
BACHELOR THESIS

Gergely Tóth

Sorcerer’s Struggle

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: IPSS

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Sorcerer’s Struggle

Author: Gergely Tóth

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: This thesis deals with the design and implementation of a multiplayer
run and gun game, which can be run on Windows, Linux and MacOS platforms.
The thesis contains discussions about the gaming platforms and the most impor-
tant components of the application and of a suitable world editor. Furthermore,
the problems of map smoothing and dynamic image synchronization are explored
and the last part addresses the design and functionalities of a matchmaking server.
The result of the thesis is a two-dimensional game, with a complementing world
editor and server.

Keywords: video game, platformer, multiplayer, multi-platform, level editor

ii

I would like to thank Mgr. Jakub Gemrot, Ph.D. for the time he spent supervising
this thesis. I would also like to thank my family, who have always been there for
me.

iii

Contents

Introduction 3

1 Platform selection 5
1.1 Assignment breakdown . 5
1.2 Choosing the platforms . 5

2 Design of the game 8
2.1 Inspirations . 8

2.1.1 Soldat . 8
2.1.2 Worms . 9
2.1.3 Other game mechanics . 10

2.2 Main ideas . 10
2.2.1 Game objects . 11
2.2.2 Playing field . 11

2.3 Game design and flow . 11
2.3.1 The player object . 12
2.3.2 The tiles shaping the map 14
2.3.3 Neutral enemies . 14
2.3.4 Gamemodes . 15
2.3.5 WorldEditor . 16

3 Analysis and implementation 17
3.1 Lobby room . 17

3.1.1 Lobby room . 17
3.2 Player evaluation . 18

3.2.1 Matchmaking models . 18
3.2.2 More about TrueSkill . 19

3.3 WorldEditor . 20
3.3.1 Creating a visual aid for object placement 20
3.3.2 Required elements . 20
3.3.3 Custom tile picking . 21
3.3.4 Easing the editing . 21

4 Libraries and game engine 22
4.1 Game engine selection . 22
4.2 World Editor . 23
4.3 Player evaluation . 24

5 Map smoothing 25

6 Dynamic image synchronization 30
6.1 Requesting and supplying the sprites 31

6.1.1 Image comparison . 32
6.2 Preparing the image for the transfer 34

6.2.1 Encoding to JPG . 34
6.2.2 Encoding to PNG . 34

1

6.2.3 Zipping . 34

7 MasterServer 35
7.1 Custom lobbies . 35
7.2 Ranked matches . 36
7.3 Matchmaking . 37

7.3.1 Matchmaking aspects . 37
7.3.2 MatchmakingWorker . 38
7.3.3 Creating a multi-threaded matchmaker 39
7.3.4 Testing the algorithm . 41

Conclusion 44

Bibliography 45

List of Figures 48

A User documentation 50
A.1 Launching the server . 50
A.2 Installation . 50
A.3 Main menu - establishing the connection 51
A.4 Lobby room . 53
A.5 Game scene . 54
A.6 World Editor . 57

A.6.1 Installation . 57
A.6.2 Building the map . 57

B Programming documentation 61
B.1 MainMenuScene . 61
B.2 LobbyScene . 63

B.2.1 Forge Networking . 63
B.2.2 Lobby rooms . 63
B.2.3 GameScene transition . 65

B.3 GameScene . 66
B.3.1 The player’s game object 67
B.3.2 NeutralBehaviours . 71
B.3.3 Gamemodes . 71
B.3.4 Heads-up display . 72

B.4 WorldEditor . 73
B.5 MasterServer . 76

2

Introduction
The shoot ’em up video game genre was one of the most popular genres in the
history of computer games. This title encapsulates games, where the user is
granted control of a spaceship, which tries to make his way through massive
waves of enemies by destroying them or dodging their attacks. One of the most
popular games of this style - which was also one of the first major arcade game
hit - is Asteroids. [1]

The run and gun category is one of the subgenres of shoot ’em up. Games
belonging to this section have the same base structure as the aforementioned ones,
but put more emphasis on evading enemy fire. Typically, the player controls a
protagonist fighting on foot and trying to avoid death, while aiming to destroy
its enemies. In these type of games, the camera’s movement is usually defined as
continuously moving along the horizontal axis. Although the first representatives
of these games were all single player, the advancement of technology made it
possible for them to become network aware and therefore multiplayer. These
applications allowed friends to play together in a common game environment
utilizing a remote server.

In my bachelor thesis, I aim to design and implement a multiplayer, two-
dimensional run and gun game. The game will also be multi-platform in order
for it to be playable by the biggest number of players possible. We will target
the three major desktop platforms, these being Windows, Linux and Mac OS X,
but omit the deployment for mobile devices, because of the characteristics of the
game. Some of these (mainly the precision-based aiming) make it difficult for
the player to control the in-game character on a phone. To look for inspiration
for the construction of this kind of application, our first step after choosing the
target platforms will be to analyse two games, which have gained recognition in
their respective fields. After this, we will establish the game design, perform the
analysis and talk about the implementation of the game and the world editor.

This latter tool makes the creation of maps possible for the user. For this
editor, we will design and implement tools, which will allow the user to create
tilemaps and polygon maps as well. Moreover, we will also permit the end user
to choose the spawn positions of the teams and add neutral enemies to the scene.

In the last chapters, we will first present the problem of dynamic image syn-
chronization used in the game. Because we give the user the option to use any
image for the tiles he wishes, we will need a way to synchronize these sprites with
the players he chooses to play with as well. I will present the paradigm used to
achieve this. In the last chapter, we also design a server capable of hosting lobbies
for unranked matches and creating balanced games according to the players’ skill.

3

Goals of the thesis
• select the gaming platforms for our application (run and gun game)

• establish the game design and game flow

• select the best suited libraries for the implementation

• implement tools for creating tile-based and polygon maps

• solve the problem of custom map synchronization

• create a matchmaking server with custom lobby options

4

1. Platform selection
In this chapter, we elaborate on the thesis assignment and then select the video
game platforms, which we will develop our game for.

1.1 Assignment breakdown
The goal of this thesis is to develop a multiplayer multi-platform run and gun
game. If we break this definition down, we can specify the game we aim to create
(here we describe only the high-level construction of the game, the more detailed
design is discussed in the following chapters):

• for the game to be multi-platform, we design it to run on more than one
system, which helps us reach a wider audience

• the game being multiplayer means that the user plays via the Internet with
other people instead of computer controlled entities

• a run and gun game implies a two-dimensional side-scroller, where the user
can control only his own character, which he uses to launch projectiles at
opponents trying to eliminate them while attempting to avoid being hit by
them

Additionally, as a supplement of the game, we also include a game specific
world editor module. In the interest of variability, the editor will make it possible
to create tilemaps and polygon maps too. Finally, because visual elements play
a big role in run and gun games, we will also offer the map creator the chance to
use his own tile designs for the games, even if the tile images have not yet been
seen by other players.

In the following section, we will select the platforms most suitable for our
application.

1.2 Choosing the platforms
Nowadays game companies aim to target as many platforms with the same game
as possible. Extended options attract more players and therefore the profit in-
creases.

According to a survey done in 2017 by BusinessInsider (figure 1.1), desktop
computer gaming (PC, Mac and Linux combined) still leads the charts despite
the incredible growth mobile devices attracted in the last decade.

5

Figure 1.1: The most important gaming platforms in 2017. 1

Let us now look at 2 points characterizing the differences between the plat-
forms:

1. When considering smaller devices, the both-hand coordination and the com-
plex control of the character does not allow a sensible design for the game.
Mobile phones struggle with a lot of technical restrictions, some of which
can be solved by upgrades and the constant improvements rolled out by
manufacturers, but the one that is always apparent and most important for
us is the size of the device. Since handheld devices share the same surface
for both the display and the controls, when a game has a large number of
buttons for navigation, the screen inevitably gets covered.

2. There are significant differences between how the platforms are controlled
that can not be overlooked. Let us use a first person shooting game as an
example and note how much of a disadvantage the mobile user has against
the player on his desktop computer playing with a keyboard and mouse. We
can see that the same multiplayer game can not be necessarily implemented
well for both types of gaming platforms (the same argument is also true for
gaming consoles, such as the PlayStation or Xbox) because the difference
between the controls makes the game unfair towards a group of the players.

The user playing a run and gun game must control his character’s movement
plus the offensive and defensive actions all at once, the latter two of which require
precise targeting. Because of this and according to point 1, we can conclusively
decide that we cannot include mobile devices in our target platforms.

By considering point 2 in the list above, we also see that we cannot design
the game for both gaming consoles and desktop computers. According to the
research above, the widest audience can be reached by developing a game for PC

1Source: https://www.businessinsider.com/most-popular-game-platforms-
developers-chart-2017-3

6

https://www.businessinsider.com/most-popular-game-platforms-developers-chart-2017-3
https://www.businessinsider.com/most-popular-game-platforms-developers-chart-2017-3

and Mac. In addition, there is no reason why we cannot include Linux based
computers as well, as they differ from other desktop platforms only in technical
aspects, but not control-wise.

As a result we have determined, in order to attract the most users possible,
we will design our game for all 3 desktop platforms - Windows, Linux and Mac.

7

2. Design of the game
In this chapter we list the games that inspired ours, describe the points which we
carry over and which we change. Finally, we describe our game in detail.

2.1 Inspirations
Firstly we will present the games that inspired ours and highlight their most
important characteristics while providing some information about the gameplay
mechanics.

2.1.1 Soldat
Soldat was released in the summer of 2002. Its genre is defined as a basic run and
gun, but in reality it is a fast-paced, mass-multiplayer, precision-based 2D shooter
with high customizability (see figure 2.1 for the multiple choices of weapons).
Thanks to these attributes and the fact that it is freeware, the game found itself
played by a big community. Although nowadays only a few [2] play it mostly
only as nostalgia, it was moderately popular a few years back [3].

The most interesting characteristics of the game are:

• The player is controlling a soldier with jet boots, which allow him to fly for
a limited amount of time and which help the user navigate the entirety of
the playing field. The soldier also possesses a weapon, which can be selected
only upon the player’s death and not during the active time. If the player
is killed, his soldier character is returned to the spawn point and after a
short amount of time, the user is active again.

• The game is played on 2D maps comprising of several polygon blocks, which
are tailored for fast-paced gameplay. The map elements are static and the
player is not able to interact with the layout, but there are various neutral
elements (health packs, ammunition, etc.) scattered around, which the user
can use or pick up.

• The goal of the game is based on the selected gamemode (of which there
are several). This goal can be object based (where the teams fight for each
other’s flag or areas of interest) or free-for-all, where the objective is simply
to eliminate the opposing players.

8

Figure 2.1: Screenshot of the game Soldat. 1

2.1.2 Worms
Worms [4] is a series of games with the first game released in 1995. The gameplay
is turn-based, where the goal is to eliminate the enemy team with a wide variety
of weapons. Apart from those weapons, there are other utilities available for
the player to move him around or to build himself a shelter. Even to this day,
the Worms franchise is one of the most popular games of all time (with over 10
million copies sold [5]).

There are many variations of the game, but we will be interested in the earlier
editions, which are 2D side-scrolling video games.

• The goal of the game is the elimination of other (possible multiple) enemy
teams.

• In order to achieve this, there is a number of tools and weapons available
for the player to use and this choice is made during the active time of the
player and can be changed freely. In the earlier editions, there are over 40
items to select from. [6]

• The concept, that the game is playable on almost any map (an example
of a procedurally generated map is seen in figure 2.2) is one of the major
points of success. Since the map is a main feature in the gameplay - as it
determines the positions, allows one but denies another manoeuvre of the
player - with it being unique makes every game differ from each other.

1Source: http://www.freegamesutopia.com/public/screenshots/soldat-01.jpg

9

http://www.freegamesutopia.com/public/screenshots/soldat-01.jpg

• Additionally, the environment is fully destructible. This gives the option
to employ different tactics, e.g. destroying the map below an enemy worm
can make the worm drown, which results in instant death, independent on
its current remaining health.

Figure 2.2: Screenshot of the game Worms World Party. 2

2.1.3 Other game mechanics
A game characteristic that appears in many - mostly role-play - games are abilities
based on the class of the character controlled by the player. Although in some
games, like Overwatch [7], the switch between these classes is allowed during the
game, it is mostly common that it remains unchanged.

The user’s choice of the class effects the game and his team in a great way.
A good team composition would be heterogeneous to divide the different re-
sponsibilities amongst the players therefore influence the team performance in a
positive way. The cooperation these choices require is often a problem between
teammates.

2.2 Main ideas
In this section we briefly present the main ideas which we can take away from
the games listed above. We describe that characteristics we choose to implement,
ignore or improve upon (or possibly expand on).

Our goal is to create a two-dimensional side-scroller run and gun game with
continuous gameplay, which will keep the player immersed. In order to achieve
this, the downtime of the user - caused only by the death the of the character
object - will be short, i.e. the respawn will be almost instantaneous (a few seconds
is necessary so the player can shift focus).

2Source: https://www.team17.com/wp-content/uploads/2015/06/WormsWorldParty_4_
11-06-2015.jpg

10

https://www.team17.com/wp-content/uploads/2015/06/WormsWorldParty_4_11-06-2015.jpg
https://www.team17.com/wp-content/uploads/2015/06/WormsWorldParty_4_11-06-2015.jpg

The game is also mass-multiplayer, which means that it must be ready to
handle hundreds of players.

2.2.1 Game objects
The user will be playing against other players via the Internet, distributed to
teams, where each player will control only one game object - the character object.
This character will have the ability to traverse the entire map with the help of
basic movements and the ability to fly for a limited (replenishable) amount of
time.

In addition to movement, the player will be able to attack and defend him-
self against enemies. For the offense to be successful, the user will have several
weapons at his disposal, which can be selected and changed at any given point in
time. Adjusting the aim of the weapon is done by just a basic movement of the
mouse, but the precision required to be effective with it adds a learning curve to
the game. Additionally, we introduce character classes, which equip the players
with ultimates - various spells with longer cooldowns to limit their usage. Other
game objects include neutral enemies, which are uncontrollable. These objects
give way for various tactics and therefore can make the player’s life easier or
harder.

2.2.2 Playing field
It is important to guarantee a level of variability to the game for it to not become
repetitious. In order to achieve this, we will give the user the possibility to create
custom maps and therefore we open the doors for the player to have different
experiences with a single game.

One thing not applicable for our game is the concept of the destructible en-
vironment. With 10 players constantly active on the map, each of them firing
different projectiles at each other every few seconds, this mechanic would quickly
reduce the map to nothing.

2.3 Game design and flow
In this section we will look at the models of the key game components. First of
all, we will design the player object, which will be controlled by the user. We will
model the mechanics of the movement and the flight and equip the player with a
weapon, that has both offensive and defensive capabilities. Additionally, for the
mentioned offensive abilities to be available, we will have to construct projectiles.

After this object is finished, we will take a look at other elements in the
scene. Firstly, we will present the building blocks shaping the map. Secondly, I
will introduce the independently functioning neutral enemies, which will provide
further variability in the game. As the last point, I will summarize the two
supported gamemodes, which determine the goal of the game.

11

2.3.1 The player object
The most important game object in the game is the one controlled by the player
(illustrated in figure 2.3). The basic movements most games provide - this being
the motion along the horizontal and vertical axis - are implemented in our game
as well, with a specification that jumping is only enabled when the player is
standing on the ground. Beside these, in the event of his death, the player is
respawned instantaneously (to mirror the continuous gameplay of Soldat).

Figure 2.3: The in-game player object.

Projectiles

After the movement is specified, the second prevalent characteristic of a run and
gun game is that players can shoot, hurl or throw projectiles at each other, which
makes these objects the main subjects of the users’ interactions.

Inspired by the gameplay of Soldat, every player is able to create and launch
projectiles in a given direction. This direction can be adjusted freely up until the
shot is fired. When the shot is released, a small recoil force will kick the wizard
in the direction opposite to the one of the projectile’s.

The projectiles’ collisions will be checked with the player object, the shield
objects and the tiles constructing the map. In every case, the projectile gets
destroyed upon contact, which causes keeps the number of objects constant in
the scene during the game (as new projectiles are spawned, the older ones are
destroyed).

Flight

Flight is another mechanism motivated by Soldat, which helps the player traverse
the map faster, while respecting basic physics laws making the game feel more
natural. Because of this, we will design the functionality the following way.

The variable that will control the process of the flight is the amount of force
which is added to the player to push him in the upwards direction. This force
is gradually increased as long as the flight is not interrupted. At the moment
the flight is halted, this variable is reset. In the event of flight reactivation the
variable is initialized to the starting value and is continuously escalated again.

In order to force the user to exploit the other types of movement, we limit the
time a player can fly for. During a flight the time is regularly decreased and if it
runs out, the flight is halted and the player will start to fall. While not amid the
process of flying, this time is steadily replenished.

12

Shield

As described above in the previous sections, players in Worms are allowed to
select their approach to the situation by choosing their tools during the gameplay.
On this basis and because in the course of the game, the player is consistently
targeted with projectiles, we balance this by introducing a shield unit capable
of blocking missiles. Additionally, so the usage of this component becomes a
calculated choice, we limit the time the shield can be used.

If the player blocks a shot with his shield, the shot is negated, the health of
the player remains intact, but the shield loses power and drops its width (the
more powerful the shot, the more damage to the shield). If the shield’s time runs
out, it shatters. Shield time is replenished gradually by not using it. In the event
of shattering, the shield can not be used and a fixed amount of time has to pass
before the shield time will start to refresh.

Weapon system

As discussed regarding the shield mechanics, we aim to allow the player to select
their tools on the fly. We also aim to provide the user with different types of these
devices, so he can always choose the best fit for the presented situation (this idea
is one of the core principles of the game Worms).

In our game the player will possess 3 different weapons, namely the staff,
the rod and the dagger (figure 2.4). Different weapons have different properties,
ranging from reload time to maximum possible damage dealt by the different
projectiles. Each weapon is suited best for distinct situations: there is a charge-
able weapon (where the damage dealt by the projectile is based upon the time
it spent being charged by the player), an automatic weapon (where there are
multiple lower-damage projectiles fired in rapid succession) and a one-off weapon
(which deals substantial amount of damage to other players, but has a longer
reload time than other firearms).

Figure 2.4: Available in-game weapons.

The targeting system mirrors the one from Soldat. The weapons rotate with
respect to the movement of the mouse, thanks to which the player is able to
aim the shots at his opponents or direct his shield to deflect a projectile headed
towards him. The rotation and selection of the weapons are networked, thus
every player can see the other one’s choice and its position.

13

Class of the character

In order to put more focus on correct teamplay (the team with players choos-
ing complementing abilities will usually perform better than the one which does
not care about synergy), games often introduce character classes with unique
strengths (as referenced for the Overwatch).

We add this functionality to our game by granting the player control over a
special ability, which we will call ultimate. The type and behaviour of this skill
will be based on the class of the character, although every one of them will share
a few common properties.

Every ultimate will have an active time and a cooldown time (so they are used
strategically and not constantly). Ultimates are continuously charged and at the
moment it is ready, the player can cast the spell. After release, an expanding
circle emits from the given player and the effects are applied on players whom
collide with this circle. The active time will determine how long the effect of the
ultimate lasts. After this time has elapsed, the spell will begin to charge itself
again and will be ready after the specified cooldown time.

The 4 character classes implemented in the game are:

1. Tactician: the player’s and his teammates’ shield and flight power are
replenished

2. General: the reload time of all weapons are halved (lasts for a given
amount of time)

3. Puppeteer: freezes every player of the opposing team in position (lasts for
a given amount of time)

4. Healer: heals himself and teammates by setting their health to 100 - ad-
ditionally, if the player or a teammate is under the effect of the stun by a
Puppeteer and a certain amount of time has already passed, the ultimate
will negate the effect of this stun as well

2.3.2 The tiles shaping the map
The tiles serve as the building blocks of the game. The main purpose of these
elements is to shape the map and to influence the motion of other moving game
objects. Our game supports both tile based maps as well as polygon maps.
Additionally, since graphical elements play a big role in run and gun games, we
enable the creators of maps to add their own style to it as well. The designers are
able to use their possible unique tile designs in maps they create. This function
will be described in a later chapter in detail.

2.3.3 Neutral enemies
The last type of objects not present in the referenced games are neutral enemies.
Beside the previously discussed ultimates, they can contribute to the diversity
of the game by unlocking new strategies a player can use. The neutral enemies
are present to make the user’s objective harder to achieve, but they will behave

14

independently of the players. The behaviours of these object are customizable
and can be done in the World Editor (this will be discussed later).

There are 2 different types of neutrals (illustrated in figure A.6) implemented
in the game, both with a unique ability and purpose:

1. Knight: a game object that will move only horizontally and will damage
the player instantly if the two of them collide. In the event of it colliding
with a tile from the side it will turn around and continue his movement in
the other direction. If it falls down from the ledge of the map, it will obey
the laws of the physics, land on the ground and continue his motion.

2. Archer: the neutral will spawn and launch a projectile in the upwards
direction relative to its rotation. The projectiles are spawned after the
specified time has passed.

Figure 2.5: Neutral enemies in-game.

2.3.4 Gamemodes
The goal of the game is determined by the selected gamemode. The two classic
types of these implemented are Deathmatch [8] and Capture the Flag [9].

DeathMatch is possibly the most popular gamemode in shooting games. The
objective is to eliminate other players while trying to die as few times as possible.
In our game, we will play the variant Team Deathmatch, where the players are
separated into 2 teams. A team earns a point if a player from the opposing side
dies.

The Capture The Flag gamemode is focused on the principles of obtaining and
defending a specific game object. Each team has his own flag and the objective of
the game is to bring the enemy team’s flag to your own base (or more specifically,
the place where one’s flag’s base point is), while not losing your own flag to the
enemy team (called ”capturing the flag”). In this style of play, kills are not as
important and various strategies can be implemented to try to find the optimal
approach.

The game ends if one the teams reaches the target score.

15

2.3.5 WorldEditor
In this section we will deal with the design of the game’s world editor. By
permitting the user to create the layout, we insure a certain mutability to the
game, creating a different experience for the player for every different map he
plays.

The WorldEditor is a tool, which the user can use to create a game setting he
can later use to play in. This editor will allow the user to:

• shape the map by creating tile objects with custom sprite images

• create custom polygon maps using the tiles drawn (from here on in this
thesis we will refer to this functionality as ”smoothing” the map - because
it transforms the right-angled outline of the map to a curved-surfaced one
- as shown in figure 2.6)

• decide on the spawn positions of the teams (and other gamemode specific
objects - e.g. the flags for the gamemode Capture The Flag)

• add an arbitrary number of neutral enemies with fine-tuned behaviour prop-
erties to the scene

Figure 2.6: Converting (”smoothing”) the tilemap to a polygon map.

16

3. Analysis and implementation
In the previous chapter we designed the game, including the objects, game flow
and other things. In this chapter we go through the necessities, which we will
need to implement the objects and concepts described previously. We will discuss
the lobby system, evaluation of players and the map smoothing algorithm. These
things will contribute to the decisions made about the game and network engine
and the world editor in the next chapter.

3.1 Lobby room
The lobby room serves as the preparation stage of the game. After the user has
chosen the properties of his character, he can send a signal to the host saying
that he is ready and prepared for the game to start. The host player is given
the option to make changes to the settings of the game as well, most commonly
to select a map, the game mode and set the length of the match by modifying
target objective number. However, in order for the player to get to this stage,
the connections have to be stabilized and the roles of a server and a client sorted
out.

At the start of the game, the player picks one from these options:
1. Create a custom game on the remote server (public or private) and join it

immediately as the host.

2. List all the games found on the remote server and join one of them as a
client.

3. Enter the matchmaking pool and play a balanced and ranked match.
This process is described in detail later in the thesis.
Although the technicalities are different, these choices will ultimately lead to

a set lobby room, where one of the players functions as the host and the others
as the clients.

3.1.1 Lobby room
There are 3 choices every player has to make before the start of the game: decide
on the name of the character, select its class and pick the team he will be playing
for (in case of a ranked balanced match, this option is disabled) - illustrated in
figure 3.1. Besides these, the host will have to pick the game mode, set the game
length and opt for a map to play on. Every player has a ready button at his
disposal to click when he decides that his choices are final, although it is a good
practice to allow him to change his mind and readjust something. After all the
players have set their state to ready, the host is able to start the game.

Figure 3.1: Representation of the player in the lobby.

17

The maximum number of players in a game is set to 10, so in the event of a
custom lobby this would ideally mean that 5 players would be playing against 5,
but these kind of decisions are left for the users to decide. The lobby manager
supports a 1 against 9 composition as well, if all players deem this to be fair (by
clicking the ready button).

After entering the lobby, the player is presented with the appropriate GUI
elements that allow him to set up the character in the way mentioned before.
The selected values are synchronized throughout the network, which gives the
option for a player to react to another one’s decisions. This kind of system
promotes strategizing within or against a team.

3.2 Player evaluation
The goal of every game is to make the user enjoy themselves while playing it,
which can only be achieved when the players involved in a match are similarly
skilled. Imbalanced games tend to cause bitterness in people - especially in those
playing for the disadvantageous side - which make them less likely to play the
game the next time. Estimating a player’s skill however is not a trivial task, but
fortunately there were a few models researched and put together for exactly this
purpose.

In this chapter, we will explore our options for a matchmaking model and find
that Microsoft’s TrueSkill model is suited to our needs.

3.2.1 Matchmaking models
There are 3 popular matchmaking models used nowadays - ELO, Glicko and
TrueSkill.

The ELO system [10] was designed and developed by Arpad Elo and is now
widely used in competitive games - the most prominent of them being chess, for
which it was officially adopted by the World Chess Federation. Unfortunately,
ELO works only for two-player games and cannot handle team-based ones. One
attempt to bridge this problem was the so-called duelling heuristic as referred
to in the already mentioned TrueSkill paper [11]. This approach treats teams
as individual players who play against the players on the enemy team and then
calculates the average of these duels.

The next model is called the Glicko system, which was developed by Dr. Mark
E. Glickman in 1999 [12] as an extension of the ELO system. This model intro-
duces a skill trust factor (standard deviation in statistical terminology) referred
to as ratings deviation, which describes how much confidence does the system
have in the player’s rating (this confidence gradually declines when the player
has not played in a while for example). While this system addressed key defects
of ELO, it still remained a two-player rating model.

The last model (which will be our pick as a model by process of elimination)
is the already cited TrueSkill system developed by Microsoft. It is viewed as a
generalisation of the ELO system, which can deal with teams containing more
than only one player and calculate the updated rank of the individual from the
team’s performance. This model provides similar results as the above mentioned

18

ELO system with the duelling heuristic, but performs twice as fast and tends to
converge better (according to tests conducted by Jeff Moser [13]).

3.2.2 More about TrueSkill
The TrueSkill system uses Bayesian inference for ranking players. Each player is
assumed to have a prior skill, which is described by two variables: the mean (the
assumed rank of the player) and the standard deviation (the confidence in the
established rank).

In short, the algorithm uses a factor graph (figure 3.2) with message passing to
calculate the new ranks based on the match outcome. If we follow the path down
the graph, the process predicts the player’s performance based on his prior skill.
According to the predicted performance we can anticipate the performances of the
teams (which TrueSkill determines simply as the sum of the player performances),
which can then be compared. We iterate this process until the values at the
bottom of the graph converge. After this, we reverse the directions each factor
and propagate messages back up the graph. The new skill rating of the player is
established once the messages reach the top level of the graph.

Figure 3.2: TrueSkill factor graph. 1

0Note: for the sake of completeness we mention one more system called Rankade and their
skill score called Ree [14]. In the time of writing this thesis the model counts as new so there
is little information available about it and almost all of them are originated from the developer
team and is therefore considered subjective. There is also no information about the mechanics,
only some key points highlighted in which it is supposedly superior to TrueSkill.

1Source: http://www.moserware.com/2010/03/computing-your-skill.html

19

http://www.moserware.com/2010/03/computing-your-skill.html

Another plus characteristic of the method of using a factor graph to calcu-
late new ranks is the built-in extensibility of the model. In the March of 2018
Microsoft released an improved version of their system labelled TrueSkill2 [15],
which introduces the concept of metric-driven modelling and extends the basic
factor graph by adding in variables, which model the in-game behaviour of the
player better than the original version. Unfortunately, these metrics are game-
specific and can only be determined from previous real game data, so the analysis
and implementation of this model is left as a future improvement (for after the
game is released and sufficient amount of data is collected).

3.3 WorldEditor
In this section, we go through the required functionalities for the world editor.

3.3.1 Creating a visual aid for object placement
First of all, we will require a grid in order to help us position the tiles, neutral
enemies, properties, etc. We need a grid which will not be present anywhere
else, which would only serve as a visual assistance for the user to help him better
differentiate and place the elements in the scene.

3.3.2 Required elements
After the grid is set, we need to define the settings of the map and add the
interactivity for the user to place the tiles, properties and neutral enemies on the
map.

First and foremost we will need to decide on the size of the map. We will
define map size as the width and height of the map, expressed in the number of
tiles in a row and in a column. Next we give the user the option to choose the
folder, where he collected the artwork for the tiles. Because of the properties of
a tile grid, we require that these images had the same size and that there is at
least one picture in the specified folder. These artworks are then synchronized
amongst the players, which is discussed further in a later chapter. In addition,
we need a way to clear all tiles in the map for the user’s convenience as we aim
to be as user-friendly as possible.

After the main building blocks of the map are set, we compel the user to set
the map properties. Note, that the placement of these properties is essential for
the game to function and we can not let the user create the map without setting
these positions. The four properties are the spawn positions of the two teams
and the spawn positions of the two flags for the Capture The Flag gamemode.

After these necessary properties are set, we must offer the user to optionally
place the neutral enemies. The creator must be able to select the type of neutral
he wants to place, rotate it if he wishes, set its properties and place it on the
map. Although we want to give the user as much freedom as possible, we accept
only a range of values he can set (e.g. the time interval of two shots of the
Archer object). This results in a more constricted world editor, but guarantees
the proper and sensible functioning of the neutral.

20

In order to allow the user the creation of polygon maps, we must also offer
a mechanism to convert the designed tilemap to a polygon one (referred to as
smoothing). We choose to create polygon maps this way because it is generally
easier and more intuitive for the creator than with a free hand drawing tool
(which can also create possible unwanted artifacts, e.g. a random dot somewhere
in the air, which would restrict movement, block shots and cause undesirable
effects). Naturally, the tradeoff for this optimization is that the editor becomes
more constricted, but this way we can guarantee smooth movement through the
map.

Lastly, we need a way to save the created map and artwork so the player can
use it in the game. First, we will need the user to direct us to the game folder
where the data of the game are saved. This way we will save the generated map
directly into the Maps folder, which will give us the option to use it instantly in
our game and it will also limit the user interactions with the generated binary
file as well. We will use this information to copy the relevant image files to the
game folder as well.

As an extra element, we will require a logger system, where we can notify the
user if a problem occurs during the creation or serialization of the map.

3.3.3 Custom tile picking
Although we almost have all the components necessary to create a map for our
game, we still lack the place where we can select the specific tile we want to place
on the scene.

This component’s purpose is to display every tile image in the given folder
(specified by the user). Note that we would like the user to see the images of
the tiles and not just the names of the files. Furthermore, we would also like the
component to show the tiles as soon as they are moved into the folder, so the
component will require a refresh utility.

3.3.4 Easing the editing
Beside the placement mechanisms, we must also give place to human error and
so provide additional ways of deletion or of replacement. Additionally, if the user
changes the size of the map after he has placed some tiles already, the structure
of the map still relevant between new boundaries must remain and any blocks
outside of the new map must be destroyed properly.

Because of the advantages of this structure, we use something similar for our
property and neutral enemy placer functions as well. Consequently, we can look
up any cell and alert the user if the placement he is trying to realize is invalid
(for example if he tries to place a neutral enemy in a cell where a tile is already
present).

21

4. Libraries and game engine
In this chapter, we explore the libraries used to implement the game and world
editor, which we selected according to the characteristics and specifics described
in the previous chapters. We present the libraries, their properties and also
compare them to alternative ones.

4.1 Game engine selection
In order to select the game engine best suited for our needs, we can establish a
few basic criteria according to which we can make our decision:

• Because there are many engines out there using different scripting language,
we can settle on the usage of C# (mostly due to the author’s familiarity
with it).

• Due to our project being non-commercial, we limit our search for libraries
and engines which are free.

• The engine being ready to support the targeted platforms: Windows, Linux
and Mac.

• The support for real-time multiplayer games.

Now let us analyse the different game engines according to our conditions
above.

According to the first two conditions, we narrow down our search for 5 game
engines: Unity3D [16], WaveEngine2.0 [17], Duality [18], Xenko Game Engine
[19] and MonoGame [20]. It is also the reason why we do not discuss the likes of
UnrealEngine [21] and CryEngine [22], which are otherwise popular and widely-
used game engines [23] (but both of which use C++ as a scripting language).

Let us now move on to the third filter in our list. Unity3D, WaveEngine and
MonoGame all satisfy this condition as specifically stated on the homepages of
the engine. However, Duality and Xenko fall short.

Duality is Windows-only and has no cross-platform support. As stated in the
official GitHub page [24], games may run on Linux and Mac, but they are not
officially supported.

As for Xenko Game Engine, the deployment for Mac is not supported, al-
though the official homepage of Xenko promises more supported platforms to
come in the future. [25]

We can now examine the fourth and last condition in our list. Unfortunately,
for WaveEngine2.0 there is no support for real-time multiplayer games and only
turn-based communication is offered through the network. On the 18th of June,
2019 the team behind Wave released a brand new version WaveEngine3.0 [26]. In
the release notes there is no information about added support and this release was
published only after the analysis for this thesis was completed.

This leaves us with Unity3D and MonoGame. For the latter game engine, the
principle of multiplayer support is exhausted in a very simple networking API,

22

which has not been maintained for the at least 2 years (and the last update for
game engine as a whole was released on March 1st, 2017 [27].

However, Unity3D is not without its problems. The engine’s legacy multi-
player solution - referred to as UNet - is being deprecated as of 2018 [28], which
would interfere with our project in the future (regarding future development).
The replacement for UNet will also not be ready for at least until 2020 according
to the source cited above. Fortunately, thanks to Unity’s popularity, there are
other options to consider.

Probably the most popular alternative is Photon Bolt, which provides seamless
integration with Unity and is a correct replacement for UNet. Unfortunately,
Photon is a commercial project and only allows 20 concurrent users for the free
package [29].

Another alternative is called Forge Networking, which has been rebranded as
Forge Networking Remastered following the open-source announcement in Jan-
uary 2019 [30]. This networking system is flexible and most importantly it does
not have a concurrent user limit, making it a good choice for us (we can handle
hundreds and even thousands of players cost-free). This solution is also released
under MIT license, which means that we can also customize it to our liking.

To sum it up, we arrive at the conclusion that the most preferable choice for
our game is to use Unity supplemented by Forge. Additionally, Unity is also well
documented and contains a lot of advanced features which prove useful to us,
such as the built-in Animation system, the ParticleSystem or the Unity Asset
Store, which hosts many audio-visual elements, which we can use in our game.
In order to develop our game, we will be using the version 2018.3.7f1 of Unity.

4.2 World Editor
Our next task is to choose an appropriate tool to serve as the world editor, but the
selection process here is much more difficult. As specified in the previous chapters,
our editor must support tilemaps as well as polygon maps while maintaining ease
of use and giving the creators options to paint each tile separately and with
custom designs. Additionally, we must be able to place neutral enemies and
world properties as well without them colliding with the map and as the final
thing we must be able to serialize what we created.

There are several packages in the Unity Asset Store to build tilemaps, but
there are no free options, which offer conversions to polygon maps. One inter-
esting option would be Terrainify 2D [31], which could handle tiles and polygon
based maps as well. However, this solution generates maps using Perlin noise,
which would interfere with custom tile designs.

Since the 2018 editions, Unity also has a built-in Tilemap 1 system aimed to fill
the need to use 3rd party software (such as Tiled [32]). The system is quite robust,
unfortunately the painted tilemap is handled as one unit (one game object) and
we have no information about the individual tiles, which is indispensable for map
smoothing and the placing of other map elements.

Consequently, the world editor of our game must be implemented by us. This
can be achieved via Unity Editor scripting. The reason behind this is that the

1Tilemap: (https://docs.unity3d.com/Manual/class-Tilemap.html)

23

https://docs.unity3d.com/Manual/class-Tilemap.html

engine offers a lot of already implemented tools in its Editor that we can take
advantage of during the creation of the game map. However, as a direct result of
this decision, the world editor will only be accessible with the help of Unity.

The core functionalities are encapsulated in the form of a custom inspector
item. We also create a custom window in order to choose the tile to paint with
and utilize a class called Gizmos to provide visual help for us during the element
placing.

4.3 Player evaluation
As we previously established, we use the TrueSkill in our game to update the
skill representation of a player after a game is finished. There are a few freely
accessible implementations. We will use Jeff Moser’s library [33], which has a few
advantages from our point of view, mainly that it is written in C# and therefore
is directly accessible from our project. In addition to this, the implementation is
also understandable and documented by the accompanying paper.

24

5. Map smoothing
Now that we have established that the our World Editor will be custom written,
we need an algorithm for the map smoothing in order to offer polygon based maps
besides tilemaps as well. We present this functionality in this section.

The algorithm receives a list of tiles, which the user can select manually. For
the user’s convenience it is also possible to pass multiple ”blocks” of tiles on one
call (i.e. more shapes can be passed) in which case the algorithm generates a
polygon map for each. The following algorithm is executed for every block of
tiles.

1. Our first task is to find the contour of the block, i.e. the list of outer edges.
We realize that every edge belongs to at most 2 tiles. If an edge does belong
to exactly 2 tiles, it means that the edge is positioned on the inside of the
block (represented as a red edge in figure 5.1), whereas if it belongs to only
tile it is an outer one and therefore a contour edge (green edges in figure
5.1).

Figure 5.1: Tilemap contour.

Input: list of tiles
Result: dictionary of <coordinate, list of edges>
contourEdges = [];
for every tile do

for every edge in tile do
if edge ∈ contourEdges then

remove edge from contourEdges;
else

add edge to contourEdges;
end

end
end
edgesByCoordinates = {};
for every edge in contourEdges do

add edge to edgesByCoordinates[first coordinate of edge];
add edge to edgesByCoordinates[second coordinate of edge];

end
return edgesByCoordinates

25

2. The second step is to gather the points on the contour in a sequential
order. For our ordering we chose clockwise orientation, which means that
if we arrive at a contour point for example from the left (as highlighted in
figure 5.2), we will consider the edges in the order of up, right, down and
left and choose the first unused edge. This is important especially if we
have an outlier tile, which is connected to the block by only one vertex (as
depicted in figure 5.2) so we do not leave out a tile.

1

2

3
4

Figure 5.2: Tilemap contour points.

Input: edgesByCoordinates = dictionary of <coordinate, list of edges>
Result: list of contour points
contourPoints = [];
usedEdges = [];
edge = select first clockwise edge (x2 > x1 or y2 > y1);
add edge to usedEdges;
add first point of edge to contourPoints;
currentPoint = second point of edge;
while true do

sort the edges in edgesByCoordinates[currentPoint] according to
clockwise orientation;

edge = first unused edge in edgesByCoordinates[currentPoint];
if edge is null then

break;
end
add edge to usedEdges;
add currentPoint to contourPoints;
currentPoint = other point of edge;

end
return contourPoints

3. Our third step is to find the corner points in the tilemap. We take into
consideration all contour points available and check whether the previous
and next contour point share one coordinate (i.e. their x or y coordinates
are equal) or not. If the latter is true, we denote the contour point as corner
point (as seen in figure 5.3).

26

Figure 5.3: Tilemap corner points.

Input: list of contour points
Result: list of corner points
cornerPoints = [];
for every contour point do

previousPoint = previous contour point;
nextPoint = next contour point;
if PointsShareCoordinate(previousPoint, nextPoint) then

continue;
end
add contour point to cornerPoints

end
return cornerPoints

4. In this step we are starting to gather the points of the polygon. First we
start with those that are situated on the tilemap and are necessarily corner
points. It is important to note that not all corner points are polygon points,
only those from which the outgoing edge is in a clockwise orientation relative
to the incoming edge (e.g. if we arrive to the point from the left, the edge
pointing down is considered to be in clockwise orientation, while the edge
pointing up is not). These points are denoted as green points (including the
blue point, which we choose as a starting point in the next step) in figure
5.4.

Input: list of contour points, list of corner points
Result: list of polygon-corner points
polygonPoints = [];
for cornerPoint ∈ list of corner points do

previousContourPoint = the contour point before cornerPoint;
incomingEdge = Edge(previousContourPoint, cornerPoint);
nextContourPoint = the contour point after cornerPoint;
outgoingEdge = Edge(cornerPoint, nextContourPoint);
if EdgeTurnsRight(incomingEdge, outgoingEdge) then

add cornerPoint to polygonPoints;
end

end
return polygonPoints

27

5. This is the step where we calculate the polygon points which smooth the
map. We begin by choosing a starting polygon point (marked as blue in
figure 5.4) and we proceed to find the next one as well. According to
these two points we have three options. The first option is that the points
share a coordinate and the second polygon point is the first corner point
immediately after the first polygon point (denoted as option a, in figure 5.4),
in which case no extra action is necessary. The second option is that the two
points share a coordinate and there are at least two corner points between
them (situation denoted as option b, in the figure). In this case we find the
”midpoint” of the valley and calculate various number of points (according
to the distance between the 2 polygon points) from the first polygon point
to the midpoint and additional points from the midpoint to the second
polygon point according to a smoothing function. The function we use for
this purpose is called the ease-in-ease-out function, which guarantees a nicer
slope than for example a linear function would. The third option is that
the two polygon points do not share a coordinate (marked as option c, in
the figure), in which case we create a slope between the points the same
way as we did for a polygon point and the valley midpoint.

Input: list of corner points, list of polygon-corner points
Result: list of polygon points
polygonPoints = [];
polygonPoint = select first polygonPoint;
/* the first polygon point is purposefully there twice for

the MeshCreator to work */
add polygonPoint to polygonPoints;
for nextPolygonPoint ∈ tail(list of polygon-corner points) do

if PointsShareCoordinate(polygonPoint, nextPolygonPoint) then
if IsNotTheFollowingCornerPoint(polygonPoint,
nextPolygonPoint) then

/* option b, in the figure */
midPoint = valley midpoint;
downSlopePoints = EaseInEaseOut(polygonPoint, midPoint);
add downSlopePoints to polygonPoints;
add midPoint to polygoingPoints;
upSlopePoints = EaseInEaseOut(midPoint,
nextPolygonPoint);

add upSlopePoints to polygonPoints;
end

else
/* option c, in the figure */
slopePoints = EaseInEaseOut(polygonPoint, nextPolygonPoint);
add slopePoints to polygonPoints;

end
add nextPolygonPoint to polygonPoints;
polygonPoint = nextPolygonPoint;

end
return polygonPoints

28

a,
b,

c,

Figure 5.4: Tilemap polygon points.

6. The last step is now only to create the mesh from the polygon points (figure
5.5).

Figure 5.5: Finished polygon.

29

6. Dynamic image
synchronization
Now that we have the maps ready and we created a way to use those designed in
the World Editor, we need to find a method for the artwork to be dynamically
shareable as well. Our goal is to allow the map designer the usage of any images
he chooses and then make those textures portable and display them correctly on
the side of the client as well. All this without the need to release a new version
of the game or update it in some form.

The business model, where the company releases the game for free and collects
the revenue from character customization is growing more popular nowadays and
one of the companies that is known to be doing this is Valve [34]. Dynamic
texture synchronization is done in both their currently most played games [35]
Counter Strike Global Offensive [36] and Dota2 [37]. In the last game of the
popular Counter Strike franchise this is manifested in the customization of the
weapons the player uses. While requiring a game update for the firearms to be
changed, the ”skins” of the weapons are interchangable. The same can be said
for Dota2, but instead of guns, the customizable units are heroes (figure 6.1).

Figure 6.1: Dota 2 hero customization. 1

By creating this system, Valve could afford to release the games for a lower
price or even free of charge and gather the profit from the customization, if the
player wanted to make the game more visually pleasing. With this option still
preferential and not required for the player to purchase any items for the game
to work properly, many users personalize their items making Valve’s step pay off.

Although this was probably a business driven decision for the company, it
resulted in granting the designers to use custom images besides the ones provided.
This is where we draw our inspiration from to permit unique styles to manifest
in our games. For this, we will need a way to organize the requests received from

1Source: http://i.imgur.com/GtBiMN3.jpg

30

http://i.imgur.com/GtBiMN3.jpg

the clients, prepare the image for the transfer and realize the transfer in the Unity
framework.

6.1 Requesting and supplying the sprites
The first step is to define the time when the synchronization would take place. It
is important to only share the textures, which are used in the chosen map in order
to minimize the network traffic and computations. For this we will inevitably have
to execute this process after the deserialization of the map. Keeping in mind that
we also need to maximize the experience for the player, we have to do this as
soon as possible. The timeframe that fits these criteria is the one instantly after
the deserialization. In order for the actual painting to be carried out properly,
we also need to make sure that the tile is already present on the side of the
client. During the downtime while waiting for the tile to become available, we
can perform many operations, so it pays off to start the synchronizing process
immediately and delay the painting if necessary.

We can extract the information about the used images in the map from the
deserialization process. After spawning these tiles on the server, we will iterate
through every client connected to the game and signal them, that the host is
ready to receive the requests for the transfer. Note, that this done by targetting
a client rather than sending a command to all of them, because it is possible that
one client has played on this map before and therefore is in possession of the
necessary images (figure 6.2), while another have not and would need to receive
them in this match (figure 6.3).

Figure 6.2: The process of sprite synchronization if the client is in possession of
it.

The client, upon obtaining the name of the sprite in question, checks the
image folder on his side to find out whether he is in the possession of the image
or not. If he is, he loads the texture from the disk and sends a query to the server

31

for the identifications of the tiles he should apply this sprite for. If he is not, he
sends a command requesting the specified sprite to be sent from the server.

The server receives the sprite request from the client and prepares the image
for the transfer. He sets the control variables necessary for the transmission
and starts an asynchronous coroutine with the task to send the texture to the
specified client. It is important that the server manages the coroutines in a way
that the client will not receive two different sprites concurrently. Upon receiving
the sprite, the client saves it to the disk for future use.

Figure 6.3: The process of sprite synchronization if the client is not in possession
of it.

After recognizing that the texture has been sent, the server sends out the
network identifications of the tiles, which have to be rendered with the specified
texture. After accepting the properties of the tile, the client will choose between
two actions: if the tile is already present in his scene, he will immediately repaint
it with the previously loaded sprite; or if the tile has not yet been spawned on the
side of the client, he will save the tile characteristics and start an asynchronous
method that will paint the tile when it becomes available.

6.1.1 Image comparison
Note, that we make the assumption that a sprite used in the map is the same
as another if they have the same name. This is impractical for the designer and

32

could result in unintentional behaviour if there is a name collision. However, to
verify the equality of two textures through network is not an easy process.

Comparison by pixel colors

One method that could provide an answer for this is to determine the color of a few
specified points in the texture and compare only those between the two sprites.
The positions of these points could be randomized, but then the instruction sent
over network would have to contain these positions as well. Because of this, the
colors should be gathered from fixed points, which are specified in the same way
at the host and the client side as well (or calculated by the same algorithm).

The problem begins with the definition of the number of these points. We
need to choose a sufficiently high amount in order to safely determine the equality
of two textures, but a sensibly low amount, in order to not result in elevated and
unnecessary network traffic usage. The process of finding a satisfactory balance
is not an easy task, but we will give it a try.

Unity defines the Maximum Transmission Unit as 1500 bytes. This is basically
the maximal size a packet can take up in a Command or Rpc call counting the
internal parameters such as the IP address. This leaves about 1400 bytes for us to
use 2, because we are using the Reliable Sequenced 3 channel for communication.
We could fill this space with the colors of the chosen points, send it in one message
and execute the comparison algorithm. Although this could maybe be an optimal
solution if we were trying to transfer bigger images, the default tile textures have
a 64*64 size. With the correct compression this file is fit into 3 Rpc calls in
average. Consequently, an image comparison, which is not guaranteed to work
would case a 33% overhead for one sprite, which can add up to be a big number
considering the number of textures used in the map and the number of clients
connected to the game.

Comparison by hashes

The technique we will be taking a look at is called Perceptual Hashing. [38] The
main idea of these hashing algorithms, is to calculate the hash (in this environ-
ment called ”fingerprint”) by identifying distinguishable features in the image
and using these features in the computation (instead of the image itself).

Moreover, these functions are applicable not just for images, but for video and
audio as well. Provided as an example of real life usage on the pHash website
[39], YouTube uses this technique to battle possible copyright violations. Another
application is the Google Image Search. [40]

The two algorithms we will mention are the aforementioned pHash and an-
other approach called Average Hash. [41] pHash is a more robust tool, meaning
that it is flexible enough to recognize image manipulations like transformations,
rotations and so on. On the other side, Average Hash is not this adaptable, al-
though it can be used to find the connection between images, that are almost
exactly the same and underwent no modifications.

2Unity’s maximum message size: (https://docs.unity3d.com/ScriptReference/
Networking.NetworkMessage.MaxMessageSize.html)

3Reliable Sequenced channel: (https://docs.unity3d.com/ScriptReference/
Networking.QosType.html)

33

https://docs.unity3d.com/ScriptReference/Networking.NetworkMessage.MaxMessageSize.html
https://docs.unity3d.com/ScriptReference/Networking.NetworkMessage.MaxMessageSize.html
https://docs.unity3d.com/ScriptReference/Networking.QosType.html
https://docs.unity3d.com/ScriptReference/Networking.QosType.html

The property, that pHash can be used for a bigger range of purposes, backfires
at the examination of performance. We find, that by the characteristics of these
algorithms, Average Hash executes the calculations faster than pHash. Although
not as adjustable, we find Average Hash to be enough for our purposes of finding
out whether a sprite in question matches one in our folder.

As the last step, the similarity of the images are checked using the hamming
distance between the two hashes. Based on our choice of encoding (described in
the next chapter), we know that the compression of the images will be lossless,
resulting in the fact, that two sprites will be equal if the hamming distance is
equal to zero.

6.2 Preparing the image for the transfer
I will present three methods for converting the tile sprite into a byte array that
we will be able to break into parts and send it to clients. Finding the optimal
solution is heavily dependent on the source image used, so we will take our default
sprite images as an example.

6.2.1 Encoding to JPG
JPEG loses data at compression. Thanks to this, we can define the targeted size
of the compressed image, but once decompressed, the picture will not have all its
pixels correctly initialized, which may result in artifacts. An advantage of this
method is that it is natively supported in Unity for an instance of the Texture2D
class, which helps with the portability of the application to other platforms. This
method of compressing is suitable for high definition pictures and photos, as these
can withstand high compression. It is not suitable for drawn lines or for pictures
containing sharp edges inside the texture, which makes it unusable for us.

6.2.2 Encoding to PNG
PNG is a lossless format and will remain the same after compressing and decom-
pressing. Because of this, we can not control the size of the compact version of
the image and the algorithm will decide what it can or can not simplify. PNG is
a good fit for our default images, which are all digital images created by vector
graphics and it is also able to handle the alpha channel. This type of compression
is supported in Unity for the Texture2D class as well.

6.2.3 Zipping
The third method of compression would be to zip the raw texture data of the
image using gzip [42]. It is a lossless compression, but the algorithm works in a
similar way as the PNG enconding does. Because of this and the fact that the
mentioned encoding is supplied by Unity, we will be using that method for the
compression of our tile images.

34

7. MasterServer
Now that we have our game designed and implemented, the only thing left to do
is to design a service, which will allow the players to find and play with other
players.

In our thesis, as is typical for most multiplayer games, we design this server
for two purposes (figure 7.1). The players will have the ability to create custom
lobby matches, which can either be private (password protected) or public. This
mode allows the players to have an unranked, possibly imbalanced leisurely match
with their friends or others from the world. The other service is a matchmaking
service, which will automatically group players according to their ranks and form
matches where the emphasis is on the balance between the two teams. In this
thesis we use TrueSkill to rank players and discuss the matchmaking algorithm
in detail.

MasterServer API

Custom lobbies

Matchmaking

Figure 7.1: High level overview of the server.

7.1 Custom lobbies
The purpose of the custom lobbies module is to store up-to-date information
about the registered servers and to supply them to players on demand. For this
task, we define 3 operations (as illustrated in figure 7.2):

• register - creates the match on the server with the supplied information.
This is where the player can decide to create a private match with specifying
a corresponding password for the lobby room, which is necessary for others
to join.

• update - the method is used to update match information on the server.
In our case we use it to keep the player count in the lobby up-to-date and
to signal if the host player changes the gamemode of the match.

• get - this is a simple query command, which triggers the server to send the
player the list of matches currently registered. The player can then enter
the lobby with the help of the supplied connection information.

35

Custom lobbies API

register
serverName : string

isPrivate : bool
password : string

gamemode : int

update
gamemode : int
playerCount : int

Available servers

connection information
game information

player count

...

get

server list
server#1 info

...
server#2 info

Figure 7.2: Custom lobby creation.

An important aspect of these games is that they are considered unranked.
This could be problematic if we consider a player who plays only custom lobby
matches and picks up sufficient experience with the game before playing any
ranked matchmaking games. This is solved by the very idea of TrueSkill ranking,
which does not represent level of expertise by only one values, but two (so there
is a rank uncertainty variable as well). This is explored more in detail in the next
section.

7.2 Ranked matches
We already discussed the different player evaluation algorithms in detail in a
previous chapter. We already established that TrueSkill is the appropriate choice
for our application and now we will develop the matchmaking process further.

An important equation, which will be useful to us for automatic match cre-
ation is the one for determining match quality between two teams. We can also
view this as the probability of a draw between the two teams, so naturally this
value is in range [0, 1]. The higher the chance for a draw, the higher chance that
the teams are balanced and therefore the match quality is better. The formula for
two players in two teams is supplied in the original TrueSkill paper as equation
(7):

qdraw(β2, µi, µj, σi, σj) =
√ 2β2

2β2 + σ2
i + σ2

j

exp(− (µi − µj)2

2(2β2 + σ2
i + σ2

j))

Since we established that in TrueSkill the team performance equals the sum
of the players’ performance in the team, we can introduce the team ratings as
following:

µt =
∑

player∈team

µplayer

σt =
∑

player∈team

σ2
player

36

With this we can formulate the equation for the match quality with two teams:

qdraw(β2, µt1, µt2, σt1, σt2) =
√

nβ2

nβ2 + σt1 + σt2
exp(− (µt1 − µt2)2

2(nβ2 + σt1 + σt2)
)

where n is the total number of players

n = |t1| + |t2|

7.3 Matchmaking
Now that we have established how the ranks of the users are updated, in the
second part of this chapter we will examine how the matchmaking algorithm
should work (i.e. grouping together the players to create a balanced match).

There are several factors influencing the creation of the match. Our top
priority is to create a team composition, where each team has the same chance
to win, however, we must also monitor for example the players’ times spent in
queue. We will look these and other factors’ impact on the matchmaking process
in the following section and construct a formula, which will determine whether
we create the pondered match or cancel it.

7.3.1 Matchmaking aspects
In the paper Theoretical Foundations of Team Matchmaking [43] by Josh Alman
and Dylan McKay, the factors listed are fairness, uniformity and time-sensitive
queueing (plus another one called role-restricted queueing, however, this does not
pertain to our game as players choose their classes after the match is established),
which we will detail in the following paragraphs.

In this context, fairness means that the two teams have a roughly equal chance
of winning. We note however, that we already deduced a function calculating the
fairness of a match in a previous section - the qdraw function of the TrueSkill
algorithm. For our function to fit into the equations presented in the paper, we
simply denote

d = 1 − qdraw

as the fairness factor, because we try to maximize qdraw and the paper identifies
d = 0 as the fairest game possible.

Uniformity is a measure of how equally the players are skilled. Note that this
is not the same as fairness: we can imagine a game where there is one extremely
skilled player in each team, while the others have relatively low rating. It is not
hard to imagine that not all players would enjoy this game. This is why this
factor is introduced and represents how spread out the players’s ratings are. The
paper characterizes this generally as q-uniformity, but it will suffice for us to use
the standard deviation:

vmatch =
√ 1

n

∑
player∈match

(µplayer − µmatch)2

37

where n is total number of players

n = |t1| + |t2|

and µmatch is the mean skill of all players

µmatch =
∑

player∈match

µplayer

n

Then the imbalance function looks the following:

f = αd + vmatch

In our thesis we use α = 1
2 , so we deem fairness and uniformity equally

important.
Additionally, we also introduce a time-sensitive priority variable tplayer to

address the queue length problem. Then we can modify our imbalance function
to look like

g = f − β max
player∈match

tplayer

β is a hyperparameter, which characterizes how much emphasis should be put
on low queue times (in exchange of the fairness and uniformity of the game). This
parameter is set empirically, which we will discuss later during the testing phase.

One last factor not presented in the paper but which can be of use for us
is what we will call the game-completeness factor. This is another technique to
reduce the necessary time spent in queues. Although we prefer games in which
the number of participating players is the maximum possible, it is reasonable
to allow less players to play as long as the teams are balanced. We can control
the emphasis put on this factor with the hyperparameter γ, which we can find
empirically as well:

h = g − γ(10 − n)

To put it together, the function we will try to minimize is

h = 1
2(1 − qdraw) + vmatch − β max

player∈match
tplayer − γ(10 − n)

7.3.2 MatchmakingWorker
We first present a single instance of a MatchmakingWorker object (illustrated in
figure 7.3). This class has the responsibility to find the best match with a given
set of players, for which we will utilize the function described in the previous
section.

38

Player queue

Prepare players Match balancer

Updated skill
calculator

API

match information
connection information
team composition

match
created

match
cancelled

MatchmakingWorker Ongoing matches

connection information
game information
player information

...

Figure 7.3: The workings of the prototype matchmaker illustrated.

The module works in a loop:

• The Worker dequeues at most 10 players from the front of the queue and
passes them to the MatchBalancer function. If the number of players in the
queue is less than 10, the Worker selects all the players in the queue.

• The MatchBalancer function tries to create the best match possible (by
examining every viable team composition, where the number of players in
the teams are equal - of which there are

(
10
5

)
options) with the given players

(finding the minimum value of h possible). Since the only component in the
h function that is different with different team compositions is the fairness
factor, we are looking for

argmin
team composition

d = argmin
team composition

1 − qdraw

from which we can calculate the value of function h. If this value is not
less than some parameter λ, the match is cancelled and the players are put
back into the queue and the execution jumps to the first point. If the match
quality is good enough, we proceed to the next point.

• The game is added to the list of ongoing matches and the connection infor-
mation and team composition are sent to the player.

• When the game is concluded, the server player reports back the result,
according to which the new player ratings are calculated (and the match is
naturally removed from the list of ongoing matches).

Now we can describe the method with which we can incorporate this unit into
the server and create the games for the players.

7.3.3 Creating a multi-threaded matchmaker
In this section we introduce bins to our matchmaking model. The main idea here
is that when a player connects to the matchmaking service, he is assigned to one
of the bins according to his skill rating. In reality, the bins are just queues, upon
which the MatchmakingWorker instances can operate similarly as described above

39

(illustrated in figure 7.4). Additionally, there is no reason why these instances
could not operate simultaneously, therefore we can also introduce multithreading,
which increases the performance of the server and guarantees lower queue times
for the players.

MatchmakingWorker

API

match information
connection information
team composition

Player sorter

Player queue

Bin #3

MatchmakingWorkerMatchmakingWorker MatchmakingWorker

Bin #2Bin #1 Bin #4

Updated skill
calculator

Ongoing matches

connection information
game information
player information

...

Figure 7.4: The layout of the multithreaded server.

It is easy to see the advantages the matchmaker bins bring us. If a match is
cancelled and players are put back into the queue as last ones in line, the queue
is inherently a lot shorter (than the one big data structure we would have), which
improves the queue time. It also addresses the uniformity problem, because a
bin contains approximately equally skilled users only so the standard deviation
is perceived as negligible.

However, a problem this model introduces is the choosing of the appropriate
number and represented intervals of the bins. A higher than optimal bin count
would mean that the players are segmented too much, which would make the
game creation a harder process and would result in longer queue times. A lower
bin count would however defeat the purpose of the model with increased queue
time and worse uniformity. We would also need more bins for more concurrent
players and fewer bins for fewer.

Additionally, since we established that the players’ skill ratings follow the
normal distribution, uniformly distributed bins are not the best solution. Ide-
ally we would establish more bins around the mean of the ratings and less with
the outliers, making the bins contain approximately the same amount of players
(illustrated in figure 7.5).

40

 0

 0.01

 0.02

 0.03

 0.04

 0.05

25 0 10 20 30 40 50

Figure 7.5: The distribution of player skills grouped into bins.

Because of this reasoning we will implement adaptive bin counts, which will
mean that if the number of players in a queue exceeds some pre-set amount, we
will cut the interval represented by the bin in half. The already existing bin will
take the first half of the interval with the players belonging to it and we create a
second bin, which will take the second half. Similarly, if the number of players in
a bin is lower than a pre-set constant, we will merge the bin with one adjacent
(the one which has fewer players in it).

7.3.4 Testing the algorithm
Playerbase generation

In order to test the algorithm presented, we will try to generate a realistic player-
base, which means that we have to generate the ratings (i.e. sample the µ and σ
values). According to the central limit theorem, the player skill distribution will
follow the normal distribution.

Before we go further, we must specify the default values we use for a new
player. There are many options of course, but a general recommendation comes
from the original TrueSkill paper, which uses mean µ = 25 and standard deviation
σ = 25

3 . In our thesis, we will be using these values as well but we leave the option
to change them later if necessary.

According to Microsoft [44] since the ranking system uses a Gaussian belief
distribution all mean skills will theoretically lie within ±4 times the initial σ. In
addition, empirical study showed a stronger constraint, where 99.99% of the rank-
ings happen to be even within ±3 times the initial standard deviation. Therefore
we can sample player ranks from the truncated normal distribution µ ∼ N (25, 25

3)
using rejection sampling (because the rejection rate is only 0.01%).

Additionally, we must sample the standard deviation. These values can be
sampled from a uniform distribution and because the ”uncertainty” of the skill
cannot increase (because as time progresses we gather additional information

41

about the player regarding his skill and more information can only help us and
not confuse us) we sample from σ ∼ U(0, 25

3).
As a last step, we try to determine the average amount of players who are in

queue. We must consider a lower count of players as well, recognizing that (with-
out any major marketing strategies) at release our game will have a low number
of concurrent users. However, keeping in mind that matchmaking algorithms are
created for the purpose of handling a big player pool, we can set the lower bound
to 1000.

To determine the higher bound, we can take a look at some of the more popular
multiplayer games. According to SteamCharts [45] Dota2 had an all-time peak
of concurrent users of ∼ 1.3million. If we consider the average game length to
be 30 minutes, we estimate that at this peak there were about 40000 players in
queue (this is only a very rough estimate of course as we do not consider logged
in but passive players, players in lobbies or custom matches, etc.).

Matchmaking aspect weights

Now that we can sample our playerbase, we must also make a decision about the
weights, which control the matchmaking aspects. In our tests, we will consider
the match to be a decent game if the following conditions are met (note, that
these values are subjective and can be modified to adjust to the size of player
base, maximum allowed queue length, etc.):

• the fairness of the match is at most 0.5 (the middle point of the d function)

• the uniformity is at most 0.1 (we push for the players to be equally rated)

• we tolerate up to 120 seconds of queue time, during which we will gradually
allow the values above to be higher - so we will set β to be 1

8

• if the player count is not at the maximum allowed (10), we also tolerate a
more imbalanced match in order for these players to get a game - we will
set γ = 1

8

We must also normalize the seconds and the player count to be in the same
range as the fairness and uniformity and so we set β = 1

60
1
8 and γ = 1

10
1
8 .

Taking the above points into consideration, we can now calculate the boundary
below which we accept and create the match:

λ = 1
20.5 + 0.1 − 1

48030 − 1
800 = 0.2875

Test

The experiments were run on a computer with the following specifics:

• Intel(R) Core(TM) i5-4200H CPU @ 2.8GHz (2 cores, 4 threads)

• DDR3, 8GB RAM

• OS: Windows 8.1

42

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

M
at

ch
 q

ua
lit

y
(q

dr
aw

 fu
nc

tio
n

-
th

e
hi

gh
er

 th
e

be
tte

r)

Average time spent in queue (seconds)

1000 CCU
5000 CCU

10000 CCU
20000 CCU
40000 CCU

Figure 7.6: Multithreaded server results (trendlines) for different number of con-
current users (CCU)

Figure 7.6 shows us the results of the experiments and we can see that the
our server can handle 40000 concurrent players as well as 1000. Additionally, the
match quality decreases gradually with time, but no so drastically that it would
have a significantly negative impact on the users’ game.

43

Conclusion
We started this thesis by selecting the video gaming platforms, defining the design
and characteristics of the game and of the world editor we wanted to implement.
Then we discussed some details of the implementation. Subsequently, we selected
the libraries and the game engine best suited for our needs, in which we imple-
mented our application. We chose Unity3D as our game engine, which we briefly
presented. We composed the map smoothing algorithm and we investigated the
synchronization of the sprite images and found an optimal way to compare and
compress these pictures. In the last chapter we discussed the responsibilities and
operations of the MasterServer, we analysed the matchmaking algorithm and
proposed a prototype and an improved multi-threaded model.

The result of this thesis is a two-dimensional, multiplayer run and gun game,
playable on the three major desktop platforms. Accompanying this is a world
editor operating in the Unity3D setting, which the user can use to create custom
maps for the mentioned application (the user and programming documentations
are included as attachments).

44

Bibliography
[1] Asteroids (video game). https://en.wikipedia.org/wiki/Asteroids_

(video_game).

[2] Soldat current playerbase. https://www.soldat.pl/en/. The current num-
ber of players is shown on the homepage below the Download button. Ac-
cessed.

[3] Jim Rossignol. Eurogamer’s summer of pc plenty - twenty freeware games.
Eurogamer’s Summer of PC Plenty, 2006. [Accessed on: 2019-07-07] Acces-
sible by: http://www.eurogamer.net/articles/a_20bestfreegames. Sol-
dat ranked 11th.

[4] Worms world party. https://www.team17.com/games/worms-world-
party/.

[5] Best selling game franchises. [Accessed on: 2019-06-29] Accessible by: http:
//vgsales.wikia.com/wiki/Best_selling_game_franchises.

[6] Worms 2d weapons. http://worms2d.info/Weapons. Accessed: 2019-05-21.

[7] Overwatch. https://playoverwatch.com/en-gb/.

[8] Deathmatch. https://en.wikipedia.org/wiki/Deathmatch.

[9] Capture The Flag. https://en.wikipedia.org/wiki/Capture_the_flag#
Software_and_games.

[10] Arpad Elo. The rating of chess players: Past and present. Arco Publishing,
1978.

[11] Thore Graepel Ralf Herbrich, Tom Minka. Trueskilltm: A bayesian
skill rating system. 2006. [Accessed on: 2019-07-17] Acces-
sible by: https://www.microsoft.com/en-us/research/wp-content/
uploads/2007/01/NIPS2006_0688.pdf.

[12] Dr. Mark E. Glickman. The glicko system. 1999. [Accessed on: 2019-06-02]
Accessible by: http://www.glicko.net/glicko/glicko.pdf.

[13] Jeff Moser. Computing your skill. 2010. [Accessed on: 2019-07-10] Accessible
by: https://github.com/moserware/Skills.

[14] Rankade, 2018. [Accessed on: 2019-05-23] Accessible by: https://rankade.
com/ree.

[15] Yordan Zaykov Tom Minka, Ryan Cleven. Trueskill 2: An improved
bayesian skill rating system. 2018. [Accessed on: 2019-07-16] Accessible
by: https://www.microsoft.com/en-us/research/uploads/prod/2018/
03/trueskill2.pdf.

[16] Unity homepage. https://unity.com.

45

https://en.wikipedia.org/wiki/Asteroids_(video_game)
https://en.wikipedia.org/wiki/Asteroids_(video_game)
https://www.soldat.pl/en/
http://www.eurogamer.net/articles/a_20bestfreegames
https://www.team17.com/games/worms-world-party/
https://www.team17.com/games/worms-world-party/
http://vgsales.wikia.com/wiki/Best_selling_game_franchises
http://vgsales.wikia.com/wiki/Best_selling_game_franchises
http://worms2d.info/Weapons
https://playoverwatch.com/en-gb/
https://en.wikipedia.org/wiki/Deathmatch
https://en.wikipedia.org/wiki/Capture_the_flag#Software_and_games
https://en.wikipedia.org/wiki/Capture_the_flag#Software_and_games
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/NIPS2006_0688.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/NIPS2006_0688.pdf
http://www.glicko.net/glicko/glicko.pdf
https://github.com/moserware/Skills
https://rankade.com/ree
https://rankade.com/ree
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/trueskill2.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/trueskill2.pdf
https://unity.com

[17] Waveengine. https://waveengine.net.

[18] Duality homepage. https://www.duality2d.net.

[19] Homepage of xenko. https://xenko.com.

[20] Monogame homepage. http://www.monogame.net.

[21] Unreal engine 4. https://www.unrealengine.com/what-is-unreal-
engine-4.

[22] Cryengine. https://www.cryengine.com.

[23] Matan Aspis. 6 top game engines in 2017. 2017. [Accessed on: 2019-
07-01] Accessible by: http://www.discoversdk.com/blog/6-top-game-
engines-in-2017.

[24] Choosing duality. https://github.com/AdamsLair/duality/wiki/
Choosing-Duality.

[25] Xenko - supported platforms. https://doc.xenko.com/latest/en/
manual/platforms/index.html.

[26] Waveengine 3.0 release announcement. https://geeks.ms/
waveengineteam/2019/06/18/waveengine-3-0-preview/.

[27] Last update release of monogame engine. http://www.monogame.net/2017/
03/01/monogame-3-6/.

[28] Don Glover. Unet deprecation faq. [Accessed on: 2019-07-05] Accessible
by: https://support.unity3d.com/hc/en-us/articles/360001252086-
UNet-Deprecation-FAQ.

[29] Photon bolt pricing. https://www.photonengine.com/en-US/BOLT/
pricing.

[30] Forge networking remastered. https://github.com/BeardedManStudios/
ForgeNetworkingRemastered.

[31] Terrainify 2d in unity asset store. https://assetstore.unity.com/
packages/tools/terrain/terrainify-2d-139257.

[32] Tiled map editor. https://www.mapeditor.org.

[33] Detailed implementation of the trueskill algorithm by jeff moser. https:
//github.com/moserware/Skills.

[34] Valve software. http://www.valvesoftware.com.

[35] Statistics provided by Valve. http://store.steampowered.com/stats/.

[36] Homepage for the game Counter Strike: Global Offensive. http://blog.
counter-strike.net.

[37] Homepage for the game Dota 2. http://blog.dota2.com.

46

https://waveengine.net
https://www.duality2d.net
https://xenko.com
http://www.monogame.net
https://www.unrealengine.com/what-is-unreal-engine-4
https://www.unrealengine.com/what-is-unreal-engine-4
https://www.cryengine.com
http://www.discoversdk.com/blog/6-top-game-engines-in-2017
http://www.discoversdk.com/blog/6-top-game-engines-in-2017
https://github.com/AdamsLair/duality/wiki/Choosing-Duality
https://github.com/AdamsLair/duality/wiki/Choosing-Duality
https://doc.xenko.com/latest/en/manual/platforms/index.html
https://doc.xenko.com/latest/en/manual/platforms/index.html
https://geeks.ms/waveengineteam/2019/06/18/waveengine-3-0-preview/
https://geeks.ms/waveengineteam/2019/06/18/waveengine-3-0-preview/
http://www.monogame.net/2017/03/01/monogame-3-6/
http://www.monogame.net/2017/03/01/monogame-3-6/
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://www.photonengine.com/en-US/BOLT/pricing
https://www.photonengine.com/en-US/BOLT/pricing
https://github.com/BeardedManStudios/ForgeNetworkingRemastered
https://github.com/BeardedManStudios/ForgeNetworkingRemastered
https://assetstore.unity.com/packages/tools/terrain/terrainify-2d-139257
https://assetstore.unity.com/packages/tools/terrain/terrainify-2d-139257
https://www.mapeditor.org
https://github.com/moserware/Skills
https://github.com/moserware/Skills
http://www.valvesoftware.com
http://store.steampowered.com/stats/
http://blog.counter-strike.net
http://blog.counter-strike.net
http://blog.dota2.com

[38] Joe Bertolami. Perceptual hashing. 2014. [Accessed on: 2019-07-15] Ac-
cessible by: http://bertolami.com/index.php?engine=blog&content=
posts&detail=perceptual-hashing.

[39] phash. http://phash.org.

[40] Google image search. https://www.google.com/intl/es419/
insidesearch/features/images/searchbyimage.html.

[41] Chris Pickett. Simple image hashing with python. 2013. [Accessed on: 2019-
07-07] Accessible by: https://www.safaribooksonline.com/blog/2013/
11/26/image-hashing-with-python/.

[42] gzip. http://www.gzip.org.

[43] Josh Alman and Dylan McKay. Theoretical foundations of team match-
making. In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’17, pages 1073–1081, Richland, SC, 2017.
International Foundation for Autonomous Agents and Multiagent Systems.

[44] Microsoft Research. Trueskill ranking system description. [Accessed on 2019-
07-04] Accessible by: https://www.microsoft.com/en-us/research/
project/trueskill-ranking-system/?from=http%3A%2F%2Fresearch.
microsoft.com%2Fen-us%2Fprojects%2Ftrueskill%2Fcalculators.
aspx.

[45] Concurrent player analysis on steam - dota2. https://steamcharts.com/
app/570.

47

http://bertolami.com/index.php?engine=blog&content=posts&detail=perceptual-hashing
http://bertolami.com/index.php?engine=blog&content=posts&detail=perceptual-hashing
http://phash.org
https://www.google.com/intl/es419/insidesearch/features/images/searchbyimage.html
https://www.google.com/intl/es419/insidesearch/features/images/searchbyimage.html
https://www.safaribooksonline.com/blog/2013/11/26/image-hashing-with-python/
https://www.safaribooksonline.com/blog/2013/11/26/image-hashing-with-python/
http://www.gzip.org
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Ftrueskill%2Fcalculators.aspx
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Ftrueskill%2Fcalculators.aspx
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Ftrueskill%2Fcalculators.aspx
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Ftrueskill%2Fcalculators.aspx
https://steamcharts.com/app/570
https://steamcharts.com/app/570

List of Figures

1.1 The most important gaming platforms in 2017. 6

2.1 Screenshot of the game Soldat. 9
2.2 Screenshot of the game Worms World Party. 10
2.3 The in-game player object. 12
2.4 Available in-game weapons. 13
2.5 Neutral enemies in-game. 15
2.6 Converting (”smoothing”) the tilemap to a polygon map. 16

3.1 Representation of the player in the lobby. 17
3.2 TrueSkill factor graph. 19

5.1 Tilemap contour. 25
5.2 Tilemap contour points. 26
5.3 Tilemap corner points. 27
5.4 Tilemap polygon points. 29
5.5 Finished polygon. 29

6.1 Dota 2 hero customization. 30
6.2 The process of sprite synchronization if the client is in possession

of it. 31
6.3 The process of sprite synchronization if the client is not in posses-

sion of it. 32

7.1 High level overview of the server. 35
7.2 Custom lobby creation. 36
7.3 The workings of the prototype matchmaker illustrated. 39
7.4 The layout of the multithreaded server. 40
7.5 The distribution of player skills grouped into bins. 41
7.6 Multithreaded server results (trendlines) for different number of

concurrent users (CCU) . 43

A.1 Settings screen of the application. 50
A.2 Main menu screen. 51
A.3 Play panel of the game. 52
A.4 The lobby room. 53
A.5 In game picture. 55
A.6 Neutral enemies in-game. 56
A.7 Importing the world editor package to Unity. 57
A.8 WorldEditor inspector. 58
A.9 Editing a level in WorldEditor. 59

B.1 High level overview of the scenes. 61
B.2 Structure of the MainMenuScene scripts. 62
B.3 Networking structure. 63
B.4 High level architecture of the LobbyScene scripts. 64
B.5 Lobby player handling. 64

48

B.6 GameScene transition. 65
B.7 Map loading structure. 66
B.8 Components attached to the game object. 67
B.9 Player object component networking. 67
B.10 The character class structure. 69
B.11 Weapon system structure. 70
B.12 Neutral structure in the game. 71
B.13 Gamemode structure. 71
B.14 HUD structure of the game. 72
B.15 ObjectPainter structure. 74
B.16 Tile image loader window. 74
B.17 Property structure in the editor. 75
B.18 Structure of neutrals in the editor. 76

49

A. User documentation
This attachment serves as a general instruction manual for the player. We go
through the course of the game starting with launching the game, gameplay and
ending.

A.1 Launching the server
In order to allow the players to find matches, the game server must be launched
(only one instance of the server is required for all games). To achieve this, navigate
to the MasterServer folder and launch the application with the MasterServer.exe
file. After the program starts up, the user can configure the network information
(pressing Enter sets the default value) and the server is launched.

Please make sure that your firewall does not interfere with the server.
Either specify the application as an exception in your firewall settings, or

turn the firewall off entirely (not recommended).

A.2 Installation
The application is portable and needs no installation. After the user launches
the game (by executing the binary file SorcerersStruggle), he is welcomed with
the settings screen (displayed in figure A.3).

Figure A.1: Settings screen of the application.

50

In this panel, the player can adjust the resolution of the screen, the quality
of the graphics and the targeted monitor as well. Another option, to display the
game in windowed context is also present. With the help of the another tab called
Input, the user can customize the controls (which are detailed later.)

After the Play! button is pressed, the game is launched.

A.3 Main menu - establishing the connection
After launch, the user is presented with the main menu (figure A.2).

Figure A.2: Main menu screen.

The first button (labelled Play!) takes the player to the play panel, which will
be discussed in detail. The second button (labelled Network Settings) navigates
to the settings panel, in which the user can modify the connection information
about the server. The third button (labelled Quit) quits the application.

Before continuing with the manual, please make sure that your firewall
does not interfere with the application. Either specify the game as an
exception in your firewall settings, or turn the firewall off entirely (not

recommended).

There are 2 options a player can use to enter a game - the matchmaking option
(where the player is teamed up with other player of similar skill) and the custom
lobbies option (the unranked option, where teams can be chosen freely).

The play panel is displayed after pressing the Play! button (figure A.3). We
will discuss each element’s responsibility.

51

Figure A.3: Play panel of the game.

1. the Back button - takes the user back to the main menu panel

2. the Quit button - closes the application (after the choice was confirmed in
a prompt window)

3. the Start matchmaking button - enters the player into the matchmaking
queue (searching for a balanced ranked match).

4. the Host option region - this region serves as an intermediary for the
player to create a new host (as a custom lobby for an unranked game). The
user must enter the name of the game and optionally he can also submit
a password (only users in possession of this password will be able to enter
the lobby - of the field is left empty, the lobby is considered public and
everyone can join). After inserting these values, with the help of the Create
server button the host is created on the server and the host player entered
the lobby.

5. the Host list field - the hosts currently available to be joined are listed
here.

6. the Refresh button - updates the host list

7. Ignore full servers - by checking this field the host refresh mechanism
will ignore and not show those hosts, which are already full

8. the Join server button - after a host has been selected from the host list
(5), the player join the specific host with the click of this button (if the
host is password protected, the user must submit the password). If the
connection is successful, the client player enters the lobby.

52

If the host creation does not work, or if the host list does not show any
hosts available (even though are registered on the server), make sure that
the MasterServer is launched and its settings configuration (connection
information) matches the ones specified in the game’s settings.

A.4 Lobby room
The lobby room is illustrated in figure A.4.

Figure A.4: The lobby room.

The panel consists of the game options (which only the host can modify) panel
at the top, the player options and the chat window.

1. Map selection - the first of the game options, which the host can set and
modify freely. The maps are read from the StreamingAssets
Maps
folder and the host can choose whichever map is available to him.

2. Gamemode - this property sets the style of the game and the objectives of
it. The application offers 2 gamemodes: (Team)Deathmatch and Capture
The Flag. The objective of the former is to eliminate other players while
trying to die as few times as possible. A team earns a point if a player from
the opposing side dies. The objective of the latter is to bring the enemy
team’s flag to your own base (or more specifically, the place where player’s
flag’s base point is), while not losing your own flag to the enemy team
(called ”capturing the flag”). A points is earned for every flag captured.

53

3. Objective target - used to set the length of the game. When this objective
target is reached (the objectives of the gamemodes are described above),
the game is over with the winner being the team that reached it.

4. Ready light - signals if the player is ready to start the game (red if not,
green if yes). The game can only be started (by the host user) if all players
are ready.

5. Player name - the name of the player

6. Character class selector - the player can choose class of his character
from this dropdown. Each class comes with a unique ability (spell), which
can be used during the game. The classes are described below.

7. Team selector - the player can switch teams with a click on this button

8. the Ready button - used to set the player’s state to ready (if the player
changes his mind, the state can be changed back with the same button)

9. the Chat window - messages can be exchanged amongst the players in the
lobby with the help of this window. The user can enter the message in the
input field at the bottom, select the target audience for the message (can
be sent to all players or just the current team he is a part of) and send the
message by pressing the Enter button.

The 4 character classes implemented in the game are:

1. Tactician: the player’s and his teammates’ shield and flight power are
replenished

2. General: the reload time of all weapons are halved (lasts for a given
amount of time)

3. Puppeteer: freezes every player of the opposing team in position (lasts for
a given amount of time)

4. Healer: heals himself and teammates by setting their health to 100 - ad-
ditionally, if the player or a teammate is under the effect of the stun by a
Puppeteer and a certain amount of time has already passed, the ultimate
will negate the effect of this stun as well

A.5 Game scene
After the game is started, the user is given control over a wizard object. The
default controls are the following:

54

Button Action

W Jump
A Move left
D Move right

Ctrl Use shield
E Use ultimate
1 Select weapon 1 (Rod)
2 Select weapon 2 (Staff)
3 Select weapon 3 (Dagger)

Mouse 0 Fire
Mouse 1 Flight

Movement of the mouse Aim

The heads-up display is present in order to keep the user informed about the
state of the game and of the character (illustrated in figure A.5).

Figure A.5: In game picture.

1. The player object

2. Scoreboard - keeps count of the points scored by the two teams (according
to the objective - described above)

3. the Quit button - quits the application

4. Player properties - the sliders displayed here represent the following prop-
erties: the red health bar, which displays the current amount of health

55

points the player has - if it reaches zero, the player dies and is respawned af-
ter a short amount of time; the blue shield bar, which shows the time still
available for the shield to be active - during the time the shield is shattered
(the shield time was used up or the shield was destroyed by projectiles), the
defensive mechanism is not available; the yellow flight bar, which shows
the remaining time the player can fly for.

5. Weapon availability - the player possesses 3 different weapons: the first
is the Rod, which is a chargeable weapon (where the damage dealt by the
projectile is based upon the time it spent being charged by the player);
the Staff, an automatic weapon (where there are multiple lower-damage
projectiles fired in rapid succession); and the Dagger, which is a one-off
weapon (which deals substantial amount of damage to other players, but
has a longer reload time than other firearms). The selected weapon is
highlighted with a frame around it. When a weapon is fired, a specific
amount of time (reload time) must pass in order for it to be used again
(shown by an overlay in the HUD).

6. Spell availability - displays the current state of the spell determined by
the class of the character (described above) - if the icon is fully visible (not
covered by a shade), the ultimate is ready to be activated.

There are 2 different types of neutrals (illustrated in figure A.6):

1. Knight: a game object that will move only horizontally and will damage
the player instantly if the two of them collide. In the event of it colliding
with a tile from the side it will turn around and continue his movement in
the other direction. If it falls down from the ledge of the map, it will obey
the laws of the physics, land on the ground and continue his motion.

2. Archer: the neutral will spawn and launch a projectile in the upwards
direction relative to its rotation. The projectiles are spawned after the
specified time has passed.

Figure A.6: Neutral enemies in-game.

The goal of the game is determined by the gamemode and the target objective
count, both of which are described above.

56

A.6 World Editor

A.6.1 Installation
Note that this application requires Unity3D(version 2018.3.7f1) to run.

Figure A.7: Importing the world editor package to Unity.

The world editor is supplied as a Unity Package A.7. By double-clicking on
the WorldEditor.unitypackage file, the Unity3D editor will open and a window
will offer to import the files necessary.

The world editor object can be added to the scene by clicking on the GameOb-
ject/WorldEditor item in the menu. Besides this, in order to select the current
tile image, a window will be necessary. This window is defined as the TilePicker
window and can be accessed from Window/TilePicker.

A.6.2 Building the map
The world editor becomes enabled by clicking on the added TileMap object. The
grid of the map is drawn and the custom Inspector gets displayed on the right
side.

57

Figure A.8: WorldEditor inspector.

The settings of the map are shown in the mentioned Inspector (figure A.8).
These properties are (from top to bottom):

• The width and height of the map expressed in the number of possible tiles
in the given dimension.

• The button that enables to change the folder containing the tile images.
The pictures in this folder are displayed in the TilePicker window.

• The Clear Tiles button, which will remove every tile from the scene.

58

• The button which attaches the wizard object to the mouse. This can be
used as a reference to estimate the size of the map.

• The next four buttons place the necessary properties on the map. These
properties are the spawn positions of the two teams and the positions of
the two flags for the capture the flag gamemode. Note, that the placement
of these objects is required in order to export the map.

• The neutral placing panel. Here, the type of the neutral can be selected,
which the user wishes to place. This object can then be customized by
fine-tuning the controlling values of the neutral’s behaviour.

• The map smoothing process. Using the button Select tiles triggers the
function to select those tiles, around which the user wishes to create the
polygon. After the object have been selected, the smoothing is carried out
by clicking the Smooth tiles button.

• The export option of the map. This panel will first require the selection of
the game data folder (the folder provided together with the game application
called SorcerersStruggle Data). Then, the user can input the name of the
map and export it. After the Unity Console reports that the map is saved,
it is immediately available to be played on and will be given as the option
for the player to choose in the game.

Figure A.9 illustrates a map currently being edited in the WorldEditor.

Figure A.9: Editing a level in WorldEditor.

When the user is currently not placing a property or a neutral (described
below), the tile placing mode is activated. The image of the tile can be selected
in the TilePicker window and it can be added into the map by holding down the
Left Shift button. A tile can removed by hovering over the one the user wishes
to delete and pressing the Left Alt button. If a tile is put over another object,
the object will be removed and the tile will take its place.

The planting of a property or a neutral is realized by pressing the Left Ctrl
button. A property or a neutral cannot be placed over a tile, but if it gets

59

established on another object of the similar type, the previous object is removed.
The removal process is the same as for the tiles (by hovering over and pressing
the Left Alt button).

60

B. Programming documentation
In chapter 4 of the thesis, we selected Unity as the game engine most suitable
for our needs. Before we discuss the specifics of our application, we must look at
two high-level concepts defining the structure of our implementation.

The main parts comprising a Unity application are called Scenes. Different
scenes represent different environments and are therefore good for making the
game more modular.

Additionally, we must also note the behaviour of Unity’s MonoBehaviour
class. The important feature this class supplies is that the descendants can be
attached to Unity GameObjects. If a script is attached to an object, a few stan-
dard methods are called on them at initialization or periodically. An example of
the latter is the Update() function which is called every frame and thus is essen-
tial for specifying the behaviour of the object. Via this method are the objects
controlled, moved or updated.

Our application consists of 4 different scenes: MainMenuScene, LobbyScene,
GameScene and the WorldEditor scene (which is not directly part of the game,
which will be discussed later in this attachment). The movement between scenes
is illustrated in figure B.1.

MainMenuScene LobbyScene GameScene WorldEditor

Figure B.1: High level overview of the scenes.

We will now detail each scene’s responsibility in the application and we will
mention and describe the scripts and prefabs used in each of them. The scripts
are organized into folders depending on which scene utilizes them the most (the
more frequent case is that the scene referred to by the directory’s name will be
the only scene to use them).

B.1 MainMenuScene
This is the initial scene presented when the application is launched. It has 3
different panels - the main menu panel, the settings panel and the play panel.

The first of these panels serves only as the introduction to the application
typical of other video games. It presents the user with the options to play, modify
settings or quit. The settings panel is also a regular component, which here can
modify some default settings and connection information.

The more interesting panel is the play panel, whose structure is illustrated in
figure B.2.

61

GUI - PlayPanel CustomNetworkManager

Server

MatchmakingScript

CustomGameHostBehaviour

CustomGameJoinBehaviour

GUIServerOptions
(ServerOptionScript)

Figure B.2: Structure of the MainMenuScene scripts.

The 3 dominant scripts are:

• MatchmakingScript - enters the player into the matchmaking queue (note
that the application benefits from matchmaking only when the number of
players is sufficiently high).

• CustomGameHostBehaviour - serves as a bridge between the GUI and the
CustomNetworkManager regarding hosting custom (unranked) games. Its
main responsibility is to translate and forward the user chosen options for
the server, but also does the TCP server initialization (ForgeNetworking
uses the peer-to-peer model for networking, so one user is the server for the
game) and requests a host to be registered on the MasterServer.

• CustomGameJoinBehavior - serves as a GUI bridge as well, but handles
the client part of the connection process. The component performs the
TCP client initialization and queries the list of hosts available on the server
(through the CustomNetworkManager). When the response arrives and is
handed over to this script, the unit processes the list of hosts by populating
a scroll-down window with the host options from which the user can choose
from. It also handles password inputs if necessary.

The server option objects are initialized from the prefab GUIServerOption.
This prefab is equipped with the ServerOptionScript component, which handles
potential property updates (like player count or gamemode) and the connection
process to the given server if selected.

The class CustomNetworkManager server as an API between the application
and the server. After requested from the above mentioned scripts it prepares the
queries in the form of JSON objects which are then relayed to the server. It also
handles the incoming messages which are then relayed to the scripts above.

After a game was created for the player or he decided to create or join a
custom game, the application moves on to the LobbyScene.

62

B.2 LobbyScene

B.2.1 Forge Networking
Before we move onto the scene, we must first discuss a few of the networking
principles of Forge.

In order for something to be networked, the game object must have a compo-
nent derived from the NetworkBehavior class attached. This prefab is added to a
list in the CustomNetworkManager object (which can then be used to spawn an
instance of it), which naturally can not be updated dynamically during the appli-
cation process and so only a networked object can be spawned and synchronized
on all connected clients (figure B.3).

N

Local object

Local object

Networked object

N

Local object

Local object

Client #2Client #1

Figure B.3: Networking structure.

An object satisfying this condition can have fields and registered RPC methods
to synchronize the behaviour of the object on all connected parties. The fields are
useful for adjusting constantly changing properties (e.g. can be used to update
the position of the object periodically), while the RPC calls are used for sporadic
events (e.g. casting a spell - this happens once and then does not require constant
adjusting).

To sum up, when a user wishes to change a property of his networked object,
he modifies the property in the networked object which triggers an RPC call.
This RPC call is relayed to all other parties (or it can targeted to be delivered
only to one user) and the object instances on other machines react appropriately
- usually by performing the same action as the caller.

We mark networked objects in our figures with an N symbol next to them.

B.2.2 Lobby rooms
The LobbyScene encompasses the staging area of the game, where the players can
choose their teams (if the game is ranked then this option is disabled), classes
and the host can set the gamemode, target objective count and the map.

63

ExtendedLobbyService

N

ExtendedLobbyManager ChatBehaviour GameOptionsBehaviour

Figure B.4: High level architecture of the LobbyScene scripts.

The networked object serving as the intermediator for RPC calls is the Ex-
tendedLobbyService component. This unit does the actual sending and receiving
of network messages, which - if it is an incoming message - he sorts out and
propagates to the interested party (figure B.4).

One of these parties is the ChatBehaviour script, which manages the GUI
aspects of the chat system. This element reads in the local user’s message and
passes it to ExtendedLobbyService to distribute and receives other players’ mes-
sages and displays them for the local user.

The second of the above mentioned parties is the GameOptionsBehaviour.
This component handles the synchronization of the gamemode, the target objec-
tive count and the name of the map. It offers the host to change these settings
freely (while other players can not interact with these GUI elements) and when
he does, the unit notifies the ExtendedLobbyService to distribute it.

As the most important part of the scene, the component displays the list
of joined players. This list of players is handled by the ExtendedLobbyManager
component (illustrated in figure B.5).

ExtendedLobbyManager

ExtendedLobbyPlayer ExtendedLobbyPlayerItem

LobbyPlayer

GUILobbyPlayer

Figure B.5: Lobby player handling.

Every change regarding the properties of the players goes through this unit.
Therefore, if the local player for example changes his team or class, the Extended-
LobbyManager registers the change and sends it to the ExtendedLobbyService to
network the modification. On the other hand, if non local user changes a property
and the ExtendedLobbyService receives the notification of the change via an RPC
call, the ExtendedLobbyService calls the ExtendedLobbyManager unit to apply the
change.

64

The alterations are executed in 2 places.

• One place is the ExtendedLobbyPlayer item, which contains the properties
of the player (extended from the class LobbyPlayer which maintains the
information about the name and the team - in the derived class we add the
choice of character class and readiness information). The fields in this class
are changed directly from the ExtendedLobbyManager class.

• The ExtendedLobbyPlayerItem class handles the GUI and therefore gener-
ates (if the local player made a change) or reacts to (if another player varied
something which we need to display on our screen as well) the RPC call
requests. The unit demonstrates the modifications on an instance of the
prefab GUILobbyPlayer, which has a GUI element for showing each lobby
player property.

We contain the general settings for various things not related to a specific game
in the class DefaultSettings. This script holds the connection information to the
MasterServer, the list of available gamemodes (however, to introduce another
gamemode it is not enough to introduce a new class here, we must also add the
new gamemode prefab to the CustomNetworkManager - because the gamemode
object has to be networked - as discussed above), the list of available character
classes (here it suffices adding a new class to the list, because the instantiation is
done with the help of reflection), etc.

B.2.3 GameScene transition
When all players are ready and the host starts the game, we begin the transition
from the LobbyScene to the GameScene (figure B.6).

LobbyScene GameScene

GameSceneInitializer

Figure B.6: GameScene transition.

When the application begins to load the GameScene, we start initializing the
objects within. One of these is an empty gameobject, which has the GameSceneIni-
tializer script attached. This script starts 3 important processes: the loading of
the map, the spawn of the gamemode (both server-only activities) and the spawn

65

of the wizard (user object - server and client activity). The latter 2 objects are
described in detail later.

The first of these processes is handled by the MapLoader class. This procedure
consists of the deserialization of the selected map, reading the world properties
(like the spawn positions of the teams and the positions of the flags), the spawning
of the tiles, polygons and neutrals in the scene and the commencement of the
sprite synchronization process as well. This latter operation is described in the
thesis in detail, here we only specify the responsibilities of the affected classes
(illustrated in figure B.7).

MapLoader

NetworkedTile

N

SpriteLoader
AndSynchronizer NetworkTransmitter

HDD
(StreamingAssets folder)

Figure B.7: Map loading structure.

The tile is a networked object created by the server holding the informa-
tion about the sprite. When this tile appears on the side of the client, the
SpriteLoaderAndSynchronizer class is requested to load the sprite from the disk or
query it from the server. The file transfer is executed through the NetworkTrans-
mitter class, which fires an event if a sprite arrived. The SpriteLoaderAndSyn-
chronizer class reacts to this event by painting the corresponding tiles on the side
of the client.

B.3 GameScene
The most important scene in the application is where the game is played. Here
is where the user spends the majority of his time and where our game design
and game flow are carried out. It also hosts the player’s game objects which is
naturally the most complex component in the application. In the next sections
we detail the elements residing in this scene.

66

B.3.1 The player’s game object

Figure B.8: Components attached to the game object.

The player’s game object prefab is illustrated in figure B.8. Components inside
the dash-lined rectangle are child classes of the MonoBehaviour class and are
attached to the object as described above, therefore the Update() function is
called for every one (which can monitor key presses and control command as well
as update the properties of the object).

We have given each responsibility (as per the game design) to different com-
ponents in order to make the structure more modular. Since we register the key
strokes or mouse movement in all the attached components, we can separate each
action for the responsible units.

We will now list the attached components and describe the importance of each
(the relationship between them is illustrated in figure B.9).

WizardNetworkIncoming UltimateScript

WizardMovementController

WizardFlightController

ShieldControl

TargettingSystem

WeaponControl

HealthScript

WizardNetworkOutgoing

Figure B.9: Player object component networking.

• WizardNetworkOutgoing and WizardNetworkIncoming - these two classes
are the networked components of the object and are thus responsible for

67

synchronizing the object userwide. The WizardNetworkOutgoing compo-
nent receives requests from other attached units detailing the local player’s
actions and decisions and forwards them to other clients in the form of
networked field updates and RPC calls. These incoming updates (on other
users’ machines) are then received and handled by the WizardNetworkIn-
coming component, which extract the parameters of the performed action
and passes them on to the appropriate component, which then executes the
update.

• WizardMovementController - executes the basic movement actions i.e. hor-
izontal movement and jumping and networks the position of the object.

• TargettingSystem - adjusts the weapon in the wizard’s hand so it always
points towards the mouse’s position on the screen. Networks this rotation
so every player knows what the other is pointing towards.

• PlayerProperties - contains the characteristics of the player set up in the
lobby, namely the name, network identification, team and character class.
No networking is necessary here, because these values can not be changed
during the game.

• HealthScript - handles all actions related to the health of the player (which
it then networks). Deducts the health lost from the player’s health points
if the wizard took a hit and handles manages the player’s death and - after
the specified time - his respawn. Contains 4 events: one that fires when
a wizard takes damage, two which fire when a wizard dies (one is when
the local wizard dies, the second when any player does) and one that is
executed when the player respawns.

The following components are all derived from the abstract class BaseDeath-
Behaviour (in addition the WeaponControl system is also a child class of this one,
but it is described later in documentation). This unit contains 2 virtual methods,
which are executed in the event of the player’s death and respawn respectively
(subscribed to the events from HealthScript). With the help of these methods
can the other attached units specify some (component specific) behavioural logic
in these events (e.g. when a player dies the ShieldControl component will turn
off the player’s shield if necessary).

• WizardFlightController - handles the flight logic (designed in the thesis),
but networks only the the beginning and end of the flight animation (be-
cause the changing position is handled by the WizardMovementController).
Turns off the flight in the event of death.

• ShieldControl - handles the shield mechanism (as designed in the thesis)
and everything related (replenished by a teammate using a spell, adjusting
the shield after taking a hit, etc.). Networks the size (width) of the shield.

The remaining 2 attached components we describe a bit more in detail.

68

UltimateScript

This component handles the castings of the spell. When the correct keystroke
is registered, the unit launches an expanding circle originated from the player.
We use Unity’s ParticleSystem for the effects around the circle (the properties of
the particles are specified and are different in each character class). When the
circle collides with a wizard, the effect of the ultimate is applied on the player (if
applicable - we make sure that the spell is intended for the collided player, e.g.
beneficiary spells are only applied to teammates) and is removed after a given
amount of time. This collision is handled by the UltimateCollisionScript, which
is attached to the ParticleSystem component. It is also networks the casting of
the ultimate, so every connected client can see the spell.

UltimateScript CharacterClass

CharacterGeneral

CharacterHealer

CharacterPuppeteer

CharacterTactician

Figure B.10: The character class structure.

The spell which we cast is defined by the class of the character. All classes
are children of the abstract class CharacterClass (as seen in figure B.10). This
parent class defines the properties and abstract methods which the children then
implement in the corresponding classes (such as the properties of the particles,
cooldown time, ultimate effect lasting time and whether a supplied wizard is
effected by the spell). Additionally, we also specify 2 events: one which is fired
when the spell is cast and thus the cooldown has started; and the other when the
cooldown has finished.

WeaponControl

This component handles the offensive capabilities in the game. Its responsibility
is to recognize the keystrokes signalling the beginning of a firing process and the
process of switching weapons.

The component contains a list of available weapons the player can choose
from (this list can be extended by creating a weapon prefab and adding it to the
available weapon prefabs list in addition with specifying an input key to select
the new weapon and creating a HUD component). When the player intends to
fire and presses down the appropriate key, the WeaponControl system executes
the procedure according to the current weapon equipped.

This intent to fire is then networked, but the actual projectile is instantiated
locally for every client (this is a major optimization technique, because after the
projectile was fired, the trajectory of it cannot be affected by the players and so
no networking is required). Additionally, the player switch event is networked as

69

well (so every player can see what weapon the other has selected) and there is
also a recoil effect (which the WizardMovementController networks for us).

The component also contains an event which is fired when a weapon is switched
(used mostly by the HUD).

WeaponSystem

BaseWeapon BaseProjectile

BaseChargeableWeapon BaseAutomaticWeapon

DaggerWeaponRodWeapon StaffWeapon

Figure B.11: Weapon system structure.

Every weapon has a common parent class called BaseWeapon, just as every
projectile has BaseProjectile as a parent (displayed in figure B.11). These classes
specify the basic mechanisms common for all weapons and projectiles, such as
the process of reloading in the case of the former or the movement and collision
control in the case of the latter. They also define virtual methods which the
children can then implement specifically for their behaviour. Additionally, the
BaseWeapon class contains 2 events, one fired when a weapon reload has started
and one for when it is finished (used mostly by the HUD).

The main abstract classes derived from the BaseWeapon class are the BaseCharge-
ableWeapon and BaseAutomaticWeapon which implement the techniques defined
by their names. The former class allows the player to hold the instantiated pro-
jectile fixed with their weapon and charge the shot in order to deal more damage
to an opponent (this is then realized by the RodWeapon). The latter class defines
a weapon which can instantiate and fire projectiles in quick succession (in the
game this is used by the weapon called Staff). One additional weapon is derived
directly from the BaseWeapon class called DaggerWeapon, which does not require
a more complex logic, but is intended as a one-off powerful projectile with a long
cooldown.

The children projectile classes do not add much to the common BasePro-
jectile implementation in our case, because their properties are defined by the
corresponding weapons.

The last projectile defined is the one not instantiated by a weapon and is
called the ArrowProjectile. This class is used by the Archer neutral (described
later).

70

B.3.2 NeutralBehaviours
The other active and moving game objects in the scene are the neutral enemies.
The positions and properties of these neutrals are serialized in the map descrip-
tion, so during the deserialization we can initialize the specified neutral in the
WorldEditor.

MonoNeutralBehaviour NetworkedNeutralBehaviour

N

HorizontalNeutralBehaviour TurretNeutralBehaviour NetworkedKnightBehaviour NetworkedArcherBehaviour

Knight Archer

Figure B.12: Neutral structure in the game.

To each neutral object there is a component attached derived from the abstract
base class MonoNeutralBehaviour and one child class of the class NetworkedNeu-
tralBehaviour (as seen in figure B.12). The derived classes from the latter take
care of the networking of the neutral (the neutrals are host owned objects). They
can update the position of the object user-wide or can signal an attack via an
RPC call.

The MonoNeutralBehaviour abstract class is a common ancestor of behaviour
classes which describe the local processes. In this parent class we define the seri-
alization and deserialization functions and outline the virtual methods the child
classes can use to convey specific information about the objects. Additionally,
these child classes define the movement or attack logic of the neutral.

B.3.3 Gamemodes

GameMode

N

DeathMatch CaptureTheFlag

Figure B.13: Gamemode structure.

71

The structure of the gamemode classes are illustrated in figure B.13.
The GameMode abstract base class is a networked game object. This class

implements the logic of the process when a team scores a point. This event is then
networked and also fired (so the HUD can update the team scores). Additionally,
it also handles the removal of game objects belonging to disconnected players and
monitors the game state (according to the score) whether the target objective
count is reached and therefore whether the game is over.

The 2 deriving subclasses each represent a gamemode. The Deathmatch class
implements the game logic by subscribing to the event of every player’s death
and increasing the score of the opposing team. The CaptureTheFlag class follows
the behaviour of the 2 flag objects and increase the score if one is captured.

B.3.4 Heads-up display
In order to inform the player about the game state and the properties of his
character, we also implement a heads-up display (or HUD). The updates in the
HUD are triggered solely by events and field updates so our game preserves a
more modular structure.

HUDScript

HUDHealthScript HUDSpellScript

HUDWeaponPrefab
(HUDWeaponScript)

Figure B.14: HUD structure of the game.

The structure of the scripts handling the HUD is illustrated in figure B.14.
The main script attached to the HUD object is the HUDScript, which handles
the game state panel and local wizard properties like the shield or flight time
remaining and initializes the other scripts presented.

The HUDHealthScript handles the health bar of the local wizard as well as
the reactions to the player’s death and respawn. The HUDSpellScript component
reacts to the usage of the character specific spells and displays the cooldown
process. The HUDWeaponScript attached to a HUDWeapon instance performs
the reactions to the weapon switch and reload events.

72

B.4 WorldEditor
The world editor is built on the TileMap component. When the gameobject with
the TileMap component gets selected in the hierarchy, the application draws a
grid in the scene view. This is done by utilizing the virtual method OnDraw-
GizmosSelected() and iterating through every cell in the grid to draw it as a
two-dimensional wire cube. This script will also store a few important references
for us, like the size of the map, or the parent gameobject of every tile and the
one of every neutral.

The editor scripting is accomplished by deriving from the Editor class. This
is achieved in the TileMapEditor script. This will be our main class for defining
the Inspector and therefore almost every function in the world editor.

One of the main functions is the drawing of the tiles. To accomplish this, we
created a class titled TileBrush, which is a square object with the same size as
the cells of the grid. The only things we need to successfully initialize the brush is
the sprite of the selected tile (this is set in the SpriteRenderer component where
we can change the sprite property at runtime) and the position of the mouse in
order to move it along in the scene.

Note, that we will need to snap the tile to the grid. We can easily do this
by dividing the current mouse position with the size of the cells and we get the
line and column coordinate of the cell. By multiplying this with the cell size, we
get the position of the upper left corner of the cell. We can use these numbers
to place the tile in the correct position. This function executing the snap to grid
function is used during the placing of the neutrals and properties as well.

The TileMapEditor ’s OnInspectorGUI() function is the one responsible for
drawing the Inspector. We can use the EditorGUILayout class, which offers us
the GUI elements we need to design the world editor. We will have a separate
class called InspectorGUIFactory to take care of these drawings for us. In this
class we will also define every type of property and neutral as well, as to easily
call their GUI functions together in one place.

Another important class is the abstract ObjectPainter. This class will rep-
resent the grid as a data structure and will store the references of the placed
objects. We derive two classes from it, the TilePainter, which will remember the
placed tiles and the PropertyNeutralPainter, which will store the properties and
neutrals placed in the grid (figure B.15).

73

ObjectPainter

TilePainter PropertyNeutralPainter

Figure B.15: ObjectPainter structure.

Although we will have to make sure that we correctly reference every object
in the scene from the grid, this data structure does have benefits. It will make
it easier to remove those objects that are left out of the new grid, if the user
chooses to resize the map after having placed some objects. It will also make the
rewriting easier (for example for the tiles we only change the sprite of the object
and avoid the overhead of destroying one and creating another gameobject) and
it will help us control the validity of a lamented placement.

In order to select the tile image for the TileBrush (which we want to draw
with), we needed to implement a window, which will show us the tile images
available. This window is the TilePickerWindow, which draws the tiles with the
help of GUI.DrawTexture. It also uses two helper classes: the TileHighlighter,
which is a semi-transparent dark-blue GUI.Box drawn around the texture which
is currently selected; and the static class called TilePickerWindowScroller (figure
B.16). This places a vertical scoller in the window in order to accumulate more
pictures.

TileImageLoader

HDD

Tile
images

TilePickerWindow
TilePickerWindowScroller

TileHighlighter

Figure B.16: Tile image loader window.

In order for this window to work, we need a method to find and import the

74

tile images available in the folder. This task is achieved by the TileImageLoader
class. It is important that we recognize any changes made to the contents of the
folder, but it is also important that we do not import every image every time the
GUI of the window is redrawn. For this, we use a Hashset¡Sprite¿ data structure,
which remembers those sprites that have been already imported. We chose this
structure because of the property of the Add() and Contains() functions, which
are both O(1) operations.

The base class that every placable object (and the wizard size reference) de-
rives from is the MouseAttachableObject (figure B.17). This class defines a be-
haviour, where the object has an enable placing button in the Inspector, which
when clicked, creates an object instance by cloning the specified prefab and at-
taches that instance to the mouse (meaning that it will follow the movement of
it).

MouseAttachableObject

WorldProperty

Position GreenFlagPositionRedFlagPosition

ReferenceWizard

SpawnPositionRedSpawnPosition GreenSpawnPosition

Figure B.17: Property structure in the editor.

The FlagPosition and SpawnPosition classes both derive from this class. The
Position abstract class adds the functionality of placing and the restrictment,
that only one instance of the given object may be available. This means, that
if the user has already placed the red flag and wants to place the same flag,
instead of instantiating a new object, the previous one snaps out of position and
is attached to the mouse.

The SpawnPosition abstract class adds the methods for generating the prefab
(which is a three tile wide object, where the position of the middle one will be
the position of the first player in the team), rather than importing it from the
Asset folder.

The MapSerializer has to work the same way as the MapLoader does, but in
the opposite direction.

75

Neutral

HorizontallyMoving
Neutral TurretNeutral

Figure B.18: Structure of neutrals in the editor.

The last not mentioned classes are Editor Neutral classes (figure B.18). Every
type of neutral derives from the Neutral base class where a common logic is de-
fined: the rotation customization of those neutrals that allow this and the actual
neutral placing function. Because of this common base, every type of neutral has
to declare a ApplyCurrentPropertiesToObjectInstance() method, which is called
after placing the neutral. This method transfers the settings adjusted by the user
to the actual neutral placed in the scene.

The implementation of the MapSmoother process closely follows the algorithm
discussed in the thesis (all corresponding scripts are grouped in the MapSmoother
directory). When the algorithm is finished calculating the points of the polygon,
the MeshCreator class creates the object itself using the points specified.

B.5 MasterServer
The structure of the MasterServer is described in the thesis in detail, here we
only specify the responsibilities of the affected classes and a few implementation
details.

The entry point of the program is the Program class where we can specify the
properties of the server and which registers the interactions as well (e.g. restart
the server, list logging on/off, etc.). The class handling the incoming and outgoing
messages is the MasterServer class, which is therefore characterized as the API
(additionally, it also holds the list of custom unranked lobbies).

If the player wishes to join the matchmaking queue, his rank is queried from
the OngoingRankedMatches class (if this is the first time the player wishes to
play a ranked match, a new rating - an instance of the class Rating - is gener-
ated for him using the default values). This rating and the NetworkingPlayer
instance (which holds the connection information of the player) is wrapped into
a WaitingPlayer class instance (which has the additional property of measuring
the time spent in queue) and the player is forwarded to the PlayerSorter class.

76

The PlayerSorter class determines the MatchmakingBin to which the player
belongs according to his rank and enqueues him into it. The player is left waiting
in queue until a MatchmakingWorker instance dequeues him and considers him
for a game.

The MatchmakingWorker is a direct implementation of the unit described
in the thesis. It tries to maximize match quality by considering every possible
team composition, where each team consists of 5 players (we also implement
the possibility of allowing imbalanced matches where one team is made up of
only 1, 2, 3 or 4 players, but as a default setting we do not use this). If the h
function is less than λ, then the match is created (if the match is cancelled, the
players are put back into the queue). The game is added to the list of ongoing
matches in the OngoingRankedMatches class (represented as a dictionary, where
the NetworkingPlayer component of the server is used as a key) and the game
information is sent to the players.

When the game is finished, the server reports back the result of the game and
the ranks are updated by the TwoTeamTrueSkillCalculator defined the supple-
mented library.

The tests for the server performed for the thesis are implemented in the Mas-
terServerTests project.

77

	Introduction
	Platform selection
	Assignment breakdown
	Choosing the platforms

	Design of the game
	Inspirations
	Soldat
	Worms
	Other game mechanics

	Main ideas
	Game objects
	Playing field

	Game design and flow
	The player object
	The tiles shaping the map
	Neutral enemies
	Gamemodes
	WorldEditor

	Analysis and implementation
	Lobby room
	Lobby room

	Player evaluation
	Matchmaking models
	More about TrueSkill

	WorldEditor
	Creating a visual aid for object placement
	Required elements
	Custom tile picking
	Easing the editing

	Libraries and game engine
	Game engine selection
	World Editor
	Player evaluation

	Map smoothing
	Dynamic image synchronization
	Requesting and supplying the sprites
	Image comparison

	Preparing the image for the transfer
	Encoding to JPG
	Encoding to PNG
	Zipping

	MasterServer
	Custom lobbies
	Ranked matches
	Matchmaking
	Matchmaking aspects
	MatchmakingWorker
	Creating a multi-threaded matchmaker
	Testing the algorithm

	Conclusion
	Bibliography
	List of Figures
	User documentation
	Launching the server
	Installation
	Main menu - establishing the connection
	Lobby room
	Game scene
	World Editor
	Installation
	Building the map

	Programming documentation
	MainMenuScene
	LobbyScene
	Forge Networking
	Lobby rooms
	GameScene transition

	GameScene
	The player's game object
	NeutralBehaviours
	Gamemodes
	Heads-up display

	WorldEditor
	MasterServer

