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Abstract  

Monte Carlo simulation is a valuable tool in computational finance.  It is widely used 

to evaluate portfolio management rules, to price derivatives, to simulate hedging 

strategies, and to estimate Value at Risk.  The purpose of this thesis is to develop the 

mathematical foundation and an algorithmic structure to carry out Monte Carlo 

simulation to price a European call option, investigate Black-Scholes model to look 

into the parallel between Monte Carlo simulation and Black-Scholes model, provide a 

solution for Black-Scholes model using Lognormal distribution of a stock price rather 

than solving Black-Scholes original partial differential equation, and finally compare 

the results of Monte Carlo simulation with Black-Scholes closed-form formula.  

Author’s contribution can be best described as developing the mathematical foundation 

and the algorithm for Monte Carlo simulation, comparing the simulation results with 

the Black-Scholes model, and investigating how path-dependent options can be 

implemented using simulation when closed-form formulas may not be available. 
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Derivatives are important financial instruments that can be used for portfolio 

hedging or as leveraged instruments for trading.  Pricing derivatives normally 

entail computation of integrals, and solving stochastic differential equations with 

complicated boundary conditions.  In many cases, especially for exotic derivatives, 

where these stochastic differential equations cannot be valued analytically, the 

derivatives can be evaluated using numerical integration. 

 

Monte Carlo methods offer viable alternative methods to evaluate any kind of 

derivatives, since they are conceptually numerical integration tools.  They are 

widely used in finance to evaluate portfolio management rules, to simulate hedging 

strategies, to estimate Value at Risk etc.   

 

We are going to use Monte Carlo simulation for pricing a European call option, 

since a closed-form Black-Scholes formula is readily available, and it is easy the 

compare the results.  We will derive the Black-Scholes formula assuming risk-
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1 Introduction  

Pricing derivatives is an important area in computational finance.  Finding a closed-

form analytical solution such as the famous Black-Scholes formula for European 

options always involves solving partial differential equations with different boundary 

conditions.  However, many derivatives such as complex path-dependent options do 

not yield analytical solutions.  This led to the development of numerical methods for 

estimating derivative prices. 

One of the most popular numerical methods in option pricing is Monte Carlo 

simulation, a technique that was invented by Stansilaw Ulam in late 1940s, while he 

was working on nuclear weapons project at the Los Alamos National Laboratory.  The 

broad class of Monte Carlo methods is a class of computational algorithm that relies 

on repeated random sampling to obtain numerical results.  In the context of option 

pricing Monte Carlo simulation entails generation of sample paths of the underlying 

security by means of random simulation.  It then uses these price paths to compute the 

payoffs.  In the end the payoffs are averaged and discounted back to the present value, 

and this yields the price of the option.   

The objective of this thesis is to explore the Black-Scholes model for pricing options, 

to develop Monte Carlo simulation algorithm, compare the estimates generated by the 

simulation process with those given by the Black-Scholes model, and to explore how 

path-dependent options can be priced using Monte Carlo methods. 

The thesis is structured as follows: Chapter 2 covers literature review.  Chapter 3 covers 

the theory of stochastic calculus and Black-Scholes model as a foundation to support 

our methodology.  Chapter 4 discusses the methodology by outlining the mathematical 

structure and the algorithm for the simulation process.  It also discusses how the 

algorithm can be extended to price path-dependent options. Chapter 5 presents the 

empirical analysis by comparing Monte Carlo estimates with prices obtained from 

Black-Scholes closed-form formulas.  Chapter 6 is the conclusion, summarising what 

we have accomplished in the thesis and what other interesting research areas that 

should be studied.   
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2 Literature Review 

The objective of the thesis is not only to find out how options can be priced using 

Monte Carlo simulation, but also to establish a logical link between the mathematical 

structure of the simulation algorithm and the formal derivation of the closed-form 

formula of an option.  We, therefore, have reviewed papers and articles for Monte Carlo 

simulation for pricing derivatives as well as for derivation of the option price in closed-

form formulas. 

The mathematical models that are most widely used today to evaluate options are the 

Black and Scholes model (1973), Cox, Ross and Rubinstein model (1985), and the 

Merton model (1973).  

Fischer Black and Myron Scholes in their seminal paper proposed the Black-Scholes 

model to value options in terms of the price of the stocks. The Cox, Ross and 

Rubinstein (1979) model is a multi-period binomial model for evaluating real options 

that derives from the generalization of the one-period binomial model. The model, 

revised and completed by Cox and Rubinstein (1985) is one of the most effective 

methods to estimate the value of options.  

Despite being the original and popular, the Black-Scholes model is actually built with 

some simplified assumptions about the market such as the underlying asset follow a 

lognormal distribution, volatility and interest rate are constant, the options should be 

exercised only at the expiration, the stock pays no dividends during the life of the 

option etc.  Tereng (2011) discussed some of these limitations.    

Due to some of the simplified assumptions and limitations of Black-Scholes model, 

many models have been proposed to tackle these problems. The most well-known 

among these are Merton model and KMV-Merton model.  Merton (1974) together with 

Black and Scholes enhanced the original Black-Scholes model and claimed that this 

model could be used to develop a pricing theory for corporate liabilities.  The analysis 

of their study extended to include also the callable bonds.  Under KMV-Merton model, 

the firm’s asset and its volatility are not directly observed.  These values can be 

assessed from the equity’s value, its volatility and other observable variables by solving 

two nonlinear simultaneous equations. 
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Black and Scholes themselves admitted some biases of the model in their research 

paper, “The Valuation of Option Contracts and a Test of Market Efficiency”, expressed 

as “Using the past data to estimate the variance caused the model to overprice options 

on high variance stocks and under-priced options on low variance stocks.  While the 

model tends to overestimate the value of an option on a high variance security, market 

tends to underestimate the value, and similarly while the model tends to underestimate 

the value of an option on a low variance security, market tends to overestimate the 

value”.  

Both the Black-Scholes model and the binomial model of Cox and Rubenstein was 

simple and exact.  Compared to them the Monte Carlo also proved to be simple and 

offered very good approximations to the exact value of the option, allowing for greater 

flexibility.  Pheilam P. Boyle (1977) was one of the pioneers in using Monte Carlo 

simulation to study option pricing.  

"The purpose of the present paper is to show that Monte Carlo simulation provides a 

third method of obtaining numerical solutions to option valuation problems. The 

technique proposed is simple and flexible in the sense that it can easily be modified to 

accommodate different processes governing the underlying stock returns. This method 

should provide a useful supplement to the two approaches mentioned above. 

Furthermore, it has distinct advantages in some specialised situations -e.g. when the 

underlying stock returns involve jump processes. Essentially the method uses the fact 

that the distribution of terminal stock prices is determined by the process generating 

future stock price movements.  This process can be simulated on a computer thus 

generating a series of stock price trajectories.  This series determines a set of terminal 

stock values which can be used to obtain an estimate of the option value. Furthermore, 

the standard deviation of the estimate can be obtained at the same time so that the 

accuracy of the results can be established." – Boyle (1977) 

It should be noted that the simulation process that we have chosen to develop follows 

the same mathematical structure and logic as the one developed by Boyle.  Boyle 

provided ample empirical evidence to establish that Monte Carle estimates are 

unbiased.  However, the main disadvantage of Monte Carlo method is its computational 

inefficiency.  According to Boyle, Monte Carlo estimates lie within two standard 

deviation of the correct answer.  However, 95 percent confidence intervals were quite 

wide.  For a Monte Carlo estimate of $17.19, the 95 percent confidence limits were 

17.19 ± 0.958 with 5000 trajectories or trials.  To reduce the range of those 

confidence limits to ±0.05 the number of trials had to be increased to 1,835,500.  This 

is a very large number and entails a lot of computing. 
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Since Boyle's pioneering work in 1977 several papers have been written on Monte 

Carlo simulation for analysing options.  One of the important areas has been variance 

reduction technique to increase the precision and speed up simulation. Boyle, P., 

Broadie, M. and Glasserman, P. (1998) suggested antithetic method and control 

variates.  Variance reduction by antithetic variates is a simple and widely used methods 

today to increase the accuracy of the Monte Carlo simulation. It automatically doubles 

the size of the sample with a minimal increase in computational time. Since in Monte 

Carlo simulation we generate normally distributed random variables with a mean of 

zero and a variance of 1, there is an equally likely chance of having drawn the observed 

value times -1.  Thus, for each arbitrary random draw of 𝛼, there should be an 

artificially generated companion observation of -𝛼.  This is the antithetic variate.  

Monte Carlo estimates are observed to have reduced errors, when the technique of 

antithetic variates is used. 

One of the important and practical aspects of using Monte Carlo simulation is pricing 

derivatives, such as exotic options and Asian options, which are path-dependent and 

for which no closed-form analytical formulas can be found. The method is slow, but 

very flexible.  Fadugba, Nwozo and Babola (2012) discusses two of the primary 

numerical methods that are currently used by financial professionals for determining 

the price of an option.  These are Monte Carlo method and finite difference method. 

They also provide comparison of the convergence of methods to the analytical Black-

Scholes price of European option. According to the Fadugba and Nwozo Monte Carlo 

method is good for pricing exotic options while Crank Nicolson finite difference 

method is stable, more accurate and converges faster than Monte Carlo method, when 

pricing standard options.  The authors conclude that “The Monte Carlo method works 

well for pricing path dependent options especially Asian Options, approximates every 

arbitrary exotic option, it is flexible in handling varying and even high dimensional 

financial problems.” – Nwozo and Fadugba (2012) 

We would like to conclude our literature review by saying that we have developed the 

mathematical structure for the simulation process mainly by following Boyle's work.  

Hull's "Options, futures and other derivatives" (2012) has been a great source for the 

theoretical foundation of simulation, while Glasserman's "Monte Carlo methods in 

financial engineering" (2004) for the basic empirical analysis of the results.  While 

variance reduction technique and pricing exotic options have been studied, we won't 

be able to delve into those areas, as it would be outside the scope of this thesis. 
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3  Theory  

3.1 Option  

An option is a contract that grants the option buyer, also known as the option holder, 

a right to buy or sell an underlying asset at a specified price on or before a specified 

date.  The specified price is the strike price or exercise price of the option contract and 

the specified date is known as the expiration date.  The option seller, also known as 

the option writer, grants this right to the option holder in exchange for a certain amount 

of money which in essence is the option premium or option price. 

The asset based on which the option contract is created is called the underlying. The 

underlying can be an individual stock, a stock index or a futures contract. The option 

writer can grant the option holder two types of rights.  A right is to purchase the 

underlying is called a call option, whereas a right is to sell the underlying is called a 

put option. 

When the option holder exercises the option, she buys or sells the underlying 

depending on whether it is a call option or a put option.  Depending on the exercise 

style, an option can also be categorized according to when it is exercised. A European 

option can only be exercised at the expiration date. An American option can be 

exercised any time on or before the expiration date. 

The terms of transaction are denominated by the contract unit, which is typically 100 

shares for an individual stock and multiple times the index value for a stock index. 

Most option contracts have standardized terms of transaction.  By opening the 

transaction, the option holder enters into the contract. Subsequently, the option holder 

then has the choice to exercise the option or to sell the option.  

3.1.1 Buying Call Option (Long Position in Call)  

Suppose, there is a company called ABC with a call option that expires in one month 

and has a strike price of $100. The option is priced at $3. Suppose that the current or 

spot price of stock ABC is $100.  The profit or loss will depend on the price of stock 

ABC at the expiration date. The buyer of a call option gains, if the price rises above 

the strike price. If the price of stock ABC is equal to $103, the buyer of a call option 

breaks even. The maximum loss is $3, the option price, and there is substantial upside 
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potential if the stock price rises above $103. Using a graph, Figure 3.1 shows the 

profit/loss profile for the buyer of this call option at the expiration date.   

Let us now compare the profit and loss profile of the call option buyer with that of an 

investor taking a long position in one share of stock ABC. The payoff from the position 

in the option depends on stock ABC’s price at the expiration date. An investor who 

takes a long position in stock ABC realizes a profit of $1 for every $1 increase in stock 

ABC’s price.  As stock ABC’s price falls, however, the investor loses, dollar for dollar. 

If the price drops by more than $3, the long position in stock ABC results in a loss of 

more than $3.  The long call position, in contrast, limits the loss to only the option 

price of $3 but retains the upside potential.  It is, therefore, important to understand the 

investment portfolio for a call option.  Someone with capital of $10,000.00 can take a 

position in 100 shares of ABC.  Alternatively, the person should buy 1 contract that 

costs $300, and hold the rest the rest of his capital in a money-market account. 

3.1.2 Writing Call Option (Short Position in Call) 

Let us now look at the option seller’s, or writer’s, position. We use the same call option 

we used to illustrate buying a call option. The profit/loss profile at expiration of the 

short call position, i.e. the position of the call option writer, is just the opposite of the 

profit and loss profile of the long call position. That is, the profit of the short call 

position for any given price for stock ABC at the expiration date is the same as the loss 

of the long call position. Consequently, the maximum profit the short call position can 

produce is the option price which $3 in our example.   

 

 

Figure 3.1: Profit/Loss at Expiration of Call Option  
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The maximum loss is not limited, because it is the highest price reached by stock ABC 

on or before the expiration date minus the price of the option; this price can be 

indefinitely high.  Using a graph, Figure 3.1 shows the profit/loss profile for the seller 

of this call option at the expiration date.  As with a long position, it is important to 

understand the investment portfolio with a short in call option.  Normally an investor 

with owns 100 shares of ABC would write a call to lock in a short-term profit.  There 

is no downside protection; however, the investor intends to hold on to his position, 

even if the stock declines through the expiration.  

3.1.3 Buying Put Option (Long Position in Put)  

To illustrate a long position in a put option, we assume that the current stock price of 

ABC is $100 a share. Let’s assume that the put option is selling for $2 and the strike 

price is $100. The profit or loss for this position at the expiration date depends on the 

market price of stock ABC. The option holder gains, if the price drops below the strike 

price. Using a graph, Figure 3.2 shows the profit/loss profile for the buyer of this put 

option at the expiration date.  The loss is limited to the option price. The profit potential, 

however, is substantial, depending on how much the stock drops.  

To see how an option alters the risk/return profile for an investor, we again compare it 

with a position in stock ABC. The long put position is compared with a short position 

in stock ABC, because a short position would also benefit if the price of the stock falls. 

While the investor taking a short position faces all the downside risk as well as the 

upside potential, an investor taking the long put position faces limited downside risk.  

 

 

Figure 3.2: Profit/Loss at Expiration of Put Option  
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3.1.4 Writing Put Option (Short Position in Put)  

The profit and loss profile for a short put option is the opposite of the long put option. 

The maximum profit that the investor can have from this position is the option price. 

The theoretical maximum loss can be substantial, if the price of the underlying drops.  

If the price were to fall all the way to zero, the loss would be as large as the strike price 

minus the option price the seller received. Using a graph, Figure 3.2 shows the 

profit/loss profile for the seller of this put option at the expiration date.  

3.1.5 Factors Influencing Option Price 

The following six factors influence the option price: 

1. Current price of the underlying instrument 

2. Strike price 

3. Time to expiration of the option 

4. Expected price volatility of the underlying over the life of the option 

5. Short-term risk-free rate over the life of the option 

6. Anticipated cash dividends on the underlying stock or index over the life of the 

option.  

In the following sections we will look into how options are priced and how each of 

these factors affect the price.  We are going to look at the simplest possible case.  Thus, 

we will consider only a non-dividend-paying stock. 

 

3.2 Itô’s Lemma   

3.2.1 Stochastic Process 

A variable such as a stock price that changes over time in an uncertain way is known 

to follow a stochastic process, and thus we only know the distribution of the possible 

values of the process at any point in time.  In contrast to a stochastic process, a 

deterministic process is with an exact value at any point in time. A stochastic process 

can be discrete-time or continuous-time, depending on whether the change in variable 

takes place only at a certain point in time or anytime.  Stochastic process can also be 

classified as continuous variable or discrete variable, based on whether the underlying 

variable can take any value within a range or only certain discrete values. 
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Even though a stock price is not observed as a continuous-variable, continuous-time 

process, adopting the continuous-variable, continuous-time process proves to be useful 

in developing different models, such as Black-Scholes.   

3.2.2 Markov Process 

A Markov process is a stochastic process where we only need to consider the current 

value of a variable to predict the future.  The path the variable has taken to reach the 

current state is irrelevant.  Stock prices are normally assumed to follow a Markov 

process.  The Markov property implies that the probability distribution of a stock price 

in the future does not depend on the particular path followed by stock in the past.  

3.2.3 Wiener Process 

A Wiener process Z(t) is in essence a series of normally distributed random variables, 

and for later points in time the variances of those normally distributed random variables 

increase to reflect that it is more uncertain to predict the value, as the time period 

increases.   

Defined formally, a variable Z(t) follows a Wiener process if it has the following two 

properties: 

1. The change in ΔZ during a small period of time Δt is  

∆𝑍 =  𝜀√∆𝑡      (3.1) 

 where 𝜀 ~ N(0,1), the standard normal distribution. 

2. The values of ΔZ for any two different intervals of time Δt are independent. 

The first property implies that ΔZ follows normal distribution such that 

 E[ΔZ] = 0; 

 var[ΔZ] = Δt; 

The second property implies that Z(t) follows a Markov process. 

The change in Z(t) over a period of T would be: 

𝑍(𝑇) − 𝑍(0) =  ∑ 𝜀𝑖√∆𝑡𝑁
𝑖=1  , where 𝑁 =

𝑇

∆𝑡
    (3.2) 

The equation (3.2) implies that [Z(T) – Z(0)] also follows normal distribution such that 

 E[Z(T) – Z(0)] = 0; 
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 var[Z(T) – Z(0)] = N * Δt = T 

As N → ∞, Δt converges to 0 and is denoted by dt, which means an infinitesimally 

small interval.  Correspondingly, ΔZ is denoted by dZ. 

3.2.4 Generalized Wiener Process 

A generalized Wiener process modifies a Wiener process by incorporating drift rate 

and variance rate.  The drift rate is the mean change per unit time and the variance 

rate is the variance per unit time.  A generalized Wiener process for a variable X can 

be written in terms of dZ as 

 𝑑𝑋 = 𝑎𝑑𝑡 + 𝑏𝑑𝑍      (3.3) 

where 𝑎 and 𝑏 are constants. A generalized Wiener process has a drift rate of 𝑎 and 

a variance rate of 𝑏2.   

The equation (3.3) implies 

 𝑬(𝑑𝑋) = 𝑎𝑑𝑡 

 𝑣𝑎𝑟(𝑑𝑋) =  𝑏2𝑑𝑡  

 𝑑𝑋 ~ 𝑁(𝑎𝑑𝑡, 𝑏2𝑑𝑡) 

 

3.2.5 Itô Process 

If a generalized Wiener process is modified such that parameters 𝑎 and 𝑏 are functions 

of the underlying variable X and time t, then it becomes an Itô process.  An Itô process 

can be written as 

 𝑑𝑋 = 𝑎(𝑋, 𝑡)𝑑𝑡 + 𝑏(𝑋, 𝑡)𝑑𝑍    (3.4) 

where 𝑑𝑍 is a Wiener process. 

The drift and variance rates are no longer constants, and it is no longer so simple to 

derive 𝐸(𝑑𝑋) and 𝑣𝑎𝑟(𝑑𝑋).   

The generalized Wiener process as defined by the equation (3.3) and Itô process as 

defined by the equation (3.4) are called stochastic differential equation (SDE).  Itô 

process was named after Kiyoshi Itô who pioneered the theory of stochastic integration 

and stochastic differential equations, now also known as Itô calculus.  Itô discovered 

an important result known as Itô’s lemma which we will describe in the next section. 
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3.2.6 Itô’s Lemma  

The price of a stock option is a function of both underlying stock’s price and time.  To 

generalize it, we can say that price of any derivative is a function of the stochastic 

variables underlying the derivative and time.  An important result was formulated by 

Kiyoshi Itô in 1951, and is known as Itô’s lemma. 

Let us suppose that a variable X follows Itô process as described by equation (3.4).  

Itô’s lemma states that a function G of X and t follows the process  

 𝑑𝐺 = (
𝜕𝐺

𝜕𝑋
𝑎 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑋2
𝑏2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑋
𝑏 𝑑𝑍      (3.5) 

Where 𝑑𝑍 is the Wiener process from equation (3.3), and G follows an Itô process 

with a drift rate of (
𝜕𝐺

𝜕𝑋
𝑎 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑋2
𝑏2) and a variance rate of (

𝜕𝐺

𝜕𝑋
)2𝑏2.   

The equation (3.5) is key to generating the asset paths in our Monte Carlo simulation.  

While the rigorous proof would be beyond the scope of this paper, we can look at its 

simple derivation by using a well-known result in differential calculus known as 

Taylor series expansion.  

If G is a continuous and differentiable function of X and t, the Taylor series expansion 

of ∆𝐺 is 

∆𝐺 =  
𝜕𝐺

𝜕𝑋
∆𝑋 +

𝜕𝐺

𝜕𝑡
∆𝑡 + 

1

2

𝜕2𝐺

𝜕𝑋2
∆𝑋2 +

𝜕2𝐺

𝜕𝑋𝜕𝑡
∆𝑋∆𝑡 +

1

2

𝜕2𝐺

𝜕𝑡2
∆𝑡2 + ⋯     (3.5) 

The equation (3.4) can be re-written in the discrete form as 

∆𝑋 = 𝑎(𝑋, 𝑡)∆𝑡 + 𝑏(𝑋, 𝑡)𝜀√∆𝑡                 

Or, if we drop the arguments, we get 

∆𝑋 = 𝑎∆𝑡 + 𝑏𝜀√∆𝑡       (3.6) 

As ∆𝑡 approaches zero, then in equation (3.5) we can ignore all terms of second or 

higher orders of ∆𝑡.  We now turn our attention to ∆𝑋2 derived from equation (3.6).  

If we ignore ∆𝑡2, we have 

∆𝑋2 = 𝑏2𝜀2∆𝑡 + terms with higher orders of ∆𝑡    (3.7) 

Equantion (3.7) shows that the third term with ∆𝑋2 in equation (3.5) cannot be 

ignored, since it has a component that is of order ∆𝑡.  
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The variance of a standard normal distribution is 1.0.  Thus, 

𝐸(𝜀2) − [𝐸(𝜀)]2 = 1 

Since [𝐸(𝜀)] = 0, 𝐸(𝜀2) = 1.  This means that the expected value of 𝜀2 is 1.  

Logically, the expected value of 𝜀2∆𝑡 is ∆𝑡.  It can be shown that as ∆𝑡 approaches 

zero, the term 𝜀2∆𝑡 can be treated as non-stochastic, and it is equal to its expected 

value.  Thus, ∆𝑋2 in equation (3.7) becomes non-stochastic and is made equal to 

𝑏2∆𝑡.   

If we substitute ∆𝑋2 for  𝑏2∆𝑡 in equation (3.5) and take the limit, as ∆𝑡 approaches 

zero, we get 

𝑑𝐺 =  
𝜕𝐺

𝜕𝑋
𝑑𝑋 +

𝜕𝐺

𝜕𝑡
𝑑𝑡 + 

1

2

𝜕2𝐺

𝜕𝑋2
𝑏2𝑑𝑡 

By substituting for 𝑑𝑋 from equation (3.4) we arrive at the celebrated Itô’s lemma 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑋
𝑎 + 

𝜕𝐺

𝜕𝑡
+  

1

2

𝜕2𝐺

𝜕𝑋2
𝑏2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑋
𝑏 𝑑𝑍 

Itô’s lemma is an important equation in stochastic calculus, and in the following 

section we will use it to simulate geometric Brownian motion for the asset path. 

 

3.3 Geometric Brownian Motion for Stock Price 

Since a stock price is a stochastic variable, one may be tempted to consider that it 

follows a generalized Wiener process, that it has a constant expected drift rate and a 

constant variance rate.  However, there is a fundamental flaw in this model.  It does 

not capture the concept that the percentage return from a stock is independent of the 

stock price.  If investors expect a 10% a year return from a stock, when the stock price 

is $40, then, ceteris paribus, they will expect a 10% a year return when the stock price 

is $60.  

Obviously, the assumption of a constant drift rate is not appropriate, and we should 

assume that the expected return is constant.  If S is the stock price at time t, then the 

expected drift rate of the price change in S is 𝜇𝑆, where the parameter 𝜇 is the expected 

rate of return on the stock in decimal form.  This means that for a short interval ∆𝑡 the 

expected rate of change in S is 𝜇∆𝑡.   
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If the co-efficient of 𝑑𝑍 is zero, i.e. there is no uncertainty, then we can write 

∆𝑆

𝑆
= 𝜇∆𝑡 (drift part only) 

As ∆𝑡 approaches zero, in the limit 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 (drift part only)    (3.8) 

We can also assume the variance of the percentage return of the stock price in a short 

interval ∆𝑡 is constant regardless of the price of the stock.  In other words, the 

variability of percentage return is the same when the stock price is $40 as when it is 

$60.  The variable part of the rate of change in S in a short interval ∆𝑡, as it approaches 

zero, can be written as  

𝑑𝑆

𝑆
= 𝜎𝑑𝑍 (variable part only)   (3.9) 

The parameter 𝜎 is the volatility of the stock return, and 𝜎2 is the variance.  Combining 

equation (3.8) and (3.9) we get  

   
𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍    (3.10) 

Equation (3.10) denotes the particular behaviour of a stock price, known as geometric 

Brownian motion.  The discrete-time version can be written as 

∆𝑆

𝑆
= 𝜇∆𝑡 + 𝜎𝜀√∆𝑡    (3.11) 

Equation (3.10) and (3.11) represent generalized Wiener process, and, thus, 
∆𝑆

𝑆
 follows 

normal distribution with mean 𝜇∆𝑡 and standard deviation 𝜎√∆𝑡.   

 

3.4 Black-Scholes Model for European Call Option 

3.4.1 Expected Return in a Risk-free Universe 

The risk-neutral assumption in option pricing means that the expected return from the 

underlying stock is the risk-free interest.  We are now going to rewrite equation (3.11) 

by substituting 𝜇 for 𝑟, the risk-free interest rate.   

𝑑𝑆

𝑆
= 𝑟𝑑𝑡 + 𝜎𝑑𝑍     (3.12) 
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Or, 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍    (3.13) 

This is a generalized Wiener process, where 𝑎 is 𝑟𝑆 and 𝑏 is 𝜎𝑆.  Applying Itô’s lemma 

it follows that a function G of S and t would yield 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑆
𝑟𝑆 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑆
𝜎𝑆 𝑑𝑍  (3.14) 

 

3.4.2 Derivation of Black-Scholes Differential Equation 

In this section we are going to derive the famous Black-Scholes formula for a European 

call option.  We first start with a derivative V(S,t) of a security S.  The equation (3.14) 

can be re-written as 

𝑑𝑉(𝑆, 𝑡) = (
𝜕𝑉

𝜕𝑆
𝑟𝑆 + 

𝜕𝑉

𝜕𝑡
+ 

1

2

𝜕2𝑉

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 + 

𝜕𝑉

𝜕𝑆
𝜎𝑆 𝑑𝑍          (3.15) 

In order to set up a risk-neutral portfolio we need to hedge the stock position with a 

position in option.  Since the price of the option changes with respect to the stock price 

as 
𝜕𝑉

𝜕𝑆
, we need 

𝜕𝑉

𝜕𝑆
 stocks in combination with one option to set up a risk-neutral 

portfolio.  The value of this portfolio, π is given by 

𝜋 = 𝑉 − 
𝜕𝑉

𝜕𝑆
𝑆     (3.16)                  

The change, 𝑑𝜋, in the value of the portfolio in a small time-interval 𝑑𝑡 is given by 

𝑑𝜋 = 𝑑𝑉 −  
𝜕𝑉

𝜕𝑆
𝑑𝑆     (3.17) 

Now plugging 𝑑𝑉 from equation (3.15) and 𝑑𝑆 from equation (3.13) into equation 

(3.17) we get 

𝑑𝜋 = (
𝜕𝑉

𝜕𝑆
𝑟𝑆 + 

𝜕𝑉

𝜕𝑡
+  

1

2

𝜕2𝑉

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 + 

𝜕𝑉

𝜕𝑆
𝜎𝑆 𝑑𝑍 −  

𝜕𝑉

𝜕𝑆
(𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍)    (3.18) 

After simplifying equation (3.18) we get 

𝑑𝜋 = (
𝜕𝑉

𝜕𝑡
+ 

1

2

𝜕2𝑉

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡   (3.19) 
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We arrive at equation (3.19) by creating a risk-free portfolio that holds one option 

hedged with Δ shares of stocks.  It should be noted that equation (3.19) contains no 

random Brownian motion terms.  Since the portfolio is risk-free, it must earn the same 

return as the short-term risk-free securities like the Treasury.  If the portfolio earned 

more than that, an arbitrageur could make a profit by shorting the risk-free security 

and using the proceeds to buy this portfolio. If the portfolio earned less, an arbitrageur 

could make a riskless profit by shorting the portfolio and buying the risk-free security.  

Since the risk-free portfolio earns the risk-free interest rate, we can write 

𝑑𝜋 = 𝑟𝜋 𝑑𝑡     (3.20) 

where r is the risk-free interest rate.  Substituting for dπ and π from equation (3.19) 

and (3.16) we get, 

(
𝜕𝑉

𝜕𝑡
+  

1

2

𝜕2𝑉

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 =  𝑟 (𝑉 − 

𝜕𝑉

𝜕𝑆
𝑆) 𝑑𝑡  (3.21) 

Simplifying equation (3.21) yields Black-Scholes partial differential equation, 

𝜕𝑉

𝜕𝑡
+ 

1

2
 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2
+ 

𝜕𝑉

𝜕𝑆
𝑟𝑆 − 𝑟𝑉 = 0   (3.22) 

Fischer Black and Myron Scholes solved this PDE with proper boundary conditions in 

their seminal work that they published in 1973.  However, we are not going to solve 

the PDE.  In the next section we will provide an alternative and simpler derivation of 

the option formula.  This derivation and our methodology dovetail much nicer, since 

both are built on the assumption of risk neutrality and lognormal distribution of a stock 

price.  The concept of lognormal distribution is elaborated later in section 4.1. 

 

3.4.3 Solving for European Call Option 

Definition 3.1.  The cumulative distribution function, 𝐹, of a random variable 𝑋 is 

defined for all real numbers b by 

𝐹(𝑏) =  𝑃{𝑋 ≤ 𝑏} 

We say that 𝑋 has a probability density function, 𝑓, if 

𝑃{𝑋 ≤ 𝑏} = 𝐹(𝑏) =  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞

 

for some non-negative function, 𝑓(𝑥) . 
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Definition 3.2.  𝑋 is a normal random variable with parameters 𝜇 (mean) and 𝜎2 

(variance), if the density function is given by 

𝑓(𝑥) =  
1

√2𝜋 𝜎
 𝑒

−(𝑥− 𝜇)2

2 𝜎2    

Thus, the cumulative distribution function of random variable following standard 

normal distribution with mean 0 and variance 1 is given by 

𝑁(𝑥) =  
1

√2𝜋
∫ 𝑒

−𝑦2

2 𝑑𝑦
𝑥

−∞

 

Definition 3.3.  If 𝑋 is a continuous random variable having a probability distribution 

density function 𝑓(𝑥), then the expected value of 𝑋 is given by  

𝑬[𝑋] =  ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 

Definition 3.4. The random variable 𝑋 is a log-normally distributed if for some 

normally distributed variable 𝑌,  𝑋 =  𝑒𝑌.  That is, 𝑙𝑛(𝑋) is normally distributed. 

Definition 3.5.  In a risk-neutral universe the value of an asset A, C(A, 0) at t = 0 is 

the expected value of the asset at time t discounted to the present value by risk-free 

interest rate r. 

𝐶(𝐴, 0) =  𝑒−𝑟𝑡𝑬[𝐶(𝐴, 𝑡)] 

With these definitions we can now proceed to derive Black-Scholes formula for a 

European call option.  In order to be consistent with standard Black-Scholes notations 

we replace 𝑆(𝑇) by 𝑆𝑇 and 𝑆(0) by 𝑆0. Based on the assumption of lognormal 

distribution of stock price (explained later in section 4.1), we can write  

𝑆𝑇 = 𝑆0 exp [(𝑟 − 
𝜎2

2
)𝑇 +  𝜎𝜀√𝑇 ] 

This equation suggests, 

𝑆𝑇 = 𝑆0𝑒𝑌 , where 𝑌 is normally distributed, such that 

𝑌 ~ 𝑁 ((𝑟𝑇 − 
𝜎2𝑇

2
) , 𝜎2𝑇) 

According to definition 3.1 the cumulative distribution of a random variable 𝑆𝑇 is 
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𝐹(𝑥) = 𝑃{𝑆𝑇 ≤ 𝑥} 

                = 𝑃{𝑆0 𝑒𝑦 ≤ 𝑥} 

                 = 𝑃{𝑦 ≤ ln (
𝑥

𝑆0
)} 

=  
1

√2𝜋 𝜎√𝑇
∫ 𝑒

−(𝑦 – 𝑟𝑇 + 𝜎
2𝑇
2

)2

2𝜎2𝑇 𝑑𝑦
ln (

𝑥
𝑆0

)

−∞
 

Differentiating with respect to 𝑥 and applying the fundamental theorem of calculus we 

get the density function of 𝑆𝑇, given by 

𝑓(𝑥)  =   
1

√2𝜋 𝜎√𝑇𝑥
 𝑒

−(ln (
𝑥

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇
2

)2

2𝜎2𝑇  

In a risk-neutral universe with an initial stock price 𝑆0 and lognormally distributed 

stock price 𝑆𝑇 at time t, the value C of a European call option at time t = 0 with strike 

K, and expiration time T and r being the risk-free interest rate, we have 

𝐶(𝑆, 0) =  𝑒−𝑟𝑡𝑬[𝐶(𝑆, 𝑇)] 

                                =  𝑒−𝑟𝑡𝑬[𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0)] 

=  𝑒−𝑟𝑇 ∫
1

√2𝜋 𝜎√𝑇𝑥
 (𝑥 − 𝐾) 𝑒

−(ln (
𝑥

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇
2

)2

2𝜎2𝑇
∞

𝐾

 𝑑𝑥 

=  𝑒−𝑟𝑇 ∫
1

√2𝜋 𝜎√𝑇𝑥
 𝑥 𝑒

−(ln (
𝑥

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇
2

)2

2𝜎2𝑇
∞

𝐾

 𝑑𝑥

− 𝑒−𝑟𝑇𝐾 ∫
1

√2𝜋 𝜎√𝑇𝑥
 𝑒

−(ln (
𝑥

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇
2

)2

2𝜎2𝑇
∞

𝐾

 𝑑𝑥  

Here we are going to solve two integrals separately.  To solve the first integral, we are 

going to apply the following transformation of variables.  

𝑧 =  
(ln (

𝑥
𝑆0

)  −  𝑟𝑇 + 
𝜎2𝑇

2
)

𝜎√𝑇
  

which implies the following. 
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𝑥 =  𝑆0𝑒( 𝑧𝜎√𝑇 + 𝑟𝑇 − 
𝜎2𝑇

2
 )

  

𝑑𝑧 =
𝑑𝑥

𝑥 𝜎√𝑇
 

𝑑𝑥 = 𝑥 𝜎√𝑇 𝑑𝑧  

𝑑𝑥 = 𝜎√𝑇 𝑆0𝑒( 𝑧𝜎√𝑇 + 𝑟𝑇 − 
𝜎2𝑇

2
 ) 𝑑𝑧 

The lower limit of the integral is transformed as, 

𝐿 =  
(ln (

𝐾
𝑆0

)  −  𝑟𝑇 + 
𝜎2𝑇

2
)

𝜎√𝑇
 

Writing the first integral in terms of z yields 

𝑒−𝑟𝑇 ∫
1

√2𝜋 𝜎√𝑇
 𝑒

−𝑧2

2

∞

𝐿

𝜎√𝑇 𝑆0𝑒( 𝑧𝜎√𝑇 + 𝑟𝑇 − 
𝜎2𝑇

2
 ) 𝑑𝑧 

= 𝑆0𝑒−𝑟𝑇 ∫
1

√2𝜋
 

∞

𝐿

𝑒(
−𝑧2

2
 + 𝑧𝜎√𝑇 + 𝑟𝑇 − 

𝜎2𝑇
2

 ) 𝑑𝑧 

= 𝑆0𝑒−𝑟𝑇 ∫
1

√2𝜋
 

∞

𝐿

𝑒
− (

𝑧2

2
 − 𝑧𝜎√𝑇 + 

𝜎2𝑇
2

 ) + 𝑟𝑇
 𝑑𝑧 

= 𝑆0𝑒−𝑟𝑇 ∫
1

√2𝜋
 

∞

𝐿

𝑒
−(𝑧−𝜎√𝑇)2

2
 + 𝑟𝑇  𝑑𝑧 

= 𝑆0𝑒−𝑟𝑇𝑒𝑟𝑇 ∫
1

√2𝜋
 

∞

𝐿

𝑒
−(𝑧−𝜎√𝑇)2

2
  𝑑𝑧 

= 𝑆0 ∫
1

√2𝜋
 

∞

𝐿

𝑒
−(𝑧 − 𝜎√𝑇)2

2
  𝑑𝑧 

where  𝐿 =  
(ln (

𝐾

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇

2
)

𝜎√𝑇
 

Applying another transformation of variable as  𝑦 = (𝑧 −  𝜎√𝑇), we need to 

change the limit of integral as  
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𝐴 =  
(ln (

𝐾
𝑆0

)  −  𝑟𝑇 + 
𝜎2𝑇

2
)

𝜎√𝑇
−  𝜎√𝑇 

=  
(ln (

𝐾
𝑆0

)  −  𝑟𝑇 − 
𝜎2𝑇

2
)

𝜎√𝑇
 

The final form of the integral yields 

𝑆0 ∫
1

√2𝜋
 

∞

𝐴

𝑒
−𝑦2

2
  𝑑𝑦 

A part of this is the cumulative distribution function of the standard normal variable 

with the limits in a reverse order.  The integral can, therefore, be written as 

  𝑆0(1 − 𝑁 (
(ln(

𝐾

𝑆0
)− 𝑟𝑇− 

𝜎2𝑇

2
)

𝜎√𝑇
)) 

= 𝑆0𝑁 (− 
(ln (

𝐾
𝑆0

) −  𝑟𝑇 − 
𝜎2𝑇

2 )

𝜎√𝑇
) 

= 𝑆0𝑁 ( 
(ln (

𝑆0

𝐾 ) +  𝑟𝑇 +
𝜎2𝑇

2 )

𝜎√𝑇
) 

This gives us the first term of Black-Scholes formula.   

Now we solve for the second integral which is 

𝑒−𝑟𝑇𝐾 ∫
1

√2𝜋 𝜎√𝑇𝑥
 𝑒

−(ln (
𝑥

𝑆0
) − 𝑟𝑇 + 

𝜎2𝑇
2

)2

2𝜎2𝑇
∞

𝐾

 𝑑𝑥 

To solve the second integral, we are going to apply the following transformation of 

variables. 

𝑧 =  
(ln (

𝑥
𝑆0

)  −  𝑟𝑇 + 
𝜎2𝑇

2
)

𝜎√𝑇
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This implies, 

𝑑𝑧 =  
𝑑𝑥

𝑥 𝜎√𝑇
 

𝑑𝑥 = 𝑥 𝜎√𝑇 𝑑𝑧  

The lower limit of the integral is transformed as 

𝐿 =  
(ln (

𝐾
𝑆0

)  −  𝑟𝑇 + 
𝜎2𝑇

2
)

𝜎√𝑇
 

Writing the second integral in terms of z yields 

𝐾𝑒−𝑟𝑇 ∫
1

√2𝜋 𝜎√𝑇𝑥
 𝑒

−𝑧2

2

∞

𝐿

𝑥 𝜎√𝑇 𝑑𝑧 

= 𝐾𝑒−𝑟𝑇 ∫
1

√2𝜋
 𝑒

−𝑧2

2

∞

𝐿

𝑑𝑧 

A part of this is the cumulative distribution function of the standard normal variable 

with the limits in a reverse order.  The integral can, therefore, be written as 

  𝐾𝑒−𝑟𝑇(1 − 𝑁 (1 −
(ln(

𝐾
𝑆0

)− 𝑟𝑇+ 
𝜎2𝑇

2
)

𝜎√𝑇
)) 

= 𝐾𝑒−𝑟𝑇𝑁 (− 
(ln (

𝐾
𝑆0

) −  𝑟𝑇 + 
𝜎2𝑇

2 )

𝜎√𝑇
) 

This gives us the second term of Black-Scholes formula.  

Combining the two terms we get the complete Black-Scholes formula. 

𝐶(𝑆, 0) = 𝑆0𝑁 ( 
(ln (

𝑆0

𝐾 ) +  𝑟𝑇 +
𝜎2𝑇

2 )

𝜎√𝑇
) 
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+ 𝐾𝑒−𝑟𝑇𝑁 (− 
(ln (

𝐾
𝑆0

) −  𝑟𝑇 + 
𝜎2𝑇

2 )

𝜎√𝑇
) 

We will use this formula, as provided by a Matlab function, to compute the price of a 

European call option.  This will be compared with the option price, given by our Monte 

Carlo simulation.  The empirical analysis is provided in chapter 5.  
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4 Methodology 

4.1 Lognormal Distribution for Stock Price  

In chapter 3 we developed the concept of Itô’s lemma and geometric Brownian motion 

for a stock price.  Now we combine them together to find a functional description of a 

stock price.  We will use this functional description to carry out Monte Carlo 

simulation.  The process will entail generation of a large number of asset paths.  Based 

on these asset paths we will compute the price of the payoff for an option at the 

expiration.  By discounting the payoff with the risk-free interest we will find the 

present value which will be our option price at present. 

Before developing the process of simulation, we need to elaborate an important 

concept, risk-neutral valuation.  While valuing an option we will make the assumption 

that the investors are risk-neutral.  Risk-neutral valuation makes the following two 

assumptions: 

1. The expected return from the underlying stock is the risk-free interest rate. 

2. The discount rate used for the expected payoff on an option is the risk-free interest 

rate. 

We are going to re-write the following three equations from section 3.4.1.  We need 

these three equations to develop our model for Monte Carlo simulation. 

𝑑𝑆

𝑆
= 𝑟𝑑𝑡 + 𝜎𝑑𝑍     (4.1) 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍    (4.2) 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑆
𝑟𝑆 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑆
𝜎𝑆 𝑑𝑍  (4.3) 

Since 
𝑑𝑆

𝑆
 in equation (4.1) is  𝑑𝑙𝑜𝑔(𝑆) in deterministic calculus, we could try 𝐺 =

log (𝑆) to find a solution to the stochastic differential equation (4.3). 

To apply Itô’s lemma we first have to compute the partial derivatives: 

𝜕𝐺

𝜕𝑡
= 0 
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𝜕2𝐺

𝜕𝑆2
= −

1

𝑆2
 

𝜕𝐺

𝜕𝑆
=

1

𝑆
 

Based on these results equation (4.3) can be transformed to: 

𝑑𝐺 = (𝑟 − 
𝜎2

2
) 𝑑𝑡 +  𝜎 𝑑𝑍    (4.4) 

Equation (4.4) shows that 𝐺 = log (𝑆) follows a generalized Wiener process with a 

constant drift rate of (𝑟 − 
𝜎2

2
) and a constant variance of 𝜎2.  The change in log (𝑆) 

between time 0 and T is, therefore, normally distributed with mean (𝑟 −  
𝜎2

2
) 𝑇 and 

variance 𝜎2𝑇.  This can be written as: 

log(𝑆(𝑇)) − log (𝑆(0)) = (𝑟 − 
𝜎2

2
) 𝑇 +  𝜎𝑍(𝑇) 

Or,  

log(𝑆(𝑇)) − log (𝑆(0)) = (𝑟 − 
𝜎2

2
) 𝑇 +  𝜎𝑍(𝑇) 

Or, 

log(𝑆(𝑇)) − log (𝑆(0)) = (𝑟 − 
𝜎2

2
) 𝑇 +  𝜎𝜀√𝑇 

Written in terms of S(t) we get, 

𝑆(𝑇) = 𝑆(0) exp [(𝑟 −  
𝜎2

2
)𝑇 +  𝜎𝜀√𝑇 ]   (4.5) 

This is a solution to the stochastic differential equation (4.3).  Based on this equation 

we generate multiple asset paths for our Monte Carlo simulation.    

   

4.2 Simulating Asset Path for Stock Price  

In order to generate an asset path we discretize (4.5) as follows:  

𝑆𝑡+1 = 𝑆𝑡 exp [(𝑟 − 
𝜎2

2
)∆𝑡 +  𝜎𝜀√∆𝑡 ] 
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where  ∆𝑡  is the time step and 𝜀 is a standard normal variable with mean 0 and variance 

1.  If 𝜀1, 𝜀2, 𝜀3, … happen to be a series of normally distributed random numbers, then 

we can write, 

𝑆𝑡+2 = 𝑆𝑡exp [(𝑟 − 
𝜎2

2
)∆𝑡 +  𝜎𝜀1√∆𝑡 ] exp [(𝑟 − 

𝜎2

2
)∆𝑡 +  𝜎𝜀2√∆𝑡 ] 

Extending this equation to n steps we get, 

𝑆𝑡+𝑛 = 𝑆𝑡 exp [(𝑟 − 
𝜎2

2
)𝑛∆𝑡 +  𝜎√∆𝑡 (𝜀1 + 𝜀2 + ⋯ + 𝜀𝑛)]     (4.6) 

Equation (4.6) is the building block for our Monte Carlo simulation.  Our objective 

would be to create a vector, i.e. an asset path, where the number of elements will be 

the same as the number of steps of the asset path and the kth element will be 

represented by 𝑆𝑡+𝑘 in equation (4.6).  It should be noted that Black-Scholes model 

assumes a continuous-time stock price, whereas we are using a discrete-time process.   

The asset path is also referred to as a trajectory in the context of simulation, and we 

complete the simulation process by generating a large number of trajectories in order 

to compute the expected value of the payoff by taking the average of the payoffs from 

all the trajectories after a time period of T.   

Let us suppose that we are trying to price an option that expires after T period.  Let 

S(T) denote the price of a stock at the expiration.  If the strike price of the option is K, 

then the payoff to the option holder of a call option will be max{0, S(T) – K}.  To get 

the present value of the payoff we multiply it by a discount factor 𝑒−𝑟𝑇, where r is the 

risk-free continuously compounded interest rate.   

If we simulate n number of trajectories, we take the average of n different 

𝑒−𝑟𝑇𝑚𝑎𝑥{0, 𝑆(𝑇) –  𝐾} to compute the expected value of the payoff discounted to 

its present value, and this gives us the price of a call option from Monte Carlo 

simulation.   

Figure 4.1 demonstrates how equation (4.6) can be implemented in Matlab to yield a 

matrix of sample asset paths.  Each column, i.e. a vector, in matrix sample represents 

a simulated asset path where the n-th row represents n-th step of the asset path.  We 

define step_length as the smallest unit of time which is ∆𝑡 in equation (4.6).  There 

are num_step number of steps in the entire time period which is given by TPeriod.  

Each column of sample, therefore, has (1+num_step) number of elements. We add the 

stock price 𝑆0 as the first element. The total number of vectors or trajectories is 

determined by the input argument num_path. 
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function [sample, time] = 

simulate_asset_path(sigma,TPeriod,num_path,S0,mu,step_length) 

% Author: Ryan Dutton. Project: Bachelor Thesis 

% Generates the asset paths from simulation, and returns them in  

% matrix Sample.  Example: 

% [Sample, time] = simulate_asset_path(.12,5,50,100,.05,1/255); 

  

num_step = ceil(TPeriod/step_length); 

RandomVectors  = sigma*sqrt(step_length)*cumsum(randn(num_step, 

num_path)); 

Drifts  = repmat((mu - sigma^2/2) *step_length * 

(1:num_step)',1,num_path); 

sample  = [repmat(S0,1,num_path); S0 *  

exp(Drifts + RandomVectors)]; 

if nargout > 1 

   time = [0;step_length * (1:num_step)']; 

end 

Figure 4.1:  Matlab code for generating asset paths 

 
% option_montecarlo_simulation  

% Author: Ryan Dutton. Project: Bachelor Thesis 

% The main routine that calculates the payoff from the sample  

% asset paths, and computes the price of the call and put options. 

% It also prints out the price of call and put options using the  

% Black-Scholes formula with the same parameters. 

  

S0      = 100   % Initial value of stock 

mu      = .05   % Drift rate of the return, should be the same  

                % as the risk-free interest rate   

sigma   = .12   % Standard deviation of the periodic return 

TPeriod  =   2   % Time period in year 

num_path = 2000 % Number of asset paths for the simulation 

step_length    = 1/255 % Time length of one step inside a period 

                % We are using 255 steps 

int_rate= .05   % Risk-free interest rate 

strike  = 125   % Strike price 

  

[sample, time] = 

simulate_asset_path(sigma,TPeriod,num_path,S0,mu,step_length); 

  

figure('Color','white'); 

plot(time,sample,'linewidth',2); 

axis([time(1) time(end) min(sample(:)) max(sample(:))]); 

  

xlabel('Time');ylabel('Stock Price'); 

title(sprintf('No. of Asset Path Simulated: %d', size(sample,2))); 

  

positive_payoff = (sample(511,:) - strike) > 0; 

MCE_call_payoff = (sample(511,:) - strike).*positive_payoff; 

  

negative_payoff = (strike - sample(511,:)) > 0; 

MCE_put_payoff = (strike - sample(511,:)).*negative_payoff; 

  

MCE_call = mean(MCE_call_payoff) * exp(-int_rate * TPeriod) 

MCE_put = mean(MCE_put_payoff) * exp(-int_rate * TPeriod) 

  

[bs_call, bs_put] = blsprice (S0,strike,int_rate,TPeriod,sigma) 

Figure 4.2:  Matlab code for calculating Monte Carlo estimates 
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Matrix sample represents equation (4.6) which comprises two parts in its exponent.  

The first is the drift and the second part is the random part.  Matrix RandomVectors 

represents the random part which is generated by cumulative totals of random numbers 

that follow standard normal distribution.  Matrix Drifts represents the drift part where 

the n-th element is the n times the drift rate.   

 

Figure 4.3:  A single asset path generated by simulate_asset_path             

(positive payoff) 

If we generate one simulated asset path using the function simulate_asset_path, with 

the initial value at 100, the time period being 2 years and the number of steps in each 

period being 255, we get a path that looks like one in Figure 4.3.  This is a random 

path that takes the stock price to approximately 132.50 in 2 years.  As seen in the 

picture, this particular asset path generates a positive option payoff, since the option 

price at the expiration is higher than the strike price. 

Figure 4.4 shows a different asset path where the option price is lower than the strike 

price. The payoff in this case is zero.  We now extend the idea to a large number of 

trajectories or different asset paths.  If we take the mean of all these payoffs from the 

entire sample and discount it to the present value by a factor of 𝑒−𝑟𝑇, where r is the 

risk-free interest rate, we get our Monte Carlo estimate.  The concept is illustrated in 

Figure 4.5.  In chapter 5 we will compute the estimates with some specific parameters. 
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Figure 4.4:  A single asset path generated by simulate_asset_path                   

(zero  payoff) 

 
 

Figure 4.5:  2000 asset paths generated by simulate_asset_path 

In the following section we are going to look at how Monte Carlo simulation can be 

applied to pricing some path-dependent options.   
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4.3 Monte Carlo Estimates for Path-dependent 
Options 

There are complex options such as path-dependent options for which there are no 

closed-form analytical solutions.  Monte Carlo simulation is often used to price such 

options.  As explained in chapter 3, the price of an option is the discounted value of the 

expected payoff at the expiration.  The price of the option is independent of the path 

that a stock may follow until the expiration.  If the price at expiration is 125 and the 

strike price is 100, the payoff is 25.  It makes no difference, if the stock has been at 60 

or 160 before it reaches the expiration date.  However, if the payoff were calculated 

based on the path that the stock has taken, it would make the payoff path-dependent.  

As a result, the option price is also path-dependent.  The three most common path-

dependent options are Lookback option, Asian option and Barrier Option.  We are 

going to explain how Monte Carlo methods are applied to Lookback and Barrier 

Options. 

A Lookback call option is created by replacing the strike price K with the minimum 

value the security has attained over the life of the option.  And the opposite for a 

Lookback put option.  For a Lookback put option the strike price K is replaced by the 

maximum value of the security over the life of the option.  Lookback options are either 

at the money or in the money.  A Lookback option can be interpreted as an option that 

is always sold at the highest possible value.  For this reason, the Lookback options are 

more expensive than the standard options.   

In order to simulate a Lookback option by Monte Carlo method, we can start with the 

function simulate_asset_path, as described in section 4.1.  To calculate the payoff, we 

look at each asset path vector in matrix sample, and compute max(0, 𝑆𝑇 − 𝑆𝑚𝑖𝑛) 

rather than max(0, 𝑆𝑇 − 𝐾).  The average payoff is then calculated and discounted 

to get the Monte Carlo estimates. 

A Barrier option is an option for which the payoff depends on the price reaching a 

certain barrier during the life of the option.  Four basic types of Barrier options are 

down-and-out, down-and-in, up-and-out and up-and-in.  A down-and-out option goes 

out of existence, if the price of the stock ever falls to the barrier.  An up-and-out option 

goes out of existence, if the price of the stock ever rises to the barrier.  A down-in-

option comes into existence, if the price of the stock ever falls to the barrier.  An up-

and-in option comes into existence, if the price of the stock ever rises to the barrier. 
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Now we are going to look at how down-and-out barrier option can be priced using 

simulation.  In order to simulate a down-and-out barrier option by Monte Carlo method, 

we can start with the function simulate_asset_path, as before, and proceed as follows: 

We extract each vector from matrix sample, and check if any element of the vector is 

less than or equal to barrier.  In Matlab this can be accomplished by creating a logical 

variable crossed and then creating an array of the logical indicators by using any 

function, crossed = any(sample(:, i) <= barrier), where i indicates the path number.  

If crossed is true, we write off the asset path completely.  The average payoff is 

calculated by considering only those asset paths for which crossed is false.   By 

discounting the average, we get the Monte Carlo estimates. 

Path-dependent options have been developed for a number of reasons, such as, 

hedging, taxes, legal and regulatory reasons.  While closed-form formulas exist for 

some of them, many don’t have analytical solutions.  Monte Carlo methods are general 

enough to accommodate various path-dependent options, since we have a sample asset 

path with hypothetical data that we can manipulate that to fit our logic and determine 

a payoff at the expiration. 
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5 Empirical Analysis  

5.1 Monte Carlo Estimates  

In order to generate Monte Carlo estimates for European call and put options we ran 

our simulation process with the following parameters.  

Initial value of stock 𝑆0 = 100 

Strike price 𝐾= 125 

Period T = 2 (years) 

Standard deviation of returns 𝜎= .12 

Risk-free interest rate 𝑟= .05 (5% APR) 

With 2000 trajectories in each trial, we ran 30 trials.  The estimates, as generated in 

each trial, are presented in Table 5.1.  Taking the average of 30 trials, the results can 

be summarised as 

Monte Carlo call estimate: 2.49 with a standard error of 0.16 

Monte Carlo put estimate: 15.53 with a standard error of 0.36 

Considering a sample size of 30, 95% confidence intervals would be 

Monte Carlo call estimate: 2.49 ± 1.96 (
0.16

√30
)     or,  2.49 ± 0.06 

Monte Carlo put estimate: 15.53 ± 1.96 (
0.36

√30
)     or,  15.53 ± 0.13 

Using the same set of parameters, Black-Scholes closed-form formulas would yield 

European call option: 2.46 

European put option: 15.57 

The true values, given by Black-Scholes model, lie within the 95% confidence interval 

of the Monte Carlo estimates. 
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Table 5.1: Results from Monte Carlo simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial no. MCE (call) MCE (put) 

1 2.65 15.47 

2 2.39 15.40 

3 2.52 15.47 

4 2.60 15.50 

5 2.43 16.40 

6 2.51 15.11 

7 2.59 15.30 

8 1.98 16.13 

9 2.58 15.76 

10 2.38 15.90 

11 2.22 15.76 

12 2.30 15.87 

13 2.62 15.53 

14 2.36 15.43 

15 2.63 14.89 

16 2.67 15.41 

17 2.45 15.66 

18 2.56 15.48 

19 2.52 15.38 

20 2.52 15.76 

21 2.41 15.12 

22 2.49 16.14 

23 2.57 15.06 

24 2.57 15.39 

25 2.38 15.67 

26 2.72 14.83 

27 2.63 15.38 

28 2.33 15.82 

29 2.80 15.18 

30 2.46 15.57 
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5.2 Efficiency of Monte Carlo Estimators 

It can be proven formally to show that Monte Carlo estimators are unbiased.  If 𝐶𝑛̂ is a 

Monte Carlo estimator with n number of trajectories, then we can write  

𝐸[𝐶𝑛̂] = 𝐶 

where C is the true value of an option.  The estimator 𝐶𝑛̂ is the mean of n independent 

and identically distributed variables so that 

𝐶𝑛̂ =
1
𝑛

∑ 𝐶𝑖

𝑛

𝑖=1

 

with 𝑬[𝐶𝑖] = 𝐶 and 𝑣𝑎𝑟[𝐶𝑖] = 𝜎𝐶
2 <  ∞.  The central limit theorem asserts that 

as the number of replication (trajectories in the case of simulation) increases, the 

standardized estimator (𝐶𝑛̂ − 𝐶)/(𝜎𝐶/√𝑛) converges in distribution to the standard 

normal variable.  Written formally, 

(𝐶𝑛̂ − 𝐶)

(𝜎𝐶/√𝑛)
 →  𝑁(0,1)  

where → denotes convergence in distribution.  The rate of convergence also depends 

on the variance of the estimates.  The problem is, we never know what the true variance 

is.  The variance is always estimated from the sample.  In our analysis above we had a 

relatively small variance.  It should be noted that the variance increases as the time 

period increases.  Increasing variance will require larger replication to lower the range 

of an interval estimate.  Boyle (1977) in his first paper on Monte Carlo simulation 

claimed that for a particular option priced at 17.19, to reduce the 95% confidence 

interval from ±0.958 to ±0.05, the number of sample size had to be increased from 

5000 to 1,835,500.  This highlights a major drawback of Monte Carlo simulation and 

the computational burden associated with it.  

 

5.3 Discretization Error  

Monte Carlo methods are essentially a numerical integration tool.  Any numerical 

integration requires some form of discretization.  In the case of our simulation process 

the discretization comes in the form of steps.  This introduces discretization bias in the 

estimate, as it results from time-discretization of the continuous-time dynamics of the 
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theoretical model.  Obviously, higher the number of steps, greater is the convergence 

of the estimates to the true value.  However, increased number of steps entails 

computational burden.  Discretization error is a major limitation of Monte Carlo 

methods. 
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6 Conclusion 

We have looked at the derivation of Black-Scholes model to understand how the 

lognormal distribution of a stock price can be applied to arrive at the same results 

without solving Black-Scholes PDE.  This derivation is very similar to Cox, Ross and 

Rubenstein binomial model.  We have demonstrated how Monte Carlo method can be 

applied to simulate asset paths in a risk-neutral universe, and based on such simulated 

sample how we can compute Monte Carlo estimates for an option.  We have provided 

statistical analysis to show that Monte Carlo estimates can be reliable with 95 percent 

confidence intervals.  We have also explained how the simulation can be extended to 

price path-dependent options. 

Monte Carlo simulation, in our judgement, is an important technique that will always 

find its application in pricing derivatives in various asset classes.  The most important 

application of Monte Carlo simulation will always be pricing complex derivatives that 

do not have any analytical solutions in closed-form formulas. 
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Appendix A: Contents of Enclosed Files  

The file enclosed to this thesis contains Matlab source code for:  

• option_montecarlo_simulation.m 

• simulate_asset_path.m 


