Kardioprotektivní úloha adaptací na hypoxii a chlad: Konexín 43 a hexokináza 2
Cardioprotective effect of adaptations to hypoxia and cold: Connexin 43 and hexokinase 2
Prohlášení

Prohlašuji, že jsem disertační práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce, ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, dne

Jana Kohútová
Prohlášení

V Praze, dne ...

RNDr. Jitka Žurmanová, Ph.D.
Poďakovanie

V prvom rade by som sa chcela poďakovať svojej školiteľke RNDr. Jitke Žurmanové, Ph.D za odborné vedenie, pomoc a ochotu pri spracovaní dizertačnej práce, za cenné rady a pripomienky. Taktiež sa chcem poďakovať doc. RNDr. Olge Novákovej, CSc. za odborné konzultácie počas spisovania tejto práce.

Z radov svojich kolegov by som chcela poďakovať RNDr. Daniele Horníkovej, Ph.D. a RNDr. Barbare Elsnicovej, Ph.D. za pomoc s metodikou a vyhodnotením výsledkov. Ďalej, celej našej laborke svalovej fyziológie ďakujem za podporu a vytvorenie krásnej pracovnej atmosféry počas pokusov.

Veľmi pekne ďakujem taktiež celej svojej rodine, kamarátom a priateľovi, ktorí ma podporovali po celý čas môjho štúdia.

Tato práca vznikla za finančnej podpory Grantovej agentúry Univerzity Karlovej (GAUK 940216).
OBSAH

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ÚVOD ... 15</td>
</tr>
<tr>
<td>2</td>
<td>LITERÁRNY PREHĽAD .. 18</td>
</tr>
<tr>
<td>2.1</td>
<td>Prehľad gap junction kanálov ... 18</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Štruktúra konexínov .. 21</td>
</tr>
<tr>
<td>2.2</td>
<td>Regulácia gap junction kanálov .. 23</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Životný cyklus konexínov .. 23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Otváranie Gap junction kanálov .. 27</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Dôležitosť C-konca v regulácii konexínov ... 28</td>
</tr>
<tr>
<td>2.3</td>
<td>Fosforylácia konexínov ... 30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Serínové fosforylačné miesta ... 32</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Tyrozínove fosforylačné miesta ... 38</td>
</tr>
<tr>
<td>2.4</td>
<td>Úloha Cx43 v patologických stavoch a v kardioprotekcii 39</td>
</tr>
<tr>
<td>2.5</td>
<td>Arytmie a konexíny .. 41</td>
</tr>
<tr>
<td>2.6</td>
<td>Kardioprotektívne účinky hypoxie .. 43</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Úloha Cx43 u ischémioiu indukovaných arytmii 45</td>
</tr>
<tr>
<td>2.7</td>
<td>Hexokináza v kardioprotekcii ... 46</td>
</tr>
<tr>
<td>2.8</td>
<td>Potenciálne protektívne účinky chladu .. 47</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Adrenergná signalizácia v srdci a Cx43 ... 48</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Tyroidné hormóny a Cx43 ... 50</td>
</tr>
<tr>
<td>3</td>
<td>HYPOTÉZA A CIELE PRÁCE ... 52</td>
</tr>
<tr>
<td>4</td>
<td>METODIKA A ADAPTÁCIE .. 53</td>
</tr>
<tr>
<td>4.1</td>
<td>Adaptácia na intermitentnú hypobarickú a kontinuálnu normobarickú hypoxiu</td>
</tr>
</tbody>
</table>
4.2 Akútna a chronická adaptácia na chlad..54
4. 3 Odber tkaniva...54
4. 4 Homogenizácia normoxických a hypoxických vzoriek..........................54
4. 5 Homogenizácia vzoriek akutného a chronického chladu55
4. 6 Imunofluorescencia ..55
4. 7 Analýza lipidov ...58
4. 8 SDS-PAGE elektroforéza a Western blot analýza58
4.9 Hmotnostná spektrometria ..61
4.10 RT-PCR ...64
4. 11 Štatistická analýza ..68
5 VÝSLEDKY ...69
5.1 Cx43 a hypoxia ...69
5.2 Cx43 v srdci po adaptácii na chlad ..80
6 DISKUSIA ...87
6.1 Cx43 a hypoxia ...87
6.2 Cx43, akútne a chronický chlad ...92
7 ZÁVER ...96
8 ZOZNAM POUŽITEJ LITERATÚRY ...98
Prílohy ...118
Abstrakt

Ventrikulárne arytmie sú hlavnou príčinou úmrtí v celosvetovom meradle. Zvýšený výskyt arytmii v srdci cicavcov je sprevádzaný remodeláciou bunkovej distribúcie gap junction kanálov tvorených hlavne konexínom 43 (Cx43). V poslednej dobe sa preukazuje významný vplyv mitochondrií a ich asociácia s arytmogenézou. Za rôznych patologických stavov dochádza k zmene v expresii a/alebo distribúcii Cx43 v závislosti na fosforylačnom stave. Taktiež dochádza k zmene asociácie hexokinázy s mitochondriami, ktorá tak znižuje pravdepodobnosť aktivácie apoptózy. Adaptácia na intermitentnú hypobarickú hypoxiu potencuje endogéne ochranné cesty redukujúce výskyt ventrikulárnych arytmii, zatiaľ čo kontinuálna normbarická hypoxia tento efekt nemá. Ďalším študovaným modelom je aklimatizácia na chlad, ktorá je známa priaznivými účinkami na ľudské zdravie už niekoľko rokov. Avšak štúdie na srđci na týchto modeloch vo vzťahu ku Cx43 chýbajú. Naším cieľom bolo určiť expresiu Cx43, fosforylovaného Cx43 (p-Cx43) a hexokinázy (HK1, HK2), a ich distribúciu v kardiomyocytoch. Okrem toho bola analyzovaná expresia Cx43 upstream kináz, proteínkinázy A, proteínkinázy G, kazeínkinázy 1 v normoxických a hypoxických ľavých komorách potkanov spolu s distribúciou Cx43 počas krátkej ischémie a reperfúzneho poškodenia. Samce potkanov Wistar boli adaptované na hypoxiu (7 000 m, 8-h/deň, 5 týždňov alebo 10% kyslíka, 3 týždne) a následne boli špeciálne skupiny srdca vystavené krátkodobej ischémii (10 minút) a reperfúzii (15 minút) in vivo. Expresia a fosforylované stavy sa hodnotili pomocou špecifických protilátok a hmotnostnej spektrometrie. Distribúcia Cx43 v koncových end to end a v laterálnych spojeniach side to side bola hodnotená pomocou kvantitatívnej imunofluorescenčnej mikroskopie. Taktiež sme sa zamerili na určenie lokalizácie Cx43 na pozdĺžných rezoch ľavej komory a expresie proteínu Cx43 u potkanov vystavených chladu (6 ± 1 °C) počas 3 dní, 10 dní, 5 týždňov a následne 2 týždne pri teplote 24 ± 1 °C. Naše výsledky naznačujú významný prínos v zmenách expresie a fosforylácie Cx43 v signalizačných dráhach, ktoré môžu byť zodpovedné za antiarytmický účinok súvisiaci s adaptáciou na hypobarickú hypoxiu. Po normobarickej hypoxii neboli preukázané zmeny a ponúkame možné zapojenie 5-týždňovej aklimatizácie na chlad do kardioprotektívnej dráhy.

Kľúčové slová: Potkan, Srdce, Chlad, Hypoxia, Konexín 43, Hexokináza
Abstract

Ventricular arrhythmias are the main cause of death worldwide. An increased incidence of arrhythmias in the heart of mammals is accompanied by a remodeling of the cellular distribution gap between the channels of mainly connexin 43 (Cx43). Recently has been demonstrated significant effect of mitochondria and their association with arrhythmogenesis. Various pathological conditions alter the expression and/or distribution of Cx43, depending on the phosphorylation status. But also on altering the association of hexokinase with mitochondria, which reduces the likelihood of apoptosis activation. Adaptation to intermittent hypobaric hypoxia potentiates endogenous pathways reducing the incidence of ventricular arteries, whereas continuous normobaric hypoxia does not have this effect. Another studied model is cold acclimatization, which has been known for several decades by known effects on human health. However, the heart study of these models in relation to Cx43 is missing. Our goal was to determine the expression of Cx43, phosphorylated Cx43 (p-Cx43) and hexokinase (HK1, HK2) and their distribution in cardiomyocytes. In addition, the expression of Cx43 upstream kinases, protein kinase A, protein kinase G, casein kinase 1 in normoxic and hypoxic left ventricles of rats, along with Cx43 distribution during short ischemia and reperfusion injury was analyzed. Male Wistar rats were adapted to hypoxia (7 000 m, 8 hours/day, 5 weeks or 10% oxygen, 3 weeks), and then special groups of the heart were exposed to short-term ischemia (10 min) and reperfusion (15 min) in vivo. Expression and phosphorylation are assessed by specific antibodies and mass spectrometry. The Cx43 distribution at end to end and side to side longitudinal junctions were evaluated by quantitative immunofluorescence microscopy. Cx43 on longitudinal sections of the left ventricle and protein expression of Cx43 exposed to cold (6 ± 1°C) for 3 days, 10 days, 5 weeks and then 2 weeks at 24 ± 1°C. Our results indicate significant benefit in changes in expression and Cx43 phosphorylation in signaling pathways that may be responsible for the antiarrhythmic effect associated with adaptation to hypobaric hypoxia. No changes have been demonstrated after normobaric hypoxia and offer the possibility of 5-week acclimation to cold to the cardioprotective pathway.

Key words: Rat, Heart, Cold, Hypoxia, Connexin 43, Hexokinase
<table>
<thead>
<tr>
<th>Skratka</th>
<th>Označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Kyselina arachidonová</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylcykláza</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenozindifosfát</td>
</tr>
<tr>
<td>Akt</td>
<td>Proteín kináza B</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenozíntrifosfát</td>
</tr>
<tr>
<td>BAT</td>
<td>Hnedé tukové tkanivo</td>
</tr>
<tr>
<td>β-AR</td>
<td>β-adrenergné receptory</td>
</tr>
<tr>
<td>°C</td>
<td>Stupeň Celsia</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyklický adenožínmonofosfát</td>
</tr>
<tr>
<td>CaM</td>
<td>Kalmodulín</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyklický guanožínmonofosfát</td>
</tr>
<tr>
<td>C-koniec</td>
<td>Karboxylový koniec</td>
</tr>
<tr>
<td>CNH</td>
<td>Kontinuálna normobarická hypoxia</td>
</tr>
<tr>
<td>cPLA2</td>
<td>Cytozólová fosfolipáza A₂</td>
</tr>
<tr>
<td>CK 1</td>
<td>Kazeínkináza 1</td>
</tr>
<tr>
<td>Cx</td>
<td>Konexíny</td>
</tr>
<tr>
<td>Cx 43</td>
<td>Konexín 43</td>
</tr>
<tr>
<td>DAG</td>
<td>Diagylglycerol</td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>1ódtyronin diodináza 1, 2, 3</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermálny rastový faktor</td>
</tr>
<tr>
<td>E1-E2</td>
<td>Extraceelulárne slučky 1 a 2</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplazmatické retikulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>Degradaícia spojená s ER</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracelulárne signálna regulovaná protein kináza</td>
</tr>
<tr>
<td>HK1, HK2</td>
<td>Hexokináza 1, 2</td>
</tr>
<tr>
<td>Gi</td>
<td>G-proteíny inhibičné</td>
</tr>
<tr>
<td>Abéceda</td>
<td>Označenie</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>GC</td>
<td>Guanylylcykláza</td>
</tr>
<tr>
<td>GJ</td>
<td>Gap junction</td>
</tr>
<tr>
<td>GPCR</td>
<td>Receptory viazané s G-proteinmi</td>
</tr>
<tr>
<td>Gs</td>
<td>G-proteíny stimulačné</td>
</tr>
<tr>
<td>CH</td>
<td>Chronic chlad</td>
</tr>
<tr>
<td>IHH</td>
<td>Intermitentná hypobarická hypoxia</td>
</tr>
<tr>
<td>I/R</td>
<td>Ischemicko-reperfúzne</td>
</tr>
<tr>
<td>K</td>
<td>Kontrola</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogénom aktivovaná proteínkináza</td>
</tr>
<tr>
<td>M1-M4</td>
<td>Transmembránové oblasti 1, 2, 3, a 4</td>
</tr>
<tr>
<td>N</td>
<td>Normoxia</td>
</tr>
<tr>
<td>N-koniec</td>
<td>Aminový koniec</td>
</tr>
<tr>
<td>NO</td>
<td>Oxid dusnatý</td>
</tr>
<tr>
<td>NP</td>
<td>Nátriuretický peptid</td>
</tr>
<tr>
<td>n-3 PUFA</td>
<td>n-3 polynasýtené mastné kyseliny</td>
</tr>
<tr>
<td>p-Cx43</td>
<td>Fosforylovaný Cx43</td>
</tr>
<tr>
<td>pGC</td>
<td>Partikulárna guanylylcykláza</td>
</tr>
<tr>
<td>PI3</td>
<td>Fosfatidylinozitol-3-kináza</td>
</tr>
<tr>
<td>PKA</td>
<td>Proteínkináza A</td>
</tr>
<tr>
<td>PKC</td>
<td>Proteínkináza C</td>
</tr>
<tr>
<td>PKCε</td>
<td>Proteínkináza Cepsilon</td>
</tr>
<tr>
<td>PKCδ</td>
<td>Proteínkináza Cdelta</td>
</tr>
<tr>
<td>PKG</td>
<td>Proteínkináza G</td>
</tr>
<tr>
<td>R</td>
<td>Regresia</td>
</tr>
<tr>
<td>sGC</td>
<td>Solubilná guanylylcykláza</td>
</tr>
<tr>
<td>SH2</td>
<td>Src homológia 2</td>
</tr>
<tr>
<td>SH3</td>
<td>Src homológia 3</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Src</td>
<td>Tyrozín proteín kináza transformujúca proteín Src</td>
</tr>
<tr>
<td>TH</td>
<td>Tyroidné hormóny</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-tetradekanoylforbol 13 acetát</td>
</tr>
<tr>
<td>T3</td>
<td>Triódtyronín</td>
</tr>
<tr>
<td>VDAC</td>
<td>Napätľovo závislý aniontový kanál</td>
</tr>
<tr>
<td>ZO-1</td>
<td>Zonula occludens 1</td>
</tr>
<tr>
<td>WB</td>
<td>Western blot</td>
</tr>
<tr>
<td>3D</td>
<td>3-dňový</td>
</tr>
<tr>
<td>10D</td>
<td>10-dňový</td>
</tr>
</tbody>
</table>
Zoznam obrázkov

Obrázok 1. Konnexíny, konexóny, medzibunkové kanály a gap junctions18
Obrázok 2. Kombinácie konexínov tvoriace konexóny, hemikanály a medzibunkové kanály...21
Obrázok 3. Schématický model konexínu...22
Obrázok 4. Posttranslačne modifikované miesta Cx43 ..31
Obrázok 5. Účinok IHH na proteinovú expresiu celkového Cx43 a úroveň mRNA transkriptu proteinu alfa 1 (CXA1) ..71
Obrázok 6. Účinok IHH na proteinovú expresiu nefosforylovaného Cx43, fosforylovanéj formy Cx43 na Ser368, Ser279/282, Tyr265 ..72
Obrázok 7. Účinok IHH na fosforyláciu Cx43 pomocou hmotnostnej spektrometrie73
Obrázok 8. Účinok IHH na proteinovú expresiu PKA, CK1, PKG ..74
Obrázok 9. Reprezentatívne mikrofotografie ukazujúce účinok IHH na distribúciu Cx43 počas krátkej Isch, IR ..75
Obrázok 10. Reprezentatívne mikrofotografie ukazujúce účinok IHH na distribúciu p-Cx43(Ser368) počas krátkej ischémie Isch, IR ...76
Obrázok 11. Účinok IHH na hlavné polynenasýtené mastné kyseliny [kyselina linolová (18: 2n-6), kyselina arachidónová (20: 4n-6), kyselina dokosahexaéonová (22: 6n-3)] ..77
Obrázok 12. Účinok CNH na distribúciu HK1 a HK2 počas krátkej ischémii79
Obrázok 13. Účinok 3D a 10D chladu na proteinovú expresiu Cx4381
Obrázok 14. Reprezentatívne mikrofotografie ukazujúce účinok 3D a 10D chladu na distribúciu Cx43 ..82
Obrázok 15. Účinok CH a R na proteinovú expresiu Cx43 ..83
Obrázok 16. Reprezentatívne mikrofotografie ukazujúce účinok CH, R na distribúciu Cx43. ..84
Obrázok 17. Účinok CH a R na proteinovú expresiu PKA, CK1, Akt, MAPK85
Obrázok 18. Účinok CH a R na proteinovú expresiu PKCε, PKCδ86
Zoznam tabuľiek

Tabuľka 1. Distribúcia izoforiem konexínov v jednotlivých častiach srdca.......................19
Tabuľka 2. Riešenie primárnych a sekundárnych protilátok.............................60
Zoznam publikácií

1 ÚVOD

V spolupráci s Fyziologickým ústavom Akadémie vied Českej Republiky a Oddelením vývojovej kardiológie sme sledovali zmeny v expresii, distribúcií a fosforylácii Cx43 na hypobarickom modeli (IHH). Tento model je známy už vyše 50 rokov a bol preukázaný ako kardioprotektívny. Viaceré štúdie potvrdili kardioprotektívne účinky a to v dôsledku zvýšenej ischemickej tolerancie a zníženej tendencie k vzniku arytmií. Naproti tomu model normobarickej kontinuálnej hypoxie (CNH) znižuje veľkosť infarktu, ale nemá antiarytmické účinky.

Správna intercelulárna komunikácia je nevyhnutná pre normálnu elektrickú aktiváciu myokardu a synchronizovanú kontrakciu srdca. Kontraktilné srdcové zlyhanie a aritmie sú hlavnou príčinou smrti v dôsledku srdených ochorení. Remodelácia myokardu pri týchto patologických stavech môže byť spojená so zníženou medzibunkovou komunikáciou a taktiež so zhoršenou funkciou mitochondrií, ktorá je dôsledkom zmeny expresie alebo distribúcie Cx43, ako hlavnej zložky GJ spojenia v ľavej komore myokardu alebo aj dôsledkom energetickej nedostatočnosti a aktivácie apoptózy. Početné štúdie poukazujú na vznik patologických srdených ochorení, ktoré často súvisia so štrukturálnou a elektrickou remodeláciou myokardu, zvýšeným rizikom ventrikulárnych arytmií a náhlej srdenovej smrti. Experimentálne štúdie na geneticky upravených myšiach so zníženou hladinou Cx43 ukázali vzťah medzi oslabenou midzibunkovou komunikáciou a arytmogenézou. Naproti tomu zvýšenie Cx43 na mitochondriálnej membráne bolo pozorované v protektívnych stavech. Kľúčová úloha pri prestavbe GJ súvisiaca s arytmiami bola preukázaná v modeli srdeného infarktu u mačiek, kde zmena expresie Cx43 korelovala s lokalizáciou reentry arytmií.

Vedľa počtu Cx43, jeho vodivých vlastností, je lokalizácia Cx43 taktiež dôležitým aspektom, ktorá prispieva k arytmogenéze, pričom zoslabenie jej abnormálnu položení opakovane preukázané ako kardioprotektívne. Za fyziologických podmienok sú GJ prevážne umiestnené v interkalárnych diskoch, kde poskytujú end to end tzv. koncové vedenie medzi susednými kardiomycytmi. Okrem toho sa v laterálnej plazmatickej membráne nachádzajú aj malé množstvá Cx43 mimo interkalárnych diskov, ktoré umožňujú side to side vedenie
medzi kardiomyocytní (t.j. bočné spoje). Niektoré práce popisujú lokalizáciu Cx43 aj na mitochondriách. V rôznych patologických stavech boli pozorované zmeny v expresii Cx43 a jeho funkčných vlastnosti v dôsledku posttranslačných modifikácií ovplyvňujúcich vodivosť a pravdepodobnosť otvárania kanálov. Znížená expresia Cx43, ako aj zvýšené vedenie prispieva k tvorbe arytmogénneho substrátu a spôsobujú abnormálne vedenie. Zistenie, že upregulácia proteinu Cx43 v myokardu je spojená s ochranou pred arytmiami je v súlade s predchádzajúcimi štúdiami.

Ďalším študovaným modelom je chladová adaptácia, ktorá predstavuje doposiaľ málo sledovaný model vo vzťahu ku Cx43 a kardioprotekcií. Adaptácia na chlad je známa svojimi pozitívnymi účinkami, ktoré zlepšujú imunitnú a vaskulárnu odpoveď. Chladová adaptácia vedie k tvorbe hnedého tukového tkaniva u zvierat, ktoré sa zvyčajne tvorí počas hibernácie, a tak zachováva srdcovú činnosť aj pri nízkych teplotách (Blumberg 1997). Fyziológia hibernácie sa vyznačuje dramatickým znížením tepovej frekvencie, dýchania, metabolizmom, krvným tlakom, telesnou teplotou a rezistenciou na vznik ventrikulárnych fibrilácií. GJ poskytujú v srdečnom svalu srdcového svalu, koordinovanú činnosť srca a tkanivovú homeostázu. Vodivosť týchto GJ, a teda ich funkcia, je pravdepodobne ovplyvnená fyziologickými zmenami, ku ktorým dochádza počas hibernácie.
V tejto dizertačnej práci sa zameriavame na možnú úlohu expresie, fosforylácie a distribúcie Cx43 ako aj jednotlivých proteinkináz vzhľadom na antiarytmické účinky stimulované adaptáciou na IHH a chlad, a súčasne distribúciou hexokinázy v režime CNH.
2 LITERÁRNY PREHL'AD

2.1 Prehľad gap junction kanálov

Spojenie medzi jednotlivými GJ kanáliami je \(\sim 2 \) nm. GJ kanáli môžu prechádzať molekuly s nízkou molekulovou hmotnosťou \(< 1\) kilodalton (kDa), metabolity a ionty, vrátane druhých poslov, ako je cykllický adenosínmonofosfát (cAMP), inozitoltrifosfát a \(\text{Ca}^{2+} \) (Saez et al. 2003). V kardiomyocytách sú exprimované štyri izoformy Cx37, Cx40, Cx45 a Cx43 (Tab. I) (Van Kempen et al. 1995) a ich množstvo sa líši v jednotlivých srdečných oddieloch. Hlavnou izoformou v ľavej komore je Cx43 (Davis et al. 1995), ale taktiež bol preukázaný výskyt izoformy Cx45 (Verheule et al. 1997). V predsieňach túto úlohu zastávajú Cx40 a Cx45.

Tabuľka 1. Distribúcia izoforii konexínov v jednotlivých častiach srdca (upravené podľa Davis et al. 1995; Dhein 1998; Kar et al. 2012).

<table>
<thead>
<tr>
<th>Oblast' srdcového svalu</th>
<th>Isoforma konexínov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predsiene</td>
<td>Cx40, Cx43, Cx45</td>
</tr>
<tr>
<td>Komory</td>
<td>Cx43, Cx45</td>
</tr>
<tr>
<td>Oblast' prepojenia predsiene a komory</td>
<td>Cx37, Cx46</td>
</tr>
<tr>
<td>Oblast' prepojenia dvoch komôr</td>
<td>Cx43, Cx45</td>
</tr>
<tr>
<td>Sinoatriálny uzol</td>
<td>Cx40, Cx45</td>
</tr>
<tr>
<td>Atrioventrikulárny uzol</td>
<td>Cx40, x43, Cx45</td>
</tr>
<tr>
<td>Purkyňove vlákna</td>
<td>Cx40, Cx43, Cx45</td>
</tr>
<tr>
<td>Hisov zväzok</td>
<td>Cx40, Cx43, Cx45</td>
</tr>
</tbody>
</table>

GJ kanály rozlišujeme v stave otvorenom (*coupling*) a taktiež v stave uzavretom (*uncoupling*), ktoré súvisia so zmenou konformácie a prerušením medzibunkovej komunikácie (Söhl & Willecke 2003). Tieto zmeny sú závislé a regulované rôznymi mechanizmami, vrátane \(\text{Ca}^{2+} \), pH, transjunkčného potenciálu a fosforylácie proteinov, ktoré budú detailnejšie popísané v samostatnej kapitole.

Lokalizácia Cx43 je prevažne v interkalárnych diskoch, kde zaistuje *end to end* vedenie (tzv. koncové), ktoré je dôležité pre normálnu funkciu srdca. V menšom množstve sa Cx43 vyskytuje aj laterálne na plazmatickej membráne smerom od interkalárnych diskov, kde umožňuje *side to side* vedenie medzi kardiomyocytmi (tzv. laterálne) (Spach & Heidlage 1995).

Najpoužívanejšia nomenklatúra konexínov zachováva použitie názvu proteinu konexín napísaného ako skratka Cx, za ktorou nasleduje prípôna s uvedenou molekulovou

Konexíny môžu oligomerizovať a vytvárať *homomerické* (skladajúce sa len z jedného druhu konexínu) alebo *heteromerické konexóny* (tvorené zmesou rôznych izoforíom konexínov). Okrem toho môžu tieto konexóny vytvárať *homotypický kanál*, tvorený rovnakými izoformami konexónov alebo *heterotypický kanál*, ktorý je tvorený rozličnými izoformami konexónov. Taktiež rozlišujeme *mono-heteromérny kanál*, keď je spojený jeden homomérny konexón s jedným heteromérnym konexónom a *bi-heteromérny kanál*, ktorý je tvorený dvoma heteromérnymi konexónmi (Obr. 2) (Moreno 2004; Martinez et al. 2002).

2.1.1 Štruktúra konexínov

Čo sa týka molekulárnej štruktúry, konexíny sú tvorené štyrmi transmembránovými doménami (M1-M4), karboxylovým koncom (C-koniec), aminovým koncom (N-koniec), dvomi extracelulárnymi slučkami (E1-slučka a E2-slučka), cytoplazmatickou slučkou (C-slučka) medzi M2 a M3 pre prehľad (Obr. 3) (Solan & Lampe 2009).

V intracelulárnej cytoplazme sa nachádza C-koniec, N-koniec a C-slučka medzi M2 a M3. Hydrofilné domény medzi M1 a M2 a medzi M3 a M4 sú v extracelulárnom priestore a tvoria E1- a E2-slučku. Cytoplazmatické domény konexínov (N-koniec, C-slučka, C-koniec) hrajú dôležitú úlohu v otváraní GJ kanálov a regulujú fyziologické vlastnosti kanálu. N-koniec je relatívne konzervatívny na dĺžku, zatiaľ čo C-slučka a C-koniec sa líšia medzi rôznymi izoformami. Transmembránové domény ukotvujú proteín v plazmatickej membráne, pričom extracelulárne slučky zodpovedajú za medzibunkovú kompatibilitu (Goodenough & Paul 2009).
Obrázok 3. Schematický model konexínu. Valce znázorňujú transmembránové domény (M1-M4), slučky medzi prvou a druhou a taktiež aj medzi tret'ou a štvrtou transmembránovou doménou sú extracelulárne (E1 a E2) (upravené podľa Talbot et al. 2015).

Topologické štúdie ukázali, že štyri transmembránové domény konexínov pozostávajú z približne 20 aminokyselín. Ďalšia analýza transmembránových sekvencií viedla k hypotéze, ktorá konštatovala, že transmembránová doména M3 obsahuje sériu dobre rozmiestnených polárnych aminokyselín tvoriacich amfipatický α-helix. Potom by transmembránové domény M3 každej podjednotky Cx tvorili najvnútornejšiu hranicu transmembránového póru (Milks et al. 1988).

Dĺžka C-slučky sa liší medzi rôznymi izoformami konexínov. Na základe dĺžky môžu byť rozdelené do troch kategórií na: krátke (30-35aa), stredné (50-55aa) a veľké (80-105aa) (Beyer & Berthoud 2009). C-slučka sa taktiež podieľa na začlenení do membrány a vytváraním plakových spojov a je dôležitá pre interakcie proteinov, ktoré sa podieľajú
na funkci kanála. Napríklad, vázbové miesto pre kalmodulín (CaM) bolo identifikované v druhé polovici C-slučky Cx43 (Zhou et al. 2007). Ako už bol spomenuté, vázba CaM je dôležitá pre Ca²⁺ závislé zatvorenie GJ kanálov. C-slučka Cx43 sa podieľa aj na interakcii s C-koncom spôsobom závislým od pH v modeli častičo-receptor, kde C-koniec Cx43 hrá úlohu receptora (Duffy et al. 2002).

C-koniec konexínov je primárná oblasť, ktorá je fosforylovaná rôznymi kinázami a doposiaľ neboli prezentované žiadne správy o fosforylácii na N-konci konexínov. C-slučka a C-koniec majú variabilnú dĺžku a sekvenci, ktorá umožňuje funkčné rozdiely medzi rôznymi konexínmi a konexónmi. C-terminálna oblasť, obzvlášť interaguje s proteinmi, ako sú kateíny a ďalšie, ktoré slúžia pre moduláciu polčasu životnosti, činnosti a funkcie konexínov (pre prehľad, Dbouk et al., 2009). Dve extracelulárne slučky sú nevyhnutné na ukotvenie dvoch hemikanálov susedných buniek a pre vytvorenie GJ kanálu.

2.2 Regulácia gap junction kanálov

GJ kanály, ktoré umožňujú komunikáciu medzi susednými bunkami sú prísne regulované na viacerých úrovniach. Rôzne tkanivá a typy buniek exprimujú rôzne izoformy konexínov a ich hladiny expresie sa v priebehu času menia aj v tej istej bunke. Viacnásobné mechanizmy sa podieľajú na tkanivovej a časovo špecifíckej kontrole konexínov na úrovni mRNA, syntéze proteinov, montáži a degradácii.

2.2.1 Životný cyklus konexínov
2.2.1.2 Syntéza konexínov

ER prostredníctvom translokónu a zakódovaných prenosových sekvencií štartu a zastavenia. Jednou z možných výnimiek je Cx26, o ktorom sa ukázalo, že je schopný byť posttranslačne a kotranslačne transportovaný do membrány ER (Zhang et al. 1996) a dokonca aj priamo importovaný do plazmatickej membrány (Ahmad & Evans 2002).

2.2.1.2 Transport a začlenenie konexínov do plazmatickej membrány

2.2.1.3 Internalizácia a degradácia gap junction kanálov, konexónov, konexínov

Cx43 predstavuje vysoko dynamickú štruktúru (Beardslee et al. 1998). Neočakávane krátky polčas životnosti Cx43 zahŕňuje nielen syntézu, ale aj efektívny mechanizmus degradácie, ktorý je nevyhnutný a potrebny pre zabezpečenie dynamického obratu Cx43. Tento predpoklad bol overený rôznymi technológiami na živých bunkách, ktoré ukázali, že novo syntetizované kanály sú nahromadené na vonkajších okrajoch existujúcich plakov GJ, zatiaľ čo staršie kanály sú súčasne odstránené z plakových centier (Falk et al. 2014). Internalizácia GJ kanálov je dôležitým regulačným mechanizmom konexónov a/alebo konexínov, ktorý je v posledných rokoch predmetom značného zamerania. K ich degradácii
dochádza buď vytváraním dvojmembránových vezikulárnych štruktúr tzv. annular junction, ktoré boli objavené pred mnohými rokmi elektrónovou mikroskopiou (Archard & Denys 1979) alebo vytváraním konexozómov (Laird 2006).

Bunky si vyvinuli proteazomáline, endo- a fago- lyzozomáline (autofagické) degradáčné cesty a všetky tri boli spojené s konexínovým proteínom a GJ degradáciou. Zatiaľ čo proteazomálna degradácia všetkých degraduje krátkodobé, nesprávne zložené alebo inak nežiadúce polypeptid. Endo- a fago- lyzozomálna dráha umožňujú degradáciu zložitejších proteínových štruktúr, ktoré sú buď endocytované na plazmatickej membráne, alebo sú prítomné v cytoplazme. V oboch endo-lyzozomálnych a autofagických dráhach degradácie hrá lyzozóm klľúčovú úlohu pri sprostredkováne konexnej degradácii.

Lyzozomálna degradácia je taktiež dôležitá pre medzibunkovú komunikáciu. Zohráva ústrednejšiu úlohu pri degradácii konexínov, buď pred transportom na membránu, po začlenení do membrány, alebo ešte pred vytvorením funkčných GJ kanálov. Ubikvitínácia je dôležitým krokom pre lyzozomálnu degradáciu, pričom inhibícia lyzozomálnej dráhy zvyšuje proteinovú hladinu konexínov (Qin et al. 2003). Lyzozomálna
degradácia Cx43 bola dokázaná zistením, že prstencové profily Cx43 boli spojené so štruktúrou podobnou lyzozómu v C6 gliomových bunkách (Naus et al. 1993). Ďalšie pokusy s pulzným sledovaním odhalili, že inhibítory proteazómu a lyzozómu spôsobili predĺžený polčas rozpadu Cx43 v podobnom rozsahu u kadiomyocytoch potkanov, čo naznačuje koexistenciu týchto dvoch proteolytických dráh pri degradácii Cx43 (Laing et al. 1997). Hoci existujú dobré dôkazy, ktoré naznačujú, že sa lyzozómy aj proteazómy podielajú na degradácii Cx43, je t'ajšie zhodnotiť, prečo sú obe cesty potrebné na degradácii Cx43. Nie je tiež jasné, či obe dráhy degradujú Cx43 na povrchu bunky z plakov, ako aj možné nezrelé Cx43 lokalizované na ER alebo, či sú do týchto procesov sekrečných dráh zahrnuté aj ďalšie medzikroky ako je napríklad aktivácia kináz.

regulácie GJ intercelulárnu komunikáciu bolo spôsobené nielen fosforyláciou PKC (na Ser368), ale aj fosforyláciou Cx43 pomocou MAPK (na Ser255 a Ser262) (Sirnes et al. 2009).

Liečba buniek kyselinou glycyrrhetinovou, ktorá inhibuje GJ komunikáciu, vedie k narušeniu usporiadania konexínov v GJ kanáloch (Goldberg et al. 1996). V tomto prípade, zatiaľ čo veľkosť kanálu a morfológie sa zdali normálne, kanály boli neusporiadané s nepravidelným rozstupom, skôr než v husto zabalenom zoskupení. V samostatných štúdiách bola pozorovaná zvýšená fosforylácia a interakcia so Src (Chung et al. 2007) a PKC (Liang et al. 2008) ako odpoveď na liečbu glycyrrhetinovou kyselinou. Tieto údaje spoločne viedli k špekulácii, že fosforylácia a organizácia kanálov spolupracujú na usmerňovaní internalizácie GJ buď prostredníctvom endocytózy alebo vytváraním annular junction.

2.2.2 Otváranie Gap junction kanálov

Ako je zrejme z vyššie uvedených údajov počet aktívnych hemikanálov je jedným z významných kritérií pre celkovú priepustnosť membrány. Avšak významnou úlohou regulácie je vodivost jednotlivých hemikanálov (γ). Potom vodivost GJ kanálu je charakterizovaná ako $V_{GJ} = N \times P_{o} \times \gamma$, kde N je počet aktívnych kanálov v plazmatickej membráne a P_{o} je pravdepodobnosť ich otvárania (Imanaga et al. 2004).

Napätie je dôležitý parameter, ktorý reguluje otváranie a zatváranie všetkých spojovacích kanálov. Vnútrobnové kanály môžu byť citlivé na tieto napätia:

1. Napätový rozdiel medzi cytoplazmou a extracelulárnym priestorom, transmembránové napätie (V_{m}).

2. Napätie medzi cytoplazmou dvoch rôznych buniek, transjunkčné napätie (V_{j}), je nezávislé od membránového potenciálu každej bunky.

Priepustnosť GJ kanálov je reguloaná špecifickými zmenami v cytosólovej iónovej kompozícií, posttranslačnými modifikáciami (fosforyláciou) a V_{j}, pričom niektoré kanály sú senzitívne na V_{j} a V_{m}. Keď sa kanály uzavrú, dochádza k prerušeniu elektrickej a metabolickej komunikácie. Rozpojenie kanálov je hlavným ochranným mechanizmom na izoláciu zdravých buniek od poškodených (Gonzalez et al. 2007).
Model ball-and-chain opisuje mechanizmus rýchleho otvárania GJ kanálov pomocou zmien V_j. V tomto modeli pohyb C-konca smerom k pôlu kanála spôsobuje blokáciu pórov (Gonzalez et al. 2007).

Podobný model (takzvaný model particle-receptor) umožňuje taktiež zatváranie GJ kanálov pomocou chemických stimulov (napr. pH), ktoré interagujú s receptorom C-konca, a tak blokujú kanál. Napríklad kanály Cx43 sa zvyčajne otvárajú pri pH 7,2 (Ek-Vitorin et al. 1996).

Ďalším chemickým podnetom, ktorý môže regulovať aktivitu GJ kanálov sú Ca$^{2+}$ióny. Predpokladá sa, že účinok intracelulárneho Ca$^{2+}$ pôsobí prostredníctvom CaM a inhibítorov CaM, ktoré zabraňujú zatvorení GJ kanálov v mnohých bunkových typoch (pre prehľad Peracchia 2004). Cx32 obsahuje dve domény, ktoré sa viažú na CaM. Ukázalo sa, že s nárastom Ca$^{2+}$, CaM buď fyzicky blokuje kanál, alebo ho uzavíra cez konformačnú zmenu v Cx32. Napriek zatváraniu kanálov súvisiaceho so zvýšením intracelulárneho Ca$^{2+}$, štúdie na hemikanáloch obsahujúcich Cx32 ukázali, že zvýšenie koncentrácie Ca$^{2+}$ v cytoplazme vyvoláva otvorenie hemikanálu (Vuyst et al. 2006).

2.2.3 Dôležitosť C-konca v regulácii konexínov

Predpokladá sa, že C-koniec je hlavnou regulačnou doménou väčšiny konexínov. C-koniec hrá úlohu pri transporte, veľkosťi, lokalizácii GJ kanálov, ako aj udržiavaní medzibunkovej komunikácie prostredníctvom mnohých posttranslačných modifikácií a interakcií protein-protein (Goodenough & Paul 2009).

Hlavným regulačným miestom Cx43 je C-koniec. C-koniec Cx43 je nevyhnutný pre správnu organizáciu v interkalárnom disku, rovnako ako aj pre reguláciu kanála vplyvom rôznych chemických stimulov. Sorgen a jeho kolegovia (2004) uviedli, že C-koniec Cx43 je prevažne náhodná cievka pozostávajúca zo 132 aminokyselin obsahujúca dve špirálovité
domény prechádzajúce cytoplazmatickou membránou (Sorgen et al. 2004). Táto skupina ďalej preukázala, že väzobné proteíny C-konca Cx43 môžu významne zmeniť sekundárnu štruktúru Cx43. Dôležité je, že tieto štrukturalné zmeny boli pozorované v miestach vzdialených od oblasti väzby. To naznačuje, že C-koniec Cx43 nie je len miestom interakcie protein-protein, ale je aj platformou, cez ktorú väzobné proteíny konexínov môžu vzájomne interagovať.

Dimerizácia C-konca Cx43 bola navrhnutá ako jedna zo štrukturalných zmien zahrnutých v regulácii Cx43 pomocou pH, čím sa zvýšila väzobná afinita C-konca Cx43/C-slučky Cx43, aby sa kanál dostal do uzavretého stavu (Hirst-Jensen et al. 2007), čo je dôležité pre reguláciu heteromérgnych kanálov. V súlade s tým bol zistené, že delécia posledných piatich aminokyselinových zvyškov C-konca Cx43 vedie k vzniku letálnych komorových arytmíí (Lubkmemeier et al. 2013).

Na C-konci sa nachádza mnoho cieľových fosforylačných miest prevážne na serínových, treonínových a tyrozínových aminokyselinových zbytkoch. Bolo identifikovaných niekoľko kinázd, ktoré môžu ovplyvniť permeabilitu kanála (pre prehľad Lampe & Lau 2004) a to PKA (Ser364, Ser365) (Tenbroek et al. 2001; Solan et al. 2007), PKC (Ser368) (Akita 2002), proteinkináza B (PKB/Akt) (Ser373) (Batra et al. 2014), CK 1 (Cooper & Lampe 2002), MAPK (Ser279, Ser282) a ERK1/2 (Ser255, S279, Ser282) (Johnson et al. 2013).
2.3 Fosforylácia konexínov

Kovalentné viazanie fosfátových skupín na serínové, treonínové alebo tyrozínové zvyšky proteinov sa nazýva proteínová fosforylácia. Pridanie fosfátovej skupiny k proteinu je sprostredkované rôznymi proteínkinázami, zatiaľ čo odstránenie fosfátovej skupiny, defosforylácia, je sprostredkované proteínfosfatázami. Dnes je fosforylácia a defosforylácia dobre popísaná a predstavuje potenciálne najbežnejší spôsob kontroly aktivity a funkcie proteinov v biologických systémoch. Prvý dôkaz, že konexíny (Cx) sú fosfoproteíny bol publikovaný v roku 1980 (Saez et al. 1986; Takeda et al. 1987). Fosforylačný stav Cx závisí od interakcie medzi rôznymi kinázami a fosfatázami, je často špecifický pre bunkový, alebo tkanivový typ a je ďalej ovplyvnený rôznymi fyzioLOGICKými a patologickými stavmi.

Štúdie naznačujú, že Cx43 je rôzne fosforylovaný po celú dobu jeho životného cyklu a to najmenej na 14 z 21 serínov a 2 tyrozínov v cytoplazmatickej doméne (pre prehľad, Márquez-Rosado et al., 2012).

Fosforylácia Cx sa vyskytuje primárne na C-konci, ale Cx36 a Cx56 môžu byť fosforylované aj na cytoplazmickej slučke (Berthoud et al. 1997; Urschel et al. 2006). Cx26 má veľmi krátku C-koncovú oblasť s iba 11 aminokyselinami a predpokladá sa, že sa nevyskytuje vo forme fosfoproteínu, pretože fosforylácia tohto proteínu nebola detekovateľná v hepatocytoch (Traub et al. 1989).

Celý priebeh fosforylácie a defosforylácie Cx43 je riadený kinázami a fosfatázami, ktoré ovplyvňujú jeho špecifické miesta. Počiatočná fosforylácia Cx43 sa vyskytuje počas 15 minút syntézy (Crow et al. 1990), takže niektoré fosforylačné udalosti sa pravdepodobne môžu vyskytnúť pred príchodom Cx43 na plazmatickú membránu. Zosilnená zostava spojenia GJ vzniká pri aktivácii proteínkináz závislej od cAMP (PKA) prostredníctvom
zvýšeného prenosu Cx43 na plazmatickú membránu (Tenbroek et al. 2001). Solan a kol. (2007) preukázali, že prechod Cx43 z cytoplazmy na plazmatickú membránu zahŕňa fosforyláciu pravdepodobne na Ser365 (Solan et al. 2007). Následne CK1 fosforyluje Cx43 na Ser325/328/330, ktoré sa podieľajú na pohybe Cx43 z plazmatickej membrány do GJ (Cooper & Lampe 2002).

2.3.1 Serínové fosforylačné miesta

Ser368
PKC je hlavnou upstream kinázou Cx43 na Ser368. Existuje najmenej 10 izoforiem PKC, ktoré sú rozdelené do troch skupín súvisiacich s ich primárnou štruktúrou (Newton 2003). Rodina proteínov PKC je rozdelená do troch skupín na základe zmien v usporiadanej alebo existencii C1-C4 a V1-V5. Konvenčné PKC (α, βl, βII, γ) majú opakujúcu C1 doménu bohatú na cysteín, ktorá pôsobí ako senzor diacylglycerolu (DAG). C2 doménu, ktorá viaže Ca²⁺ a C3, C4 domény, ktoré viažu adenozintrifosfát (ATP) a substrát viažucej molekuly PKC. Nové PKC (δ, ε, η, θ) neobsahujú C2 a teda nie sú aktivované Ca²⁺. Atypické PKC (ζ, ι/λ) taktiež nie sú aktivované Ca²⁺ ani DAG, pretože im chýbajú konzervované zvyšky Ser/Thr na C-konci. Konzervované zvyšky predstavujú dôležité miesto pre fosfor-akceptor u konvenčných a nových PKC (Giorgione et al. 2006).

PKC priamo fosforyluje Cx43. Aktivácia a degradácia PKC izoenzýmov je riadená priestorovo a časovo. Je zrejmé, že PKC izoenzýmy hrajú ústrednú úlohu v regulácii elektrickej aktivity srdca (Pears et al. 2008). Existujú práce, ktoré poukazujú, že fosforylácia Cx43 sprostredkovaná PKC bola spojená ako so zvýšenou vodivosťou (Kwak & Jongsma 1996), tak aj so zníženou vodivosťou GJ kanálov (Doble et al. 2000).

PKCε, ktorá fosforyluje Ser368 je aktivovaná druhými poslami, a to DAG, inozitol-3-fosfátom a mastnými kyselinami (Akita 2002). Podporuje dlhodobo stabilizovať a rovnako aj zvyšovať fosforylácii Cx43. Podávaním FGF-2 sa obnovujú hladiny fosforylovaného Cx43 vo fosforylačných miestach PKCε (Ser368, Ser262) po ischemicko-reperfúznom poškodení (Srisakuldee et al. 2006).
Ek-Vitorin a kol. (2006) uviedli, že v reakcii na prechodnú ischémiu zvýšená upregulácia PKCε sprostredkovanej fosforylácie Cx43 na Ser368 viedla k zadržaniu GJ v interkalárnych diskoch dokonca aj keď u celkového Cx43 sa zvýšila lateralizácia (Ek-Vitorin et al. 2006). Podobne Srisakuldee a kol. (2009) preukázali, že ischemický preconditioning zvýšil PKCε sprostredkovanú fosforyláciu Cx43 na Ser262 a Ser368 a inhiboval lateralizáciu Cx43 po ischemickom insulte (Srisakuldee et al. 2009). Štúdie, ktoré skúmali reguláciu Cx43 v bunkovom cykle, ukázali, že počas S-fázy sa montáž GJ do plazmatickej membrány znižuje a koreluje so zvýšenou fosforyláciou na Ser368 (Solan et al. 2003). Treba však poznamenať, že fosforylátia Cx43 na Ser368 pomocou PKC indukuje uzavretie Cx43 kanálov (Boengler et al. 2006). Okrem toho fosforylátia Cx43 súvisiaca s PKCε v diabetickom srdeci bola síce sprevádzaná znižením rýchlosti vedenia, ale s ochranou pred indukovanou ventrikulárnu fibriláciou (Lin et al. 2008).

Ser364, Ser365

PKA je serín/threonín kináza, ktorá sa aktivuje účinkom druhého posla cAMP a fosforyluje na Cx43 Ser364 a Ser365. Štruktúrne a biochemicky PKA je jednou z najlepšie charakterizovaných proteinkináz. Rozsiahla expresia PKA podjednotiek je spojená s nespočetnými mechanizmami, pomocou ktorých je cAMP v bunke regulovaný, to dokladá, že signálna kaskáda PKA má všeobecnú dôležitosť pre funkciu bunky. Signálna upstream dráha typicky zahŕňa aktiváciu stimulačných G proteinov cez receptory viazane s G-proteinmi na plazmatickej membránne a následnú aktiváciu adenylylcyklázy, ktorá konvertove ATP na cAMP (Zaccolo 2011).

PKA holoenzým sa skladá z dvoch katalytických (C) a dvoch regulačných (R) podjednotiek. V neprítomnosti cAMP je tetraméry holoenzým neaktívny. U myší existujú dva gény podjednotky C kódujúce izoformy Cα a Cβ a selekcia diferenciálneho promótora vedie k syntéze aspoň dvoch Cα (Cα1 a Cα2) (Desseyn et al. 2000; Reinton et al. 2000) a troch Cβ (Cβ1, Cβ2 a Cβ3) proteinov (Guthrie et al. 1997). Rozdiely medzi PKA katalytickými podjednotkami sú tiež zrejmé zo štúdií na knokautovaných myších. Eliminácia izoformy Cβ1 vedie k špecifickým defektom v hipokampálnej synaptickej
plasticite (Qi et al. 1996). Strata Ca spôsobuje spomalený rast s extrémnymi deficitmi kinázovej aktivity (Skalhegg et al. 2002).

Ser325, 328, 330
Ser325, Ser328 a Ser330 predstavujú fosforylačné miesta Cx43 regulované CK1. CK1 sa podieľa na rôznych bunkových procesoch. Ukázalo sa, že izoformy rodiny CK1 fosforylujú klúčové regulačné molekuly, ktoré sa podieľajú na bunkovom cykle, transkripcii a translácií. CK1 izoformy sú klúčovými regulátormi niekoľkých bunkových procesov rastu a prežitia, vrátane signalizácie p53, kontroly bunkového cyklu, opravy DNA a apoptózy (Koschinski & Zaccolo 2017; Schittek & Sinnberg 2014).

U ľudí bolo identifikovaných šesť izoforií CK1 (α, γ1, γ2, γ3, δ a ε). Všetky izoformy CK1 majú vysoko konzervovanú kinázovú doménu, ale lišia sa dlžkou a sekvenciou N-koncových a najmä C-koncových nekatalytických domén. CK1α hrá úlohu pri tvorbe mitotického vreťanka počas bunkového delenia a mechanizmov na opravu DNA a ďalej sa podieľa na metabolizme RNA (Koschinski & Zaccolo 2017; Schittek & Sinnberg 2014). Izoformy CK1 δ a ε sú známe ako dôležité regulátory v cirkadiánnom rytme eukaryotických buniek. CK1α reguluje apoptotické signálne dráhy, zdá sa však, že existujú rozdielne špecifické pre typ bunky. Okrem zapojenia do apoptotických signálnych dráh majú izoformy CK1 α, δ a ε dôležité regulačné funkcie v signalizačnej dráhe Wnt / β-catenin (Cruciat 2014; Valle-Perez et al. 2011)
CK1 indukuje fosoforyláciu Cx43 na Ser325, Ser328 a Ser330 a je klúčovým regulačným mechanizmom pre tvorbu GJ kanálov (Cooper & Lampe 2002). Ďalej bolo preukázané, že tieto špecifické serínové fosforylačné miesta sú fosforylované len vtedy, keď je Cx43 umiestnený v plachoch GJ (Solan & Lampe 2007). V ďalšej podpore dôležitosti fosforylácie týchto špecifických miest, substitúcia Ser325, Ser328 a Ser330 Cx43 za alanín (ktorý napodobňuje konštítutívne defosforylovaný serínový zvyšok) spôsobuje zníženie komunikácie, ako aj oneskorený vývoj elektrického spojenia u fibroblastov myší (Lampe et al. 2006). Tieto údaje spolu preukazujú dôležitosť fosforylácie Cx43 na Ser235, Ser328 a Ser330 pri jeho regulácii začlenení do plazmatickej membrány.

Chronické hemodynamické preťaženie tiež spôsobuje defosforyláciu a delokalizáciu Cx43 u potkanov aj u ľudí, čo môže súvisieť s vývojom fibrilácie predsiení (Rucker-Martin et al. 2006). Okrem toho u myší takéto hemodynamické preťaženie indukované aortálnym zúžením spôsobuje časovo závislú zníženie fosforylácie na Ser325, Ser328, Ser330 spolu s progresívnom stratou Cx43, spomaľovaním rýchlosti vedenia a zvýšením arytmogenézy (Qu et al. 2009). Na ďalšie preskúmanie fyziologickeho významu fosforylácie Ser325, Ser328 a Ser330, Remo a kol. (2011) uskutočnili štúdiu na mutantných knock-in myšíach, kde Ser325, Ser328 a Ser330 boli nahradené buď fosfomimetickými glutamovými kyselinami, alebo nefosfomimetickými alanínmi. Zavedenie kyseliny glutámovej viedlo k remodelácií GJ, v spojení s akútnou ischémiou a chronickým hemodynamickým preťažením. Naproti tomu myší s deficitom fosforylácie, kde Ser325, Ser328 a Ser330 boli nahradené alanínmi, vykazovali zvýšenú náchylnosť na vznik arytmíí (Remo et al. 2011).

Ser279 a Ser282

S použitím purifikovaných proteinov bolo zistené, že MAPK fosforylúva Cx43 priamo in vitro a fosforylácia sa vyskytuje na tryptických peptidoch, ktoré spoločne migrujú s podskupinou fosfotryptických peptidov Cx43 získaných z buniek ošetrených EGF (Kanemitsu & Lau 1993). Neskoršie štúdie identifikovali Ser255, Ser279 a Ser282 na Cx43 ako cieľové fosforylačné miesta pre aktivovanú MAPK in vitro (Warn-Cramer et al. 1996) a preukázali, že tieto miesta sa zdajú byť cieľmi pre MAPK in vivo (Warn-Cramer et al. 1998).

V ďalšej štúdii boli Cx43 hemikanály rekonštituované do unilamelárnych lipidových vezíků a bolo stanovené, že sú permeabilné pre sacharózu alebo luciferové žlté farbivo. Keď boli tieto vezíkuly defosforylované pôsobením teľacej črevnej fosfatázy, bola zvýšená permeabilita lipozómov. Spracovanie lipozómov ošetrených fosfatázou s purifikovanou aktivovanou MAPK (ERK 2) indukovalo fosforyláciu Cx43 a výsledkom bolo zniženie permeability Cx43 hemikanálov v rekonšituovanom systéme (Kim et al. 1999). Tieto údaje potvrdili, že Cx43 je priamym cieľom pre aktivovanú MAPK a že fosforylácia sprostredkovaná MAPK na Cx43 je dostatočná pre zniženie regulácie funkcie Cx43.

Fosforylácia Cx43 na Ser279 a/alebo Ser282 prostredníctvom MAPK koreluje so znižením elektrickej vodivosti, podieľa sa na regulácii veľkosti GJ plakov a taktiež zvyšuje internalizáciu Cx43 (Nimlamool et al. 2015). Johnson a kol. (2013) zistili, že fosforylácia na Ser279 a Ser282 narušuje rast GJ plakov spúšťaním kaltrínom sprostredkovanou endocytózy Cx43 (Johnson et al. 2013).

Ser 110, Ser276 a Ser289

PKG je aktivovaná všadeprítomným druhým poslom 3',5'-cyklickým guanozinmonofosfátom (cGMP), ktorý reguluje viaceré fyziologické procesy v kardiovaskulárnom systéme. cGMP je tvorený z guanozin trifosfátu špecializovanými

Existujú aspoň tri triedy známych cGMP efektorových proteínov. Po prvých, proteinové kinázy závislé od cGMP (PKG, tiež známe ako cGK) sú dôležitými downregulujúcimi cieľmi cGMP v kardiovaskulárnom systéme. Boli identifikované tri PKG izoformy (PKG Iα, PKG Iß a PKG typu II), pričom PKG I je hlavnou izoformou v kardiovaskulárnom systéme (Tsai & Kass 2009).

cGMP negatívne moduluje kontraktilitu, urýchľuje relaxáciu a zlepšuje tuhost srdcových myocytov. Tieto účinky môžu byť sprostredkované priamou PKG fosforyláciou proteínov, vrátane kardiálnego troponínu I, Ca^2+ kanála L-typu, fosfolambánu a titínu (Tsai & Kass 2009). Úloha PKG v negatívnej inotropii indukovej cGMP bola preukázaná v štúdii na srdeciach myší bez PKG I. Wegener a kol. (2002) uviedli, že cGMP analogý (8-Br-cGMP, 8-pCPT-cGMP) majú negatívne inotropné účinky v kontrolných srdciach, ale nie v srdci bez PKG I, nezávisle od signalizácie cAMP (Wegener et al. 2002).

Dve štúdie jasne demonštrovali úlohu PKG I ako klúčového negatívneho regulátora srdcovej hypertrofie a remodelácie (Frantz et al. 2013; Zhang et al. 2010). U myší so zníženou aktivitou PKG a nadmernou expresiou fosfodiesterázy 5 sa vyvinula exacerbovaná hypertrofia a remodelácia v reakcii na pretlak a normalizáciu. Aktivita PKG vypnutím nadmernej expresie PDE5 zmierňuje remodeláciu (Zhang et al. 2010).
Zvyšujúce sa dôkazy naznačujú, že signálné dráhy závislé od cGMP hrajú dôležitú úlohu pri inhibicii srdcovej remodelácie a predstavujú sľubný terapeutický cieľ pre liečbu kardiovaskulárnych ochorení.

2.3.2 Tyrozínove fosforylačné miesta

Tyr247 a Tyr265

Fosforylácia konexínov prostredníctvom tyrozínových proteinkináz (najmä Src) je intenzívne študovaným regulačným mechanizmom. Hlavnými regulačnými doménami v-Src sú Src homológie 3 (SH3) a Src homológie 2 (SH2), ktoré sprostredkovačia interakcie so substrátovými proteínmi. SH3 domény interagujú s peptidovými motívmi bohatými na prolín. SH2 domény sa spájajú s krátkymi aminokyselinovými sekvenciami obsahujúcimi fosfotyrozín. Mutácie v doménoch SH3 a SH2 v-Src a v oblasti bohatej na prolín alebo Tyr265 na Cx43 redukovali interakcie medzi v-Src a Cx43 in vivo. Tyrozínová fosforylácia Cx43 bola závislá od asociácie v-Src a Cx43. Tieto výsledky poskytujú ďalšie dôkazy pre priame zapojenie v-Src do tyrozínovej fosforylácie Cx43 a inhibíciu medzibunkovej komunikácie v bunkách transformovaných v-Src (Kanemitsu et al. 1997).

Pokiaľ ide o účinky v-Src na Cx43, väčšina dôkazov naznačuje, že v-Src interaguje priamo s Cx43 prostredníctvom SH3 a SH2 domén a potom fosforyluje Cx43 na Tyr265 a Tyr247, čím sa spúšťa zatváranie GJ kanálov (Lau 2009).

Na druhej strane, Tyr265 sa tiež podieľa na regulácii interakcie medzi Cx43 a cytoskeletovým proteínom ZO-1 (Toyofuku et al. 2001). ZO-1 je dôležitý pre lokalizáciu Cx43 v interkalárnych diskoch srdca, a preto prerušenie interakcie Cx43-ZO-1 znižuje množstvo Cx43 na bunkovom povrchu. Duffy a kol. (2004) zistili, že intracelulárne okyslenie v astrocytoch spôsobuje internalizáciu Cx43 sprevádzanú znižením viazaním s ZO-1 a zvýšenou väzbou Src na Cx43 (Duffy et al. 2004). Okrem toho sa predpokladá, že tyrozínová fosforylácia Cx43 hrá úlohu pri srdcových arytmách spôsobených buď zvýšenou aktiváciou renín-angiotenzín-aldosterónového systému, alebo metabolickou inhibíciou. Konkrétniešie sa ukázalo, že liečba inhibítorom c-Src prerušuje angiotenzínom II. sprostredkovanú zniženú vodivosť GJ kanálov Cx43 a tak znižuje riziko ventrikulárnej tachykardie u myší s nadmernou expresiou enzým konvertujúceho angiotenzínu (Sovari et al. 2011).

2.4 Úloha Cx43 v patologických stavech a v kardioprotekcii

Existuje stále viac dôkazov o dôležitej úlohe Cx43 pri vývoji fenotypu rezistentného na poškodenie buniek vrátane kardiomyocytov. Cx43 vytvára hemikanály, ktoré sa môžu otvárať ako odpoveď na elektrické a chemické spúšťače, ale taktiež aj počas ischémie (Kondo et al. 2000), zníženého redoxného stavu (Retamal et al. 2007), mierneho zvýšenia Ca^{2+} (<500 nM) (Wang et al. 2012) a mechanického stresu (Batra et al. 2014).
Podobne ako ischemický *preconditioning*, tak ischemický alebo farmakologický *postconditioning* znižuje veľkosť infarktu a zachováva expresiu a fosforyláciu Cx43 myokardu počas následnej ischémie (3 cykly reperfúzie 10s striedavo s 10s ischémiou) v srdci potkana (Wu et al. 2012; Zhao et al. 2013). V niektorých štúdiách však bola miera imunopozitivity Cx43 počas trvalej ischémie (15 až 45 min) neovplyvnená ischemickým *preconditioningom* (Muhlfeld et al. 2010) a taktiež bolo znížené zatváranie GJ (Jain et al. 2003).

Nahradenie Cx43 pomocou Cx32 u myší znižilo veľkosť infarktu po ischemicko-reperfúznom (I/R) poškodení (Rodriguez-Sinovas et al. 2010). Trvalé otvorenie hemikanálov Cx43 po I/R poškodení v kombinácii s reziduálnou GJ komunikáciou prispieva k nevratnému poškodeniu myokardu (Garcia-Dorado et al. 2004). Zaujímavé je, že u kultivovaných kardiomyocytov sa rýchlosť apoptózy skôr zvýšila, než poklesla, keď sa znižila GJ komunikácia (Yasui et al. 2000).

Cx43 má taktiež dôležité postavenie v rôznych srdcových ochoreniach. Chronicke ochorenie srdca vrátane hypertrofie a srdcového zlyhania je spojené s vznikom arytmíí, ako aj s poklesom celkového Cx43 a zvýšeného defosforylovaného Cx43 (Severs et al. 2008). Prevencia účinku protein fosfatázy 1 v poruche srdca, pri ktorej by sa očakávalo zvýšenie základných hladín fosforylácie Cx43, má za následok významné obnovenie kontraktílnej funkcie srdca (Pathak et al. 2005). Pri zlyhaní srdca je celková expresia Cx43 znižená, rovnako ako expresia Cx43 v GJ nezávisle od príčiny srdcového zlyhania (Wang et al. 2012). Podobne, v tkanivových vzorkách zlyhania srdca (dilatačná alebo ischemická kardiomyopatia), expresia Cx43 je redukovaná a Cx43 je redistribuovaný mimo GJ (Dupont et al. 2001).

Údaje z klinickej štúdie na pacientoch s mutáciami v Cx43, rovnako ako dáta získané na modeloch myší podporujú úzky vzťah medzi remodeláciou konexónu a tvorbou arytmogenného substrátu (Gustein et al. 2001; Thibodeau et al. 2010). V prípade zníženia GJ sa vedenie stáva vysoko diskontinuálne, čo môže vytvoriť základ pre *reentry* arytmie (Kanno & Saffitz 2001).
Abnormálna architektúra tkaniva, napr. v dôsledku zvýšenia fibrózy, môže mať synergické účinky spolu so zníženou expresiou Cx43, a tak viest k spomalenému vedeniu (Fontes et al. 2012). Zmena Cx43 v množstve, fosforylácii a distribúcie môže spôsobiť srdečné elektro-vodivé poruchy a viest’ eventuálne k arytmiam. Predchádzajúce štúdie preukázali, že remodelácia Cx43 môže prispiť’ k medzibunkovému Ca$^{2+}$ preťaženiu, ktoré je spojené s indukción ischémickej arytmie (Gao et al. 2016).

Za zmienku stojí, že dlhodobé podávanie atorvastatínu, melatonínu a n-3 polynenasycených mastných kyselín (n-3 PUFA) bolo sprevádzané pozitívnou moduláciou fosforylovaného stavu Cx43 (tj. vylepšenie či normalizácia), ktorý bol spojený s útlmom abnormálnej distribúcie Cx43 súvisiacou s ochranou voči ventrikulárnej fibrilácii (Bacova et al. 2010; Radosinska et al. 2013).

Za rôznych patologických stavov dochádza k zmenám v expresii konexínov, a taktiež k zmenám ich funkčných vlastností vplyvom posttranlačných modifikácií, čo ovplyvňuje vodivosť a pravdepodobnosť otvárania konexónu (pre prehľad, Ferreira, Mochly-Rosen and Boutjdir, 2012). Zníženie expresie Cx43 spôsobuje spomalenie a abnormálne vedenie vzruchu. Dochádza tiež k tzv. generovaniu arytmogenného substrátu, čo je dôležitý faktor pre tvorbu arytmíí. Bol testovaný antiarytmický peptid (rotagaptid alebo ZP123), ktorý bol Zealand Pharma na kardiovaskulárne použitie a vykazoval ochranné účinky prostredníctvom zostupných zmien fosforylácie Cx43. Ukázalo sa, že tieto peptidy inhibujú ischémii indukovanú arytmii a infarkt myokardu (Hennan et al. 2006).

Existujú štúdie, ktoré poukazujú na ďalšie možné kardioprotetikvé intervencie, ktoré ovplyvňujú Cx43. Naša práca ako prvá ukázala, že antiarytmický účinok intermitentnej hypoxie je spojený so zmenou expresie a fosforylácie Cx43 (Kohutova et al. 2019, in press).

2.5 Arytmie a konexiny

Ochorenia srdea predstavujú zhruba 50 % všetkých kardiovaskulárnych úmrtí v ľudskej populácii. Kardiovaskulárne ochorenia predstavujú obrovské zaťaženie verejného zdravia a významné príčiny úmrtnosti v dôsledku kontraktílného srdecového zlyhania a arytmíí, pričom výskyt rizikových faktorov u mladých ľudí je alarmujúci (Andersson & Vasan 2018).

Vo všeobecnosti remodelácia GJ kanálov, t.j. zmena v topológii GJ kanálov súvisí s elektrickou remodeláciou prispievajúcou k zmenám vedenia (Spach et al. 1982), a preto je považovaná za arytmogénný substrát.

Zdá sa, že štrukturálna remodelácia je spojená s elektrofyziologickou remodeláciou GJ, čím sa môže vytvoriť arytmogénný substrát na spúšťanie a udržanie srdcových arytmii (Severs 2001; Teunissen et al. 2004). Myokariálna remodelácia GJ so zvýšenou citlivosťou na VF bola pozorovaná aj u hypertriglyceridemických potkanov (Tribulova et al. 2006) a na experimentálnom modeli metabolického syndrómu (Zicha et al. 2006).

Zistenia naznačujú, že štrukturálne substráty pre mechanizmus opätovného vzniku fibrilácií srdca zahŕňajú nielen remodeláciu architektúry myokardu (hypertrofia, fibróza),
ale aj remodeláciu GJ (abnormálna distribúcia, znižený počet). Výskyt ventrikulárnych fibrilácií je vyvolaný akútnymi udalosťami, ktoré vyvolávajú náhle poruchy elektrolytovej homeostázy, preťaženia Ca\(^{2+}\) a defosforylácie Cx43, čím zhoršujú (alebo dokonca blokujú) GJ komunikáciu. Heterogénna distribúcia myokardu už existujúcich abnormálit GJ spojenia v dôsledku veku, alebo ochorenia a náhla dysfunkcia spojovacích kanálov v dôsledku akútnych patofyziologických stavov významne prispieva k elektrickej nestabilite myokardu, čo spôsobuje, že srdece je náchynné k vzniku maligných arytmii.

2.6 Kardioprotektívne účinky hypoxie

Chronická hypoxia je stav, kedy je organizmus vystavený dlhodobo hypoxickým podmienkam, na ktoré sa adaptuje. Najbežnejším modelom pre výskum systémovej chronickej hypoxie je vysokohorské prostredie, ktoré sa dá simulovať laboratórnymi podmienkami v hypobarických (znížený parciálny tlak dusíka) komorách. Adaptácia v hypobarickej komore sa dá považovať za presný model výskové hypoxie (napr. pO\(_2\) = 8,5 kPa, 7000 m). Ukázalo sa, že k rozvoji zmien stačí i každodenné niekoľkohodinové expozície, tzv. intermitentná hypobarická hypoxia (IHH) (Ostadal & Kolar 2007).

Chronické pôsobenie hypoxie,ktoré vedie k zefektívnemu fyziologických a metabolických mechanizmov v reakcii na dlhodobo znižený prísun kyslíka, vyvoláva radu adaptívnych zmien v myokarde, ktoré sú protektívne. V oblasti kardioprotekcie bolo preukázané, že adaptácia na chronickú hypoxiu vedie k viacerým pozitivným fyziologickým prejavom: znižuje výskyt komorových arytmii (Asemu et al. 2000), znižuje veľkosť infarktu (Neckar et al. 2002), zlepšuje návrat kontrakčnej funkcie (Asemu et al. 1999; Wang et al. 2012). Výsledkom adaptácie na chronickú hypoxiu CNH boli aj zvýšené hladiny HK1 a HK2 proteinov a celková HK aktivita po ischémii v porovnaní so zodpovedajúcou normoxickou skupinou. Podobne srdce vykazovalo zvýšenú ischemickú hladinu Akt proteinu fosforylujúceho Ser473 (Kolar et al. 2017). Podobne sa zvýšila expresia po IHH a najviac došlo k zvýšeniu asociácie oboch HK1 aj HK2 isoforiem s mitochondriami. To môže mať za následok zvýšenie dodávky adenosín difosfát (ADP) pre ATP syntázu a primerané zniženie membránového potenciálu a teda zniženiu produkcie ROS (Waskova-Arnostova et
al. 2015). Bolo preukázane, že zvýšený výskyt arytmíi je úzko spojený so zvýšenou produkcíou ROS mitochondriami (Brown & Rourke 2010). Zvýšená asociácia HK môže teda súvisieť s antiarytmickým účinkom IHH.

Niekoľko štúdií taktiež preukázalo antiarytmický účinok vyvolaný adaptáciou na chronickú hypoxi. Meerson a kol. (1987, 1989) ako prví ukázali, že adaptácia potkanov na miernu intermitentnú výškovú hypoxi (5000 m) znižuje výskyt závažných ischemických arytmíí, avšak len na modeli srdca in situ u anestetizovaného umelo ventilovaného zvierat'a (Meerson et al. 1987; Meerson et al. 1989). Neskôršie štúdie zistili, že adaptácie na miernu intermitentnú výškovú hypoxi u modelu izolovaného perfundovaného srdca vedie k zniženiu závažnosti ischemických a reperfúznych arytmíí, a ich celkového počtu (Asemu
et al. 1999; Asemu et al. 2000). Taktiež bol preukázaný antiarytmický efekt n-3 PUFA po adaptácii na IHH (Jezkova et al. 2002).

2.6.1 Úloha Cx43 u ischémiou indukovaných arytmíi

Ako bolo uvedené vyššie, remodelácia GJ je spoločným znakom srdcových patológií a môže byť rýchlo indukovaná ischémiou. Zvyčajne dochádza ku strate Cx43 v interkalárном disku a často k posunu k bočným okrajom kardiomyocytov v procese označovanom ako lateralizácia (Beardslee et al. 2000). Znížená medzibunková komunikácia môže zvýšiť sklon k arytmiam v dôsledku dysfunkcie a dezorganizácie Cx43, pričom arytmie sú častou komplikáciou infarktu myokardu u ľudí.

Ischemické poškodenie srdca je veľmi častou príčinou orgánovej dysfunkcie u ľudí, Ischémia je stav, kedy prietok krvi klesá pod 50 % normálu. Prejavuje sa akumuláciou metabolitov v extracelulárnom priestore v kombinácií so zniženou dodávkou kyslíka. Anaeróbnym metabolizmom a nedostatočným tok spôsobuje extra- a intra-cellulárnu acidózu so zvýšeným extracelulárnym K⁺. Ischémia vyvoláva zatváranie GJ kanálov, kvôli zvýšenej koncentrácii cytozolóveho Ca²⁺, acidózy (Ek-Vitorin et al. 1996), zniženej koncentrácie ATP, zmenám vo fosforylácii Cx43, okysľovaniu (Johansen et al. 2011), pozmenenému stavu fosforylácie (Ek-Vitorin et al. 2006) a iných faktorov súvisiacich s ischémiou. Okrem toho sú konexíny remodelingované v dôsledku procesov, ktoré zahŕňajú redistribúciu konexínového proteinu (Chkourko et al. 2012), zmenené zabudovanie do membrány (Remo et al. 2011) a lateralizáciu (Smyth et al. 2014). Lateralizácia Cx43 predstavuje defosforyláciu, zatiaľ čo fosforylované formy Cx43 zostávajú v oblasti interkalárnych diskov. Tieto akútne ischémické zmeny fosforylácie Cx43 sú spôsobené v dôsledku degradácie Cx43 (Huang et al. 1999), ktoré sa zhodujú s rozvojom arytmíi.

Z literárnych údajov vyplýva, že významnú úlohu v rozvoji I/R arytmii hraje Cx43 (Boengler et al. 2006). Významné je, že obnovenie kontraktílnej funkcie na izolovaných perfundovaných srdciach po I/R inzulte úzko súvisí so znovu obnovením fosforylácie Cx43 v priebehu reperfúzie (Beardslee et al. 2000). Tri kinázy Akt, ERK1/2 a PKC hrajú dôležitú úlohu v remodelácii Cx43, kde môžu zmeniť rozsah infarktu myokardu v reakcii na I/R.

2.7 Hexokináza v kardioprotekcii

V srdci sú exprimované tri izoformy Hexokinázy (HK1, 2, 3), ktoré sa líšia svojou afinitou k substrátu a katalytickou aktivitou. Izoformy HK1 a HK2 majú veľkosť okolo 100 kD a sú považované v srdci za dominantné (Pedersen et al. 2007). HK1 je považovaná za všade prítomnú a HK2 je typická pre tkanivá senzitívne k inzulínu (Heikkinen et al. 2000). Hexokináza, ako prvý enzym glykolózy, je významná tým, že reguluje svojou aktivitou vstup glukózy do kardiomyocytov a fosforylácii glukózy na glukózo-6-fosfát. To udržuje energetickú homeostázu kardiomyocytov prepojením glykolózy s beta oxidáciou mastných kyselín. Vedľa toho je už mnoho rokov HK známa svojimi cytoprotektívnymi účinkami, pokiaľ je lokalizovaná v oblasti mitochondrií (John et al. 2011). Obe izoformy HK1 a HK2 sa môžu viazať na vnútornú mitochondriálnu membránu svojou N-terminálnou doménou, tak, že interagujú priamo s napáťovým závislým aniontovým kanálov (VDAC), ktorý komunikuje s adenín nukleotidovou translokázou na vnútornej mitochondriálnej membráne (Vyssokikh & Brdiczka 2003). V tomto mieste sa tiež často vyskytuje mitochondriálna kreatínkináza a tvorí tzv. kontaktné miesta obidvoch membrán (Rose & Warms 1967). Hexokináza naviazaná na mitochondrie umožňuje prednostný metabolický tok ADP, ako produktu svojej reakcie do mitochondrií za súčasného využitia ATP produkovaného mitochondriami pre fosforyláciu glukózy. Táto väzba súčasne znižuje inhibíciu aktivity svojim produktom glukózo-6-fosfátom (Arora & Pedersens 1988; Sun et al. 2008). Neskôr bolo zistené, že v srdci je táto interakcia u HK1 konštitutívna a u HK2 nastáva iba za zvláštnych fyziologických podmienok ako je zvýšená stimulácia inzulínom, glukózou, morfinom a / alebo v experimentálnych podmienkach ischemickým

2.8 Potenciálne protektívne účinky chladu

Naše predbežné výsledky na chladovej adaptácii ukázali, antiarytmický efekt chladovej aklimatizácie po expozícii 5 týždňov (Vebr P., Lipidomická konference 2018, Praha).

Existuje niekoľko štúdií, ktoré venujú pozornosť zvýšenému kardiovaskulárnu riziku akútnejmu chladu, pretože existuje úzka korelácia medzi akútou expozíciou chladu a úmrtnost'ou spôsobenou srdcovým ochorením počas zimných mesiacov. Aklimatizácia na chlad zlepšuje imunitnú odpoved', termoreguláciu, vaskulárnu reaktivitu
a má hypolipidemický účinok. Aklimatizácia na chlad u zvierat i u dospelých mužov vedie k vzniku hnedého tukového tkaniva (BAT), zvýšenej expresii odpojovacích proteínov prevažne v BAT a tiež v iných tkanivách, čo vedie k netriaškovej, primárne k triaškovej termogenéze. Bolo zistené, že aj noradrenalín a adrenalin sú termogénné, zatiaľ čo len termogenéza indukovaná adrenalinom bola zosilnená adaptáciou na chlad (Jansky et al. 2008; Jansky & Jansky 2002).

Tyroidné hormóny (TH), adrenálné hormóny a sympatický nervový systém udržiavajú a kontrolujú oxidatívnu fosforyláciu, ktorá je aktivovaná hlavne v BAT, v bielom tuku a v tkanivách kostrových svalov aklimatizáciou na chlad. Je zrejmé, že zvieratá, ktorým bola odstránená štíťna žľaz alebo nadobličky, netolerujú chlad (Pääkkönen & Leppäluoto 2002), avšak torakotómia TH po dvoch mesiacoch aklimatizácie na chlad neovplyvnila vitalitu potkanov počas následnej aklimatizačnej doby (Zaninovich et al. 2003).

Trvanie aklimatizácie na chlad sa môže rozdeliť na dve fázy, ktoré sa líšia v β-adrenergnjej aktivite. Prvá fáza sa vyznačuje zvýšenou β-adrenergnou aktivitou a objavuje sa tvorba BAT. Druhá fáza nastáva, keď bunková β-adrenergná odpoveď nie je odlišná od kontrol a metabolická homeostáza je udržiavaná rôznym mechanizmom (Xing et al. 2014), pravdepodobne zvýšeným účinkom TH, ktorý je stimulovaný chronickou expozíciou na chlad (Fiedler et al. 2006).

2.8.1 Adrenergná signalizácia v srdci a Cx43

V srdci sú prítomné 3 podtypy β-adrenergných receptorov (β-AR), β1-, β2- a β3-, ktoré sú vyjadrené približne v pomere 70:27:3 v kardiomyocytoch. β1-AR sa spájajú s G-stimulujúcimi proteinmi (Gs) a adenylcylázou (AC) a ich stimulácia vedie k akumulácii cAMP a aktivácii PKA. PKA fosforyluje niekoľko proteinov, ktoré sú zapojené do EC väzby. Podobne sú β2-AR a pravdepodobne aj β3-AR spojené s proteinmi Gs. Napriek prevážujúcej expresii β1-AR je všeobecne akceptované, že β2-AR subtyp spôsobuje väčšiu stimuláciu AC ako subtyp B1 v kardiomyocytoch. Okrem toho môže β2-AR tiež spájať s G inhibičnými proteinmi (Gi) za istých podmienok, a tak ovplyvňovať PI3K/Akt a ERK/ Cytozólovú fosfolipázu A2 (cPLA2), ktoré sa obe zúčastňujú na ochrannom mechanizme v srdci. Ich stimulácia ovplyvňuje expresiu génov transkripčných faktorov.
a má antiapoptotické účinky (Lohse et al. 2003). cPLA₂ bola identifikovaná ako nová signálna dráha β2-AR v srdci a môže byť aktivovaná aj β3-AR. Tento enzym je aktivovaný submikromolárnou koncentráciou Ca²⁺ a vykazuje jedinečnú selektivitu pre kyselinu arachidonovú (AA) v sn-2 pozícií fosfolipidov (Leslie 2004). Vo všetkých bunkových typoch hrá dôležitú úlohu pri hormónom indukovanom uvoľňovaní AA po aktivácii p38 a ERK1/2 MAPK závislej od Gi proteínov citlivých na toxín pertussis (Magne et al. 2001). Aktivácia cPLA₂ prostredníctvom ERK zvyšuje jej súvislosť s ER, Golgiho a jadrovými membránami, kde katalyzuje hydrolýzu fosfolipidov vedúcu k uvoľneniu AA. AA môže pôsobiť ako signalizačná molekula ovplyvňujúca funkciu rôznych iónových kanálov zapojených do elektricko-kontrakčnej väzby v srdci (Meves 2008).

Aktivácia sympatického nervového systému je bežným patofyziologickým znakom kardiovaskulárnych ochorení, ako je hypertenzia a chronické zlyhanie srdca. Prechodná aktivácia sympatického nervového systému zvyšuje nepredvídateľné arytmie v chorom srdci. Zaujímavé je, že narušená štruktúra GJ spojenia a znížená expresia Cx43 sú často pozorované v srdečnej remodelácii v reakcii na rôzne patologické podnety, ako je ischémia u psov (Huang et al. 1999). Agonista α-adrenergného receptora fenylefrín zvyšuje expresiu Cx43, ale nie expresiu Cx40 a Cx45, u neonatálnych srdečných myocytov potkanov, čo má za následok zvýšenú intracelulárnu vodivosť. Tieto účinky boli úplne potlačené selektívnym α1D-antagonistom BMY7378, čo naznačuje, že α1D-adrenergický receptor sprostredkoval tento účinok (Rojas Gomez et al. 2008). Nedávna správa ukázala, že blokáda β2-AR vyvolala väčšie zniženie izoproterenolom sprostredkovaného zvýšenia komorovej kontraktility u psov, ktoré boli náchylné na komorové fibrilácie, ako u psov, ktoré boli rezistentné voči týmto maligným arytmiam. Mechanizmus môže byť taký, že aktivácia β2-AR zvyšuje prúd Ca²⁺ bez zmeny reabsorpcie Ca²⁺ prostredníctvom sarkoplazmatického retikula, čo môže vyvolat’ arytmie. Aktivácia β2-AR teda má tendenciu znižovať elektrickú stabilitu srdca, čím zvyšuje sklon k arytmiam (Billman et al. 2006).

Salameh a kol (2009) študovali expresiu Cx43 počas stimulácie β-adrenoceptorov u neonatálnych kardiomyocytov potkanov. V tejto štúdii, izoprenalín stimuloval hladiny Cx43 na úrovni mRNA a proteinov, ako aj fosforyláciu MAPK, p38, ERK 1/2 a ich cieľového proteínu Cx43. Ďalej, izoprenalín indukoval translokáciu aktivátoru
transkripčných faktorov proteínu 1, proteínu viažúceho element cAMP a jadrový faktor aktivovaných T-buniek do jadra a táto translokácia bola zrušená inhibíciou MAPK. V druhej časti štúdie autori zistili znižené hladiny Cx43 u pacientov s dilatačnou kardiomyopatiou a zvýšené hladiny Cx43 u pacientov s hypertrofickou kardiomyopatiou, hoci latertizácia Cx43 bola zvýšená v obidvoch skupinách (Salameh et al. 2009).

2.8.2 Tyroidné hormóny a Cx43

Pokiaľ ide o stres vyvolaný chladom, pôsobenie TH je potrebné na indukciu tvorby BAT počas aklimatizácie na chlad. V súlade s β-adrenergnou stimuláciou, ktorá vedie k zvýšenej tvorbe triódtyronínu (T3), čo je najaktivnejšia forma TH prostredníctvom stimulácie aktivity izoforiem iódotyronín dioxidinázy (D), čo naznačuje potenciálnu aktiváciu β-adrenergenej štítej synergie (Kim et al. 2004). T3 ovplyvňuje mnoho procesov v živých organizmoch, vrátane metabolizmu lipidov a sacharidov, hladiny lipidov v plazme, koagulácie, zápalu, proteolýzy a apoptózy. Tieto účinky sa dosahujú prostredníctvom vázby na tyroidné hormón response elementy (TREs) cieľových génov T3 prostredníctvom interakcie s TH nukleárnymi receptormi (TRα1 a TRβ1) (Huang et al. 2008).

Cieľové gény T3 v srdci ovplyvňujú metabolické procesy, riadia kontrakčne-relaxačný cyklus stimuláciou expresie Ca^{2+} ATP-ázy (SERCA) a ťahkého ret'azca myozínu α (Arnostova et al. 2011; Radosinska et al. 2013), mitochondriálnu biogenézu a dýchanie expresiou cytochrómu C1, adenínového nukleotidového translokátora (Luciakova & Nelson 1992).

Hladina aktivného T3 v srdci je výsledkom rovnováhy medzi dostupnosťou a degradáciou T3, ktorá je regulovaná niekolkoľkými mechanizmami. Zatiaľ čo vyššie aktivity D1 a D2 zvyšujú tvorbu T3, vyššia aktivita D3 vedie k zvýšenej degradácii T3. Okrem zmien enzýmových aktivít rôznych izoforiem deiodinázy môže byť hladina T3 ovplyvnená...
aj zmenou vychytávania TH, TH membránovými transportérm a TH jadrovými receptormi a ich koaktivátorom v srdcovom tkane. Ukázalo sa, že zvýšená aktivita T3 môže zlepšiť funkciu zlyhávajúceho srdca (Gerdes & Iervasi 2010).

3 HYPOTÉZA A CIELE PRÁCE

Cieľom dizertačnej práce bolo lepšie pochopiť význam distribúcie Cx43, rôznych fosforylácií Cx43 a nájsť ich súvislosť s antiarytmickým účinkom adaptácie na chlad a IHH. Na IHH modeli bola zistená zvýšená kolokalizácia hexokinázy s mitochondriami, ktorá znižuje produkciu ROS. Naším ďalším cieľom bolo posúdiť mieru translokácie isoforiem hexokinázy na mitochondrie v kardioprotektívnom režime normobarickej hypoxie CNH, ktorý nevykazuje antiarytmické účinky.

Ciel' 1. Identifikácia distribúcie t-Cx43 a p-Cx43(Ser368) medzi koncovými a laterálnymi spojmi v LV N, IHH zvierat, po ischemickom insulte a I/R poškodení.

Ciel' 2. Identifikácia distribúcie izoforiem hexokinázy HK1 a HK2 v LV N, CNH zvierat, po ischemickom insulte a I/R poškodení v jednotlivých mitochondriálnych populáciách.

Ciel' 3. Stanovenie expresie myokardiálneho Cx43 a p-Cx43(Ser368), PKA, CK1a PKG v LV N a IHH zvierat.

Ciel' 4. Identifikácia fosforylačných miest a ďalších posttranslačných modifikácií Cx43 v LV N a IHH zvierat pomocou hmotnostnej spektrometrie.

Ciel' 5. Stanovenie mRNA transkriptu Cx43 a analýza lipidov v LV N a IHH zvierat.

Ciel' 6. Stanovenie expresie myokardiálneho Cx43 v LV po akútnej expozícií chladu počas 3 a 10 dní (3D, 10D) a po chladovej aklimatizácii 5 týždňov s následnou regresiou 2 týždne (CH a R).

Ciel' 7. Identifikácia distribúcie celkového Cx43 medzi koncovými a laterálnymi spojmi v LV v akútnej a chronickej expozícii chladu a následnej regresii.

Ciel' 8. Stanovenie expresie PKA, CK1, PKB/Akt, PKCε, PKCδ, MAPK v LV CH a R.
4 METODIKA A ADAPTÁCIE

4.1 Adaptácia na intermitentnú hypobarickú a kontinuálnu normobarickú hypoxiu

Na experiment boli použité dospelé samce laboratórneho potkana kmeňa Wistar (8 týždňov staré), pochádzajúce z chovnej stanice Fyziologického ústavu Akadémie vied (Česká republika). Priemerné hmotnosti zvierat sú uvedené v prílohách (Príloha 1). Zvieratá mali voľný prístup k vode a ku štandardnej laboratórnej diéte v režime 12 hod svetlo/12 hod tma. Štúdia bola vedená v zhode so zákonom na ochranu zvierat proti týraniu „Guide for the Care and Use of Laboratory Animals“ publikovaným US National Institutes of Health (NIH Publication No. 85-23, revised 1996) a bola schválená príslušnou komisiou Fyziologického ústavu AV ČR.

Potkany boli vystavené intermitetnej výškovej hypoxii IHH v hypobarickej komore alebo normobarickej kontinuálnej hypoxii CNH. Adaptácia prebiehala 8 hod denne, 5 dní v týždni, celkom 25 dní v prípade IHH a 3 týždne, 24 hod divo v CNH. V IHH bol barometrický tlak znižovaný postupne tak, aby po 13 expozičiách odpovedal nadmorskej výške 7000 m. Počas adaptácie bola v komore zaistená cirkulácia vzduchu a teplota bola udržiavána v rozmedzí 21-23 °C. V CNH bola práve presunuté do normobarickej komory (FIO₂ = 0,1). Potkany kontrolných skupín normoxie boli chované v normoxických podmienkach odpovedajúcich nadmorskej výške 200 m pri teplote 21-23 °C. Barometrický tlak bol 99 kPa a parciálny tlak kyslíka 20,7 kPa (FIO₂ = 0,21).

Tri srdcia z každej skupiny boli podrobené krátkemu I/R poškodeniu in vivo alebo in vitro, ako bolo popísané v prácach (Neckar et al. 2017, Kolar et al. 2015) v uvedenom poradí. Stručne, zvieratá boli anestetizované (pentobarbital sodný, 60 mg/ kg i.p.) a ventilované vzduchom pri rýchlosti 68 až 70 úderov za minútu (dychový objem 1,2 ml/ 100 g telesnej hmotnosti). Rektálna teplota bola počas celého experimentu udržiavaná medzi 36,5 a 37,5 °C. Oklúzia ľavej prednej zostupnej koronárnej artérie sa uskutočnila v otvorenom hrudníku po 15 minútach stabilizácie, regionálna ischémia myokardu bola indukována ut’ašovaním švu pomocou polyetilénovej trubice. Po 10-minútovej oklúznej perióde sa ligatúra uvoľnila a hrudník zostal otvorený počas nasledujúcich 15 minút.
reperfúzie. Ex vivo pokusy boli vykonané na perfundovanom srdci podľa Langendorfa. Cieľom oboch protokolov bolo krátkodobo získat’ ischemické srdce s plne reverzibilným poškodením, ako bolo opísané v prácì (Kolar et al. 2017).

4.2 Akútna a chronická adaptácia na chlad

Na experiment boli použité dospelé samce laboratórneho potkana kmeňa Wistar (8 týždňov staré) (Velaz s.r.o.). Priemerné hmotnosti zvierat sú uvedené v prílohách (Príloha 2). Zvieratá mali voľný prístup k vode a ku štandardnej laboratórnej diéte v režime 12 hod svetlo/12 hod tma a boli chované vo dvojiciach. Potkany boli v experimente rozdelené do šiestich skupín nasledovne: akútna kontrola (K), 3-dňový (3D) chlad, 10-dňový (10D) chlad, chronická kontrola (K), chronický chlad (CH) a regesia (R). Kontrolné skupiny boli chované v miestnosti s izbovou teplotou 24 ± 1°C. Skupina 3D bola vystavená počas 3 dní teploté 6 ± 1°C. Skupina 10D bola vystavená teploté 6 ± 1°C po dobu 10 dní. CH a R skupiny boli chované v oddelenej miestnosti od kontrolných skupín. V priebehu jedného týždňa boli postupne adaptované pomalým znižovaním teploty na 6 ± 1°C, v ktorej zotrvali po dobu 5 týždňov. R skupina bola po tejto dobe ešte premiestnená z chladovej miestnosti, kde boli chované 2 týždne pri rovnakej teplote ako kontrolné skupiny.

4. 3 Odber tkaniva

Zvieratá boli usmrtené pentobarbitálom sodným, 60 mg/kg i.p.. Srdcia boli vystrihnuté z hrdníka, prepláchnuté ľadovým fyziologickým roztokom. Následne boli odstránené predsiene a veľké cievy. Pre analýzy pomocou metódy Western blot, Imunoflorescenciu, RT-PCR, Hmotnostnú spektrometriu a Analýzu lipidov boli srdcia rozdelené na septum, pravú komoru a ľavú komoru. Jednotlivé srdečné oddiely boli zvážené a zmrazené v kvapalnom dusíku (-80 °C), kde boli uchovávané do ďalšieho spracovania.

4. 4 Homogenizácia normoxických a hypoxických vzoriek

Ľavé komory srdca boli za sterilných podmienok a pri zachovaní nízkej teploty zhomogenizované. Srdcia boli vybrané z tekutého dusíka a prenesené do pripravených vychladených trecích misiek, kde boli rozdrvené na jemný prášok. Rozdrvené tkanivo bolo
následne prenesené do skúmaviek s tromi sklenenými guličkami a 300 μl homogenizačného média (HM) 1. Skúmavky boli s centrifugované a do každej z nich bolo pridané HM1 na finálny pomer médium:tkanivo 8:1. Následne boli vzorky zhomogenizované v homogenizátore (MIXER MM200 Retch) po dobu 10 min. pri frekvencii 30 Hz.

4. 5 Homogenizácia vzoriek akutného a chronického chladu

Ľavé komory súde boli za sterilných podmienok a pri zachovaní nízkej teploty zhomogenizované. Srdcia boli vybrané z tekutého dusíka a prenesené do pripravených vychladených trecích misiek, kde boli rozdrvené na jemný prášok. Rozdrvené tkanivo bolo následne prenesené do skúmaviek s tromi veľkými a tromi malými sklenenými guličkami a roztokom zloženeho z TME S + complete + phosphostop. Skúmavky boli pretrepané a do každej z nich bolo pridané TME S + complete + phosphostop na finálny pomer médium : tkanivo 4 : 1. Následne boli vzorky s centrifugované po dobu 10 min./ 2100 ot./ 4 ºC. Po s centrífugovaní vzoriek bol supernatant 1 prepípetovaný do čistých epiniek. Pelet bol doplnený polovicou predchádzajúceho objemu TMEsu a s centrífugovaný po dobu 10 min/ 2100 ot./ 4 ºC. Následne bol odpipetovaný supernatant 2 zmiešaný so supernatantom 1, s centrífugovaný po dobu 35 min./ 12000 ot./ 4 ºC a zmrazený. Pelet bol resuspendovaný v TME (TME bez sacharózy). Vo vzorkách bola stanovená koncentrácia proteinov ako je uvedené vyššie.

4. 6 Imunofluorescencie

Tri oddelené LV z každej skupiny normoxických a hypoxických (IHH, CNH) potkanov podrobených krátkej ischémii a I/R a štyri oddelené LV z každej skupiny akútneho
a chronického chladu. boli fixované 2-minútovou perfúziou so 4 % paraformaldehydom. Následne boli ponorené do pufrovaného 4 % formaldehydu počas nasledujúcich 2 hodín a inkubované v 20 % roztoku sacharózy v PBS cez noc. Oddelené LV boli prerezané priečne v jednej tretine od vrcholu a zmravené v kvapálnom dusíku. Pozdĺžne kryosekcie LV (6 µm, pripravené na kryostate Leica CM3050, Leica-mikrosystémy) boli permeabilizované v ľadovom metanole a opláchnuté v 1 % SDS ako krok získania antigénu. Jednotlivé kryosklíčka boli použité na detekciu celkového Cx43 a p-Cx43(Ser368) in situ. Rezy boli opláchnuté trikrát päť minút v PBS. Nasledovalo 90 minútové inkubovanie rezov v 10 % donkey sére v PBS (0.3 % Triton X-100, 1 % BSA, 0,3 M glycín and donkey anti-rabbit IgG (Sigma-Aldrich)), aby sa zabránilo naviazaniu nešpecifických väzieb. Po prepláchnutí v PBS (3 x 5 min.) boli pozdĺžne rezy inkubované s rabbit monoclonal antibody proti Cx43 (1:200, Sigma-Aldrich), s rabbit polyclonal antibody proti p-Cx43(Ser368) (1:200, Santa Cruz) alebo HK1, HK2 (1:500, Abcam) pri 4 °C cez noc. Po opätovnom premytí v PBS (3 x 5 min.) boli primárne protitátky detekované s donkey anti-rabbit IgG konjugovanou Alexa Fluor 488 (Thermo Fisher Scientific). Sarkoléma bola vizualizovaná pomocou Alexa Fluor 647 konjugátu WGA (Thermo Fisher Scientific). Mitochondria boli vizualizované pomocou mouse MitoProfile Total OXPHOS Blue Native Antibody Cocktail konjugované s Alexa 633 (Thermo Fisher Scientific). Nakoniec bolo pridané krycie médium ProLong Gold Antifade Reagent obsahujúci marker pre zviditeľnenie jadier 4′,6-diamidino-2-phenylindole (DAPI) (Invitrogen) a kryostatové rezy boli prikryté krycím sklíčkom a uchované pri 4 °C. Na niektoré rezy primárne protitátky neboli aplikované. Tie slúžili ako špeciálna kontrola na testovanie špecifickosti protitátky. Imunopozitivita Cx43 a p-Cx43(Ser368) bola sledovaná v fluorescenčnom mikroskope Olympus cell P (Carl Zeiss, Nemecko).

Snímanie obrázkov

Vzorky srdc boli skúmané pomocou invertovaného fluorescenčného mikroskopu Olympus IX81 (Olympus, Tokio, Japonsko) vybaveného osvetľovacou jednotkou MT20 s meracím oblúkom, plne motorizovaným stupňom (Märzhäuser Wetzlar, Corvus) a CCD kamerou (Hamamatsu - Orca C4742-80-12AG). 5 obrázkov z IHH skupiny a 6 obrázkov zo skupín akútneho a chronického chladu bolo získaných s 20 x NA1,2 Plan-Apochromat objektívom
s nulovým ziskom a 1 x 1 binning vo formáte 1344 x 1024, 16-bit. Kombinácia filtrov pre jednotlivé kanály bola nastavená nasledovne: DAPI - trojpásmová sada 69002-ET-DAPI / FITC / TexasRed® (Chroma Technology Corp.) ex. 350 nm (šírka pásma 50 nm), 457 nm (šírka pásma 22 nm), konexín 43 (Alexa Fluor 488) - fl. kocka U-MWIBA3 (Olympus), napr. 477,5 nm (šírka pásma 17,5 nm) em. 530 nm (šírka pásma 20 nm), WGA (TMR) - fl. Cube U-MWIGA3 (Olympus), napr. 540 nm (šírka pásma 10 nm), em. 600 nm (šírka pásma 25 nm).

Analýza obrázkov Cx43

Analýza obrázkov bola spracovaná pomocou softvéru s otvoreným zdrojovým kódom FIJI (Schindelin et al. 2012). Automatický proces kvantifikácie prebiehal postupne v štyroch krokoch: (i) Predspracovanie obrazu: Obrázky boli kalibrované podľa objektívnych charakteristik a režimu snímania (pozri vyššie), čo malo za následok veľkosť pixelov 0,3225 x 0,3225 μm. Nerovnomerné osvetlenie bolo opravené pomocou algoritmu odčítania pozadia FIJI ImageJ (vytvorený Michaelom Hradom a Janicou Kellerovou, https://imagej.net/Rolling_Ball_Background_Subtraction) s polomerom valovej gule nastavenej na 50 pixelov. (ii) Nastavenie prahu: Pre každý obrázok bol prah ručne nastavený na výber všetkých častí konexínu. Plocha jednotlivých konexinových častíc bola vypočítaná a každá častica bola uložená ako ROI pre ďalšiu selekciu. (iii) Stanovenie konexinových častíc: WGA farbenie sa použilo ako marker priečnej / pozdĺžnej orientácie myocytov. Častice, ktoré spájajú myocyty v pozdĺžnom smere, boli rozlišené ako typ spojenia end to end, GJ spojenia v priečnom smere boli definované ako side to side. (iv) Pomery end to end bol vypočítaný ako percento GJ plochy end to end na celkovú plochu všetkých GJ spojení. Vlastný skript bol napísaný pre poloautomatizáciu procesu.

Analýza obrázkov HK

Kvantitatívna imunofluorescenčná analýza sa uskutočnila tak, ako je opísané (Waskova-Arnostova et al. 2015). Kryosecie boli skúmané použitím širokouhlého invertovaného fluorescenčného mikroskopu (Olympus IX2-UCB). Každá experimentálna vzorka bola pozorovaná pri objektívoch s objektívom 100 x 1,4NA Plan-APOCHROMAT. Bolo získaných

4. 7 Analýza lipidov

Sedem oddelených LV z každej skupiny normoxických a IHH potkanov a potkanov podrobených následnej 10 min. ischémii bolo použitých pre potreby analýzy lipidov. Lipidy boli extrahované z tkanivových vzoriek podľa modifikovanej metódy Folch et al. (1957).

Celkové fosfolipidy boli oddelené pomocou jednorozmernej chromatografie na tenkej vrstve s použitím zmesi hexán–eter–kyselina octová (80:20:3). Pri fosfolipidových analýzach sa fosfolipidové škvrny vizualizovali pod UV svetlom po farbení 0,005 % 2,7-dichlorofluoresceínom v metanole a uskladnili v dusiku pri -20 °C až do nasledujúceho dňa, keď sa pripravili fosfolipidové metylestery. Pre prípravu metylesteru bol do skúmanie so silikagélov pridaný metanolát sodný; skúmanky boli následne inkubované 60 minút pri teplote miestnosti v tme. Metylestery boli extrahované hexánom. Extrakt bol odparený v prúde dusíka a uskladnený pri -20 °C. Metylestery boli oddelené pomocou plynového chromatografu CP 438 A (Chrompack, Middelburg, Holandsko) strednou polárnou kolónou CP WAX 52 CB (25 m x 0,25 mm i.d.). Teplota pece bola naprogramovaná od 145 do 230 °C pri rýchlosti 2 °C / min. Ako nosný plyn bol použitý vodík. Jednotlivé metylestery boli identifikované použitím štandardnej zmesi FA metylesterov (Sigma) (Tvrzicka et al. 2002).

4. 8 SDS-PAGE elektroforéza a Western blot analýza

Elektroforéza
Ku každej vzorke (n=5) bolo pridané SLB, DTT, HM:UREA. Na elektroforézu bol pripravený najprv rýchle tuhnutí 12 % deliaci gél (Príloha 3). Po 30 min tuhnutia bol pridaný 5 % zaostrovcovací gél, ktorý tuhol ešte 20 min (Príloha 3). Medzitým boli vzorky umiestnené na 5 min do termostatu a varené pri teplote 100 °C, čím došlo k denaturácii proteinov.
Po vytuhnutí gélov boli nanesené vzorky v koncentrácií 20, 40 μg na jamku, vždy pod elektrodový pufor. Na každý gél bol pridaný molekulový štandard Precision plus protein standard (BioRad) o objemu 1,5 μl pre správne určenie daného proteínu na membráne podľa molekulovej hmotnosti. Po zostavení celej aparatúry a zaliatí elektródovým pufrom (Príloha 3) bola spustená elektroforéza. Program začínať na konštantnom napätí 100 V a po prechode čela elektroforézy do zaostrovacieho gélu bolo zvýšené napätie na konštantných 150 V. Pred koncom elektroforézy bolo napätie zvýšené na 200 V, kvôli lepšiemu zaostreniu proteinov. Elektroforéza trvala 60-90 min podľa veľkosti sledovaných proteinov.

Western blot

Pred koncom elektroforézy boli najprv nitrocelulózové membrány asi 2 min aktivované v metanole. Následne boli membrány ekvilibrované v blotovacom pufrí (Príloha) po dobu 10 min. v chladničke spolu s filtračnými papiermi a gély po skončení elektroforézy. Pri zostavovaní blotovacieho „sendviča“ boli vytlačené všetky bubliny medzi membránou a gélem a zahájené blotovanie pri konštantnom napätí 100 V po dobu 60 min.

Imunodetekcia

Po skončení blotovacieho programu boli membrány premyté 15 min v TBS (Príloha 3). Následne bolo potrebné povrch membrány zablokovať. Na blokáciu sme použili 5% nízkotučné sušené mlieko rozpustené v TTBS, ktoré sa naviazalo na všetky miesta, kde neboli prenesené proteíny z gélu na membránu. Tým sa zabránilo nešpecifickému naviazaniu primárnej protilátky. Blokovaním taktiež dochádza k zníženiu negatívnych efektov, ako je šum v pozadí. Po premytí membrán v TTBS boli membrány umiestnené do 5% mlieka v TTBS po dobu 1 hod pri pokojovej teplote.

Po blokácií boli membrány opäť premyté 5 min v TTBS. Po premytí boli membrány umiestnené do primárnej protilátky, voči danému proteínu cez noc v chladničke pri teplote 4°C za stáleho pomalého kolísania (Tabuľka 2).
Tabuľka 2. Riedenie primárnych a sekundárnych protilátok.

<table>
<thead>
<tr>
<th>Primárna protilátka</th>
<th>Riedenie</th>
<th>Sekundárna protilátka</th>
<th>Riedenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin, sc-1616, (Santa Cruz)</td>
<td>1:5000</td>
<td>2033 (Santa Cruz), Anti-goat</td>
<td>1:10000</td>
</tr>
<tr>
<td>Akt, (GenScript)</td>
<td>1:2000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>B-actin, sc-47778, (Santa Cruz)</td>
<td>1:1000</td>
<td>31432 (Invitrogen), Anti-mouse</td>
<td>1:10000</td>
</tr>
<tr>
<td>CK1, 2655 (Cell Signaling)</td>
<td>1:1000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>Cx43, C6219 (Sigma)</td>
<td>1:10000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>MEK3, sc-959 (Santa Cruz)</td>
<td>1:2000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>np-Cx43, 13-8300, (ThermoFisher)</td>
<td>1:1000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>p-Cx43(Ser368), sc-101660, (Santa Cruz)</td>
<td>1:500</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>p-Cx43(Ser282/279), sc-12900, (Santa Cruz)</td>
<td>1:500</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>p-Cx43(Tyr265), sc-17220, (Santa Cruz)</td>
<td>1:500</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>PKA, sc-365615, (Santa Cruz)</td>
<td>1:1000</td>
<td>31432 (Invitrogen), Anti-mouse</td>
<td>1:10000</td>
</tr>
<tr>
<td>PKCe, sc-214, (Santa Cruz)</td>
<td>1:1000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>PKCd, sc-213, (Santa Cruz)</td>
<td>1:1000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
<tr>
<td>PKG, 3248 (Cell Signaling)</td>
<td>1:1000</td>
<td>A9169 (Sigma), Anti-rabbit</td>
<td>1:10000</td>
</tr>
</tbody>
</table>

Po inkubácii v primárnej protilátke boli membrány opäť premyté 3 x 15 min v TTBS. Následne boli inkubované v sekundárnej protilátke 1 hod pri pokojovej teplote (Tabuľka 2). Po hodinovej inkubácii boli membrány premyté 3 x 10 min v TTBS a nasledovala detekcia proteinov. Detekcia prebiehala pomocou konjugácie sekundárnej protilátky s enzýmom umožňujúcim vizualizáciu. Pomocou enzýmu peroxidázy dochádza k premene chemiluminiscenčného substrátu na nestabilný produkt, ktorý sa stabilizuje vyžiarením kvanta svetla. Uvoľňovanie svetla je tak detekované priložením svetlo citlivého filmu alebo s použitím CCD kamier.
V tomto pokuse bola využitá CCD kamera. Následne došlo k nanesení 300 μl chemiluminiscenčného farbiva (Supersignal West Dura Extended Duration Substrate, Thermo Scientific Pierce) na každú membránu a vyvolané pomocou programu Image-reader LAS 4000 (Genetica, FujiFilm).

Pro kvantifikácií dát z Image-reader LAS 4000 bola využitá densitometria a následne boli všetky dáta spracované v programe QuantityOne (BioRad). Všetky vzorky boli pre jednotlivé protilátky analyzované niekoľkokrát a vzniknutý priemer bol využitý k štatistickému hodnoteniu.

4.9 Hmotnostná spektrometria

Ľavé komory srdc (n=4) potkanov boli za sterilných podmienok a pri zachovaní nízkej teploty zhomogenizované. Srdcia boli vybrané z tekutého dusíka a prenesené do pripravených vychladených trecích misiek, kde boli rozdrvené na jemný prášok a následne rozpustené v Lyzačnom pufri (4 % SDS; 100 mM TRIS; pH 8,5; 10 mM TCEP; 40 mM CAA). Vzorky boli zahriaté pri 95 °C po dobu 5 min pri kontinuálnom miešaní a chladené na ľade 15 min. Nasledovala sonikácia 3 x 30s a vzorky boli opakovane zahriaté pri 95 °C po dobu 5 min a centrifugované 30 min/ 3500 ot. Supernatant bol doriedený 50 % mQ vodou a precipitovaný 4x acetónom (-20 °C). Pričom posledné precipitavnie prebiehalo cez noc.

Vyzrážaný proteín bol oddelený centrifugovaním počas 15 min pri 2000 ot/ 4 °C, pelety boli dvakrát premyté pri -20°C, 80 % acetónom a sušené sa na vzduchu po dobu 10 min pri izbovej teplote (RT) alebo pokiaľ sa odstránil zvyškový zápach acetónu. Pelety boli resuspendované v 2 ml TFE (2,2,2-Trifluorethanol) Digestačnom pufri (10 % TFE, 100 mM hydrogénuhličitan amónny) sonikáciou (Bioruptor (Diagennode), pri 4 °C po dobu 5 min, alebo pokiaľ sa nevytvorila homogénna suspenzia. Koncentrácia proteinov bola stanovená pomocou BCA. Po nanáške vzoriek a BCA bola doštička inkubovaná 30 min pri 37 °C.

Štiepenie bielkovín prebiehalo v 500μl TFE Digestačnom pufri:

1. Štiepenie začalo pridaním 1:100 Lys-C počas 30 min a 1:100 trypsínu resuspendovaného v 0,05 % kyselina octovej /2 mM CaCl2.
2. Vzorky boli následne inkubované v termomixéri počas 18 hod pri teplote 37 °C, 2000 ot/min.

Po inkubácii boli vzorky doriedené podľa koncentrácie proteinov 3 mg/500 µl TFE. K odštiepeným peptidom v 500 µl TFE Digestion pufri boli pridané nasledujúce substancie do finálneho objemu 1,6 ml (300 mM KCl, 5 mM KH₂PO₄, 50 % ACN, 6 % kyselina trifluóroctová). Roztok peptidov bol miešaný pri RT po dobu 1 minútu v termomixéri pri 2000 ot/min a vyčistený pri vysokej rýchlosti centrifugáciou (≥16000 ot/ 15 min v 2ml epinkách alebo 30 min/ 3500 ot). Supernatant S1 bol odpipetovaný do čistých 2 ml epiniek.

Príprava TiO₂ guličiek

TiO₂ guličky boli navážené v pomere 10:1 k proteinu. Guličky boli resuspendované v Loading pufri (LP) (80 % ACN, 6 % TFA) pri koncentrácií 100 µl LP na vzorku. Suspenzia TiO₂ guličiek bola inkubovaná v Bioruptor pri teplote 4 °C počas 1 min, pokiaľ sa guľôčky rozptýlili. 100 µl suspenzie rovnomerne dispergovaných guličiek bolo prenesených ku každému S1. TiO₂ guličky a peptidy boli inkubované pri teplote 25 °C po dobu 5 min, následne 40 °C po dobu 5 min v termomixéri pri 2000 ot. Guličky boli centrifugované po dobu 1 min/3500 ot pri RT kvôli ich usadeniu.

Vymývanie nešpecificky naviazaných peptidov

Nešpecificky naviazané peptidy boli vymyté z TiO₂ guličiek resuspendováním v 500 µl Wash pufri (60 % ACN, 1% TFA). Guličky boli prevedené do čistých 2 ml epiniek, pričom zostávajúce guličky boli zozbierané s druhým 500 µl Wash pufrom. Guličky boli inkubované pri RT po dobu 30 s v termomixéri pri 2000 ot/min. Následne boli centrifugované 1 min/3500 ot/ RT a supernatant bol odstránený odsatím. Peletované guličky boli premyté 4 x v 1 ml Wash pufri a inkubované pri každom premytí 30 s v termomixéri pri 2000 ot./min. a 1 min/3500 ot/ RT. Po konečnom premytí, 100 µl Transfer pufra (80 % ACN, 0,5 % kyselina octová) bolo pridané do každej skúmavky a prebiehala inkubácia počas 30 s v termomixéri pri 800 ot./min. až pokiaľ sa guličky nerosuspendovali.
Príprava kolonky C8

Guličky so vzorkou boli prenesené v Transferovom pufri na vrchol C8 StageTip. Následne boli vzorky centrifugované 5 min/ 500 ot/ RT, alebo pokial’ v StageTip nezostala žiadna kvapalina. Fosfopeptidy boli vymývané 2 x pridaním 30 µl Elution pufra (40 % ACN, 15 % NH₄OH (25 % HPLC), ktorý bol pripravený bezprostredne pred použitím) ku každému StageTipu, ktorý obsahoval TiO₂ guličky. Vzorky boli stočené pri 500 ot/ 3 min. pri 4 °C. Eluáty obsahujúce fosfopeptidy boli zhromaždené do sklenených skúmaviek.

Vzorky boli zahustené vo SpeedyVac počas 3-4 minút pri 45 °C alebo pokial’ zostalo 20µl, pričom ku každej vzorke bolo ihneď pridané 10µl 10 % TFA. Následne nasledovala ekvilibrácia membrány. Bol pripravený StageTips s 3 vrstvami SDB-RPS (3M Empore) materiálu, ktorý bol vopred ekvilibrovaný pridaním 50µl 100 % ACN, 6000 ot./3min.; 50 µl 30 % MeOH, 0,2 % TFA, 6000 ot./3min. a 50µl 0,2 % TFA, 6000 ot./3min.. Každú vzorku bola nanesená na StageTips s 3 vrstvami SDB-RPS a pomaly točená pri 500 ot./3min. SDB-RPS StageTips boli následne premyté 2x pomocou 100µl SDB-RPS Wash pufra (0,2 % TFA) a centrifugované 10 minút pri 500 ot./min. pri RT alebo pokial’ v epinke nezostala žiadna tekutina. Pre vymytie fosfopeptidov bolo pridané 60µl SDB-RPS Elučného pufra (80 % ACN, 5 % NH₄OH (25 %, HPLC)).

Fosfopeptidy boli zhromaždené do čistých sklenených skúmaviek a centrifugované pri 500 ot./5min. pri RT, alebo pokial’ nezostala žiadna tekutina. Okamžite boli skúmavky vložené do SpeedyVacu po dobu 3-4 minút pri 45 °C, alebo pokial’ zostalo 2 µl. 15µl MS Loading pufru (2 % ACN, 0,3 % TFA) bol pridaný k fosfopeptidom a premiešaný sonikáciou (Bioruptor, 4 °C, 1 min.).

LC-MS analýza

LC-MS analýza bola uskutočnená na OrbitrapFusion spojenom s NanoLC Dionex Ultimate 3000RS. Na separáciu bola použitá 50 cm Thermoeasy nano kolóna, spojená v kombinácii s kolónou 300 μm ID, dlžkou 5 mm. Bol použitý 2 hodinový gradient oddelenia. Údaje boli vytlačené pomocou softvéru MaxQuant (Cox et al. 2014) proti najnovšej databáze Uniprot Rattus Norvegicus s variabilnou modifikáciou phospho STY. Údaje z MaxQuantu boli ďalej spracované softvérom Perseus (Tyanova et al. 2016). Kvantitatívne hodnoty
pre identifikované fosfopeptidy boli podrobené ďalšej štatistickej analýze v Exceli a vyhodnotené v Prism GraphPad pomocou t-testu.

4.10 RT-PCR

Homogenizácia

Homogenizácia vzoriek (n=6) uchovávaných v tekutom dusíku (-196 °C) bola prevedená pri nízkej teplote, aby nedochádzalo k otepleniu tkaniva a naštartovaní degradačných mechanizmov. Pred vlastnou homogenizáciou boli označené 2 ml mikroskúmavky, do ktorých boli vložené 3 malé a 3 veľké sklenené guličky pre budúcu homogenizáciu tkaniva pomocou MIXER MM200 (Retsch) a 0,5ml RNAzolu. RNAzol je činidlom na báze guanídium chloridu a fenolu používané k rýchlej jednotopnovej izolácii RNA z tkaniva. Takto pripravené mikroskúmavky boli zvážene na analytických váhach s presnosťou na 4 desatinné miesta a boli vychladené na ľade. Pre izoláciu RNAzolom je ideálne množstvo 80 – 120 μg tkaniva.

V digestore bola pripravená polystyrénová krabica s tekutým dusíkom, do ktorej boli vložené trecie misky, tlčiky, pinzeta a špachtle k vychladeniu. Do vychladenej misky s malým obsahom tekutého dusíka bolo prenesené tkanivo a vychladeným tlčíkom bola rozbítá a rozmlétá o steny misky na jemný prášok. Ten bol ihneď prevedený do vychladenej 2 ml mikroskúmavky s guličkami a 0,5 ml RNAzolu. Tkanivo bolo ihneď zaliate ďalším 0,5 ml RNAzolu a znovu odvážené. Pokiaľ bolo v mikroskúmavke viac tkaniva ako 100 μg, bolo pridané 0,5 ml alebo 1 ml RNAzolu, ktoré bolo úmerné nadbytku tkaniva. Po zaliatí RNAzolem boli mikroskúmavky dynamicky pretrepaní v ruke, sčentrifugované na ručnej centrifúge a vrátene späť na ľad.

Homogenizácia bola vykonaná vo vychladených kyvetách na homogenizátore MIXER MM200 (Retsch) po dobu 10 minút pri frekvencii 30 Hz. Nasledovala centrifugácia vo vychladenej centrifúge pri 11000 ot./min. po dobu 10 minút. Ziskaný supernatant v objemu 1ml bol prevedený do novej označenej 2 ml mikroskúmavky a uchovávaný v -80 °C do ďalšieho spracovania.
Izolácia RNA

K supernatantu (1 ml) z predchádzajúcej homogenizácie bolo pridané 400 µl vody a dynamicky premiešane. Voda používaná pre PCR je ultračistá dvakrát klávovaná miliporQ voda nebo DEPC (diethyl pyrokarbonát) ošetrená voda firmy Roche nebo Fermentas, ďalej len voda. Prebehla 15 minútová inkubácia pri pokojovej teplote a následná centrifugácia pri 12000 ot./min. 1 ml supernatantu obsahujúci RNA bol odobraný do novej označenej mikroskúmavky, kde bola prevedená precipitácia RNA pridaním 1ml izopropanolu a 10 minútová inkubácia. Nasledovala centrifugácia pri 12000 ot./min. počas 10 minút v chladenej centrifúge. Následne bolo pridané 400 ml 75 % ethanolu, ktorý bol čerstvo pripravený z destilovaného 96 % etanolu. Mikroskúmavka bola ľahko premiešaná preklopením a centrifugovaná pri 4000 ot./min. počas 2minút. Vznikla zrazenina RNA a ethanol bol odobraný. Postup s pridaním ethanolu bol ešte raz zopakovaný Po konečnom odobraní ethanolu sa mikroskúmavky nechali minútu vyschnúť v termostatickom bloku pri 37 °C, aby došlo k jeho úplnému odpareniu. K zrazenine bolo pridané 200 µl vody, v ktorej sa zrazenina RNA rozpustila. Vo vzniknutom roztoku bola v nasledujúcom kroku zmeraná čistota a koncentrácia RNA.

Meranie koncentrácie RNA

Do malých mikroskúmaviek bolo napipetované 9 µl 0,5 % SDS (dodecylsulfátsoejný) pufru a 1ul roztoku s izolovanou RNA, čím sa nám roztok 10x nariedil. Vzniknutý roztok bol spektrofotomieticky analyzovaný na prístroji Nanodrop proti samotnému SDS, použitého ako blank. Ako meradlo čistoty sa používa pomer absorbancie pri 260 a 280 nm, ktorý by sa mal pohybovať medzi 2,0 – 2,2 pre čistú RNA. Pokiaľ je číslo nižšie, môže sa jednať o prítomnosť látok absorbujúcich v blízkosti meranej absorbancie, ako napríklad fenoly či proteíny (manuál NanoDrop Technologies, 2007). Dôležitým faktorom je taktiež pH roztoku, kedy kyslý roztoky môžu pomer znižovať o 0,2 – 0,3 a naopak zásadité tento pomer zvyšovať. Nezanedbateľná je také iontová sila roztoku. Výsledky z merania boli použité ako vstupné informácie pre reverznú transkripciu.
Elektroforéza

V našom prípade bola použitá elektroforéza ako kontrola čistoty a prípadnej degradácie izolovanej RNA, kde fosfátové skupiny RNA nesúce záporný náboj umožňujú pohyb molekúl ku kladnému pólu. Analýza bola prevedená na prístroji pre horizontálnu gélovú elektroforézu v 1xTAE (Tris base, acetic acid, EDTA) pufru. Bola použitá zmes LE (Low Electroendosmosis) a GTG (Genetic Technology Grade) agarózy v koncentrácií 1,5 %. Do rozpustenej agarózy bol pridaný ethidium bromid pre vizualizáciu transiluminátorom.

Koncentrovaný pufr 50x TAE je zložený z 40 mM TRIS, 20 mM kyseliny octovej a 2 mM Na2 EDTA. Gél bol vyrobený rozvarením 125 mg LE a 250 mg GTG agarózy v 25 ml vody s následným pridaním 500 µl 50xTAE pufru a 5 µl ethidium bromidu. Pri teplote okolo 60 ºC bol gél naliaty na elektroforetickú mištičku s hrebienkom. Po zatuhnutí gélu bol hrebienok vybraný, gél bol preliaty elektródovým pufrom a do jamiek boli nanášané vzorky.

Vzorky boli nanesené v zmesi s nanášacím pufrom (loading buffer), ktorý obsahuje glycerol a spôsobí usadenie vzoriek na dno jamky. Ďalšou zložkou nanášacieho pufru je bromfenolová modrá, ktorá roztok zafarbi, čo umožňuje ľahšie nanášanie vzoriek do gélovej jamky. Bolo nanesené 0,5 µg RNA na jamku. Nanášky boli spočítané z koncentrácie RNA zmeranej spektrofotometrickým systémom Nanodrop.

Zdroj bol nastavený na 80 V, bez obmedzenia prúdu po dobu 60 minút. Následne bol gél exponovaný UV žiarením v transluminátor a okometricky zhodnotený. V prípade prítomnosti DNA bol detekovaný band, ktorý by zostal na štarte v jamke.

Reverzná transkripcia a PCR

Reverzná transkripcia je posledným krokom pred vlastnou real-time RT PCR, ktorú kvantitatívne prevedie RNA na cDNA. Aby sme docielili čo najpresnejší kvantifikáciu génovej expresie, vnášame do reakcie 1 µg RNA, ktorý je vypočítaný z koncentrácie RNA zmeranej systémom Nanodrop. RNA bola riedená vodou do objemu 11 µl. Následne bol pridaný 1 µl oligo (dT)18 a zmes bola inkubovaná 5 minút pri 65 ºC. Po inkubácii bola zmes ihneď schladená na ľadu. Ku každej vzorke bolo pridané 7,9 µl premixu, ktorý
sa skladá z týchto komponentov: 4 µl 5X reaction buffer, 0,95 µl Ribolock, 2 µl 10 nM dNTP mix a 0,95 µl H-Minus. Premix bol vytvorený ako jedna zmes a následne pipetovaný po 7,9 µl, aby boli zachovane rovnaké podmienky pre všetky vzorky. Po pridani premixu boli mikroskúmavky inkubované pri 42 °C 60 minút. Reakcia bola zastavená 5minútovu inkubáciou pri 70 °C a následným schladením na ľade. Screening primeru a testovanie housekeeping géňov bolo testované na cDNA z jednej RT. Pre vyššiu výťažnosť cDNA na vlastnú analýzu bola vykonaná dvojitá RT.

K vlastnej PCR reakcii boli použité primery od firmy Eurogentec. Primery boli dodané v lyofilizovanej forme, čistené odsolením a následne boli nariedené na zásobnú koncentráciu 500 µM. V tejto podobe boli uchovávané v -20 °C. Pre PCR reakciu boli obe primery pre daný géň, tzn. řvav (L), forward (F) i prává reversia (R), rozriedené na 5 µM. Výsledný roztok pre PCR reakciu teda obsahoval zmes pravého i řvého primeru v roztoku Premix Sybr Green od firmy Eurogentec a vody. Premix pre celú doštičku bol vypočítaný z počtu PCR reakcií s patričnou rezervou. Na každú PCR reakciu pripadlo: 5 µl Sybr Green premix, 3 µl vody a 1 µl primeru (zmes reversie + forward formy), podľa návodu Light Cycler 480 DNA SYBR Green I Master (Roche Applied Science).

Pred vlastnou analýzou boli všetky primery testované na špecificitu produktu pomocou krivky topenia, stanovenia efektivity z kalibračnej krivky a dostatočného odstupu negatívnych kontrol najmenej 10 cp. Bola použitá 3 bodová kalibračná krivka s riedením desiatkovou sústavou. Kalibračné krivky boli tiež analyzované pre každý premix. Samotná PCR reakcia prebiehala na cykleru LightCycler ® 480 Real-Time PCR na 384 jamkovej doštičke s objemom reakcie 10 µl (9 µl premixu + 1 µl cDNA) podľa nasledujúceho protokolu. Preinkubácia pri teplote 95 °C po dobu 10 minút s následnými 50 cyklami s teplotným profilom: 95 °C/10 s; 60 °C/30 s; 72 °C/1 s. Ďalej bola v každom protokole vygenerovaná krivka topenia produktu. Posledným krokom je schladenie na teplotu 40 °C.

Každá vzorka bola na doštičke meraná v triplikátoch a k výpočtu priemernej hodnoty cp meraného génu boli použité hodnoty, ktoré nepresiahli smerodajnú odchýlku 0,4. Pre presný výpočet relatívnej hodnoty mRNA, bola efektivita jednotlivých primerov počítaná zo štandardnej krivky. Hladina analyzované transkriptu bola normalizovaná
na hladinu referenčného génu ribozomálnej podjednotky S18 s ohľadom na efektivitu podľa vzorca:

$$\text{Normalizované množstvo} = \frac{(1+E)^{C_p\text{ referenčný transkript}}}{(1+E)^{C_p\text{ sledovaný transkript}}}$$

Upravené podľa (Pfaffl 2004).

4. 11 Štatistická analýza

Štatistické rozdiely medzi skupinami boli stanovené t-testom alebo ANOVA s post-testom Newman-Keuls. Hodnoty $P <0,05$ boli považované za štatisticky významné. Všetky údaje boli vyjadrené ako pomier \pm SD, SEM.
5 VÝSLEDKY

5.1 Cx43 a hypoxia

Vplyv IHH na expresiu celkového Cx43 a jeho fosforylovaný stav

Obrázok 5 ukazuje účinok IHH na expresiu Cx43 na úrovni proteinu a mRNA. Expresia celkového Cx43 (t-Cx43) sa významne zvýšila o 48 % v IHH skupine na úrovni proteinu (5B), avšak transkript Cx43 mRNA klesol o 16 % v IHH srđciach (5E). Paralelne sa tiež zvýšili fosforylované formy P1 + P2 o 56 % (5C). Pomer fosforylovaných foriem P1 + P2/t-Cx43 bol zvýšený o 54 % v IHH skupine (5D).

Obrázok 6 ukazuje účinok IHH na proteínovú expresiu nefosforylovanej formy a fosforylovaných foriem Cx43 pomocou Western blot analýzy. Použitím špecifickej anti-np-Cx43 protitáltky sme potvrdili významný pokles nefosforylovanej formy Cx43 (o 30 %) v IHH skupine (6A). Dále sme použili špecifické protitáltky na analýzy fosforylovaných miest. p-Cx43(Ser368), zvyšujúci GJ komunikáciu, bol zvýšený po IHH o 30 % v porovnaní s normoxickou skupinou (6B). Naopak, fosforylácia p-Cx43(Ser279/282), ktorá znížuje interceluláramu komunikáciu, bola po IHH znížená o 12% (6C). Fosforylácia na p-Cx43(Tyr265), ktorá môže prispieť k internalizácii Cx43, klesla o 19 % (6D).

Obrázok 7 ukazuje účinok IHH na proteínovú expresiu fosforylovaných foriem Cx43 pomocou hmotnostnej spektrometrie. IHH zvýšila fosforyláciu p-Cx43(Ser364, Ser365, Ser368) o 65 % v porovnaní s normoxickou skupinou (7A, B, C). Pre jednotlivé fosforylačné miesta boli nájdene nasledovné sekvencie:

Ser364-AGHELQPLAIVDQRPSSRASSRASSRPRPDD
Ser365-GHELQPLAIVDQRPSSRASSRASSRPRPDDL
Ser368- LQPLAIVDQRPSSRASSRASSRPRPDDLEI

Vplyv IHH na expresiu proteinináz fosforylujúci Cx43

Obrázok 8 prezentuje účinok IHH na proteínovú expresiu Cx43 upstream kináz. Analyzovali sme PKA, PKG a CK1. V IHH skupine sa expresia PKA zvýšila o 33 % a PKG 19% (8A, B), zatiaľ čo expresia CK1 sa v porovnaní s normoxickou kontrolou nezmenila (8C).
Vplyv IHH na redistribúciu celkového Cx43 pomocou imunofluoroscencie

Obrázok 9 ukazuje kvantitatívnu analýzu obrázkov t-Cx43. Distribúcia t-Cx43 bola normalizovaná za normoxických podmienok a t-Cx43 bol umiestnený prevážne na *end to end* spojeniach. Sporadicky sa t-Cx43 objavil aj na *side to side* spojeniach (9A). IHH zvýšila plochu t-Cx43 v *end to end* spojeniach o 7 %. Naopak, plocha t-Cx43 v *side to side* spojeniach sa taktiež znížila o 7 % (9B). Nasledujúca 10-minútová ischémia zrušila zvýšenie t-Cx43 v *end to end* spojeniach v IHH srdciach (9A, C) takmer na úroveň normoxickej kontroly. Následná 15 minútová reperfúzia nemala na distribúciu t-Cx43 vplyv (9D).

Vplyv IHH na redistribúciu p-Cx43 (Ser368) pomocou imunofluoroscencie

Obrázok 10 ukazuje umiestnenie p-Cx43(Ser368) v *end to end* a *side to side* spojeniach (10A). Adaptácia na IHH zvýšila plochu p-Cx43(Ser368) v *end to end* spojeniach o 9 % (10B) a zároveň znížila plochu p-Cx43(Ser368) v *side to side* spojeniach taktiež o 9 %. Nasledujúca 10-minútová ischémia udržala nárast p-Cx43(Ser368) v *end to end* spojeniach len v IHH srdciach (10C). Následná 15 minútová reperfúzia nemala na distribúciu p-Cx43(Ser368) vplyv (10D).

Vplyv IHH na zastúpenie mastných kyselín v celkových fosfolipidoch srdca

Obrázok 11 znázorňuje účinok IHH a 10-minútovú ischémiu na podiel PUFA v celkových fosfolipidoch. Pokiaľ ide o účinok IHH, podiel dokosahexaénoovej kyseliny (DHA, 22: 6n-3) a celkových n-3 PUFA sa zvýšil, čo sprevádzalo zníženie kyseliny linolovej (LA, 18: 2n-6). Podiel AA (20: 4n-6) sa nezmienil. Následná 10-minútová ischémia spôsobila ďalšie zvýšenie n-3 PUFA len v IHH srdciach o 13 % kvôli ďalšiemu zvýšeniu DHA (15 %).

Vplav CNH na ko-локализáciu HK s mitochondriami

Kolokalizácia HK1 s mitochondriami hodnotená korelačným koeficientom Pearsonu sa medzi jednotlivými skupinami nelíšila (12C). V skupine N bola kolokalizácia HK2 s mitochondriami významne znížená po reperfúzii v porovnaní s ischémiovou, zatiaľ čo v CNH skupine bola pozorovaná len tendencia (12D). Zaujímavé je, že pri všetkých
mitochondriálnych subpopuláciách (12E, F a G) sa pozoroval rovnaký vzorec lokalizácie HK2 (pokles po reperfúzii o 33%, 32% a 37%).

![Diagram](image)

Obrázok 5. Účinok intermitennej hypobarickej hypoxie (IHH) na expresiu celkového Cx43 v ľavej komore potkana v porovnaní s normoxiou (N). A, reprezentatívny blot; B, proteinová expresia celkového Cx43; C, proteinová expresia fosforýlovaných foriem P1 + P2 Cx43; D, Pomer P1 + P2 Cx43 k celkovému Cx43. Hodnoty sú priemerné ± SD, (n = 5), ** P <0,01. E, úroveň mRNA transkriptu proteínu alfa 1 (CXA1). Hodnoty sú priemerné ± SD, (n = 7), * P <0,05.
Obrázok 6. Účinok intermitentnej hypobarickej hypoxie (IHH) na proteinovú expresiu nefosforylovanéj formy a fosforylovaných formí Cx43 v ľavej komore potkana v porovnaní s normoxiou (N). A, nefosforylovaná forma Cx43; B, fosforylovaná forma Cx43 na Ser368; C, fosforylovaná forma Cx43 na Ser279/282; D, fosforylovaná forma Cx43 na Tyr265. Hodnoty sú priemerné ± SD, (n = 5), ** P <0,01.
Obrázok 7. Účinok intermitentnej hypobarickej hypoxie (IHH) na fosforyláciu Cx43 v ľavej komore potkana v porovnaní s normoxiou (N) pomocou hmotnostnej spektrometrie. A, fosforylovaná forma Cx43 na Ser364; B, fosforylovaná forma Cx43 na Ser365; C, fosforylovaná forma Cx43 na Ser368. Hodnoty sú priemerné ± SD, (n = 4), ** P <0,01.
Obrázok 8. Účinok intermitentnej hypobarickej hypoxie (IHH) na proteínovú expresiu proteinkináž fosforylujúcich Cx43 v ľavej komore potkana v porovnaní s normoxiou (N). A, proteinkináza A (PKA); B, kazeínkináza 1 (CK1); C, proteinkináza G (PKG). Hodnoty sú priemerné ± SD, \(n = 5 \), ** \(P < 0,01 \).
Obrázok 9. Účinok intermitentnej hypobarickej hypoxie (IHH) na distribúciu Cx43 počas krátkej ischémie (Isch) a reperfúzie (IR) v ľavej komore potkana v porovnaní s normoxiou (N). A, reprezentatívne mikrofotografie. B, C, D, redistribúcia 100% plochy Cx43 v end to end a side to side spojeniach v interkalárnych diskoch v ľavej komore potkanov u normoxických (N) a hypoxických (IHH) skupín, počas krátkej ischémie (Isch) a reperfúzie (IR). Zelená farba zodpovedá špecifickému farbeniu Cx43, červená farba predstavuje sarkolemmu (kontrastované s WGA) a modrá farba označuje zafarbenie jadra (DAPI). Pozitívne spojenie Cx43 je umiestnené prevažne na interkalárnych diskoch (dlhé tenké šípky) a sporadicky na bočných plochách (krátke šípky) kardiomyocytov. Stupnica mierky predstavuje 20 μm. Hodnoty sú priemerné ± SD, (n = 3), *** P <0,001.
Obrázok 10. Účinok intermitentnej hypobarickej hypoxie (IHH) na distribúciu p-Cx43(Ser368) počas krátkej ischémie (Isch) a reperfúzie (IR) v ľavej komore potkana v porovnaní s normoxiou (N).

A, reprezentatívne mikrofotografie. B, C, D, redistribúcia 100% plochy p-Cx43(Ser368) v end to end a side to side spojeniach v interkalárnych diskoch v ľavej komore potkanov u normoxických (N) a hypoxických (IHH) skupín, počas krátkej ischémie (Isch) a reperfúzie (IR). Zelená farba zodpovedá špecifickému farbeniu Cx43, červená farba predstavuje sarkolemmu (kontrastované s WGA) a modrá farba označuje zafarbenie jadra (DAPI). Pozitívne spojenie p-Cx43(Ser368) je umiestnené prevažne na interkalárnych diskoch (dlhé tenké šípky) a sporadicky na bočných plochách (krátké šípky) kardiomyocylov. Stupnica mierky predstavuje 20 μm. Hodnoty sú priemerné ± SD, (n = 3), *** P < 0,001.
Obrázok 11. Účinok intermitentnej hypobarickej hypoxie (IHH) na hlavné polynenasýtené mastné kyseliny v ľavej komore potkana [kyselina linolová (18: 2n-6), kyselina arachidónová (20: 4n-6), kyselina dokosahexaéonová (22: 6n-3)]. Podiel n-3 PUFA na celkových fosfolipidoch v myokarde ľavej komory normoxických (N) a hypoxických (H) potkanov pri kontrolných (neischemických) podmienkach a po 10-minútovej ischémii (NI a HI). Hodnoty sú priemerné ± SEM , (n = 7), * P <0,05 oproti normoxii, † P <0,05 oproti zodpovedajúcej kontrolnej skupine.
Obrázok 12. Účinok ischémie a reperfúzie na ko-lokalizáciu HK izoforiem s mitochondriami v srdci potkana. Reprezentatívne mikrografy ukazujú rozloženie HK1 (A) a HK2 (B) v pozdĺžnych kryosekciách ľavej komory kontrolného (C), ischemického (I) a reperfúzovaného (IR) srda z normoxických (horných panelov) a CNH (dolné panely). Zelená farba zodpovedá špecifickému HK farbeniu, červená farba predstavuje mitochondriálnu oblasť a modrá farba indikuje farbenie DAPI v jadre. Stupnica na mierke predstavuje 13 μm. Ko-lokalizácia HK1 (C) a HK2 (D) s mitochondriami bola kvantifikovaná Pearsonovým korelačným koeficientom (PCC). Kolokalizácia HK2 s intermofibrilovými (MM) (E), peri-nukleárnymi (PN) (F) a subsarkolemárnymi (SSM) (G) mitochondriálnymi subpopuláciami v LV normoxických (biele stĺpce) a CNH (čierne stĺpce) potkanov. Hodnoty sú priemerné ± SEM, (n = 5), * p <0,05.
5.2 Cx43 v srdci po adaptácii na chlad

Vplyv akútneho chladu na expresiu celkového Cx43

Obrázok 13 znázorňuje, že expresia t-Cx43 sa nezmenila ani po 3D ani po 10D chlade (13B). Paralelnie sa taktiež nezmenila expresia fosforylovaných foriem P1 + P2 Cx43 (13C). Po 3D chlade sme pozorovali len tendenciu k poklesu nefosforylovanej formy Cx43 (np-Cx43), pričom po 10D adaptácii sa expresia np-Cx43 znižila o 32 % (13D).

Vplyv akútneho chladu na redistribúciu celkového Cx43 pomocou imunofluoroscencie

Kvantitatívna analýza na obrázku 14 preukázala prevážnú distribúciu t-Cx43 v end to end spojeniach kontrolných srdciach. t-Cx43 bol pozorovaný v menšej miere tak tiež v side to side spojeniach (14A). Tento trend distribúcie t-Cx43 bol zachovaný aj po 3D chlade, zatiaľ čo po 10D adaptácii na chlad sa v end to end spojeniach prítomnosť t-Cx43 znižila a side to side zvýšila o 3 % (14B).

Vplyv chronického chladu a regresie na expresiu celkového Cx43

Obrázok 15 ukazuje, že expresia t-Cx43 mala tendenciu narastať po vystavení CH chladu. Tento trend pretrvával aj po R (15B). Podobná tendencia bolo pozorovaná aj u fosforylovaných foriem P1 + P2 Cx43 (15C). Naopak u np-Cx43 bola pozorovaná tendencia opačná, t.j. k zniženiu v oboch experimentálnych skupinách.

Vplyv chronického chladu a regresie na redistribúciu celkového Cx43 pomocou imunofluoroscencie

Imunofarbenie (obrázok 16) preukázalo prevládajúce umiestnenie t-Cx43 na end to end spojeniach a v malom množstve boli tiež pozorované v side to side spojeniach (16A). Adaptácia na CH chlad zvýšila plochu v end to end spojeniach t-Cx43 o 7 % a taktiež zmenšila plochu Cx43 v side to side spojeniach o 7 % (16B). Po R sa distribúcia t-Cx43 vrátila na kontrolné hodnoty (16A, B).
Vplyv chronického chladu a regresie na expresiu proteinkináz fosforylujúcich Cx43

Obrázok 17 prezentuje expresiu PKA, CK1, Akt, MAPK. PKA vykazovala tendenciu k poklesu po CH chlade a návrat ku kontrolnej hodnote po R (17A). CK1 sa nemenila (17B). Akt sa znížila o 9 % po CH chlade a o 17 % po R (17C). MAPK sa znížila o 21 % po CH, pričom po R sa zvýšila o 11% v porovnaní s kontrolou (17D).

Obrázok 18 znázorňuje expresiu PKCε a PKCδ. PKCε sa zvýšila v regresii o 47 % a taktiež bola zvýšená v porovnaní s chronickým chladom o 48%. PKCδ sa zvýšila o 37 % v chronickom chlade a o 93 % v regresii. Bol pozorovaný aj nárast v regresii oproti chronickému chladu o 56 %.

Obrázok 13. Účinok akútneho 3-dňového chladu (3D) a akútneho 10-dňového chladu (10D) na proteínovú expresiu Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, reprezentatívny blot; B, expresia celkového Cx43; C, expresia fosforylovaných foriem P1+P2 Cx43; C, expresia nefosforylované formy Cx43. Hodnoty sú priemerné ± SD, (n = 5), * P <0,05.
Obrázok 14. Účinok akútneho 3-dňového chladu (3D) a akútneho 10-dňového chladu (10D) na distribúciu Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, reprezentatívne mikrofotografie. B, redistribúcia 100% plochy Cx43 v *end to end* a *side to side* spojeniach v interkalárnych diskoch v ľavej komore potkano v K, 3D, 10D. Zelená farba zodpovedá špecifickému farbeniu Cx43, červená farba predstavuje sarkolemmu (kontrastované s WGA) a modrá farba označuje zafarbenie jadra (DAPI). Pozitívne spojenie Cx43 je umiestnené prevažne v interkalárnych diskoch (dlhé tenké šípky) a sporadicky na bočných plochách (krátke šípky) kardiomyocytov. Stupnica mierky predstavuje 20 μm. Hodnoty sú priemerné ± SD, (n = 4), * P <0,05.
Obrázok 15. Účinok chronického chladu (CH) a regresie (R) na proteínovú expresiu Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, reprezentatívny blot; B, expresia celkového Cx43; C, expresia fosforylovaných foriem P1+P2 Cx43; C, expresia nefosforylovanej formy Cx43. Hodnoty sú priemerné ± SD, (n = 5).
Obrázok 16. Účinok chronického chladu (CH), regresie (R) na distribúciu Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, reprezentatívne mikrofotografie. B, redistribúcia 100% plochy Cx43 v end to end a side to side spojeniach v interkalárnych diskoch v ľavej komore potkanov u K, CH, R. Zelená farba zodpovedá špecifickému farbeniu Cx43, červená farba predstavuje sarkolemmu (kontrastované s WGA) a modrá farba označuje zafarbenie jadra (DAPI). Pozitívne spojenie Cx43 je umiestnené prevažne v interkalárnych diskoch (dlhé tenké šípky) a sporadicky na bočných plochách (krátke šípky) kardiomyocyteov. Stupnica mierky predstavuje 20 μm. Hodnoty sú priemerné ± SD, (n = 4), * P <0,001.
Obrázok 17. Účinok chronického chladu (CH) a regresie (R) na proteinovú expresiu proteinkináz fosforylujúcich Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, proteinkináza A (PKA); B, kazeínkináza 1 (CK1); C, proteinkináza B (Akt), D, mitogénom aktivovaná proteinkináza (MAPK-MEK3). Hodnoty sú priemerné ± SD, (n = 5), * P < 0,05; ** P < 0,01; *** P < 0,001.
Obrázok 18. Účinok chronického chladu (CH) a regresie (R) na proteinovú expresiu proteinkináz C fosforylujúcich Cx43 v ľavej komore potkana v porovnaní s kontrolou (K). A, proteinkináza Cε (PKCε); B, proteinkináza Cδ (PKCδ) (B). Hodnoty sú priemerné ± SD, (n = 5), * P <0,05 voči K; ** P <0,01 voči K; * P <0,05 voči CH; ** P <0,01 voči CH.
6 DISKUSIA

6.1 Cx43 a hypoxia

V tejto štúdii sme vychádzali z predpokladu, že v mechanizme antiarytmického účinku adaptácie na IHH, sa vedľa aktivácie celej rady signálnych dráh uplatňuje taktiež aj Cx43.

Na tomto modeli sme prvýkrát demonštrovali (Kohutova et al. 2019), že antiarytmický účinok IHH je spojený so zvýšenou proteinovou expresiou celkového Cx43, fosforyláciou na seríne p-Cx43 (Ser364, Ser365, Ser368) a zniženou fosforyláciou na seríne Ser279/282 a tyrozíne Tyr265. V tomto kontexte IHH indukované zniženie mRNA transkriptu Cx43 naznačuje post-transkripčnú kontrolu hladiny proteínu Cx43. Navyše bolo zdokumentované zlepšenie lokalizácie celkového Cx43 a p-Cx43(Ser368) v end to end spojení GJ pomocou IHH v ľavej komore potkanov. Navyše proteínová expresia PKA a PKG kináz bola taktiež zvýšená po adaptácii.

Je potrebné poznamenať, že náš experimentálny model chronickej IHH sa líši od modelov intermitentnej hypoxie pozostávajúcej z viacerých cyklov krátkej závažnej hypoxie a epizód reoxygenácie, ktoré sa používajú na simuláciu syndrómu obštrukčnej spánkovej apnoe (OSA) ako dôležitého rizikového faktora kardiovaskulárnych ochorení. Ukázalo sa, že OSA vedie k redukcii a remodelácii myokardu Cx40 a Cx43, čo môže naopak prispieť k vzniku arytmogénneho substrátu (Gemel et al. 2017).

Zistili sme, že proteinová expresia Cx43 a jeho fosforylovaných foriem P1 + P2 Cx43 sa zvýšila, zatiaľ čo nefosforylovaná forma Cx43 (np-Cx43) alebo taktiež označovaná ako nízko fosforylovaná forma sa znižila vplyvom IHH. Naša hypotéza, že upregulácia proteinov Cx43 je spojená s ochranou pred arytmiami myokardu, sú kompenzované up-reguláciou srdcového Cx43 (Viczenczova et al. 2017). Adaptácia srdca na diabetes (Lin et al. 2008) alebo stav hypotyreózy (Bacova et al. 2017) je tiež sprevádzaná zvýšenou up-reguláciou Cx43 v ľavej komore srdca, ktorá je spojená so zniženou tendenciou ku vzniku letálnych arytmii. Podobne podmienený knockout Cx43 uľahčuje proarytmický stav a prispieva ku kontraktílnej dysfunkcii srdca (Kaprielian et al. 1998; Saffitz & Yamada 1998). Je zaujímavé, že odlišná miera expresie Cx43 v myokarde (ženy viac ako muži)
s najväčšou pravdepodobnosťou spočíva v medzipohlavných rozdieloch a v sklone srdca mužov k vzniku život ohrozujúcim arytmiami a mechanickej dysfunkcii (Knezl et al. 2008; Tribulova et al. 2005). Celkovo možno predpokladať, že adaptácia srdca na chronickú hypoxiu môže byť sprevádzaná zmenami expresie a topológie Cx43 v myokarde.

Cx43 je vysoko dynamický protein a dospelé srdce je charakterizované rýchlym obratom životného cyklu približne 1,5 hodiny (Beardslee et al. 1998). Posttranslačné modifikácie Cx43 hrajú dôležitú úlohu pri regulácii funkcie kanálov spojovacích štrbín, tzn. vodivosti a priepustnosti kanálov, v závislosti na fosforylovaných miestach (Axelsen et al. 2013). V súlade s tým je známe, že otváranie GJ kanálov, montáž a demontáž Cx43 do plazmatickej membrány je determinovaný fosforylovaným stavom Cx43 (Pogoda et al. 2016). V tejto štúdii sme preukázali, že IHH ovplyvňuje fosforylovaný stav Cx43 na jeho šiestich fosforylačných miestach (Ser364, Ser365, Ser368, Ser279/282, Tyr265). Ako sa uvádza v štúdií Solan a Lampe, PKA, protein kináza B/Akt (Akt), CK1, MAPK a v-Src tyrozín kináza (v-Src) sa zúčastňujú kontroly fosforylácie Cx43 (Solan & Lampe 2014).

Naše zistenia ukázali, že expresia PKA aj PKG sa zvýšila, zatiaľ čo CK1 bola nezmenená v ľavej komore zvierat adaptovaných na IHH. Celkovo naše zistenia podporujú myšlienku, že GJ komunikácia v ľavej komore potkanov vystavených IHH je s najväčšou pravdepodobnosťou regulovaná modifikáciami Cx43 prostredníctvom viacerých fosforylačných miest. Zosilnená GJ komunikácia nastáva po aktivácii PKA na Cx43 Ser364/Ser365, čo vedie k zvýšeniu prenosu Cx43 na plazmatickú membránu (Tenbroek et al. 2001). Následne CK1 fosforyluje Cx43 v miestach Ser325/Ser328/Ser330 počas prechodu Cx43 z plazmatickej membrány do GJ (Cooper & Lampe 2002). Dunn a kol. 2012 zistili, že aktivita Akt reguluje stabilitu GJ a jej aktivita sa podieľala na tvorbe váčších a stabilných GJ (Dunn et al. 2012), zatiaľ čo fosforylácia v-Src na Cx43 (Tyr247/Tyr265) podporuje zníženie regulácie GJ komunikácie a spôsobuje demontáž GJ (Lin et al. 2001). Zdá sa, že fosforylácia na Ser279/Ser282 pomocou MAPK inhibuje Cx43 (Cottrell et al. 2003).

MS analýza ukázala zvýšenú PKA cielenú fosforyláciu na miestach p-Cx43 (Ser364, Ser365), ktoré by mohli prispieť k zdvihnutiu GJ spojení u p-Cx43 (Ser364) (Tenbroek et al.
2001), zatiaľ čo fosforylácia na Cx43 (Ser365) predstavuje „gatekeeper“ (Solan et al. 2007). MS analýza a Western blot tiež odhalili zvýšenú fosforyláciu Cx43 (Ser368), ktorá sa väčšinou pripisuje PKCε. V práci, Hlaváčková et al. (2010) publikovali zvýšený pomer p-PKCε (Ser729)/PKCε indikujúci zvýšenú aktiváciu enzymu v podmienkach IHH (Hlavackova et al. 2010). Dôležité je, že zvýšená hladina p-Cx43 (Ser368) PKCε zoslabuje vodivosť Cx43 kanálov (Bao et al. 2004) a zabraňuje indukovej komorovej fibrilácii (Lin et al. 2008). Zdá sa teda, že aktivácia PKCε môže byť zapojená v potlačení arytmii súvisiacich s IHH, najpravdepodobnejšie v dôsledku spomalenia vedenia v prospech elektrickej stability.

Je známe, že aktivita Akt kontroluje stabilitu GJ a zúčastňuje sa tvorby väčších a stabilných GJ. Priama inhibícia Akt viedla k strate GJ internalizáciou. Fosforylácia Cx43 na Ser373 pomocou Akt sa javí ako kontrola veľkosťi GJ prostredníctvom inhibície interakcie Cx43: ZO-1 (Dunn & Lampe 2014). Je zaujímavé, že za podmienok poškodenia alebo liečenia rastovým faktorom sa Cx43 postupne fosforyluje Akt (5 až 15 minút po ošetrení na p-Ser373), MAPK (v 15 až 30 minútach na p-Ser279/282) a v-Src (počas 30 minút sa predlžuje na p-Tyr247), čo vedie k sekvenčným zmenám v GJ, vrátane zvýšenej veľkosťi s následnou inhibíciou komunikácie GJ a ich internalizáciou z plazmatickej membrány (Solan & Lampe 2014). Asociácia HK s vonkajšou mitochondriálnou membránou je tiež stimulovaná Akt signálnou dráhou a bola mnohokrát preukázaná ako protektívna. Za fyziologického stavu je HK1 naviazaná na napätové závislé aniontový kanál a zvyšuje dodávku ADP pre ATP syntázu. Tým zvyšuje svoju aktivitu a stimuluje glykolýzu na jednej strane a transport glukózy do kardiomyocytov na druhej strane (Southworth et al. 2006) a tak zlepšuje energetický stav kardiomyocytov za hypoxických podmienok. Preto sme sa zameriali na mitochondriálne subpopulácie (Kolar et al. 2017) a sledovali sme, či nebude toto zvýšenie prejavené v subsarkolemálnej populácii mitochondrií, ktorá by priamo podporila uptake glukózy za hypoxických či ischemických podmienok. Táto hypotéza sa nepotvrdila, ale ukázalo sa, že adaptácia na hypoxiu, zabránila odviazaniu HK2 z mitochondrií v priebehu reperfúzie, a to u všetkých mitochondriálnych subpopulácií (Kolar et al. 2017).
V tejto súvislosti sme preukázali vysoko aktívovanú Akt po 10-minútovej ischémii v hypoxickom srdci v oboch prácach (Kolar et al. 2017; Kohutova et al. 2019). Z toho vyplýva, že hypoxia aktivuje protektívne signálne dráhy, ktoré pretrvávajú počas 10-minútovej ischémie, pričom pri dlhšej expozícií ischémie dochádza k degradácii Cx43 i odpojeniu HK z mitochondrií.

GJ sú konzistentné a rýchlo remodelované rôznymi stimulmi. Rozdiel medzi Cx43 mRNA transkriptom a hladinou proteínu celkovým Cx43 po IHH môže súvisieť s i) transláciou a stabilitou mRNA, ktorá je regulovaná miRNA a RNA-viažúcimi proteínmi (RBP) alebo ii) zníženou rýchlost'ou degradácie, ktorá môže byť ovplyvnená (MAPK, v-Src a PKC) (Solan & Lampe 2008; Sirmes et al. 2009; Salat-Canela et al. 2015; Calderon & Retamal 2016). V dôsledku toho bola redukcia Cx43 génového transkriptu uverejnená aj v hypertenznom srdci potkana, čo môže byť tiež spojené s miernou hypertrofiou ľavej komory (Egan Benova et al. 2016). Napriek tomu môžeme špekulovať, že supresia génu CXA1 v dôsledku IHH pravdepodobne aktivuje kompenzačné posttranslačné mechanizmy na zvýšenie hladín Cx43 v prospech srdcovej funkcie.

Početné štúdie naznačujú, že elektrické odpojenie GJ počas akútnej ischémie myokardu prispieva k abnormalitám pri vedení vzruchu a podporuje vznik maligných arytmii (Peters et al. 1997; Beardslee et al. 2000; Danik et al. 2004). Bol preukázaný abnormálny nárast Cx43 lateralizácie v dôsledku ischémie sprevádzanej jej defosforyláciou (Beardslee et al. 2000; Lerner et al. 2000). V zhode s antiarytmickou ochranou indukovanou IHH, súčasná práca tiež ukazuje zmeny v distribúcii Cx43. Kvantitatívna analýza imnofluorescenčných obrázkov odhalila mierny, ale významný nárast celkového Cx43 a p-Cx43 (Ser368) na GJ end to end v IHH myokarde. Zatiaľ čo 10-minútová ischémia zrušila redistribúciu t-Cx43 indukovanú IHH, avšak nárast p-Cx43 (Ser368) na end to end pretrvával a zvýšil sa tak pomer p-Cx43 (Ser368)/t-Cx43.

V kontexte topológie Cx43 je potrebné poznamenať', že jej výrazné prerozdelenie z end to end na laterálne side to side GJ bolo pozorované v rôznych podmienkach vrátane akútnej ischémie (Beardslee et al. 2000; Duffy 2012). Znižená celková expresia Cx43 a zvýšená lateralizácia urýchľujú nástup, incidenciu, frekvenciú a trvanie ventrikulárnej tachyarytmie po oklúzii koronárnej artérie (Lerner et al. 2000). Vysoká priečna vodivosť GJ a zvýšený
priemer buniek zvýšili citlivosť na vodivý blok poskytujúcu substrát pre arytmie (Seidel et al. 2010). Srdcové ochorenia sú často sprevádzané ako nedostatok celkového Cx43, tak aj zvýšením laterálnych spojení, čím sa zvyšuje náchylnosť srdca k malígnym arytmiami (Tribulova et al. 2015; Egan Benova et al. 2016). Na rozdiel od tohto zistenia, štúdie naznačujú, že adaptácia srdca na IHH nie je sprevádzaná takýmito nepriaznivými procesmi. Táto skutočnosť aspoň čiastočne vysvetľuje antiarytmické vlastnosti srdca po adaptácii na IHH.

Všeobecne platí, že antiarytmický účinok môže tiež závisieť od integrity a lipidového zloženia membrán, ktoré ovplyvňujú vodivosť a funkciu membránovo viazaných proteínov. Napríklad sa uvádza, že n-3 PUFA zlepšuje elektrickú remoduláciu, zvyšuje expresiu Cx43 a znižuje vznik arytmii u hypertenzných potkanov (Fischer et al. 2008; Radosinska et al. 2013), čo naznačuje úzky vzťah medzi Cx43 a antiarytmickým účinkom n-3 PUFA. Ukázalo sa, že IHH zvyšuje podiel n-3 PUFA v srdcových fosfolipidoch (Jezkova et al. 2002). Potravinová suplementácia potkanov počas adaptácie na IHH s n-3 PUFA mala za následok kumulatívny antiarytmický účinok, ktorý prakticky eliminoval komorové arytmie indukované I/R zranením (Hlavackova et al. 2007). Predložená štúdia ukázala, že krátká ischémia ešte viac zvyšuje už vysoký podiel n-3 PUFA v membránových fosfolipidoch v srdci vplyvom IHH, čo je v súlade so zvýšenou hladinou p-Cx43(Ser368) v end to end spojeniach.

Záverom môžeme povedať, IHH poskytuje antiarytmický účinok sprevádzaný zvýšenou expresiou Cx43 proteinu, fosforyláciou a pozitívnou Cx43 redistribúciou v ľavej komore. Aktivácia protizápalových kináz môže stimulovať signálne dráhy ovplyvňujúce obrat a zostavu GJ, čo vedie k zvýšenej endogénnej ochrane srdca pred životom ohrozujúcimi arytmiami.
6.2 Cx43, akútny a chronický chlad

V tejto práci sme prvýkrát poukázali na zmeny expresie a distribúcie Cx43 po vystavení akútnemu a chronickému chladu. Zistili sme, že proteínová expresia Cx43 a jeho fosforylovanej foriem P1 + P2 Cx43 sa nezvýšila vplyvom 3D a 10D chladu, zatiaľ čo nefosforylovaná forma Cx43 (np-Cx43) alebo taktiež označovaná ako nízko fosforylovaná forma sa znižila vplyvom 10D chladu. Immunofluorescenčné farbenie neprekázalo zmeny v distribúcií Cx43 vplyvom 3D a 10D chladu. V prípade chronického chladu sme zaznamenali zvýšenú proteínovú expresiu celkového Cx43. Kvantitatívna analýza imunofluorescenčných obrázkov odhalila mierny nárast Cx43 end to end spojení
v myokarde po vystavení chronickému chladeniu. Naše zistenia korelujú s prácou Saitongdee (2000), kde kvantitatívna analýza ukázala výrazne vyššiu imunoexpressiu Cx43 z hľadiska počtu plakov a v oblasti plochy plakov počas hibernácie v porovnaní s kontrolou u škrečka. Keďže škrečok predstavuje hibernujúci organizmus, otázkou ostáva, môžu byť tieto poznatky prenesené aj na nehibernujúce organizmy?

Experimentálne štúdie ukázali, že izolované srdce hibernátora toleruje nízke teploty a je schopné udržiavať kontrakcie pri 0-7 °C, pričom izolované srdce u nehibernátorov sa stáva ťažko arytmické pri znižení teploty z 30 na 16 °C a zvyčajne prestane biť pri ďalšom znižení teploty zo 16 na 10 °C (Burlington & Darvish 1988). Veľkosť svalovej kontrakcie s elektrickou stimuláciou rastie u nehibernantov, keď sa teplota zniží z 37 °C na 20 °C. Ďalšie zniženie teploty vedie k zniženiu svalovej kontrakcie. Podobná inotropia vyvolaná nízkou teplotou sa prejavuje aj u hibernantoov, avšak veľkosť kontrakcie sa naďalej zvyšuje, keď sa teplota ďalej znižuje na 15-10 °C a v prípade ježkov zostáva na relatívne vysokej úrovni dokonca aj pri teplotě 5 °C (Liu et al. 1990).

Vzhľadom na to, že rôzne typy medzibunkových kanálov majú rozdielne vlastnosti kanálov vrátane veľkosti pórov, vodivosti a iontovej selektivity, zmeny v množstve a distribúcií konexínov v bunkách sú spojené s množstvom patologických stavov, ako je arytmia (Kanno & Saffitz 2001). Navyše je funkcia GJ regulovaná rôznymi faktormi, ako je fosforylácia, napätie, Ca²⁺, pH. Jedným z faktorov ktorý môže ovplyvniť kontraktilitu srdca je už spomínaný Ca²⁺. Preťaženie vápnikom pravdepodobne prispieva ku krátkodobému uchovaniu srdca pred transplantáciu srdca, a preto by sa malo pri hypotermickom zachovani srdca zvážiť zniženie voľného cytosolického vápnika. Liu et al (1994) zistili, že perfúzia s 0,5 mM Ca²⁺ pred vystavením srdca chladu zlepšuje jeho funkčné zotavenie u potkana po perfúznnej konzervácii pri 5 °C počas 18 hodín (Liu et al. 1994). Niekoľko experimentálnych nálezov je v súlade s hypotézou, že dochádza k preťaženiu Ca²⁺ v srdcových bunkách počas hypotermie u nehibernátorov (králika a potkana), ale nie u hibernátorov. Toto bolo potvrdené meraním voľného cytosolického Ca²⁺, ktoré sa významne zvýšilo u potkanov s klesajúcou teplotou, zatiaľ čo izolované komorové myocyty z hibernátora (Richardsonova veverička) boli značne menej ovplyvnené (Johansson 1996).
V prípade akútneho chladu bola popísaná úloha adrenergdného systému u človeka v termogenéze (Simeckova et al. 2000). Naše zistenia preukázali nesignifikantné zniženie expresie u PKA chronického chladu, ale u Akt došlo vplyvom chronického chladu a regresie k signifikantnemu zniženiu. Rozhodujúcou signalizačnou dráhou, ktorá reguluje srdcový rytmus, je β1-adrenergná signalizácia, ktorá vedie pomocou cAMP k aktivácii PKA (Madamanchi 2007). Hoci cAMP je potrebný pre aktiváciu PKA, existujú ďalšie regulačné mechanismy, ktoré presne diktujú, kde a kedy je kináza aktivovaná v reakcii na špecifické podnety. Aj keď mnoho extracelulárnych signálov používa rovnaký systém druhého posla, protikladné účinky adenylátcyklázy a fosfodiesteráz generujú lokalizované gradienty cAMP a majú najváčší vplyv na koncentrované zásoby PKA v neaktivnej konformácii (Sim & Scott 1999). Bolo preukázané, že počas hibernácie dochádza k poklesu tvorby cAMP v komorách, čo môže taktiež znížovať GJ komunikáciu (Pleschka et al. 1996). Tieto zistenia sú v súlade s našimi doposiaľ nepublikovanými výsledkami, kde sme pozorovali zníženú expresiu adenylátcyklázy vplyvom chronického chladu.

Akt signalizácia môže tiež zlepšiť kontraktilnú funkciu tým, že ovplyvný cyklus vápnika v myokarde, ktorý hrá rozhodujúcu úlohu pri kontraktilite a relaxácii kardiomyocytov (Chaanine & Hajjar 2011). Zvyšovanie Ca^{2+} prúdu (I_{Ca,L}) cez kanálový komplex Ca^{2+} typu L a zvýšené uvoľňovania Ca^{2+} zo SR sú dva mechanismy, ktorými sa môže zvýšiť inotropizmus. Pokiaľ ide o prvý mechanizmus, Catalucci et al. 2009 preukázali, že Akt priamo kontroluje hustotu proteínu komplexu Ca^{2+}-kanál typu L a I_{Ca,L} tým, že zabraňuje degradácii Ca_{v}α1, podjednotky tvoriacej póry Ca^{2+}-kanálu typu L (Catalucci et al. 2009). Kim et al. (2003) popísali zvýšené hodnoty I_{Ca,L} na modeli myši Akt-E40K Tg, čo naznačuje prítomnosť mechanizmu závislého od Akt schopného modulovať manipuláciu s Ca^{2+} na sarkoleme (Kim et al. 2003). V súlade s tým bol zvýšený I_{Ca,L} izolovaný z kardiomyocytov myší s deficitnou fosfátázou a tenzinovým homológom, antagonistom PI3K a aktivátorom Akt (Sun et al. 2006). Avšak srdcová funkcia sa ukázala byť znižená in vivo. Negatívny inotropný účinok bol vysvetlený ako dôsledok zvýšenej regulácie izoformy y PI3K, ktorá reguluje cAMP fosfodiesterázu a vedie k zníženiu hladín cAMP (Crackower et al. 2002).

Ako už bolo niekoľkokrát spomenuté fosforilácia taktiež prispieva k regulácii otvárania/zatvárania GJ kanálov. Ďalšou sledovanou kinázou bola CK1, ktorej proteinova expresia sa vplyvom chronického chladu a regresie nezmenila. CK1 fosforiluje Cx43 v miestach Ser325/Ser328 Ser330 počas prechodu Cx43 z plazmatickej membrány do GJ (Cooper & Lampe 2002). Proteiny tepelného šoku sú zvýšené pri chlade a existujú dôkazy, že tieto proteiny, konkrétne heat shock protein 70 (HSP70), chránia Cx43 pred degeneráciou (Laing et al. 1998). Tomu nasvedčujú aj naše zistenia, kde v chronickom chlade bola pozorovaná znižená expresia MAPK vplyvom chronického chladu, pričom v regresii bola zvýšená. MAPK fosforiluje Cx43 na Ser279/Ser282, čím reguluje proces internalizácie a degradácie Cx43.
7 ZÁVER

Kardiovaskulárne ochorenia predstavujú významné príčiny úmrtnosti v dôsledku arýmií a následného kontraktilného srdcového zlyhania, pri ktorých je alarmujúca prevalencia rizikových faktorov u mladých ľudí. Srdcové ochorenia sú často sprevádzané zhoršenou funkcíou mitochondrií, rozvíjajúcim oxidatívnym stresom, poklesom celkového Cx43 a zvýšením laterálnych spojení, čím sa zvyšuje sklon srdca k maligným arýmiám.

Tato práca sa prevážne zaobiera úlohou konexínov a ich potenciálnych upstream kináz v dvoch protektívných antiarytmických režimoch adaptácie na hypoxiu (IHH) a adaptácie na chlad (CH). Vedľa toho výsledky tejto práce nadväzujú na už publikované dáta týkajúce sa ochrany mitochondrií zvýšenou asociáciou hexokinázy u antiarytmického režimu IHH a študovaním tohto javu u CH a následných ischemických podmienok. Ochrana mitochondrií pred nadmernou produkcíou ROS v hypoxii a následným I/R poškodením pomocou zvýšenej asociácie hexokinázy preukázala rozdiely medzi antiarytmickou IHH a proarytmickou CH. V prípade IHH asociácia hexokinázy 1 aj 2 významne rastie, pričom vplyvom CH sa asociácia nezmieňa ani u jednej z izoforií. Dôležitým nálezom však je, že CH znížila mieru odojenia HK2 z mitochondrií v priebehu reperfúzie v porovnaní s kontrolami.

Naše výsledky na modeli IHH ukázali, zvýšenú expresiu, fosforyláciu a súčasne zniženou laterálizáciu konexínov, čo môže závažne prispievať k už známemu antiarytmickému účinku. Zistili sme, že IHH ovplyvňuje fosforylovaný stav Cx43 na jeho šiestich fosforylačných miestach (Ser364, Ser365, Ser368, Ser279/282, Tyr265), čo bolo v súlade s detekovanými alebo už publikovanými upstream kinázami. Zatiaľ čo v akútnej expozícií chladu, ktorá arýmie nemení, nedochádza ani k podstatným zmenám v expresii a fosforylácií konexínov. U chronickej CH adaptácie sa znižuje laterálizácia v súlade s jej antiarytmickým účinkom. Nachádzame tiež zásadne rozdiely v aktivácii upstream kináz medzi IHH a CH. V priebehu I/R poškodenia u adaptovaných zvierat na IHH, došlo k ďalšiemu zniženiu laterálizácie konexínov, čo bolo v súlade s navýšením n-3 PUFA,
Záverom môžeme povedať, že naše práce priniesli originálne výsledky, ktoré otvárajú nové pohľady na kardioprotektívne režimy adaptácií a k úplnému porozumeniu týchto mechanizmov je nutné ďalšie štúdium.
8 ZOZNAM POUŽITEJ LITERATÚRY

Batra, N. et al., 2014. Direct regulation of osteocytic connexin 43 hemichannels through AKT

Cox, J. et al., 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, 13(9), pp.2513–2526.

Ek-Vitorin, J.F. et al., 1996. pH regulation of connexin43: Molecular analysis of the gating

Hirst-Jensen, B.J. et al., 2007. Characterization of the pH-dependent Interaction between the

Jezkova, J. et al., 2002. Chronic hypoxia alters fatty acid composition of phospholipids in

Knezl, V. et al., 2008. Distinct lethal arrhythmias susceptibility is associated with sex-related

Laird, D.W., 2005. Connexin phosphorylation as a regulatory event linked to gap junction

Patel, L.S. et al., 2006. Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP. *cell Commun Adhes*, 13(1–2), pp.41–54.

Sim, A. & Scott, J., 1999. Targeting of PKA, PKC and protein phosphatases to cellular

Sirnes, S. et al., 2009. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication. *Biochemical and Biophysical Research Communications*, 382(1), pp.41–45.

Solan, J.L. et al., 2007. Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. *J Cell Biol*, 179(6), pp.1301–1309.

Southworth, R. et al., 2006. A reevaluation of the roles of hexokinase I and II in the heart.

Sun, H. et al., 2006. Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling. Circ Res, 98(11), pp.1390–1397.

Prílohy

Príloha 1

Zloženie roztokov pre prípravu hrubých membrán zo srdca

Zloženie TME (TRIS, MgCl₂, EDTA), 100ml, pH 7,4:
242 mg TRIS (TRIZMA® base, SIGMA)
61 mg MgCl₂ 3mM
29,2 mg EDTA 1mM (SIGMA)
2000 μl complete 50x koncentrovaný
10 tabletek PhosphoSTOP

Zloženie TMES (TRIS, MgCl₂, EDTA, sacharóza), 100ml, pH 7,4:
242 mg TRIS (TRIZMA® base, SIGMA)
61 mg MgCl₂ 3mM
29,2 mg EDTA 1mM (SIGMA)
2000 μl complete 50x koncentrovaný
10 tabletek PhosphoSTOP
8,6 g sacharóza

Príloha 2

Zloženie roztokov pre Imunofluorescenciu

Zloženie Phosphate Buffered Saline (PBS)
8g NaCL
0,2g KCl
1,72g Na₂HPO₄.12H₂O
0,24g KH₂PO₄
Následne bolo upravené pH pomocou NaOH na hodnotu 7,4 a doplnené do 1l.

Príloha 3

Zloženie roztokov pre Elektroforézu a Western blot analýzu

Zloženie homogenizačného média HM1, 10 ml, pH 7,4:
16,04 mg TRIS (TRIZMA® base, SIGMA)
9,52 mg EDTA (SIGMA)
2,92 mg EDTA (SIGMA)
0,86 g sacharóza
1 tableta inhibitory proteáz
200 μl complete 50x koncentrovaný
7,71 mg DTT (dithiotreitol)
Zloženie homogenizačného média HM2, 10 ml:
3 g močoviny
1,55 g thiomočoviny
45 mg tetrasodium pyrofosfát dekahydrát
Všetky chemikálie boli zmiešané a doriedené 2-merkaptoethanolom do 10 ml mQ H2O.

Zloženie gélov:

<table>
<thead>
<tr>
<th></th>
<th>Na 2 gély</th>
<th>12% deliaci gél</th>
<th>5% zaostrovací gél</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>2,9 ml</td>
<td>2,62 ml</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>4 ml</td>
<td>0,83 ml</td>
<td></td>
</tr>
<tr>
<td>Tris pH=8,9</td>
<td>2,5 ml</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tris pH=6,9</td>
<td>0</td>
<td>1,25 ml</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>0,1 ml</td>
<td>0,05 ml</td>
<td></td>
</tr>
<tr>
<td>APS</td>
<td>0,5 ml</td>
<td>0,25 ml</td>
<td></td>
</tr>
</tbody>
</table>

AA – 30% akrylamidový roztok (SIGMA)

TRIS pufor pH 8,9
9,1 g TRIS (TRIZMA® base; SIGMA) + 345 μl TEMED (SIGMA) bolo rozpustené v mQ H2O. Následne bolo upravené pH pomocou HCl na hodnotu 8,8 a doplnené do 100 ml.

TRIS pufor pH 6,8
10,462 g BIS-TRIS (SIGMA) + 345 μl TEMED (SIGMA) bolo rozpustené v mQ H2O. Následne bolo upravené pH pomocou HCl na hodnotu 6,8 a doplnené do 100 ml.

SDS – sodium dodecyl sulfát (SERVA)

APS – ammonium persulfát 60 mg do 5 ml mQ H2O (P-lab)

DTT – dithiotreitol

Zloženie elektrodového pufru, 1l:
30,3 g TRIS (TRIZMA® base; SIGMA)
144 g Glycin (SIGMA)
10 g SDS (SERVA)
Navážené množstvo bolo rozpustené v 1l mQ H2O. Pred použitím bol roztok nariedený v pomere 1:9 – pufr: mQ H2O.

Zloženie Towbin pufru – blotovací pufr, 1l:
3,03 g TRIS (25mM) - (TRIZMA® base; SIGMA)
14,4 g Glycin (192mM) - (SIGMA)
Navážené množstvo bolo rozpustené v 500 ml mQ H2O. Následne pridané 200 ml metanolu (PENTA) a doplnené do 1 l mQ H2O.

Zloženie TBS, 5l:
12,1 g TRIS (20mM) - (TRIZMA® base; SIGMA)
146,2 g NaCl (500mM) - (PENTA)
Navážené množstvo bolo rozpustené ve 4 l mQ H2O a pH bolo upravené na 7,5 a doplnené mQ H2O do 5 l.

Zloženie TTBS, 1l:
Pred použitím bolo do 1 l TBS pridané 500 μl Tween 20 (SIGMA)