FACULTY OF MATHEMATICS AND PHYSICS Charles University

BACHELOR THESIS

Nathan Chappell

Minkowski-Weyl Theorem

Department of Applied Mathematics

Supervisor of the bachelor thesis: Hans Raj Tiwary
Study programme: Computer Science
Study branch: IOIA

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In \qquad date \qquad signature of the author

Title: Minkowski-Weyl Theorem

Author: Nathan Chappell

Department: Department of Applied Mathematics
Supervisor: Hans Raj Tiwary, Department of Applied Mathematics
Abstract: The Minkowski-Weyl Theorem is proven for polyhedra by first showing the proof for cones, then the reductions from polyhedra to cones. The proof follows Ziegler [1], and uses Fourier-Motzkin elimination. A C++ implementation is given for the enumeration algorithm suggested by the proof, as well a means of testing the implementation against some special polyhedra. The Farkas Lemma is then proven and used to prove the validity of the testing methods.

Keywords: Minkowski-Weyl Theorem polyhedra Fourier-Motzkin C++

Contents

Introduction 3
1 Minkowski-Weyl Theorem 4
1.1 Polyhedra 4
1.2 Minkowski-Weyl Theorem 6
1.3 Notational Abuses 6
2 Proof of the Minkowski-Weyl Theorem 7
2.1 Every V-Cone is an H-Cone 7
2.2 Every H-Cone is a V-Cone 11
2.3 Reducing Polyhedra to Cones 15
2.3.1 H-Polyhedra \rightarrow V-Polyhedra 15
2.3.2 V-Polyhedra \rightarrow H-Polyhedra 16
2.4 Picture of the Proof 17
3 C++ Implementation 18
3.1 Code 20
3.2 linear_algebra.h 20
3.2.1 typedef Vector 20
3.2.2 class Matrix 21
3.2.3 struct VPoly 22
3.2.4 class input_error 22
3.2.5 operator<<, operator>> 22
3.2.6 usage() 23
3.3 linear_algebra.cpp 23
3.3.1 Vector e_k(size_t,size_t) 23
3.3.2 Vector concatenate(Vector, Vector) 23
3.3.3 Vector get_column(Matrix,size_t) 23
3.3.4 Matrix transpose(Matrix) 24
3.3.5 Matrix slice_matrix(Matrix,slice) 24
3.4 fourier motzkin.cpp 24
3.4.1 bool index_in_slice(size_t,slice) 24
3.4.2 Matrix fourier_motzkin(Matrix,size_t) 25
3.4.3 Matrix sliced_fourier_motzkin(Matrix, slice) 26
3.4.4 Matrix generalized_lift(Matrix, array<double,5>) 26
3.4.5 Matrix lift_\{vcone,hcone\} (Matrix) 27
3.4.6 Matrix cone_transform(Matrix,LiftSelector) 27
3.4.7 Matrix \{hcone_to_vcone,vcone_to_hcone\}(Matrix) 28
3.5 polyhedra.cpp 28
3.5.1 Matrix \{hpoly_to_hcone,hcone_to_hpoly\}(Matrix) 28
3.5.2 Matrix vpoly_to_vcone(Matrix) 29
3.5.3 Matrix normalized_P(Matrix) 29
3.5.4 Matrix vcone_to_vpoly(Matrix) 30
3.5.5 Matrix \{hpoly_to_vpoly, vpoly_to_hpoly\}(Matrix) 30
3.6 Picture of the Program 30
4 Testing 32
4.1 Testing H-Cone \rightarrow V-Cone 32
4.2 Testing V-Cone \rightarrow H-Cone 36
4.2.1 The Farkas Lemma 36
4.3 Testing H-Polyhedron \rightarrow V-Polyhedron 40
4.3.1 Polytopes 40
4.3.2 Characterstic Cone 42
4.3.3 Minimal V-Polyhedra Pairs 43
4.4 Testing V-Polyhedron \rightarrow H-Polyhedron 45
4.5 Full-Dimensional and Pointed Polyhedra 49
4.5.1 Full-Dimensional V-Polyhedra 50
4.5.2 Pointed H-Polyhedra 50
4.5.3 Summary 50
4.6 test_functions.h 51
4.6.1 struct hcone_test_case 51
4.6.2 struct vcone_test_case 51
4.6.3 struct hpoly_test_case 51
4.6.4 struct vpoly_test_case 51
4.7 test_functions.cpp 52
4.7.1 double operator*(Vector,Vector) 52
4.7.2 double norm(Vector) 52
4.7.3 bool approximately_zero(double) 52
4.7.4 bool approximately_lt_zero(double) 52
4.7.5 bool approximately_zero(Vector) 53
4.7.6 bool is_equivalent(Vector,Vector) 53
4.7.7 bool is_equal(Vector, Vector) 53
4.7.8 bool has_equivalent_member (Matrix, Vector) 53
4.7.9 bool has_equal_member(Matrix, Vector) 53
4.7.10 bool subset_mod_eq(Matrix, Matrix) 54
4.7.11 bool subset(Matrix,Matrix) 54
4.7.12 bool ray_satisfied(Vector, Vector) 54
4.7.13 bool ray_satisfied(Matrix, Vector) 55
4.7.14 bool rays_satisfied(Matrix, Matrix) 55
4.7.15 bool vec_satisfied(Vector,Vector) 55
4.7.16 bool vec_satisfied(Matrix,Vector) 56
4.7.17 bool vecs_satisfied(Matrix, Matrix) 56
4.7.18 bool equivalent_cone_rep(Matrix, Matrix, Matrix) 56
4.7.19 bool equivalent_hpoly_rep(Matrix, VPoly,VPoly) 56
4.7.20 bool equivalent_vpoly_rep(VPoly,Matrix,Matrix) 57
Conclusion 58
Bibliography 59

Introduction

Known since antiquity, polyhedra are primordial mathematical objects. Two ways of describing polyhedra are:

1. A finite intersection of half-spaces
2. The Minkowski-Sum of the convex-hull of a finite set of rays and a finite set of points

The Minkowski-Weyl Theorem is a fundamental result in the theory of polyhedra; it states that both means of representation are equivalent. The proof given here is algorithmic in nature, using a technique known as Fourier-Motzkin elimination. The correctness of the algorithm also proves a result known as The Farkas Lemma.

This thesis is broken up into four chapters. Chapter 1 states the definitions necessary for Minkowski-Weyl Theorem, and states the theorem. Chapter 2 proves the theorem, by first considering the case that the polyhedron is a cone, then shows how to reduce the case of general polyhedra to that of cones. Chapter 3 shows a C++ implementation of the transformations described in Chapter 2. Chapter 4 presents a method of testing the program for special cases of polyhedra: the pointed and full-dimensional polyhedra. The Farkas Lemma is proven and extensively used to show the validity of the testing methods.

The C++ implementation is available online at:
https://github.com/nathan-chappell/mwt/tree/master/cpp

1. Minkowski-Weyl Theorem

We begin somewhat tersely, stating some basic definitions in order to state the theorem. The only noteworthy part of this section is Proposition 1.1.7, which will be used a number of times throughout the thesis.

1.1 Polyhedra

Definition 1.1.1 (Non-negative Linear Combination). Let $U \in \mathbb{R}^{d \times p}$, $\mathbf{t} \in \mathbb{R}^{p}$, $\mathbf{t} \geq \mathbf{0}$, then $\sum_{1 \leq j \leq p} t_{j} U^{j}=U \mathbf{t}$ is called a non-negative linear combination of U.

Definition 1.1.2 (V-Cone). Let $U \in \mathbb{R}^{d \times p}$. The set of all non-negative linear combinations of U is denoted cone (U). Such a set is called a V-Cone.

Figure 1.1: V-Cone: cone ([[$\left[\begin{array}{l}1 \\ 2\end{array},\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Definition 1.1.3 (Convex Combination). Let $V \in \mathbb{R}^{d \times n}$, and let $\boldsymbol{\lambda} \in \mathbb{R}^{n}$ satisfy $\sum_{1 \leq j \leq n} \lambda_{j}=1, \boldsymbol{\lambda} \geq \mathbf{0}$, then $\sum_{1 \leq j \leq n} \lambda_{j} V^{j}$ is called a convex combination of V . The set of all convex combinations of V is denoted $\operatorname{conv}(V)$.

Definition 1.1.4 (V-Polyhedron). Let $V \in \mathbb{R}^{d \times n}, U \in \mathbb{R}^{d \times p}$. Then the set

$$
\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in \operatorname{cone}(U), \mathbf{y} \in \operatorname{conv}(V)\}
$$

is called a V-Polyhedron.

Note: Given two sets P and Q, the set $P+Q=\{p+q \mid p \in P, q \in Q\}$ is called the Minkowski Sum of P and Q. Therefore, we will write a V-Polyhedron as cone $(U)+\operatorname{conv}(V)$ for some U and V.

Definition 1.1.5 (H-Polyhedron). Let $A \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^{m}$. Then the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{d} \mid A \mathbf{x} \leq \mathbf{b}\right\}
$$

is called an H-Polyhedron.

Figure 1.2: V-Polyhedron: cone $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)+\operatorname{conv}\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Figure 1.3: H-Polyhedron: $\left(\begin{array}{rr}-2 & 1 \\ 1 & -2 \\ 2 & -1\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{l}0 \\ 0 \\ 3\end{array}\right)$

Definition 1.1.6 (H-Cone). Let $A \in \mathbb{R}^{m \times d}$. Then the set

$$
\left\{\mathrm{x} \in \mathbb{R}^{d} \mid A \mathrm{x} \leq \mathbf{0}\right\}
$$

is called an H-Cone.

Figure 1.4: H-Cone: $\left(\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right)\binom{x}{y} \leq\binom{ 0}{0}$
A simple but useful property of cones is that they are closed under addition and positive scaling.

Proposition 1.1.7 (Closure Property of Cones). Let C be either an H-Cone or a V-Cone, and for each i let $\mathbf{x}^{i} \in C$, and $c_{i} \geq 0$. Then:

$$
\sum_{i} c_{i} \mathbf{x}^{i} \in C
$$

Proof. First we prove Proposition 1.1.7 for H-Cones, then for V-Cones. If, for each $i, A \mathbf{x}^{i} \leq \mathbf{0}$, then $A\left(c_{i} \mathbf{x}^{i}\right)=c_{i} A \mathbf{x}^{i} \leq \mathbf{0}$, and

$$
A\left(\sum_{i} c_{i} \mathbf{x}^{i}\right)=\sum_{i} A\left(c_{i} \mathbf{x}^{i}\right)=\sum_{i} c_{i} A \mathbf{x}^{i} \leq \sum_{i} \mathbf{0} \leq \mathbf{0}
$$

So, $\sum_{i} c_{i} \mathbf{x}^{i} \in C$ when C is an H-Cone. Next, suppose that $C=\operatorname{cone}(U)$, and for each $i, \exists \mathbf{t}_{i} \geq \mathbf{0}: \mathbf{x}^{i}=U \mathbf{t}_{i}$. Then $c_{i} \mathbf{t}_{i} \geq \mathbf{0}$, and $\sum_{i} c_{i} \mathbf{t}_{i} \geq \mathbf{0}$. Therefore

$$
\sum_{i} c_{i} \mathbf{x}^{i}=\sum_{i} c_{i} U \mathbf{t}_{i}=\sum_{i} U\left(c_{i} \mathbf{t}_{i}\right)=U\left(\sum_{i} c_{i} \mathbf{t}_{i}\right)
$$

So, $\sum_{i} c_{i} \mathbf{x}^{i} \in C$ when C is a V-Cone.
This proposition will be used in the following way: if we wish to show that $\sum_{i} c_{i} \mathbf{x}^{i}$ is a member of some cone C, it suffices to show that, for each $i, c_{i} \geq 0$ and $\mathbf{x}^{i} \in C$.

Remark 1. Proposition 1.1.7 is a characteristic property of cones. In fact, it could be used as an abstract definition of a cone, removed from geometric interpretation, then cones in euclidean space could be examined as important special classes.

1.2 Minkowski-Weyl Theorem

The following theorem is the basic result to be proved in this thesis, which states that V-Polyhedra and H-Polyhedra are two different representations of the same objects.

Theorem 1 (Minkowski-Weyl Theorem). Every V-Polyhedron is an H-Polyhedron, and every H-Polyhedron is a V-Polyhedron.

1.3 Notational Abuses

Throughout the paper, capital letters will be used to denote matrices. In some cases, the dimensions of the matrix will not be specified: it is assumed that they have dimensions necessary for the expressions in which they appear to make sense (typically for block-matrix notation or matrix-multiplication). Rows will be indicated by subscript (e.g. B_{k} is the k-th row of B), and columns by superscript (Y^{j} is the j-th column of Y). Then, A_{k}^{j} is the element of A in the k-th row and j-th column.

A special case of dimensional abuse will take place with vectors being row or column vectors. For example, the expression $\mathbf{y} \in \mathbb{R}^{d+p}, \mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{p}$, $\mathbf{y}=(\mathbf{x}, \mathbf{w})$ is technically not correct without indicating various transpositions. However, it seems clear what is meant is that $\mathbf{y}^{T}=\left(\mathbf{x}^{T}, \mathbf{w}^{T}\right)$.

A very special matrix, the identity matrix, will be referred to as I, regardless of dimension. This enhances clarity, although at times may not be perfectly formal.

2. Proof of the Minkowski-Weyl Theorem

The proof proceeds by first showing that V-Cones are representable as H-Cones, and H-Cones are representable as V-Cones. Then it is shown that the case of polyhedra can be reduced to cones.

2.1 Every V-Cone is an H-Cone

Theorem 2. Every V-Cone is an H-Cone.
To be clear, what we shall now show is that, given a set of the form: cone (U), there is an A such that $\operatorname{cone}(U)=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$. The first step in this construction is to rewrite cone (U) as $\Pi\left(\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq 0\right\}\right)$, where Π is a coordinate projection. We then show how to calculate these projections, and that the result is a set of the form $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$.

Definition 2.1.1 (Coordinate Projection). Let I be the identity matrix. Then the matrix I^{\prime} formed by deleting some rows from I is called a coordinateprojection.

Lemma 2.1.2 (Lifting a V-Cone). Every V-Cone is a coordinate-projection of an H -Cone.

Lemma 2.1.3 (Projecting an H-Cone). Every coordinate-projection of an H Cone is an H-Cone.

First, we quickly use the two lemmas to conclude Theorem 2. The rest of the section will be the proof of the two lemmas.

Proof of Theorem 2. Given Lemma 2.1.2 and Lemma 2.1.3, the proof follows simply. Given a V-Cone, we use Lemma 2.1.2 to get a description involving coordinate-projection of an H-Cone. Then we can apply Lemma 2.1.3 in order to get an H -Cone.

Proof of Lemma 2.1.2. We prove that every V-Cone is a coordinate projection of an H -Cone, by giving an explicit formula. Let $U \in \mathbb{R}^{d \times p}$, and observe that

$$
\operatorname{cone}(U)=\left\{U \mathbf{t} \mid \mathbf{t} \in \mathbb{R}^{p}, \mathbf{t} \geq \mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\left(\exists \mathbf{t} \in \mathbb{R}^{p}\right) \mathbf{x}=U \mathbf{t}, \mathbf{t} \geq \mathbf{0}\right\}
$$

The plan is to express the equality of $U \mathbf{t}$ and \mathbf{x} as two inequalities, and combine them in a block-matrix along with the non-negativity of \mathbf{t}, then project away the coordinates corresponding to \mathbf{t}. The following expression takes one step:

$$
\begin{equation*}
\mathbf{t} \geq \mathbf{0} \Leftrightarrow-I \mathbf{t} \leq \mathbf{0} \tag{2.1}
\end{equation*}
$$

Using the equality: $a=0 \Leftrightarrow a \leq 0 \wedge-a \leq 0$, and block matrix notation, we take the second step.

$$
\mathbf{x}=U \mathbf{t} \Leftrightarrow \mathbf{x}-U \mathbf{t}=\mathbf{0} \Leftrightarrow\left(\begin{array}{rr}
I & -U \tag{2.2}\\
-I & U
\end{array}\right)\binom{\mathbf{x}}{\mathbf{t}} \leq \mathbf{0}
$$

Comparing (2.1) and (2.2), we define a matrix transform:

Transform 1 (V-Cone Lift).

$$
\mathrm{T}_{\mathrm{V}}(U)=\left(\begin{array}{rr}
\mathbf{0} & -I \\
I & -U \\
-I & U
\end{array}\right)
$$

So we can rewrite cone (U) :

$$
\operatorname{cone}(U)=\left\{\begin{array}{l|l}
\mathbf{x} \in \mathbb{R}^{d} & \mathrm{~T}_{\mathrm{V}}(U)
\end{array}\binom{\mathbf{x}}{\mathbf{t}} \leq \mathbf{0}\right\}
$$

Let Π be the identity matrix in $\mathbb{R}^{(d+p) \times(d+p)}$, but with the last p-rows deleted. Then Π is a coordinate projection, and the above expression can be written:

$$
\begin{equation*}
\operatorname{cone}(U)=\Pi\left(\left\{\mathbf{y} \in \mathbb{R}^{d+p} \mid \mathrm{T}_{\mathrm{V}}(U) \mathbf{y} \leq \mathbf{0}\right\}\right) \tag{2.3}
\end{equation*}
$$

This is a coordinate projection of an H-Cone, and Lemma 2.1.2 is shown.
To prove Lemma 2.1.3, we use two separate propositions.
Proposition 2.1.4 (Projecting Null Columns). Let $B \in \mathbb{R}^{m \times(d+p)}$, with the last p columns all $\mathbf{0}$. Let B^{\prime} be B with the last p columns deleted, and Π the identity matrix in \mathbb{R}^{d+p} with the last p rows deleted. Then

$$
\Pi\left(\left\{\mathbf{y} \in \mathbb{R}^{d+p} \mid B \mathbf{y} \leq \mathbf{0}\right\}\right)=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid B^{\prime} \mathbf{x} \leq \mathbf{0}\right\}
$$

Proof. Recall that $\mathrm{By} \leq \mathbf{0}$ means that $(\forall i)\left\langle B_{i}, \mathbf{y}\right\rangle \leq 0$. Because the last p columns of B are $\mathbf{0}$, any row B_{i} of B can be written ($B_{i}^{\prime}, \mathbf{0}$), with $\mathbf{0} \in \mathbb{R}^{p}$. We can also rewrite $\mathbf{y} \in \mathbb{R}^{d+p}$ as (\mathbf{x}, \mathbf{w}) with $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{p}$, so that $\mathbf{x}=\Pi(\mathbf{y})$. Then

$$
\left\langle B_{i}, \mathbf{y}\right\rangle=\left\langle\left(B_{i}^{\prime}, \mathbf{0}\right),(\mathbf{x}, \mathbf{w})\right\rangle=\left\langle B_{i}^{\prime}, \mathbf{x}\right\rangle=\left\langle B_{i}^{\prime}, \Pi(\mathbf{y})\right\rangle
$$

It follows that

$$
\left\langle B_{i}, \mathbf{y}\right\rangle \leq 0 \Leftrightarrow\left\langle B_{i}^{\prime}, \Pi(\mathbf{y})\right\rangle \leq 0
$$

Since B_{i} is an arbitrary row of B, the proposition is shown.
In order to use the above proposition, we need a matrix with columns which are $\mathbf{0}$. The next proposition shows us how to obtain such a matrix from another, while maintaining certain important properties.

Proposition 2.1.5 (Fourier Motzkin Elimination for H-Cones). Let $B \in \mathbb{R}^{m_{1} \times(d+p)}$. Then there exists a matrix $B^{\prime} \in \mathbb{R}^{m_{2} \times(d+p)}$ with the following properties:

1. Every row of B^{\prime} is a positive linear combination of rows of B.
2. m_{2} is finite.
3. The k-th column of B^{\prime} is $\mathbf{0}$.
4. $(\exists t) B\left(\mathbf{x}+t \mathbf{e}_{k}\right) \leq \mathbf{0} \Leftrightarrow B^{\prime} \mathbf{x} \leq \mathbf{0}$

Proof. Partition the rows of B as follows:

$$
\begin{aligned}
& P=i \mid B_{i}^{k}>0 \\
& N=j \mid B_{j}^{k}<0 \\
& Z=l \mid B_{l}^{k}=0
\end{aligned}
$$

Then let B^{\prime} be a matrix with the following rows:

$$
\begin{aligned}
& B_{l}^{\prime}=B_{l} \quad \mid l \in Z \\
& B_{i j}^{\prime}=B_{i}^{k} B_{j}-B_{j}^{k} B_{i} \mid i \in P, j \in N
\end{aligned}
$$

1 and 2 are clear. 3 is satisfied for rows indexed by Z by definition That it holds for the other rows, observe:

$$
\left\langle B_{i j}^{\prime}, \mathbf{e}_{k}\right\rangle=\left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{e}_{k}\right\rangle=B_{i}^{k} B_{j}^{k}-B_{j}^{k} B_{i}^{k}=0
$$

The right direction of 4 is shown in the following calculations. Because $B_{l}^{k}=0$:

$$
\left\langle B_{l}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle=\left\langle B_{l}, \mathbf{x}\right\rangle+t B_{l}^{k}=\left\langle B_{l}, \mathbf{x}\right\rangle=\left\langle B_{l}^{\prime}, \mathbf{x}\right\rangle
$$

So $\left\langle B_{l}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle \leq 0 \Leftrightarrow\left\langle B_{l}^{\prime}, \mathbf{x}\right\rangle \leq 0$. It follows that 4 is satisfied for rows indexed by Z, and we will turn to rows indexed by P and N. Because $B_{i}^{k} B_{j}^{k}-B_{j}^{k} B_{i}^{k}=0$ we have:

$$
\left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle=\left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{x}\right\rangle
$$

Because B_{i}^{k} and $-B_{j}^{k}$ are non-negative:

$$
\left\langle B_{i}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle \leq 0,\left\langle B_{j}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle \leq 0 \Rightarrow\left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle \leq 0
$$

Therefore $\left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{x}\right\rangle \leq 0$, and the right implication is shown.
Now suppose that $B^{\prime} \mathbf{x} \leq \mathbf{0}$. The task is to find a t so that $B\left(\mathbf{x}+t \mathbf{e}_{k}\right) \leq \mathbf{0}$. Observe

$$
\begin{aligned}
\forall i \in P, \forall j \in N & \left\langle B_{i}^{k} B_{j}-B_{j}^{k} B_{i}, \mathbf{x}\right\rangle & \leq 0 & \\
\forall i \in P, \forall j \in N & \left\langle B_{i}^{k} B_{j}, \mathbf{x}\right\rangle & \leq\left\langle B_{j}^{k} B_{i}, \mathbf{x}\right\rangle & \Leftrightarrow \\
\forall i \in P, \forall j \in N & \left\langle B_{i} / B_{i}^{k}, \mathbf{x}\right\rangle & \leq\left\langle B_{j} / B_{j}^{k}, \mathbf{x}\right\rangle & \Leftrightarrow
\end{aligned}
$$

Note that the third inequality changes directions because $B_{j}^{k}<0$. Now we choose t to lie in this last interval, and show that we can use it to satisfy all of the constraints given by B. So, we have a t such that

$$
\max _{i \in P}\left\langle B_{i} / B_{i}^{k}, \mathbf{x}\right\rangle \leq t \leq \min _{j \in N}\left\langle B_{j} / B_{j}^{k}, \mathbf{x}\right\rangle
$$

In particular,

$$
(\forall j \in N) \quad t \leq\left\langle B_{j} / B_{j}^{k}, \mathbf{x}\right\rangle \Rightarrow\left\langle B_{j}, \mathbf{x}\right\rangle-B_{j}^{k} t \leq 0
$$

Again, the inequality changes directions because $B_{j}^{k}<0$. Now consider a row B_{j} from B :

$$
\left\langle B_{j}, \mathbf{x}-t \mathbf{e}_{k}\right\rangle=\left\langle B_{j}, \mathbf{x}\right\rangle-B_{j}^{k} t \leq 0
$$

Similarly,

$$
(\forall i \in P) \quad\left\langle B_{i} / B_{i}^{k}, \mathbf{x}\right\rangle \leq t \Rightarrow\left\langle B_{i}, \mathbf{x}\right\rangle-B_{i}^{k} t \leq 0
$$

Now consider a row B_{i} from B :

$$
\left\langle B_{i}, \mathbf{x}-t \mathbf{e}_{k}\right\rangle=\left\langle B_{i}, \mathbf{x}\right\rangle-B_{i}^{k} t \leq 0
$$

So, we've demonstrated that $\mathbf{x}-\mathbf{t e}_{k}$ satisfies all the constraints from B, and the left implication is shown. So 4 holds.

Remark 2 (Fourier Motzkin Matrix). Proposition 2.1.5 highlights the properties of the matrix B^{\prime}. Upon close inspection, we can create a Matrix Y such that $B^{\prime}=Y B$, and every element of Y is non-negative. Create the following set of row vectors Y

$$
\begin{aligned}
& \mathbf{e}_{l} \quad \mid l \in Z \\
& B_{i}^{k} \mathbf{e}_{j}-B_{j}^{k} \mathbf{e}_{i} \mid i \in P, j \in N
\end{aligned}
$$

Since the basis vectors simply select rows during matrix multiplication, it is clear that
$B^{\prime}=Y B$
Proof of Lemma 2.1.3. Here we prove the case that the coordinate projection is onto the first d of $d+p$ coordinates. Let $\left\{\mathbf{y} \in \mathbb{R}^{d+p}: A^{\prime} \mathbf{y} \leq \mathbf{0}\right\}$ be the H Cone we need to project, and Π the coordinate-projection we need to apply (the identity matrix with the last p rows deleted). For each $1 \leq k \leq p$ we can use Proposition 2.1.5 in an incremental manner, starting with A^{\prime}.

```
let \(B_{0}:=A^{\prime}\)
for \(1 \leq k \leq p\)
    let \(B_{k}:=\) result of proposition 2 applied to \(B_{k-1}, \mathbf{e}_{d+k}\)
endfor
return \(B_{p}\)
```

Consider the resulting B. Property 2 holds throughout, so B is finite. After each iteration, property 3 holds for $d+k$, so the $(d+k)$-th column is $\mathbf{0}$. Since each iteration only results from non-negative combinations of the result of the previous iteration (property 1), once a column is $\mathbf{0}$ it remains so. Therefore, at the end of the process, the last p columns of B are all $\mathbf{0}$. Then, by Proposition 2.1.4, we can apply Π to B by simply deleting the last p columns of B. Denote this resulting matrix A. We still need to check that

$$
\begin{equation*}
\Pi\left\{\mathbf{y} \in \mathbb{R}^{d+p} \mid A^{\prime} \mathbf{y} \leq \mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid A \mathbf{x} \leq \mathbf{0}\right\} \tag{2.4}
\end{equation*}
$$

This follows from the following:

$$
\begin{align*}
A^{\prime} \mathbf{y} \leq \mathbf{0} & \Rightarrow A(\Pi(\mathbf{y})) \leq \mathbf{0} \tag{2.5}\\
A \mathbf{x} \leq \mathbf{0} & \Rightarrow\left(\exists t_{1}\right) \ldots\left(\exists t_{p}\right) A^{\prime}\left(\mathbf{x}+t_{1} \mathbf{e}_{d+1}+\cdots+t_{p} \mathbf{e}_{d+p}\right) \leq \mathbf{0} \tag{2.6}
\end{align*}
$$

The key observation of this verification utilizes property 4 of Proposition 2.1.5:

$$
(\exists t) B\left(\mathbf{x}+t \mathbf{e}_{k}\right) \leq \mathbf{0} \Leftrightarrow B^{\prime} \mathbf{x} \leq \mathbf{0}
$$

In what follows, let $\mathbf{x}=\sum_{1 \leq j \leq d} x_{j} \mathbf{e}_{j}$. The above property is applied sequentially to the sets B_{k} as follows:

$$
\begin{array}{clr}
\left(\exists t_{p}\right)\left(\exists t_{p-1}\right) \ldots\left(\exists t_{1}\right) & B_{0}\left(\mathbf{x}+t_{1} \mathbf{e}_{p}+t_{2} \mathbf{e}_{p-1}+\cdots+t_{p} \mathbf{e}_{d}\right) \leq \mathbf{0} & \Leftrightarrow \\
\left(\exists t_{p}\right) \ldots\left(\exists t_{2}\right) & B_{1}\left(\mathbf{x}+t_{2} \mathbf{e}_{d+2}+\cdots+t_{p} \mathbf{e}_{d+p}\right) \leq \mathbf{0} & \Leftrightarrow \\
\vdots & \quad \vdots & \vdots \\
\left(\exists t_{p}\right) & B_{p-1}\left(\mathbf{x}+t_{p} \mathbf{e}_{d+p}\right) \leq \mathbf{0} & \Leftrightarrow \\
& B_{p} \mathbf{x} \leq \mathbf{0} &
\end{array}
$$

Because $A^{\prime}=B_{0}$, and A is B_{p} with the last p columns deleted, (2.5) and (2.6) hold, therefore (2.4) holds, and the proof of Lemma 2.1.3 is complete, and we've shown that a coordinate projection of an H -Cone is again an H -Cone.

With Lemma 2.1.2 and Lemma 2.1.3 proven, we are now certain that every V-Cone is also an H-Cone.

2.2 Every H-Cone is a V-Cone

Theorem 3. Every H-Cone is a V-Cone.

Now we suppose that we are given a set of the form $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$, and we must show that there is some U such that cone $(U)=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$. In a manner similar to the previous section, we will first write the set $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ as an intersection of a set cone $\left(U^{\prime}\right)$ with a number of hyperplanes, then give a process to get rid of those intersections.

Definition 2.2.1 (Coordinate Hyperplane). A set of the form

$$
\left\{\mathbf{x} \in \mathbb{R}^{m} \mid\left\langle\mathbf{x}, \mathbf{e}_{k}\right\rangle=0\right\}=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid x_{k}=0\right\}
$$

is called a coordinate-hyperplane.
This is how coordinate hyperplanes will be used. We consider a V-Cone intersected with some coordinate hyperplanes, and write it in the following way:

$$
\begin{equation*}
\left\{\mathrm{x} \in \mathbb{R}^{d} \left\lvert\,(\exists \mathbf{t} \geq 0)\binom{\mathbf{x}}{\mathbf{0}}=U^{\prime} \mathbf{t}\right.\right\} \tag{2.7}
\end{equation*}
$$

If we suppose that $U^{\prime} \subset \mathbb{R}^{d+m}$, and Π is the identity matrix with the last m rows deleted, then this is just a convenient way of writing:

$$
\begin{equation*}
\Pi\left(\operatorname{cone}\left(U^{\prime}\right) \cap\left\{x_{d+1}=0\right\} \cap \cdots \cap\left\{x_{d+m}=0\right\}\right) \tag{2.8}
\end{equation*}
$$

The proof that every H-Cone is a V-Cone rests on the following three propostions:

Lemma 2.2.2 (Lifting an H-Cone). Every H-Cone is a coordinate-projection of a V-Cone intersected with some coordinate hyperplanes.

Lemma 2.2.3 (Intersecting a V-Cone). Every V-Cone intersected with a coordinate-hyperplane is a V-Cone.

Lemma 2.2.4 (Projecting a V-Cone). Every coordinate-projection of a V-Cone is a V-Cone.

We quickly dispatch Theorem 3 with these lemmas, then get to the real work of proving the lemmas.

Proof of Theorem 3. Given Lemma 2.2.2, Lemma 2.2.3, and Lemma 2.2.4, the proof follows simply. Given an H-Cone, we use Lemma 2.2.2 to get a description involving the coordinate-projection of a V-Cone intersected with some coordinatehyperplanes. We apply Lemma 2.2 .3 as many times as necessary to eliminate the intersections, then we can apply Lemma 2.2.4 in order to get a V-Cone.

Proof of Lemma 2.2.2. Let $A \in \mathbb{R}^{m \times d}$, we now show that the H -Cone

$$
\left\{\mathbf{x} \in \mathbb{R}^{d} \mid A \mathbf{x} \leq \mathbf{0}\right\}
$$

can be written as the projection of a V-Cone intersected with some hyperplanes. We use the following transform.

Transform 2 (H-Cone Lift).

$$
\mathrm{T}_{\mathrm{H}}(A)=\left(\begin{array}{ccc}
0 & I & -I \\
I & A & -A
\end{array}\right)
$$

In other words,

$$
\mathrm{T}_{\mathrm{H}}(A)=\left\{\binom{\mathbf{0}}{\mathbf{e}_{i}},\binom{\mathbf{e}_{j}}{A^{j}},\binom{-\mathbf{e}_{j}}{-A^{j}}, 1 \leq j \leq d, 1 \leq i \leq m\right\}
$$

We then claim:

$$
\begin{equation*}
\left\{\mathrm{x} \in \mathbb{R}^{d} \mid A \mathrm{x} \leq \mathbf{0}\right\}=\left\{\mathrm{x} \in \mathbb{R}^{d} \left\lvert\,(\exists \mathrm{t} \geq 0)\binom{\mathrm{x}}{\mathbf{0}}=\mathrm{T}_{\mathrm{H}}(A) \mathrm{t}\right.\right\} \tag{2.9}
\end{equation*}
$$

First, considering (2.7) and (2.8), observe that this is a coordinate-projection of a V-Cone intersected with some coordinate-hyperplanes. Next, we note that

$$
\binom{\mathbf{x}}{A \mathbf{x}}=\sum_{1 \leq j \leq d} x_{j}\binom{\mathbf{e}_{j}}{A^{j}}
$$

We can write this as a sum with all positive coefficients if we split up the x_{j} as follows:

$$
x_{j}^{+}=\left\{\begin{array}{ll}
x_{j} & x_{j} \geq 0 \\
0 & x_{j}<0
\end{array} \quad x_{j}^{-}= \begin{cases}0 & x_{j} \geq 0 \\
-x_{j} & x_{j}<0\end{cases}\right.
$$

Then we have

$$
\begin{equation*}
\binom{\mathbf{x}}{A \mathbf{x}}=\sum_{1 \leq j \leq d} x_{j}^{+}\binom{\mathbf{e}_{j}}{A^{j}}+\sum_{1 \leq j \leq d} x_{j}^{-}\binom{-\mathbf{e}_{j}}{-A^{j}} \tag{2.10}
\end{equation*}
$$

where $x_{j}^{+}, x_{j}^{-} \geq 0$. Also observe that

$$
A \mathbf{x} \leq \mathbf{0} \Leftrightarrow(\exists \mathbf{w} \geq \mathbf{0}) \mid A \mathbf{x}+\mathbf{w}=\mathbf{0}
$$

This can be written

$$
\begin{equation*}
A \mathbf{x} \leq \mathbf{0} \Leftrightarrow(\exists \mathrm{w} \geq \mathbf{0}) \left\lvert\,\binom{\mathrm{x}}{A \mathrm{x}}+\binom{\mathbf{0}}{\mathrm{w}}=\binom{\mathrm{x}}{\mathbf{0}}\right. \tag{2.11}
\end{equation*}
$$

(2.10) and (2.11) together show

$$
A \mathbf{x} \leq \mathbf{0} \Rightarrow(\exists \mathbf{t} \geq 0)\binom{\mathbf{x}}{\mathbf{0}}=\mathrm{T}_{\mathrm{H}}(A) \mathbf{t}
$$

Conversely, suppose

$$
(\exists \mathbf{t} \geq 0)\binom{\mathbf{x}}{\mathbf{0}}=\mathrm{T}_{\mathrm{H}}(A) \mathbf{t}
$$

We would like to show that $A \mathbf{x} \leq \mathbf{0}$. Let $x_{j}^{+}, x_{j}^{-}, w_{i}$ take the values of \mathbf{t} that are coefficients of $\binom{\mathbf{e}_{j}}{A^{j}},\binom{-\mathbf{e}_{j}}{-A^{j}}$, and $\binom{\mathbf{0}}{\mathbf{e}_{i}}$ respectively, and denote $x_{j}=x_{j}^{+}-x_{j}^{-}$. Then we have

$$
\begin{aligned}
\binom{\mathbf{x}}{\mathbf{0}} & =\sum_{1 \leq j \leq d} x_{j}^{+}\binom{\mathbf{e}_{j}}{A^{j}}+\sum_{1 \leq j \leq d} x_{j}^{-}\binom{-\mathbf{e}_{j}}{-A^{j}}+\sum_{1 \leq i \leq n} w_{i}\binom{\mathbf{0}}{\mathbf{e}_{i}} \\
& =\sum_{1 \leq j \leq d} x_{j}\binom{\mathbf{e}_{j}}{A^{j}}+\sum_{1 \leq i \leq n} w_{i}\binom{\mathbf{0}}{\mathbf{e}_{i}} \\
& =\binom{\mathbf{x}}{A \mathbf{x}}+\binom{\mathbf{0}}{\mathbf{w}}
\end{aligned}
$$

where $\mathbf{w} \geq \mathbf{0}$. By (2.11) we have $A \mathbf{x} \leq \mathbf{0}$. So (2.9) holds.
The proof of Lemma 2.2.3 relies upon the following proposition.
Proposition 2.2.5 (Fourier Motzkin Elimination for V-Cones). Let $Y \in \mathbb{R}^{(d+m) \times n_{1}}, 1 \leq k \leq d+m$, and \mathbf{x} satisfy $x_{k}=0$. Then there exists a matrix $Y^{\prime} \in \mathbb{R}^{(d+m) \times n_{2}}$ with the following properties:

1. Every column of Y^{\prime} is a positive linear combination of columns of Y.
2. n_{2} is finite.
3. The k-th row of Y^{\prime} is $\mathbf{0}$.
4. $(\exists \mathbf{t} \geq \mathbf{0}) \mathbf{x}=Y \mathbf{t} \Leftrightarrow\left(\exists \mathbf{t}^{\prime} \geq \mathbf{0}\right) \mathbf{x}=Y^{\prime} \mathbf{t}^{\prime}$

Proof. We partition the columns of Y :

$$
\begin{array}{ll}
P=i \mid Y_{k}^{i}>0 \\
N=j \mid Y_{k}^{j}<0 \\
Z=l \mid Y_{k}^{l}=0
\end{array}
$$

We then define Y^{\prime} :

$$
Y^{\prime}=\left\{Y^{l} \mid l \in Z\right\} \cup\left\{Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i} \mid i \in P, j \in N\right\}
$$

1 and 2 are clear. 3 can be seen from:

$$
\begin{align*}
\left\langle Y^{\prime l}, \mathbf{e}^{k}\right\rangle & =0 \\
\left\langle Y^{\prime i j}, \mathbf{e}^{k}\right\rangle & =\left\langle Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i}, \mathbf{e}^{k}\right\rangle=Y_{k}^{i} Y_{k}^{j}-Y_{k}^{j} Y_{k}^{i}=0 \tag{2.12}
\end{align*}
$$

The left direction of 4 follows from observing that a positive linear combination of positive linear combinations is again a positive linear combination. Before moving on to the proof of the right direction of 4 , we first note how we may write our vectors.

$$
\begin{aligned}
& Y \mathbf{t}=\sum_{l \in Z} t_{l} Y^{l}+\sum_{i \in P} t_{i} Y^{i}+\sum_{j \in N} t_{j} Y^{j} \\
& Y^{\prime} \mathbf{t}=\sum_{l \in Z} t_{l} Y^{l}+\sum_{\substack{i \in P \\
j \in N}} t_{i j}\left(Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i}\right)
\end{aligned}
$$

Then, by Closure Property of Cones, to show that the proposition is true, we need only show that, given some $t_{i}, t_{j} \geq 0$ satisfying $\sum_{i \in P} t_{i} Y_{k}^{i}+\sum_{j \in N} t_{j} Y_{k}^{j}=0$, there exists $t_{i j} \geq 0$ such that

$$
\begin{equation*}
\sum_{i \in P} t_{i} Y^{i}+\sum_{j \in N} t_{j} Y^{j}=\sum_{\substack{i \in P \\ j \in N}} t_{i j}\left(Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i}\right) \tag{2.13}
\end{equation*}
$$

First note that if all $t_{i}=0, t_{j}=0$, then choosing $t_{i j}=0$ satisfies (2.13). So suppose that some $t_{i} \neq 0, t_{j} \neq 0$. Observe:

$$
0=\sum_{i \in P} t_{i} Y_{k}^{i}+\sum_{j \in N} t_{j} Y_{k}^{j} \Rightarrow \sum_{i \in P} t_{i} Y_{k}^{i}=-\sum_{j \in N} t_{j} Y_{k}^{j}
$$

Denote the value in this equality as σ, and note that $\sigma>0$. Then

$$
\begin{aligned}
\sum_{i \in P} t_{i} Y^{i} & =\frac{-\sum_{j \in N} t_{j} Y_{k}^{j}}{\sigma} \sum_{i \in P} t_{i} Y^{i}=\sum_{\substack{i \in P \\
j \in N}}-\frac{t_{i} t_{j}}{\sigma} Y_{k}^{j} Y^{i} \\
\sum_{j \in N} t_{j} Y^{j} & =\frac{\sum_{i \in P} t_{i} Y_{k}^{i}}{\sigma} \sum_{j \in N} t_{j} Y^{j}=\sum_{\substack{i \in P \\
j \in N}} \frac{t_{i} t_{j}}{\sigma} Y_{k}^{i} Y^{j}
\end{aligned}
$$

Combining these results, we have

$$
\sum_{i \in P} t_{i} Y^{i}+\sum_{j \in N} t_{j} Y^{j}=\sum_{\substack{i \in P \\ j \in N}} \frac{t_{i} t_{j}}{\sigma}\left(Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i}\right)
$$

Finally, we can conclude that, given $\mathbf{t} \geq \mathbf{0}$, if $Y \mathbf{t}$ has a 0 in the k-th coordinate, then we can write it as $Y^{\prime} \mathbf{t}^{\prime}$ where $\mathbf{t}^{\prime} \geq \mathbf{0}$, and any non-negative linear combination of vectors from Y^{\prime} can be written as a non-negative linear combination of vectors from Y, and will necessarily have the k-th coordinate be 0 by property 3. So property 4 holds.

Proof of Lemma 2.2.3. In Proposition 2.2.5, the assumption that $x_{k}=0$ in property 4 creates the set $\operatorname{cone}(Y) \cap\left\{\mathbf{x} \mid x_{k}=0\right\}$. This set, by property 4, is cone (Y^{\prime}).

Proof of Lemma 2.2.4. We shall prove that the coordinate-projection of a V-Cone is again a V-Cone. Let Π be the relevant projection, then we have:

$$
\Pi\{U \mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}=\{\Pi(U \mathbf{t}) \mid \mathbf{t} \geq \mathbf{0}\}=\{(\Pi U) \mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}
$$

The last equality follows from associativity of matrix multiplication. Therefore,

$$
\Pi(\operatorname{cone}(U))=\operatorname{cone}(\Pi U)
$$

The final step, as in the previous section, is to show that the iterative process of intersecting a V-Cone with coordinate hyperplanes iteratively yields V-Cones. This is merely applying Proposition 2.2.5 multiple times, so the details are omitted. Having shown that H-Cones are V-Cones, the proof of the Minkowski-Weyl Theorem for cones is complete.

2.3 Reducing Polyhedra to Cones

2.3.1 H-Polyhedra \rightarrow V-Polyhedra

The transformation of an H-Polyhedron goes as follows:

$$
\begin{aligned}
\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\} & =\Pi\left(\left\{[-\mathbf{b} \mid A]\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}\right\} \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}\right) \\
& =\Pi\left(\operatorname{cone}\left(U^{\prime}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}\right) \\
& =\Pi\left(\operatorname{cone}\left(\begin{array}{rr}
\mathbf{0} & \mathbf{1} \\
U & V
\end{array}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}\right) \\
& =\operatorname{cone}(U)+\operatorname{conv}(V)
\end{aligned}
$$

The first equality can be seen by inspection. The second equality is given by Theorem 3. The fourth inequality isn't hard to see - just note that for x_{0} to be equal to 1 a convex combination of the vectors from $\binom{1}{V}$ must be taken. The third equality requires some work.
Proposition 2.3.1 (V-Cone \rightarrow V-Polyhedron). Given some U^{\prime}, precisely one of the following two statements holds:

$$
\begin{aligned}
& (\exists U, V) \operatorname{cone}\left(U^{\prime}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}=\text { cone }\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
U & V
\end{array}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\} \\
& \operatorname{cone}\left(U^{\prime}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\} \text { is empty }
\end{aligned}
$$

Proof. The second case may occur if there are no elements of U^{\prime} with $x_{0}>0$. Otherwise, we partition U^{\prime} into the sets:

$$
\begin{aligned}
& P=i \mid U_{0}^{i}>0 \\
& N=j \mid U_{0}^{j}<0 \\
& Z=l \mid U_{0}^{l}=0
\end{aligned}
$$

And define two new sets:

$$
\begin{aligned}
\bar{U} & =\left\{U^{l} \mid l \in Z\right\} \cup\left\{U_{0}^{i} U^{j}-U_{0}^{j} U^{i} \mid i \in P, j \in N\right\} \\
\bar{V} & =\left\{U^{i} / U_{0}^{i} \mid i \in P\right\}
\end{aligned}
$$

Let U and V be \bar{U} and \bar{V} with the first row deleted, respectively (i.e. $\bar{U}=\binom{\mathbf{0}}{U}$, and $\bar{V}=\binom{\mathbf{1}}{V}$. Then I claim that

$$
\operatorname{cone}(U) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}=\operatorname{cone}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
U & V
\end{array}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}
$$

Clearly cone $\left(\begin{array}{cc}0 & 1 \\ U & V\end{array}\right) \subseteq$ cone (U), because the cone on the left is generated by elements of the one on the right. Suppose that $\mathbf{z} \in \operatorname{cone}(U) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}$, then \mathbf{z} can be written

$$
\mathbf{z}=\sum_{l \in Z} t_{l} U^{l}+\sum_{i \in P} t_{i} U^{i}+\sum_{j \in N} t_{j} U^{j}
$$

It will be convenient to use shorter notation for these sums. Define the following:

$$
\begin{aligned}
\boldsymbol{\sigma}_{Z} & =\sum_{l \in Z} t_{l} U^{l}, & \sigma_{l} & =\sum_{l \in Z} t_{l} U_{0}^{l}=0 \\
\boldsymbol{\sigma}_{P} & =\sum_{i \in P} t_{i} U^{i}, & \sigma_{i} & =\sum_{i \in P} t_{i} U_{0}^{i} \\
\boldsymbol{\sigma}_{N} & =\sum_{j \in N} t_{j} U^{j}, & \sigma_{j} & =\sum_{j \in N} t_{j} U_{0}^{j}
\end{aligned}
$$

Then it holds that

$$
\begin{aligned}
& \left\langle\mathbf{e}_{0}, \mathbf{z}\right\rangle=\sigma_{l}+\sigma_{i}+\sigma_{j}=\sigma_{i}+\sigma_{j}=1 \quad \Rightarrow \quad-\sigma_{j} / \sigma_{i}=1-1 / \sigma_{i} \\
& \boldsymbol{\sigma}_{P}=\boldsymbol{\sigma}_{P} / \sigma_{i}+\left(1-1 / \sigma_{i}\right) \boldsymbol{\sigma}_{P}=\boldsymbol{\sigma}_{P} / \sigma_{i}-\left(\sigma_{j} / \sigma_{i}\right) \boldsymbol{\sigma}_{P}
\end{aligned}
$$

Using the new notation, we can rewrite \mathbf{z} :

$$
\mathbf{z}=\boldsymbol{\sigma}_{Z}+\boldsymbol{\sigma}_{P}+\boldsymbol{\sigma}_{N}=\boldsymbol{\sigma}_{Z}+\frac{\boldsymbol{\sigma}_{P}}{\sigma_{i}}-\frac{\sigma_{j}}{\sigma_{i}} \boldsymbol{\sigma}_{P}+\frac{\sigma_{i}}{\sigma_{i}} \boldsymbol{\sigma}_{N}=\boldsymbol{\sigma}_{Z}+\frac{\boldsymbol{\sigma}_{P}}{\sigma_{i}}+\frac{\sigma_{i} \boldsymbol{\sigma}_{N}-\sigma_{j} \boldsymbol{\sigma}_{P}}{\sigma_{i}}
$$

And now it's fairly clear that $\mathbf{z} \in \operatorname{cone}\left(\begin{array}{cc}0 & 1 \\ U & V\end{array}\right)$.

2.3.2 V-Polyhedra \rightarrow H-Polyhedra

The generalization in this direction is considerably simpler:

$$
\begin{aligned}
\operatorname{cone}(U)+\operatorname{conv}(V) & =\Pi\left(\operatorname{cone}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
U & V
\end{array}\right) \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}\right) \\
& =\Pi\left(\left\{[-\mathbf{b} \mid A]\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}\right\} \cap\left\{\left.\binom{x_{0}}{\mathbf{x}} \right\rvert\, x_{0}=1\right\}\right) \\
& =\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}
\end{aligned}
$$

The first equality follows from the discussion in the previous section. The second equality is Theorem 2, written in a particularly ugly way to single out the first column of the constraint matrix. The third equality follows again from inspection.

2.4 Picture of the Proof

Here we show a diagram that represents the proof of the Minkowski-Weyl Theorem.

$$
\left\{\binom{x_{0}}{\mathbf{x}} \left\lvert\,[-\mathbf{b} \mid A]\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}\right.\right\} \underset{\text { lift }}{\stackrel{\Pi}{\longleftrightarrow}} \underset{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}}{ }
$$

Figure 2.1: Diagram of the proof $P_{H} \leftrightarrow P_{V}$
Figure 2.1 shows the flow from an H-Polyhedron to a V-Polyhedron and back. There are violet arrows for transformations back and forth from polyhedra to cones, blue arrows to show the transformation between cones and intermediate representations, and red arrows to show where Fourier Motzkin elimination is applied to reduce these intermediate representations to standard cones. V-Cones are lifted to H -Cones which need to be projected (Π), and H-Cones are lifted to V-Cones which need to be intersected and projected $(\Pi \circ \cap)$.

3. $\mathrm{C}++$ Implementation

The above transformations have been implemented in C++. Program main takes one argument specifying the type of input object (V-Cone, V-Polyhedra, H-Cone, or H-Polyhedra). It reads the description of the object from standard input, and writes the result of the implied transformation to standard output (details below). If no arguments are supplied, then a usage message is given. The usage message, which also contains the input format for the objects, is:

```
usage: ./main input_type
The input object is read on stdin, and the result of the
transform to sent to stdout. input_type determines the type
of input and output:
\begin{tabular}{lll} 
arg: & input: & output: \\
-vc & V-Cone & H-Cone \\
-vp & V-Polyhedron & H-Polyhedron \\
-hc & V-Cone & H-Cone \\
-hp & V-Polyhedron & H-Polyhedron
\end{tabular}
input format is as follows:
    hcone := dimension ws (vector ws)*
    vcone := dimension ws (vector ws)*
    hpoly := dimension+1 ws (vector ws constraint ws)*
    vpoly := dimension ws ('U' | 'V') ws vpoly_vecs*
    ws := whitespace, as would be read by "cin >> ws;"
    dimension := a positive integer. For hpoly, add one to
                        the dimension of the space (this extra
                        dimension is for the constraint)
    vector := (dimension) doubles separated by whitespace
    constraint := a double (the value b_i in <A_i,x> <= b_i)
    'V' | 'U' := the literal character 'U' or 'V'
    vpoly_vecs := (['U'] ws vector) | (['V'] ws vector)
```

VPOLY ONLY:
vpoly contains two matrices:
U - contains the rays of the vpolyhedron
V - contains the points of the vpolyhedron
On input, enter ' U ' or ' V ' to indicate which matrix should receive the vectors that follow. You can switch back and forth as you like, but either 'U' or 'V' must be entered before starting to input vectors.

EXAMPLES:
\$./main -vc <<< "2 1 0"

OUTPUT:

2
-0 -1
01
00
-10
\$./main -hc <<< "2 1001 1"

OUTPUT:

```
2
-1 0
0
0
0-1
```

\$./main $-\mathrm{vp} \lll$ "2 U $10 \mathrm{~V} 0011 "$

OUTPUT:

3
$00-0$
0 0-0
011
001
$-11-0$
-1 0 -0
0 0-0
$0-1-0$

OUTPUT:

2
U
10
00
00
00
V
00
11

The files pertaining to the implementation will be discussed in the following sections, but here is a table showing the include dependencies followed by a short summary of the files.

file	includes
linear_algebra.h	<C++ standard library>
fourier_motzkin.h	linear_algebra.h
polyhedra.h	fourier_motzkin.h
main.cpp	polyhedra.h
test_functions.h test.cpp	linear_alebra.h
test_functions.h, polyhedra.h	

Here is a very brief summary of the files mentioned in the above table, more details are given in subsequent sections.

- linear_algebra.h

Defines the types Vector and Matrix, which are the primary means of representing polyhedra, and some basic functionality for them

- fourier_motzkin.h

Implementation of Fourier Motzkin elimination, and the Minkowski-Weyl Theorem for cones

- polyhedra. $\{\mathrm{cpp}, \mathrm{h}\}$

Transforms between cones and polyhedra, completing the Minkowski-Weyl Theorem

- test_functions.h

Types and functions for testing the algorithms (see Chapter 4).

- test.cpp

Test cases for the algorithms and functions from test_functions.h

3.1 Code

The relevant code will be displayed with commentary below. Some of the code relating to $\mathrm{C}++$ specific technicalities and I/O is omitted.

3.2 linear_algebra.h

3.2.1 typedef Vector

The types Vector and Vectors are used in the representation of polyhedra. The std::valarray template is used because it has built-in vector-space operations (sum and scaling). std::vector is used as a container of Vectors, however other containers could be used.

```
using Vector = std::valarray<double>;
using Vectors = std::vector<Vector>;
```


3.2.2 class Matrix

The class Matrix implements a subset of what a $C++$ Container should. It is the primary type for representing polyhedra, and directly represents Cones, as well as H-Polyhedra. The class is designed to enforce the following invariant:

$$
(\forall \mathrm{v} \in \text { vectors }) \mathrm{v} . \operatorname{size}()==\mathrm{d}
$$

The factory function read_Matrix is provided to read a Matrix from an istream. It is necessary because the value of d can't be known before reading some of the stream.

```
class Matrix {
// invariant: d >= 0
// invariant: (forall valid i) vectors[i].size() == d
public:
    const size_t d; // size of all Vectors
private:
    Vectors vectors;
public:
    // needed for back_insert_iterator
    using value_type = Vector;
    Matrix(size_t d);
    Matrix(std::initializer_list<Vector>&&);
    bool check() const; // checks each Vector has size d
    //defaults don't work because of const member
    Matrix(const Matrix&);
    Matrix(Matrix&&);
    Matrix &operator=(const Matrix&);
    Matrix &operator=(Matrix&&);
    Matrix &operator=(std::initializer_list<Vector>&&);
    static Matrix read_Matrix(std::istream&);
    Vectors::iterator begin();
    Vectors::iterator end();
    Vectors::const_iterator begin() const;
    Vectors::const_iterator end() const;
    bool empty() const;
    size_t size() const;
    Vector& back();
    Vector& add_Vector();
    void push_back(const Vector &v);
    void push_back(Vector &&v);
};
```


3.2.3 struct VPoly

The struct VPoly gather two Matrices needed to represent a V-Polyhedron. The Matrix U corresponds to the rays that generate the cone, and the Matrix V corresponds to the points, i.e.

$$
\mathrm{vpoly}=\operatorname{cone}(\mathrm{vpoly} . \mathrm{U})+\operatorname{conv}(\mathrm{vpoly} \cdot \mathrm{~V})
$$

```
struct VPoly {
    const size_t d;
    Matrix U; // rays
    Matrix V; // points
    VPoly(size_t d) : d{d}, U{d}, V{d} {}
    VPoly(std::initializer_list<Vector>&&,
        std::initializer_list<Vector >&&);
    bool check() const;
    static VPoly read_VPoly(std::istream&);
};
```


3.2.4 class input_error

The class input_error is thrown to indicate an invalid input to the program, and provide some clue as to why it failed. Here are two command line examples:

```
$ ./main -vc <<< "0"
terminate called after throwing an instance of 'input_error'
    what(): bad d: 0
Aborted (core dumped)
$ ./main -vc <<< "2 1"
error reading matrix, vector 1
terminate called after throwing an instance of 'input_error'
    what(): failed to read vector: istream failed
Aborted (core dumped)
```

```
class input_error : public std::runtime_error {
```

class input_error : public std::runtime_error {
public:
public:
input_error(const char*s);
input_error(const char*s);
input_error(const std::string \&s);
input_error(const std::string \&s);
};

```
};
```


3.2.5 operator<<, operator>>

operator>> and operator<< implement the input format described in usage.txt.

```
std::istream& operator>>(std::istream&, Vector&);
std::istream& operator>>(std:: istream&, Matrix&);
std::istream& operator>>(std::istream&, VPoly&);
```


3.2.6 usage()

usage() outputs the usage message shown above.

3.3 linear_algebra.cpp

3.3.1 Vector e_k(size_t, size_t)

$\mathrm{e}_{\mathrm{k}} \mathrm{k}$ creates the canonical basis Vector $\mathbf{e}_{k} \in \mathbb{R}^{d}$.

```
Vector e_k(size_t d, size_t k) {
    Vector result(d);
    result[k] = 1;
    return result;
}
```


3.3.2 Vector concatenate(Vector, Vector)

concatentate takes the Vectors $l \in \mathbb{R}^{1 . \operatorname{size}()}$ and $r \in \mathbb{R}^{r}$.size() and returns the Vector $(1, r) \in \mathbb{R}^{1 . \operatorname{size}()}+r . \operatorname{size}()$

```
Vector concatenate(const Vector &l, const Vector &r) {
    Vector result(l.size() + r.size());
    copy(begin(l), end(l), begin(result));
    copy(begin(r), end(r), next(begin(result), l.size()));
    return result;
}
```


3.3.3 Vector get_column(Matrix, size_t)

get_column returns the k-th column of the Matrix M. Note that while a Matrix may logically represent either a collection of row or column Vectors, get_column is only used in the function transpose, where this distinction is unimportant.

```
Vector get_column(const Matrix &M, size_t k) {
    if (!(0 <= k && k < M.d)) {
        throw std::out_of_range("k < 0 || M.d <= k");
    }
    Vector result(M.size());
    size_t result_row{0};
    for (auto &&row : M) {
        result[result_row++] = row[k];
    }
    return result;
}
```

```
3.3.4 Matrix transpose(Matrix)
transpose returns the transpose of Matrix M.
```

```
Matrix transpose(const Matrix &M) {
```

Matrix transpose(const Matrix \&M) {
if (M.empty()) {
if (M.empty()) {
return M;
return M;
}
}
Matrix result{M.size()};
Matrix result{M.size()};
// for every column of M,
// for every column of M,
for (size_t k = 0; k < M.d; ++k) {
for (size_t k = 0; k < M.d; ++k) {
result.push_back(get_column(M,k));
result.push_back(get_column(M,k));
}
}
return result;
return result;
}

```
}
```


3.3.5 Matrix slice_matrix (Matrix, slice)

A slice object can be used to conveniently obtain a subset of a valarray. slice_matrix returns the Matrix obtained by applying the slice s to each Vector of the Matrix.

```
Matrix slice_matrix(const Matrix &M, const std::slice &s) {
    Matrix result{s.size()};
    transform(M.begin(), M.end(), back_inserter(result),
        [s](const Vector &v) { return v[s]; });
    return result;
}
```


3.4 fourier_motzkin. cpp

3.4.1 bool index_in_slice(size_t,slice)

A slice object is determined by three fields: start, size, and stride, and implicitly represents all indices of the form:

$$
\sum_{0 \leq k<\text { size }} \text { start }+k \cdot \text { stride }
$$

Therefore:

$$
i \in \text { slice } \Leftrightarrow\left\{\begin{array}{l}
i-\text { start } \equiv 0 \quad \bmod (\text { stride }) \\
\text { start } \leq i \leq \text { start }+ \text { stride } \cdot \text { size }
\end{array}\right.
$$

```
bool index_in_slice(size_t index, const slice &s) {
    return ((index - s.start()) % s.stride() == 0) &&
        s.start() <= index &&
        index <= s.start() + s.stride()*(s.size()-1);
}
```


3.4.2 Matrix fourier_motzkin(Matrix,size_t)

fourier_motzkin takes a Matrix M and a coordinate k and creates the set which either corresponds to a projection of an H-Cone (without reducing the dimensionality), or the intersection of a V-Cone with a coordinate-hyperplane.

```
Matrix fourier_motzkin(Matrix M, size_t k) {
    Matrix result{M.d};
    // Partition into Z,P,N
    const auto z_end = partition(M.begin(), M.end(),
            [k](const Vector &v) { return v[k] == 0; });
    const auto p_end = partition(z_end, M.end(),
            [k](const Vector &v) { return v[k] > 0; });
    // Move Z to result
    move(M.begin(), z_end, back_inserter(result));
    // convolute vectors from P,N
    for (auto p_it = z_end; p_it != p_end; ++p_it) {
            for (auto n_it = p_end; n_it != M.end(); ++n_it) {
            result.push_back(
                (*p_it)[k]*(*n_it) - (*n_it)[k]*(*p_it));
            }
    }
    return result;
}
```

The lines:

```
const auto z_end = partition(M.begin(), M.end(),
            [k](const Vector &v) { return v[k] == 0; });
    const auto p_end = partition(z_end, M.end(),
    [k](const Vector &v) { return v[k] > 0; });
```

Partition m into logical sets Z, P, N that satisfy the following:

set	range	property
Z	$[$ M.begin(), z_end $)$	it $\in Z \Leftrightarrow$ (*it) $[\mathrm{k}]=0$
P	$[$ z_end, p_end $)$	it $\in P \Leftrightarrow$ (*it) $[\mathrm{k}]>0$
N	$[$ p_end, M.end ()$)$	it $\in N \Leftrightarrow$ (*it) $[\mathrm{k}]<0$

The line:

```
move(M.begin(), z_end, back_inserter(result));
```

Moves Z into the result. The lines:

```
for (auto p_it = z_end; p_it != p_end; ++p_it) {
    for (auto n_it = p_end; n_it != M.end(); ++n_it) {
        result.push_back(
            (*p_it)[k]*(*n_it) - (*n_it)[k]*(*p_it));
    }
}
```

convolute the vectors in the way described in 'Fourier Motzkin Elimination for H-Cones' on page 8 and 'Fourier Motzkin Elimination for V-Cones' on page 13 (concerning projecting an H-Cone and intersecting a V-Cone with a coordinatehyperplane), and push them into the result Matrix. In particular, it creates the
sets which correspond to

$$
\left\{B_{i}^{k} B_{j}-B_{j}^{k} B_{i} \mid i \in P, j \in N\right\}, \quad\left\{Y_{k}^{i} Y^{j}-Y_{k}^{j} Y^{i} \mid i \in P, j \in N\right\}
$$

3.4.3 Matrix sliced_fourier_motzkin(Matrix,slice)

sliced_fourier_motzkin applies fourier_motzkin to Matrix M for each $k \notin \mathbf{s}$, then slices the resulting Matrix using slice_matrix and s. This is the realization of the algorithms indicated by the proofs of either direction of the Minkowski-Weyl Theorem for cones. (Here, the slice operation is used to reduce the dimensionality as appropriate).

```
Matrix sliced_fourier_motzkin(Matrix M, const slice &s) {
    for (size_t k = 0; k < M.d; ++k) {
        if (!index_in_slice(k,s)) {
            M = fourier_motzkin(M, k);
        }
    }
    return slice_matrix(M, s);
}
```


3.4.4 Matrix generalized_lift(Matrix,array<double,5>)

When transforming an H-Cone to a V-Cone, it first must be written as a V-Cone of a new matrix, then it is intersected with coordinate-hyperplanes and projected. Similarly, when a V-Cone is transformed into an H-Cone, it must be written as and H-Cone of a new matrix then projected with coordinate-projections. The transformations are described in V-Cone Lift and H-Cone Lift, and summarized here:

$$
\mathrm{T}_{\mathrm{H}}(A)=\left(\begin{array}{ccc}
\mathbf{0} & I & -I \\
I & A & -A
\end{array}\right) \quad \mathrm{T}_{\mathrm{V}}(U)=\left(\begin{array}{rr}
\mathbf{0} & -I \\
I & -U \\
-I & U
\end{array}\right)
$$

Note that the tranformation of U can be written:

$$
\mathrm{T}_{\mathrm{V}}(U)=\left(\begin{array}{rrr}
\mathbf{0} & I & -I \\
-I & -U & U
\end{array}\right)^{T}
$$

Remembering that a Matrix is either a collection of row or column Vectors, it is not surprising that these two transformations can be written as one function whose parameters are a Matrix and some coefficients. In generalized_lift, the coefficients are given as an array<double, 5> C, so the overall transformation can be illustrated as:

$$
\text { Matrix } \mathrm{M} \rightarrow\left(\begin{array}{rr}
0 & \mathrm{C}[0] I \\
\mathrm{C}[1] I & \mathrm{C}[2] \mathrm{M} \\
\mathrm{C}[3] I & \mathrm{C}[4] \mathrm{M}
\end{array}\right)
$$

where Matrix M is a collection of row Vectors, or

$$
\text { Matrix } \mathrm{M} \rightarrow\left(\begin{array}{rll}
0 & \mathrm{C}[1] I & \mathrm{C}[3] I \\
\mathrm{C}[0] I & \mathrm{C}[2] \mathrm{M} & \mathrm{C}[4] \mathrm{M}
\end{array}\right)
$$

where Matrix M is a collection of column Vectors.

```
Matrix generalized_lift(const Matrix &cone,
            const array<double,5> &C) {
    const size_t d = cone.d;
    const size_t n = cone.size();
    Matrix result{d+n};
    Matrix cone_t = transpose(cone);
    // |0 C[0]*I| |0 |
    // |C[0]*I|
    for (size_t i = 0; i < n; ++i) {
        result.add_Vector()[d+i] = C[0];
    }
    size_t k = 0;
    // |C[1]*I C[2]*U| |C[1]*I|
    // |C[2]*A|
    for (auto &&row_t : cone_t) {
        result.push_back(
        concatenate(C[1]*e_k(d,k++), C[2]*row_t));
    }
    k = 0;
    // |C[3]*I C[4]*U| |C[3]*I|
    // |C[4]*A|
    for (auto &&row_t : cone_t) {
        result.push_back(
        concatenate(C[3]*e_k(d,k++), C[4]*row_t));
    }
    return result;
}
```


3.4.5 Matrix lift_\{vcone, hcone\}(Matrix)

lift_vcone and lift_hcone implement the appropriate transformation using generalized_lift| and providing the appropriate coefficients in
array<double, 5> C.

```
Matrix lift_vcone(const Matrix &vcone) {
    return generalized_lift(vcone, {-1,1,-1,-1,1});
}
Matrix lift_hcone(const Matrix &hcone) {
    return generalized_lift(hcone, {1,1,1,-1,-1});
}
```


3.4.6 Matrix cone_transform(Matrix,LiftSelector)

cone_transform consolidates the logic of the V-Cone \rightarrow H-Cone and H-Cone \rightarrow V-Cone transformations by accepting a Matrix cone and a LiftSelector. The LiftSelector type is an enumerable class, used to avoid the need for function pointers.

```
Matrix cone_transform(const Matrix &cone,
    LiftSelector lift) {
```


3.4.7 Matrix \{hcone_to_vcone, vcone_to_hcone\}(Matrix)

vcone_to_hcone and hcone_to_vcone specialize cone_transform by providing the appropriate Lift.

```
Matrix vcone_to_hcone(Matrix vcone) {
    return cone_transform(vcone, LiftSelector::lift_vcone);
}
```

```
Matrix hcone_to_vcone(Matrix hcone) {
    return cone_transform(hcone, LiftSelector:: lift_hcone);
}
```


3.5 polyhedra.cpp

3.5.1 Matrix \{hpoly_to_hcone, hcone_to_hpoly\} (Matrix)

hpoly_to_hcone and hcone_to_hpoly implement the Matrix transforms:

$$
\text { hpoly_to_hcone }:(A \mid b) \rightarrow(-b \mid A), \quad \text { hcone_to_hpoly }:(-b \mid A) \rightarrow(A \mid b)
$$

These very simple transforms are done with the cshift function, which "circularly shifts" the elements of a Vector (provided as part of the interface to valarray).

```
Matrix hpoly_to_hcone(Matrix hpoly) {
    transform(hpoly.begin(), hpoly.end(), hpoly.begin(),
        [](Vector v) {
            v[v.size()-1] *= -1;
            return v.cshift(-1);
        });
    return hpoly;
}
```

```
Matrix hcone_to_hpoly(Matrix hcone) {
    transform(hcone.begin(), hcone.end(), hcone.begin(),
        [](Vector v) {
            v[0] *= -1;
            return v.cshift(1);
        });
    return hcone;
}
```


3.5.2 Matrix vpoly_to_vcone(Matrix)

vpoly_to_vcone implements the VPoly transform:

$$
\text { vpoly } \rightarrow\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
\text { vpoly.U } & \text { vpoly.v }
\end{array}\right)
$$

```
Matrix vpoly_to_vcone(VPoly vpoly) {
    //requires increase in dimension
    Matrix result{vpoly.d+1};
    for (auto &&u : vpoly.U) {
        result.push_back(concatenate({0},u));
    }
    for (auto &&v : vpoly.V) {
        result.push_back(concatenate({1},v));
    }
    return result;
}
```


3.5.3 Matrix normalized_P(Matrix)

normalized_P takes the members of \mathbb{U} that have $x_{0}>0$, scaled by $1 / x_{0}$. Let Π be the identity matrix with the 0 -th row deleted, and $P=\left\{\mathbf{u} \in U: u_{0}>0\right\}$. then this is the result of:

$$
\Pi\left(\left\{\mathbf{x} / x_{0}: \mathbf{x} \in P\right\} \cap\left\{x_{0}=1\right\}\right)
$$

```
Matrix normalized_P(const Matrix &U) {
    if (U.d <= 1) {
        throw std::logic_error{"can't normalize U!"};
    }
    Matrix result{U.d-1};
    std::slice s{1,result.d,1};
    for (auto &&v : U) {
        // select the vectors with positive 0-th coordinate
        if (v[0] <= 0) { continue; }
        // normalize the selected vectors,
        result.push_back(v[0] == 1 ? v[s] : (v / v[0])[s]);
    }
    return result;
}
```

```
3.5.4 Matrix vcone_to_vpoly(Matrix)
vcone_to_vpoly implements V-Cone }->\mathrm{ V-Polyhedron.
```

```
VPoly vcone_to_vpoly(Matrix vcone) {
```

VPoly vcone_to_vpoly(Matrix vcone) {
VPoly result{vcone.d-1};
VPoly result{vcone.d-1};
result.U = sliced_fourier_motzkin(
result.U = sliced_fourier_motzkin(
vcone, slice(1,vcone.d-1,1));
vcone, slice(1,vcone.d-1,1));
result.V = normalized_P(vcone);
result.V = normalized_P(vcone);
return result;
return result;
}

```
}
```


3.5.5 Matrix $\left\{h p o l y _t o _v p o l y, v p o l y _t o _h p o l y\right\}(M a t r i x) ~$

hpoly_to_vpoly and vpoly_to_hpoly implement the complete transformations promised by the file.

```
VPoly hpoly_to_vpoly(Matrix hpoly) {
    return vcone_to_vpoly(
        hcone_to_vcone(
                                hpoly_to_hcone(move(hpoly))));
}
```

```
Matrix vpoly_to_hpoly(VPoly vpoly) {
```

Matrix vpoly_to_hpoly(VPoly vpoly) {
return hcone_to_hpoly(
return hcone_to_hpoly(
vcone_to_hcone(
vcone_to_hcone(
vpoly_to_vcone(move(vpoly))));
vpoly_to_vcone(move(vpoly))));
}

```
}
```


3.6 Picture of the Program

In the following diagram, the nodes represent functions, and the edges can be read as "calls." Such a diagram is known as a "callgraph," and is only intended to give an overview of the program.

For such a small callgraph, observation is enough to get some insight into the program. In particular, the nodes with the highest degrees (5) are: fourier motzkin, cone_transform, and generalized_lift. Each have two incoming edges, reflecting the "H" vs "V" aspects of the program. It makes sense that these would be the functions getting higher degree in the program, as these are (roughly speaking) the most important parts of the proof of the theorem.

4. Testing

In the next sections, the methods used for testing the program described above will be discussed. It will be convenient to assume that sets representing row vectors and cone-generators do not contain $\mathbf{0}$. This results in no loss of generality, only the annoyance of constantly assuming some triviality does not occur.

Notation: Let $A U \leq \mathbf{b}$ be shorthand for $(\forall \mathbf{u} \in U) A \mathbf{u} \leq \mathbf{b}$.

4.1 Testing H-Cone \rightarrow V-Cone

Suppose we have an H-Cone $C_{A}=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$, and would like to test if a V-Cone $C_{V^{\prime}}=\operatorname{cone}\left(V^{\prime}\right)$ represents the same set. It's easy to check that

$$
A V^{\prime} \leq \mathbf{0} \Rightarrow C_{V^{\prime}} \subseteq C_{A}
$$

It's not clear what to do to check if $C_{A} \subseteq C_{V^{\prime}}$. Suppose we had a set V, and we knew that $C_{A}=\operatorname{cone}(V)$, and that $C_{A}=C_{V^{\prime}} \Rightarrow V \subseteq V^{\prime}$. Then we'd have the following situation:

$$
\begin{aligned}
A V^{\prime} \leq \mathbf{0} & \Rightarrow C_{V^{\prime}} \subseteq C_{A} \\
V \subseteq V^{\prime} & \Rightarrow C_{A} \subseteq C_{V^{\prime}} \\
C_{V^{\prime}}=C_{A} & \Rightarrow V \subseteq V^{\prime} \\
C_{V^{\prime}}=C_{A} & \Rightarrow A V^{\prime} \leq \mathbf{0}
\end{aligned}
$$

That is, we'd have necessary and sufficient conditions to test cone-equality (not to mention an obvious way to implement tests for these conditions). However, as of right now, this test is just wishful thinking.

The problem is to come up with such a set V, and to determine when such a set may or may not exist for a given cone. We will need to relax the requirements on V a little bit, but not in a way that reduces its utility. First, we consider a minimal set generating a cone.

Definition 4.1.1 (Minimal Set). A set V is called minimal for cone (V) if

$$
(\forall \mathbf{v} \in V) \operatorname{cone}(V \backslash\{\mathbf{v}\}) \subset \operatorname{cone}(V)
$$

Proposition 4.1.2. If a set V is not minimal for cone (V) then

$$
\exists \mathbf{v} \in V, \mathbf{t} \geq \mathbf{0}, \mathbf{v}=V \mathbf{e}_{i}, \mathbf{t} \neq \mathbf{e}_{i}: \quad \mathbf{v}=V \mathbf{t}
$$

That is, there is a member of V which is a non-trivial non-negative linear combination of elements of V.

Proof. Say cone $(V \backslash\{\mathbf{v}\})=\operatorname{cone}(V)$ where $\mathbf{v}=V \mathbf{e}_{i}$. Then $\exists \mathbf{t} \geq \mathbf{0}$ such that $\mathbf{v}=(V \backslash\{\mathbf{v}\}) \mathbf{t}$. Let \mathbf{t}^{\prime} be \mathbf{t} with a 0 in the position corresponding to \mathbf{v} in V. Then $\mathbf{v}=V \mathbf{t}$.

Is the converse true? That is, is it true that, if V is minimal, then

$$
\begin{equation*}
\mathbf{t} \geq \mathbf{0}, \mathbf{v}=V \mathbf{e}_{i},\left[\mathbf{v}=V \mathbf{t} \Rightarrow \mathbf{t}=\mathbf{e}_{i}\right] \tag{4.1}
\end{equation*}
$$

Not quite. There is one catch, if there is some

$$
\begin{equation*}
\mathbf{t} \geq \mathbf{0}, \mathbf{t} \neq \mathbf{0}, V \mathbf{t}=\mathbf{0} \tag{4.2}
\end{equation*}
$$

then (4.1) fails. Are there cones for which (4.2) fails? It turns out that there is a useful class of cones called pointed having this property.

Definition 4.1.3 (Vertex). Let P be a polyhedron. A point $\mathbf{v} \in P$ is called a vertex if, for any $\mathbf{u} \neq \mathbf{0}$, at least one of the following is true:

$$
\begin{aligned}
& \mathbf{v}+\mathbf{u} \notin P \\
& \mathbf{v}-\mathbf{u} \notin P
\end{aligned}
$$

Definition 4.1.4 (Pointed Cones). A cone is called pointed if it has a vertex.

Figure 4.1: V-Cone, not pointed: cone ([$\left.\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right)$

Proposition 4.1.5. The following statements are equivalent.

1. cone (V) is pointed.
2. $\mathbf{t} \geq \mathbf{0},[V \mathbf{t}=\mathbf{0} \Rightarrow \mathbf{t}=\mathbf{0}]$

Proof. First, observe that, due to Closure Property of Cones, if a cone has a vertex, then it is the origin. To see this, take any other point in the cone, and scale it by $1 \pm \epsilon$ for some appropriately small value ϵ.

Suppose that the origin is a vertex, but that (2) fails. Since $\mathbf{0} \notin V$, \mathbf{t} has at least two non-zero elements, let one be t_{i}. Then $\mathbf{0}=V\left(t_{i} \mathbf{e}_{i}\right)+V\left(\mathbf{t}-t_{i} \mathbf{e}_{i}\right)$. Let $\mathbf{u}=V t_{i} \mathbf{e}_{i}$. Clearly $\mathbf{u} \neq \mathbf{0}$, but also $-\mathbf{u}=V\left(\mathbf{t}-t_{i} \mathbf{e}_{i}\right) \in C$, so that $\mathbf{u},-\mathbf{u} \in C$. Then the origin is not a vertex, a contradiction.

Next, suppose that $\mathbf{0}$ is not a vertex, then $\exists \mathbf{t}_{1}, \mathbf{t}_{2} \geq \mathbf{0}, \mathbf{t}_{1,2} \neq \mathbf{0}, \mathbf{u}=V \mathbf{t}_{1}$, $-\mathbf{u}=V \mathbf{t}_{2}$. Then $\mathbf{t}_{1}+\mathbf{t}_{2} \geq \mathbf{0}, \mathbf{t}_{1}+\mathbf{t}_{2} \neq \mathbf{0}$, and $V\left(\mathbf{t}_{1}+\mathbf{t}_{2}\right)=\mathbf{0}$.

Now we can consider the converse of Proposition 4.1.2.
Proposition 4.1.6 (Minimal V-Cone Generators). Suppose that cone (V) is pointed. Then the following two statements are equivalent:

1. V is minimal
2. $\mathbf{t} \geq \mathbf{0}, \mathbf{v}=V \mathbf{e}_{i},\left[\mathbf{v}=V \mathbf{t} \Rightarrow \mathbf{t}=\mathbf{e}_{i}\right]$

Proof. $(\neg 1 \Rightarrow \neg 2)$ is Proposition 4.1.2. So suppose that $\mathbf{t} \geq \mathbf{0}, \mathbf{v}=V \mathbf{e}_{i}$, and $\mathbf{v}=V \mathbf{t}$. If $0 \leq t_{i}<1$, then $\mathbf{v}=V\left(\mathbf{t}-t_{i} \mathbf{e}_{i}\right) /\left(1-t_{i}\right)$, and $\mathbf{v} \in \operatorname{cone}(V \backslash\{\mathbf{v}\})$, which would mean that V is not minimal. Suppose that $t_{i} \geq 1$. Then $\mathbf{t}-\mathbf{e}_{i} \geq \mathbf{0}$, and $\mathbf{0}=V\left(\mathbf{t}-\mathbf{e}_{i}\right)$. Because V is pointed, by Proposition 4.1.5 $\mathbf{0}=\mathbf{t}-\mathbf{e}_{i}$, so $\mathbf{t}=\mathbf{e}_{i}$.

Proposition 4.1.6 gives us a way to characterize the minimal sets generating pointed V-Cones. Clearly, there is not a unique minimal set generating any VCone, since any positive scaling of any of the vectors generating the cone results in the same cone. However, as one is wont to do upon encountering such trifles, we can relax the requirement of unicity to equivalence, in the following way.

Definition 4.1.7 (vector equivalence). Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$, non-zero, and suppose that $\mathbf{u} /\|\mathbf{u}\|=\mathbf{v} /\|\mathbf{v}\|$. Then say that \mathbf{u}, \mathbf{v} are equivalent, and write $\mathbf{u} \simeq \mathbf{v}$. If for every $\mathbf{u} \in U$ there is a $\mathbf{v} \in V$ such that $\mathbf{u} \simeq \mathbf{v}$, write $U \sqsubseteq V$. Write $U \simeq V$ if $U \sqsubseteq V$ and $V \sqsubseteq U$.

Proposition 4.1.8. The following two statements are equivalent:

1. $\mathbf{v} \simeq \mathbf{u}$
2. $(\exists t>0) \mathbf{v}=t \mathbf{u}$

Proof. $(1 \Rightarrow 2)$. Let $t=\|\mathbf{v}\| /\|\mathbf{u}\|$. Then $t>0$, and $\mathbf{v}=t \mathbf{u}$.
$(2 \Rightarrow 1) \cdot \mathbf{v} /\|\mathbf{v}\|=t \mathbf{u} /\|t \mathbf{u}\|=\mathbf{u} /\|\mathbf{u}\|$
We now show that the minimal sets generating pointed V-Cones are essentially unique.

Proposition 4.1.9 (Minimal Generators of a Pointed Cone). Suppose that V is minimal, and cone $(V)=\operatorname{cone}\left(V^{\prime}\right)$ is pointed. Then $V \sqsubseteq V^{\prime}$. It follows that if V^{\prime} is also minimal, then $V \simeq V^{\prime}$.

We'll use this short lemma in the proof of the above proposition.
Lemma 4.1.10. Suppose A is a non-negative matrix, $\mathbf{b} \geq \mathbf{0}$, and $A \mathbf{b}=\mathbf{e}_{i}$. Then there exists an $l, t>0$ such that $A\left(t \mathbf{e}_{l}\right)=\mathbf{e}_{i}$

Proof. Since A and \mathbf{b} are non-negative, the following holds:

$$
\begin{equation*}
(\forall j, k \neq i) b_{j}>0 \Rightarrow A_{k}^{j}=0 \tag{4.3}
\end{equation*}
$$

Since $A \mathbf{b}=\mathbf{e}_{i}$, there is some $b_{l}>0$, and $A_{k}^{l}>0$. (4.3) shows that the entire column is zero except for the entry in row i, so $A\left(\mathbf{e}_{l} / A_{k}^{l}\right)=\mathbf{e}_{i}$.

Proof of Proposition 4.1.9. Let $\mathbf{v} \in V, \mathbf{v}=V \mathbf{e}_{i}$. If we can show that there is some $\mathbf{v}^{\prime} \in V^{\prime}$ such that $\mathbf{v} \simeq \mathbf{v}^{\prime}$, then we're done. Since cone $(V)=\operatorname{cone}\left(V^{\prime}\right)$, there is a non-negative matrix A such that $V^{\prime}=V A$. Furthermore, there is a non-negative vector \mathbf{b} such that $\mathbf{v}=V^{\prime} \mathbf{b}$. Then $\mathbf{v}=V^{\prime} \mathbf{b}=(V A) \mathbf{b}=V(A \mathbf{b})$. By Proposition 4.1.6, $A \mathbf{b}=\mathbf{e}_{i}$. By Lemma 4.1.10, there is a $t>0, l$ such that $A \mathbf{b}=A\left(t \mathbf{e}_{l}\right)$. Then $\mathbf{v}=V A\left(t \mathbf{e}_{l}\right)=t V^{\prime} \mathbf{e}_{l}=t \mathbf{v}^{\prime}$ where $\mathbf{v}^{\prime} \in V^{\prime}$. By Proposition 4.1.8, $\mathbf{v} \simeq \mathbf{v}^{\prime}$.

So now we know that pointed cones have essentially unique generating sets. We now turn to the question of using this knowledge to create a test for the program. We suppose that we have a minimal generating set V for some pointed V-Cone C, and have created a matrix A so that $C=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\operatorname{cone}(V)$. We run the program and get a set V^{\prime}, and let $C^{\prime}=\operatorname{cone}\left(V^{\prime}\right)$. We must check that $C^{\prime}=C$. The situation is summarized here below, and formalized in the following Equivalence Criteria.

$$
\begin{aligned}
& A V^{\prime} \leq \mathbf{0} \Rightarrow C^{\prime} \subseteq C \\
& V \sqsubseteq V^{\prime} \Rightarrow C \subseteq C^{\prime} \\
& C^{\prime}=C \Rightarrow V \sqsubseteq V^{\prime} \\
& C^{\prime}=C \Rightarrow A V^{\prime} \leq \mathbf{0}
\end{aligned}
$$

Equivalence Criteria 1 (H-Cone \rightarrow V-Cone). Say V is a minimal generating set for the pointed V-Cone C, and suppose $C=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\operatorname{cone}(V)$. Then

$$
C=\operatorname{cone}\left(V^{\prime}\right) \Leftrightarrow A V^{\prime} \leq \mathbf{0}, V \sqsubseteq V^{\prime}
$$

Test 1 (H-Cone \rightarrow V-Cone). We now have a method for testing the program. First, we hand-craft an H-Cone $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ based on minimal set V for some pointed V-Cone. We then run our program to get a set V^{\prime}, with the alleged property that cone $\left(V^{\prime}\right)=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$. If we confirm Equivalence Criteria 1, then our program has succeeded.

Remark 3. Can we test the program for non-pointed cones? Yes, but it is slightly more complicated. Instead of prior knowledge of a minimal generating set for the cone, we also need to know what the largest linear subspace L contained in the cone. If we project away this linear subspace, then we will have a pointed cone. Given another set V^{\prime}, we may project away this subspace from V^{\prime} using a projection matrix, and use Test 1 . Then we need to see if cone $\left(V^{\prime}\right)$ spans L. This can be done with a modified fourier-motzkin elimination, but unfortunately we are trying to test the implementation of fourier-motzkin elimination.

It may still be worthwhile to do such tests, but it should be noted that a test isn't designed to prove a program correct, only prove it incorrect. If we analyze the program well and test the fourier-motzkin elimination extensively, then the added complexity of the more general testing may not be worth it. As of now this is left as a possible future extension of the program.

Remark 4. While not important for testing the program, one may ask if pointed V-Cones are the only cones with essentially unique generating sets. The answer is no, for any line has an essentially unique generating set, but is not pointed. However, this is the only exception. It isn't hard to see that, given a non-pointed cone, if it occupies more than one-dimension, then it must at least occupy a halfplane, and a half-plane has uncountably many non-equivalent generators. So, technically, the Test 1 would work for one-dimensional non-pointed cones (lines).

4.2 Testing V-Cone $\rightarrow \mathrm{H}$-Cone

In this section we create a method in the vein of Test 1, but for testing the program transforming V-Cones to H-Cones. This section is almost identical to the previous, with the exception of requiring the Farkas Lemma.

Definition 4.2.1 (Minimal Set of Constraints). A set A is called minimal for $\{\mathrm{x} \mid A \mathrm{x} \leq 0\}$ if

$$
\left(\forall A_{i} \in A\right)\left\{\mathbf{x} \mid A \backslash\left\{A_{i}\right\} \mathbf{x} \leq \mathbf{0}\right\} \supset\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}
$$

Proposition 4.2.2. If a set A is not minimal for $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ then

$$
\exists A_{i} \in A, \mathbf{t} \geq \mathbf{0}, A_{i}=\mathbf{e}_{i}^{T} A, \mathbf{t} \neq \mathbf{e}_{i}: \quad A_{i}=\mathbf{t}^{T} V
$$

That is, there is a member of A which is a non-trivial non-negative linear combination of elements of V.

In order to prove Proposition 4.2.2, we require the Farkas Lemma.

4.2.1 The Farkas Lemma

Proposition 4.2.3 (The Farkas Lemma). Let $U \in \mathbb{R}^{d \times n}$. Precisely one of the following is true:

$$
\begin{aligned}
& (\exists \mathbf{t} \geq \mathbf{0}): \mathbf{x}=U \mathbf{t} \\
& (\exists \mathbf{y}): U^{T} \mathbf{y} \leq 0,\langle\mathbf{x}, \mathbf{y}\rangle>0
\end{aligned}
$$

Proof. That both can't be true is simple. Suppose they both were, then:

$$
\mathbf{x}=U \mathbf{t} \quad \Rightarrow \quad \mathbf{y}^{T} \mathbf{x}=\mathbf{y}^{T} U \mathbf{t} \quad \Rightarrow \quad 0>0
$$

To see that at least one is true we must reconsider the process of converting a V-Cone to an H-Cone. First, from cone (U) we create the following matrix:

$$
A=\left(\begin{array}{rr}
\mathbf{0} & -I \\
I & -U \\
-I & U
\end{array}\right)
$$

By the way A is constructed,

$$
\begin{equation*}
(\exists \mathrm{t}): A\binom{\mathbf{x}}{\mathbf{t}} \leq \mathbf{0} \Leftrightarrow(\exists \mathrm{t} \geq \mathbf{0}) \mathbf{x}=U \mathrm{t} \tag{4.4}
\end{equation*}
$$

In the proof of the transformation, we use 'Fourier Motzkin Elimination for H Cones' on page 8 to transform that matrix A. The 'Fourier Motzkin Matrix' on page 10 promises a sequence of matrices Y_{d+1}, \ldots, Y_{d+n} with certain properties. Let $Y=\left(Y_{d+n}\right)\left(Y_{d+(n-1)}\right) \ldots\left(Y_{d+1}\right)$, then it can be said of Y :

1. Every element of Y is non-negative.
2. Y is finite.
3. The last n columns of $Y A$ are all $\mathbf{0}$.
4. $\left(\exists t_{d+1}, \ldots, t_{d+n}\right) A\left(\mathbf{x}+\sum_{i=d+1}^{d+n} t_{i} \mathbf{e}_{i}\right) \leq \mathbf{0} \Leftrightarrow(Y A) \mathbf{x} \leq \mathbf{0}$

Note that here $\mathbf{x} \in \mathbb{R}^{d+n}$. A has three blocks of rows, which can be labeled with Z, P, N in a fairly obvious way. Then, Y can be broken up into three blocks of columns, so that

$$
Y=\left(Y_{Z} Y_{P} Y_{N}\right)
$$

Where each of $Y_{Z}, Y_{P}, Y_{N} \geq \mathbf{0}$. Consolidating what is known about A and Y, in particular that the last columns are $\mathbf{0}$,

$$
Y A=\left(\begin{array}{lll}
Y_{Z} & Y_{P} & Y_{N}
\end{array}\right)\left(\begin{array}{rr}
\mathbf{0} & -I \\
I & -U \\
-I & U
\end{array}\right)=\left(\begin{array}{ll}
Y^{\prime} & \mathbf{0}
\end{array}\right)
$$

Here, we have let $Y^{\prime}=Y_{P}-Y_{N}$. Then it follows that

$$
\mathbf{0}=-Y_{Z}-Y_{P}(U)+Y_{N}(U)=-Y_{Z}-Y^{\prime}(U) \Rightarrow Y_{Z}=-Y^{\prime} U \Rightarrow Y^{\prime} U \leq \mathbf{0}
$$

Then it holds that, for any row $\mathbf{y}^{\prime} \in Y^{\prime}$:

$$
\begin{equation*}
\mathbf{y}^{\prime} U \leq \mathbf{0} \tag{4.5}
\end{equation*}
$$

It is also true that

$$
\left(\begin{array}{ll}
Y & A
\end{array}\right)\binom{\mathbf{x}}{\mathbf{t}}=\left(\begin{array}{ll}
Y^{\prime} & \mathbf{0}
\end{array}\right)\binom{\mathbf{x}}{\mathbf{t}}=Y^{\prime} \mathbf{x}
$$

We also have

$$
\begin{equation*}
(\exists \mathbf{t}): A\binom{\mathbf{x}}{\mathbf{t}} \leq \mathbf{0} \Leftrightarrow(Y A)\binom{\mathbf{x}}{\mathbf{t}} \leq \mathbf{0} \Leftrightarrow Y^{\prime} \mathbf{x} \leq \mathbf{0} \tag{4.6}
\end{equation*}
$$

Note that here $\mathbf{x} \in \mathbb{R}^{d}$. So, if given some \mathbf{x}, the left side of (4.6) is not satisfied, then neither is the right, and there must be some row $\mathbf{y}^{\prime} \in Y^{\prime}$ such that the following holds:

$$
\begin{equation*}
\left\langle\mathbf{y}^{\prime}, \mathbf{x}\right\rangle>0 \tag{4.7}
\end{equation*}
$$

Then we conclude that, if the right side of (4.4) fails, then there is a vector $\mathbf{y}^{\prime} \in Y^{\prime}$ satisfying (4.5) and (4.7).

Remark 5. The Farkas Lemma above can be equivalently stated:

$$
(\exists \mathbf{t} \geq \mathbf{0}): \mathbf{t}^{T} A=\mathbf{y} \quad \Leftrightarrow \quad(\forall \mathbf{x}): A \mathbf{x} \leq 0 \Rightarrow\langle\mathbf{y}, \mathbf{x}\rangle \leq 0
$$

This way of writing it makes it clear that, if $\mathbf{y}^{T} \mathbf{x} \leq 0$ holds for every \mathbf{x} in some H-Cone $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$, then \mathbf{y} is a non-negative linear combination of the rows of A.

Proof of Proposition 4.2.2. Say $\left\{\mathbf{x} \mid\left(A \backslash\left\{A_{i}\right\}\right) \mathbf{x} \leq \mathbf{0}\right\}=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$. Then, by Remark $5, A_{i}^{T} \mathbf{x} \leq 0$ holds for $\left\{\mathbf{x} \mid\left(A \backslash\left\{A_{i}\right\}\right) \mathbf{x} \leq \mathbf{0}\right\}=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$, so A_{i} is a non-negative linear combination of some rows of $A \backslash\left\{A_{i}\right\}$.

As before, the converse will fail if we can combine rows of A in a non-trivial way to get $\mathbf{0}$. For which cones does this occur? Well, it would be necessary that the following holds for some \mathbf{y} :

$$
\mathbf{y}^{T} \mathbf{x} \leq 0, \quad-\mathbf{y}^{T} \mathbf{x} \leq 0
$$

But this means that $\mathbf{y}^{T} \mathbf{x}=0$ holds for every member of the cone. We can prevent this from occurring by forcing the cone to contain a basis.

Definition 4.2.4 (Full-Dimensional Cones). A cone is called full-dimensional if it contains a basis of its ambient space.

The most important property (well known from linear algebra) of a basis B that we shall use is:

$$
\begin{equation*}
\mathbf{y}^{T} B=\mathbf{0} \Rightarrow \mathbf{y}=\mathbf{0} \tag{4.8}
\end{equation*}
$$

Proposition 4.2.5. The following statements are equivalent.

1. $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is full-dimensional.
2. $\mathbf{t} \geq \mathbf{0},\left[\mathbf{t}^{T} A=\mathbf{0} \Rightarrow \mathbf{t}=\mathbf{0}\right]$

Proof. ($\neg 1 \Rightarrow \neg 2)$. If $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is not full-dimensional, then there is some \mathbf{y} so that for every \mathbf{x} the cone $\mathbf{y}^{T} \mathbf{x}=0$. Then, by Remark 5, we'd have some non-negative $\mathbf{t}_{1}, \mathbf{t}_{2}$ such that $\mathbf{t}_{1}^{T} A=\mathbf{y}$ and $\mathbf{t}_{2}^{T} A=-\mathbf{y}$, in which case $\mathbf{t}_{1}+\mathbf{t}_{2}$ is a counter example to (2).
$(\neg 2 \Rightarrow \neg 1)$. Suppose $\mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T} A=\mathbf{0}$, and $\mathbf{t} \neq \mathbf{0}$. Since $\mathbf{0} \notin A$, at least two elements of \mathbf{y} are non-zero, say one is y_{i}. Then $\mathbf{0}=y_{i} A_{i}+\left(\mathbf{y}-y_{i} \mathbf{e}_{i}\right)^{T} A$, which then means both $A_{i} \mathbf{x} \leq 0$ and $-A_{i} \mathbf{x} \leq 0$ holds for $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$, in which case it is not full dimensional.

Proposition 4.2.6. Suppose that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is full-dimensional. Then the following two statements are equivalent:

1. A is minimal
2. $\mathbf{t} \geq \mathbf{0},\left[A_{i}=\mathbf{t}^{T} A \Rightarrow \mathbf{t}=\mathbf{e}_{i}\right]$

Proof. $(\neg 1 \Rightarrow \neg 2)$ is Proposition 4.2.2. So suppose that $\mathbf{t} \geq \mathbf{0}$, and $A_{i}=$ $\mathbf{t}^{T} A$. If $0 \leq t_{i}<1$, then $A_{i}=\left(\mathbf{t}-t_{i} \mathbf{e}_{i}\right)^{T} A /\left(1-t_{i}\right)$, and $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=$ $\left\{\mathbf{x} \mid\left(A \backslash\left\{A_{I}\right\}\right) \mathbf{x} \leq \mathbf{0}\right\}$, which would mean that A is not minimal. Suppose that $t_{i} \geq 1$. Then $\mathbf{t}-\mathbf{e}_{i} \geq \mathbf{0}$, and $\mathbf{0}=\left(\mathbf{t}-\mathbf{e}_{i}\right)^{T} A$. Because A is full-dimensional, by Proposition 4.2.5, $\mathbf{0}=\mathbf{t}-\mathbf{e}_{i}$, so $\mathbf{t}=\mathbf{e}_{i}$.

Proposition 4.2.7. The following two statements are equivalent:

1. $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is full dimensional and A is minimal
2. cone $\left(A^{T}\right)$ is pointed and A is minimal

Proof. This follows from the nearly identical form of (2) in Proposition 4.2.6 and Proposition 4.1.6.

In order to create an equivalence criterion like H -Cone $\rightarrow \mathrm{V}$-Cone, we use the following result.

Theorem 4 (Dual Cone).

$$
\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\} \Leftrightarrow \operatorname{cone}\left(A^{T}\right)=\operatorname{cone}\left(A^{\prime T}\right)
$$

Proof. First suppose that $\operatorname{cone}\left(A^{T}\right)=\operatorname{cone}\left(A^{\prime T}\right)$. Then there exists a nonnegative matrix B such that $A^{T}=A^{T} B$. Then $A \mathbf{x} \leq \mathbf{0} \Rightarrow B^{T} A \mathbf{x} \leq \mathbf{0} \Rightarrow$ $A^{\prime} \mathbf{x} \leq \mathbf{0}$. Precisely the same reasoning shows that $A^{\prime} \mathbf{x} \leq \mathbf{0} \Rightarrow A \mathbf{x} \leq \mathbf{0}$, and we conclude that cone $\left(A^{T}\right)=\operatorname{cone}\left(A^{T}\right) \Rightarrow\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$.

Next suppose that $\operatorname{cone}\left(A^{T}\right) \neq \operatorname{cone}\left(A^{T}\right)$, that is, let $\mathbf{z} \in \operatorname{cone}\left(A^{T}\right), \mathbf{z} \notin$ cone $\left(A^{\prime T}\right)$. We must show that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\} \neq\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$. By the Farkas Lemma, we have a \mathbf{y} such that $\langle\mathbf{y}, \mathbf{z}\rangle>0, A^{\prime} \mathbf{y} \leq \mathbf{0}$. Clearly this means that $\mathbf{y} \in\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$. Since $\mathbf{z} \in \operatorname{cone}(A)$, there is some $(\mathbf{t} \geq \mathbf{0}): \mathbf{z}^{T}=\mathbf{t}^{T} A$. Then if $A \mathbf{y} \leq \mathbf{0}$, we would have $\langle\mathbf{y}, \mathbf{z}\rangle=\mathbf{t}^{T} A \mathbf{y} \leq 0<\langle\mathbf{y}, \mathbf{z}\rangle$, a contradiction. So we conclude that $\mathbf{y} \notin\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$.

Proposition 4.2.8. Suppose that A is minimal, and $\{\mathrm{x} \mid A \mathrm{x} \leq 0\}=$ $\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$ is full-dimensional. Then $A \sqsubseteq A^{\prime}$. It follows that if A^{\prime} is also minimal, then $A \simeq A^{\prime}$.

Proof. By Proposition 4.2.7 and Theorem 4, Proposition 4.2 .8 is true if it is true for cones, which is shown in Minimal Generators of a Pointed Cone.

Say we know that $C=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\operatorname{cone}(V)$ is full-dimensional, with A minimal. We have another set A^{\prime} and let $C^{\prime}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$. Then we can test if $C^{\prime}=C$. The following summarizes the situation:

$$
\begin{aligned}
& A^{\prime} V \leq \mathbf{0} \Rightarrow C \subseteq C^{\prime} \\
& V \sqsubseteq V^{\prime} \Rightarrow C^{\prime} \subseteq C \\
& C^{\prime}=C \Rightarrow A \sqsubseteq A^{\prime} \\
& C^{\prime}=C \Rightarrow A^{\prime} V \leq \mathbf{0}
\end{aligned}
$$

Equivalence Criteria 2 (V-Cone $\rightarrow \mathrm{H}$-Cone). Say H is a minimal generating set of constraints for the full-dimensional H-Cone C, and suppose $C=\operatorname{cone}(V)=$ $\{\mathrm{x} \mid A \mathrm{x} \leq \mathbf{0}\}$. Then

$$
C=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\} \Leftrightarrow A^{\prime} V \leq \mathbf{0}, A \sqsubseteq A^{\prime}
$$

Test 2 (H-Cone \rightarrow V-Cone). We now have a method for testing the program. First, we hand-craft a V-Cone cone (V) based on minimal set A for some pointed H-Cone. We then run our program to get a set A^{\prime}, with the alleged property that cone $(V)=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$. If we confirm Equivalence Criteria 2, then our program has succeeded.

Remark 6. Can we test the program for non-full-dimensional cones? Once again, this is more complicated and requires a technique to remove the "degeneracy," and once again test for equivalence otherwise.

As of now this is left as a possible future extension of the program.
Remark 7. While not important for testing the program, one may ask if fulldimensional H -Cones are the only cones with essentially unique generating sets of constraints . The answer is no, for any set of the form $\mathbf{y}^{T} \mathbf{x}=c$ has an essentially unique generating set of constraints. However, this is the only exception. It isn't hard to see that, given independent constraints of the form $A \mathbf{x}=\mathbf{0}$, if A has more than two rows, then, for any non-singular $B, B A \mathbf{x}=\mathbf{0}$ is an equivalent constraint. So, technically, the Test 1 would work for hyperplanes.

Generalizing to Polyhedra In the following sections we generalize Test 1 and Test 2 to polyhedra.

4.3 Testing H-Polyhedron \rightarrow V-Polyhedron

Say we have an H-Polyhedron $P_{A, \mathbf{b}}=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$, and wish to check that our program correctly calculates a V^{\prime} and U^{\prime} such that $P_{A, \mathbf{b}}=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$. Again, we shall use the notion of minimality and show that under certain circumstances we can use minimal sets to demonstrate the validity of our algorithm. First, we consider the case of a V-Polyhedron with no cone.

4.3.1 Polytopes

First we consider the special case of a V-Polyhedron given by $P=\operatorname{conv}(V)$. Such a set is known as a polytope.

Definition 4.3.1 (Minimal Set for Polytopes). A set V is called minimal for the polytope $\operatorname{conv}(V)$ if:

$$
(\forall \mathbf{v} \in V) \operatorname{conv}(V \backslash\{\mathbf{v}\}) \subset \operatorname{conv}(V)
$$

Proposition 4.3.2. V is minimal for $\operatorname{conv}(V)$ if and only if V is the set of vertices of $\operatorname{conv}(V)$.

Figure 4.2: V-Polytope: $\operatorname{conv}\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{r}1.5 \\ 3\end{array}\right]\right)$

Figure 4.3: H-Polytope: $\left(\begin{array}{rr}-2 & 1 \\ 1 & -2 \\ 4 & 1\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{l}0 \\ 0 \\ 9\end{array}\right)$

We will need:
Proposition 4.3.3. A convex combination of convex combinations is another convex combination

Proof. Let Λ represent a collection of convex combinations, that is, $\mathbf{1}^{T} \Lambda=\mathbf{1}^{T}$, and let $\boldsymbol{\lambda} \geq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1$ be a convex combinator. Then $\Lambda \boldsymbol{\lambda}=\boldsymbol{\lambda}^{\prime}$ where $\boldsymbol{\lambda}^{\prime} \geq$ $\mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}^{\prime}=1$. That $\boldsymbol{\lambda}^{\prime} \geq \mathbf{0}$ is clear, then just note that $\mathbf{1}^{T} \boldsymbol{\lambda}^{\prime}=\mathbf{1}^{T} \Lambda \boldsymbol{\lambda}=\mathbf{1}^{T} \boldsymbol{\lambda}=$ 1.

Proof of Proposition 4.3.2. First, suppose that V is not minimal. Then there is a $v \in V$ that satisfies $\operatorname{conv}(V \backslash\{\mathbf{v}\})=\operatorname{conv}(V)$. Denote $V^{\prime}=V \backslash\{\mathbf{v}\}$. Then $\mathbf{v}=V^{\prime} \boldsymbol{\lambda}^{\prime}$, where there is some λ_{i} with $0<\lambda_{i}<1$. Let $\mathbf{u}=V^{\prime}\left(\mathbf{e}_{i}-\boldsymbol{\lambda}^{\prime}\right)$. Then

$$
\mathbf{v}+\lambda_{i} \mathbf{u}=V^{\prime} \boldsymbol{\lambda}^{\prime}+\lambda_{i} V^{\prime}\left(\mathbf{e}_{i}-\boldsymbol{\lambda}^{\prime}\right)=\left(1-\lambda_{i}\right) V^{\prime} \boldsymbol{\lambda}^{\prime}+\lambda_{i} V^{\prime} \mathbf{e}_{i}
$$

By Proposition 4.3.3, the right hand side of this equation is a convex combination of members of V^{\prime}, so $\mathbf{v}+\lambda_{i} \mathbf{u} \in \operatorname{conv}\left(V^{\prime}\right)$. Similarly,

$$
\mathbf{v}-\lambda_{i} \mathbf{u}=V^{\prime} \boldsymbol{\lambda}^{\prime}-\lambda_{i} V^{\prime}\left(\mathbf{e}_{i}-\boldsymbol{\lambda}^{\prime}\right)=V^{\prime}\left(\boldsymbol{\lambda}^{\prime}-\lambda_{i} \mathbf{e}_{i}\right)+V^{\prime}\left(\lambda_{i} \boldsymbol{\lambda}^{\prime}\right)
$$

Consider $\left(\boldsymbol{\lambda}^{\prime}-\lambda_{i} \mathbf{e}_{i}\right)$. Note that this expression is non-negative, and sums to $1-\lambda_{i}$. Next note that $\lambda_{i} \boldsymbol{\lambda}^{\prime}$ is non-negative, and sums to λ_{i}. This means that the right hand side of the equation is a convex combination of V^{\prime}, so $\mathbf{v}+\lambda_{i} \mathbf{u} \in \operatorname{conv}\left(V^{\prime}\right)$, and \mathbf{v} is not a vertex.

Next, suppose that $\mathbf{v} \in V$ is not a vertex, and let $V^{\prime}=V \backslash\{\mathbf{v}\}$. Then there is some non-zero \mathbf{u} such that $\mathbf{v}+\mathbf{u} \in \operatorname{conv}(V), \mathbf{v}-\mathbf{u} \in \operatorname{conv}(V)$. First, let $\alpha, \beta>0$, and consider $\mathbf{v}+\alpha \mathbf{u}$ and $\mathbf{v}-\beta \mathbf{u}$. Observe that

$$
\frac{\beta(\mathbf{v}+\alpha \mathbf{u})}{\alpha+\beta}+\frac{\alpha(\mathbf{v}-\beta \mathbf{u})}{\alpha+\beta}=\frac{\alpha \mathbf{v}+\beta \mathbf{v}}{\alpha+\beta}=\mathbf{v}
$$

This shows that we can positively scale α and β, and still get \mathbf{v} as a convex combination of the result. So we search for positive α and β that give a point of $\operatorname{conv}\left(V^{\prime}\right)$, which by Proposition 4.3 .3 shows that $\mathbf{v} \in \operatorname{conv}\left(V^{\prime}\right)$ so V is not minimal. First observe that $\mathbf{v}+\mathbf{u}=V \boldsymbol{\lambda}$ for some $\boldsymbol{\lambda}$. Then let $\boldsymbol{\lambda}^{\prime}=\boldsymbol{\lambda}-\lambda_{i} \mathbf{e}_{i}$, so $\mathbf{u}+\mathbf{v}=V^{\prime} \boldsymbol{\lambda}^{\prime}+\lambda_{i} \mathbf{v}$, and $\mathbf{u}=V^{\prime}\left(\boldsymbol{\lambda}^{\prime}\right)+\left(\lambda_{i}-1\right) \mathbf{v}$ Then

$$
\mathbf{v}+\alpha \mathbf{u}=\mathbf{v}+\alpha\left(\lambda_{i}-1\right) \mathbf{v}+\alpha V^{\prime} \boldsymbol{\lambda}^{\prime}
$$

So we let $\alpha=1 /\left(1-\lambda_{i}\right)$, and the term in \mathbf{v} disappears, while $\boldsymbol{\lambda}^{\prime} /\left(1-\lambda_{i}\right)$ is a convex combination. Similarly, we have $\mathbf{v}-\mathbf{u}=V \boldsymbol{\mu}$, and $\mathbf{u}=\mathbf{v}\left(1-\mu_{i}\right)-V^{\prime} \boldsymbol{\mu}^{\prime}$. Then

$$
\mathbf{v}-\beta \mathbf{u}=\mathbf{v}\left(1-\beta\left(1-\mu_{i}\right)\right)+\beta V^{\prime} \boldsymbol{\mu}^{\prime}
$$

So let $\beta=1 /\left(1-\mu_{i}\right)$, so the right hand side is a convex combination of members of V^{\prime}.

4.3.2 Characterstic Cone

Now we consider the set cone (U) in $\operatorname{cone}(U)+\operatorname{conv}(V)$. The next proposition shows that it is essentially unique for any given Polyhedron.

Proposition 4.3.4 (Characterstic Cone). Suppose that $P=\{\mathbf{x} \mid A \mathbf{x} \leq b\}=$ $\operatorname{cone}(U)+\operatorname{conv}(V)$. Then the following three statements are equivalent:

1. $A \mathbf{r} \leq 0$
2. $(\forall \mathbf{x} \in P)(\forall \alpha>0) \mathbf{x}+\alpha \mathbf{r} \in P$
3. $\mathbf{r} \in \operatorname{cone}(U)$

Proof. $(1 \Rightarrow 2) . \mathbf{x} \in P$ means that $A \mathbf{x} \leq \mathbf{b}$, and $A \mathbf{r} \leq \mathbf{0}$ means that $A(\mathbf{x}+\alpha \mathbf{r}) \leq$ $A \mathrm{x} \leq \mathbf{b}$.
$(\neg 1 \Rightarrow \neg 2)$. Suppose $\left\langle A_{i}, \mathbf{r}\right\rangle>0$, then let $\alpha>\left(b_{i}-\left\langle A_{i}, \mathbf{x}\right\rangle\right) /\left\langle A_{i}, \mathbf{r}\right\rangle$. We have:

$$
\left\langle A_{i}, \mathbf{x}+\alpha \mathbf{r}\right\rangle>\left\langle A_{i}, \mathbf{x}\right\rangle+\frac{b_{i}\left\langle A_{i}, \mathbf{r}\right\rangle-\left\langle A_{i}, \mathbf{x}\right\rangle\left\langle A_{i}, \mathbf{r}\right\rangle}{\left\langle A_{i}, \mathbf{r}\right\rangle}=b_{i}
$$

$(3 \Rightarrow 2)$. This is essentially the definition of cone $(U)+\operatorname{conv}(V)$.
$(2 \Rightarrow 3)$. Now for the real work. Suppose that (2) holds, but $\mathbf{r} \notin \operatorname{cone}(U)$. Then by the Farkas Lemma, we have a \mathbf{y} that satisfies $\left(\forall \mathbf{r}^{\prime} \in U\right)\left\langle\mathbf{r}^{\prime}, \mathbf{y}\right\rangle \leq 0,\langle\mathbf{y}, \mathbf{r}\rangle>0$. From (2) we construct a sequence: $\left(\mathbf{x}_{n}\right)=\mathbf{v}+n \cdot \mathbf{r}$. Then it is clear that the sequence $\left\langle\mathbf{y}, \mathbf{x}_{n}\right\rangle \rightarrow \infty$. It is also clear that $(\forall n) \mathbf{x}_{n} \in P$. We now need the following:

Proposition 4.3.5. A linear, real-valued function on the set $\operatorname{conv}(V)$ achieves its maximal value at some $\overline{\mathbf{v}} \in V$.

Proof. To see this is true, suppose that the linear function is given by $\langle\mathbf{y}, \cdot\rangle$, and that $\overline{\mathbf{v}}$ is an element of V such that $(\forall \mathbf{v} \in V)\langle\mathbf{y}, \overline{\mathbf{v}}\rangle \geq\langle\mathbf{y}, \mathbf{v}\rangle$. Then, for any $\mathbf{r} \in \operatorname{conv}(V), \mathbf{r}=\sum_{\mathbf{v} \in V} \lambda_{v} \mathbf{v}$ where $\sum \lambda_{v}=1 \Rightarrow \lambda_{v} \leq 1$, and it follows

$$
\langle\mathbf{y}, \mathbf{r}\rangle=\left\langle\mathbf{y}, \sum_{\mathbf{v} \in V} \lambda_{v} v\right\rangle=\sum_{v \in V} \lambda_{v}\langle\mathbf{y}, \mathbf{v}\rangle \leq \sum_{v \in V} \lambda_{v}\langle\mathbf{y}, \overline{\mathbf{v}}\rangle=\langle\mathbf{y}, \overline{\mathbf{v}}\rangle
$$

Now consider the maximum value of the function $\langle\mathbf{y}, \cdot\rangle$ on P. Since any element of P can be written $\mathbf{r}^{\prime}+\mathbf{v} \mid \mathbf{r}^{\prime} \in \operatorname{cone}(U), \mathbf{v} \in \operatorname{conv}(V)$, and $\left(\forall \mathbf{r}^{\prime} \in U\right)\left\langle\mathbf{y}, \mathbf{r}^{\prime}\right\rangle \leq 0$, we can find the maximum value on $\operatorname{conv}(V)$. However, $\langle\mathbf{y}, \cdot\rangle$ achieves its maximal value on $\operatorname{conv}(V)$ at some $\overline{\mathbf{v}} \in V$, which is a contradiction with the fact that $\left\langle\mathbf{y}, \mathbf{x}_{n}\right\rangle \rightarrow \infty$, so we conclude that $\mathbf{r} \in \operatorname{cone}(U)$.

Remark 8 (Characteristic Cone). Note that (2) in the proof above is independent of A and U. This means that the cone of a polyhedron is independent of its representation, i.e. if $\operatorname{cone}(U)+\operatorname{conv}(V)=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$, then cone $(U)=$ cone $\left(U^{\prime}\right)$, while it is not necessarily true that $\operatorname{conv}(V)=\operatorname{conv}\left(V^{\prime}\right)$. Similarly, if $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$, the it holds that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$.

4.3.3 Minimal V-Polyhedra Pairs

In this section, when we write cone $(U)+\operatorname{conv}(V)$, we assume that V is non-empty.
Definition 4.3.6. A pair (U, V) is said to be minimal for cone $(U)+\operatorname{conv}(V)$ if

$$
\begin{align*}
& (\forall \mathbf{u} \in U) \operatorname{cone}(U \backslash\{\mathbf{u}\})+\operatorname{conv}(V) \subset \operatorname{cone}(U)+\operatorname{conv}(V) \tag{4.9}\\
& (\forall \mathbf{v} \in V) \operatorname{cone}(U)+\operatorname{conv}(V \backslash\{\mathbf{v}\}) \subset \operatorname{cone}(U)+\operatorname{conv}(V) \tag{4.10}
\end{align*}
$$

As before, the pair may not be essentially unique. This can happen if U is not pointed. So we will consider only pointed cones for cone (U).

Proposition 4.3.7. If (U, V) is minimal, then U is minimal for cone (U).
Proof. By Remark 8, cone $(U)+\operatorname{conv}(V)=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}(V)$ if and only if cone $(U)=\operatorname{cone}\left(U^{\prime}\right)$. So this means that the minimality of U is only dependent on U.

Now we consider the vertices of $\operatorname{cone}(U)+\operatorname{conv}(V)$.
Proposition 4.3.8. If \mathbf{v} is a vertex of $\operatorname{cone}(U)+\operatorname{conv}(V)$, then $[\mathbf{v}=U \mathbf{t}+V \boldsymbol{\lambda}] \Rightarrow$ $\mathrm{t}=\mathbf{0}$.

Proof. If \mathbf{v} can be written with some non-zero contribution from cone (U), then you may decrease this contribution by some amount while staying in cone $(U)+$ $\operatorname{conv}(V)$, and you may increase the contribution by the same amount, so \mathbf{v} is not a vertex.

It will be useful to refer to the property of a set V such that no member of V may be written with a non-zero contribution from cone (U) (this is the property described by Proposition 4.3.8). We will call it U-free.

Proposition 4.3.9. If \mathbf{v} is a vertex of cone $(U)+\operatorname{conv}(V)$, then \mathbf{v} is a vertex of conv (V).

Proof. By Proposition 4.3.8, $\mathbf{v} \in \operatorname{conv}(V)$. If \mathbf{v} is not a vertex of $\operatorname{conv}(V)$, then because $\operatorname{conv}(V) \subseteq \operatorname{cone}(U)+\operatorname{conv}(V)$ it can't be a vertex of P.

Now we can show the following.
Proposition 4.3.10. Suppose that (U, V) is a minimal pair for cone $(U)+$ $\operatorname{conv}(V)$. Then V is the set of vertices of $\operatorname{cone}(U)+\operatorname{conv}(V)$.

Proof. By Proposition 4.3.8, if \mathbf{v} is a vertex of P, then it must be a vertex of V. Clearly, V is minimal for V, and is precisely the vertices of $\operatorname{conv}(V)$. The only question is if the vertices of V are the vertices of P. Suppose that \mathbf{v} is a vertex of $\operatorname{conv}(V)$. Then we must show that for any $\mathbf{u} \neq \mathbf{0}$, if $\mathbf{v}+\mathbf{u} \in P$ then $\mathbf{v}-\mathbf{u} \notin P$. Suppose that $\mathbf{u} \in \operatorname{cone}(U)$. Then, since V is U-free, $\mathbf{v}-\mathbf{u} \notin P$, otherwise $\mathbf{v}=(\mathbf{v}-\mathbf{u})+\mathbf{u}$ and V is not U-free. If $\mathbf{u} \notin \operatorname{cone}(U)$, then if $\mathbf{v}+\mathbf{u} \in P$, $\mathbf{v}+\mathbf{u} \in \operatorname{conv}(V)$. Then because \mathbf{v} is a vertex of $\operatorname{conv}(V), \mathbf{v}-\mathbf{u} \notin \operatorname{conv}(V)$.

Proposition 4.3.11. Let $P=\operatorname{cone}(U)+\operatorname{cone}(V)$. Then the following are equivalent

1. (U, V) is minimal for P
2. U is minimal for cone $(U), V$ is the vertex set of P
3. U is minimal for cone $(U), V$ is the vertex set of $\operatorname{conv}(V)$, and V is U-free

Proof. $(1 \Rightarrow 2)$. This combines the results of Proposition 4.3.7 and Proposition 4.3.10
$(2 \Rightarrow 3)$. That V is U-free follows from Proposition 4.3.8. By Proposition 4.3.9, the vertex set of P is a subset of the vertices of $\operatorname{conv}(V)$. Let \mathbf{v} be a vertex of $\operatorname{conv}(V)$, we must show that it is a vertex of P. Because it is a vertex of $\operatorname{conv}(V)$, if $\mathbf{v}+\mathbf{u} \in \operatorname{conv}(V)$ then $\mathbf{v}-\mathbf{u} \notin \operatorname{conv}(V)$. Say $\mathbf{v}+\mathbf{u} \in \operatorname{conv}(V)+\operatorname{cone}(U)$. Then \mathbf{u} must have some non-zero contribution of $\operatorname{cone}(U)$. If $\mathbf{v}-\mathbf{u} \in P$, then \mathbf{v} could be written as $(\mathbf{v}+\mathbf{u}) / 2+(\mathbf{v}-\mathbf{u}) / 2$, which has an overall positive contribution from cone (U), meaning that V is not U-free.
$(3 \Rightarrow 1)$. Since V is the vertex set of $\operatorname{conv}(V)$, if $\mathbf{v} \in V$ is also in cone $(U)+$ $\operatorname{conv}(V \backslash\{\mathbf{v}\})$, then \mathbf{v} can be written with a non-negative contribution from cone (U), so V is not U-free. Next let $\mathbf{u} \in U$, and $U^{\prime}=U \backslash\{\mathbf{u}\}$. We must find a point in cone $(U)+\operatorname{conv}(V)$ that is not in cone $\left(U^{\prime}\right)+\operatorname{conv}(V)$. Because $\mathbf{u} \notin$ cone $\left(U^{\prime}\right)$, there is an \mathbf{x} that satisfies: $\mathbf{x}^{T} U^{\prime} \leq \mathbf{0}$, and $\mathbf{x}^{T} \mathbf{u}>0$. By Proposition 4.3.5, there is some maximum value c such that $(\forall \mathbf{x} \in \operatorname{conv}(V)) \mathbf{x}^{T} \mathbf{u} \leq c$. This means that $\left\{\mathbf{x}^{T} \mathbf{y}: \mathbf{y} \in \operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}(V)\right\}$ is upper-bounded by c. But the set $\left\{\mathbf{x}^{T} \mathbf{y}: \mathbf{y} \in \operatorname{cone}(U)+\operatorname{conv}(V)\right\}$ is unbounded, since $\mathbf{x}^{T} \mathbf{u}>0$. So we can conclude that cone $\left(U^{\prime}\right)+\operatorname{conv}(V) \subset \operatorname{cone}(U)+\operatorname{conv}(V)$. We conclude that (U, V) are minimal.

Now we see that the minimal pairs for V-Polyhedra are essentially unique.
Proposition 4.3.12. Let (U, V) be minimal for $P=\operatorname{cone}(U)+\operatorname{conv}(V)=$ cone $\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$. Then $U \sqsubseteq U^{\prime}$, and $V \subseteq V^{\prime}$.

Proof. Since cone $(U)=\operatorname{cone}\left(U^{\prime}\right)$, and U is minimal for cone (U), by Equivalence Criteria $1 U \sqsubseteq U^{\prime}$. By Proposition 4.3.9 every vertex of P must be a vertex of V^{\prime}, and because V contains precisely the vertices of $P, V \subseteq V^{\prime}$.

Say we know that $P=\operatorname{cone}(U)+\operatorname{conv}(V)=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$, with U, V minimal, and U pointed. We have another pair $\left(U^{\prime}, V^{\prime}\right)$, and let $P^{\prime}=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$. We want to test if $P=P^{\prime}$. We have the following:

$$
\begin{aligned}
& A U^{\prime} \leq \mathbf{0} \Rightarrow \operatorname{cone}\left(U^{\prime}\right) \subseteq \operatorname{cone}(U) \\
& A V^{\prime} \leq \mathbf{b} \Rightarrow \operatorname{conv}\left(V^{\prime}\right) \subseteq P \\
& U \sqsubseteq U^{\prime} \Rightarrow \operatorname{cone}(U) \subseteq \operatorname{cone}\left(U^{\prime}\right) \\
& V \subseteq V^{\prime} \Rightarrow \operatorname{conv}(V) \subseteq \operatorname{conv}\left(V^{\prime}\right) \\
& P^{\prime}=P \Rightarrow A U \leq \mathbf{0} \\
& P^{\prime}=P \Rightarrow A V \leq \mathbf{b} \\
& P^{\prime}=P \Rightarrow U \sqsubseteq U^{\prime} \\
& P^{\prime}=P \Rightarrow V \subseteq V^{\prime}
\end{aligned}
$$

The first two lines imply that $P^{\prime} \subseteq P$, while the next two imply that $P \subseteq P^{\prime}$. We now have the ability to create an equivalence criteria.

Equivalence Criteria 3 (V-Cone \rightarrow H-Cone). Say (U, V) is a minimal pair for $P=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ (with pointed $\operatorname{cone}(U)$), and suppose $P^{\prime}=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$. Then

$$
P=P^{\prime} \Leftrightarrow A U \leq \mathbf{0}, A V \leq \mathbf{b}, V \subseteq V^{\prime}, U \sqsubseteq U^{\prime}
$$

Test 3 (H-Polyhedron \rightarrow V-Polyhedron). We now have a method for testing the program. First, we hand-craft an H-Polyhedron $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ based on a minimal pair (U, V) for some pointed V-Polyhedron. We then run our program to get a pair $\left(U^{\prime}, V^{\prime}\right)$, with the alleged property that cone $\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)=\operatorname{cone}(U)+\operatorname{conv}(V)$. If we confirm Equivalence Criteria 3, then our program has succeeded.

4.4 Testing V-Polyhedron $\rightarrow \mathbf{H}$-Polyhedron

Now we suppose we have a V-Polyhedron $P_{U, V}=\operatorname{cone}(U)+\operatorname{conv}(V)$, and would like to test the program which returns a matrix-vector pair $A^{\prime}, \mathbf{b}^{\prime}$ where supposedly $P_{U, V}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. Again, we will start off with a pair A, \mathbf{b} where we know that $P_{U, V}=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$, where A, \mathbf{b} satisfy some nice properties, and use those properties to test if $P_{U, V}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$.

Definition 4.4.1 (Minimal H-Pair). The pair (A, \mathbf{b}) is called minimal for $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$, if, for any row $\left(A_{i}, b_{i}\right)$, letting $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$ be (A, \mathbf{b}) with the i-th row deleted, $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\} \supset\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$.

To characterize Minimal H-Pairs, we will need a new form of the Farkas Lemma.

Theorem 5 (Farkas Lemma 2).

$$
(\exists \mathbf{t} \geq \mathbf{0}) \mathbf{t}^{T} A=\mathbf{y}, \mathbf{t}^{T} \mathbf{b} \leq c \Leftrightarrow\left\{\begin{array}{l}
(\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{y}^{T} \mathbf{x} \leq 0 \text { and } \\
(\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{y}^{T} \mathbf{x} \leq c
\end{array}\right.
$$

Proof. First we note that

$$
\begin{aligned}
& \exists \mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T} A=\mathbf{y}, \mathbf{t}^{T} \mathbf{b} \leq c \\
& \exists \mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T}\binom{A}{0}=\mathbf{y}, \mathbf{t}^{T}\binom{\mathbf{b}}{1}=c \Leftrightarrow \\
& \exists \mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T}\left(\begin{array}{cc}
-\mathbf{b} & A \\
-1 & 0
\end{array}\right)=(-c, \mathbf{y})
\end{aligned}
$$

If we negate the right hand side of The Farkas Lemma, then we get that

$$
\begin{aligned}
& \exists \mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T}\left(\begin{array}{rr}
-\mathbf{b} & A \\
-1 & 0
\end{array}\right)=(-c, \mathbf{y}) \\
& \forall \mathbf{x}, x_{0}\left(\begin{array}{rr}
-\mathbf{b} & A \\
-1 & 0
\end{array}\right)\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0} \Rightarrow\left\langle(-c, \mathbf{y}),\left(x_{0}, \mathbf{x}\right)\right\rangle \leq \mathbf{0} \Leftrightarrow \\
& \forall x_{0} \geq 0, A \mathbf{x} \leq x_{0} \mathbf{b} \Rightarrow \mathbf{y}^{T} \mathbf{x} \leq x_{0} \cdot c
\end{aligned}
$$

Taking the case that $x_{0}=0$ and $x_{0}>0$ separately, you get the proposition.
Proposition 4.4.2. Suppose that (A, \mathbf{b}) is not minimal for some $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$. Then there is a row $\left(A_{i}, b_{i}\right)$ for which the following holds. Let $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$ be (A, \mathbf{b}) with the i-th row deleted. Then there is a $\mathbf{t}^{\prime} \geq \mathbf{0}$ such that $\mathbf{t}^{\prime T} A^{\prime}=A_{i}, \mathbf{t}^{\prime T} \mathbf{b}^{\prime} \leq b_{i}$.

Proof. Since (A, \mathbf{b}) is not minimal, there is such an $\left(A_{i}, b_{i}\right)$ and $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$ such that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. In the right hand side of Farkas Lemma 2, the conditions are satisfied with $A:=A^{\prime}, \mathbf{b}:=\mathbf{b}^{\prime}, \mathbf{y}:=A_{i}, c:=b_{i}$.

Is the converse true? Does it hold that given a (A, \mathbf{b}) which is minimal, the implication of Proposition 4.4.2 fails? In general, no. For example, the hyperplane $\langle\mathbf{y}, \mathbf{x}\rangle=c$ has a minimal representation $\{\langle\mathbf{y}, \mathbf{x}\rangle \leq c,\langle-\mathbf{y}, \mathbf{x}\rangle \leq-c\}$, but the sum of the rows is 0 , and so $\mathbf{t}^{\prime}:=(2,1)$ satisfies the claim. In general, we need the polyhedron to be full-dimensional.

Definition 4.4.3 (Full-Dimensional). A set V of vectors is called full-dimensional if, given any $\mathbf{y} \neq \mathbf{0}, c \in \mathbb{R}$, there is some $\mathbf{v} \in V$ such that $\mathbf{y}^{T} \mathbf{v} \neq c$.

Definition 4.4.4 (Full-Dimensional Polyhedra). A polyhedron is called fulldimensional if it contains a full-dimensional set of vectors.

Proposition 4.4.5. If $P=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ is full dimensional, and $\mathbf{y}^{T} A=\mathbf{0}$ with $\mathbf{y} \geq \mathbf{0}$, then either $\mathbf{y}=\mathbf{0}$ or $\mathbf{y}^{T} \mathbf{b}>\mathbf{0}$.

Figure 4.4: H-Cone, not full-dimensional:

$$
\left(\begin{array}{rr}
-2 & 1 \\
2 & -1 \\
-1 & -1 \\
0 & -1
\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Proof. Say $\mathbf{y}^{T} A=\mathbf{0}, \mathbf{y} \neq \mathbf{0}$, and $\mathbf{y}^{T} \mathbf{b}=0$. Then suppose $y_{i} \neq 0$. Then

$$
y_{i} A_{i}+\sum_{j \neq i} y_{j} A_{j}=\mathbf{0}, \quad y_{i} b_{i}+\sum_{j \neq i} y_{j} a_{j}=0
$$

So, there are non-negative $\mathbf{t}_{1}, \mathbf{t}_{2}$ such that

$$
\mathbf{t}_{1}^{T} A=-\mathbf{t}_{2}^{T} A, \quad \mathbf{t}_{1}^{T} \mathbf{b}=-\mathbf{t}_{2}^{T} \mathbf{b}
$$

It follows that, for any \mathbf{x} satisfying $A \mathbf{x} \leq \mathbf{b}$:

$$
\mathbf{t}_{1}^{T} A \mathbf{x} \leq \mathbf{t}_{1}^{T} \mathbf{b}, \quad-\mathbf{t}_{2}^{T} A \mathbf{x} \geq-\mathbf{t}_{2}^{T} \mathbf{b}
$$

But then for any $\mathbf{x} \in P$ it must hold that $\mathbf{t}_{1}^{T} A \mathbf{x}=\mathbf{t}_{1}^{T} \mathbf{b}$. Since P is full dimensional, it must be that $\mathbf{t}_{1}=\mathbf{0}$, then $\mathbf{y}=\mathbf{0}$.

Proposition 4.4.6. Suppose that (A, \mathbf{b}) is minimal for some full-dimensional $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$. Then let $\left(A_{i}, b_{i}\right)$ be any row. If, for some $\mathbf{t} \geq \mathbf{0}, \mathbf{t}^{T} A=A_{i}$, then either $\mathbf{t}=\mathbf{e}_{i}$ or $\mathbf{t}^{T} \mathbf{b}>b_{i}$.

Proof. Suppose that $A_{i}=t_{i} A_{i}+\mathbf{t}^{\prime T} A^{\prime}$, and $b_{i}=t_{i} b_{i}+\mathbf{t}^{\prime} \mathbf{b}^{\prime}$. If $0 \leq t_{i}<1$, then $A_{i}=\mathbf{t}^{\prime T} A^{\prime} /\left(1-t_{i}\right)$, and $b_{i}=\mathbf{t}^{T} \mathbf{b}^{\prime} /\left(1-t_{i}\right)$. But then (A, \mathbf{b}) is not minimal (the i-th row may be deleted without changing the polyhedron). Say $1 \leq t_{i}$. Then there is a non-negative $\mathbf{t}^{\prime \prime}$ with $\mathbf{t}^{\prime \prime T} A=0, \mathbf{t}^{\prime T} \mathbf{b}=0$. By Proposition 4.4.5, $\mathbf{t}^{\prime \prime}=\mathbf{0}$, and $\mathbf{t}=\mathbf{e}_{i}$.

Now we intend to use these properties of full-dimensionality and minimality to let us reduce the problem to one of cones.

Proposition 4.4.7. The following statements are equivalent:

1. $\{\mathbf{x} \mid A \mathrm{x} \leq \mathrm{b}\}=\left\{\mathrm{x} \mid A^{\prime} \mathrm{x} \leq \mathrm{b}^{\prime}\right\}$
2. $\left\{\binom{x_{0}}{\mathbf{x}} \left\lvert\,\left(\begin{array}{cc}-1 & \mathbf{0} \\ -\mathbf{b} & A\end{array}\right)\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}\right.\right\}=\left\{\binom{x_{0}}{\mathbf{x}} \left\lvert\,\left(\begin{array}{rr}-1 & \mathbf{0} \\ -\mathbf{b}^{\prime} & A^{\prime}\end{array}\right)\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}\right.\right\}$

Proof. $(2 \Rightarrow 1)$. Just set $x_{0}=1$, and move $\mathbf{b}, \mathbf{b}^{\prime}$ to the right side of the inequalities. $(\neg 2 \Rightarrow \neg 1)$. Suppose that:

$$
\left(\begin{array}{cc}
-1 & \mathbf{0} \\
-\mathbf{b} & A
\end{array}\right)\binom{x_{0}}{\mathbf{x}} \leq \mathbf{0}, \quad\left(\begin{array}{rr}
-1 & \mathbf{0} \\
-\mathbf{b}^{\prime} & A^{\prime}
\end{array}\right)\binom{x_{0}}{\mathbf{x}} \not 又 \mathbf{0}
$$

Observe that, by the way these sets are constructed, $x_{0} \geq 0$. If $x_{0}=0$, then we have $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\} \neq\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$, which, by Proposition 4.3.4 means that that A and A^{\prime} don't create the same characteristic cone, so $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\} \neq$ $\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. If $x_{0}>0$, then we have:

$$
A \mathbf{x} \leq x_{0} \mathbf{b}, A^{\prime} \mathbf{x} \not \leq x_{0} \mathbf{b}^{\prime} \Rightarrow A\left(\mathbf{x} / x_{0}\right) \leq \mathbf{b}, A^{\prime}\left(\mathbf{x} / x_{0}\right) \not \leq \mathbf{b}^{\prime}
$$

So $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\} \neq\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$.
Now, combining the results of 'Characterstic Cone' on page 42 and proposition 4.4.7, we have the following result:

Proposition 4.4.8. The following two statement are equivalent:

1. $\{\mathbf{x} \mid A \mathrm{x} \leq \mathrm{b}\}=\left\{\mathrm{x} \mid A^{\prime} \mathrm{x} \leq \mathrm{b}^{\prime}\right\}$
2. cone $\left(\begin{array}{rr}-\mathbf{b}^{T} & -1 \\ A^{T} & \mathbf{0}\end{array}\right)=$ cone $\left(\begin{array}{rr}-\mathbf{b}^{\prime T} & -1 \\ A^{\prime T} & \mathbf{0}\end{array}\right)$

Proposition 4.4.9. If $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ is minimal and full-dimensional, then either

1. cone $\left(\begin{array}{rr}-\mathbf{b}^{T} & -1 \\ A^{T} & \mathbf{0}\end{array}\right)$ is minimal and pointed, or
2. cone $\binom{-\mathbf{b}^{T}}{A^{T}}$ is minimal and pointed, and cone $\binom{-\mathbf{b}^{T}}{A^{T}}=\operatorname{cone}\left(\begin{array}{rr}-\mathbf{b}^{T} & -1 \\ A^{T} & \mathbf{0}\end{array}\right)$

Proof. To see that they are pointed, let

$$
\left(\begin{array}{rr}
-\mathbf{b}^{T} & -1 \\
A^{T} & \mathbf{0}
\end{array}\right)\left(\mathbf{t}, t_{0}\right)=\mathbf{0}
$$

If (\mathbf{t}, t_{0}) is non-zero, then $\mathbf{t}^{T} A=\mathbf{0}$, which by Proposition 4.4.5 means that $-\mathbf{t}^{T} \mathbf{b}<0$. This means that $-\mathbf{t}^{T} \mathbf{b}-t_{0}<0$. So $\left(\mathbf{t}, t_{0}\right)=\mathbf{0}$.

To show that it they are minimal, by 'Minimal V-Cone Generators' on page 34, we only need to show that

$$
\mathbf{t} \geq \mathbf{0},\left[\left(A_{i}=\mathbf{t}^{T} A, \mathbf{t}^{T} \mathbf{b}+t_{0}=b_{i}\right) \Rightarrow \mathbf{t}=\mathbf{e}_{i}\right]
$$

By Proposition 4.4.6, if $\mathbf{t} \neq \mathbf{e}_{i}$, and $\mathbf{t}^{T} A=A_{i}$, then $\mathbf{t}^{T} \mathbf{b}>b_{i}$, so $\mathbf{t}^{T} \mathbf{b}+t_{0}>b_{i}$. So that means that if $\mathbf{t}^{T} A=A_{i}, \mathbf{t}^{T} \mathbf{b}=b_{i}$, then \mathbf{t} must be \mathbf{e}_{i}. If there is a $\mathbf{t} \neq \mathbf{0}$ such that $\mathbf{t}^{T} A=\mathbf{0}$, then it follows that $-\mathbf{t}^{T} \mathbf{b}<0$, and that cone $\binom{-\mathbf{b}^{T}}{A^{T}}=$ $\left(\begin{array}{rr}-\mathbf{b}^{T} & -1 \\ A^{T} & \mathbf{0}\end{array}\right)$. Then $\binom{-\mathbf{b}^{T}}{A^{T}}$ is minimal. If there is no such \mathbf{t}, that is, if $\mathbf{t}^{T} A=0$ then $\mathbf{t}=\mathbf{0}$, then $\left(\begin{array}{rr}-\mathbf{b}^{T} & -1 \\ A^{T} & \mathbf{0}\end{array}\right)$ is minimal.

Proposition 4.4.10. Say (A, \mathbf{b}) is minimal for full-dimensional $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$. Then if $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$, then $(A, \mathbf{b}) \sqsubseteq\left(A^{\prime}, \mathbf{b}^{\prime}\right)$.

Proof. Proposition 4.4 .8 shows that the equality of the H-Cones is predicated on the equality of the V-Cones cone $\binom{-\mathbf{b}}{A}$ and cone $\binom{-\mathbf{b}^{\prime}}{A^{\prime}}$. Proposition 4.4.9 shows that we end up with the situation that either cone $\binom{-\mathbf{b}}{A}=\operatorname{cone}\binom{-\mathbf{b}^{\prime}}{A^{\prime}}$ with cone $\binom{-\mathbf{b}}{A}$ minimal, in which case $\binom{-\mathbf{b}}{A} \sqsubseteq\binom{-\mathbf{b}^{\prime}}{A^{\prime}}$, or cone $\left(\begin{array}{cc}-\mathbf{b} & -1 \\ A & 0\end{array}\right)$ is minimal. In this case, since for no $A_{i} \in A$ is $A_{i} \simeq \mathbf{0}$, we conclude that $\binom{-\mathbf{b}}{A} \sqsubseteq\binom{-\mathbf{b}^{\prime}}{A^{\prime}}$

Say we know that $P=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=\operatorname{cone}(U)+\operatorname{conv}(V)$, with (A, \mathbf{b}) minimal, and P full-dimensional. We have another pair $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$, and let $P^{\prime}=$ $\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. We want to test if $P=P^{\prime}$. We have the following:

$$
\begin{array}{ll}
A^{\prime} U \leq \mathbf{0} & \Rightarrow \operatorname{cone}\left(U^{\prime}\right) \subseteq\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\} \\
A^{\prime} V \leq \mathbf{b} & \Rightarrow \operatorname{conv}\left(V^{\prime}\right) \subseteq P^{\prime} \\
(A, \mathbf{b}) \sqsubseteq\left(A^{\prime}, \mathbf{b}^{\prime}\right) & \Rightarrow P^{\prime} \subseteq P \\
P^{\prime}=P & \Rightarrow A^{\prime} U \leq \mathbf{0} \\
P^{\prime}=P & \Rightarrow A^{\prime} V \leq \mathbf{b} \\
P^{\prime}=P & \Rightarrow\left(A, \mathbf{b} \sqsubseteq\left(A^{\prime}, \mathbf{b}^{\prime}\right)\right.
\end{array}
$$

The first two lines imply that $P \subseteq P^{\prime}$, so the first three mean that $P=P^{\prime}$. We then have the following equivalence criteria:

Equivalence Criteria 4. Say (A, \mathbf{b}) is a minimal pair for $P=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=$ $\operatorname{cone}(U)+\operatorname{conv}(V)$, and suppose $P^{\prime}=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. Then

$$
P=P^{\prime} \Leftrightarrow A^{\prime} U \leq \mathbf{0}, A^{\prime} V \leq \mathbf{b},(A, \mathbf{b}) \sqsubseteq\left(A^{\prime}, \mathbf{b}^{\prime}\right)
$$

Test 4 (V-Polyhedron \rightarrow H-Polyhedron). We now have a method for testing the program. First, we hand-craft a V-Polyhedron $\operatorname{cone}(U)+\operatorname{conv}(V)$ based on some minimal pair (A, \mathbf{b}), then run our program to get the pair $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$, with the alleged property that cone $(U)+\operatorname{conv}(V)=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$. If we confirm Equivalence Criteria 4, then our program has succeeded.

4.5 Full-Dimensional and Pointed Polyhedra

This section will summarize and finalize the discussion of full-dimensional and pointed polyhedra. It is not directly related to the subject of the thesis or testing of the program, however it addresses two obvious subjects which have been thus far avoided: characterizing V-Cones and V-Polyhedra which are full-dimensional, and characterizing which H -Cones and H-Polyhedra are pointed. These questions are quite similar to their already addressed counterparts, but worth a short discussion.

4.5.1 Full-Dimensional V-Polyhedra

Which V-Cones are full dimensional? Well, a V-Cone is full dimensional if there is no non-zero $\mathbf{y} \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$ such that $\langle\mathbf{y}, \mathbf{x}\rangle=c$ for all $\mathbf{x} \in \operatorname{cone}(U)$. First note that if such a \mathbf{y} and c exist, then $c=0$. This is because every hyperplane which may contain cone (U) must contain the origin. If U has d linear-independent vectors, then clearly $\operatorname{cone}(U)$ is full-dimensional. Suppose that U does not have d linear-independent vectors, then there is some vector \mathbf{y} such that $(\forall \mathbf{v} \in U)\langle\mathbf{y}, \mathbf{v}\rangle=0$. Then $\mathbf{y}^{T} U \mathbf{t}=\mathbf{0}^{T} \mathbf{t}=0$, so cone (U) is not full-dimensional. So much for V-Cones. The situation is similar for V-Polyhedra. In cone $(U)+\operatorname{conv}(V)$ there are two sets adding to the dimensionality of the polyhedron, U and V. Let $\bar{V}=\left\{\mathbf{v}-\mathbf{v}^{\prime} \mid \mathbf{v}, \mathbf{v}^{\prime} \in V\right\}$. Then we must look for d linear-independent vectors in $U \cup V$. Basically, the cone adds to the dimensionality in the same way as before, but the vectors from $\operatorname{conv}(V)$ are not simply the points of V. More formally, say that there is some \mathbf{y} such that $\mathbf{y}^{T} U=\mathbf{y}^{T} V=0$. Let $\mathbf{v}^{\prime} \in V$, and observe that:

$$
\mathbf{y}^{T} \bar{V}=0 \Rightarrow(\forall \mathbf{v} \in V)\left\langle\mathbf{y}, \mathbf{v}-\mathbf{v}^{\prime}\right\rangle=0 \Rightarrow(\forall \mathbf{v} \in V)\langle\mathbf{y}, \mathbf{v}\rangle=\left\langle\mathbf{y}, \mathbf{v}^{\prime}\right\rangle
$$

Let $c=\left\langle\mathbf{y}, \mathbf{v}^{\prime}\right\rangle$. Then for any member of $\operatorname{cone}(U)+\operatorname{conv}(V)$

$$
\left\langle\mathbf{y}, \sum_{i} t_{i} \mathbf{u}_{i}+\sum_{j} \lambda_{j} \mathbf{v}_{j}\right\rangle=0+\sum_{j} \lambda_{j} c=c
$$

4.5.2 Pointed H-Polyhedra

Which H-Cones are pointed? As previously discussed, if a Cone has a vertex, it is the origin. So, if $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is pointed, then no $\mathbf{u} \neq \mathbf{0}$ satisfies $A \mathbf{u}=\mathbf{0}$. Conversely, if $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ is not pointed, then for some $\mathbf{u} \neq \mathbf{0}$ we have $A \mathbf{u} \leq \mathbf{0}$ and $-A \mathbf{u} \leq \mathbf{0}$, so $A \mathbf{u}=\mathbf{0}$. In either case, we see that the rows of A have a nontrivial orthogonal subspace, so it must be that there are not d linear-independent rows of A. What about for H-Polyhedra? First, assume that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ is non-empty, otherwise there are certainly no vertices. As before, if there is some $\mathbf{u} \neq \mathbf{0}$ such that $A \mathbf{u}=\mathbf{0}$, then this \mathbf{u} prevents any point from being a vertex. Now suppose that $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ has a vertex \mathbf{v}. We claim that there are d linearindependent rows A_{i} from A such that $\left\langle A_{i}, \mathbf{v}\right\rangle=b_{i}$. If there were fewer, then we take some \mathbf{u} that is in the orthogonal subspace of the A_{i} for which $\left\langle A_{i}, \mathbf{v}\right\rangle=b_{i}$, and $A(\mathbf{v} \pm \epsilon \mathbf{u}) \leq \mathbf{b}$ for some small ϵ. So, a non-empty $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ has a vertex if and only if A has full row rank. This result is nice in that it shows the existence of a vertex doesn't depend on \mathbf{b} (for the most part). If you imagine continuously changing b, you are just "sliding" the half-spaces which you are intersecting "back and forth." Vertices may be split or joined, but you cannot completely get rid of all the vertices from the polyhedron (unless you choose a \mathbf{b} which makes the polyhedron empty). This is an example of an "intuitive" result about polyhedra for which the proof is somewhat indirect.

4.5.3 Summary

Here we present a table summarizing the situation for full-dimensionality and pointedness of polyhedra. \mathbf{t} is a non-negative vector, and abbreviate linear-
independent as LI. \bar{V} denotes $\left\{\mathbf{v}-\mathbf{v}^{\prime} \mid \mathbf{v}, \mathbf{v}^{\prime} \in V\right\}$.

	Pointed	Full-Dimensional
cone (U)	$U \mathbf{t}=\mathbf{0} \Rightarrow \mathbf{t}=\mathbf{0}$	d LI vectors in U
$\operatorname{cone}(U)+\operatorname{conv}(V)$	$U \mathbf{t}=\mathbf{0} \Rightarrow \mathbf{t}=\mathbf{0}$	d LI vectors in $U \cup \bar{V}$
$\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$	d LI row vectors in A	$\mathbf{t}^{T} A=\mathbf{0} \Rightarrow \mathbf{t}=\mathbf{0}$
$\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$	d LI row vectors in A	$\mathbf{t}^{T} A=\mathbf{0} \Rightarrow \mathbf{t}^{T} \mathbf{b}>0$

4.6 test functions.h

The following types are defined for running tests of the different algorithms. They are expected to be given a descriptive name, the object on which the test will be run, and a key with which the result of the test will be compared. The key object is one of the minimal objects described above.

```
4.6.1 struct hcone_test_case
struct hcone_test_case {
    std::string name;
    Matrix hcone; // vectors for H or V cone
    Matrix key; // minimal generating set
    bool run_test() const;
};
```

4.6.2 struct vcone_test_case

```
struct vcone_test_case {
    std::string name;
    Matrix vcone; // vectors for H or V cone
    Matrix key; // minimal generating set
    bool run_test() const;
};
```


4.6.3 struct hpoly_test_case

```
struct hpoly_test_case {
    std::string name;
    Matrix hpoly; // vectors for H-Polyhedron
    VPoly key; // minimal generating set
    bool run_test() const;
};
```

4.6.4 struct vpoly_test_case

```
struct vpoly_test_case {
    std::string name;
```

```
    VPoly vpoly; // vectors for V-Polyhedron
    Matrix key; // minimal generating set
    bool run_test() const;
};
```


4.7 test functions.cpp

4.7.1 double operator*(Vector, Vector)

The dot-product and norm (in terms of dot product).

```
double operator*(const Vector &l, const Vector &r) {
    if (l.size() > r.size()) {
        throw runtime_error{"inner product: l > r"};
    }
    return inner_product(begin(l), end(l), begin(r), 0.);
}
```


4.7.2 double norm(Vector)

```
double norm(const Vector &v) {
    return sqrt(v*v);
}
```


4.7.3 bool approximately_zero(double)

approximately_zero is used during tests to avoid issues involving floating point rounding errors. For example, $1 / 6.0 * 2.5-5 / 12.0==0$ will give false, while approximately_zero (1/6.0*2.5-5/12.0) will return true. Test cases are used where intermediate calculations don't depend on such high accuracy, and these discrepancies can be ignored.
approximately_zero(c) $==$ true is to be denoted $c \approx 0$.

```
bool approximately_zero(double d) {
    const double error = .000001;
    bool result = abs(d) < error;
    if (d != 0 && result) {
        ostringstream oss;
        oss << scientific << d;
        log("approximately_zero " + oss.str(), 1);
    }
    return result;
}
```


4.7.4 bool approximately_lt_zero(double)

Tests $c<0 \vee c \approx 0$.

```
bool approximately_lt_zero(double d) {
    return d < 0 || approximately_zero(d);
}
```

4.7.5 bool approximately_zero(Vector)

Tests $\|\mathbf{v}\| \approx 0$. This is to be denoted $\mathbf{v} \approx \mathbf{0}$.

```
bool approximately_zero(const Vector &v) {
    return approximately_zero(norm(v));
}
```


4.7.6 bool is_equivalent(Vector, Vector)

Tests $\mathbf{u} /\|\mathbf{u}\|-\mathbf{v} /\|\mathbf{v}\| \approx \mathbf{0}$. This is to be denoted $\mathbf{u} \simeq \mathbf{v}$.

```
bool is_equivalent(const Vector &l, const Vector &r) {
    if (l.size() != r.size()) return false;
    if (norm(l) == 0 || norm(r) == 0) {
        return norm(l) == 0 && norm(r) == 0;
    }
    return approximately_zero(l / norm(l) - r / norm(r));
}
```


4.7.7 bool is_equal(Vector,Vector)

Tests $\mathbf{u}-\mathbf{v} \approx \mathbf{0}$. This is to be denoted $\mathbf{u} \approx \mathbf{v}$.

```
bool is_equal(const Vector &l, const Vector &r) {
    if (l.size() != r.size()) return false;
    return approximately_zero(l - r);
}
```


4.7.8 bool has_equivalent_member(Matrix, Vector)

Tests $(\exists \mathbf{u} \in U) \mid \mathbf{v} \simeq \mathbf{u}$.

```
bool has_equivalent_member(const Matrix &M,
                            const Vector &v) {
    if (!any_of(M.begin(), M.end(),
        [&](const Vector &u) {
            return is_equivalent(u,v); })) {
        ostringstream oss;
        oss << dashes
            << " no equivalent member found for:\n"
            << v << endl;
        log(oss.str(),1);
        return false;
    }
    return true;
}
```


4.7.9 bool has_equal_member (Matrix, Vector)

Tests $(\exists \mathbf{u} \in U) \mid \mathbf{v} \approx \mathbf{u}$.

```
bool has_equal_member(const Matrix &M,
                    const Vector &v) {
    if (!any_of(M.begin(), M.end(),
        [&](const Vector &u) { return
            is_equal(u,v); })) {
        ostringstream oss;
        oss << dashes
            << " no equal member found for:\n"
            << v << endl;
        log(oss.str(),1);
        return false;
    }
    return true;
}
```


4.7.10 bool subset_mod_eq(Matrix,Matrix)

Tests $(\forall v \in V)(\exists \mathbf{u} \in U) \mid \mathbf{v} \simeq \mathbf{u}$. This is to be denoted $V \sqsubseteq U$.

```
bool subset_mod_eq(const Matrix &generators,
    const Matrix &vcone) {
    return all_of(generators.begin(), generators.end(),
        [&](const Vector &g) {
        return has_equivalent_member(vcone, g); });
}
```


4.7.11 bool subset(Matrix, Matrix)

Tests $(\forall v \in V)(\exists \mathbf{u} \in U) \mid \mathbf{v} \approx \mathbf{u}$. This is to be denoted $V \subseteq U$.

```
bool subset(const Matrix &generators,
    const Matrix &vcone) {
    return all_of(generators.begin(), generators.end(),
        [&](const Vector &g) {
        return has_equal_member(vcone, g); });
}
```


4.7.12 bool ray_satisfied(Vector, Vector)

Given a Vector constraint and Vector ray, tests if approximately_lt_zero(ray * constraint). Note that if the constraint is of the form $\left\langle A_{i}, \mathbf{v}\right\rangle \leq b$ for some value b, then this tests $\left\langle A_{i}\right.$, ray $\rangle \leq \mathbf{0}$.

```
bool ray_satisfied(const Vector &constraint,
    const Vector &ray) {
    if (constraint.size() != ray.size() &&
        constraint.size()-1 != ray.size()) {
        throw runtime_error{"bad ray vs constraint"};
    }
    double ip = ray * constraint;
    if (!(approximately_lt_zero(ip))) {
```

.

```
        ostringstream oss;
        oss << dashes << " ray not satisfied!\n"
            << "ray: " << ray
            << "\nconstraint: " << constraint
            << "\n ray * constraint = " << ip << endl;
        log(oss.str(), 1);
        return false;
    return true;
```

 \}

4.7.13 bool ray_satisfied(Matrix,Vector)

Test $A \mathbf{v} \leq \mathbf{0}$

```
bool ray_satisfied(const Matrix &constraints,
    const Vector &ray) {
    return all_of(constraints.begin(), constraints.end(),
        [&](const Vector &cv) {
        return ray_satisfied(cv, ray); });
}
```


4.7.14 bool rays_satisfied(Matrix,Matrix)

Test $A V \leq \mathbf{0}$

```
bool rays_satisfied(const Matrix &constraints,
    const Matrix &rays) {
    return all_of(rays.begin(), rays.end(),
    [&](const Vector &ray) {
        return ray_satisfied(constraints, ray); });
}
```


4.7.15 bool vec_satisfied(Vector, Vector)

Test $\left\langle A_{i}, \mathbf{v}\right\rangle \leq b_{i}$

```
bool vec_satisfied(const Vector &constraint,
                    const Vector &vec) {
    size_t cback_i = constraint.size()-1;
    if (cback_i != vec.size()) {
        throw runtime_error{"bad vec vs constraint"};
    }
    double ip = vec * constraint;
    double c_val = constraint[cback_i];
    if (!(approximately_lt_zero(ip - c_val))) {
        ostringstream oss;
        oss << dashes << " vec not satisfied!\n"
            << "vec: " << vec
            << "\nconstraint: " << constraint
            << "\n vec * constraint = " << ip << endl;
```

```
    log(oss.str(), 1);
    return false;
    }
    return true;
}
```


4.7.16 bool vec_satisfied(Matrix, Vector)

Test $A \mathbf{v} \leq \mathbf{b}$

```
bool vec_satisfied(const Matrix &constraints,
    const Vector &vec) {
    return all_of(constraints.begin(), constraints.end(),
        [&](const Vector &cv) {
        return vec_satisfied(cv, vec); });
}
```

4.7.17 bool vecs_satisfied(Matrix, Matrix)

Test $A V \leq \mathbf{b}$

```
bool vecs_satisfied(const Matrix &constraints,
    const Matrix &vecs) {
    return all_of(vecs.begin(), vecs.end(),
        [&](const Vector &vec) {
            return vec_satisfied(constraints, vec); });
}
```


4.7.18 bool equivalent_cone_rep(Matrix, Matrix, Matrix)

Given an H-Cone $C=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}=\operatorname{cone}(U)$ where U is minimal, and a Matrix U^{\prime}, determines if $C=$ cone $\left(U^{\prime}\right)$. Similarly, given a V-Cone $C=\operatorname{cone}(U)=$ $\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{0}\}$ where A is minimal, and a Matrix A^{\prime}, determines if $C=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{0}\right\}$.

```
bool equivalent_cone_rep(const Matrix &cone,
            const Matrix &key,
            const Matrix &alt_rep) {
    return rays_satisfied (cone, alt_rep) &&
    subset_mod_eq (key, alt_rep);
}
```


4.7.19 bool equivalent_hpoly_rep(Matrix, VPoly, VPoly)

Given an H-Polytope $P=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}=\operatorname{cone}(U)+\operatorname{conv}(V)$ where U and V are minimal, and a pair $\left(U^{\prime}, V^{\prime}\right)$, determines if $P=\operatorname{cone}\left(U^{\prime}\right)+\operatorname{conv}\left(V^{\prime}\right)$.

```
bool equivalent_hpoly_rep(const Matrix &hpoly,
                                    const VPoly &key,
                                    const VPoly &vpoly) {
    return rays_satisfied (hpoly, vpoly.U) &&
    vecs_satisfied (hpoly, vpoly.V) &&
```

```
subset_mod_eq (key.U, vpoly.U) &&
    subset (key.V, vpoly.V);
}
```


4.7.20 bool equivalent_vpoly_rep(VPoly, Matrix, Matrix)

Given a V-Polytope $P=\operatorname{cone}(U)+\operatorname{conv}(V)=\{\mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}\}$ where A is minimal, and a Matrix $\left(A^{\prime}, \mathbf{b}^{\prime}\right)$, determines if $P=\left\{\mathbf{x} \mid A^{\prime} \mathbf{x} \leq \mathbf{b}^{\prime}\right\}$.

```
bool equivalent_vpoly_rep(const VPoly &vpoly,
                        const Matrix &key,
                        const Matrix &hpoly) {
    return rays_satisfied (hpoly, vpoly.U) &&
        vecs_satisfied (hpoly, vpoly.V) &&
    subset_mod_eq (key, hpoly);
}
```


Conclusion

In this thesis we have proven the Minkowski-Weyl Theorem. The proof is constructive in nature, showing how to create the sets promised by the theorem, and a basic implementation is given. While the proof is hardly elegant, it does show that the intuitive result of the theorem is true by brute force methods and does not require any advanced results. Indeed, the proof is from first principles, using the language of linear algebra.

The more interesting (and, perhaps, informative) part of the paper deals with creating a testing framework for the program. This presented an opportunity to discuss pointed and full-dimensional polyhedra, and their relation to minimal and essential representations of polyhedra. The characteristic and dual cones were defined with some useful properties proven, invoking the Farkas Lemma in a few different forms. As of now, the testing framework is open for extension, to include polyhedra for which minimal representations are not essentially unique.

It may be worth mentioning an anachronism presented in the text. The chapter on testing starts off by describing some sets that are chalked up to "wishful thinking," then minimality is introduced and the useful properties are derived. In earnest, the actual progression from wishful thinking to effective testing was a bit different. Initially, the requirements for testing were received. Then, the first idea was to create some cones, and check if one representation was a subset of another (modulo scaling, i.e. equivalence). This is the simplest, most immediate (and perhaps natural) answer to the challenge for testing. After this method was decided upon, the question then arose: "what properties of the sets representing the polyhedra are necessary to ensure the tests will work?" Then the properties were determined. It was only afterwards that it became clear that these properties were actually pointedness and full-dimensionality, at which point the presentation was altered to emphasize this. Without this alteration, the presentation would be akin to: "these seemingly arbitrary properties allow us to test the polyhedra in this manner," which is less pleasant to read than "these natural classes of polyhedra have useful properties which allow us to test our implementation on them."

It should also be mentioned that the algorithm here is not efficient. The intermediate representations of the polyhedra may be exponential in the size of the input and output. The "double description" method is a far better way to calculate the alternative representations desired, however the method is a bit more advanced and is better pursued after getting a decent grasp of the underlying problem.

The Farkas Lemma should have the last word, as it is a rather wonderful combinatorial compactification of much of the information of the MinkowskiWeyl Theorem. It's main contribution here was to show that minimal sets of H-Polyhedra do exist, and then allowed us to re-use some of the work we had done with V-Polyhedra to expedite the proofs of the testing methods.

Bibliography

[1] Ziegler, Gunter. Lectures on Polytopes. Springer-Verlag, New York, 1995. ISBN 0-387-94329-3.

