(3.2)

The position of the poles of the S-matrix operator is given by

det [Eφi
δij + F(Eres) − Eresδij] = 0, (3.3)

or
det

[
Eφi

δij + F
(

k2
res

2

)
− k2

res

2 δij

]
= 0. (3.4)

For only one resonance, it reduces to

Eφ + F (Eres) − Eres = 0, (3.5)

Eφ + F (kres) − k2
res

2 = 0. (3.6)

We have two formulae for the time evolution of ai(t), namely the numerical solu-
tion of 1.51 for one resonance or 2.12 for two resonances and the semi-analytical
formula given by the solution of 2.23. The decay spectrum is given by

|b(E)|2 ∼=
Γs

2

(E − Es)2 +
(

Γs

2

)2 , (3.7)

We also have three definitions of Γ: one is twice the imaginary part of the reso-
nance pole position Γ(Eres); then we have the adiabatic elimination approxima-
tion Γ± – note that for one resonance it reduces to the first order perturbation
theory approximation Γ1P T = 2π|V (Eφ)|2; and finally Γs given by the spectral
line shape.

3.1 One Resonance
In the case of one resonance, we shall study the threshold influence on the time
evolution and on the spectrum of the system. We push the discrete state closer
to the threshold by making Eφ smaller, fixing at the same time the parameters
A and B of the coupling 3.2. We choose these parameters so that we can see a
clear transition from resonant to bound state for Eφ sufficiently larger than zero.
At the same time, we want to see exponential decay far above the threshold and
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therefore we need the coupling there to be large enough so that the discrete state
still decays quickly enough. The third demand for the coupling is that it has to
be sufficiently close to zero around the upper limit of the interval we are able
to numerically integrate, that is, we need to be able to make sufficiently dense
discretization of the continuum on most of the relevant energy interval (see [10]
for more details). For these reasons, we set A = 20 and B = 20, leaving the
position of the poles of the S-matrix operator to be a function of Eφ.

The final smooth curve of the pole positions as a function of Eφ is shown in
figures 3.1 (in variable k) and 3.2 (in variable E). Position of the resonant pole
in the complex plane is in figures 3.3 and 3.4. The black arrows indicate how the
pole moves along the curve with decreasing Eφ.

In correspondence with previously stated (section 1.1), we can see the tran-
sition to a bound state at point Eφ = 3.184, manifesting itself by switching the
area

Re[k] ≷ 0 & Im[k] < 0 → Re[k] = 0 & Im[k] ≷ 0,

for k-representation, or

Re[E] > 0 & Im[E] < 0 → Re[E] < 0 & Im[E] = 0

for E-representation, see 1.11 and 1.10 respectively.
If we look closely at the time evolution (figures 3.5 - 3.13), we can see a clear

transition from exponential to polynomial decay, see figures 3.6, 3.7, and 3.8. We
should see this transition when the right hand side of 1.56 becomes comparable
with the left hand side. For system on figure 3.6 this happen around t = 2.7, for
system on figure 3.7 around t = 1.7, and finally for system on figure 3.8 around
t = 1.6. So 1.56 gives a reasonable prediction. Note that the transition is always
preceded by a characteristic local decrease of |a(t)|2 [4].

When Eφ < 3.184 (figures 3.12 and 3.13) the discrete state does not decay
completely any more. We have to keep in mind that the discrete state is not
the resonant state. It is a combination of the resonant state and the continuum
states, causing a partial decay of the discrete state even in area where the system
has a bound state.

The first order perturbation theory gives us a good prediction in the area far
above the threshold and for short times where the decay is exponential (figures
3.5 to 3.8). When the discrete state is pushed near the threshold (figures 3.9 and
3.10), the decay after short time becomes considerably different from the first
order perturbation theory. The slope of the line describing the decay process is
in fact far closer to Γs given by the spectral line shape than to Γ1P T . This fact
is logical given that the spectral line is taken in limit for t → ∞. Fitted value of
the slope for system on figure 3.9 is 0.93 ± 0.01 (compare with Γs = 1.15 ± 0.01
and Γ1P T = 3.89) and 0.35±0.01 (compare with Γs = 52±0.01 and Γ1P T = 3.27)
for system on figure 3.10. For short times, the first order perturbation theory is
valid for Eφ > 3 but for Eφ < 3 it breaks completely – compare detailed figures
3.14, 3.15, and 3.16.

The presence of the threshold also impacts the shape of the Lorentzian-like
curve of the spectra. The curve becomes distinctively asymmetric – the states on
the right hand side from the centre of the curve are more populated that those on
the left hand side (figures 3.7 to 3.9). The threshold also causes the Lorentzian
curve to be narrower, which is very well observable from the difference between
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the actual Γres, given by twice the imaginary part of the pole position, and the
defining parameter Γs of the Lorentzian curve.

Another significant feature are the oscillations on the spectral line shape,
which become more pronounced the closer we are to the threshold (figures 3.10
and 3.11), breaking the line shape completely when the resonant state becomes
a bound state (figure 3.12 and 3.13). This can be explained by the fact that
our discrete state is actually not the resonance state, but a combination of the
resonant state and some states from the continuum. The coefficients of the de-
composition are in fact the square roots of the population values of each of the
continuum state.

3.2 Two Overlapping Resonances
In the very same manner, we shall study the system with two discrete states. We
can again find the positions of the poles as functions of one parameter; we choose
Eφ2 . The coupling 3.1 is used with very similar parameters not only for reasons
explained in the previous section, but also to have the opportunity to compare
the results with the case of one discrete state in the system. We take Eφ1 and
Eφ2 large enough so that the threshold effect is negligible.

We start by drawing the function of poles positions. We set the parameters
Eφ1 = 100, A1 = 20, A2 = 30, and B1 = B2 = 20. The resulting function
of Eφ2 is in figures 3.17 and 3.18 for k- and E-representation respectively. The
positions of the poles in the complex plain are in figures 3.19 and 3.20 (detailed)
for k-representation and 3.21 for E-representation. The black arrows show the
poles moving along the curves with increasing Eφ2 . The green dot indicates where
the pole is when only one resonance associated with Eφ1 = 100 is in the system
(compare with figure 3.5). When enlarging Eφ2 from Eφ2 = 50, one of the poles
starts moving along the yellow curve, while the other one is pushed from the
green dot and starts moving along the blue curve. When Eφ2

∼= Eφ1 = 100 the
poles are one above another at position approximately Re[Eres] ∼= 100, but one
of the resonances is stabilized (the imaginary part is effectively zero), while the
other one decays faster than it would decay if it were an isolated resonance. The
stabilization of one of the resonances is called bound state in continuum and is
studied in detail in [7, 11]. When enlarging Eφ2 even further, the resonance poles
”swap their meaning” and the pole originally placed at the green dot moves away
while the other one converges to the green dot instead. This is better visible in
following figures 3.22 to 3.27.

Swapping the pole correspondence to individual discrete state is also clear
from all of the figures 3.17 and 3.18. We see that neither the imaginary part of
kresi

nor imaginary part of Eresi
of either pole converges to zero on one of the

boundaries. They converge to the pole position of the first isolated resonance,
that is to kres = ±14.22 − 0.02i or Eres = 101.12 − 0.32i, compare with 3.5. Such
behaviour, when one pole continues its trajectory in the complex plane in a way
that optically looks like the trajectory of the other one, is called avoided crossing.

The exact time evolution shown in figures 3.22 to 3.27 is well described by
the adiabatic elimination of the continuum. Remember we deliberately work in
the area where the correction 2.18 is small enough. For these set-ups the decay
is (apart from the oscillations caused by the presence of the two discrete states
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in the system) purely exponential, no transition to polynomial decay is observed.
Around Eφ2 = 100 (figures 3.24 and 3.25), the stabilization effect comes into

play, when one of the poles reaches almost Im[kres] = 0, while the other one sud-
denly acquires Im[kres] far larger. The two discrete states are again a combination
of the two resonance states, so the decay is then dominated in the beginning by
fast decay from one of the resonances, and then it relaxes into slow decay of the
second resonance. In the end, it seems that there is a bound state in the sys-
tem, far above the area where we expect any bound states – the bound state in
continuum effect.

Now let us look at the spectra. Remember that we always start from |φ1⟩,
the population of the other discrete state is zero. This causes that the spectrum
is mostly populated from the first discrete state with only a small peak stemming
from the second one when the discrete states are far from each other (figures 3.22,
3.23, 3.26, and 3.27). This causes large error in the estimate of Γs of one of the
resonances.

In these areas where the resonances are far from each other, the eigenstates
2.25 are almost orthogonal and

|φ1⟩ ∼= |R1⟩, (3.8)

|φ2⟩ ∼= |R2⟩ (3.9)

but when we push Eφ2 closer to Eφ1 , the discrete states become

|φ1⟩ =
∑

i

ci|Ri⟩, |c1| ∼= |c2|, (3.10)

|φ2⟩ =
∑

i

ci|Ri⟩, |c1| ∼= |c2| (3.11)

and therefore the spectrum has two peaks, one from each resonance (figures 3.24
and 3.25). The Γs obtained from spectrum of the resonance with larger Γres is
similar to Γres, whereas Γs of the stabilized resonance is completely different.
This may be because numerical integration of 2.12 for two close discrete states
could not be done for sufficiently large t and therefore the spectrum may not be
converged. Either way, the parameter Γs is not a good approximation for us in
case of two overlapping resonances.
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Figure 3.1: Real and imaginary part of the position of the resonant pole kres given
by 3.6 as a function of Eφ. The coupling 3.2 is defined by parameters A = 20
and B = 20.

Figure 3.2: Real and imaginary part of the position of the resonant pole Eres

given by 3.5 as a function of Eφ. The coupling 3.2 is defined by parameters
A = 20 and B = 20.
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Figure 3.3: Position of the resonant pole kres given by 3.6 as a function of Eφ.
The smaller Eφ is, the more the pole approaches point [0, 0] (reaching it at the
point Eφ = 3.184), then it starts moving up or down along the imaginary axis
as the bound and virtual state respectively, as the arrows indicate. The coupling
3.2 is defined by A = 20 and B = 20.

Figure 3.4: The position of the resonant pole Eres given by 3.5 as a function of
Eφ. The smaller Eφ is, the more the pole approaches point [0, 0] (reaching it at
the point Eφ = 3.184), then it becomes bound state and starts moving along the
negative real axis, as the arrows indicate. The coupling 2.1 is defined by A = 20
and B = 20.
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kres Re[Eres] Γres Γ1P T Γs Es

±14.22 − 0.02i 101.12 0.64 0.67 0.68 ± 0.01 101.12 ± 0.01

Figure 3.5: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 100.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions.
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kres Re[Eres] Γres Γ1P T Γs Es

±7.78 − 0.48i 30.18 7.48 6.67 7.17 ± 0.01 30.34 ± 0.1

Figure 3.6: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 30.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions.
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kres Re[Eres] Γres Γ1P T Γs Es

±5.21 − 0.83i 13.22 8.66 7.08 7.65 ± 0.03 12.77 ± 0.1

Figure 3.7: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 15.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions.
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kres Re[Eres] Γres Γ1P T Γs Es

±3.97 − 0.89i 7.49 7.10 6.07 5.16 ± 0.04 6.71 ± 0.1

Figure 3.8: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 10.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions.
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kres Re[Eres] Γres Γ1P T Γs Es

±1.91 − 0.48i 1.71 1.82 3.89 1.15 ± 0.01 1.44 ± 0.1

Figure 3.9: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 5.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions. The fitted slope of the blue line on first figure is 0.93 ± 0.01.
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kres Re[Eres] Γres Γ1P T Γs Es

±1.18 − 0.26i 0.66 0.62 3.27 0.52 ± 0.01 0.62 ± 0.01

Figure 3.10: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 4.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions. The fitted slope of the blue line on first figure is 0.35 ± 0.01.
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kres Re[Eres] Γres Γ1P T Γs Es

±0.13 − 0.02i 0.01 0.01 2.73 0.30 ± 0.01 0.25 ± 0.01

Figure 3.11: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 3.2.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturbation
prediction 2.5 – yellow curve (in common logarithmic scale). Second: the spec-
trum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve. Third:
the position of the resonant poles (green dots). Fourth: table of parameters and
poles positions.
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kresIm[kres] Re[Eres] Γres Γ1P T Γs Es

0 ± 0.30i −0.04 0 2.65 − −

Figure 3.12: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 3.1.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturba-
tion prediction 2.5 – yellow curve (in common logarithmic scale). Second: the
spectrum |b|2 given by 1.48 – blue curve. The function 3.7 cannot be fitted any
more. Third: the position of the resonant poles (green dots). Fourth: table of
parameters and poles positions.
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kreskres Re[Eres] Γres Γ1P T Γs Es

0 ± 1.28i −0.82 0 1.81 − −

Figure 3.13: The system is defined by coupling 3.2 with parameters A = 20 and
B = 20, and by position of the discrete state Eφ = 2.
First: time evolution |a|2 given by 1.51 – blue curve – and first order perturba-
tion prediction 2.5 – yellow curve (in common logarithmic scale). Second: the
spectrum |b|2 given by 1.48 – blue curve. The function 3.7 cannot be fitted any
more. Third: the position of the resonant poles (green dots). Fourth: table of
parameters and poles positions.
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Figure 3.14: Detailed time evolution of 3.9. The system is defined by coupling
3.2 with parameters A = 20 and B = 20, and by position of the discrete state
Eφ = 5.
The blue curve shows the time evolution |a|2 given by 1.51 and the yellow curve
shows the first order perturbation prediction 2.5, Γ1P T = 1.15 (in common loga-
rithmic scale).

Figure 3.15: Detailed time evolution of 3.12. The system is defined by coupling
3.2 with parameters A = 20 and B = 20, and by position of the discrete state
Eφ = 3.1.
The blue curve shows the time evolution |a|2 given by 1.51 and the yellow curve
shows the first order perturbation prediction 2.5, Γ1P T = 2.65 (in common loga-
rithmic scale).
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Figure 3.16: Detailed time evolution of 3.13. The system is defined by coupling
3.2 with parameters A = 20 and B = 20, and by position of the discrete state
Eφ = 2.
The blue curve shows the time evolution |a|2 given by 1.51 and the yellow curve
shows the first order perturbation prediction 2.5, Γ1P T = 1.81 (in common loga-
rithmic scale).

Figure 3.17: Real and imaginary part of the position of the resonant pole kres1

and kres2 given by 3.4 as a function of Eφ2 . The system is defined by Eφ1 = 100
and couplings 3.1, where A1 = 20, A2 = 30, and B1 = B2 = 20.
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Figure 3.18: Real and imaginary part of the position of the resonant pole Eres1

and Eres2 given by 3.3 as a function of Eφ2 . The system is defined by Eφ1 = 100
and couplings 3.1, where A1 = 20, A2 = 30, and B1 = B2 = 20.

Figure 3.19: The positions of the resonant poles kres1 (blue) and kres2 (yellow).
They are given by 3.4 as a function of Eφ2 . The black arrows indicate the poles
moving along the curves when enlarging Eφ2 . The green dots are symbolising the
position of the pole for only one discrete state Eφ1 = 100 – compare with figure
3.5. The system is defined by Eφ1 = 100, with couplings 3.1, where A1 = 20,
A2 = 30, and B1 = B2 = 20.

32



Figure 3.20: The positions of the resonant poles kres1 (blue) and kres2 (yellow)
in detail. Only the poles with Re[kres] are shown for better demonstration. The
positions of the poles are given by 3.4 as a function of Eφ2 . The green dot is
symbolising the position of the pole for only one discrete state Eφ1 = 100 –
compare with figure 3.5. The system is defined by Eφ1 = 100, with couplings 3.1,
where A1 = 20, A2 = 30, and B1 = B2 = 20.

Figure 3.21: The positions of the resonant poles Eres1 (blue) and Eres2 (yellow).
They are given by 3.3 as a function of Eφ2 . The black arrows indicate the poles
moving along the curves when enlarging Eφ2 . The green dots are symbolising the
position of the pole for only one discrete state Eφ1 = 100 – compare with figure
3.5. The system is defined by Eφ1 = 100, with couplings 3.1, where A1 = 20,
A2 = 30, and B1 = B2 = 20.
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kres Re[Eres] Γres Re[I±] Γ± Γs Es

14.22 − 0.267i 101.19 0.74 101.23 0.88 0.99 ± 0.01 101.20 ± 0.1
12.80 − 0.026i 81.92 1.72 82.99 1.98 1.93 ± 1.15 82.87 ± 0.5

Figure 3.22: The system is defined by coupling 3.1 with parameters Eφ1 = 100,
Eφ2 = 80, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 - blue curve – and |a2|2 – yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curve. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.
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kres Re[Eres] Γres Re[I±] Γ± Γs Es

14.23 − 0.030i 101.28 0.84 101.32 1.00 1.06 ± 0.01 101.27 ± 0.01
13.54 − 0.038i 91.64 1.02 91.70 1.18 1.14 ± 0.19 92.04 ± 0.07

Figure 3.23: The system is defined by coupling 3.1 with parameters Eφ1 = 100,
Eφ2 = 90, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curve. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.

35



kres Re[Eres] Γres Re[I±] Γ± Γs Es

14.30 − 0.051i 102.21 1.44 102.31 1.64 1.56 ± 0.01 102.14 ± 0.01
14.11 − 0.002i 99.52 0.04 99.52 0.05 0.71 ± 0.19 99.90 ± 0.01

Figure 3.24: The system is defined by coupling 3.1 with parameters Eφ1 = 100,
Eφ2 = 99, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curvee. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.
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kres Re[Eres] Γres Re[I±] Γ± Γs Es

14.37 − 0.048i 103.36 1.39 103.58 1.51 1.28 ± 0.01 103.45 ± 0.01
14.17 − 0.001i 100.33 0.04 100.33 0.04 0.78 ± 0.01 100.10 ± 0.01

Figure 3.25: The system is defined by coupling 3.1 with parameters Eφ1 = 100,
Eφ2 = 101, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 – blue curve – and |a2|2 - yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curve. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.
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kres Re[Eres] Γres Re[I±] Γ± Γs Es

14.94 − 0.244i 111.60 0.72 111.65 0.84 0.85 ± 0.56 111.79 ± 0.17
14.21 − 0.016 100.95 0.45 100.98 0.50 0.50 ± 0.01 100.94 ± 0.01

Figure 3.26: The system is defined by coupling 3.1 with parameters Eφ1 = 110,
Eφ2 = 110, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curve. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.
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kres Re[Eres] Γres Re[I±] Γ± Γs Es

15.58 − 0.014i 121.36 0.22 121.40 0.52 0.55 ± 0.95 121.61 ± 0.61
14.21 − 0.019 101.03 0.27 101.06 0.60 0.88 ± 0.01 101.02 ± 0.01

Figure 3.27: The system is defined by coupling 3.1 with parameters Eφ1 = 100,
Eφ2 = 120, A1 = 20, A2 = 30, and B1 = B2 = 20.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
equation 2.12, the red and green curves are eI±t from equation 2.24 (in common
logarithmic scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted
with sum of two function 3.7 – red curve. Third: the position of the resonant
poles (green and brown dot), only the poles with Re[k] > 0 are shown for better
demonstration. Fourth: table of parameters and poles positions.
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4. Application
In this chapter, we use the theoretical model described above for a realistic case –
a neon-helium-neon cluster decaying via the interatomic Coulombic decay (ICD)
[12]. The nature of ICD is as follows: Let us have a cluster with two subunits A
and B. Removing one of the inner-valence electrons from the subunit B creates
a ionized state. If the energy of of this state is higher than the double ionization
threshold of the cluster, the process of ICD sets in. The energy excess from
the subunit B+ is used for removing outer-valence electron from the subunit A
resulting in a doubly ionized cluster of the two single positive charged subunits
A+ and B+.

We associate these two subunits with the two neon atoms in our cluster. The
helium atom acts as a bridge allowing the process to be much faster compared to
isolated neon dimer [13].

Our focus will be on a physical ICD process

Ne+(2s−1) − He − Ne −→ Ne+(2p−1) − He − Ne+(2p−1), (4.1)

for such interatomic distance R that it interacts with another resonance, namely

Ne+(2p−1) − He∗ − Ne −→ Ne+(2p−1) − He − Ne+(2p−1). (4.2)

The decay of Ne+(2s−1) − He − Ne is in fact a multi-channel problem, but we
restrict ourselves to a single-channel decay for simplicity.

The characteristic dependence of the ICD width on the interatomic neon –
neon distance R is

Γ(R) ∝ 1
R6 , (4.3)

corresponding to dipole–dipole interaction between the two subunits [14, 15]. For
Ref. [13] the energy dependent decay widths Γ(E, R) = 2π|V (E, R)|2 of the two
aforementioned resonances were computed using ab initio Fano-ADC method [16].
In order to apply the same techniques as in the previous chapter, we fit the ab
initio data by a slightly generalized formula for the discrete state – continuum
coupling

Vi(E) =

⎧⎨⎩
√

Ai

2π

(
E
Bi

)αi exp
(
− E

Bi

)
E > 0

0 E < 0
, (4.4)

with
Ai = A0i

R6
i

, (4.5)

where A0i, Bi, and αi are parameters.
We shall keep the energy of one of the discrete states (which is associated

with Ne+(2s−1) − He − Ne) constant, Eφ1 = 0.13632, and parametrize the other
one (associated with Ne+(2p−1) − He∗ − Ne)

Eφ2 = d

Re
+ f. (4.6)

The fitted parameters are in table 4.1.
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A01 5.7996
A02 33.5139
B1 1.1377
B2 0.2200
α1 0.3878
α2 0.8407
d 2.0613
e 0.1444
f −1.6035

Table 4.1: Fitted parameters of functions 4.4 and 4.6.

Of our main interest is the time evolution of the system for R such that we
are near crossing, the spectra, and the poles of the S-matrix operator trajectories
in the complex plane.

The generalized coupling 4.4 gives rise to a different level shift function 2.2

Fij(k) = −Aij

2π
Γ(1 + αij)

−k2

2Bij

Γ
(

−αij, − k2

2Bij

)
exp

(
− k2

2Bij

)
, (4.7)

αij = αi + αj

2 , (4.8)

Bij = 2 BiBj

Bi + Bj

, (4.9)

Aij =
√

AiAj

Bαi
i B

αj

i

Bαij . (4.10)

With this analytical form, we can start the search for the poles positions.
The real and imaginary parts of the poles position as functions of the length

of the trimer R ∈ (2.7, 4.2) are in figures 4.1 and 4.2 for k- and E-representation
respectively. We can see the crossing at R = 3.235 A where the imaginary part
of one of the poles suddenly increases while the imaginary part of the other one
decreases as described in the section 3.2. In figure 4.2, we can also see the pole
trajectory for only one isolated resonance associated with 4.1. The influence of
the second resonance 4.2 leading to the stabilization is clearly visible – if the first
resonance 4.1 is isolated, it has for R = 3.235 decay width Γ(Eres) = 7.57 × 10−3

while the same resonance interacting with the second resonance has Γ(Eres) =
0.06 × 10−3, which is almost a bound state in continuum as already discussed.
The stabilization then leads to prolongation of the lifetime by three orders of
magnitude.

The poles trajectories in momentum or energy complex plane are in figures 4.3
(k-representation) and 4.4 (E-representation). The black arrows show how the
poles move along the curves with increasing R. The blue curve is associated with
Eφ1 = 0.13632 and the yellow curve corresponds to Eφ1 as defined in 4.6. The
influence of this crossing resonance on the constant one is well visible in following
figures 4.5 to 4.9.

The time evolutions shown in figures 4.5 to 4.9 for R = 3 − 3.4 are calculated
partly by the full simulation 2.12 (figure 4.5) and partly by adiabatic elimination
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(figures 4.8 and 4.9) for such set-ups where the correction 2.18 is negligible, that
is, for Γ small enough (the term 2.18 is proportional to Γ). To demonstrate that
we can use the adiabatic elimination of the continuum, there are time evolutions
obtained by both approaches on figures 4.6 and 4.7.

The time evolution is (apart from few oscillations at the beginning) purely
exponential and after some time, the decay of both of the discrete states relaxes
to decay equivalent into the slowly decaying resonance.

The spectra of systems are purely Lorentzian with the parameters Γs and Es

similar to the slowly decaying resonance. The spectrum of the system on crossing
(R = 3.235A, see figure 4.7) is not perfectly converged for numerical reasons and
therefore does not offer a good estimate of Γ.

Note that all Γ obtained by different approaches for each investigated R are in
good agreement (except for Γs on crossing caused by the fact that the spectrum is
not converged). The stabilization effect of this system as discussed in the previous
chapter can be then observed from any of these Γ.

In the real case of a multiple-channel scattering, the stabilization effect is not
that significant as the one observed here. This is because the stabilization only
affects the partial decay width that corresponds to the continuum that is shared
by both of the resonant states.
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Figure 4.1: Real and imaginary part of the positions of the resonant poles kres1

and kres2 given by 3.4 as a function of R. The system is defined by coupling 4.4
with parameters from table 4.1, and with Eφ1 = 0.1363 and Eφ2 given by 4.6.
The blue curve is associated with Eφ1 and the yellow curve corresponds to Eφ2 .
Only poles with Im[kres] > 0 are shown.

Figure 4.2: Real and imaginary part of the positions of the resonant poles Eres1

and Eres2 given by 3.3 as a function of R (blue and yellow curve). The system is
defined by coupling 4.4 with parameters from table 4.1, and with Eφ1 = 0.1363
and Eφ2 given by 4.6. The blue curve is associated with Eφ1 and the yellow curve
corresponds to Eφ2 . The green curve shows the pole trajectory of a system with
the same parameters but with only one resonance associated with 4.1.
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Figure 4.3: The position of the resonant poles kres1 and kres2 given by 3.4 as a
function of R. The black arrows indicate the poles moving along the curves when
enlarging R. The system is defined by coupling 4.4 with parameters from table
4.1, and with Eφ1 = 0.1363 and Eφ2 given by 4.6. The blue curve is associated
with Eφ1 and the yellow curve corresponds to Eφ2 .

Figure 4.4: The position of the resonant poles Eres1 and Eres2 given by 3.3 as a
function of R. The black arrows indicate the poles moving along the curves when
enlarging R. The system is defined by coupling 4.4 with parameters from table
4.1, and with Eφ1 = 0.1363 and Eφ2 given by 4.6 The blue curve is associated
with Eφ1 and the yellow curve corresponds to Eφ2 .
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kres ±0.520 − 4.65 × 10−3 ±0.549 − 14.69 × 10−3

Re[Eres] 0.135 0.151
Γres × 10−3 4.84 16.14
Γs × 10−3 4.99 ± 0.01 -
Es 0.135 ± 0.001 -

Figure 4.5: The system is defined by coupling 4.4 with parameters given by 4.1
and R = 3 A, and by position of the discrete states Eφ1 = 0.1363 and Eφ2 =
0.1471 given by 4.6.
First: time evolution of |a1|2 – green curve – associated with 4.1 and |a2|2 –
red curve – associated with 4.2 given by solution of 2.12 (in common logarithmic
scale). Second: the spectrum |b|2 given by 1.48 – blue curve – fitted with function
3.7 – red curve. Third: the position of the resonant poles (green and brown dot),
only the poles with Re[k] > 0 are shown for better demonstration. Fourth: table
of parameters and poles positions.
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kres ±0.521 − 4.15 × 10−3 ±0.534 − 11.85 × 10−3

Re[Eres] 0.136 0.142
Γres × 10−3 4.33 12.66

Re[I±] 0.136 0.148
Γ± × 10−3 0.28 14.02

Figure 4.6: The system is defined by coupling 4.4 with parameters given by
4.1 and R = 3.1 A, and by position of the discrete states Eφ1 = 0.1363 and
Eφ2 = 0.1471 given by 4.6.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given
by solution of adiabatic elimination 2.23. The red and green curves are given
by solution 2.12. (in common logarithmic scale). Second: the position of the
resonant poles (green and brown dot), only the poles with Re[k] > 0 are shown
for better demonstration. Third: table of parameters and poles positions.
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kres ±0.515 − 12.38 × 10−3 ±0.521 − 0.06 × 10−3

Re[Eres] 0.136 0.132
Γres × 10−3 0.06 12.76
Re[I±] 0.136 0.132
Γ± × 10−3 0.06 12.43
Γs × 10−3 0.31 ± 0.01
Es 0.136 ± 0.001

Figure 4.7: The system is defined by coupling 4.4 with parameters given by
4.1 and R = 3.235 A, and by position of the discrete states Eφ1 = 0.1363 and
Eφ2 = 0.1364 given by 4.6.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
solution of adiabatic elimination 2.23. The red and green curves are given by
solution 2.12. Second: the spectrum |b|2 given by 1.48 – blue curve – fitted with
function 3.7 – red curve. Third: the position of the resonant poles (green and
brown dot), only the poles with Re[k] > 0 are shown for better demonstration.
Fourth: table of parameters and poles positions.
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kres ±0.520 − 0.27 × 10−3 ±0.507 − 10.82 × 10−3

Re[Eres] 0.135 0.128
Γres × 10−3 0.27 10.99
Re[I±] 0.135 0.128
Γ± × 10−3 0.29 10.71

Figure 4.8: The system is defined by coupling 4.4 with parameters given by
4.1 and R = 3.3 A, and by position of the discrete states Eφ1 = 0.1363 and
Eφ2 = 0.1314 given by 4.6.
First: time evolution of |a1|2 – blue curve – associated with 4.1 and |a2|2 – yellow
curve – associated with 4.2 given by solution of adiabatic elimination 2.23 (in
common logarithmic scale). Second: the position of the resonant poles (green and
brown dot), only the poles with Re[k] > 0 are shown for better demonstration.
Third: table of parameters and poles positions.
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kres ±0.520 − 0.82 × 10−3 ±0.493 − 8.45 × 10−3

Re[Eres] 0.124 0.135
Γres × 10−3 0.85 8.38
Re[I±] 0.122 0.135
Γ± × 10−3 0.86 8.22
Γs × 10−3 0.92 ± 0.01 -
Es 0.135 ± 0.001 -

Figure 4.9: The system is defined by coupling 4.4 with parameters given by
4.1 and R = 3.4 A, and by position of the discrete states Eφ1 = 0.1363 and
Eφ2 = 0.1239 given by 4.6.
First: time evolution of |a1|2 – blue curve – and |a2|2 – yellow curve – given by
solution of adiabatic elimination 2.23 (in common logarithmic scale). Second: the
spectrum |b|2 given by 1.48 – blue curve – fitted with function 3.7 – red curve.
Third: the position of the resonant poles (green and brown dot), only the poles
with Re[k] > 0 are shown for better demonstration. Fourth: table of parameters
and poles positions.
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Conclusion
We now try to summarize the results obtained in this thesis. From the beginning
we worked with a theoretical model of one or two metastable state(s) embedded in
a continuum into which it decays. We used a suitable coupling, that is, a coupling
that is analytical, continuous almost everywhere and for certain parameters leads
to a bound state. For such coupling we studied the time evolution and spectra
of the the system with different parameters that characterize it. We also focused
on the positions of the poles of the scattering matrix and their trajectories in the
complex energy or momentum plane as a function of one of the parameters of the
system.

For the case of one metastable state in the system, the time evolution far
above the threshold is well-approximated by first order perturbation theory up
to a point, where the decay starts to be polynomial. This transition takes place
earlier when pushing the metastable state closer to the threshold. When the
energy of the metastable state is less than a certain critical value, the metastable
state does not decay completely any more (a bound state appears).

The spectral line, close to the Lorentzian line shape in the area far above the
threshold, is deformed eventually with closer threshold, turning into oscillations
for the bound state.

With two metastable states in the system, we have studied the influence of the
overlap on the time evolution in the area, where the threshold plays no role. We
compared it with the approximation of adiabatic elimination of the continuum
that gave very good results even for fairly close states. We also commented on an
”avoided crossing” phenomenon observed on the poles trajectories in the complex
plain.

The resonance crossing led to a stabilization of one of the resonances, that
is, the decay width of one of the resonances suddenly decreased, while the other
one acquires far larger decay width. This stabilization was so strong that the
resonance almost did not decay any more, creating a state known as a bound
state in continuum.

The last part is an application on a real system – the neon-helium-neon trimer.
We have studied time evolution and spectrum of this system near the resonance
crossing. The stabilization effect caused by the presence of the second resonance
for a single-channel scattering approximation leads to a decrease of the decay
width by three orders of magnitude. The decrease is still well described by the
decay widths obtained by different approaches, namely from adiabatic elimination
of the continuum, from spectra and from exact calculation of the position of the
resonance pole.

For the purpose of this thesis, we used simplified single-channel scattering ap-
proach. The real case is much more complicated and leads to smaller stabilization
effect. This thesis offers an upper estimate of this effect.
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