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Introduction
Known since antiquity, polyhedra are primordial mathematical objects. Two ways
of describing polyhedra are:

1. A finite intersection of half-spaces

2. The Minkowski-Sum of the convex-hull of a finite set of rays and a finite
set of points

The Minkowski-Weyl Theorem is a fundamental result in the theory of polyhedra;
it states that both means of representation are equivalent. The proof given here is
algorithmic in nature, using a technique known as Fourier-Motzkin elimination.
The correctness of the algorithm also proves a result known as The Farkas Lemma.

This thesis is broken up into four chapters. Chapter 1 states the defini-
tions necessary for Minkowski-Weyl Theorem, and states the theorem. Chapter 2
proves the theorem, by first considering the case that the polyhedron is a cone,
then shows how to reduce the case of general polyhedra to that of cones. Chap-
ter 3 shows a C++ implementation of the transformations described in Chapter 2.
Chapter 4 presents a method of testing the program for special cases of polyhe-
dra: the pointed and full-dimensional polyhedra. The Farkas Lemma is proven
and extensively used to show the validity of the testing methods.

The C++ implementation is available online at:
https://github.com/nathan-chappell/mwt/tree/master/cpp
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1. Minkowski-Weyl Theorem
We begin somewhat tersely, stating some basic definitions in order to state the
theorem. The only noteworthy part of this section is Proposition 1.1.7, which
will be used a number of times throughout the thesis.

1.1 Polyhedra
Definition 1.1.1 (Non-negative Linear Combination). Let U ∈ Rd×p, t ∈ Rp,
t ≥ 0, then ∑1≤j≤p tjU

j = Ut is called a non-negative linear combination of U .

Definition 1.1.2 (V-Cone). Let U ∈ Rd×p. The set of all non-negative linear
combinations of U is denoted cone(U). Such a set is called a V-Cone.

Figure 1.1: V-Cone: cone ([ 1
2 ], [ 2

1 ])

Definition 1.1.3 (Convex Combination). Let V ∈ Rd×n, and let λ ∈ Rn satisfy∑
1≤j≤n λj = 1, λ ≥ 0, then ∑

1≤j≤n λjV
j is called a convex combination of V.

The set of all convex combinations of V is denoted conv(V ).

Definition 1.1.4 (V-Polyhedron). Let V ∈ Rd×n, U ∈ Rd×p. Then the set

{x + y | x ∈ cone(U), y ∈ conv(V )}

is called a V-Polyhedron.

Note: Given two sets P and Q, the set P + Q = {p + q | p ∈ P, q ∈ Q} is
called the Minkowski Sum of P and Q. Therefore, we will write a V-Polyhedron
as cone(U) + conv(V ) for some U and V .

Definition 1.1.5 (H-Polyhedron). Let A ∈ Rm×d, b ∈ Rm. Then the set{
x ∈ Rd

⏐⏐⏐⏐ Ax ≤ b
}

is called an H-Polyhedron.
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Figure 1.2: V-Polyhedron: cone ([ 1
2 ]) + conv ([ 0

0 ], [ 2
1 ])

Figure 1.3: H-Polyhedron:
(

−2 1
1 −2
2 −1

)
( x

y ) ≤
( 0

0
3

)

Definition 1.1.6 (H-Cone). Let A ∈ Rm×d. Then the set{
x ∈ Rd

⏐⏐⏐⏐ Ax ≤ 0
}

is called an H-Cone.

Figure 1.4: H-Cone:
(

−2 1
1 −2

)
( x

y ) ≤ ( 0
0 )

A simple but useful property of cones is that they are closed under addition
and positive scaling.
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Proposition 1.1.7 (Closure Property of Cones). Let C be either an H-Cone or
a V-Cone, and for each i let xi ∈ C, and ci ≥ 0. Then:∑

i
cixi ∈ C

Proof. First we prove Proposition 1.1.7 for H-Cones, then for V-Cones. If, for
each i, Axi ≤ 0, then A(cixi) = ciAxi ≤ 0, and

A
(∑

i
cixi

)
=
∑

i
A(cixi) =

∑
i
ciAxi ≤

∑
i
0 ≤ 0

So, ∑i cixi ∈ C when C is an H-Cone. Next, suppose that C = cone(U), and for
each i, ∃ti ≥ 0 : xi = Uti. Then citi ≥ 0, and ∑i citi ≥ 0. Therefore∑

i
cixi =

∑
i
ciUti =

∑
i
U(citi) = U

(∑
i
citi

)
So, ∑i cixi ∈ C when C is a V-Cone.

This proposition will be used in the following way: if we wish to show that∑
i cixi is a member of some cone C, it suffices to show that, for each i, ci ≥ 0

and xi ∈ C.

Remark 1. Proposition 1.1.7 is a characteristic property of cones. In fact, it
could be used as an abstract definition of a cone, removed from geometric inter-
pretation, then cones in euclidean space could be examined as important special
classes.

1.2 Minkowski-Weyl Theorem
The following theorem is the basic result to be proved in this thesis, which states
that V-Polyhedra and H-Polyhedra are two different representations of the same
objects.

Theorem 1 (Minkowski-Weyl Theorem). Every V-Polyhedron is an H-Poly-
hedron, and every H-Polyhedron is a V-Polyhedron.

1.3 Notational Abuses
Throughout the paper, capital letters will be used to denote matrices. In some
cases, the dimensions of the matrix will not be specified: it is assumed that
they have dimensions necessary for the expressions in which they appear to make
sense (typically for block-matrix notation or matrix-multiplication). Rows will be
indicated by subscript (e.g. Bk is the k-th row of B), and columns by superscript
(Y j is the j-th column of Y ). Then, Aj

k is the element of A in the k-th row and
j-th column.

A special case of dimensional abuse will take place with vectors being row
or column vectors. For example, the expression y ∈ Rd+p, x ∈ Rd, w ∈ Rp,
y = (x, w) is technically not correct without indicating various transpositions.
However, it seems clear what is meant is that yT = (xT , wT ).

A very special matrix, the identity matrix, will be referred to as I, regardless
of dimension. This enhances clarity, although at times may not be perfectly
formal.
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2. Proof of the Minkowski-Weyl
Theorem
The proof proceeds by first showing that V-Cones are representable as H-Cones,
and H-Cones are representable as V-Cones. Then it is shown that the case of
polyhedra can be reduced to cones.

2.1 Every V-Cone is an H-Cone
Theorem 2. Every V-Cone is an H-Cone.

To be clear, what we shall now show is that, given a set of the form: cone(U),
there is an A such that cone(U) = {x | Ax ≤ 0}. The first step in this con-
struction is to rewrite cone(U) as Π ({x | A′x ≤ 0}), where Π is a coordinate
projection. We then show how to calculate these projections, and that the result
is a set of the form {x | Ax ≤ 0}.

Definition 2.1.1 (Coordinate Projection). Let I be the identity matrix. Then
the matrix I ′ formed by deleting some rows from I is called a coordinate-
projection.

Lemma 2.1.2 (Lifting a V-Cone). Every V-Cone is a coordinate-projection of
an H-Cone.

Lemma 2.1.3 (Projecting an H-Cone). Every coordinate-projection of an H-
Cone is an H-Cone.

First, we quickly use the two lemmas to conclude Theorem 2. The rest of the
section will be the proof of the two lemmas.

Proof of Theorem 2. Given Lemma 2.1.2 and Lemma 2.1.3, the proof follows
simply. Given a V-Cone, we use Lemma 2.1.2 to get a description involving
coordinate-projection of an H-Cone. Then we can apply Lemma 2.1.3 in order to
get an H-Cone.

Proof of Lemma 2.1.2. We prove that every V-Cone is a coordinate projection of
an H-Cone, by giving an explicit formula. Let U ∈ Rd×p, and observe that

cone(U) = {Ut | t ∈ Rp, t ≥ 0} =
{
x ∈ Rd | (∃t ∈ Rp) x = Ut, t ≥ 0

}
The plan is to express the equality of Ut and x as two inequalities, and combine
them in a block-matrix along with the non-negativity of t, then project away the
coordinates corresponding to t. The following expression takes one step:

t ≥ 0 ⇔ −It ≤ 0 (2.1)

Using the equality: a = 0 ⇔ a ≤ 0 ∧ −a ≤ 0, and block matrix notation, we take
the second step.

x = Ut ⇔ x − Ut = 0 ⇔
(

I −U
−I U

)(
x
t

)
≤ 0 (2.2)

Comparing (2.1) and (2.2), we define a matrix transform:

7



Transform 1 (V-Cone Lift).

TV(U) =

⎛⎜⎝ 0 −I
I −U

−I U

⎞⎟⎠
So we can rewrite cone(U):

cone(U) =
{

x ∈ Rd

⏐⏐⏐⏐ TV(U)
(

x
t

)
≤ 0

}

Let Π be the identity matrix in R(d+p)×(d+p), but with the last p-rows deleted.
Then Π is a coordinate projection, and the above expression can be written:

cone(U) = Π
({

y ∈ Rd+p | TV(U)y ≤ 0
})

(2.3)

This is a coordinate projection of an H-Cone, and Lemma 2.1.2 is shown.

To prove Lemma 2.1.3, we use two separate propositions.

Proposition 2.1.4 (Projecting Null Columns). Let B ∈ Rm×(d+p), with the last
p columns all 0. Let B′ be B with the last p columns deleted, and Π the identity
matrix in Rd+p with the last p rows deleted. Then

Π
({

y ∈ Rd+p | By ≤ 0
})

=
{
x ∈ Rd | B′x ≤ 0

}
Proof. Recall that By ≤ 0 means that (∀i) ⟨Bi, y⟩ ≤ 0. Because the last p
columns of B are 0, any row Bi of B can be written (B′

i, 0), with 0 ∈ Rp. We can
also rewrite y ∈ Rd+p as (x, w) with x ∈ Rd, w ∈ Rp, so that x = Π(y). Then

⟨Bi, y⟩ = ⟨(B′
i, 0), (x, w)⟩ = ⟨B′

i, x⟩ = ⟨B′
i, Π(y)⟩

It follows that

⟨Bi, y⟩ ≤ 0 ⇔ ⟨B′
i, Π(y)⟩ ≤ 0

Since Bi is an arbitrary row of B, the proposition is shown.

In order to use the above proposition, we need a matrix with columns which
are 0. The next proposition shows us how to obtain such a matrix from another,
while maintaining certain important properties.

Proposition 2.1.5 (Fourier Motzkin Elimination for H-Cones). Let
B ∈ Rm1×(d+p). Then there exists a matrix B′ ∈ Rm2×(d+p) with the following
properties:

1. Every row of B′ is a positive linear combination of rows of B.

2. m2 is finite.

3. The k-th column of B′ is 0.

4. (∃t)B(x + tek) ≤ 0 ⇔ B′x ≤ 0

8



Proof. Partition the rows of B as follows:

P = i | Bk
i > 0

N = j | Bk
j < 0

Z = l | Bk
l = 0

Then let B′ be a matrix with the following rows:

B′
l = Bl | l ∈ Z

B′
ij = Bk

i Bj − Bk
j Bi | i ∈ P, j ∈ N

1 and 2 are clear. 3 is satisfied for rows indexed by Z by definition That it holds
for the other rows, observe:⟨

B′
ij, ek

⟩
=
⟨
Bk

i Bj − Bk
j Bi, ek

⟩
= Bk

i Bk
j − Bk

j Bk
i = 0

The right direction of 4 is shown in the following calculations. Because Bk
l = 0:

⟨Bl, x + tek⟩ = ⟨Bl, x⟩ + tBk
l = ⟨Bl, x⟩ = ⟨B′

l, x⟩

So ⟨Bl, x + tek⟩ ≤ 0 ⇔ ⟨B′
l, x⟩ ≤ 0. It follows that 4 is satisfied for rows indexed

by Z, and we will turn to rows indexed by P and N . Because Bk
i Bk

j − Bk
j Bk

i = 0
we have:⟨

Bk
i Bj − Bk

j Bi, x + tek

⟩
=
⟨
Bk

i Bj − Bk
j Bi, x

⟩
Because Bk

i and −Bk
j are non-negative:

⟨Bi, x + tek⟩ ≤ 0, ⟨Bj, x + tek⟩ ≤ 0 ⇒
⟨
Bk

i Bj − Bk
j Bi, x + tek

⟩
≤ 0

Therefore
⟨
Bk

i Bj − Bk
j Bi, x

⟩
≤ 0, and the right implication is shown.

Now suppose that B′x ≤ 0. The task is to find a t so that B(x + tek) ≤ 0.
Observe

∀i ∈ P, ∀j ∈ N
⟨
Bk

i Bj − Bk
j Bi, x

⟩
≤ 0 ⇔

∀i ∈ P, ∀j ∈ N
⟨
Bk

i Bj, x
⟩

≤
⟨
Bk

j Bi, x
⟩

⇔

∀i ∈ P, ∀j ∈ N
⟨
Bi/Bk

i , x
⟩

≤
⟨
Bj/Bk

j , x
⟩

⇔

max
i∈P

⟨
Bi/Bk

i , x
⟩

≤ min
j∈N

⟨
Bj/Bk

j , x
⟩

Note that the third inequality changes directions because Bk
j < 0. Now we

choose t to lie in this last interval, and show that we can use it to satisfy all of
the constraints given by B. So, we have a t such that

max
i∈P

⟨
Bi/Bk

i , x
⟩

≤ t ≤ min
j∈N

⟨
Bj/Bk

j , x
⟩

In particular,

(∀j ∈ N) t ≤
⟨
Bj/Bk

j , x
⟩

⇒ ⟨Bj, x⟩ − Bk
j t ≤ 0

9



Again, the inequality changes directions because Bk
j < 0. Now consider a row Bj

from B:

⟨Bj, x − tek⟩ = ⟨Bj, x⟩ − Bk
j t ≤ 0

Similarly,

(∀i ∈ P )
⟨
Bi/Bk

i , x
⟩

≤ t ⇒ ⟨Bi, x⟩ − Bk
i t ≤ 0

Now consider a row Bi from B:

⟨Bi, x − tek⟩ = ⟨Bi, x⟩ − Bk
i t ≤ 0

So, we’ve demonstrated that x − tek satisfies all the constraints from B, and the
left implication is shown. So 4 holds.

Remark 2 (Fourier Motzkin Matrix). Proposition 2.1.5 highlights the properties
of the matrix B′. Upon close inspection, we can create a Matrix Y such that
B′ = Y B, and every element of Y is non-negative. Create the following set of
row vectors Y

el | l ∈ Z

Bk
i ej − Bk

j ei | i ∈ P, j ∈ N

Since the basis vectors simply select rows during matrix multiplication, it is clear
that

B′ = Y B

Proof of Lemma 2.1.3. Here we prove the case that the coordinate projection
is onto the first d of d + p coordinates. Let

{
y ∈ Rd+p : A′y ≤ 0

}
be the H-

Cone we need to project, and Π the coordinate-projection we need to apply (the
identity matrix with the last p rows deleted). For each 1 ≤ k ≤ p we can use
Proposition 2.1.5 in an incremental manner, starting with A′.

let B0 := A′

for 1 ≤ k ≤ p

let Bk := result of proposition 2 applied to Bk−1, ed+k

endfor
return Bp

Consider the resulting B. Property 2 holds throughout, so B is finite. After
each iteration, property 3 holds for d+k, so the (d+k)-th column is 0. Since each
iteration only results from non-negative combinations of the result of the previous
iteration (property 1 ), once a column is 0 it remains so. Therefore, at the end of
the process, the last p columns of B are all 0. Then, by Proposition 2.1.4, we can
apply Π to B by simply deleting the last p columns of B. Denote this resulting
matrix A. We still need to check that

Π
{
y ∈ Rd+p | A′y ≤ 0

}
=
{
x ∈ Rd | Ax ≤ 0

}
(2.4)
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This follows from the following:

A′y ≤ 0 ⇒ A(Π(y)) ≤ 0 (2.5)
Ax ≤ 0 ⇒ (∃t1) . . . (∃tp)A′(x + t1ed+1 + · · · + tped+p) ≤ 0 (2.6)

The key observation of this verification utilizes property 4 of Proposition 2.1.5:

(∃t)B(x + tek) ≤ 0 ⇔ B′x ≤ 0

In what follows, let x = ∑
1≤j≤d xjej. The above property is applied sequentially

to the sets Bk as follows:

(∃tp)(∃tp−1) . . . (∃t1) B0(x + t1ep + t2ep−1 + · · · + tped) ≤ 0 ⇔
(∃tp) . . . (∃t2) B1(x + t2ed+2 + · · · + tped+p) ≤ 0 ⇔

... ... ...
(∃tp) Bp−1(x + tped+p) ≤ 0 ⇔

Bpx ≤ 0

Because A′ = B0, and A is Bp with the last p columns deleted, (2.5) and (2.6)
hold, therefore (2.4) holds, and the proof of Lemma 2.1.3 is complete, and we’ve
shown that a coordinate projection of an H-Cone is again an H-Cone.

With Lemma 2.1.2 and Lemma 2.1.3 proven, we are now certain that every
V-Cone is also an H-Cone.

2.2 Every H-Cone is a V-Cone
Theorem 3. Every H-Cone is a V-Cone.

Now we suppose that we are given a set of the form {x | Ax ≤ 0}, and we
must show that there is some U such that cone(U) = {x | Ax ≤ 0}. In a manner
similar to the previous section, we will first write the set {x | Ax ≤ 0} as an
intersection of a set cone(U ′) with a number of hyperplanes, then give a process
to get rid of those intersections.

Definition 2.2.1 (Coordinate Hyperplane). A set of the form

{x ∈ Rm | ⟨x, ek⟩ = 0} = {x ∈ Rm | xk = 0}

is called a coordinate-hyperplane.

This is how coordinate hyperplanes will be used. We consider a V-Cone
intersected with some coordinate hyperplanes, and write it in the following way:

{
x ∈ Rd

⏐⏐⏐⏐ (∃t ≥ 0)
(

x
0

)
= U ′t

}
(2.7)

If we suppose that U ′ ⊂ Rd+m, and Π is the identity matrix with the last m rows
deleted, then this is just a convenient way of writing:

Π
(

cone(U ′) ∩ {xd+1 = 0} ∩ · · · ∩ {xd+m = 0}
)

(2.8)

The proof that every H-Cone is a V-Cone rests on the following three propostions:
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Lemma 2.2.2 (Lifting an H-Cone). Every H-Cone is a coordinate-projection of
a V-Cone intersected with some coordinate hyperplanes.

Lemma 2.2.3 (Intersecting a V-Cone). Every V-Cone intersected with a
coordinate-hyperplane is a V-Cone.

Lemma 2.2.4 (Projecting a V-Cone). Every coordinate-projection of a V-Cone
is a V-Cone.

We quickly dispatch Theorem 3 with these lemmas, then get to the real work
of proving the lemmas.

Proof of Theorem 3. Given Lemma 2.2.2, Lemma 2.2.3, and Lemma 2.2.4, the
proof follows simply. Given an H-Cone, we use Lemma 2.2.2 to get a description
involving the coordinate-projection of a V-Cone intersected with some coordinate-
hyperplanes. We apply Lemma 2.2.3 as many times as necessary to eliminate the
intersections, then we can apply Lemma 2.2.4 in order to get a V-Cone.

Proof of Lemma 2.2.2. Let A ∈ Rm×d, we now show that the H-Cone{
x ∈ Rd | Ax ≤ 0

}
can be written as the projection of a V-Cone intersected with some hyperplanes.
We use the following transform.
Transform 2 (H-Cone Lift).

TH(A) =
(

0 I −I
I A −A

)

In other words,

TH(A) =
{(

0
ei

)
,

(
ej

Aj

)
,

(
−ej

−Aj

)
, 1 ≤ j ≤ d, 1 ≤ i ≤ m

}

We then claim:
{
x ∈ Rd | Ax ≤ 0

}
=
{

x ∈ Rd

⏐⏐⏐⏐ (∃t ≥ 0)
(

x
0

)
= TH(A)t

}
(2.9)

First, considering (2.7) and (2.8), observe that this is a coordinate-projection of
a V-Cone intersected with some coordinate-hyperplanes. Next, we note that(

x
Ax

)
=

∑
1≤j≤d

xj

(
ej

Aj

)

We can write this as a sum with all positive coefficients if we split up the xj as
follows:

x+
j =

⎧⎨⎩xj xj ≥ 0
0 xj < 0

x−
j =

⎧⎨⎩0 xj ≥ 0
−xj xj < 0

12



Then we have(
x

Ax

)
=

∑
1≤j≤d

x+
j

(
ej

Aj

)
+

∑
1≤j≤d

x−
j

(
−ej

−Aj

)
(2.10)

where x+
j , x−

j ≥ 0. Also observe that

Ax ≤ 0 ⇔ (∃w ≥ 0) | Ax + w = 0

This can be written

Ax ≤ 0 ⇔ (∃w ≥ 0)
⏐⏐⏐⏐
(

x
Ax

)
+
(

0
w

)
=
(

x
0

)
(2.11)

(2.10) and (2.11) together show

Ax ≤ 0 ⇒ (∃t ≥ 0)
(

x
0

)
= TH(A)t

Conversely, suppose

(∃t ≥ 0)
(

x
0

)
= TH(A)t

We would like to show that Ax ≤ 0. Let x+
j , x−

j , wi take the values of t that are

coefficients of
(

ej

Aj

)
,
(

−ej

−Aj

)
, and

(
0
ei

)
respectively, and denote xj = x+

j − x−
j .

Then we have(
x
0

)
=

∑
1≤j≤d

x+
j

(
ej

Aj

)
+

∑
1≤j≤d

x−
j

(
−ej

−Aj

)
+

∑
1≤i≤n

wi

(
0
ei

)

=
∑

1≤j≤d

xj

(
ej

Aj

)
+

∑
1≤i≤n

wi

(
0
ei

)

=
(

x
Ax

)
+
(

0
w

)

where w ≥ 0. By (2.11) we have Ax ≤ 0. So (2.9) holds.

The proof of Lemma 2.2.3 relies upon the following proposition.

Proposition 2.2.5 (Fourier Motzkin Elimination for V-Cones). Let
Y ∈ R(d+m)×n1, 1 ≤ k ≤ d + m, and x satisfy xk = 0. Then there exists
a matrix Y ′ ∈ R(d+m)×n2 with the following properties:

1. Every column of Y ′ is a positive linear combination of columns of Y .

2. n2 is finite.

3. The k-th row of Y ′ is 0.

4. (∃t ≥ 0) x = Y t ⇔ (∃t′ ≥ 0) x = Y ′t′

13



Proof. We partition the columns of Y :

P = i | Y i
k > 0

N = j | Y j
k < 0

Z = l | Y l
k = 0

We then define Y ′:

Y ′ =
{
Y l | l ∈ Z

}
∪
{
Y i

k Y j − Y j
k Y i | i ∈ P, j ∈ N

}
1 and 2 are clear. 3 can be seen from:⟨

Y ′l, ek
⟩

= 0⟨
Y ′ij, ek

⟩
=
⟨
Y i

k Y j − Y j
k Y i, ek

⟩
= Y i

k Y j
k − Y j

k Y i
k = 0 (2.12)

The left direction of 4 follows from observing that a positive linear combina-
tion of positive linear combinations is again a positive linear combination. Before
moving on to the proof of the right direction of 4, we first note how we may write
our vectors.

Y t =
∑
l∈Z

tlY
l +

∑
i∈P

tiY
i +

∑
j∈N

tjY
j

Y ′t =
∑
l∈Z

tlY
l +

∑
i∈P
j∈N

tij(Y i
k Y j − Y j

k Y i)

Then, by Closure Property of Cones, to show that the proposition is true, we
need only show that, given some ti, tj ≥ 0 satisfying ∑i∈P tiY

i
k +∑

j∈N tjY
j

k = 0,
there exists tij ≥ 0 such that∑

i∈P

tiY
i +

∑
j∈N

tjY
j =

∑
i∈P
j∈N

tij(Y i
k Y j − Y j

k Y i) (2.13)

First note that if all ti = 0, tj = 0, then choosing tij = 0 satisfies (2.13). So
suppose that some ti ̸= 0, tj ̸= 0. Observe:

0 =
∑
i∈P

tiY
i

k +
∑
j∈N

tjY
j

k ⇒
∑
i∈P

tiY
i

k = −
∑
j∈N

tjY
j

k

Denote the value in this equality as σ, and note that σ > 0. Then

∑
i∈P

tiY
i =

−∑
j∈N tjY

j
k

σ

∑
i∈P

tiY
i =

∑
i∈P
j∈N

−titj

σ
Y j

k Y i

∑
j∈N

tjY
j =

∑
i∈P tiY

i
k

σ

∑
j∈N

tjY
j =

∑
i∈P
j∈N

titj

σ
Y i

k Y j

Combining these results, we have
∑
i∈P

tiY
i +

∑
j∈N

tjY
j =

∑
i∈P
j∈N

titj

σ
(Y i

k Y j − Y j
k Y i)
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Finally, we can conclude that, given t ≥ 0, if Y t has a 0 in the k-th coordinate,
then we can write it as Y ′t′ where t′ ≥ 0, and any non-negative linear combination
of vectors from Y ′ can be written as a non-negative linear combination of vectors
from Y , and will necessarily have the k-th coordinate be 0 by property 3. So
property 4 holds.

Proof of Lemma 2.2.3. In Proposition 2.2.5, the assumption that xk = 0 in
property 4 creates the set cone(Y ) ∩ {x | xk = 0}. This set, by property 4, is
cone(Y ′).

Proof of Lemma 2.2.4. We shall prove that the coordinate-projection of a V-Cone
is again a V-Cone. Let Π be the relevant projection, then we have:

Π {Ut | t ≥ 0} = {Π(Ut) | t ≥ 0} = {(ΠU)t | t ≥ 0}
The last equality follows from associativity of matrix multiplication. Therefore,

Π
(

cone(U)
)

= cone
(
ΠU

)

The final step, as in the previous section, is to show that the iterative process
of intersecting a V-Cone with coordinate hyperplanes iteratively yields V-Cones.
This is merely applying Proposition 2.2.5 multiple times, so the details are omit-
ted. Having shown that H-Cones are V-Cones, the proof of the Minkowski-Weyl
Theorem for cones is complete.

2.3 Reducing Polyhedra to Cones

2.3.1 H-Polyhedra → V-Polyhedra
The transformation of an H-Polyhedron goes as follows:

{x | Ax ≤ b} = Π
({

[−b|A]
(

x0
x

)
≤ 0

}
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
})

= Π
(

cone(U ′) ∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
})

= Π
(

cone
(

0 1
U V

)
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
})

= cone(U) + conv(V )
The first equality can be seen by inspection. The second equality is given by

Theorem 3. The fourth inequality isn’t hard to see – just note that for x0 to be
equal to 1 a convex combination of the vectors from ( 1

V ) must be taken. The
third equality requires some work.
Proposition 2.3.1 (V-Cone → V-Polyhedron). Given some U ′, precisely one of
the following two statements holds:

(∃U, V ) cone(U ′) ∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
}

= cone
(

0 1
U V

)
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
}

cone(U ′) ∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
}

is empty
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Proof. The second case may occur if there are no elements of U ′ with x0 > 0.
Otherwise, we partition U ′ into the sets:

P = i | U i
0 > 0

N = j | U j
0 < 0

Z = l | U l
0 = 0

And define two new sets:

Ū =
{
U l | l ∈ Z

}
∪
{
U i

0U
j − U j

0 U i | i ∈ P, j ∈ N
}

V̄ =
{
U i/U i

0 | i ∈ P
}

Let U and V be Ū and V̄ with the first row deleted, respectively (i.e. Ū = ( 0
U ),

and V̄ = ( 1
V ). Then I claim that

cone(U) ∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
}

= cone
(

0 1
U V

)
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
}

Clearly cone( 0 1
U V ) ⊆ cone(U), because the cone on the left is generated by ele-

ments of the one on the right. Suppose that z ∈ cone(U) ∩ {( x0
x ) | x0 = 1}, then

z can be written

z =
∑
l∈Z

tlU
l +

∑
i∈P

tiU
i +

∑
j∈N

tjU
j

It will be convenient to use shorter notation for these sums. Define the following:

σZ =
∑
l∈Z

tlU
l, σl =

∑
l∈Z

tlU
l
0 = 0

σP =
∑
i∈P

tiU
i, σi =

∑
i∈P

tiU
i
0

σN =
∑
j∈N

tjU
j, σj =

∑
j∈N

tjU
j
0

Then it holds that

⟨e0, z⟩ = σl + σi + σj = σi + σj = 1 ⇒ −σj/σi = 1 − 1/σi

σP = σP /σi + (1 − 1/σi)σP = σP /σi − (σj/σi)σP

Using the new notation, we can rewrite z:

z = σZ + σP + σN = σZ + σP

σi

− σj

σi

σP + σi

σi

σN = σZ + σP

σi

+ σiσN − σjσP

σi

And now it’s fairly clear that z ∈ cone( 0 1
U V ).

2.3.2 V-Polyhedra → H-Polyhedra
The generalization in this direction is considerably simpler:
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cone(U) + conv(V ) = Π
(

cone
(

0 1
U V

)
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
})

= Π
({

[−b|A]
(

x0
x

)
≤ 0

}
∩
{(

x0
x

) ⏐⏐⏐⏐ x0 = 1
})

= {x | Ax ≤ b}

The first equality follows from the discussion in the previous section. The
second equality is Theorem 2, written in a particularly ugly way to single out
the first column of the constraint matrix. The third equality follows again from
inspection.

2.4 Picture of the Proof
Here we show a diagram that represents the proof of the Minkowski-Weyl Theo-
rem.

{x | Ax ≤ b}
{(

x0
x

) ⏐⏐⏐⏐ [− b|A
] (x0

x

)
≤ 0

}

{x | Ax ≤ 0}

⎛⎜⎝ 0 −I
I −U

−I U

⎞⎟⎠x ≤ 0

cone(U) + conv(V ) cone
(

0 1
U V

)

cone(U)

cone
(

0 I −I
I A −A

)
lift
Π

lift
Π ◦ ⋂

(r
el

ab
el

)

(r
el

ab
el

)

lift Π ◦ ⋂

liftΠ

Figure 2.1: Diagram of the proof PH ↔ PV

Figure 2.1 shows the flow from an H-Polyhedron to a V-Polyhedron and back.
There are violet arrows for transformations back and forth from polyhedra to
cones, blue arrows to show the transformation between cones and intermediate
representations, and red arrows to show where Fourier Motzkin elimination is
applied to reduce these intermediate representations to standard cones. V-Cones
are lifted to H-Cones which need to be projected (Π), and H-Cones are lifted to
V-Cones which need to be intersected and projected (Π ◦ ⋂).
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3. C++ Implementation
The above transformations have been implemented in C++. Program main takes
one argument specifying the type of input object (V-Cone, V-Polyhedra, H-Cone,
or H-Polyhedra). It reads the description of the object from standard input, and
writes the result of the implied transformation to standard output (details below).
If no arguments are supplied, then a usage message is given. The usage message,
which also contains the input format for the objects, is:

usage: ./main input_type

The input object is read on stdin, and the result of the
transform to sent to stdout. input_type determines the type
of input and output:

arg: input: output:
-vc V-Cone H-Cone
-vp V-Polyhedron H-Polyhedron
-hc V-Cone H-Cone
-hp V-Polyhedron H-Polyhedron

input format is as follows:
hcone := dimension ws (vector ws)*
vcone := dimension ws (vector ws)*
hpoly := dimension+1 ws (vector ws constraint ws)*
vpoly := dimension ws (’U’ | ’V’) ws vpoly_vecs*

ws := whitespace, as would be read by "cin >> ws;"
dimension := a positive integer. For hpoly, add one to

the dimension of the space (this extra
dimension is for the constraint)

vector := (dimension) doubles separated by whitespace
constraint := a double (the value b_i in <A_i,x> <= b_i)
’V’ | ’U’ := the literal character ’U’ or ’V’
vpoly_vecs := ([’U’] ws vector) | ([’V’] ws vector)

VPOLY ONLY:

vpoly contains two matrices:
U - contains the rays of the vpolyhedron
V - contains the points of the vpolyhedron

On input, enter ’U’ or ’V’ to indicate which matrix should
receive the vectors that follow. You can switch back and
forth as you like, but either ’U’ or ’V’ must be entered
before starting to input vectors.
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EXAMPLES:

$ ./main -vc <<< "2 1 0"

OUTPUT:

2
-0 -1
0 1
0 0
-1 0

$ ./main -hc <<< "2 1 0 0 1"

OUTPUT:

2
-1 0
0 0
0 0
0 -1

$ ./main -vp <<< "2 U 1 0 V 0 0 1 1"

OUTPUT:

3
0 0 -0
0 0 -0
0 1 1
0 0 1
-1 1 -0
-1 0 -0
0 0 -0
0 -1 -0
$ ./main -hp <<< "3 0 -1 0 0 1 1 -1 1 0"

OUTPUT:

2
U
1 0
0 0
0 0
0 0
V
0 0
1 1
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The files pertaining to the implementation will be discussed in the following
sections, but here is a table showing the include dependencies followed by a short
summary of the files.

file includes
linear algebra.h <C++ standard library>
fourier motzkin.h linear algebra.h
polyhedra.h fourier motzkin.h
main.cpp polyhedra.h
test functions.h linear alebra.h
test.cpp test functions.h, polyhedra.h

Here is a very brief summary of the files mentioned in the above table, more
details are given in subsequent sections.

• linear algebra.h
Defines the types Vector and Matrix, which are the primary means of rep-
resenting polyhedra, and some basic functionality for them

• fourier motzkin.h
Implementation of Fourier Motzkin elimination, and the Minkowski-Weyl
Theorem for cones

• polyhedra.{cpp,h}
Transforms between cones and polyhedra, completing the Minkowski-Weyl
Theorem

• test functions.h
Types and functions for testing the algorithms (see Chapter 4).

• test.cpp
Test cases for the algorithms and functions from test functions.h

3.1 Code
The relevant code will be displayed with commentary below. Some of the code
relating to C++ specific technicalities and I/O is omitted.

3.2 linear algebra.h

3.2.1 typedef Vector

The types Vector and Vectors are used in the representation of polyhedra. The
std::valarray template is used because it has built-in vector-space operations
(sum and scaling). std::vector is used as a container of Vectors, however other
containers could be used.

10 using Vector = std :: valarray <double >;
11 using Vectors = std :: vector <Vector >;
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3.2.2 class Matrix

The class Matrix implements a subset of what a C++ Container should. It is
the primary type for representing polyhedra, and directly represents Cones, as
well as H-Polyhedra. The class is designed to enforce the following invariant:

(∀v ∈ vectors) v.size() == d

The factory function read_Matrix is provided to read a Matrix from an istream.
It is necessary because the value of d can’t be known before reading some of the
stream.

13 class Matrix {
14 // invariant : d >= 0
15 // invariant : ( forall valid i) vectors [i]. size () == d
16 public :
17 const size_t d; // size of all Vectors
18 private :
19 Vectors vectors ;
20 public :
21 // needed for back_insert_iterator
22 using value_type = Vector ;
23
24 Matrix ( size_t d);
25 Matrix (std :: initializer_list <Vector >&&);
26 bool check () const; // checks each Vector has size d
27
28 // defaults don ’t work because of const member
29 Matrix (const Matrix &);
30 Matrix ( Matrix &&);
31 Matrix & operator =( const Matrix &);
32 Matrix & operator =( Matrix &&);
33 Matrix & operator =( std :: initializer_list <Vector >&&);
34
35 static Matrix read_Matrix (std :: istream &);
36
37 Vectors :: iterator begin ();
38 Vectors :: iterator end ();
39 Vectors :: const_iterator begin () const;
40 Vectors :: const_iterator end () const;
41
42 bool empty () const;
43 size_t size () const;
44 Vector & back ();
45
46 Vector & add_Vector ();
47 void push_back (const Vector &v);
48 void push_back ( Vector &&v);
49 };
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3.2.3 struct VPoly

The struct VPoly gather two Matrices needed to represent a V-Polyhedron. The
Matrix U corresponds to the rays that generate the cone, and the Matrix V cor-
responds to the points, i.e.

vpoly = cone(vpoly.U) + conv(vpoly.V)

51 struct VPoly {
52 const size_t d;
53 Matrix U; // rays
54 Matrix V; // points
55
56 VPoly( size_t d) : d{d}, U{d}, V{d} {}
57 VPoly(std :: initializer_list <Vector >&&,
58 std :: initializer_list <Vector >&&);
59 bool check () const;
60
61 static VPoly read_VPoly (std :: istream &);
62 };

3.2.4 class input_error

The class input_error is thrown to indicate an invalid input to the program,
and provide some clue as to why it failed. Here are two command line examples:

$ ./main -vc <<< "0"
terminate called after throwing an instance of ’input_error’

what(): bad d: 0
Aborted (core dumped)
$ ./main -vc <<< "2 1"
error reading matrix, vector 1
terminate called after throwing an instance of ’input_error’

what(): failed to read vector: istream failed
Aborted (core dumped)

64 class input_error : public std :: runtime_error {
65 public :
66 input_error (const char*s);
67 input_error (const std :: string &s);
68 };

3.2.5 operator<<, operator>>

operator>> and operator<< implement the input format described in
usage.txt.

70 std :: istream & operator >>( std :: istream &, Vector &);
71 std :: istream & operator >>( std :: istream &, Matrix &);
72 std :: istream & operator >>( std :: istream &, VPoly &);
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74 std :: ostream & operator <<( std :: ostream & o, const Vector &);
75 std :: ostream & operator <<( std :: ostream & o, const Matrix &);
76 std :: ostream & operator <<( std :: ostream & o, const VPoly &);

3.2.6 usage()

usage() outputs the usage message shown above.
78 int usage ();

3.3 linear algebra.cpp

3.3.1 Vector e_k(size_t,size_t)

e_k creates the canonical basis Vector ek ∈ Rd.
232 Vector e_k( size_t d, size_t k) {
233 Vector result (d);
234 result [k] = 1;
235 return result ;
236 }

3.3.2 Vector concatenate(Vector,Vector)

concatentate takes the Vectors l ∈ Rl.size() and r ∈ Rr.size() and returns
the Vector (l,r) ∈ Rl.size() + r.size()

239 Vector concatenate (const Vector &l, const Vector &r) {
240 Vector result (l.size () + r.size ());
241 copy(begin(l), end(l), begin( result ));
242 copy(begin(r), end(r), next(begin( result ), l.size ()));
243 return result ;
244 }

3.3.3 Vector get_column(Matrix,size_t)

get_column returns the k-th column of the Matrix M. Note that while a Matrix
may logically represent either a collection of row or column Vectors, get_column
is only used in the function transpose, where this distinction is unimportant.

249 Vector get_column (const Matrix &M, size_t k) {
250 if (!(0 <= k && k < M.d)) {
251 throw std :: out_of_range ("k < 0 || M.d <= k");
252 }
253 Vector result (M.size ());
254 size_t result_row {0};
255 for (auto && row : M) {
256 result [ result_row ++] = row[k];
257 }
258 return result ;
259 }
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3.3.4 Matrix transpose(Matrix)

transpose returns the transpose of Matrix M.
262 Matrix transpose (const Matrix &M) {
263 if (M.empty ()) {
264 return M;
265 }
266 Matrix result {M.size ()};
267 // for every column of M,
268 for ( size_t k = 0; k < M.d; ++k) {
269 result . push_back ( get_column (M,k));
270 }
271 return result ;
272 }

3.3.5 Matrix slice_matrix(Matrix,slice)

A slice object can be used to conveniently obtain a subset of a valarray.
slice_matrix returns the Matrix obtained by applying the slice s to each Vector
of the Matrix.

275 Matrix slice_matrix (const Matrix &M, const std :: slice &s) {
276 Matrix result {s.size ()};
277 transform (M.begin (), M.end (), back_inserter ( result ),
278 [s]( const Vector &v) { return v[s]; });
279 return result ;
280 }

3.4 fourier motzkin.cpp

3.4.1 bool index_in_slice(size_t,slice)

A slice object is determined by three fields: start, size, and stride, and im-
plicitly represents all indices of the form:∑

0≤k<size
start + k · stride

Therefore:

i ∈ slice ⇔

⎧⎨⎩i − start ≡ 0 mod (stride)
start ≤ i ≤ start + stride · size

11 bool index_in_slice ( size_t index , const slice &s) {
12 return (( index - s.start ()) % s. stride () == 0) &&
13 s.start () <= index &&
14 index <= s.start () + s. stride ()*(s.size () -1);
15 }
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3.4.2 Matrix fourier_motzkin(Matrix,size_t)

fourier_motzkin takes a Matrix M and a coordinate k and creates the set which
either corresponds to a projection of an H-Cone (without reducing the dimen-
sionality), or the intersection of a V-Cone with a coordinate-hyperplane.

20 Matrix fourier_motzkin ( Matrix M, size_t k) {
21 Matrix result {M.d};
22 // Partition into Z,P,N
23 const auto z_end = partition (M.begin (), M.end (),
24 [k]( const Vector &v) { return v[k] == 0; });
25 const auto p_end = partition (z_end , M.end (),
26 [k]( const Vector &v) { return v[k] > 0; });
27 // Move Z to result
28 move(M.begin (), z_end , back_inserter ( result ));
29 // convolute vectors from P,N
30 for (auto p_it = z_end; p_it != p_end; ++ p_it) {
31 for (auto n_it = p_end; n_it != M.end (); ++ n_it) {
32 result . push_back (
33 (* p_it )[k]*(* n_it) - (* n_it )[k]*(* p_it ));
34 }
35 }
36 return result ;
37 }

The lines:
23 const auto z_end = partition (M.begin (), M.end (),
24 [k]( const Vector &v) { return v[k] == 0; });
25 const auto p_end = partition (z_end , M.end (),
26 [k]( const Vector &v) { return v[k] > 0; });

Partition M into logical sets Z, P, N that satisfy the following:

set range property
Z [M.begin(), z_end ) it ∈ Z ⇔ (*it)[k] = 0
P [z_end, p_end ) it ∈ P ⇔ (*it)[k] > 0
N [p_end, M.end()) it ∈ N ⇔ (*it)[k] < 0

The line:
28 move(M.begin (), z_end , back_inserter ( result ));

Moves Z into the result. The lines:
30 for (auto p_it = z_end; p_it != p_end; ++ p_it) {
31 for (auto n_it = p_end; n_it != M.end (); ++ n_it) {
32 result . push_back (
33 (* p_it )[k]*(* n_it) - (* n_it )[k]*(* p_it ));
34 }
35 }

convolute the vectors in the way described in ‘Fourier Motzkin Elimination for
H-Cones’ on page 8 and ‘Fourier Motzkin Elimination for V-Cones’ on page 13
(concerning projecting an H-Cone and intersecting a V-Cone with a coordinate-
hyperplane), and push them into the result Matrix. In particular, it creates the
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sets which correspond to{
Bk

i Bj − Bk
j Bi | i ∈ P, j ∈ N

}
,

{
Y i

k Y j − Y j
k Y i | i ∈ P, j ∈ N

}
3.4.3 Matrix sliced_fourier_motzkin(Matrix,slice)

sliced_fourier_motzkin applies fourier_motzkin to Matrix M for each k ̸∈ s,
then slices the resulting Matrix using slice_matrix and s. This is the realization
of the algorithms indicated by the proofs of either direction of the Minkowski-Weyl
Theorem for cones. (Here, the slice operation is used to reduce the dimensionality
as appropriate).

40 Matrix sliced_fourier_motzkin ( Matrix M, const slice &s) {
41 for ( size_t k = 0; k < M.d; ++k) {
42 if (! index_in_slice (k,s)) {
43 M = fourier_motzkin (M, k);
44 }
45 }
46 return slice_matrix (M, s);
47 }

3.4.4 Matrix generalized_lift(Matrix,array<double,5>)

When transforming an H-Cone to a V-Cone, it first must be written as a V-Cone
of a new matrix, then it is intersected with coordinate-hyperplanes and projected.
Similarly, when a V-Cone is transformed into an H-Cone, it must be written as
and H-Cone of a new matrix then projected with coordinate-projections. The
transformations are described in V-Cone Lift and H-Cone Lift, and summarized
here:

TH(A) =
(

0 I −I
I A −A

)
TV(U) =

⎛⎜⎝ 0 −I
I −U

−I U

⎞⎟⎠
Note that the tranformation of U can be written:

TV(U) =
(

0 I −I
−I −U U

)T

Remembering that a Matrix is either a collection of row or column Vectors,
it is not surprising that these two transformations can be written as one function
whose parameters are a Matrix and some coefficients. In generalized_lift, the
coefficients are given as an array<double, 5> C, so the overall transformation can
be illustrated as:

Matrix M →

⎛⎜⎝ 0 C[0]I
C[1]I C[2]M
C[3]I C[4]M

⎞⎟⎠
where Matrix M is a collection of row Vectors, or

Matrix M →
(

0 C[1]I C[3]I
C[0]I C[2]M C[4]M

)
where Matrix M is a collection of column Vectors.
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64 Matrix generalized_lift (const Matrix &cone ,
65 const array <double ,5> &C) {
66 const size_t d = cone.d;
67 const size_t n = cone.size ();
68 Matrix result {d+n};
69 Matrix cone_t = transpose (cone );
70 // |0 C[0]*I| |0 |
71 // |C[0]*I|
72 for ( size_t i = 0; i < n; ++i) {
73 result . add_Vector ()[d+i] = C[0];
74 }
75 size_t k = 0;
76 // |C[1]*I C[2]*U| |C[1]*I|
77 // |C[2]*A|
78 for (auto && row_t : cone_t ) {
79 result . push_back (
80 concatenate (C[1]* e_k(d,k++), C[2]* row_t ));
81 }
82 k = 0;
83 // |C[3]*I C[4]*U| |C[3]*I|
84 // |C[4]*A|
85 for (auto && row_t : cone_t ) {
86 result . push_back (
87 concatenate (C[3]* e_k(d,k++), C[4]* row_t ));
88 }
89 return result ;
90 }

3.4.5 Matrix lift_{vcone,hcone}(Matrix)

lift_vcone and lift_hcone implement the appropriate transformation using generalized_lift
and providing the appropriate coefficients in
array<double, 5> C.

98 Matrix lift_vcone (const Matrix &vcone) {
99 return generalized_lift (vcone , {-1,1,-1,-1,1});

100 }

107 Matrix lift_hcone (const Matrix &hcone) {
108 return generalized_lift (hcone , {1 ,1 ,1 , -1 , -1});
109 }

3.4.6 Matrix cone_transform(Matrix,LiftSelector)

cone_transform consolidates the logic of the V-Cone → H-Cone and H-Cone →
V-Cone transformations by accepting a Matrix cone and a LiftSelector. The
LiftSelector type is an enumerable class, used to avoid the need for function
pointers.

112 Matrix cone_transform (const Matrix &cone ,
113 LiftSelector lift) {
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114 if (cone.empty ()) {
115 throw logic_error {"empty cone for transform "};
116 }
117 switch (lift) {
118 case LiftSelector :: lift_vcone : {
119 return sliced_fourier_motzkin (
120 lift_vcone (cone), slice (0, cone.d, 1));
121 } break;
122 case LiftSelector :: lift_hcone : {
123 return sliced_fourier_motzkin (
124 lift_hcone (cone), slice (0, cone.d, 1));
125 } break;
126 default : {
127 throw std :: logic_error {" invalid LiftSelector "};
128 }
129 }
130 }

3.4.7 Matrix {hcone_to_vcone,vcone_to_hcone}(Matrix)

vcone_to_hcone and hcone_to_vcone specialize cone_transform by providing the
appropriate Lift.

132 Matrix vcone_to_hcone ( Matrix vcone) {
133 return cone_transform (vcone , LiftSelector :: lift_vcone );
134 }

136 Matrix hcone_to_vcone ( Matrix hcone) {
137 return cone_transform (hcone , LiftSelector :: lift_hcone );
138 }

3.5 polyhedra.cpp

3.5.1 Matrix {hpoly_to_hcone,hcone_to_hpoly}(Matrix)

hpoly_to_hcone and hcone_to_hpoly implement the Matrix transforms:

hpoly_to_hcone : (A|b) → (−b|A), hcone_to_hpoly : (−b|A) → (A|b)

These very simple transforms are done with the cshift function, which “circularly
shifts” the elements of a Vector (provided as part of the interface to valarray).

13 Matrix hpoly_to_hcone ( Matrix hpoly) {
14 transform (hpoly.begin (), hpoly.end (), hpoly.begin (),
15 []( Vector v) {
16 v[v.size () -1] *= -1;
17 return v. cshift ( -1);
18 });
19 return hpoly;
20 }
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24 Matrix hcone_to_hpoly ( Matrix hcone) {
25 transform (hcone.begin (), hcone.end (), hcone.begin (),
26 []( Vector v) {
27 v[0] *= -1;
28 return v. cshift (1);
29 });
30 return hcone;
31 }

3.5.2 Matrix vpoly_to_vcone(Matrix)

vpoly_to_vcone implements the VPoly transform:

vpoly →
(

0 1
vpoly.U vpoly.V

)

36 Matrix vpoly_to_vcone (VPoly vpoly) {
37 // requires increase in dimension
38 Matrix result {vpoly.d+1};
39 for (auto &&u : vpoly.U) {
40 result . push_back ( concatenate ({0} ,u));
41 }
42 for (auto &&v : vpoly.V) {
43 result . push_back ( concatenate ({1} ,v));
44 }
45 return result ;
46 }

3.5.3 Matrix normalized_P(Matrix)

normalized_P takes the members of U that have x0 > 0, scaled by 1/x0. Let Π be
the identity matrix with the 0-th row deleted, and P = {u ∈ U : u0 > 0}. then
this is the result of:

Π ({x/x0 : x ∈ P} ∩ {x0 = 1})

50 Matrix normalized_P (const Matrix &U) {
51 if (U.d <= 1) {
52 throw std :: logic_error {"can ’t normalize U!"};
53 }
54 Matrix result {U.d -1};
55 std :: slice s{1, result .d ,1};
56 for (auto &&v : U) {
57 // select the vectors with positive 0-th coordinate
58 if (v[0] <= 0) { continue ; }
59 // normalize the selected vectors ,
60 result . push_back (v[0] == 1 ? v[s] : (v / v[0])[s]);
61 }
62 return result ;
63 }
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3.5.4 Matrix vcone_to_vpoly(Matrix)

vcone_to_vpoly implements V-Cone → V-Polyhedron.
67 VPoly vcone_to_vpoly ( Matrix vcone) {
68 VPoly result {vcone.d -1};
69 result .U = sliced_fourier_motzkin (
70 vcone , slice (1, vcone.d -1 ,1));
71 result .V = normalized_P (vcone );
72 return result ;
73 }

3.5.5 Matrix {hpoly_to_vpoly,vpoly_to_hpoly}(Matrix)

hpoly_to_vpoly and vpoly_to_hpoly implement the complete transformations
promised by the file.

77 VPoly hpoly_to_vpoly ( Matrix hpoly) {
78 return vcone_to_vpoly (
79 hcone_to_vcone (
80 hpoly_to_hcone (move(hpoly ))));
81 }

83 Matrix vpoly_to_hpoly (VPoly vpoly) {
84 return hcone_to_hpoly (
85 vcone_to_hcone (
86 vpoly_to_vcone (move(vpoly ))));
87 }

3.6 Picture of the Program
In the following diagram, the nodes represent functions, and the edges can be
read as “calls.” Such a diagram is known as a “callgraph,” and is only intended
to give an overview of the program.

For such a small callgraph, observation is enough to get some insight into the
program. In particular, the nodes with the highest degrees (5) are:
fourier motzkin, cone transform, and generalized lift. Each have two in-
coming edges, reflecting the “H” vs “V” aspects of the program. It makes sense
that these would be the functions getting higher degree in the program, as these
are (roughly speaking) the most important parts of the proof of the theorem.
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4. Testing
In the next sections, the methods used for testing the program described above
will be discussed. It will be convenient to assume that sets representing row
vectors and cone-generators do not contain 0. This results in no loss of generality,
only the annoyance of constantly assuming some triviality does not occur.

Notation: Let AU ≤ b be shorthand for (∀u ∈ U)Au ≤ b.

4.1 Testing H-Cone → V-Cone
Suppose we have an H-Cone CA = {x | Ax ≤ 0}, and would like to test if a
V-Cone CV ′ = cone(V ′) represents the same set. It’s easy to check that

AV ′ ≤ 0 ⇒ CV ′ ⊆ CA

It’s not clear what to do to check if CA ⊆ CV ′ . Suppose we had a set V , and we
knew that CA = cone(V ), and that CA = CV ′ ⇒ V ⊆ V ′. Then we’d have the
following situation:

AV ′ ≤ 0 ⇒ CV ′ ⊆ CA

V ⊆ V ′ ⇒ CA ⊆ CV ′

CV ′ = CA ⇒ V ⊆ V ′

CV ′ = CA ⇒ AV ′ ≤ 0

That is, we’d have necessary and sufficient conditions to test cone-equality
(not to mention an obvious way to implement tests for these conditions). How-
ever, as of right now, this test is just wishful thinking.

The problem is to come up with such a set V , and to determine when such a
set may or may not exist for a given cone. We will need to relax the requirements
on V a little bit, but not in a way that reduces its utility. First, we consider a
minimal set generating a cone.

Definition 4.1.1 (Minimal Set). A set V is called minimal for cone(V ) if

(∀v ∈ V ) cone(V \ {v}) ⊂ cone(V )

Proposition 4.1.2. If a set V is not minimal for cone(V ) then

∃v ∈ V, t ≥ 0, v = V ei, t ̸= ei : v = V t

That is, there is a member of V which is a non-trivial non-negative linear com-
bination of elements of V.

Proof. Say cone(V \ {v}) = cone(V ) where v = V ei. Then ∃t ≥ 0 such that
v = (V \ {v})t. Let t′ be t with a 0 in the position corresponding to v in V .
Then v = V t.
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Is the converse true? That is, is it true that, if V is minimal, then

t ≥ 0, v = V ei, [v = V t ⇒ t = ei] (4.1)

Not quite. There is one catch, if there is some

t ≥ 0, t ̸= 0, V t = 0 (4.2)

then (4.1) fails. Are there cones for which (4.2) fails? It turns out that there is
a useful class of cones called pointed having this property.

Definition 4.1.3 (Vertex). Let P be a polyhedron. A point v ∈ P is called a
vertex if, for any u ̸= 0, at least one of the following is true:

v + u ̸∈ P

v − u ̸∈ P

Definition 4.1.4 (Pointed Cones). A cone is called pointed if it has a vertex.

Figure 4.1: V-Cone, not pointed: cone ([ 1
2 ], [ 2

1 ], [ 0
2 ], [ 2

0 ])

Proposition 4.1.5. The following statements are equivalent.

1. cone(V ) is pointed.

2. t ≥ 0, [V t = 0 ⇒ t = 0]

Proof. First, observe that, due to Closure Property of Cones, if a cone has a
vertex, then it is the origin. To see this, take any other point in the cone, and
scale it by 1 ± ϵ for some appropriately small value ϵ.

Suppose that the origin is a vertex, but that (2) fails. Since 0 ̸∈ V , t has at
least two non-zero elements, let one be ti. Then 0 = V (tiei) + V (t − tiei). Let
u = V tiei. Clearly u ̸= 0, but also −u = V (t − tiei) ∈ C, so that u, −u ∈ C.
Then the origin is not a vertex, a contradiction.

Next, suppose that 0 is not a vertex, then ∃t1, t2 ≥ 0, t1,2 ̸= 0, u = V t1,
−u = V t2. Then t1 + t2 ≥ 0, t1 + t2 ̸= 0, and V (t1 + t2) = 0.
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Now we can consider the converse of Proposition 4.1.2.

Proposition 4.1.6 (Minimal V-Cone Generators). Suppose that cone(V ) is
pointed. Then the following two statements are equivalent:

1. V is minimal

2. t ≥ 0, v = V ei, [v = V t ⇒ t = ei]

Proof. (¬1 ⇒ ¬2) is Proposition 4.1.2. So suppose that t ≥ 0, v = V ei, and
v = V t. If 0 ≤ ti < 1, then v = V (t − tiei)/(1 − ti), and v ∈ cone(V \ {v}),
which would mean that V is not minimal. Suppose that ti ≥ 1. Then t − ei ≥ 0,
and 0 = V (t − ei). Because V is pointed, by Proposition 4.1.5 0 = t − ei, so
t = ei.

Proposition 4.1.6 gives us a way to characterize the minimal sets generating
pointed V-Cones. Clearly, there is not a unique minimal set generating any V-
Cone, since any positive scaling of any of the vectors generating the cone results
in the same cone. However, as one is wont to do upon encountering such trifles,
we can relax the requirement of unicity to equivalence, in the following way.

Definition 4.1.7 (vector equivalence). Let u, v ∈ Rd, non-zero, and suppose
that u/ ||u|| = v/ ||v||. Then say that u, v are equivalent, and write u ≃ v. If
for every u ∈ U there is a v ∈ V such that u ≃ v, write U ⊑ V . Write U ≃ V if
U ⊑ V and V ⊑ U .

Proposition 4.1.8. The following two statements are equivalent:

1. v ≃ u

2. (∃t > 0) v = tu

Proof. (1 ⇒ 2). Let t = ||v|| / ||u||. Then t > 0, and v = tu.
(2 ⇒ 1). v/ ||v|| = tu/ ||tu|| = u/ ||u||

We now show that the minimal sets generating pointed V-Cones are essentially
unique.

Proposition 4.1.9 (Minimal Generators of a Pointed Cone). Suppose that V is
minimal, and cone(V ) = cone(V ′) is pointed. Then V ⊑ V ′. It follows that if V ′

is also minimal, then V ≃ V ′.

We’ll use this short lemma in the proof of the above proposition.

Lemma 4.1.10. Suppose A is a non-negative matrix, b ≥ 0, and Ab = ei. Then
there exists an l, t > 0 such that A(tel) = ei

Proof. Since A and b are non-negative, the following holds:

(∀j, k ̸= i) bj > 0 ⇒ Aj
k = 0 (4.3)

Since Ab = ei, there is some bl > 0, and Al
k > 0. (4.3) shows that the entire

column is zero except for the entry in row i, so A(el/Al
k) = ei.
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Proof of Proposition 4.1.9. Let v ∈ V , v = V ei. If we can show that there is
some v′ ∈ V ′ such that v ≃ v′, then we’re done. Since cone(V ) = cone(V ′),
there is a non-negative matrix A such that V ′ = V A. Furthermore, there is a
non-negative vector b such that v = V ′b. Then v = V ′b = (V A)b = V (Ab).
By Proposition 4.1.6, Ab = ei. By Lemma 4.1.10, there is a t > 0, l such
that Ab = A(tel). Then v = V A(tel) = tV ′el = tv′ where v′ ∈ V ′. By
Proposition 4.1.8, v ≃ v′.

So now we know that pointed cones have essentially unique generating sets.
We now turn to the question of using this knowledge to create a test for the
program. We suppose that we have a minimal generating set V for some pointed
V-Cone C, and have created a matrix A so that C = {x | Ax ≤ 0} = cone(V ).
We run the program and get a set V ′, and let C ′ = cone(V ′). We must check that
C ′ = C. The situation is summarized here below, and formalized in the following
Equivalence Criteria.

AV ′ ≤ 0 ⇒ C ′ ⊆ C

V ⊑ V ′ ⇒ C ⊆ C ′

C ′ = C ⇒ V ⊑ V ′

C ′ = C ⇒ AV ′ ≤ 0

Equivalence Criteria 1 (H-Cone → V-Cone). Say V is a minimal generating
set for the pointed V-Cone C, and suppose C = {x | Ax ≤ 0} = cone(V ). Then

C = cone(V ′) ⇔ AV ′ ≤ 0, V ⊑ V ′

Test 1 (H-Cone → V-Cone). We now have a method for testing the program.
First, we hand-craft an H-Cone {x | Ax ≤ 0} based on minimal set V for some
pointed V-Cone. We then run our program to get a set V ′, with the alleged
property that cone(V ′) = {x | Ax ≤ 0}. If we confirm Equivalence Criteria 1,
then our program has succeeded.

Remark 3. Can we test the program for non-pointed cones? Yes, but it is
slightly more complicated. Instead of prior knowledge of a minimal generating
set for the cone, we also need to know what the largest linear subspace L contained
in the cone. If we project away this linear subspace, then we will have a pointed
cone. Given another set V ′, we may project away this subspace from V ′ using
a projection matrix, and use Test 1. Then we need to see if cone(V ′) spans L.
This can be done with a modified fourier-motzkin elimination, but unfortunately
we are trying to test the implementation of fourier-motzkin elimination.

It may still be worthwhile to do such tests, but it should be noted that a test
isn’t designed to prove a program correct, only prove it incorrect. If we analyze
the program well and test the fourier-motzkin elimination extensively, then the
added complexity of the more general testing may not be worth it. As of now
this is left as a possible future extension of the program.
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Remark 4. While not important for testing the program, one may ask if pointed
V-Cones are the only cones with essentially unique generating sets. The answer
is no, for any line has an essentially unique generating set, but is not pointed.
However, this is the only exception. It isn’t hard to see that, given a non-pointed
cone, if it occupies more than one-dimension, then it must at least occupy a half-
plane, and a half-plane has uncountably many non-equivalent generators. So,
technically, the Test 1 would work for one-dimensional non-pointed cones (lines).

4.2 Testing V-Cone → H-Cone
In this section we create a method in the vein of Test 1, but for testing the
program transforming V-Cones to H-Cones. This section is almost identical to
the previous, with the exception of requiring the Farkas Lemma.

Definition 4.2.1 (Minimal Set of Constraints). A set A is called minimal for
{x | Ax ≤ 0} if

(∀Ai ∈ A) {x | A \ {Ai} x ≤ 0} ⊃ {x | Ax ≤ 0}

Proposition 4.2.2. If a set A is not minimal for {x | Ax ≤ 0} then

∃Ai ∈ A, t ≥ 0, Ai = eT
i A, t ̸= ei : Ai = tT V

That is, there is a member of A which is a non-trivial non-negative linear com-
bination of elements of V.

In order to prove Proposition 4.2.2, we require the Farkas Lemma.

4.2.1 The Farkas Lemma
Proposition 4.2.3 (The Farkas Lemma). Let U ∈ Rd×n. Precisely one of the
following is true:

(∃t ≥ 0) : x = Ut
(∃y) : UT y ≤ 0, ⟨x, y⟩ > 0

Proof. That both can’t be true is simple. Suppose they both were, then:

x = Ut ⇒ yT x = yT Ut ⇒ 0 > 0

To see that at least one is true we must reconsider the process of converting a
V-Cone to an H-Cone. First, from cone(U) we create the following matrix:

A =

⎛⎜⎝ 0 −I
I −U

−I U

⎞⎟⎠
By the way A is constructed,

(∃t) : A

(
x
t

)
≤ 0 ⇔ (∃t ≥ 0) x = Ut (4.4)
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In the proof of the transformation, we use ‘Fourier Motzkin Elimination for H-
Cones’ on page 8 to transform that matrix A. The ‘Fourier Motzkin Matrix’ on
page 10 promises a sequence of matrices Yd+1, . . . , Yd+n with certain properties.
Let Y = (Yd+n)(Yd+(n−1)) . . . (Yd+1), then it can be said of Y :

1. Every element of Y is non-negative.

2. Y is finite.

3. The last n columns of Y A are all 0.

4. (∃td+1, . . . , td+n)A(x +∑d+n
i=d+1 tiei) ≤ 0 ⇔ (Y A)x ≤ 0

Note that here x ∈ Rd+n. A has three blocks of rows, which can be labeled with
Z, P, N in a fairly obvious way. Then, Y can be broken up into three blocks of
columns, so that

Y = (YZ YP YN)

Where each of YZ , YP , YN ≥ 0. Consolidating what is known about A and Y , in
particular that the last columns are 0,

Y A = (YZ YP YN)

⎛⎜⎝ 0 −I
I −U

−I U

⎞⎟⎠ = (Y ′ 0)

Here, we have let Y ′ = YP − YN . Then it follows that

0 = −YZ − YP (U) + YN(U) = −YZ − Y ′(U) ⇒ YZ = −Y ′U ⇒ Y ′U ≤ 0

Then it holds that, for any row y′ ∈ Y ′:

y′U ≤ 0 (4.5)

It is also true that

(Y A)
(

x
t

)
= (Y ′ 0)

(
x
t

)
= Y ′x

We also have

(∃t) : A

(
x
t

)
≤ 0 ⇔ (Y A)

(
x
t

)
≤ 0 ⇔ Y ′x ≤ 0 (4.6)

Note that here x ∈ Rd. So, if given some x, the left side of (4.6) is not satisfied,
then neither is the right, and there must be some row y′ ∈ Y ′ such that the
following holds:

⟨y′, x⟩ > 0 (4.7)

Then we conclude that, if the right side of (4.4) fails, then there is a vector y′ ∈ Y ′

satisfying (4.5) and (4.7).
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Remark 5. The Farkas Lemma above can be equivalently stated:

(∃t ≥ 0) : tT A = y ⇔ (∀x) : Ax ≤ 0 ⇒ ⟨y, x⟩ ≤ 0

This way of writing it makes it clear that, if yT x ≤ 0 holds for every x in some
H-Cone {x | Ax ≤ 0}, then y is a non-negative linear combination of the rows of
A.

Proof of Proposition 4.2.2. Say {x | (A \ {Ai})x ≤ 0} = {x | Ax ≤ 0}. Then,
by Remark 5, AT

i x ≤ 0 holds for {x | (A \ {Ai})x ≤ 0} = {x | Ax ≤ 0}, so Ai is
a non-negative linear combination of some rows of A \ {Ai}.

As before, the converse will fail if we can combine rows of A in a non-trivial
way to get 0. For which cones does this occur? Well, it would be necessary that
the following holds for some y:

yT x ≤ 0, −yT x ≤ 0

But this means that yT x = 0 holds for every member of the cone. We can prevent
this from occurring by forcing the cone to contain a basis.

Definition 4.2.4 (Full-Dimensional Cones). A cone is called full-dimensional if
it contains a basis of its ambient space.

The most important property (well known from linear algebra) of a basis B
that we shall use is:

yT B = 0 ⇒ y = 0 (4.8)

Proposition 4.2.5. The following statements are equivalent.

1. {x | Ax ≤ 0} is full-dimensional.

2. t ≥ 0, [tT A = 0 ⇒ t = 0]

Proof. (¬1 ⇒ ¬2). If {x | Ax ≤ 0} is not full-dimensional, then there is some
y so that for every x the cone yT x = 0. Then, by Remark 5, we’d have some
non-negative t1, t2 such that tT

1 A = y and tT
2 A = −y, in which case t1 + t2 is a

counter example to (2).
(¬2 ⇒ ¬1). Suppose t ≥ 0, tT A = 0, and t ̸= 0. Since 0 ̸∈ A, at least two

elements of y are non-zero, say one is yi. Then 0 = yiAi + (y − yiei)T A, which
then means both Aix ≤ 0 and −Aix ≤ 0 holds for {x | Ax ≤ 0}, in which case
it is not full dimensional.

Proposition 4.2.6. Suppose that {x | Ax ≤ 0} is full-dimensional. Then the
following two statements are equivalent:

1. A is minimal

2. t ≥ 0, [Ai = tT A ⇒ t = ei]
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Proof. (¬1 ⇒ ¬2) is Proposition 4.2.2. So suppose that t ≥ 0, and Ai =
tT A. If 0 ≤ ti < 1, then Ai = (t − tiei)T A/(1 − ti), and {x | Ax ≤ 0} =
{x | (A \ {AI})x ≤ 0}, which would mean that A is not minimal. Suppose that
ti ≥ 1. Then t − ei ≥ 0, and 0 = (t − ei)T A. Because A is full-dimensional, by
Proposition 4.2.5, 0 = t − ei, so t = ei.

Proposition 4.2.7. The following two statements are equivalent:

1. {x | Ax ≤ 0} is full dimensional and A is minimal

2. cone(AT ) is pointed and A is minimal

Proof. This follows from the nearly identical form of (2) in Proposition 4.2.6 and
Proposition 4.1.6.

In order to create an equivalence criterion like H-Cone → V-Cone, we use the
following result.

Theorem 4 (Dual Cone).

{x | Ax ≤ 0} = {x | A′x ≤ 0} ⇔ cone(AT ) = cone(A′T )

Proof. First suppose that cone(AT ) = cone(A′T ). Then there exists a non-
negative matrix B such that A′T = AT B. Then Ax ≤ 0 ⇒ BT Ax ≤ 0 ⇒
A′x ≤ 0. Precisely the same reasoning shows that A′x ≤ 0 ⇒ Ax ≤ 0, and we
conclude that cone(AT ) = cone(A′T ) ⇒ {x | Ax ≤ 0} = {x | A′x ≤ 0}.

Next suppose that cone(AT ) ̸= cone(A′T ), that is, let z ∈ cone(AT ), z ̸∈
cone(A′T ). We must show that {x | Ax ≤ 0} ̸= {x | A′x ≤ 0}. By the Farkas
Lemma, we have a y such that ⟨y, z⟩ > 0, A′y ≤ 0. Clearly this means that
y ∈ {x | A′x ≤ 0}. Since z ∈ cone(A), there is some (t ≥ 0) : zT = tT A. Then
if Ay ≤ 0, we would have ⟨y, z⟩ = tT Ay ≤ 0 < ⟨y, z⟩, a contradiction. So we
conclude that y ̸∈ {x | Ax ≤ 0}.

Proposition 4.2.8. Suppose that A is minimal, and {x | Ax ≤ 0} =
{x | A′x ≤ 0} is full-dimensional. Then A ⊑ A′. It follows that if A′ is also
minimal, then A ≃ A′.

Proof. By Proposition 4.2.7 and Theorem 4, Proposition 4.2.8 is true if it is true
for cones, which is shown in Minimal Generators of a Pointed Cone.

Say we know that C = {x | Ax ≤ 0} = cone(V ) is full-dimensional, with A
minimal. We have another set A′ and let C ′ = {x | A′x ≤ 0}. Then we can test
if C ′ = C. The following summarizes the situation:

A′V ≤ 0 ⇒ C ⊆ C ′

V ⊑ V ′ ⇒ C ′ ⊆ C

C ′ = C ⇒ A ⊑ A′

C ′ = C ⇒ A′V ≤ 0
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Equivalence Criteria 2 (V-Cone → H-Cone). Say H is a minimal generating
set of constraints for the full-dimensional H-Cone C, and suppose C = cone(V ) =
{x | Ax ≤ 0}. Then

C = {x | A′x ≤ 0} ⇔ A′V ≤ 0, A ⊑ A′

Test 2 (H-Cone → V-Cone). We now have a method for testing the program.
First, we hand-craft a V-Cone cone(V ) based on minimal set A for some pointed
H-Cone. We then run our program to get a set A′, with the alleged property
that cone(V ) = {x | A′x ≤ 0}. If we confirm Equivalence Criteria 2, then our
program has succeeded.

Remark 6. Can we test the program for non-full-dimensional cones? Once again,
this is more complicated and requires a technique to remove the “degeneracy,”
and once again test for equivalence otherwise.

As of now this is left as a possible future extension of the program.

Remark 7. While not important for testing the program, one may ask if full-
dimensional H-Cones are the only cones with essentially unique generating sets of
constraints . The answer is no, for any set of the form yT x = c has an essentially
unique generating set of constraints. However, this is the only exception. It isn’t
hard to see that, given independent constraints of the form Ax = 0, if A has
more than two rows, then, for any non-singular B, BAx = 0 is an equivalent
constraint. So, technically, the Test 1 would work for hyperplanes.

Generalizing to Polyhedra In the following sections we gener-
alize Test 1 and Test 2 to polyhedra.

4.3 Testing H-Polyhedron → V-Polyhedron
Say we have an H-Polyhedron PA,b = {x | Ax ≤ b}, and wish to check that our
program correctly calculates a V ′ and U ′ such that PA,b = cone(U ′) + conv(V ′).
Again, we shall use the notion of minimality and show that under certain circum-
stances we can use minimal sets to demonstrate the validity of our algorithm.
First, we consider the case of a V-Polyhedron with no cone.

4.3.1 Polytopes
First we consider the special case of a V-Polyhedron given by P = conv(V ). Such
a set is known as a polytope.

Definition 4.3.1 (Minimal Set for Polytopes). A set V is called minimal for the
polytope conv(V ) if:

(∀v ∈ V ) conv(V \ {v}) ⊂ conv(V )

Proposition 4.3.2. V is minimal for conv(V ) if and only if V is the set of
vertices of conv(V ).
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Figure 4.2: V-Polytope: conv ([ 0
0 ], [ 2

1 ], [ 1.5
3 ])

Figure 4.3: H-Polytope:
(

−2 1
1 −2
4 1

)
( x

y ) ≤
( 0

0
9

)

We will need:

Proposition 4.3.3. A convex combination of convex combinations is another
convex combination

Proof. Let Λ represent a collection of convex combinations, that is, 1T Λ = 1T ,
and let λ ≥ 0, 1T λ = 1 be a convex combinator. Then Λλ = λ′ where λ′ ≥
0, 1T λ′ = 1. That λ′ ≥ 0 is clear, then just note that 1T λ′ = 1T Λλ = 1T λ =
1.

Proof of Proposition 4.3.2. First, suppose that V is not minimal. Then there is
a v ∈ V that satisfies conv(V \ {v}) = conv(V ). Denote V ′ = V \ {v}. Then
v = V ′λ′, where there is some λi with 0 < λi < 1. Let u = V ′(ei − λ′). Then

v + λiu = V ′λ′ + λiV
′(ei − λ′) = (1 − λi)V ′λ′ + λiV

′ei

By Proposition 4.3.3, the right hand side of this equation is a convex combination
of members of V ′, so v + λiu ∈ conv(V ′). Similarly,

v − λiu = V ′λ′ − λiV
′(ei − λ′) = V ′(λ′ − λiei) + V ′(λiλ

′)

Consider (λ′−λiei). Note that this expression is non-negative, and sums to 1−λi.
Next note that λiλ

′ is non-negative, and sums to λi. This means that the right
hand side of the equation is a convex combination of V ′, so v + λiu ∈ conv(V ′),
and v is not a vertex.
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Next, suppose that v ∈ V is not a vertex, and let V ′ = V \ {v}. Then there is
some non-zero u such that v+u ∈ conv(V ), v−u ∈ conv(V ). First, let α, β > 0,
and consider v + αu and v − βu. Observe that

β(v + αu)
α + β

+ α(v − βu)
α + β

= αv + βv
α + β

= v

This shows that we can positively scale α and β, and still get v as a convex
combination of the result. So we search for positive α and β that give a point
of conv(V ′), which by Proposition 4.3.3 shows that v ∈ conv(V ′) so V is not
minimal. First observe that v + u = V λ for some λ. Then let λ′ = λ − λiei, so
u + v = V ′λ′ + λiv, and u = V ′(λ′) + (λi − 1)v Then

v + αu = v + α(λi − 1)v + αV ′λ′

So we let α = 1/(1 − λi), and the term in v disappears, while λ′/(1 − λi) is a
convex combination. Similarly, we have v − u = V µ, and u = v(1 − µi) − V ′µ′.
Then

v − βu = v(1 − β(1 − µi)) + βV ′µ′

So let β = 1/(1 − µi), so the right hand side is a convex combination of members
of V ′.

4.3.2 Characterstic Cone
Now we consider the set cone(U) in cone(U) + conv(V ). The next proposition
shows that it is essentially unique for any given Polyhedron.

Proposition 4.3.4 (Characterstic Cone). Suppose that P = {x | Ax ≤ b} =
cone(U) + conv(V ). Then the following three statements are equivalent:

1. Ar ≤ 0

2. (∀x ∈ P )(∀α > 0) x + αr ∈ P

3. r ∈ cone(U)

Proof. (1 ⇒ 2). x ∈ P means that Ax ≤ b, and Ar ≤ 0 means that A(x +αr) ≤
Ax ≤ b.
(¬1 ⇒ ¬2). Suppose ⟨Ai, r⟩ > 0, then let α > (bi − ⟨Ai, x⟩)/ ⟨Ai, r⟩. We have:

⟨Ai, x + αr⟩ > ⟨Ai, x⟩ + bi ⟨Ai, r⟩ − ⟨Ai, x⟩ ⟨Ai, r⟩
⟨Ai, r⟩

= bi

(3 ⇒ 2). This is essentially the definition of cone(U) + conv(V ).
(2 ⇒ 3). Now for the real work. Suppose that (2) holds, but r ̸∈ cone(U). Then
by the Farkas Lemma, we have a y that satisfies (∀r′ ∈ U) ⟨r′, y⟩ ≤ 0, ⟨y, r⟩ > 0.
From (2) we construct a sequence: (xn) = v + n · r. Then it is clear that the
sequence ⟨y, xn⟩ → ∞. It is also clear that (∀n) xn ∈ P . We now need the
following:
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Proposition 4.3.5. A linear, real-valued function on the set conv(V ) achieves
its maximal value at some v̄ ∈ V .

Proof. To see this is true, suppose that the linear function is given by ⟨y, ·⟩, and
that v̄ is an element of V such that (∀v ∈ V ) ⟨y, v̄⟩ ≥ ⟨y, v⟩. Then, for any
r ∈ conv(V ), r = ∑

v∈V λvv where ∑λv = 1 ⇒ λv ≤ 1, and it follows

⟨y, r⟩ =
⟨

y,
∑
v∈V

λvv

⟩
=
∑
v∈V

λv ⟨y, v⟩ ≤
∑
v∈V

λv ⟨y, v̄⟩ = ⟨y, v̄⟩

Now consider the maximum value of the function ⟨y, ·⟩ on P . Since any element of
P can be written r′ +v | r′ ∈ cone(U), v ∈ conv(V ), and (∀r′ ∈ U) ⟨y, r′⟩ ≤ 0, we
can find the maximum value on conv(V ). However, ⟨y, ·⟩ achieves its maximal
value on conv(V ) at some v̄ ∈ V , which is a contradiction with the fact that
⟨y, xn⟩ → ∞, so we conclude that r ∈ cone(U).

Remark 8 (Characteristic Cone). Note that (2) in the proof above is independent
of A and U . This means that the cone of a polyhedron is independent of its
representation, i.e. if cone(U) + conv(V ) = cone(U ′) + conv(V ′), then cone(U) =
cone(U ′), while it is not necessarily true that conv(V ) = conv(V ′). Similarly, if
{x | Ax ≤ b} = {x | A′x ≤ b′}, the it holds that {x | Ax ≤ 0} = {x | A′x ≤ 0}.

4.3.3 Minimal V-Polyhedra Pairs
In this section, when we write cone(U)+conv(V ), we assume that V is non-empty.

Definition 4.3.6. A pair (U, V ) is said to be minimal for cone(U) + conv(V ) if

(∀u ∈ U) cone(U \ {u}) + conv(V ) ⊂ cone(U) + conv(V ) (4.9)
(∀v ∈ V ) cone(U) + conv(V \ {v}) ⊂ cone(U) + conv(V ) (4.10)

As before, the pair may not be essentially unique. This can happen if U is
not pointed. So we will consider only pointed cones for cone(U).

Proposition 4.3.7. If (U, V ) is minimal, then U is minimal for cone(U).

Proof. By Remark 8, cone(U) + conv(V ) = cone(U ′) + conv(V ) if and only if
cone(U) = cone(U ′). So this means that the minimality of U is only dependent
on U .

Now we consider the vertices of cone(U) + conv(V ).

Proposition 4.3.8. If v is a vertex of cone(U)+conv(V ), then [v = Ut+V λ] ⇒
t = 0.

Proof. If v can be written with some non-zero contribution from cone(U), then
you may decrease this contribution by some amount while staying in cone(U) +
conv(V ), and you may increase the contribution by the same amount, so v is not
a vertex.
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It will be useful to refer to the property of a set V such that no member of V
may be written with a non-zero contribution from cone(U) (this is the property
described by Proposition 4.3.8). We will call it U -free.

Proposition 4.3.9. If v is a vertex of cone(U) + conv(V ), then v is a vertex of
conv(V ).

Proof. By Proposition 4.3.8, v ∈ conv(V ). If v is not a vertex of conv(V ), then
because conv(V ) ⊆ cone(U) + conv(V ) it can’t be a vertex of P .

Now we can show the following.

Proposition 4.3.10. Suppose that (U, V ) is a minimal pair for cone(U) +
conv(V ). Then V is the set of vertices of cone(U) + conv(V ).

Proof. By Proposition 4.3.8, if v is a vertex of P , then it must be a vertex of
V . Clearly, V is minimal for V , and is precisely the vertices of conv(V ). The
only question is if the vertices of V are the vertices of P . Suppose that v is a
vertex of conv(V ). Then we must show that for any u ̸= 0, if v + u ∈ P then
v − u ̸∈ P . Suppose that u ∈ cone(U). Then, since V is U -free, v − u ̸∈ P ,
otherwise v = (v−u)+u and V is not U -free. If u ̸∈ cone(U), then if v+u ∈ P ,
v + u ∈ conv(V ). Then because v is a vertex of conv(V ), v − u ̸∈ conv(V ).

Proposition 4.3.11. Let P = cone(U) + cone(V ). Then the following are equiv-
alent

1. (U, V ) is minimal for P

2. U is minimal for cone(U), V is the vertex set of P

3. U is minimal for cone(U), V is the vertex set of conv(V ), and V is U-free

Proof. (1 ⇒ 2). This combines the results of Proposition 4.3.7 and Proposi-
tion 4.3.10
(2 ⇒ 3). That V is U -free follows from Proposition 4.3.8. By Proposition 4.3.9,
the vertex set of P is a subset of the vertices of conv(V ). Let v be a vertex of
conv(V ), we must show that it is a vertex of P . Because it is a vertex of conv(V ),
if v + u ∈ conv(V ) then v − u ̸∈ conv(V ). Say v + u ∈ conv(V ) + cone(U). Then
u must have some non-zero contribution of cone(U). If v − u ∈ P , then v could
be written as (v + u)/2 + (v − u)/2, which has an overall positive contribution
from cone(U), meaning that V is not U -free.
(3 ⇒ 1). Since V is the vertex set of conv(V ), if v ∈ V is also in cone(U) +
conv(V \ {v}), then v can be written with a non-negative contribution from
cone(U), so V is not U -free. Next let u ∈ U , and U ′ = U \ {u}. We must
find a point in cone(U) + conv(V ) that is not in cone(U ′) + conv(V ). Because
u ̸∈ cone(U ′), there is an x that satisfies: xT U ′ ≤ 0, and xT u > 0. By Propo-
sition 4.3.5, there is some maximum value c such that (∀x ∈ conv(V ))xT u ≤ c.
This means that

{
xT y : y ∈ cone(U ′) + conv(V )

}
is upper-bounded by c. But

the set
{
xT y : y ∈ cone(U) + conv(V )

}
is unbounded, since xT u > 0. So we can

conclude that cone(U ′)+conv(V ) ⊂ cone(U)+conv(V ). We conclude that (U, V )
are minimal.
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Now we see that the minimal pairs for V-Polyhedra are essentially unique.

Proposition 4.3.12. Let (U, V ) be minimal for P = cone(U) + conv(V ) =
cone(U ′) + conv(V ′). Then U ⊑ U ′, and V ⊆ V ′.

Proof. Since cone(U) = cone(U ′), and U is minimal for cone(U), by Equivalence
Criteria 1 U ⊑ U ′. By Proposition 4.3.9 every vertex of P must be a vertex of
V ′, and because V contains precisely the vertices of P , V ⊆ V ′.

Say we know that P = cone(U)+conv(V ) = {x | Ax ≤ b}, with U, V minimal,
and U pointed. We have another pair (U ′, V ′), and let P ′ = cone(U ′) + conv(V ′).
We want to test if P = P ′. We have the following:

AU ′ ≤ 0 ⇒ cone(U ′) ⊆ cone(U)
AV ′ ≤ b ⇒ conv(V ′) ⊆ P

U ⊑ U ′ ⇒ cone(U) ⊆ cone(U ′)
V ⊆ V ′ ⇒ conv(V ) ⊆ conv(V ′)
P ′ = P ⇒ AU ≤ 0
P ′ = P ⇒ AV ≤ b
P ′ = P ⇒ U ⊑ U ′

P ′ = P ⇒ V ⊆ V ′

The first two lines imply that P ′ ⊆ P , while the next two imply that P ⊆ P ′.
We now have the ability to create an equivalence criteria.

Equivalence Criteria 3 (V-Cone → H-Cone). Say (U, V ) is a minimal pair for
P = {x | Ax ≤ b} (with pointed cone(U)), and suppose P ′ = cone(U ′)+conv(V ′).
Then

P = P ′ ⇔ AU ≤ 0, AV ≤ b, V ⊆ V ′, U ⊑ U ′

Test 3 (H-Polyhedron → V-Polyhedron). We now have a method for testing the
program. First, we hand-craft an H-Polyhedron {x | Ax ≤ b} based on a minimal
pair (U, V ) for some pointed V-Polyhedron. We then run our program to get a pair
(U ′, V ′), with the alleged property that cone(U ′)+conv(V ′) = cone(U)+conv(V ).
If we confirm Equivalence Criteria 3, then our program has succeeded.

4.4 Testing V-Polyhedron → H-Polyhedron
Now we suppose we have a V-Polyhedron PU,V = cone(U) + conv(V ), and would
like to test the program which returns a matrix-vector pair A′, b′ where suppos-
edly PU,V = {x | A′x ≤ b′}. Again, we will start off with a pair A, b where we
know that PU,V = {x | Ax ≤ b}, where A, b satisfy some nice properties, and use
those properties to test if PU,V = {x | A′x ≤ b′}.

Definition 4.4.1 (Minimal H-Pair). The pair (A, b) is called minimal for
{x | Ax ≤ b}, if, for any row (Ai, bi), letting (A′, b′) be (A, b) with the i-th
row deleted, {x | Ax ≤ b} ⊃ {x | A′x ≤ b′}.
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To characterize Minimal H-Pairs, we will need a new form of the Farkas
Lemma.

Theorem 5 (Farkas Lemma 2).

(∃t ≥ 0)tT A = y, tT b ≤ c ⇔

⎧⎨⎩(∀x)Ax ≤ 0 ⇒ yT x ≤ 0 and
(∀x)Ax ≤ b ⇒ yT x ≤ c

Proof. First we note that

∃t ≥ 0, tT A = y, tT b ≤ c ⇔

∃t ≥ 0, tT

(
A
0

)
= y, tT

(
b
1

)
= c ⇔

∃t ≥ 0, tT

(
−b A
−1 0

)
= (−c, y)

If we negate the right hand side of The Farkas Lemma, then we get that

∃t ≥ 0, tT

(
−b A
−1 0

)
= (−c, y) ⇔

∀x, x0

(
−b A
−1 0

)(
x0
x

)
≤ 0 ⇒ ⟨(−c, y), (x0, x)⟩ ≤ 0 ⇔

∀x0 ≥ 0, Ax ≤ x0b ⇒ yT x ≤ x0 · c

Taking the case that x0 = 0 and x0 > 0 separately, you get the proposition.

Proposition 4.4.2. Suppose that (A, b) is not minimal for some {x | Ax ≤ b}.
Then there is a row (Ai, bi) for which the following holds. Let (A′, b′) be (A, b)
with the i-th row deleted. Then there is a t′ ≥ 0 such that t′T A′ = Ai, t′T b′ ≤ bi.

Proof. Since (A, b) is not minimal, there is such an (Ai, bi) and (A′, b′) such that
{x | Ax ≤ b} = {x | A′x ≤ b′}. In the right hand side of Farkas Lemma 2, the
conditions are satisfied with A := A′, b := b′, y := Ai, c := bi.

Is the converse true? Does it hold that given a (A, b) which is minimal, the
implication of Proposition 4.4.2 fails? In general, no. For example, the hyperplane
⟨y, x⟩ = c has a minimal representation {⟨y, x⟩ ≤ c, ⟨−y, x⟩ ≤ −c}, but the sum
of the rows is 0, and so t′ := (2, 1) satisfies the claim. In general, we need the
polyhedron to be full-dimensional.

Definition 4.4.3 (Full-Dimensional). A set V of vectors is called full-dimensional
if, given any y ̸= 0, c ∈ R, there is some v ∈ V such that yT v ̸= c.

Definition 4.4.4 (Full-Dimensional Polyhedra). A polyhedron is called full-
dimensional if it contains a full-dimensional set of vectors.

Proposition 4.4.5. If P = {x | Ax ≤ b} is full dimensional, and yT A = 0 with
y ≥ 0, then either y = 0 or yT b > 0.
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Figure 4.4: H-Cone, not full-dimensional:(−2 1
2 −1

−1 −1
0 −1

)
( x

y ) ≤
( 0

0
0
0

)

Proof. Say yT A = 0, y ̸= 0, and yT b = 0. Then suppose yi ̸= 0. Then

yiAi +
∑
j ̸=i

yjAj = 0, yibi +
∑
j ̸=i

yjaj = 0

So, there are non-negative t1, t2 such that

tT
1 A = −tT

2 A, tT
1 b = −tT

2 b

It follows that, for any x satisfying Ax ≤ b:

tT
1 Ax ≤ tT

1 b, −tT
2 Ax ≥ −tT

2 b

But then for any x ∈ P it must hold that tT
1 Ax = tT

1 b. Since P is full dimensional,
it must be that t1 = 0, then y = 0.

Proposition 4.4.6. Suppose that (A, b) is minimal for some full-dimensional
{x | Ax ≤ b}. Then let (Ai, bi) be any row. If, for some t ≥ 0, tT A = Ai, then
either t = ei or tT b > bi.

Proof. Suppose that Ai = tiAi + t′T A′, and bi = tibi + t′b′. If 0 ≤ ti < 1, then
Ai = t′T A′/(1 − ti), and bi = t′T b′/(1 − ti). But then (A, b) is not minimal (the
i-th row may be deleted without changing the polyhedron). Say 1 ≤ ti. Then
there is a non-negative t′′ with t′′T A = 0, t′′T b = 0. By Proposition 4.4.5, t′′ = 0,
and t = ei.

Now we intend to use these properties of full-dimensionality and minimality
to let us reduce the problem to one of cones.

Proposition 4.4.7. The following statements are equivalent:

1. {x | Ax ≤ b} = {x | A′x ≤ b′}

2.
{(

x0
x

) ⏐⏐⏐ (−1 0
−b A

)(
x0
x

)
≤ 0

}
=
{(

x0
x

) ⏐⏐⏐ ( −1 0
−b′ A′

)(
x0
x

)
≤ 0

}
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Proof. (2 ⇒ 1). Just set x0 = 1, and move b, b′ to the right side of the inequali-
ties. (¬2 ⇒ ¬1). Suppose that:(

−1 0
−b A

)(
x0
x

)
≤ 0,

(
−1 0

−b′ A′

)(
x0
x

)
̸≤ 0

Observe that, by the way these sets are constructed, x0 ≥ 0. If x0 = 0, then
we have {x | Ax ≤ 0} ≠ {x | A′x ≤ 0}, which, by Proposition 4.3.4 means that
that A and A′ don’t create the same characteristic cone, so {x | Ax ≤ b} ̸=
{x | A′x ≤ b′}. If x0 > 0, then we have:

Ax ≤ x0b, A′x ̸≤ x0b′ ⇒ A(x/x0) ≤ b, A′(x/x0) ̸≤ b′

So {x | Ax ≤ b} ≠ {x | A′x ≤ b′}.

Now, combining the results of ‘Characterstic Cone’ on page 42 and proposi-
tion 4.4.7, we have the following result:

Proposition 4.4.8. The following two statement are equivalent:

1. {x | Ax ≤ b} = {x | A′x ≤ b′}

2. cone
(

−bT −1
AT 0

)
= cone

(
−b′T −1

A′T 0

)

Proposition 4.4.9. If {x | Ax ≤ b} is minimal and full-dimensional, then either

1. cone
(

−bT −1
AT 0

)
is minimal and pointed, or

2. cone
(

−bT

AT

)
is minimal and pointed, and cone

(
−bT

AT

)
= cone

(
−bT −1

AT 0

)

Proof. To see that they are pointed, let(
−bT −1

AT 0

)
(t, t0) = 0

If (t, t0) is non-zero, then tT A = 0, which by Proposition 4.4.5 means that
−tT b < 0. This means that −tT b − t0 < 0. So (t, t0) = 0.

To show that it they are minimal, by ‘Minimal V-Cone Generators’ on page 34,
we only need to show that

t ≥ 0, [(Ai = tT A, tT b + t0 = bi) ⇒ t = ei]

By Proposition 4.4.6, if t ̸= ei, and tT A = Ai, then tT b > bi, so tT b + t0 > bi.
So that means that if tT A = Ai, tT b = bi, then t must be ei. If there is a t ̸= 0

such that tT A = 0, then it follows that −tT b < 0, and that cone
(

−bT

AT

)
=(

−bT −1
AT 0

)
. Then

(
−bT

AT

)
is minimal. If there is no such t, that is, if tT A = 0

then t = 0, then
(

−bT −1
AT 0

)
is minimal.

48



Proposition 4.4.10. Say (A, b) is minimal for full-dimensional {x | Ax ≤ b}.
Then if {x | Ax ≤ b} = {x | A′x ≤ b′}, then (A, b) ⊑ (A′, b′).

Proof. Proposition 4.4.8 shows that the equality of the H-Cones is predicated
on the equality of the V-Cones cone

(
−b

A

)
and cone

(
−b′

A′

)
. Proposition 4.4.9

shows that we end up with the situation that either cone
(

−b
A

)
= cone

(
−b′

A′

)
with

cone
(

−b
A

)
minimal, in which case

(
−b

A

)
⊑
(

−b′

A′

)
, or cone

(
−b −1

A 0

)
is minimal. In

this case, since for no Ai ∈ A is Ai ≃ 0, we conclude that
(

−b
A

)
⊑
(

−b′

A′

)
Say we know that P = {x | Ax ≤ b} = cone(U) + conv(V ), with (A, b)

minimal, and P full-dimensional. We have another pair (A′, b′), and let P ′ =
{x | A′x ≤ b′}. We want to test if P = P ′. We have the following:

A′U ≤ 0 ⇒ cone(U ′) ⊆ {x | A′x ≤ 0}
A′V ≤ b ⇒ conv(V ′) ⊆ P ′

(A, b) ⊑ (A′, b′) ⇒P ′ ⊆ P

P ′ = P ⇒ A′U ≤ 0
P ′ = P ⇒ A′V ≤ b
P ′ = P ⇒ (A, b) ⊑ (A′, b′)

The first two lines imply that P ⊆ P ′, so the first three mean that P = P ′.
We then have the following equivalence criteria:

Equivalence Criteria 4. Say (A, b) is a minimal pair for P = {x | Ax ≤ b} =
cone(U) + conv(V ), and suppose P ′ = {x | A′x ≤ b′}. Then

P = P ′ ⇔ A′U ≤ 0, A′V ≤ b, (A, b) ⊑ (A′, b′)

Test 4 (V-Polyhedron → H-Polyhedron). We now have a method for testing
the program. First, we hand-craft a V-Polyhedron cone(U) + conv(V ) based on
some minimal pair (A, b), then run our program to get the pair (A′, b′), with
the alleged property that cone(U) + conv(V ) = {x | A′x ≤ b′}. If we confirm
Equivalence Criteria 4, then our program has succeeded.

4.5 Full-Dimensional and Pointed Polyhedra
This section will summarize and finalize the discussion of full-dimensional and
pointed polyhedra. It is not directly related to the subject of the thesis or testing
of the program, however it addresses two obvious subjects which have been thus
far avoided: characterizing V-Cones and V-Polyhedra which are full-dimensional,
and characterizing which H-Cones and H-Polyhedra are pointed. These ques-
tions are quite similar to their already addressed counterparts, but worth a short
discussion.
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4.5.1 Full-Dimensional V-Polyhedra
Which V-Cones are full dimensional? Well, a V-Cone is full dimensional if there
is no non-zero y ∈ Rd and c ∈ R such that ⟨y, x⟩ = c for all x ∈ cone(U).
First note that if such a y and c exist, then c = 0. This is because every
hyperplane which may contain cone(U) must contain the origin. If U has d
linear-independent vectors, then clearly cone(U) is full-dimensional. Suppose
that U does not have d linear-independent vectors, then there is some vector
y such that (∀v ∈ U) ⟨y, v⟩ = 0. Then yT Ut = 0T t = 0, so cone(U) is not
full-dimensional. So much for V-Cones. The situation is similar for V-Polyhedra.
In cone(U) + conv(V ) there are two sets adding to the dimensionality of the
polyhedron, U and V . Let V̄ = {v − v′ | v, v′ ∈ V }. Then we must look for d
linear-independent vectors in U∪V̄ . Basically, the cone adds to the dimensionality
in the same way as before, but the vectors from conv(V ) are not simply the points
of V . More formally, say that there is some y such that yT U = yT V̄ = 0. Let
v′ ∈ V , and observe that:

yT V̄ = 0 ⇒ (∀v ∈ V ) ⟨y, v − v′⟩ = 0 ⇒ (∀v ∈ V ) ⟨y, v⟩ = ⟨y, v′⟩

Let c = ⟨y, v′⟩. Then for any member of cone(U) + conv(V )⟨
y,
∑

i
tiui +

∑
j
λjvj

⟩
= 0 +

∑
j
λjc = c

4.5.2 Pointed H-Polyhedra
Which H-Cones are pointed? As previously discussed, if a Cone has a vertex, it
is the origin. So, if {x | Ax ≤ 0} is pointed, then no u ̸= 0 satisfies Au = 0.
Conversely, if {x | Ax ≤ 0} is not pointed, then for some u ̸= 0 we have Au ≤ 0
and −Au ≤ 0, so Au = 0. In either case, we see that the rows of A have a non-
trivial orthogonal subspace, so it must be that there are not d linear-independent
rows of A. What about for H-Polyhedra? First, assume that {x | Ax ≤ b} is
non-empty, otherwise there are certainly no vertices. As before, if there is some
u ̸= 0 such that Au = 0, then this u prevents any point from being a vertex.
Now suppose that {x | Ax ≤ b} has a vertex v. We claim that there are d linear-
independent rows Ai from A such that ⟨Ai, v⟩ = bi. If there were fewer, then we
take some u that is in the orthogonal subspace of the Ai for which ⟨Ai, v⟩ = bi,
and A(v ± ϵu) ≤ b for some small ϵ. So, a non-empty {x | Ax ≤ b} has a vertex
if and only if A has full row rank. This result is nice in that it shows the existence
of a vertex doesn’t depend on b (for the most part). If you imagine continuously
changing b, you are just “sliding” the half-spaces which you are intersecting “back
and forth.” Vertices may be split or joined, but you cannot completely get rid
of all the vertices from the polyhedron (unless you choose a b which makes the
polyhedron empty). This is an example of an “intuitive” result about polyhedra
for which the proof is somewhat indirect.

4.5.3 Summary
Here we present a table summarizing the situation for full-dimensionality and
pointedness of polyhedra. t is a non-negative vector, and abbreviate linear-

50



independent as LI. V̄ denotes {v − v′ | v, v′ ∈ V }.

Pointed Full-Dimensional
cone(U) Ut = 0 ⇒ t = 0 d LI vectors in U

cone(U) + conv(V ) Ut = 0 ⇒ t = 0 d LI vectors in U ∪ V̄

{x | Ax ≤ 0} d LI row vectors in A tT A = 0 ⇒ t = 0
{x | Ax ≤ b} d LI row vectors in A tT A = 0 ⇒ tT b > 0

4.6 test functions.h
The following types are defined for running tests of the different algorithms. They
are expected to be given a descriptive name, the object on which the test will be
run, and a key with which the result of the test will be compared. The key object
is one of the minimal objects described above.

4.6.1 struct hcone_test_case

7 struct hcone_test_case {
8 std :: string name;
9 Matrix hcone; // vectors for H or V cone

10 Matrix key; // minimal generating set
11
12 bool run_test () const;
13 };

4.6.2 struct vcone_test_case

15 struct vcone_test_case {
16 std :: string name;
17 Matrix vcone; // vectors for H or V cone
18 Matrix key; // minimal generating set
19
20 bool run_test () const;
21 };

4.6.3 struct hpoly_test_case

23 struct hpoly_test_case {
24 std :: string name;
25 Matrix hpoly; // vectors for H- Polyhedron
26 VPoly key; // minimal generating set
27
28 bool run_test () const;
29 };

4.6.4 struct vpoly_test_case

31 struct vpoly_test_case {
32 std :: string name;
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33 VPoly vpoly; // vectors for V- Polyhedron
34 Matrix key; // minimal generating set
35
36 bool run_test () const;
37 };

4.7 test functions.cpp

4.7.1 double operator*(Vector,Vector)

The dot-product and norm (in terms of dot product).
28 double operator *( const Vector &l, const Vector &r) {
29 if (l.size () > r.size ()) {
30 throw runtime_error {"inner product : l > r"};
31 }
32 return inner_product (begin(l), end(l), begin(r), 0.);
33 }

4.7.2 double norm(Vector)

35 double norm(const Vector &v) {
36 return sqrt(v*v);
37 }

4.7.3 bool approximately_zero(double)

approximately_zero is used during tests to avoid issues involving floating point
rounding errors. For example, 1/6.0 * 2.5 - 5/12.0 == 0 will give false, while
approximately_zero(1/6.0 * 2.5 - 5/12.0) will return true. Test cases are
used where intermediate calculations don’t depend on such high accuracy, and
these discrepancies can be ignored.

approximately_zero(c) == true is to be denoted c ≈ 0.
39 bool approximately_zero ( double d) {
40 const double error = .000001;
41 bool result = abs(d) < error;
42 if (d != 0 && result ) {
43 ostringstream oss;
44 oss << scientific << d;
45 log(" approximately_zero " + oss.str (), 1);
46 }
47 return result ;
48 }

4.7.4 bool approximately_lt_zero(double)

Tests c < 0 ∨ c ≈ 0.
50 bool approximately_lt_zero ( double d) {
51 return d < 0 || approximately_zero (d);
52 }
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4.7.5 bool approximately_zero(Vector)

Tests ||v|| ≈ 0. This is to be denoted v ≈ 0.
55 bool approximately_zero (const Vector &v) {
56 return approximately_zero (norm(v));
57 }

4.7.6 bool is_equivalent(Vector,Vector)

Tests u/ ||u|| − v/ ||v|| ≈ 0. This is to be denoted u ≃ v.
59 bool is_equivalent (const Vector &l, const Vector &r) {
60 if (l.size () != r.size ()) return false;
61 if (norm(l) == 0 || norm(r) == 0) {
62 return norm(l) == 0 && norm(r) == 0;
63 }
64 return approximately_zero (l / norm(l) - r / norm(r));
65 }

4.7.7 bool is_equal(Vector,Vector)

Tests u − v ≈ 0. This is to be denoted u ≈ v.
67 bool is_equal (const Vector &l, const Vector &r) {
68 if (l.size () != r.size ()) return false;
69 return approximately_zero (l - r);
70 }

4.7.8 bool has_equivalent_member(Matrix,Vector)

Tests (∃u ∈ U) | v ≃ u.
72 bool has_equivalent_member (const Matrix &M,
73 const Vector &v) {
74 if (! any_of (M.begin (), M.end (),
75 [&]( const Vector &u) {
76 return is_equivalent (u,v); })) {
77 ostringstream oss;
78 oss << dashes
79 << " no equivalent member found for :\n"
80 << v << endl;
81 log(oss.str () ,1);
82 return false;
83 }
84 return true;
85 }

4.7.9 bool has_equal_member(Matrix,Vector)

Tests (∃u ∈ U) | v ≈ u.
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87 bool has_equal_member (const Matrix &M,
88 const Vector &v) {
89 if (! any_of (M.begin (), M.end (),
90 [&]( const Vector &u) { return
91 is_equal (u,v); })) {
92 ostringstream oss;
93 oss << dashes
94 << " no equal member found for :\n"
95 << v << endl;
96 log(oss.str () ,1);
97 return false;
98 }
99 return true;

100 }

4.7.10 bool subset_mod_eq(Matrix,Matrix)

Tests (∀v ∈ V )(∃u ∈ U) | v ≃ u. This is to be denoted V ⊑ U .
103 bool subset_mod_eq (const Matrix &generators ,
104 const Matrix &vcone) {
105 return all_of ( generators .begin (), generators .end (),
106 [&]( const Vector &g) {
107 return has_equivalent_member (vcone , g); });
108 }

4.7.11 bool subset(Matrix,Matrix)

Tests (∀v ∈ V )(∃u ∈ U) | v ≈ u. This is to be denoted V ⊆ U .
111 bool subset (const Matrix &generators ,
112 const Matrix &vcone) {
113 return all_of ( generators .begin (), generators .end (),
114 [&]( const Vector &g) {
115 return has_equal_member (vcone , g); });
116 }

4.7.12 bool ray_satisfied(Vector,Vector)

Given a Vector constraint and Vector ray, tests if
approximately_lt_zero(ray * constraint). Note that if the constraint is of the
form ⟨Ai, v⟩ ≤ b for some value b, then this tests ⟨Ai, ray⟩ ≤ 0.

120 bool ray_satisfied (const Vector &constraint ,
121 const Vector &ray) {
122 if ( constraint .size () != ray.size () &&
123 constraint .size ()-1 != ray.size ()) {
124 throw runtime_error {"bad ray vs constraint "};
125 }
126 double ip = ray * constraint ;
127 if (!( approximately_lt_zero (ip ))) {
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128 ostringstream oss;
129 oss << dashes << " ray not satisfied !\n"
130 << "ray: " << ray
131 << "\ nconstraint : " << constraint
132 << "\n ray * constraint = " << ip << endl;
133 log(oss.str (), 1);
134 return false;
135 }
136 return true;
137 }

4.7.13 bool ray_satisfied(Matrix,Vector)

Test Av ≤ 0
139 bool ray_satisfied (const Matrix & constraints ,
140 const Vector &ray) {
141 return all_of ( constraints .begin (), constraints .end (),
142 [&]( const Vector &cv) {
143 return ray_satisfied (cv , ray ); });
144 }

4.7.14 bool rays_satisfied(Matrix,Matrix)

Test AV ≤ 0
146 bool rays_satisfied (const Matrix & constraints ,
147 const Matrix &rays) {
148 return all_of (rays.begin (), rays.end (),
149 [&]( const Vector &ray) {
150 return ray_satisfied ( constraints , ray ); });
151 }

4.7.15 bool vec_satisfied(Vector,Vector)

Test ⟨Ai, v⟩ ≤ bi

154 bool vec_satisfied (const Vector &constraint ,
155 const Vector &vec) {
156 size_t cback_i = constraint .size () -1;
157 if ( cback_i != vec.size ()) {
158 throw runtime_error {"bad vec vs constraint "};
159 }
160 double ip = vec * constraint ;
161 double c_val = constraint [ cback_i ];
162 if (!( approximately_lt_zero (ip - c_val ))) {
163 ostringstream oss;
164 oss << dashes << " vec not satisfied !\n"
165 << "vec: " << vec
166 << "\ nconstraint : " << constraint
167 << "\n vec * constraint = " << ip << endl;
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168 log(oss.str (), 1);
169 return false;
170 }
171 return true;
172 }

4.7.16 bool vec_satisfied(Matrix,Vector)

Test Av ≤ b
174 bool vec_satisfied (const Matrix & constraints ,
175 const Vector &vec) {
176 return all_of ( constraints .begin (), constraints .end (),
177 [&]( const Vector &cv) {
178 return vec_satisfied (cv , vec ); });
179 }

4.7.17 bool vecs_satisfied(Matrix,Matrix)

Test AV ≤ b
181 bool vecs_satisfied (const Matrix & constraints ,
182 const Matrix &vecs) {
183 return all_of (vecs.begin (), vecs.end (),
184 [&]( const Vector &vec) {
185 return vec_satisfied ( constraints , vec ); });
186 }

4.7.18 bool equivalent_cone_rep(Matrix,Matrix,Matrix)

Given an H-Cone C = {x | Ax ≤ 0} = cone(U) where U is minimal, and a
Matrix U ′, determines if C = cone(U ′). Similarly, given a V-Cone C = cone(U) =
{x | Ax ≤ 0} where A is minimal, and a Matrix A′, determines if C = {x | A′x ≤ 0}.

190 bool equivalent_cone_rep (const Matrix &cone ,
191 const Matrix &key ,
192 const Matrix & alt_rep ) {
193 return rays_satisfied (cone , alt_rep ) &&
194 subset_mod_eq (key , alt_rep );
195 }

4.7.19 bool equivalent_hpoly_rep(Matrix,VPoly,VPoly)

Given an H-Polytope P = {x | Ax ≤ b} = cone(U) + conv(V ) where U and V
are minimal, and a pair (U ′, V ′), determines if P = cone(U ′) + conv(V ′).

197 bool equivalent_hpoly_rep (const Matrix &hpoly ,
198 const VPoly &key ,
199 const VPoly &vpoly) {
200 return rays_satisfied (hpoly , vpoly.U) &&
201 vecs_satisfied (hpoly , vpoly.V) &&
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202 subset_mod_eq (key.U, vpoly.U) &&
203 subset (key.V, vpoly.V);
204 }

4.7.20 bool equivalent_vpoly_rep(VPoly,Matrix,Matrix)

Given a V-Polytope P = cone(U)+conv(V ) = {x | Ax ≤ b} where A is minimal,
and a Matrix (A′, b′), determines if P = {x | A′x ≤ b′}.

206 bool equivalent_vpoly_rep (const VPoly &vpoly ,
207 const Matrix &key ,
208 const Matrix &hpoly) {
209 return rays_satisfied (hpoly , vpoly.U) &&
210 vecs_satisfied (hpoly , vpoly.V) &&
211 subset_mod_eq (key , hpoly );
212 }
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Conclusion
In this thesis we have proven the Minkowski-Weyl Theorem. The proof is con-
structive in nature, showing how to create the sets promised by the theorem, and
a basic implementation is given. While the proof is hardly elegant, it does show
that the intuitive result of the theorem is true by brute force methods and does
not require any advanced results. Indeed, the proof is from first principles, using
the language of linear algebra.

The more interesting (and, perhaps, informative) part of the paper deals with
creating a testing framework for the program. This presented an opportunity
to discuss pointed and full-dimensional polyhedra, and their relation to minimal
and essential representations of polyhedra. The characteristic and dual cones
were defined with some useful properties proven, invoking the Farkas Lemma in
a few different forms. As of now, the testing framework is open for extension, to
include polyhedra for which minimal representations are not essentially unique.

It may be worth mentioning an anachronism presented in the text. The chap-
ter on testing starts off by describing some sets that are chalked up to “wishful
thinking,” then minimality is introduced and the useful properties are derived.
In earnest, the actual progression from wishful thinking to effective testing was a
bit different. Initially, the requirements for testing were received. Then, the first
idea was to create some cones, and check if one representation was a subset of
another (modulo scaling, i.e. equivalence). This is the simplest, most immediate
(and perhaps natural) answer to the challenge for testing. After this method was
decided upon, the question then arose: “what properties of the sets representing
the polyhedra are necessary to ensure the tests will work?” Then the properties
were determined. It was only afterwards that it became clear that these properties
were actually pointedness and full-dimensionality, at which point the presentation
was altered to emphasize this. Without this alteration, the presentation would
be akin to: “these seemingly arbitrary properties allow us to test the polyhedra
in this manner,” which is less pleasant to read than “these natural classes of
polyhedra have useful properties which allow us to test our implementation on
them.”

It should also be mentioned that the algorithm here is not efficient. The
intermediate representations of the polyhedra may be exponential in the size of
the input and output. The “double description” method is a far better way
to calculate the alternative representations desired, however the method is a bit
more advanced and is better pursued after getting a decent grasp of the underlying
problem.

The Farkas Lemma should have the last word, as it is a rather wonderful
combinatorial compactification of much of the information of the Minkowski-
Weyl Theorem. It’s main contribution here was to show that minimal sets of
H-Polyhedra do exist, and then allowed us to re-use some of the work we had
done with V-Polyhedra to expedite the proofs of the testing methods.
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