
BACHELOR THESIS

Antonı́n Teichmann

Real Time Visualization of
Chaotic Functions

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Oskár Elek, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, June 26, 2019 signature of the author

i

ii

I want to thank my supervisor, Oskár Elek, for introducing me this amazing topic.
Thank you for all the endless fractal talks. Thank you for the great supervision
and for all the feedback. Thanks for the freedom I was given when discovering
the topic. Thank you for guiding me through the swamp of chaos by tracing the
paths of our fractal thoughts.

I want to thank Adam Hanka for the huge support he gave me when finishing
the thesis. Thank you for all the feedback. Thank you for challenging my ideas.
Thank you for the amount of great practical advices you gave me, including
advices about punctuation, relative clauses and Oxford Comma. Thank you for
the time you spent re-reading my writings. And mostly, thank you for allowing
me to meet Oskár and this topic.

I want to thank Jan Gocnı́k for his tremendous moral support. Thank you
for the big patience you had with me. Thank you for the energy you gave me
and for all the times you supported me when I was down. Thank you for all the
help with debugging undebuggable. And last but not least, thank you for lenting
me your CUDA-equipped machine, that allowed chaos-ultra to emerge. Without
you, I would not have been able to produce a thesis of this extent and quality.
As a thank you, I dedicate one fractal in the implemented program to you.

I want to thank my family, and do it in the language they understand: Moje
široká rodino, děkuji za vaši obrovskou podporu při psanı́ této práce. Děkuji
za trpělivost, kterou jste se mnou měli během času, kdy jsem na práci pracoval.
Děkuji vám za okamžiky, kdy jste chápali, že nemůžu být s vámi, i když bych
chtěl. Moc si vašı́ podpory vážı́m. Konečně, děkuji svojı́ mamince za to, že mě
chápe a podporuje.

And finally, I would like to thank Jonáš Klimeš and Michal Petřı́k for giving
me the time flexibility that allowed me to finish the thesis.

iii

iv

Title: Real Time Visualization of Chaotic Functions

Author: Antonı́n Teichmann

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Oskár Elek, Ph.D., Department of Software and Computer
Science Education

Abstract: Fractals are a fundamental natural structure that has fascinated the
scientific community for a long time. To allow for better understanding of frac-
tals, visualization techniques can be used. The focus of this thesis is real-time
rendering of fractals that are similar to the Mandelbrot set or the Newton fractal.
Detailed exploration of these fractals is complicated due to their recursive-manner
which leads to the fact that rendering them is computationally demanding. Ex-
isting solutions do not work in real-time or have low visual quality. We want to
change that and allow high-quality real-time rendering. During our analysis of
the problem, we generalize fractals to chaotic functions. To achieve high-quality
rendering with low overhead, we introduce a method for adaptive super-sampling
of chaotic functions. To achieve real-time performance, we show how to use sam-
ple reuse, foveated rendering, and other techniques. We implement a parallel,
GPU-based, high-quality renderer that runs in real-time and produces visually-
attractive views of given fractals. The program can visualize any given chaotic
function. This way, we open the realm of real-time visualization of chaotic func-
tions to the public and lay a basis for future research.

Keywords: real-time rendering, the Mandelbrot set, fractals, Escape-time fractals,
adaptive super-sampling

v

vi

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Aims . 8

1.2.1 Research aims . 8
1.2.2 Implementation aims . 8

1.3 Related work . 9
1.3.1 Software for fractal rendering 10
1.3.2 Papers on fractal rendering and chaos prediction 11

1.4 Goals . 12
1.5 Expectations on the reader . 13
1.6 Thesis structure . 14

2 Mathematical background on fractals 15
2.1 General definitions . 15
2.2 Fractals . 15
2.3 Chaotic functions . 16
2.4 Continuous escape-time fractals 17

2.4.1 Maps . 17
2.4.2 Complex maps . 17
2.4.3 Complex quadratic map 18
2.4.4 Mandelbrot set . 18
2.4.5 Julia set and Julia fractals 19
2.4.6 Newton fractal . 19
2.4.7 Other examples . 20

3 Problem analysis 23
3.1 Rendering algorithms . 23

3.1.1 Making a fractal from the Mandelbrot set 23
3.1.2 Julia fractals . 25
3.1.3 Newton fractal . 26
3.1.4 Rendering a fractal as a whole 28

3.2 Generalization . 29
3.3 Chaotic functions . 30

3.3.1 Formal definition of the rendering problem 31
3.3.2 Performance-increasing heuristics 32

3.4 Supersampling . 32
3.4.1 Sample distribution . 32
3.4.2 Sample composition . 33

3.5 Fractal coloring . 34
3.6 GPGPU technology . 35
3.7 Backend and Frontend . 35
3.8 Programming languages . 36
3.9 Genericity . 37
3.10 Designing a graphical user interface 38

3.10.1 Class architecture . 39

1

3.11 Number precision . 40

4 Methods of achieving real time performance 41
4.1 Adaptive super-sampling . 42

4.1.1 Algorithm for adaptive supersampling 44
4.2 Interactive mode and progressive visualization 45

4.2.1 Fixed resource budget per frame 46
4.2.2 Progressive visualization 47

4.3 Sample reuse . 47
4.4 Foveated rendering . 50
4.5 Combining the methods into a toolset 52
4.6 Conclusion . 53
4.7 Other possible methods . 53

5 Experiments 55
5.1 Measurements methodology . 55

5.1.1 Hardware . 55
5.1.2 Comparing specific chaotic functions 55
5.1.3 Choosing comparison method 56

5.2 Comparing XaoS and chaos-ultra 56
5.3 Adaptive supersampling . 57
5.4 The real-time heuristic toolset . 60
5.5 Rendering review . 61

Conclusion 65

Appendices 71

A Development documentation 73
A.0.1 CUDA terminology . 73
A.0.2 Fractal representation . 74

A.1 Program architecture . 74
A.2 CUDA backend . 75

A.2.1 Data structures . 75
A.2.2 Fractal interface . 76
A.2.3 Fractal specific parameters 76
A.2.4 Specific fractals implementation 77
A.2.5 Implementing the real-time heuristics 78
A.2.6 API of the module: Available kernels 79
A.2.7 Compilation and build . 80

A.3 Java-Cuda mapping . 80
A.3.1 Module object hierarchy 81
A.3.2 Cuda Kernel . 81
A.3.3 Class CudaFractalRenderer 83

A.4 Java renderer . 83
A.4.1 Supporting multiple fractals 84
A.4.2 Interface FractalRenderer 85
A.4.3 Class GLRenderer and OpenGL loop 87
A.4.4 Model . 89

2

A.4.5 Class RenderingController 89
A.5 Graphical user interface . 90

A.5.1 Swing GLCanvas . 90
A.5.2 JavaFX and Swing integration 91
A.5.3 FXML . 92
A.5.4 FX Presenter . 92

A.6 Developer README . 93

B User documentation 95
B.1 Technical requirements . 95
B.2 Installation guide . 95
B.3 Navigating the user interface . 95
B.4 Fractal change . 96
B.5 Changing the color palette . 96
B.6 Image export . 97
B.7 Troubleshooting . 97

C Adding a custom fractal 99

D Electronic attachments 101
D.1 Source code of the program . 101
D.2 Compiled executable . 101
D.3 Experiments . 101

D.3.1 Perception study videos 101
D.3.2 Perception study results 101
D.3.3 Real-time toolset evaluation 101
D.3.4 Examples of program’s output 101

List of Figures 111

3

4

1. Introduction

1.1 Motivation
“Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight
line.” — B. Mandelbrot [46]

There is a fundamental natural structure, observable in many fields of both
daily and scientific life. Perhaps the most distinctive occurrence of this structure
can be observed on plants. Tree branching, wheat spikes, brocoli: all of those
are evident examples of objects with self-similar structure composed of repeated
patterns. Such structures are denoted as fractals.

Big fleas have little fleas upon their backs to bite ’em,
And little fleas have lesser fleas, and so, ad infinitum.
And the great fleas, themselves, in turn, have greater fleas to go on;
While these again have greater still, and greater still, and so on.
— Augustus De Morgan [80]

Other occurrences of fractal structure in nature include, for example: The
network of veins in leafs, circulatory system of mammals, snowflakes, the Lichten-
berg figure, Romanesco cauliflower, river deltas [42] , Chambered nautilus shells,
pinecone seeds [31] , mountain surfaces, cloudy heaven, surface of tree bark, light-
ing trajectory, neurons, galaxies.

(a) Romanesco broccoli, example of self
similarity in nature.

(b) Fern leaf in detail, example of self
similarity in nature.

Fractals in mathematics

It seems that the fundamental natural forces themselves induce fractal structures.
This leads to the idea that by applying simple formulas in the right manner,
very complex patterns can be created. Indeed, we find this very behavior in
mathematics.

Mathematically, there are many classes of fractals arising from simple rules.
Examples of the most known fractals and their class are: Koch snowflake (Iterated

5

Function Systems), Barnsley fern and similar branching patterns (L-Systems),
and the Mandelbrot set (Escape-time fractals). We define fractals and define and
discuss these classes in more detail in Chapter 2.

(a) The first four iterations of the
Koch snowflake. Source: [13].

(b) Barnsley fern, an artificial
fractal resembling a natural fern.
Source: [11].

Perhaps the most fascinating and least understood and examined group is the
latter one, Escape-time fractals. These fractals are generated by iterating a
formula on each point in a space. The fractal is constructed from whether the
point has escaped some bound (hence the name) or, more generally, from the
convergence speed. Because this group is the most complex one, we want to
focus on it.

Fractals utilization

The study of fractals is a broad field with many application. Practical use-cases
include following:

All tree-based data structures (Search trees, decision trees, quad/oct trees,
heaps) have a self-similar structure and are, in their nature, fractals. In AVL
trees, the structure of self-similarity is similar to the branching-patterns observed
on plants (and their depth-analysis comes to similar conclusions). Dynamic pro-
gramming methods, e.g. divide and conquer, are fractals by their very definition.

Space-filling curves, for example The Hilbert curve or Z-order curve (a.k.a.
Morton code) that are used by many advanced computer-graphics algorithms and
data structures, are examples of fractals; also having the interesting property of
having integral Hausdorff dimension, larger precisely by 1 than their topological
dimension (more about this in Chapter 2).1.

In computer graphics, fractals are used for landscape generation [64] or object
generation in general [37] and for signal and image compression [15, 27] .

Fractal analysis is widely used to asses fractal characteristics of data in many
areas of science, especially in signal processing, ecology and medicine [36] .

Moreover, [78, 79] suggest that some fractal patterns reduce physiological
stress when viewed by humans.

1Interestingly, not many fractals have this ability, but for example the edge of the Mandelbrot
set does.

6

Figure 1.3: Inner part of the Mandelbrot set, example of an Escape-time fractal.

Other usages include e.g. generation of camouflage patterns or measuring
coastline complexity [45].

Fractal visualization

As we have showed, fractals are useful and can also be highly fascinating. This
is especially true for the Escape-time fractals. That is why people want to see
them and explore them in more detail. For this, visualization tools are needed.
Visualization always helps when exploring new ideas. B. Mandelbrot himself said
“The notion that these conjectures might have been reached by pure thought –
with no picture – is simply inconceivable.” [43]

There exist tools for visualization of Escape-time fractals, however, we think
that these are not appropriate enough, considering the progress in computer
graphics in the last years. We are going to analyze this in more detail.

All in all, we think that there is a need for a real-time high-quality visual-
izer of Escape-time fractals. Who would need such tool? We think that geeks,
computer scientists and artists — for example (1) for finding an ideal parameter-
constellation when examining a fractal in some research, (2) when referencing a
image of a fractal in a paper, (3) for exploring ideas for a wallpaper or poster,
(4) for creating a smooth animation.

This can be done with current software, but either the quality is low or it takes
a lot of time. We do not want to wait minutes for a single frame and hours for
a video, when just exploring ideas. Neither do we want blurry inaccurate images
with low level of detail. We want real time response, with sufficient-enough
quality for purposes described above.

For some fractal classes, this is easy. For Escape-time fractals, visualization
in general is complicated and real-time visualization is still a big issue. We are
aiming at solving it.

Chaotic functions

To be able to solve the problem of Escape-time fractal visualization, we need to
know them bit better.

7

The most famous Escape-time fractal is the Mandelbrot set. However, wo do
not want to visualize only this instance; we want to analyze and visualize the
Escape-time fractal class in general.

The Mandelbrot set is defined by a very simple function, z2 + c (we introduce
this in Chapter 2 in more detail). From such an easy mathematical formula, there
emerges an extraordinary complex object — this behavior is not at all clear at
the first glance. We want to help exploring such behavior for all other possible
formulas.

During the anlysis of Escape-time fractals and their rendering properties, it
comes forward that their most immersive property is chaos — the fractals are
chaotic. In our later research, it proves most useful to generalize our problem
and to analyze visualization of chaotic functions in general, instead of focusing
only on Escape-time fractals.

We did not expect this generalization at first. Yet after it emerged, it seemed
almost natural. Suddenly, there is a huge overlap to other fields: Weather and
climate forecasting [40] , road traffic models [72] or study of economic bubbles
[71] are all examples of chaotic systems that, in some sense, behave similarly to
Escape-time fractals.

It would be very interesting to explore this overlap in a more detail and
to find the connection between visualizing fractals and, for example, weather
forecasting or economy. At the same time, we need to maintain the scope, length
and difficulty of the thesis.

1.2 Aims
Based on the previous discussion, we summarize the aims of the thesis. This
helps us in being ready for defining the specific goals.

We aim at implementing a real time visualizer of chaotic functions, with focus
on Escape-time fractals. While doing that, we also aim at discovering chaotic
functions and the problems that come forward when rendering them.

1.2.1 Research aims
For visualizing a chaotic function, we will need to know the function’s values,
at least approximately. Moreover, for achieving real time performance, the cal-
culations need to be very efficient. Some guessing will be needed, for example
heuristics. For high visual quality, multiple samples per pixel will be needed,
leading to partial integration of chaotic functions.

We are touching an open research problem: prediction of chaotic functions.
We do not have the ambition to solve the problem; not even to propose general
solutions. We rather touch the problem from the very specific point of view of
the rendering of Escape-time fractals.

1.2.2 Implementation aims
To be able to precisely specify the implementation goals, we must know what we
are aiming at. We base our aims on the expected target group: geeks, computer

8

scientists and artists.

Code basis

We want to allow the users to modify the program to suit their needs. Thus
the program needs an ability to add new fractals, a good software architecture,
maintainable code and an open licence. It should also be cross-platform.

Some of the users will have programming experience. We expect that maybe
an open-source community will work together in customizing the program.

On the other hand, the rest of the users will prefer a tool that is easy to use,
with minimal learning curve and with pre-made fractals and views.

Device type

Possible target devices are personal computer (desktop or laptop), mobile devices
(smartphones or tablets) and cluster in a datacenter.

Mobile devices are highly interactive, but lack computational power needed
for real time visualization.

Clusters have great computational power but are not interactive — for fractal
examination, we need constant visual feedback in HD, without compression. Uti-
lizing clusters would introduce an unbearable load for the network, or compression
artifacts.

Personal computers are an affordable, standard equipment of geeks, computer
scientists and artists. They have sufficient computational power, are extensible
and interactive enough. That makes them our target platform.

We can utilize high tech gaming PCs — they have been designed for the very
purpose of visualization. We can expect an average computer graphics scientist
or geek to have a middle to high end gaming PC with a decent CPU and GPU.

Processing unit type

The rendering can be computed either on a CPU or by utilizing GPGPU2 tech-
nology. There exist CPU-based renderers, yet we do not know about GPU-based
ones. We want to fill this gap. Based on current market situation, when graphics
cards are affordable to anyone, we aim for a GPU-based renderer.

1.3 Related work

We have stated the aims of the thesis. Before defining our goals, we look on
relevant existing solutions. Thanks to that, we will have inspiration, will know
what gap we want to fill and will be able to define our goals precisely.

We list some existing software for fractal rendering, and then briefly go through
relevant papers on fractal rendering and chaos prediction.

2General-purpose computing on graphics processing units

9

Figure 1.4: XaoS , real-time CPU renderer with GUI.

1.3.1 Software for fractal rendering
We want to check whether there already is a program that successes in high
quality real time rendering of Escape-time fractals. We list and discuss known
fractal-rendering programs.

Quality oriented

• Fractint — A quality-based CPU renderer, originated in 1990s.
• Ultrafractal — A versatile and very generic renderer, suitable for creating

fractal art. Provides fast zoom functionality, but still not real time.

Programs listed above are capable of rendering marvelous animations of e.g. mov-
ing around the edge of the Mandelbrot set. However as they are strictly quality-
oriented, they cannot effectively be used for interactive real-time rendering. It
takes seconds to minutes to hours to produce just one image.

Real Time

• Mobile Apps: Mandelbrot Explorer by Defiant Technologies, MandelBrowser
by Tomasz Śmigielski, GPU Mandelbrot by Infinite Worlds, Fractview by
Searles, Fractal Universe by Hochschule Düsseldorf (HSD) — All of them
support only Mandelbrot/Julia, and have low visual quality. Most of them
start lagging when zoomed in too much.
• XaoS by Jan Hubička [33] — A CPU-based pioneer of real time fractal

rendering, an industry standard. A well optimized software. It also has
support for custom fractal formulas, is cross-platform, versatile, and has
many more features. But compared to today’s expectations on video and
graphic effects, its visual quality seems rather low, with many fragments,
lags and blind-spots. We expect that with and GPU-base approach, image
quality could be much higher than its.

10

• Electric sheep [76] — A distributed computing project, with fast rendering,
but specializing on fractal flames, not supporting Escape-time fractals.
• Fractal by Pavel Fatin [26] — A simple GPU based fractal renderer, sup-

porting only Mandelbrot and Julia. It seems nice but has low FPS (Frames
Per Second) and does not allow greater zoom levels. Lags with greater
resolutions.
• Nuclear by John Tsiombikas [83] — A very simple shader-based implemen-

tation of Mandelbrot and Julia fractals. Fast, but with low details and no
support for other fractals.
• WebGL mandelbrot by curran [23] — WebGL implementation of the Man-

delbrot set that runs in the browser. Very low FPS, but a great proof of
concept.
• MPMAndelbrot by Eric Bainville [2] — An OpenCL multi-precision imple-

mentation of the Mandelbrot set, running in real time with about 1 FPS.
It is slow, but a great proof of concept.

All listed time renderers have low quality: either (very) low level of detail of
fractal’s structure or low FPS. Even the programs that use shaders or GPGPU do
not use it effectively or do not introduce heuristics that would increase rendering
speed. Also, most of the programs support only Mandelbrot/Julia fractals, not
fractals in general.

Conclusion

There is no program that meets our requirements. HQ renderers are not real
time, and real time zoomers produce low quality images. We have not found a
program that would combine both approaches. The aim of our thesis makes sense
and is innovative.

1.3.2 Papers on fractal rendering and chaos prediction
Let us have a look on papers that are relevant to the topic of fractal rendering
or chaos prediction and at what we can learn from them.

[48] provide algorithms for real time rendering of Escape-time fractals on CPU.
The algorithms are not usable in our case, because the threading- and memory-
model of CPU differs vastly from that of GPU. Still, the algorithms prove to be
inspirational.

[56] is an algorithm for effective rendering of the Mandelbrot set. However, it
relies on contectedness of the set and thus cannot be generally applied. Moreover,
it is not suitable for the GPU’s threading model.

[50] successfully proved that rendering the Mandelbrot set and Julia sets using
GPGPU is possible and is fast (yet not real time). This proves that our parallel
idea makes sense and it can be our steppingstone to possible rendering methods.

[5] pioneers the rendering of fractals on GPUs. However, it does not speak
about their real time visualization nor specifically about Escape-time fractals.

[47] analyzes chaotic systems in general and studies detection of chaotic re-
gions in the parameter space, even providing an implementation. The implemen-
tation, however, is CPU-based.

11

[66] comes with an innovative approach to chaotic precess forecasting, in-
troducing combining of statistical and machine-learning techniques. The paper
focuses mostly on weather forecasting and implementing its ideas would be out of
the scope of this thesis. Still, it provides a great inspiration in the field of chaos
prediction.

[38] describes an adaptive process for Monte Carlo rendering, which could be
an inspiration for our adaptive processes, regarding ,for example, supersampling.

[30] and [67] describe how to utilize Foveated rendering, a method where the
image is rendered in progressively less detail in ares where the user does not
currently look. We could use this method for reducing amount of samples.

1.4 Goals
Having discussed our motivation and aims and having introduced relevant work,
let us now formally and precisely define the goals of the thesis.

The main goal of the thesis is to implement a generic real-time ren-
derer of chaotic functions that is parameterisable by a specific chaotic
function. It has to have following abilities:

1. Genericity: To fully allow examinig the realm of chaotic functions, the
renderer should be able to plot arbitrary chaotic function C → R. The
main focus can be on Escape-time fractals however. We ought to provide
implementations of the three most common fractals: the Mandelbrot set,
Julia sets and Newton fractal. Other chaotic functions can be added pro-
grammatically.

2. PC & GPGPU-based: The renderer should use GPU-accelerated
computation for rendering. We are targeting middle-ranged PCs, with
GPU similar to nvidia GeForce GTX 1060.

3. High quality in real time: We aim at rendering concerned fractals in
high resolution and in high level of detail, with immediate feedback
and smooth user experience when zooming in or out or moving the canvas.
3.1. Resolution: The resolution has to be scalable and adjustable to win-

dow size. The program should support up to Full HD, i.e. 1920 ×
1080 px.

3.2. Detail level: As the concerned fractals are infinitely complex yet
still interesting with even small level of complexity, we cannot for-
mally state what is “good enough” visual quality. We can only rely on
user’s subjective impressions and comparing our results with existing
renderers.

3.3. Rendering performance: Smoothness of user interaction can be
measured in frames per second (FPS). Usually, application is consid-
ered smooth when reaching 24 or 30 FPS, yet some real time anima-
tions target up to 60 or 120 FPS. Thus, the target FPS has to be
programmatically modifiable and the algorithms should adjust when
it changes. Increase of FPS may lead to decrease of level of detail.

Our formal requirement is, for hardware defined above, to consistently
achieve following goals at the same time: HD resolution, i.e. 1280×720 px,

12

30 FPS and level of detail higher than when using XaoS renderer.3 For
higher resolutions, some slowdown is allowed and expected. Also, the prob-
lem of fractal rendering inherently gets more complex when zooming in; for
higher zoom levels, a slowdown is allowed and expected.

4. User experience: To allow the users for straightforward interaction, the
program has to have a simple graphical user interface (GUI). The main
part of the program is to be a canvas that visualizes the fractal and allows
following user interaction in a common way: zoom in, zoom out, move
around. The resolution of the canvas has to fit the resolution of the window.
The GUI also has to allow fractal’s parameter tweaking, using text fields
and buttons.

5. Cross-platform: To approach wide audience, the program has to be cross-
platform, supporting both Windows and Linux.

6. Extensibility: To allow the community to further develop the program
to suit their needs, the code base has to be readable and extensible. The
program has to have a good software architecture, properly utilizing the
OOP principles. It should be implemented in a standard OOP language,
with code following given language’s style and best practices.

7. Color palettes: To go towards users’ individuality, the program has to
allow changing the style of coloring the fractal, for example by loading user
defined color palettes.

In addition to software-oriented goals, we hope to better understand the perks
of sampling a chaotic function. We aim at providing a relevant discussion of the
problem and at proposing a few possible solution methods. Our goal is NOT to
try or implement all discussed and proposed methods in their full potential; we
allow proof-of-concepts and simplified versions.

Our research should focus mainly on following areas:

1. Progressive visualization: Interactive navigation with a minimal sample
budget, which is then refined whenever the user interaction stops.

2. Adaptive sampling: Developing meaningful heuristics for detecting in-
teresting regions of the visualized function, so that more samples can be
evaluated for those regions.

3. Foveated rendering: Allocating fewer samples to regions away from user’s
focus (for instance assuming that the user focuses at the cursor). Doing so
in a perceptually plausible way.

4. Sample reuse: Reprojection of the already evaluated samples between
successive frames to avoid duplicated computation.

1.5 Expectations on the reader
We expect the reader to have a standard mathematical education in fields of
linear algebra, calculus and statistics and to understand complex numbers.

We expect the reader to understand basic concepts of object oriented program-
ming (OOP) and software development. We also expect the reader to understand

3We compare with XaoS mostly because it is a pioneer of real time fractal rendering and
has been inspiration for this thesis.

13

the basics of OpenGL API and of GPGPU, as sufficient introduction would be
beyond the scope of this thesis. Such introduction can be found for example at
[22].

1.6 Thesis structure
It is apparent from the goals that this thesis has two aspects: An implementation
aspect and a research aspect. The implementation aspect has been mostly ful-
filled by the creation of the software; its development documentation is included
in Attachment A. The main text of the thesis focuses more on the research aspect.

In Chapter 1, we start the thesis with defining fractals and chaotic functions,
followed by introducing the Mandelbrot set and other Escape-time fractals in
Chapter 2.

Then in Chapter 3 we analyze the problem that lays before us, focusing on
fractals and how to render them. We come to the need for chaotic functions. In
the second part of the chapter, we analyze the software-specific goals and discuss
what technologies, languages and libraries should be used for the implementation.

We follow with a theoretical Chapter 4, in which we propose what methods
could be used for real-time rendering of chaotic functions.

After the methods have been proposed, we implement them, with details
described in Appendix A.

Having an implementation, we compare its efficiency and quality with other
programs in Chapter 5. We also measure the performance of the proposed real-
time methods.

At the end, we summarize what we have done, and show that we have fulfilled
the goals stated previously.

14

2. Mathematical background on
fractals
As stated in the first chapter, we aim to visualizing chaotic fractal functions.
Many chaotic functions are fractals and vice versa, yet formally, fractals and
chaotic functions are independent classes. Let us first have a look at each of
them.

First, we define generally used terms. Afterwards we define fractals and
chaotic functions. Then we introduce functions that are generally chaotic and
yield fractals, complex maps. Finally, we describe most common fractals, such as
the Mandelbrot set, Julia sets and the Newton fractal.

2.1 General definitions
• When we say that a function is visually attractive, we refer to attrac-

tiveness of its graphical representation. We mean that it can be plotted in
a visually attractive way, usually colorfully.
• Hausdorff dimension of an geometric object is a measure of roughness.

Informal and vague definition is this: When scaling an object, it is scaled
by factor S and its mass (i.e. area, volume etc.) changes by factor M . Then
its Hausdorff dimension is such D, that SD = M . For non-fractal geomet-
ric objects, it is an integer equal to the topological dimension (e.g. when
scaling a 3D cube, its volume changes by power of 3). For fractals, it is a
fractional number. Explaining Hausdorff dimension formally is beyond the
scope of this thesis; to learn more about it, see [19]. For detailed informal
explanation and animation, see (ref).

2.2 Fractals
The origin of the term fractal goes back to the 17th century when Gottfried
Wilhelm Leibniz debated on recursive self-similarity and used the term “fractional
exponents” [68]. The term itself was introduced by Benoit Mandelbrot together
with a definition in 1975 [59][44].

According to Mandelbrot, fractal is “a rough or fragmented geometric shape
that can be split into parts, each of which is (at least approximately) a reduced-
size copy of the whole” [46]. In a more formal manner, Mandelbrot used the term
fractal to denote a mathematical structure with Hausdorff dimension strictly
greater than its topological dimension [44]. There are yet other possible formal
definitions and there is no consensus across the scientific community in formal
definition of fractal or whether it ought to be defined at all [25]. Mandelbrot’s
first definition will be sufficient for our purpose.

There are many types of fractals. One common characterization of fractals
is by generation techniques. Common techniques for generating fractals are for
example:

15

• Iterated Function Systems — use fixed geometric replacement rules (e.g.
Koch Snowflake, Cantor Set, Menger sponge)
• L-systems — use string rewriting (using formal grammars) and turtle graph-

ics, resulting e.g. in branching patterns such as plants
• Random fractals — use stochastic rules, resulting e.g. in Brownian tree or

fractal landscapes
• Escape-time fractals — use a map at each point in a space (e.g. the complex

plane), resulting e.g. in the Mandelbrot set
• Continuous multidimensional fractals — generalization of previous, use an

arbitrary formula at each point in a space

See [16] for more detailed characterization and examples.
As stated in Chapter 1, we examine the last group, Continuous fractals, with

restriction on two dimensions, i.e. Continuous 2D fractals.

2.3 Chaotic functions
In Chaos theory, we study functions with sensitive dependence on initial condi-
tions. The intuitive metaphor behind Chaos theory is the butterfly effect.

The butterfly effect describes a phenomenon when a flap of butterfly wings
in, for example, Prague, leads to a tornado in, for example, Santa Cruz, California,
US. The butterfly itself does not have power to cause the tornado, but its wing
flap changes the initial conditions of the chaotic system (weather system in this
example), which could lead to different air flow at the area, leading to an air
turbulence, leading to a tornado. Had the butterfly not flapped its wings, the
system could have behaved vastly differently, possibly not leading to a tornado
at all (hence the causality). The effect was described by Edward Lorenz in 1972
[41].

We will examine deterministic chaos, which was summarized by Lorenz as:

“Chaos: When the present determines the future, but the approximate
present does not approximately determine the future.” [6]

Definition 1. A function f is considered chaotic when an infinitesimally tiny
change of x leads to unpredictable change of f(x).

Examples of chaotic functions are:

• sin(1/x) for x ∈ (0, ε) for some small ε.
• position of a double rod pendulum at time, given initial position [39]
• the Lorenz Attractor
• iterating over evolution function x→ 4x(1− x), y → (x + y)
• iterating over complex evolution function z → z2 + c, inducing the Mandel-

brot set and Julia sets

Although logically not negation nor complement, in some informal sense, chaos
can be seen as an opposite of continuity.

16

2.4 Continuous escape-time fractals
Our goal is to examine continuous 2D fractals, especially those from the escape-
time class. Let us have have a look at a class of functions that yield them. We
expect those functions to be chaotic.

2.4.1 Maps
Maps, also known as iterated functions or evolution functions [18] are a sub-
class of chaos functions. Informally, value of an iterated function is obtained by
repeatedly applying the function to its result.

Definition 2 (Map). Let X be a set, f : X → X be a function and n ∈ N, n ≥ 0.
Define fn as the n-th iterate of f by

f 0 = idX

fn+1 = f ◦ fn,

where idX is the identity function and f ◦ g denotes function composition.
We consider only maps on a normed vector spaces V (over a field F), allowing

us to measure distances and size. We will use standard notation, where |x| is the
norm of vector x.

When examining a map inducing a fractal from the Escape-time class, we will
most commonly examine its escape-time. Informally, we are examining how fast
(regarding number of iterations) the map surpasses a defined boundary, possibly
leading to divergence.

Definition 3 (Escape-time). For given map f , x ∈ V and boundary G ∈ F, the
escape-time is the smallest n0, such that ∀n < n0 : |fn(x)| < G.

This can be seen as a function ef,G : X → N∗; such approach will prove useful
in following sections. It should be noted that such n0 may not even exist; then
we set ef,G(x) =∞. The boundary G is usually called the escape radius.

The escape-time computation can be further generalized to measuring the
convergence resp. divergence rate. Such approach is used, for example, by the
Newton fractal (there, the map may converge to n different roots, so the single-
boundary escape-time does not apply).

2.4.2 Complex maps
Our goal is to examine 2D fractals. This is why we restrict to complex maps,
i.e. maps where X = C. The complex numbers have proven to yield chaotic
results after being mapped with even simple functions.

The set of complex numbers C is isomorphic with R2, meaning that we can
interpret algebraic operations on C as operations on two-dimensional vector space
over field R.

Thanks to this isomorphism, we will often consider our complex maps to map
R2 → R2. Furthermore, especially in the Implementation chapter, we will use
(x, y) instead of (Re, Im) when referring to the real and imaginary component

17

of a complex number and when referring to the complex plane itself. This will
prove practical as computer graphics libraries operate in the terms of the real
plane with x, y axis. We will also use terms complex number and point (referring
to a point on the real plane) interchangeably, if there is no ambiguity.

2.4.3 Complex quadratic map
One of the algebraically simplest examples of a complex map that behaves chaot-
ically is map defined by the following complex quadratic monic polynomial.

Definition 4. Let z, c ∈ C. The complex quadratic map Qc is an iterated
function with iteration given by

Qc : z → z2 + c.

This map gives rise to the Mandelbrot set and to quadratic Julia sets. After
having it mentioned many times, let us now finally introduce those sets.

2.4.4 Mandelbrot set
The Mandelbrot set is one of the most famous mathematical structures, known
both to the scientific community and to the general public. There is plethora
of descriptions of the set and its properties both in literature and online (for
example [55], [43]). For this reason, we will introduce it only briefly.

The basis for its discovery were laid by Pierre Fatou and Gaston Julia in 1918
when looking at the theory of iterated rational functions from a global point
of view [77]. In 1980, Benoit Mandelbrot discovered the set (originally called “µ
map”) during his research of the Julia and Fatou sets [46] and immediately created
a widespread interest in it. Later the set has been named after Mandelbrot.

The Mandelbrot set is set of complex numbers c for which the complex
quadratic map Qc does not diverge when iterated from 0 infinitely many times.
Formal definition follows.

Definition 5 (The Mandelbrot set M).

M =
{︂
c ∈ C | (∃s ∈ R+)(∀n ∈ N) : |P n

c (0)| ≤ s
}︂

.

The set is closed and contained in the closed disk of radius 2 around the
origin1. Thus, the formal definition can be simplified by taking s = 2. This leads
to M = {c ∈ C | eQc,2(0) = ∞}, e being the escape-time from Section 2.4.1. We
will show practical methods of determining whether given c is in M in Chapter 3.

When analyzing the set as a fractal, we are often more concerned with its
boundary rather than with the set itself. Informally, c is at the boundary of
the Mandelbrot set if there exist numbers a and b in the neighborhood of c such
that a is in the set and b is not. For formal definition, see topological definition
of set boundary, for example [58].

When rendering the boundary as a colorful fractal, we are concerned with the
escape-time (see Definition 3) with escape radius 2.

Unlike other fractals that we examine, the Mandelbrot set is connected [43].
1For formal proof, see for example [43]

18

2.4.5 Julia set and Julia fractals
Named after French mathematician Gaston Julia, the Julia set of an iterated
function f consists of values that cause the function to behave chaotically. It is
denoted J(f).

The Julia set of a function can often be a simple curve (e.g. J(z → z2) is the
unit circle) or may even be empty (e.g. for constant functions). Visually attractive
Julia sets arise from complex rational functions, whereas the most famous is the
family of quadratic Julia sets, J(Qc).

Definition 6 (quadratic Julia sets). For given c ∈ C, quadratic Julia set is

J(Qc) = {z ∈ C | eQc,2(z) =∞}

There is a close coupling between quadratic Julia sets and the Mandelbrot
set, arising from the fact that both are induced by the same equation. Note the
difference between them:

• Mandelbrot: For each c in the plane, iterate Qc, starting at 0.
• Julia: For fixed c, For each z in the plane, iterate Qc, starting at z.

This is why there is only one Mandelbrot set, but infinitely many quadratic Julia
sets. The mostly known property is that for a given c ∈ C, J(Qc) is connected
⇔ c ∈M .

In the following text, when referring to a Julia fractal, we will mean the
quadratic Julia sets.

Same as with Mandelbrot, and for the same reason, when rendering the set
as a colorful fractal, we are concerned with its boundary and the escape-time
problem with escape radius 2.

2.4.6 Newton fractal
The Newton fractal is based on the Newton’s numerical iterative method for
finding roots of a polynomial. This method is generally numerically unstable,
and for complex numbers in particular, it behaves chaotically in some regions.
This is why it gives rise to a fractal.

It is induced by the following map.

Definition 7 (Map inducing the Newton fractal). Let n ∈ N, z ∈ C, p ∈ PC,n

complex polynomial of n-th order, p′ its first derivative. The map for the Newton
fractal, Np, has iteration given by

Np : z → z − p(z)
p′(z) (2.1)

The method divides the plane to regions of attraction. In an attraction region
(a.k.a. basin), all values converge to the same root of p when iterated by Np.
The boundaries of the regions do not generally converge, and behave chaotically
(infinitesimal change of z leads to z′ diverging or converging to an arbitrary
different root of p). These regions are the desired fractal.

The fractal is parameterized by an integer n and n+1 complex coefficients of p,
providing a rich variety of concrete instances to choose. There are combinations of

19

coefficients that will not behave chaotically or won’t result in a visually attractive
images, but generally Np will always diverge on some open regions of the complex
plane if n ≥ 4 [52]. A commonly used simple instance of coefficients is (1,0,0,-1),
i.e. p(z) = z3 − 1.

When rendering the set as a colorful fractal, we usually pick a different color
for each region of convergence. The convergence rate (how many iterations are
needed to approach given root) may be used to further modify the color.

Sources: [21, 73].

2.4.7 Other examples
There are other examples of fractals induced by complex maps that are relevant
for this thesis and whose implementation could extend the real time renderer.
However, finding a visually attractive 2D complex map that is not visually similar
to Mandelbrot/Julia set is believed to be hard [74, 34]. Examples of fractals
arising from two dimensional complex maps are:

• The Mandelbar set, a generalization of the Mandelbrot set with iteration
in the form z → zk + c or z → (z) k + c for k ∈ N+, z denoting the complex
conjugate. [86, 85]
• The Exponential map, with iteration given by z → ez + c. [10]
• Generalization of the previous, with iteration z → f(z) + c where f is an

arbitrary non-linear transformation. It has been shown to yield visually
attractive results for trigonometric and hyperbolic functions.
• The Burning ship fractal, a modification of Qc, where each component

is put in absolute value first: z → (|Re (z)|+ i |Im (z)|) 2 + c.
• The Gingerbread Man map, with iteration given by

xn+1 = 1− yn + |xn|
yn+1 = xn.

• The Nova Fractal, generalization of the Newton fractal with addition of
c at each step. Let c, α ∈ C, p ∈ PC,n, the iteration is given by

z → z − a
p(z)
p′(z) + c

• Generalization of the previous, replacing p(z) with arbitrary differentiable
complex function. Again, it has been shown to yield visually attractive
results for trigonometric and hyperbolic functions. [21, 84, 7]

For a broader list with detailed explanation and examples to each fractal,
see [3].

20

Figure 2.1: Visualization of the three given fractals.

(a) the Mandelbrot set (in yellow)
(b) Julia set of Qc with c = −0.4 + 0.6i
(in light blue)

(c) Newton fractal for p = x3 − 1, each
of the root colored in different color.

21

22

3. Problem analysis
We have successfully laid the mathematical foundation of fractals and chaotic
functions. Now we will analyze the problem specified by the thesis’ goals and
discuss possible solutions.

First, we describe algorithms for rendering of the three given fractals: Mandel-
brot, Julia and Newton. Then we try to generalize the rendering to all Escape-
time fractals. We find the need to generalize the problem to chaotic function.
Then we take a look at rendering itself and how a general chaotic function can
be visualized as image.

Finally, we discuss the ways the program could be implemented, including
programming language, GPGPU technology, and graphic libraries.

3.1 Rendering algorithms
The thesis’ goals specify three concrete fractals that are to be implemented: Man-
delbrot, Julia, Newton. We now look at each of them and describe possible
rendering algorithms.

3.1.1 Making a fractal from the Mandelbrot set
The Mandelbrot set is the most common example of Escape-time fractals. There
are many books, papers, articles and blogs dedicated to it, some of them dis-
cussing modern rendering methods. Rendering it on the GPU is also a very
common idea, because it is a great example of a parallel-computable function
with a great visual result.

As introduced in Chapter 1, we do not want to render the set itself, we are
interested in values c in its boundary and the convergence resp. divergence rate
of Qc when iterated from 0.

Proving divergence is easy: we iterate Qc, starting at 0. When, for any
complex number z′, it holds |z′| ≥ 2, then we know that Qc(z′) diverges. So, if
any intermediate value of the iteration satisfies |z′| ≥ 2, we stop and say that at
point c, the Qc mapping diverges.

On the other hand, with iterative methods, determining convergence is hard.
We can generally never be sure that a value is in the set (for some values, e.g.
z = −1, it can be proven mathematically).

Bounded computation

The usual solution to this uncertainty is introducing a parameter, the maximal
number of possible iterations, let us name it maxIter. If after maxIter iteration,
it still holds |z′| < 2 we abort and say that Qc mapping probably converges and
c is maybe inside the Mandelbrot set.

This way, we enclose the set from outside — higher the maxIter, the more
points are marked as divergent. maxIter can be increased infinitely, producing
more and more accurate method. of course, the computational complexity rises
with higher maxIter. Empirically, usual maxIter values are about 250–400 on

23

Figure 3.1: Alternative algorithms for visualizing the Mandelbrot set.

(a) An illustration of the Mariani-Silver
algorithm.

(b) A classical depiction of Bud-
dhabort, resembling Gautama Buddha.

simple renderers. (For example, the default value of maxIter in XaoS is 250).
Remark: Later in Section 5, we will show that values 900–3000 are possible in
real time, introducing unprecedented level of detail; but let us get back to the
analysis.

Escape time algorithm for the Mandelbrot fractal

The analysis above leads to the most common algorithm for making a fractal out
of the Mandelbrot set, the Escape time algorithm.

Algorithm 1 Escape time algorithm for the Mandelbrot fractal
1: procedure EscapeMandelbrot(c : complex, maxIter : integer)
2: z : complex, i : integer
3: z ← 0
4: i← 0
5: while i ̸= maxIter and abs(z) < 2 do
6: z ← z2 + c
7: i← i + 1
8: end while
9: return i

10: end procedure

The returned value is then used for determining a color. The simplest way
is a linear mapping of i using (0, maxIter) → (BLACK, WHITE). More interesting
methods are discussed in Section 3.5

The Escape time algorithm is very easily parallelized, making it an ideal
candidate for an example GPU algorithm. There are, however, other possible
approaches.

24

Mariani-Silver algorithm

Mariani-Silver algorithm is an algorithm that speeds up rendering of the Man-
delbrot significantly.

[56] describes it as follows: “The Mariani-Silver algorithm starts with a rect-
angular grid of pixels. The pixels on the boundary of the grid are evaluated,
and if they all evaluate to the same result the rectangle is filled in with a solid
color; otherwise the rectangle is divided in half (or quarters) and the algorithm
is applied again to each half/quarter.” See Figure 3.1 for visualization.

The algorithm relies on the connectedness of the Mandelbrot set. It also
relies on the CPU computing model. This recursively-refining algorithm with
unpredictable branching would be very hard to efficiently implement on the GPU.

Buddhabrot

Buddhabrot is another technique of rendering the Mandelbrot set. Its name
reflects the output’s resemblance to the classical depiction of Gautama Buddha.
[8] See Figure 3.1 for illustration.

Each pixel with value z has an associated integer value, a counter. The counter
is incremented by one each time any iteration of Qc (for any other point c) acquires
intermediate value z. Qc is iterated for all pixels, the image is then colored based
on the counters values.

The algorithm yields very beautiful results. At the same time, it introduces an
enormous memory pressure: literally chaotically incrementing values at different
regions of the memory, almost every memory access is a cache miss. Also, data
are concurrently written. The GPU memory model and concurrence model are
not suitable for this kind of use and would probably lead to performance decrease
in orders of hundreds or thousands.

Other algorithms

For the Mandelbrot set, there have been many other algorithms introduced in
literature and online. Variations on the Escape-time algorithm are proposed for
example by [75]

Based on the discussion above, we decide to create the fractal using the Escape
time algorithm, for its simplicity, parallelizability and the future generalization
potential.

3.1.2 Julia fractals
Proceeding form the Sections 2.4.5 and 3.1.1, we can easily modify the Escape
time algorithm of the Mandelbrot fractal for Julia:

As can be seen from the algorithm, and in unity with Section 2.4.5, the al-
gorithms for Julia and Mandelbrot fractals are almost the same. This should be
no surprise, as the idea behind the fractals is also almost the same. One only
has to pay attention to their parameters and note which point is the point being
rendered.

25

Algorithm 2 Escape time algorithm for Julia fractals
1: procedure EscapeJulia(c, z : complex, maxIter : integer)

▷ c is algorithm’s general parameter, z is the desired point
2: i : integer
3: i← 0
4: while i ̸= maxIter and abs(z) < 2 do
5: z ← z2 + c
6: i← i + 1
7: end while
8: return i
9: end procedure

3.1.3 Newton fractal
After having scrutinized Julia and Mandelbrot fractals, let us now pay more
attention to the third given fractal, Newton.

Following from the Equation 2.1 and Section 2.4.6, we assume that we are
given a complex polynomial p and are asked to make a fractal out of it.

The idea of the fractal is, for each point c, to find to which root of p (if to any)
the Newton’s method converges. For that, we need to know two more things: the
derivative of p, p′, and the roots of p, r1 . . . rn.

Finding the first derivative and the roots

Computing the derivative of a polynomial is a simple task with a generally known
solution, so we assume p′ to be known. Regarding the roots, we could (1) use
some of the known methods for finding them or (2) require them as algorithm
input. We now analyze both approaches.

(1) The compute-approach: If no roots have been given, we need to compute
them. A suitable method needs to be used: for example, the Newton method.
Although we use the numerically unstable Newton method for creating a fractal,
core of it lying in the imperfectness of the method, the same method can still be
used for finding the roots, if applied many times and on wide-enough universe.

(2) The provided-approach: we require the user of our algorithm to provide
correct roots of p. If the provided values are not correct, algorithm behavior is
undefined.

The compute-approach is imperfect, but possible and could yield good-enough
solution. It needs applying the method to many points and then analyzing the
results, for example by building a histogram and marking the n most common
values as roots. Other sub-problems should be solved, for example:

• checking if a root-candidate found by the method really is a root,
• deciding how to build the histogram,
• deciding whether to compute the histogram on the GPU or on the CPU,
• deciding how to pre-compute and store the values with the GPU’s restricted

threading- and memory-model.

The provided-approach puts responsibility on the user of the algorithm. This
partially makes sense, as roots are an inherent property of a polynomial and

26

Figure 3.2: The two coloring methods for Newton fractal.

(a) root coloring (b) convergence rate coloring

should be computed only once, at the beginning. It is much easier to implement
than the compute-approach.

For the sake of maintaining the scope of this thesis, we choose to implement
the easier solution, where the roots are provided. However, as our renderer is
going to be generic, its users are free to implement the compute-approach.

Coloring method

There is a variety of methods for coloring the Newton fractal. The two most
common are following. (1) Root coloring: choose a fixed color for each root and
colorize a point based on the root it converges to. (2) Convergence rate coloring:
colorize each point based on a rate at which it converges (for example by the
number of iterations needed, same as Julia and Mandelbrot). Both methods are
illustrated in Figure 3.2.

In our implementation, we implement both approaches, to demonstrate the
idea that a fractal can be colored in multiple, independent ways.

The two approaches can also be combined, creating even more visually at-
tractive fractals. We do not implemented the combined version, for the sake of
thesis’ scope. But again, the users are free to implement it.

The algorithm

Knowing the derivative, the roots and coloring methods, we can now formulate the
algorithm. The algorithm is based on iteratively applying the Newton’s formula,
exactly as prescribed by the Newton’s method. It is basically the the canonical of
performing the Newton’s method. Thus, no further discussion is needed regarding
this approach. See Algorithm 3.

The output of the IterateNewton can be colorized by any of the methods
described above. If r is undefined, we use some default color, for example black.

Algorithm analysis

The computational complexity of this algorithm is O(n∗maxIter). In each step of
the algorithm, we need to evaluate the polynomial of degree n, which needs Θ(n)
operations (for example using the Horner’s scheme), and then we compare z with
every of the n roots. The need to compare z with roots does not asymptotically
slow down the program, due to the linear nature of the polynomial evaluation.

27

Algorithm 3 The iterative algorithm for Newton fractals
1: procedure IterateNewton(z, r1 . . . rn : complex, maxIter : integer, p, p′ :

function)
2: i : integer
3: r : complex
4: i← 0
5: i← undefined
6: while i ̸= maxIter do

7: z ← z − p(z)
p′(z)

8: if for any i ∈ 1 . . . n holds : z ≈ ri then
9: r ← ri

10: break while
11: end if
12: i← i + 1
13: end while
14: return tuple(i, r)
15: end procedure

3.1.4 Rendering a fractal as a whole

We have shown how to compute the fractal value of the specific fractals. But
how to populate the whole screen with pixel data? Now we propose a very simple
approach that we call naı̈ve. It is based on [50] and on the approach used in
many other projects, especially those listed in Section 1.3.

To be able to render a fractal, we need to be specified the Region of interest,
a rectangular segment of the complex plane that should be visualized. We also
need to be given a pixel grid (texture) to render on, and, of course, a fractal
function. Here we propose the general idea how to do it; the implementation
details are discussed in Appendix A.

The segment of the complex plane can be represented, for example, by its
bottom-left and right-top corners. Other representation are introduced in Ap-
pendix A.

Algorithm 4 The naı̈ve approach to fractal rendering
1: procedure RenderFractalNaive(BL, RT : complex, output : texture, f

: fractal, maxIter : integer)
2: for i in 1 . . . width(output) do
3: for j in 1 . . . height(output) do
4: p← Transform(i,j,BL,RT) : complex
5: v ← f(p, maxIter, otherParams. . .) : fractalResult
6: c← Colorize(v) : color
7: output[i, j] ← c
8: end for
9: end for

10: return output
11: end procedure

28

In the Algorithm 4, f is implementation of one of the fractal rendering algo-
rithms described above, the Colorize method is one of the coloring methods
described above and the Transform method linearly transforms given indices
to corresponding coordinates within the complex plane.

The naı̈ve approach gives the basic idea how to render an fractal image. We
are going to generalize this approach in the next sections and vastly improve it
in Chapter 4.

3.2 Generalization
We have shown how to visualize the three given fractals. Yet, our goal is more
general, to visualize a generic Escape-time fractal. How to achieve that?

Finding some abstract entity that generalizes Newton, Mandelbrot and Julia
fractals, and allows for others, is not hard. We use the least common denom-
inator of their parameters, or allow fractal-specific parameters. Those can be
implemented in many ways, for example as an array of objects or a text string in
a defined format. There are other troubles, however.

Both Mandelbrot and Julia fractals base their value on the number of itera-
tions. Those two fractals can be generalized by an iterative process that receives
a complex map as input. The map can be supplied for example in form of an
algebraic equation. However, for the Newton fractals, this is not enough — it uses
the convergence root as its value (beside other approaches). Our generalization
should allow the user-defined fractals to choose other ways of finding the value
than the convergence rate.

Performance

Beside finding a general abstraction, we still need to fulfil thesis’ goal of achieving
high quality in real time with the generic fractals. This is surely not going to be
possible with the naı̈ve approach; even with the high performance of GPUs.

The naı̈ve approach invests the same amount of resources effort into every
pixel, into every iteration. A process that decides to stop iterating or to sam-
ple some non-fractal pixels with less resources would help us with the real time
performance.

For the Mandelbrot set, there are many known approaches to optimizing the
rendering time, see [20] . However, they rely on the specific properties of the
Mandelbrot set and cannot be generalized for our cause.

For proposing some general speedup methods, we would need to make more
assumptions about the functions that are being rendered. For example, the
Mariani-Silver algorithm from Section 3.1.1 relies on connectedness. But con-
nectedness is too restrictive; most of the Escape-time fractals are not connected.
Generally, the more assumptions, the less generic the rendering process is. How
to find the balance?

In the last few paragraphs, we have come up with many considerations. Get-
ting an inspiration from other fields of computer graphics would help us in finding
the solutions.

29

Nowadays, the most vivid rendering-addressing CG-branch is photo-realistic
rendering of 3D scenes. In this field, rendering is often viewed abstractly as per-
pixel computation of 2D integral of some abstract image function (for example,
the Monte Carlo integration method is used for the Path Tracing technique.) For
computing the integral, samples of the function are taken at different points and
then combined.

We tried to look at our problem from this abstract point of view too. We
found that chaotic functions were suitable for us. Let us discuss them.

3.3 Chaotic functions

The idea of an image function that is being sampled and integrated, and which is
usually reasonable, but sometimes very complex and unpredictable, seems very
fitting.

This is where chaotic functions came to our mind. Let us remind, what is
meant by “chaotic”: Informally, a function is chaotic when an infinitesimally
small change of the input changes the output unboundedly. Formal definition
can be found in Chapter 2.

The Escape-time fractals are examples of chaotic functions: The result of
an escape-time iteration often cannot be estimated from samples at near points;
Also, the number of iterations and the computation result may differ rapidly for
values that are near to each other.

For the rendering process, instead of considering a somehow-defined 2D frac-
tal, we will now consider a general 2D chaotic function.

This puts us before a more general problem, which is very challenging and
thus interesting: The sampling of chaotic functions. The core challenge of the
task lies in the fact that there is only little information that we know about the
function that we render. Yet, we still assume some properties, which we now
review.

Restrictions

At each sample that we take, we cannot be sure, how complex its computation
is going to be. Neither can we be sure that the function value will be similar
to other near values. Yet still, we anticipate that the function shows something
“reasonable” and that in many cases, it behaves “nice” in some way, for example
is connected. The core challenge would then be to identify the chaotic regions and
concentrate the computational power on them, while applying some interpolation
or a similar method on the connected regions.

We lay some more restrictions on the general chaotic function f . We need the
assumption that f is dependent only on its argument; especially, it is independent
on function values from its neighborhood. This assumption would exclude many
non-Escape-time fractals, and probably excludes many other chaotic functions.
On the other hand, it perfectly fits Escape-time fractals induced by complex
maps. For such functions, each sample can be computed independently. This
leads to our goal of parallel implementation.

30

complex plane,
the domain of f

s[p]

Im

Region of
interest,

segment s

Re

pixel
p

Grid g

N

M

example of color-mapping scheme,
using a color gradient

image of f
(codomain)

BLACK

RED

R
G

B
sp

ac
e

Im

s[p]

im
ag

e
of

 f
(c

od
om

ai
n)

samle computation at sub-pixel level

samples

Re

s[p]
f

Figure 3.3: Illustration of the definition of the rendering problem: pixel p is
mapped to dark-red color.

3.3.1 Formal definition of the rendering problem
Having thought about chaotic functions and having laid our restrictions on them,
let us now formally state what is the rendering problem that we want to solve.
We hope that this is going to be helpful in our future analysis of performance-
increasing methods.

The idea of the following paragraphs is following: We want to project an
infinitely-detailed image on a M × N pixel grid. We want to compute a 2D
integral of the area of each pixel. For this, we compute many function values (a.k.a
samples) at sub-pixel level, and then combine them using a weighted average. The
idea is also illustrated on Figure 3.3.

Now formally and precisely. Let f : C → R be a provided chaotic function1.
Let g be a grid of pixels, g = {1 . . . N} × {1 . . . M}; M, N ∈ N. Let s ⊂ C be a
finite rectangular segment of the complex plane, with width-to-height ratio M/N .
s is also known as region of interest.

We also assume

1. Semi-niceness: At some domain, f is chaotic, yet at some domain, f behaves
as if it were continuous.

2. Determinism: For any given floating-point precision, we can analytically
compute f(c), and the result is deterministic.

1for example our Mandeblbrot implementation, or a user-defined fractal

31

3. Independence: The computation of f(c) is independent of any other values
than c, specially of c′ and f(c′) where c′ ∈ U(δ, c′).

We map the pixel grid g to the complex plane segment s, so that each pixel
p ∈ g corresponds to s[p], a square-shaped segment of s.

For each s[p], we want to compute the piecewise 2D integral∫︂
c∈s[p]

f(c)dc

using sample-based numerical integration. This is the core challenge of Chapter 4.
Combining the first mapping and the integral, we have obtained a mapping

of pixels ∈ g to mean values of f at the pixels.
Finally, we colorize the pixel grid, i.e. use some predefined mapping R →

RGB, where RGB is the standard RGB color-space.

3.3.2 Performance-increasing heuristics
Having formally stated our problem and the assumptions we take, we are ready
to discuss and explore more performance-speedup methods, aiming at the thesis’
goal of real-time performance.

We would need a method that determines regions of the image that contain
fractals, so that we can focus the computational capacity on them, rather than
on wide single-color areas. This means that we are looking for a method that
determines whether a region is chaotic or non-chaotic.

From the realm of photo-realistic rendering, that inspired us, we have gotten
us some idea of other heuristics-based methods that can be used for a performance
speedup.

We feel that the discussion about those methods is going to be very wide.
Also we feel that it could be more dreaming or hoping rather than an analysis.
Finally,there are no granted results. For all these reasons, we introduce a separate
chapter for this topic, Chapter 4.

Let us now go back to the analysis of the problem, and let us see how the
other thesis’ goals can be achieved.

3.4 Supersampling
Having introduced the precise formal model, let us dig into another goal of the
thesis: high quality.

Similarly to many other visualization methods that render a continuous ob-
jects on a discrete pixel grid, our integral-based method is prone to aliasing, as
illustrated by Figures ?? and 3.4. The intuitive way to high quality is suppressing
the aliasing. The most common anti-aliasing method is supersampling.

3.4.1 Sample distribution
One of the main challenges of supersampling is sample distribution. A distribu-
tion that does not lead to other aliasing effects is desired.

32

Figure 3.4: Rasterisation: what should be the color of each of the 8 pixels? Below
are pixel colors based on only one sample, taken in the pixel’s center.

There are many possible sample distribution methods, including uniform dis-
tribution, pseudo-random distribution, low discrepancy quasi-random or Poisson-
Disc. See Figure 3.5 for illustration.

Uniform distribution is generally not used with smooth objects because it can
interfere with objects’ edges. For the random-based distribution methods, the
discrepancy of the random sequence is crucial. Sequences with low discrepancy
are needed, such that their values are distributed more evenly and do not make
clusters; those sequences are denoted as quasi-random.

In the field of photo-realistic rendering of daily-life objects, mostly pseudo- or
quasi-random sequences are used, to prevent interference of the sub-pixel layout
with the smooth shape of the daily-life objects.

We argue that the Escape-time fractals, our main rendering focus, are rarely
smooth objects and thus the main drawback of using the uniform distribution
does not apply for them. At the same time, the uniform distribution is very easy
to implement and further develop.

The scope of our thesis is wide, so in this case, for the sake of simplicity, we
decide to use uniform distribution. However, another distribution method is a
definite candidate for a future work.

3.4.2 Sample composition

After the samples have been taken, arithmetic mean should be used to compose
them together to one value. We have two options as what to compute the mean
from: the chaotic value f(c), or the color that has been derived out of it. Both
approaches have their pros and cons.

33

Chaotic value composition is algebraically straightforward and does not in-
troduce new colors. However, for points at the chaotic edge, it would produce
non-existent “mean” values that the chaotic function may actually never gain.

Color composition is more complex, needing a different color space than RGB
(for example LUV or LAB). It is also prone to introducing new colors, that weren’t
contained in the original color palette. It could lead to smoother results, which
is neither positive or negative with fractals (many fractals are inherently sharp).

As there seem to be no right answer, we choose the approach that is simpler:
composing the chaotic values.

3.5 Fractal coloring

After the fractal has been sampled and its chaotic value has been computed by
methods described above, we need to assign it a color. Many techniques for fractal
coloring are known. [28]

Since we work with generic chaotic functions, we need a mapping R→ RGB
as described in Section 3.3.1. There is a canonical way of mapping a real value
to a color: an infinite 1D texture. In reality, the texture is not infinite, but the
value is mapped modulo texture length. This approach is absolutely generic, as
the texture can contain arbitrary data, and is easy to implement on graphic cards.

A usual implementation would be a symmetrical texture with a color-gradient.
We will provide few of such textures (hence fractal color schemes) in our imple-
mentation.

There is also one thesis’ goal regarding color: user defined coloring schemes.
Because our program already uses color palettes, it seems logical to implement
user-specific color schemes via palettes. A standard way of providing a palette is
via an image file. We follow this standard way and simply let the user to load a
color palette from a file that they provided.

Figure 3.5: Examples of sample distribution methods within a pixel.

(a) uniform (b) quasi-random

34

3.6 GPGPU technology
After the analysis of the rendering process has been done, let us now analyze the
design of the program that is to be implemented. Proceeding from the thesis’
goals, we need to decide what GPGPU technology to use.

Currently, there are two main GPGPU implementations to choose from: CUDA
and OpenCL.

Our main demands are high computational power and an easy to use API,
proceeding from the thesis aiming at an extensible and readable implementation.
Learning tutorials for other programers who want to extend our program would
be a plus.

GPGPU
technology

High com-
putational
power

Easy to use
API

Learning tu-
torials

Vendor sup-
port

CUDA ✓ ✓ ✓ nvidia
OpenCL ✓ × × nvidia, AMD,

Intel

Based on the analysis, we decide for the CUDA technology. It limits us only
to nvidia’s GPU’s, but this limitation is not in a contradiction with any of the
thesis’ goals.

3.7 Backend and Frontend
Continuing with the analysis of the program, the next challenge is program’s
architecture. When facing the problem of designing a program with a user in-
terface, the usual common approach is to split the application into at least two
parts: backend and frontend. This is true both for web applications and for desk-
top applications. As this is de-facto industry standard, we follow this approach.

The backend is going to be responsible for efficiently computing the fractal.
We expect it to have an API that is non-dependent on specific technologies,
fractals and frontend technology. We want the backend to be as fast as possible,
and to exploit human perception flaws for this. Thus, information about the user
need to be passed to the backend as well, for example mouse position or what
interaction is the user performing, or what the user did and probably plans to
do next. Specific details depend on the methods used for achieving real time
performance.

This leads to following expectations on the backend’s API. It should provide
rendering methods that need to be given following information:

• what fractal is being rendered
• plane segment
• maximum iterations, maximum number of samples
• user related information

The frontend is going to be responsible for displaying the computed fractal
and for translating user interaction to commands that the backend understands.
Its architecture heavily depends on the language and GUI technology that we
use.

35

The resources spent by computing the fractal are expected to be larger by
magnitude(s) compared to the resources needed by maintaining the GUI. For
this reason, there is no pressure on effectiveness of the frontend, as opposed to
the backend. For sure, it is important to keep the overhead of running a GUI
minimal. Still, when implementing the frontend, we do not need to cling to
implementation details and may focus more on a clear design.

To create a maintainable program with readable code, as demanded by the
thesis’ goals, both frontend and backend should be further split into modules if
they grow too big on responsibilities. Middleware layers may be added, such as
service layer or quality-control layer. We are going to explore that after we have
chosen programming language(s), libraries and other technologies and after we
dig deeper into their specific details.

3.8 Programming languages
Now let us analyze what is the best programming language for achieving our
goals. Our goals specify that an OOP-based language should be used. We also
aim at a low learning curve for future developers, and thus we stick to a standard
widely-spread language.

Standard OOP languages to choose from are: C++, C#, Java, JavaScript,
Python. Let us compare them.

Proceeding from our goals, we define what we need from the language. We
need the language to be well-suited for GUI creation, GUI being on of our main
goals. We need the language to be cross-platform, this being one of our other
goals. Aiming at real time, we need a language with maximum speed regarding
the support for large bitmaps, or large arrays of primitive types (containing ren-
dering data). And, of course, we need the language to have some support for
programming in CUDA.

Need for two languages

Thinking about our needs on the language, CUDA-support and GUI-support
seem to be contradictory. Usually, CUDA code is written in low level languages
or scripting languages and GUI in more advanced languages. We now consider
using actually two languages: one that targets CUDA and one that targets GUI.

Pros of choosing two different languages: For each of the tasks, we use the
language that suits the task best, leading to a readable and maintainable design
and code, which is one of our goals.

Cons of choosing two different languages: There is a need for integration.
This introduces implementation overhead and may introduce more bugs and make
debugging harder.

Choosing two different languages leads to our goal of maintainability, and this
is why we decide for this approach.

CUDA-targeting language

CUDA is a complex platform, where bugs and bad-design happen easily. Our
main requirement on the CUDA-targeting language will thus be industry and

36

community support. We also need the best efficiency possible and possibility to
integrate with the GUI-targeting language.

The language recommended by nvidia company for writing effective CUDA
code is its own CUDA C/C++ language. Being based on C++ and compiled
mostly by the C++ compiler, it is for sure the most effective solution. The
language allows compilation to modules that can then be launched by library
calls from arbitrary other programming language, making it our ideal candidate.
We choose to use CUDA C/C++ as our CUDA-targeting language.

GUI-targeting language

Having chosen the low-level language, let us finally choose the GUI-targeting
language.

language
comparison

suited for
GUI

cross-
platform

CUDA bind-
ing

minimal
performance
overhead

C++ × ✓ ✓ ✓
C# ✓ × ✓ ✓
Java ✓ ✓ ✓ ✓
JavaScript ✓ ✓ × ×
Python × ✓ ✓ ✓

Remarks: C# is cross-platform in core features. However, its GUI libraries,
WPF and WinForms, are both Windows-specific [87]. Integration of JavaScript
with CUDA can be achieved, but in a very complicated way and has no library-
based support.

Concluding from the analysis, we choose Java as our GUI-targeting lan-
guage. Thanks to Java’s versatility, speed and CUDA bindings, we will also be
able to write most of the backend in Java.

Integrating Java with CUDA

For calling CUDA-related methods from Java, there is JCuda library. It is an
open-source project with positive references on maven site. Jcuda is a straight-
forward Java wrapper of CUDA native API with 1:1 mapping. Thanks to this,
there is no need to learn JCuda — one just uses the standard cuda api, only from
the Java code. There seem to be no other maintained open Java↔CUDA binding
library. For this reason, we choose to use the JCuda library.

3.9 Genericity
Coming back to our goals, the first goal of the implementation is for the program
to be generic with respect to fractals. This means the program has to be extend-
able and be able to visualize arbitrary 2D chaotic function (possibly expressed
by a formula or other means).

There are two possible approaches to allowing generic functions: (1) Dynamic:
The user inputs function’s definition to a text field, the program is able to dynam-
ically load it, evaluate it and render it. (2) Compiled: The user writes function’s

37

definition in a programming language and compiles it into a module that extends
the backend. Let us have a closer look at them.

The dynamic approach is used, for example, by XaoS . It requires the im-
plementation to parse the user-input. In our case, it means parsing the formula to
a cuda-compatible language and then compiling it to CUDA code. Its advantages
are user-friendliness and quick feedback. The main disadvantages are implementa-
tion complexity and the requirement on the end user to have a CUDAA-compiler
installed, including a full C++ compiler — this is a big limitation. Also, the
approach is restricted only on chaotic functions that can be expressed by an
algebraic formula.

The compiled approach needs the user to write its custom formula/function
as a code in CUDA C/C++ and to to compile it with a cuda compiler. The main
disadvantage is the technical requirements on the user: the user needs to have
programming skills. The main advantages are: (1) Robustness; this approach
allows more complex formulas, using full expressivity of the Turing-complete lan-
guage. (2) Easier implementation and (3) portability: after compilation, the
user’s custom function can be distributed with rest of the application and viewed
by users who have no programming knowledge nor compiler installed.

Translation of user input to a cuda-compatible language is way beyond the
scope of this thesis. We do not want to force our user to install a C++ com-
piler. And proceeding from Chapter 1, we expect the user who wants to add a
new fractal to have basic programming skills. This leads us to deciding for the
compiled approach.

3.10 Designing a graphical user interface
Having chosen an appropriate language, let us now choose how to build the GUI,
that is another of the thesis’ goals.

Fractal texture visualization

First, we need to have a look at how to visualize the rendered fractal. We want
the visualization process to be hardware accelerated, i.e without the need to copy
the image data to CPU memory to be processed by the front end and then copy
the data back to GPU memory to be displayed — such behavior would mean a
significant overhead.

CUDA has its own memory space, and data stored in it are not accessible
by standard means. CUDA provides means to copy the data to texture memory,
where it can be handled by standard API, for example OpenGL. Thus, we only
need to display the image as an OpenGL texture.

OpenGL

For accessing OpenGL from Java, we use JOGL library by JogAmp.org, because
it provides a straightforward way use OpenGL from Java with minimal overhead
and it is maintained and supported.

38

Building user interface

For building user interface, we need to choose a GUI-library. Java provides 3
standard libraries that we can choose from: Java AWT, Java Swing and JavaFX.
Each one is the historical successor of the previous one, JavaFX being the most
modern one.

JavaFX is officially supported by the Java community as “the GUI library to
choose nowadays”, while the other ones are being discouraged from using. Other
pros of JavaFX are: (1) It is a standard part of Java SE. (2) It has a convenient
XML designer and (3) is supported by modern IDEs. However, it has no direct
support for OpenGL. [61]

Swing is nowadays discouraged from using by the Java community. The
visual components produced by it are old-looking. The design of the API is
hard-to-grasp. On the other hand, it has a direct support for OpenGL.

AWT is recommended to use only in special circumstances. Our case does
not fit them.

Support for OpenGL is a must for us. However, since Swing is not generally
recommended, we want to minimize its use if possible. We strongly prefer using
JavaFX, for reasons stated above. There is an option, though: JavaFX and Swing
both provide an reliable easy-to-use integration for the other platform.

We can use Swing for displaying the OpenGL texture with hardware accel-
eration. And at the same time, we can use JavaFX for building the rest of the
GUI.

3.10.1 Class architecture

The recommended way of designing a class architecture of a GUI-desktop appli-
cation is using one of the following patterns: MVC, MVP or MVVM.

Each of the GUI frameworks, as well as OpenGL, introduces its own way of
doing this.

We can expect our program to consists of several views, models and controller-
s/presenters. To follow a good OOP design, one of the thesis’ goal, we use an
appropriate design pattern for interconnecting them. For this use case, there is
the PAC design pattern.

PAC

Presentation–abstraction–control (PAC) is an architectural design pattern used
for interconnecting multiple MVC triplets. It is a hierarchical structure of agents,
each consisting of a triad of presentation, abstraction and control parts. [70]

In the program, each of the controller/presenter would communicate with the
others, while the views and models stay independent.

We do not aim at rigidly implementing the literal wording of the pattern; we
adjust it to the specific needs of the implementations, as always recommended
with design patterns. For example, in our case, the UI and the rendering-backend
is expected to contain some same data. They can be both backed by a single
implementation of a model implementing two interfaces.

39

3.11 Number precision
One the thesis’ goals is support for zooming in or out of a certain part of the
plane. When zooming, the order of magnitude needed to represent the points in
the plane changes very quickly. This makes number precision an issue.

Quality-based fractal renderers use floating-point number representations with
arbitrary precision. This allows for infinite zooming, but increases rendering time
significantly.

CUDA is designed to work mainly with single precision, and supports double
precision too (IEE 754). However, switching to double precision affects perfor-
mance significantly. (Usually, the double arithmetic is 16x slower [22].)

We can choose to support only single-precision floating point arithmetic, both
single- and double-, or arbitrary precision arithmetic.

1. Supporting only single floats is most easy to implement. The negatives
are that only small zoom is supported, only down to E-7. It is a rather big
value that is achieved quickly if zooming into a fractal. This significantly
restricts the amount of fractal that can be visualized.

2. Supporting both single- and double-precision needs C++ templates to
be used, which is harder to implement. Also, corresponding Java-CUDA
binding gets more complicated. On the other hand, the pros are twice the
zoom of the fractals, down to E-15.

3. Supporting arbitrary precision needs a special library to be used and
is expected to be tremendously slow on the GPU. The implementation
complexity would be much bigger than with two previous approaches. Its
biggest advantage is the support for the infinite zooming in and out.

Implementing arbitrary precision would be out of the scope of the thesis. How-
ever, we to demonstrate the versatility and ability of generic rendering, and thus
we decide for the combined approach, supporting both single- and double-
precision.

We are going to implement the floating points in CUDA kernels using C++
templates. In Java, we use double precision everywhere, because the CPU is
not a bottleneck and it does not introduce any slow-down. When passing the
arguments to CUDA, they will be casted if needed.

40

4. Methods of achieving real
time performance
During the problem analysis, we have found out that the process of fractal ren-
dering needs performance improvement. We hope to find methods that will allow
it. We will now look at how to achieve real time performance of the sampling
process of chaotic functions, using heuristics-based methods.

Assumptions

The core challenge lies in the lack of assumptions that can be adopted in this
task — chaotic functions are nowhere differentiable, cannot be integrated analyt-
ically, and even resolving a single sample can require orders-of-magnitude more
computation than its immediate neighbors. Furthermore, function-specific as-
sumptions that many visualization methods use (for instance the connectedness
of the Mandelbrot set) need to be omitted as well.

Building on Section 3.3.1, we assume semi-niceness: At some domain, given
function is chaotic, yet at some domain, it behaves as if it were continuous. We try
to define magnitude of chaos and examine whether we can use this to determine
which parts of the fractal are the most chaotic ones and thus need to be sampled
more.

Then, instead of making more assumptions about the functions, we will make
assumptions about the user and the way our program is used. Building on
the third research goal of the thesis, Foveated rendering, we assume that the user
focuses at the cursor.

Techniques overview

Building on Chapter 1 and on Section ??, we introduce several heuristic-based
methods, that are commonly used for sampling optimization. These include:
• Adaptive super-sampling: using higher density of samples within chaotic

regions.
• Progressive visualization, technique where the user is shown a computation-

ally cheap snapshot of the result first, and the result is made more accurate
when the user interaction stops.
• Fixed frame resource budget, method that promises always-smooth user

experience, with variable image quality.
• Foveated rendering: preferably sampling regions where the user probably

looks.
• Technique of reusing samples from previous calculations.
We describe and analyze each heuristic and then propose a specific imple-

mentation that suits our cause. With the exception of adaptive super-sampling,
we do not see the heuristics as independent methods. Quite opposite, we aim
at combining all the other heuristics together to cooperate in the allowing of
real-time rendering. When introducing a new heuristic, we rely on the previously
introduced ones.

We do not go into implementation details. We leave those for next Chapter.

41

Figure 4.1: Illustration of chaotic regions of a function.

(a) Image of a chaotic function. (b) In yellow, regions that look chaotic.

Expectations

As heuristics are often non-exact, we do not formally state expected results. We
state that we expect a decrease of the rendering time (compared to the naı̈ve
approach) with ‘nonsignificant’ loss of quality, which is vague. In Chapter 5, we
compare rendering time and image quality when using the program with and
without some of the heuristics.

4.1 Adaptive super-sampling
Supersampling yields very good visual result, however at a very high cost. Almost
all the computational resources of our application are spent on computing the
samples.

We may not increase speed using for example some interpolation method —
due to the chaotic nature of our problem, each sample has to be taken indepen-
dently.

However, the aliasing effects do not occur in the whole picture, but only in
its chaotic parts. Very often only some (small) part of the picture is chaotic,
and the rest looks rather continuous (e.g. the big areas of the x3 − 1 Newton
fractal or inner areas of the Mandelbrot set). It would be convenient to perform
supersampling only on the aliased regions, where the fractal is chaotic.

For this, we need to develop a meaningful heuristic for detecting chaotic re-
gions. This is one of the research challenges of the thesis. We try to propose an
adequate method in the following paragraphs.

Adaptive process

General idea of an adaptive sampling process is following, according to [82]:

1. Take k initial samples, x1 . . . xk. Set i← k.
2. Compute a credibility of the samples, p(x1 . . . xi). This can be realized for

example by probability (mapping to (0, 1)) or an indicator (mapping to
{0, 1}).

3. Based on the credibility, either stop or set i← i+r, take another r samples
and continue with step 2.

42

Solution idea

Our first idea was statistical analysis of the samples. It is a simple idea, yet
turned out to work surprisingly well with the family of continuous fractals.

Samples in non-chaotic regions would have similar values, samples in chaotic
regions are expected to be distributed in some complex, non-uniform manner,
possibly resembling some random distribution. Such behavior can be statistically
analyzed using variance. We try to tell if the variance of the samples is high or
low. High variance would correlate to chaotic region, low variance to non-chaotic
region.

The value of data variance is data-dependent. We seek for a characteristics
that is data-independent, normalized. The simplest such characteristics is the
Index of dispersion.

Index of dispersion

The index of dispersion (a.k.a. relative variance) is a statistical characteristics of
data. It is a normalized measure of the dispersion of a probability distribution.
Being normalized, it is independent of the scale of the data. In our context it
means that it is not dependent on the user-provided chaotic function, hence it is
generic.

Formula for its computation is

d = σ2

µ
,

where σ2 is the data variance and µ is the arithmetic mean.
Theoretically, the index of dispersion is not meant for the analysis that we

are planning to using it for. We hope to get some results nonetheless, even if not
exact or statistically proven.

The values of index of dispersion categorizes the data into three categories.
We interpret those three categories in our own, chaos-related way.

1. d is zero or almost-zero — Data are uniformly distributed. This means the
data are non-chaotic. ⇒ No more sampling needed.

Figure 4.2: Adaptive supersampling: illustration of possible number of samples
per pixel and sample distribution.

43

2. d < 1 — Data are under-dispersed, i.e. non-uniform. Our interpretation is
that there is some fractal, but not the most chaotic region. ⇒ Few more
samples are needed.

3. d = 1 — Not relevant for fractals; won’t happen often. We join this with
the previous case.

4. d > 1 — Data re over-dispersed. We interpret this as chaos. ⇒ As many
samples as possible are needed.

4.1.1 Algorithm for adaptive supersampling
Based on the previous discussion, we propose the following algorithm. See Algo-
rithm 5.

Algorithm 5 First attempt to adaptive supersampling
1: procedure AdaptiveSuperSampling(maxSuperSampling, k : integer)
2: i : integer, samples : float[], sum, mean : float
3: i← k
4: sum ← 0
5: samples[1. . . k] ← TakeSamples(k) ▷ take initial samples to start with
6: while i ̸= maxIter do
7: samples[i] ← TakeOneSample
8: sum ← sum + samples[i]
9: if decision time then

10: mean ← sum / i
11: d← IndexOfDispersion(samples, i, mean)
12: if d < ϵ then
13: return samples ▷ No chaos. No more sampling.
14: else if d < 1 then
15: decide to take few more samples
16: else ▷ d ≥ 1, we are at a chaotic region
17: decide to take as many samples as possible
18: end if
19: end if
20: i← i + 1
21: end while
22: return samples
23: end procedure

On statistical significance

The described method may produce false-positives (a.k.a. Type I error), marking
chaotic regions as non-chaotic. False-negatives (a.k.a. Type II error), marking
regions with uniform samples as chaotic, are improbable. The smaller the initial
data set, the higher the chances of a false-positive.

We allow some level of error of both Type I and Type II, as the method is
only a heuristic and if few of the pixels are wrongly under- or over-sampled, it is
no problem, as long as there is only a few of them.

44

We determine the significance level experimentally: In Chapter 5, we compare
rendered fractals and visualized sample count. If we conclude that the parts of
the fractal that are most interesting are usually marked as most sampled, we con-
clude that the significance level of our method is good enough. We start with the
lowest possible (the initial samples per pixel k = 2) and eventually progressively
increase k until satisfied.

The first idea to adaptive super-sampling that we had, statistical analysis of
the samples, has proven to give some results. This is satisfying. There is still a
big room for improvements, but we leave this for future work. Having introduced
the basic method that we can build on, let us look at another ways of speeding
up the rendering process.

4.2 Interactive mode and progressive visualiza-
tion

We review other methods that speed up the rendering process and thus can lead
to real-time performance. The methods that we are going to examine usually
lay in reducing the visual quality of the image in some smart way that does not
distract the user much, saving o lot of computational resources.

For those smart approaches, we need to take some assumptions about the
user. For doing this, we introduce two different phases of user interaction. We
discuss how the program should behave in each of them. For each phase, we then
introduce techniques that can be used during the phase.

Introducing two phases

When a user interacts with our program (zooming in/out, moving the canvas,
parameter change), fastest possible response is desired. Quick response time is in
tens of milliseconds, bearable response time is about hundred milliseconds.

Let us call this kind of interaction the interactive phase. In some contexts,
we need to also discern the zooming phase and the moving phase within the
interactive phase. Those phases may interleave (if the user moves the canvas and
zooms in/out at the same time).

Then, when user interaction has stopped, the user typically wants to explore
the image in full detail before interacting again. Let us call this kind of interaction
the progressive phase. During the static phase lower response time is needed and
thus higher quality image can be rendered. At the same time, the user is expected
to examine the whole image, thus the higher quality is actually desired.

Phases properties

During the static phase, higher quality images should be shown, and more com-
putational resources are available. Adaptive super-sampling can be used during
this phase, as it is expected to positively affect performance with a minimal effect
on image quality. On the other hand, heuristics that significantly affect image
quality should not used.

45

For the interactive phase, we assume that the user is not interested in image
details. We have already assumed in the previous section that the user focuses
on the cursor. Thus, lower quality and rendering fragments are allowed in outer
regions of the image. This allows us to introduce a variety of other heuristics to
be used during the interactive phase. We will do this in the rest of this Chapter.

Phase detection and lifecycle

One of the challenges of this approach is determining and switching the phase.
We propose following, straightforward solution:

Every time a user interacts with the program, i.e. canvas move, zoom in or
out, parameter change, interactive mode is started. After k milliseconds of user
inactivity, progressive mode is activated, starting the progressive rendering pro-
cess described above. After the progressive rendering has finished, the program
is idle.

We have empirically stated that values of k about 50 milliseconds yield satis-
factory results.

4.2.1 Fixed resource budget per frame

What is meant by “fast response time” during the interactive phase? Following
up with the goals of the thesis, we aim at constant frame per second time (FPS)
during the phase. The target FPS should be programmatically modified. This is
a non-trivial demand, because the computational complexity of a chaotic function
cannot be generally predicted.

This problem can also be rephrased as aiming at fixed GPU occupancy time
per frame, and, more generally, fixed resource budget per frame.

In our search for a solution, we assume that two frames successively following
during the interactive phase have very similar structure and hence computational
complexity.

The idea of the method that we propose is following: Let T be the desired
rendering time of one frame. We render frame F and measure its rendering time,
t(F). Then, we modify parameters of the successive rendering by the T/t(F)
ratio. I.e. as if we were rendering F again but were aiming exactly at rendering
time T .

For this method to work, we need to be able to scale the rendering param-
eters in a way that directly affects rendering time, and know the parameter-to-
rendering-time relationship.

For sake of simplicity, we assume that the program spends most of its re-
sources on sampling the chaotic regions. Thus, changing the number of samples
taken at chaotic regions directly affects the rendering time. This can be done
via the maxSuperSampling parameter. We also assume that the relationship is
linear, i.e. multiplying maxSuperSampling by k changes rendering time to t ∗ k.
These assumptions are very strong and are definitely a candidate for future work.
On the other hand, the assumptions quickly lead to the following method: see
Algorithm 6.

46

Algorithm 6 Simple method for achieving constant FPS
1: procedure AutomaticQuality(desiredFPS : integer)
2: desiredFrameRenderTime ← 1 / desiredFPS : float
3: relativeQuality ← 1 ▷ Realized by maxSuperSampling in our proposal
4: lastFrameRenderTime ← desiredFrameRenderTime;
5: while program not closed do
6: relativeQuality ← desiredFrameRenderTime / lastFrameRenderTime
7: lastFrameRenderTime ← RenderFractal(relativeQuality)
8: end while
9: end procedure

4.2.2 Progressive visualization
What about the progressive phase? Common approach to rendering images dur-
ing the progressive phase is progressive visualization.

Progressive rendering is based on the idea that when the user interaction stops,
a quick low-quality preview of the fractal should be shown, and then higher-
quality images should progressively be computed and shown. At the end, full
quality image is shown. [51]

There a straightforward idea of achieving this: For improving the image qual-
ity, the maxSuperSampling parameter seems ideal. We start with the default
maxSuperSampling value and then double the value for each iteration of the
progressive rendering, until we have reached maximal desired quality (maximal
supersampling level) or maximal frame rendering time.

We propose maximal frame rendering time to be 1 second. This would mean
that progressive rendering takes up to 2 seconds (1 + 1/2 + 1/4 + . . . seconds)
and the stabile full quality image is shown after two seconds. This seems like a
reasonable time that the user would be willing to wait before losing interest.

We have shown two techniques that can be used during the progressive phase:
progressive rendering and adaptive super-sampling. We will now look more at the
methods for speeding up the interactive phase. Thus, in the rest of this Chapter,
we introduce heuristics that improve performance while affecting image quality
and are thus suitable for the interactive phase only.

4.3 Sample reuse
How to speedup the interactive phase more? Let us think if there is a process
that seems like a waste of computing resources. When a frame is rendered, it
usually does not differ much from the previous frame. Recomputing every sample
again from scratch seems like a waste that we are looking for and that could be
improved.

Instead of recomputing each sample from scratch, information from the last
rendering could be reused. This leads us to another goal of the thesis, sample
reuse. When changing the viewpoint, values from previous frames should be used
and projected into the current frame to save resources.

This is one of the classical problems of computer graphics with many known

47

approaches. [32, 1] .
This topic is very complex and introduces many challenges. To not run out of

the scope of the thesis, our discussion is rather brief, focusing on the most tangible
challenges of sample reuse. Generally, this method could be further advanced and
extended by even other research results. It has a potential of yielding very great
results.

What data is reused?

When reusing data, we stand at the decision of what data to reuse. We have two
possibilities: reusing the value of the chaotic function (the result of the integral)
or reusing the color that has been derived from it.

None of the approaches is correct or wrong. The approach with color reuse
would allow us to use GPU’s built-in texture filtering and other tools. The ap-
proach with chaotic value reuse seems to be more accurate, with less information
lost. Ideally, we want the reused sample to approximate the computed integral,
not to approximate a color.

We decide for chaotic value reuse. However, color reuse may be examined as
a future work.

Sample reprojection

When we want to reuse previous rendering data, the next challenge is finding the
right data. For a given pixel in the texture being rendered, we need to find a
corresponding value in the reused texture. Figure 4.3 illustrates this problem.

Generally, we are looking for an image warping method, that maps the pre-
vious texture to the current one. A linear warping is sufficient, as the user
transforms the rendered complex-plane plane-segment in linear way only.

We need a simple linear transformation with following property: For given
texture coordinate, find texture coordinates to the reused texture such that both
represent the same point in the complex plane (chaotic function’s domain). Let
us call it GetWarpingOrigin.

Point c of the complex plane at two differents
Regions of interest, green and blue.

The right grid reuses the data from the left grid.

Note location of f(c) sampled data in the two grids.

In red: pixels at which no
value can be reused

In yellow: pixels from which
no value is being reused.

Figure 4.3: Illustration of sample reprojection when reusing samples.

48

Filtering

When reusing a pixel after the texture has been only moved around, Get-
WarpingOrigin returns integer indexes. Indexing the reused texture is straight-
forward.

When reusing a pixel after zooming in or out, GetWarpingOrigin returns
float indexes, pointing at a mid-pixel. For reading a value out of the reused
texture in this case, a filtering method is needed.

Texture filtering is a standard operation provided by the GPU’s. However,
we have decided not to reuse color data from a texture, but to reuse the chaotic
samples. In this case, we need to implement the filtering ourselves.

There are many filtering methods available. As a proof of concept, we im-
plement simple bicubic filtering. We leave a room for future improvements, for
example for finding filtering methods that are less blurry and maintain the sharp
edges that fractals usually have.

Memory access

There are two memory access models to choose from: scatter or gather.
Scatter lies is one pixel’s value being written to its neighbors. Gather lies in

pixel reading values from its neighbors. [54]
In this case, the discussion is quick and the conclusion is evident: on CUDA,

only gather comes in question. Scatter approach needs concurrent writes, while
gather only needs concurrent reads. The performance difference of both ap-
proaches is tremendous.

Fragments and sample degradating

By computing the per-pixel integral of a chaotic function, we perform basically
rasterization. Rasterization often introduces artifacts. We have tried to to repress
them by supersampling. Our raster-based sample reuse method is prone to even
more artifacts, even with a texture-filtering method applied. The more a sample
is reused, the more artifacts occur.

To reduce this effect, we introduce sample confidence: Each pixel’s chaotic
value is assigned a confidence, a real value telling us “how good” the value is
(how confident we are about its quality). The initial confidence can be, for
example, the number of samples taken to produce the value. Then, within time,
its confidence decreases by a given coefficient.

As discussed before, during fractal moving, the artifacts of sample reuse do
not occur. Thus, we decrease the confidence of a pixel’s value only when zooming.

When combining new and reused samples, we compute their weighted average,
the confidence being the weight.

Zooming center

When zooming in into the fractal, we assume that the user focuses at the zooming
center. The quality of sample reuse is lowest at the zooming center — there is
little information to reuse in there. We do not want that the one pixel at the
cursor is reused in all directions. This would produce a blurry single-colored
blots.

49

So, when sample reuse is used when zooming in, it is important to take more
samples in the zooming center. A technique that focuses on this is Foveated
rendering.

4.4 Foveated rendering
Foveated rendering is a technique that reduces workload by reducing image qual-
ity in the peripheral vision. [30] Originally, the method was meant mainly for
head mounted displays. [67]. We utilize it for convenient wide displays.

The idea of the method is straightforward: concentrate the computational
resources to areas at the focus’ center and reduce them increasingly for more
distant areas.

For controlling the amount of resources spent by the different focus/distant
areas, we propose tweaking the maxSuperSampling rendering parameter, same as
in Section 4.1.

Foveated rendering relies on determining where the user looks. Eye trackers
are often proposed. We rely on a much simpler method, and in compliance with
the introduction of this chapter, we simply assume that the user is looking at the
mouse cursor.

This assumption seems very accurate during the zooming phase — The user
points with the mouse cursor to the area that should be zoomed, thus very prob-
ably focusing at the area. On the other hand, the assumption seems inaccurate
during moving or during the static phase, when the user is expected to rather
look at the picture as a whole. For this reason, we utilize foveated rendering only
during the zooming phase.

One of the perks of Foveated rendering is in quick responses to situations
when the user quickly changes its focus, typically when using a VR headset. We
elegantly solve this problem thanks to the “cursor points at focus” assumption,
because tracking the cursor is trivial. The rest of the method seems to be rather
simple to implement and may increase the performance significantly.

Human vision

To determine which part of the sample grid is distant and which is at the focus,
we rely on object’s visual angle.

Visual angle is the angle the pixel subtends at the users’ eye. It is usually
defined in degrees. See Figure 4.4 for visual explanation and see e.g. [63] to learn
more about it.

[53] divides human vision into various segments, in which we have different
sensitivity to details. The most precise part of our vision is the foveal vision. Then
there is macular, near- and mid-peripheral vision. Finally, in the far-peripheral
vision, the visual acuity is very low. Figure 4.4 illustrates the segments.

[53] defines the segments as follows: The edge of the foveal vision is 5◦ in
horizontal direction, the edge of the far-peripheral vision is 60◦ in horizontal
direction.

Thus, only in 5◦ of the horizontal visual field we see precisely, whereas behind
60◦, we are unable to spot any detail.

50

(a) Visual angle illustration.
Source: [12].

(b) Segments of human vision.
Source: [14].

Figure 4.4: Human vision

For simplicity, we now assume same values in the vertical direction as in
horizontal. This should introduce minimal error, as we are working with wide-
screen displays, that are small in the vertical direction. This is equal to modelling
the human’s field of view by fovea-centric circles, thus allowing to measure only
one angle.

A model for calculation of number of samples based on human vision

Previous section examines the human vision using the visual field, and it precisely
defines areas at which we see accurately and areas at which our vision has flaws.
Based on that, we can propose a model for calculation of number of samples based
on human vision. We build on the work of [67] Patney) and by [30] Guenter),
simplifying their ideas by introducing previous assumptions to our model.

We let the user set the screen distance and the real world pixel width. Then
at each pixel, we compute pixel’s visual angle v. Based on the visual angle, we
change maxSuperSampling of the pixel in following way:

1. v ∈ [0◦, 5◦] — maximal value (max)
2. v ∈ (5◦, 60◦) — f(v)
3. v ≥ (60◦) — 1

Where f(v) maps 60◦ to max, 5◦ to 1 and intermediate values interpolates in
linear manner. See Figure 4.5

Foveated rendering works great together with adaptive supersampling, mas-
sively reducing number of samples needed to be taken in peripheral areas. The
speedup should especially noticeable on wide screens, where the peripheral areas
are big.

Could the foveation technique also be to any use to the other methods? We
think that it could, and that we could combine all the introduced methods to-
gether to work as one compact, cooperating, real-time achieving toolset.

51

degrees

sample
count

5° 60°

maxValue

0

Figure 4.5: Foveated rendering: Mapping of the visual angle to sample count.

4.5 Combining the methods into a toolset
In the four previous sections, we have introduced two phases and five different
techniques, four of which can be used during the interactive phase. At the be-
ginning of this chapter, we have claimed that we do not see the methods as
independent, but quite the opposite, want them to cooperate in achieving real
time performance. Now we want to entitle us to the claim.

We want to put all the four methods available during the interactive phase
together to one compact, cooperating, real-time achieving toolset.

Relative quality analysis

For the automatic quality to work, we need to be able to adjust the relative quality
of the fractal being rendered. maxSuperSampling, parameter of the adaptive
super-sampling methods, works good for this. At least for values bigger than
one.

Should maxSuperSampling be lower than one, adaptive super-sampling is
technically disabled and cannot help more. How to render images by taking
less than one sample per pixel? With sample reuse! At all pixels, we reuse sam-
ples from the previous rendering. And then, at some pixels, we also compute
some samples.

What pixels to sample if maxSuperSampling < 1? We could decide at each
pixel whether to make a sample, with the probability maxSuperSampling. This
would perfectly match the idea of maxSuperSampling symbolizing the relative
image quality. But there should be a smarter way to investing our resources than
randomly. What about investing them to the pixels that need them?

Resource investment when maxSuperSampling < 1

During the analysis of sample reuse, we have concluded that when zooming in,
then more samples should be taken at the zooming center, to prevent the method
from creating artifacts. Zooming center is the user focus. We have a method that
allows preferring samples at the user focus: Foveated rendering.

For zoom in, foveated rendering should be plugged together with sample reuse
and make sure that at the user focus, some samples are taken. In case that
maxSuperSampling is 1, we take one sample at each pixel within the field of

52

view. If the value is lower, foveated rendering should be responsible for reducing
the sample count at the field of view, and even reducing the foveal radius, if
needed.

If zooming out or moving, we need to compute samples at the pixels at the
image border, because there are no value to reuse. At those pixels, at least one
sample must be taken, and then more samples can be taken adaptively if there is
enough resources.

Conclusion

We have prescribed how the four techniques available during the interactive phase
should rely on each other and how they should behave with respect to relative
image quality, symbolized by the maxSuperSampling parameter.

We hope that this cooperation would lead to real time performance, even in
cases when less that one sample per pixel is available.

4.6 Conclusion
Throughout this chapter, we have introduced two rendering phases: progressive
phase and interactive phase. Progressive phase starts when the user interaction
stops and is responsible for progressive rendering. The interactive phase starts
when the user zooms in/out or moves the canvas. We introduced a method for
adaptive super-sampling, which is used in both phases. For the interactive phase,
we introduced more methods: fixed frame budget, foveated rendering and sample
reuse. We bundled the methods used during the interactive phase into one toolset.

4.7 Other possible methods
We have introduced, described and analysed several methods that help us achieve
real time performance and we have put them together into a toolset. There are for
sure many other methods that could have been discussed and maybe implemented.
Such a broad discussion would however be out of the scope of this thesis. At least,
we list a few other ideas of real-time heuristics and leave them for a future work.

Under-sampling: Pixels in outer regions (determined e.g. by foveated ren-
dering) would be sampled by less that one sample per pixel, i.e. one sample would
be taken and then used for example for 8 or 16 neighboring pixels. We believe
that this would introduce a significant speed up. However, efficient CUDA im-
plementation is not straightforward. Different threadId-to-pixel transformation
would be needed than for the approach when each pixel is sampled. Moreover,
for this reason, the level of under-sampling cannot be trivially made dynamic
the same way that super-sampling can. Also, for memory access efficiency, the
sampled value should be stored only once, not for every pixel, but then rendered
for every pixel.

Edge detection: For adaptive super-sampling, instead of the statistical anal-
ysis, an edge detection method could be used, for example Sobel. The pixels
marked as edge would then be marked chaotic and supersampled. The main
challenge of this approach regarding CUDA is that it depends on values of pixels

53

in the neighborhood. This leads to the need of introducing a threading model,
which, beside others, can dramatically slow the program if implemented wrongly.
Another approach would be a simple sampling of the whole image, followed by an
edge detection of the whole image, followed by potential supersampling of some re-
gions. Straightforward implementation of such a method would not use resources
in CUDA-compliant. It would introduce a great memory pressure, memory being
the bottleneck of most CUDA’s performance. Also, it would not to easy to make
such a process adaptive, i.e. deciding after i iterations whether to continue with
i + 1.

Successive interations: Method introduced primarily for computing the
Mandelbrot set [57] , where a sample is computed with a lower number of iter-
ations first, and then the number is successively increased. Usually, the method
introduces many fragments during the progressive phase. On the other hand, it
produces snapshots very efficiently.

Let us now review how the proposed methods actually work when imple-
mented.

54

5. Experiments
We have implemented the ideas described in previous sections and created a
program that we named chaos-ultra1. The implementation of chaos-ultra is doc-
umented in detail in Appendix A.

Having a working implementation, let us now use chaos-ultra and measure how
fast it can render and how much have the proposed real-time methods helped.

To show that we have fulfilled our goal, we are going to perform following com-
parisons: (1) Comparing chaos-ultra and XaoS . (2) Comparing the progressive
phase of chaos-ultra with and without adaptive supersampling. (3) Comparing
the interactive phase of chaos-ultra with and without the real-time toolset.

On image quality

All images from this Chapter are included as Attachment D.3.4 in their full
resolution. Author of all images in this Chapter is the author of the thesis.

5.1 Measurements methodology
Now that we know what is to be measured, let us discuss the methodology.

5.1.1 Hardware
All results are hardware-dependent. We use hardware compliant with the thesis’
goals. The machine that was used for measurements in this chapter has following
equipment: Intel Core i7-4771, with 4 cores, 3.5 GHz; 8 GB RAM; nvidia GeForce
GTX 1060 6GB; running on Windows 10.

5.1.2 Comparing specific chaotic functions
We need to evaluate general performance of a generic renderer of chaotic func-
tions. This is hard, as every chaotic function may behave differently, moreover
differently at different locations and zoom levels. To approximate the comparison,
we select several specific chaotic functions and compare them, selecting several
locations and zoom levels for each one of them.

For comparison, we choose the three standard fractals that we have imple-
mented: the Mandelbrot set, Julia fractal and Newton fractal. The parameters
that change the fractal have to be chosen independently, by someone else than
the author of the experiment.

For the Mandelbrot set, we choose values proposed by Alan Dewar in [24] .
For the Julia sets, the performance-affecting parameter is the c value; we choose
its values based on [17] . For the Newton fractal, the performance-affecting
parameter is the inducing polynomial, which we choose based on [21] .

1The name is a word play, referencing to real time fractal renderer XaoS and high quality
fractal renderer ultrafractal, which both have been inspiration for the thesis.

55

5.1.3 Choosing comparison method
Our task is to compare chaos-ultra and XaoS resp. two versions of chaos-ultra.
Comparing real-time applications that react on user input is not possible with
single images. Video comparison will be needed.

There are basically two approaches for determining video quality: (1) Ob-
jective methods, introducing algorithms and statistical models [49] . And (2)
subjective methods, usually involving perception studies and user’s impressions,
with many guidelines and methodologies available [69] .

The objective approach is impossible for comparing output of two different
fractal renderers and thus we use a subjective method for that.

Regarding comparison of chaos-ultra with itself, we objectively compare
achieved FPS and level of supersampling and then introduce a very simple sub-
jective comparison method.

On video quality

We have decided to use video-based comparison. The video is going to have the
target resolution of the thesis, 1280 × 720, and 30 FPS. For video encoding,
either lossy or lossless codec can be used. Videos encoded using lossless codecs
are extremely large. Lossy codecs introduce quality loss.

As we do not want to introduce attachments with sizes in many gigabytes, we
use a lossy codec. We decide for the lossy codec h264, and use highest quality
possible. We do this in a hope that even with the encoding artifacts, the quality
of our rendering will still be sufficiently visible.

The videos that were used for comparison are included as Attachment D.3.1.

5.2 Comparing XaoS and chaos-ultra
Making chaos-ultra producing more detailed images than XaoS is one of the
goals of the thesis. Although we have concluded that we need to use a subjective
method for comparing the two, we want to stay as independent as possible. Hence,
we have organized a simple perception study with independent participants and
use its results as our metric.

Study details

The study has taken place on April 26, 2019 in a high school in Prague (Gym-
názium nad Štolou) during a student conference organized by the school’s students
(called Štolnı́ noc). 9 participants have been shown videos of 5 different videos
produced by XaoS and chaos-ultra and have been asked to rate them. During
the projections, the participants have been asked to focus at the cursor.

The participants have been chosen randomly from conference participants.
The study was blind — the participant didn’t know which program is which. We
made comparison on the Mandelbrot set only; its points have been chosen by
external source, see Section 5.1. Participants gave marks 1–5 (lowest–top) in two
categories: smoothness and level of detail. We have used similar color schemes

56

(a) chaos-ultra (b) XaoS

Figure 5.1: Illustrative screenshots from the perception study, study example 3.

in both renderers.2

Study results

Data have been collected on response sheets and evaluated. For XaoS , the average
smoothness is 2.82 with variance over examples 0.6. The average mark of level
of detail is 3.24 with variance over examples 0.05. For chaos-ultra, the average
smoothness is 3.58, variance being 0.72 and the average level of detail mark us
4.03, with variance being 0.11. All values have been round to two decimal points.
We remind that 1 means worst, 5 means best.

Table with response data is included as Attachment D.3.2. Used videos are
included as an Attachment D.3.1. For illustration, we include screenshots from
the study, see Figure 5.1.

chaos-ultra has surpassed XaoS in both categories, by a statistically significant
value. We are aware that the performed study was very small and simple and
that the number of respondents is low and the Law of large numbers cannot be
applied. To prevent any disputes, videos from the study are included and the kind
reader may watch study’s videos themselves or compare the programs by using
them. We conclude that chaos-ultra has better rendering results than XaoS .

5.3 Adaptive supersampling
Sample count visualization

The results achieved by the the method are greatly visualized by Figures 5.2, 5.3,
5.4, and 5.5. The visualization shows relative number of samples taken at each
pixel, black representing zero samples, white representing sample count equal to
maxSuperSampling.

Technical details: The pictures were taken by chaos-ultra, during the pro-
gressive phase, by choosing the visualize sample count option in the research
options toolbox, with automatic quality option disabled, and maxSuperSampling
manually set.

The granularity of the method may seem too coarse at the first look — the
visualization seems to consist of big black-white rectangles, not granular up to

2In XaoS , we have used following settings: algorithm 1, seed 30230, shift 0. For chaos-ultra,
we used the green palette.

57

Figure 5.2: Adaptive supersampling on Mandelbrot example 4

(a) Red color palette.
(b) Relative sample count with maxSu-
perSampling 8.

Figure 5.3: Adaptive supersampling on Mandelbrot example 5

(a) Default color palette.
(b) Relative sample count with maxSu-
perSampling 8.

pixel-level. However, this is not a property of our method but property of CUDA.
At any moment, 32 pixels are sampled together, within the so called warp. If in
any of the pixels, the method decides that the pixel is chaotic, all other 31 pixels
can be sampled too, in parallel, without introducing any more overhead (This
behavior is discussed in detail in Section A.2.5.). For illustration, see Figure 5.6,
where we have turned this functionality on and off. The rendering time of both
images is exactly the same.

Figure 5.4: Adaptive supersampling on Julia example 4

(a) Green color palette.
(b) Relative sample count with maxSu-
perSampling 8.

58

Figure 5.5: Adaptive supersampling on Newton iterations

(a) Default color palette.
(b) Relative sample count with maxSu-
perSampling 8.

Figure 5.6: Granularity of adaptive supersampling, illustrated on Julia example
4. Both images have the same render time. maxSuperSampling is 8.

(a) Per-warp adaptive decision. (b) Per-pixel adaptive decision.

Rendering time comparison

Another way of evaluating the method is comparing the rendering time with and
without the method. We have performed this comparison with 12 examples. See
Table 5.1 and Figure 5.7 for results. The average rendering time of each example
has been taken as average of 10 independent renderings.

Technical details: The measurements were taken by chaos-ultra, during the
progressive phase, by switching the adaptive supersampling option in the research
options toolbox, with automatic quality option disabled, and maxSuperSampling
manually set. The rendering time has been read from log. Logs were enabled by
setting program’s property renderingLogging to true.

example: M1 M2 M3 M4 M5
with 187,8 457,8 41,2 85,2 1381,6

without 192,6 487 63,8 191,4 1562,2
speedup in % 2 6 35 55 12

example: J1 J2 J3 J4 N1 N2 N3
with 171,6 25 18,4 39,6 72,4 44 110,4

without 187 31,2 39,8 44,8 229,2 126,8 308
speedup in % 8 20 54 12 68 65 64

Table 5.1: Average rendering time (in ms) with and without adaptive supersam-
pling. The speedup has been rounded.

59

The most significant speedup was achieved on the Newton fractal. This is no
surprise, Newton has big single-color areas that need no supersampling.

Figure 5.7: Comparison of Mandelbrot example 4 with and without adaptive
supersampling, with maxSuperSampling set to 32.

(a) with adaptive supersampling, ren-
dered in 82 ms

(b) without adaptive supersampling,
rednered in 293 ms

To demonstrate that the image quality was affected minimally, we compare
Mandelbrot example 4, the most sped-up image of Mandelbrots, rendered with
and without adaptive supersampling. See the comparison in Figure 5.7. From
the comparison we conclude that quality was not affected by the method.

Conclusion

In Table 5.1, we have computed for each image the speedup of adaptive supersam-
pling. We do not introduce the total speedup of the method, because such value
does not make sense. The speedup of adaptive supersampling strongly depends
on the structure of the chaotic function.

The visualized sample count proves that the method is able to find chaotic
regions. The rendering time measurements prove that the method introduces a
speedup without a noticeable loss of quality. We conclude that the method works.

In Section 4.1, in the subsection on statistical significance, we have claimed to
experimentally determine the initial number of samples per pixel, k. We conclude
that the implemented value k = 2 suffices.

5.4 The real-time heuristic toolset
Regarding our real-time heuristic toolset, there is no specific objective to defend,
nor any specific metric to compute. Our goal was to decrease rendering time with
‘nonsignificant’ loss of quality, which is vague.

To demonstrate that our toolset allows this, we have created recordings of
zooming at the Mandelbrot set with and without the toolset active. The record-
ings are included in Attachment D.3.3. Also, the kind reader can try this compar-
ison themselves by modifying research options in the GUI of chaos-ultra, disabling
any of those functionalities: automatic quality, sample reuse, foveated rendering,
and adaptive supersampling.

Concluding from the recordings, the benefit of our method is undisputed. The
improvements are most significant when after about 10 seconds of zooming in, the

60

program switches to computation in double-precision. When rendering in double-
precision, the naı̈ve approach hardly computes one frame per second, while our
methods maintains 30 FPS.

5.5 Rendering review
In the last two sections, we have used videos for demonstrations and asked the
reader to try the experiments themselves in chaos-ultra.

To illustrate what chaos-ultra can do within the text of the thesis, without any
video recordings and program use, we hereby list examples of images rendered by
it: see Figure 5.8.

The original resolution is HD (1280× 720), color palette is the default one for
all images. All images have been saved after progressive rendering has finished,
meaning it took approximately 500 ms to render each image. Other rendering
parameters are listed in Attachment D.3.4. These examples correspond to the
ones available from the GUI of chaos-ultra and to the ones from Section 5.1.

61

(a) Example M1, a view at the full
Mandelbrot set.

(b) Example M2, Seahorse valley, Man-
delbrot set.

(c) Example M3, Lightnings, Mandel-
brot set.

(d) Example M4, Multimandel, Man-
delbrot set.

(e) Example M5, Flowers, Mandelbrot
set.

(f) Example M6, Inner Julia, Mandel-
brot set.

(g) Example J1, Crystals, Julia set
0.4 + 0.6i.

(h) Example J2, Snakes, Julia set
−0.8 + 0.156i.

(i) Example J3, Jellyfish, Julia set
0.285 + 0.01i.

(j) Example J4, Anntenas, Julia set
−1.77578.

62

(k) Example N1, Newton fractal for
x3 − 1.

(l) Example N2, same fractal as N1,
colored by convergence speed.

(m) Example N3, Newton fractal for
x3 − 2x + 2.

Figure 5.8: Examples of chaos-ultra output.

63

64

Conclusion
We have implemented the real time renderer of chaotic functions, chaos-ultra. We
have also proposed heuristic-based methods for real-time rendering, implemented
them and measured the outcome. Now we are turning back to the the goals of
the thesis and evaluate if they have been fulfilled.

Evaluation of the goals
The main goal of the thesis was to implement a generic real-time renderer of
chaotic functions. We have implemented a renderer that is interactive, real-time,
and supports chaotic functions in general. Hence we have fulfilled the main
goal.

Now we review the specific goals in detail:

1. Genericity: The render supports chaotic functions C → R in general.
We have provided implementations of the Mandelbrot, Julia, and Newton
fractals, as required. The user can add an arbitrary new chaotic function.
This can be done without modifying current code, by adding new files
to appropriate modules. We have demonstrated this by adding two more
fractals: goc and test. By all this, we have fulfilled the goal.

2. PC- & GPU-based: chaos-ultra runs on PCs and the rendering backend
runs on CUDA technology, fulfilling this goal. We have performed our
measurements on a hardware that matches the hardware required by the
goals.

3. High quality in real time: Concluding from the section-conclusions in
Chapter 5, we have achieved high resolution, high level of detail and smooth
user experience at the same time. To be more specific, we now take a more
detailed look at this goal:
3.1. Resolution: The resolution of the program is scalable, and is ad-

justable to window size. chaos-ultra runs even in Full HD, i.e. 1920×
1080 resolution, exactly as required by the goals.

3.2. Detail level: The results of the perception study, and our subjective
comparison, lead to the conclusion that the level of detail of fractals
renderer by chaos-ultra is “good enough”, fulfilling this vague goal.

3.3. Rendering performance: We have introduced a method for achiev-
ing constant FPS. The target FPS can programmatically be set. On
all tested fractal, the method works as expected when zooming in and
moving around, for parameter values as discussed below.

Our formal requirement was, for the defined hardware, to consistently
achieve following goals at the same time: HD resolution, i.e. 1280×720 px,
30 FPS and level of detail higher than when using XaoS renderer.
In HD resolution, we achieve the target FPS most of the time on all tested
fractals, maxIter values being between 400 and 1500 and zoom levels order
of magnitude being above -7. The perception study described in Section 5.2
concluded that the level of detail is higher than that of XaoS .

65

However, for very complex fractals at deep zooms (with order of magni-
tude lower than -7), with a high maxIter value (around 3000) and when
computing in double precision, the method is not more able to adjust the
quality during the interactive phase, and the target FPS is not achieved
and decreases to values as 15 or 10 FPS, leading to a laggy user experience.
Example of such behavior is the Example number 5 in the Mandelbrot set.3
As stated in the goal, the problem of fractal rendering inherently gets more
complex when zooming in, and a slowdown is expected and allowed. We
believe that the limit of the method, lying in maxIter above 3000 and zoom
levels with order of magnitude under -8, is adequate.
Based on this discussion, we conclude that the formal requirement has been
fulfilled and thus the goal High quality in real time achieved.

4. User experience: We have introduced a standard graphical user interface
that allows parameter tweaking using text fields and buttons. The fractal
is visualized on a canvas that allows user interaction in a common way,
including zoom in/out and move around. We have thus fulfilled the goal.

5. Cross-platform: chaos-ultra is written in Java, running on both Windows
and Linux, as required. The CUDA backend runs on both Windows and
Linux too.

6. Extensibility: We have implemented chaos-ultra in Java, a standard
OOP language. We have followed Java’s style and best practices. The
CUDA backend is implemented in CUDA C/C++ and the implementation
follows its guidelines.
We have introduced a module-based software architecture and several use-
ful design patterns, and have discussed and documented our architecture
decisions. We utilize OOP principles, relying on interfaces and inheritance.
Our classes follow the single responsibility principle. The addition of a new
fractal follows the Open/Close principle.
The code is documented, regarding both method headers and algorithmical
parts of the code. All the code uses a consistent and expressive naming
convention.
For these reasons, we conclude that our code is readable and extensible,
fulfilling this goal.

7. Color palettes: As required, the program allows changing the style of
coloring the fractal, by loading user defined color palettes from an image
file.

In addition to software-oriented goals, we have also hoped to better under-
stand the perks of sampling a chaotic function. We were aiming at providing a
relevant discussion of the problem and at proposing a few possible solution meth-
ods. Our goal was NOT to try all discussed and proposed methods in their full
potential.

Let us have a look at each of the area of focus:

1. Progressive visualization: We have inctroduced the topic, proposed an
algorithm, implemented it and concluded that it works as expected.

2. Adaptive sampling: We have developed a statistical-based heuristics for
detecting chaotic regions of a chaotic function. We have also implemented a

3See example 5 in Attachment D.3.1 for details, or Mandelbrot Example 5 in the GUI.

66

method that adaptively evaluates more samples at those regions. We have
shown that it works for all the tested fractals.

3. Foveated rendering: We have briefly introduced relevant work in the
field of foveated rendering and tried to fit the known methods to our
toolchain. Assuming that the user focuses at the cursor, we have pro-
posed and implemented a perceptually plausible heuristic for sample-count
reduction in peripheral parts of the image.

4. Sample reuse: We have described sample reuse techniques, proposed
possible solutions and implemented a proof-of-concept that significantly
reduces number of samples needed to compute, although it introduces visual
artifacts.

During the thesis, we have come to a better understanding of chaotic functions
and the challenges of sampling them. We have discussed the problem, proposed
relevant solution methods and partially implemented them.

As expected by the goals, the discussion did not go very deep into the topics.
However, if one day, we were to rigorously research the general problems that
come with chaotic functions integration, this discussion could be our stepping
stone.

From this, we conclude that we have fulfilled the research-focused goal.

We have fulfilled all of the thesis’ goals. We now open the realm of chaotic
functions to the public.

Known limitations
After having concluded that our goals have been fulfilled and that the program
works, let us review what are known limitations of our methods or of chaos-ultra.

Limited foveated rendering

Although the method works, which has been proven by various tests, in the final
real-time-rendering toolset, foveated rendering is used only partially. We use it
for determining additional number of samples to take in the foveal area when
zooming in while reusing samples. It is not used for determining number of
samples to take in the non-foveal area; this number is always 0 (thus only the
reused value is displayed).

The reason for this is that combination of sample reuse and foveated rendering
introduced many circular-shaped visual noise during zooming in, hence we decided
to disable the combination. Finding a way how to apply foveated rendering in its
full potential together with sample reuse is a candidate for future work.

Julia zoom bug

There is a bug in the Julia fractal. Rendering at zoom levels with order of
magnitude between -4 and -6 produces highly aliased outputs, as if the floating-
point precision were at its limits. After zoom magnitude -7 is surpassed and the
program switches to rendering in double-precision, the output is OK again.

67

This effect has not been observed with other fractals. This effect has appeared
during development of chaos-ultra, and was for sure not present in earlier phases
of the project. However, we were not able to find the cause yet, and we leave it
for future work.

Rendering in the UI thread

The UI thread, which launches CUDA kernels, waits for the CUDA-computation
to finish in a blocking way, technically causing rendering to be performed in the
UI thread. This is a well-known anti-pattern that we know about.

This causes a bug experienced by the users during the progressive phase.
When user interaction stops and progressive rendering has started, the program
may be unresponsive for hundreds of milliseconds — because the UI event loop
thread is blocked by waiting hundreds of milliseconds for CUDA to finish the
high-quality rendering.

The bug should be fixed in a next release, by introducing a non-blocking
waiting scheme.

Limitations of real-time performance

Even with our real-time toolset, the real-time performance has its limits, due to
the infinitely complex nature of the Escape-time fractals.

If desired maxIter parameter is too high and the zoom too detailed, the com-
plexity of computing even very few samples at the users’ focus is so big, that our
method does not manage to achieve real-time and the FPS drops down.

Future work
Apart from fixing the bugs introduced in the previous section, what are other
possible future assignments?

Machine learning

A logical improvement of our statistical-based adaptive supersampling method is
introducing a machine learning method instead of the statistical analysis of the
data, for example a deep learning method.

More advanced sample distribution

A more advanced sample distribution scheme than uniform distribution could
improve the results of adaptive supersampling. A quasi-random distribution is a
good candidate.

More advanced filtering method

Our implementation uses bilinear texture filtering for texture scaling. We have
also implemented bicubic filtering. A more advanced filtering method that works
better with chaotic function could be introduced and tested, for example Lanczos.

68

Software improvements

There are many possible improvements of chaos-ultra, many inspired by XaoS
and its large variety of fractal-rendering-related features. The examples include,
but are not limited to: more advanced coloring schemes (based on other inputs
than the chaotic value), more rendering-plane options (for example the Riemann
sphere), automatic zooming at interesting points, video capture or more advanced
image-exporting methods.

As chaos-ultra is licensed as open source, the scientific community is free to
add any functionality in case it is desired, and to try variety of other possible
rendering-improvement methods.

69

70

APPENDICES

71

72

A. Development documentation
After having discussed the problem theoretically, let us have a look at how the
ideas from Chapters 3 and 4 are implemented.

We introduce the program architecture from a broad perspective. We intro-
duce the main five modules: CUDA fractal interface, CUDA backend, Java-Cuda
mapper, Java renderer and GUI. Then, we describe each module in more detail,
with focus on module’s structure, program flow, and, for Java-based modules,
OOP design.

Finally, we conclude that we have implemented a functional full-sized Java
GUI application backed by CUDA-enhanced backend. We call this application
chaos-ultra1.

At the very end of this chapter, we introduce documentation for further de-
velopment, including technical requirements, compilation and troubleshooting.

But first, let us leave a remark about notation, and define terms that are
related for the whole chapter.

Notation remark
This thesis is about chaotic functions in general. Within this chapter, we use the
term fractal where a more general term chaotic function could be used. This is for
two reasons: (1) First, the focus of the thesis is especially on fractals. (2) Second,
more importantly, during implementation, it is much more convenient to name
modules, classes and objects fractal-Something2. It is broadly understood, as
opposed to longer and more vague chaoticFunction-Something, which also could
be confused with language’s method in some contexts.

A.0.1 CUDA terminology
For the purpose of explaining all the implemented concepts, we need to use some
CUDA-specific terminology throughout this chapter. If you are not familiar with
it, we recommend a quick look at the Programming Model section at nvidia’s
CUDA Programming guide. We briefly summarize the most common terms from
the guide in the following paragraph.

• device code/memory — code/memory that runs/resides on the GPU
• host code/memory — code that runs on the CPU / standard RAM
• device function — A function that runs on the device, marked device -

in CUDA C/C++.
• kernel — Device function that may be called only from host. When called,

it is executed N times in parallel by N different CUDA threads.
• cuda thread — One instance of the computation process, with own in-

struction pointer and register state.
• thread block — A group of threads that can be executed serially OR in

parallel.
1The name is a word play, referencing to real time fractal renderer XaoS and high quality

fractal renderer ultrafractal, which both have been inspiration for the thesis.
2e.g. fractalRenderer, fractalModule, fractalProvider etc.

73

• block dimension and thread index — For convenience, threads can be
arranged into one- two- or three-dimensional blocks and indexed accord-
ingly.
• grid — For convenience, blocks are arranged into one- two- or three-

dimensional grids. The number of thread blocks in a grid is usually dictated
by the size of the data being processed.
• warp — 32 parallel threads that are physically executed simultaneously

(on the same GPU core).
• module — Set of device classes and functions, that can be loaded and later

called.

CUDA introduces two APIs: CUDA Driver API and CUDA Runtime API.
As officially stated by a nvidia developer “The two APIs exist largely for historical
reasons. . . . The runtime API is, for the most part, a very thin wrapper around
the driver API” [22]. The two APIs may be used interchangeably. The Runtime
API is easier to use, but the Driver API allows, beside others, module loading.
As we need the module loading functionality, we use both APIs in our code.

A.0.2 Fractal representation
The rendering process is parametrized by a rectangular segment of the complex
plane to be visualized. We need to represent this segment. There are two possible
approaches and both are used in the application.

(1) The straightforward approach is to store two corners of the rectangle
(their x, y coordinates). We choose to store the left-bottom and right-top corners.
Advantage of this approach is simplicity for the programmer. This approach is
used by the CUDA backend and by most of the Java modules.

(2) The more common approach among the fractals-concerned scientific com-
munity is to store the center of the segment (x, y coordinates) and one-dimensional
zoom. Zoom specifies the distance from the center to the side of the rectangle
(either in x or in y direction). One information is missing in this representation:
distance to the other side (in y resp. x direction). It can be computed from
width-to-height ratio of the rectangle, which makes this representation window-
size independent. This is probably why it is popular within the community. We
use this representation to communicate with the user.

The class Model from Java package rendering is responsible for conversion
between the two representations.

A.1 Program architecture
chaos-ultra consists of five main modules: GUI, rendering, Java-Cuda binding,
main backend module, cuda fractal. The first three are implemented in Java, the
last two are implemented in CUDA C/C++ and run on the GPU. The modules
are connected in a chain, each of the module relying on its child module and
providing API for its parent module. See Figure A.1 for illustration.

The Java part is build using maven, and has been developed in IntelliJ Idea.
The Cuda part is build using a custom script and compiled with nvidia’s compiler
nvcc. See Section A.2 for more details about cuda-module build process.

74

GUI rendering Java-Cuda
binding

main backend
modulecuda fractal

Java world

CUDA world

Figure A.1: Program architecture

Let us now see each of the modules separately. Since the cuda fractal module
is just one interface, we include its documentation together with the rest of the
Section A.2.

A.2 CUDA backend

The application is backed by a generic fractal sampler written in CUDA C/C++.
It is generic in the sense of concrete fractal and floating point precision. It
contains implementation of the logic that has to be performed in parallel. Most
of the real-time methods from the previous chapter are implemented here. The
module depends on fractal interface, representing specific fractal to be rendered.
Module’s public API are the kernels in the CUDA code. They are expected to
be called from the Java application.

CUDA version

To allow for further reuse and maintainability, we support the latest CUDA ver-
sion, 9. For biggest possible backwards-compatibility, we are targeting the lowest
possible compute capability for this CUDA version, which is compute capability
3.0, as explained in [22] and [9]. As a consequence, a GPU with CUDA version
6 or higher is needed, because lower CUDA versions do not support compute
capability 3.0.

A.2.1 Data structures

Throughout the module, floating point numbers are represented with the Real
C++ template. The template is then instantiated to float and double.

75

Points and complex numbers

Most of the time, we will need to work with pixels, points in the 2D real plane and
complex numbers, and cast between them. For this, we introduce the Point<T>
generic type. The arithmetic operations on the it are performed component-wise,
as in classical linear algebra.

To represent complex numbers, we use Point<Real>. This has proven to sim-
plify the implementation. Throughout the generic renderer, no complex algebra
is needed, and thus this approach suffices. However, for fractal implementation,
complex algebra may be useful. In those cases, CUDA’s thrust::complex can
be used.

For representing a complex plane segment (the region of interest), generic
Rectangle<T> class is introduced, containing two points that define the segment.

Pitched arrays

In accordance with Chapter 3, chaotic values are taken and then stored in memory
for further coloring or sample reuse. For this, we use CUDA 2D pitched array.

The pitch is introduced by CUDA for effective memory alignment. Allocation
of the pitched array is done by the CUDA runtime, not by the compiler. Thus,
to access data in a pitched array, the standard C++ accessors, [], may not be
used — we introduce special methods for wrapping this functionality, for example
getPtrToPixelInfo.

Sampling information and textures

For storing the sampling information, we use the pixel info t data structure.
For storing the output image and color palettes, OpenGL textures are used.

For accessing textures from the device code, CUDA provides surface adapter,
which itself needs a cuda resource adapter.

Although color palettes are 1D, introducing another surfaces and cuda re-
sources would increase code complexity, and thus we represent palettes as 2D
textures with height 1.

A.2.2 Fractal interface
For computing a sample of a fractal (the chaotic value), the module relies on
the fractal interface. It is represented by header file fractal.cuh, which is well-
documented and telling.

It provides three methods: computeFractal, colorize, and debug. The names
of the methods are expressive.

To use the cuda-backend module, an implementation of the fractal interface
needs to be provided. Compilation and linking is described at the end of this
section.

A.2.3 Fractal specific parameters
Many fractals need a specific parameters, for example Julia fractal’s c value or
the polynomial coefficients of the Newton fractal.

76

We implement this need using CUDA’s constant type. Values declared as
constant can be set from the host code and stay immutable during a kernel

launch. They are cached, so there should be no performance overhead to passing
the values as kernels’ parameters.

It is the responsibility of the caller to initialize the values. We discuss in
Section A.3 how this is done.

A.2.4 Specific fractals implementation
Following the thesis’ goals, we have implemented the three example fractals:
Mandelbrot, Julia and Newton.

The implementation of Mandelbrot and Julia fractals is straightforward. We
only note that to gain maximal performance of Mandelbrot and Julia, instead
of using the thrust:complex type, we have written complex multiplication our-
selves, using primitive types. We have also used the standard trick of comparing
z2 < 4 rather than root-containing abs(z) < 2.

Newton fractal

Regarding the Newton fractal, we provide several implementations.
newtonWired supports only the x3 − 1 polynomial, the formula is “wired” in

the source code. newtonGeneric allows for any polynomial of 3rd order to be set
using fractal-specific parameters. We have implemented both the wired and the
generic version to be able to compare the overhead of evaluating the polynomial
as generic.3

The coloring scheme of those two fractals does not rely on the given palette,
for aesthetic reasons. However, the implementation exists, and can be found in
newton generic.cu file. The users are free to experiment with it.

newtonIterations has same implementation of the computeFractal method
as the generic version, but it provides different coloring scheme.

We do not provide the most generic version that would support polynomial
of nth order, n being a parameter. This is because CUDA does not allow for
dynamic allocation of the constant memory, and thus the number of fractal’s
parameters may not change after compilation.

There is a possible work around for this, in setting the value to, say, 255 and
then supporting polynomials up to that value. We leave this for future work.

Other fractals

We have implemented two other fractals that are included as part of chaos-ultra.
The test “fractal” is a function with highly-regular and human-predictable struc-
ture and as such, it is meant for testing and debugging purposes.

The goc fractal is dedicated to my best friend who has discovered it. It is
part of chaos-ultra as an acknowledgement of his tremendous help with chaos-
ultra debugging.

3To maintain the thesis’ scope, we do not discuss this comparison in Chapter 5. During the
implementation, we have estimated it to be about 10%.

77

A.2.5 Implementing the real-time heuristics
Most of the implementation of the methods described in Section 4 is done in this
module. We briefly go through relevant implementation details.

There are two main rendering methods: fractalRenderMain and
fractalRenderAdvanced. The main method implements rendering for the static
phase, the advanced method implements rendering for the progressive phase, and
is thus capable of sample reuse, foveated rendering, etc.

Threading model

Following CUDA best practices described in [22], we use one thread for each pixel
that is to be rendered.

We don’t use one thread per sample, because thread creation is not dynamic
in CUDA and it would not allow us to implement adaptive supersampling.

Adaptive super-sampling

The adaptive process is implemented by method sampleTheFractal. The imple-
mentation is compliant with Algorithm 5.

There is one significant implementation detail that positively affects rendering
quality: Per-warp decision. The adaptive decision is made per-warp, so that if
any of the pixels in the warp is marked chaotic, all other pixels in the warp are
sampled too. This introduces no performance overhead, because all the other
threads in the warp must perform same instructions (or wait) anyway.

Figure A.2: A texture rendered on CUDA, with all pixels within a warp colorized
with the same color. Scaled up for clarity. Left: canonical cuda warp, right: our
rectangular warp.

Rectangular warp

Regarding the warp, we use one more optimizations that positively affects ren-
dering time: rectangular warp.

We do not organize pixels to warps in the intuitive way proposed by CUDA.
If we did, then each warp would be responsible for sampling pixels that are
organized within the pixel grid as 32 successive pixels in a row. See the left
picture in Figure A.2 for visualization.

Instead, we change the mapping of CUDA threads to image-pixels in a way de-
scribed by Figure A.3. This causes one warp to compute pixels that are organized
as 4×8 rectangle within the pixel grid. See Figure A.2 for visualization.

Chaotic areas are expected to cover a rectangular area more often than to
cover a single 32 pixels long line. Using this technique, we hope to produce more

78

warps in which none of the pixels is chaotic and more warps in which many pixels
are chaotic.

Figure A.3: Mapping of image indexes to warp index and vice-versa.

Sample reuse

The implementation follows the ideas from Chapter 4.
Sample reprojection follows the idea of Figure 4.3 and is implemented by the

getWarpingOriginOfSampleReuse method.
For reading samples from the warping origin, we provide implementations of

bilinear and bicubic filtering, in the readFromArrayUsingFiltering method.
Sample composition is performed by fractalRenderAdvanced, with regard

to data weight. The initial data weight is the number of samples taken. Weight
degradation is not applied when moving the canvas.

Foveated rendering

Foveated rendering is implemented by the getFoveationAdvisedSampleCount
method. We have implemented all the ideas from Section 4.4. The code is
expressive and does not need additional comments.

A.2.6 API of the module: Available kernels
We have gone through the rendering methods, but how to call them from the
Java code?

Each CUDA device-code has its API defined by void methods marked
global , usually referred to as kernels. The kernels run on device and can later

call device functions. The C++ templates allow us to make the kernels generic
and to call generic device functions from them.

The compiler needs all generic methods to be instantiated during compile time
but we do not call the kernels from any CUDA C/C++ code. At the same time,
we need to be able to export the generic kernels in a format understood by the
JCuda library.

For this reason, why we define floating-point-specific kernels that later call
the generic cuda methods and we export them using extern ”C”.

79

Following from this, te API of our CUDA modules contains, apart from other,
following functions: fractalRenderMainFloat, fractalRenderMainDouble,
fractalRenderAdvancedFloat and fractalRenderAdvancedDouble. We call
those function from JCuda just by their name.

Other available kernels are compose, fractalRenderUnderSampled and de-
bug. The debug kernel may be used for debugging, including fractal implementa-
tion debugging. The fractalRenderUnderSampled kernel is meant as a proof of
concept of the under-sampling method described in the previous chapter. How-
ever, it is not currently used.

The compose kernel is meant to compose data from multiple kernels. It orig-
inated as a proof-of-concept of under-sampling too. Currently, it is simply being
used for colorizing chaotic values and saving them into a texture.

All the function’s parameters are based on the ideas from Chapters 3 and 4
and are well-documented in the source code.

A.2.7 Compilation and build
We need to compile our fractals to cuda binary files that are loadable at runtime
of chaos-ultra. CUDA introduces the ptx file format for this. A ptx file contains
a compiled ready-to-run CUDA module.

To be able to work with each fractal separately, our goal of the compilation
is to produce a <name>.ptx file for each available fractal.

This is not easily achieved with standard build tools. At the same time, our
CUDA code base is not large. Thus, we have decided to implement our own
simple building script, which is sufficient for code base of this size. We provide
version for Linux and version for Windows. The usage of the script is described
in Attachment D.1, in README.md.

A.3 Java-Cuda mapping
Let us have a look at the third-lowest module of chaos-ultra, Java-Cuda mapping.

The module is contained within the java package
cz.cuni.mff.cgg.teichmaa.chaosultra.cudarenderer.

The role of this module is to abstract away details about using CUDA and
to wrap the JCuda c-style calls to an OOP wrapper. The API of the module is
expected to used by module rendering.

The public API of the module consists of implementations of the Fractal-
RendererProvider and FractalRenderer interfaces from package rendering by
CudaFractalRendererProvider and CudaFractalRenderer classes.

Code base

The code base of this module is rather technical and does not introduce a lot
of logic. It works in compliance with [35] and [22]. It contains mostly Java
wrappers of JCuda calls. These calls are greatly documented by [35] and [22] .
The code is divided into well-named classes with well-named methods, that are
mostly commented. Thus there is only little to to document about this particular
module.

80

Still, this module is very interesting regarding the mapping of c-style code
and data structures to Java-style OOP code and data structures.

Let us now briefly go through the class structure of the module.

A.3.1 Module object hierarchy
We introduce a one-to-one mapping of cuda modules to Java classes. To represent
a CUDA module, type FractalRenderingModule is used.

Each specific fractal should provide own sub-class of this abstract class.
The class contains convenient functions for module management, fractal-

specific parameters management and, primarily, for accessing the rendering ker-
nels that are to be invoked.

Adding a new fractal

When a developer adds a new fractal, they don’t change any existing code but
rather add a new class that inherits from FractalRenderingModule. This follows
the Open/Close principle, one of OOP’s best practices, required by the thesis’
goals.

Fractal custom parameters

To set fractal custom parameters, the module needs to cooperate with both back-
end and frontend. The callback setFractalCustomParameters needs to be over-
ridden to get parameters set by the user. For parsing the params, convenient
methods are provided, named parseParamsAs<Something>.

Then, adequate writeToConstantMemory method should be called. The
method has a non-trivial overhead. The caller is responsible for calling the method
only on actual parameters update, instead of before each rendering. Caller is also
responsible for calling a proper type-variant, corresponding to the type of the

constant in cuda source.

A.3.2 Cuda Kernel
We have stated that FractalRenderingModule allows access to CUDA kernels
that are to be invoked. Let us now summarize how those kernels are represented
in our object-oriented code.

We introduce the CudaKernel abstract class as a type-safe object-oriented
wrapper of JCuda’s CUfunction. It is responsible for storing kernel’s parameters
when set prior to kernel’s invocation. It allows Java-style parameter manipula-
tion.

Rendering Kernel object hierarchy

We introduce a complex hierarchy of classes that inherit from CudaKernel. Why
do we use this complex approach? The whole point of cudarenderer package
is about launching different kernels at different times, with different parameters.
To help us manage this task, some data structure is needed. We consider the
introduced hierarchical structure to be appropriate.

81

Figure A.4: Class structure of the cudarenderer package.

«interface»
FractalRenderer

CudaFractalRenderer
FractalRenderingModule

+ kernelMainFloat

+ kernelMainDouble

+ kernelAdvancedFloat

+ kernelAdvancedDouble

+ kernelCompose

+ kernelUndersampled

+ kernelDebug

CudaKernel

KernelDebug KernelCompose

RenderingKernel

Kernel
Undersampled

KernelMain

KernelMain
Double

KernelMain
Float

KernelAdvanced

KernelAdvanced
Double

KernelAdvanced
Float

Module
Mandelbrot

Module
Julia

Module
NewtonGeneric

Module
NewtonIterations

Module
NewtonWired

Module
Goc

Module
Test

package rendering

82

The kernels in CUDA C/C++ source code have many common parameters. In
our kernel hierarchy, the common parameters are managed by common ancestors.
Kernel parameters setting is very cumbersome when using JCuda, and thus this
abstraction that conceals the cumbersome details comes very handy.

The whole hierarchy is expressively documented by Figure A.4.

Floating point precision

Similarly as the CUDA C/C++ source code introduced 4 different methods for
calling 2 kernels in 2 floating-point-precision variants, we introduce 4 classes for
that.

However, this way the kernel hierarchy grows in complexity very fast. If more
kernel types or floating-point precisions were to be added, the Bridge design
pattern should be used for decoupling. See [65] for details about the pattern.

A.3.3 Class CudaFractalRenderer

CudaFractalRenderer implements the FractalRenderer interface. It is respon-
sible for calling appropriate kernels with appropriate parameters.

Most of its code is c-style manipulation of JCuda data structures, needed for
calling the CUDA API through JCuda.

As we have stated, there are not many implementation details in the cud-
arenderer package. However, quite the opposite is true for the Java renderer
module. Lets us discover it now.

A.4 Java renderer

The package renderer encapsulates the logic needed to utilize the cuda backend
and the graphical front end, and composes them to a single high performing
application.

The package is CUDA-independent and, in theory, could use arbitrary under-
lying sampler based on arbitrary GPU or CPU technology.

The package’s structure relies on the MVC pattern. The core idea of the
pattern has been adapted to suit the program’s specific needs, thus the struc-
ture does not strictly follow the traditional description from [4]. The model is
represented by Model class, the view by GLRenderer class and the controller by
RenderingController class. The whole class structure of the package is visually
documented by Figure A.5.

The classes in this package use exclusively double Java primitive type to
represent floating points, even when working with single-precision based cuda-
kernels. This is for two reasons: (1) Because of lack of Java support for generic
primitive types, as opposed to CUDA C/C++ language from the previous section.
(2) Because there is almost-zero overhead of this, CPU-time and RAM-access not
nearly being a hot path of our application.

83

«interface»
GLView

Controller

«interface»
GUIPresenter

«interface»
GUIModel

Model

GLRenderer

«interface»
FractalRenderer

«interface»
RendereringModel

Rendering
ModeFSM

«interface»
StateModel

Figure A.5: class structure of the rendering package

A.4.1 Supporting multiple fractals

One of the main goals of the thesis is to support multiple, and arbitrary fractals,
that can later be added by other users. We achieve it by programming against
interfaces and using catalog-based management of available fractals.

The interface FractalRenderer specifies functionality needed by the render-
ing package to render a fractal. It is an abstract functionality with no dependence
on a specific fractal, with even no dependence on the CUDA technology. The only
technology it depends on is OpenGL, assuming that it is a generic and univer-
sally supported graphic library [29]. Each FractalRenderer instance can represent
a different fractal. More details are described in Section A.4.2.

Catalog

Fractals are cataloged by a FractalRendererProvider. We provide one imple-
mentation, CudaFractalRendererProvider from package cudarenderer, which
is aware of CUDA and its cuda-modules. In the future, the program is extensible
by other potential providers based on other technologies. A catalog needs to know
about available fractal rendering classes. The CUDA-aware catalog knows about
the generic CudaFractalRenderer that needs to be supplied concrete Render-
ingModule. To be able to supply the modules, the catalog needs to know them.
Java reflection API does not provide means to scan a package for implementa-
tions of RenderingModule, hence those have to be registered manually. This is
done in the catalog’s static initializer.

84

Call sequence

:GLRenderer

perform later

:Rendering
Controller

onFractalChanged()

:FractalRenderer
Provider

constructor

close()

getAvailable
Fractals()

fractals
save to model

specifiRenderer1
: FractalRenderer

getDefault
Renderer()

specificRenderer1

init()

freeRenderingResources()

specifiRenderer2
: FractalRenderer

constructor

specificRenderer2

GUI

change fractal
request

initializeRendering()

render

repaint()

load available
fractals

from model

getRenderer()

Figure A.6: Sequence of multiple fractals management

The sequence of calls is illustrated by Figure A.6 and is following: After pro-
gram initialization a list of available fractals is to be shown to the user. It stored
to the model by GLRenderer, which asks FractalRendererProvider. After user
action, a specific fractal needs to be shown. The GUI asks the RenderingCon-
troller, which asks GLRenderer, which asks FractalRendererProvider. The
provider is responsible for creating appropriate instances of FractalRenderer
and for disposing the old ones.

To the rest of the package rendering, the multi-fractal behavior is transpar-
ent.

A.4.2 Interface FractalRenderer
Interface FractalRenderer provides abstraction of the CUDA-dependent Cud-
aFractalRenderer and defines the functionality required for the rest of the ap-
plication to visualize the fractals. It represents a specific renderer for rendering a
specific fractal. It is instantiated using FractalRendererProvider. Since it is ex-
pected to hold system resources not managed by JVM, it extends the Closeable
interface.

85

It provides two core methods: renderFast and renderQuality. Both take
RenderingModel as a parameter, explicitly defining, beside others, which heuris-
tics should be used and which not.

The renderFast method is meant to provide the real time rendering. It
should use any available means to reduce the computational complexity of fractal
sampling. It is expected be scalable; in the sense that the lower the values of
maxIterations and superSamplingLevel, the faster computation time. It is
responsibility of the caller to set adequate values of those parameters.

The renderQuality method is used by the progressive rendering technique to
show progressively nicer representations of the fractal when user interaction has
stopped and we have relatively enough time for rendering. It should provide high
quality images with little artifacts, at the cost of taking longer time to compute. It
is expected be scalable; in the sense that the higher the values of maxIterations
and superSamplingLevel, the higher visual quality. It is responsibility of the
caller to set adequate values of those parameters.

Lifecycle

initializeRendering()

freeRenderingResources()

readyToRender notInitialized

constructor

close()

Figure A.7: FractalRenderer lifecycle

Before the first use, the renderer has to be initialized by calling initializ-
eRendering with appropriate OpenGL parameters supplied. The initialization
function expects following parameters (bundled in GLParams data class): (1) out-
put texture (in the form of OpenGL integer handle) to draw the fractal on and
(2) palette texture to read colors from. Both textures are expected to be valid
OpenGL textures, initialized, in 32-bit RGBA format and 2D; the height of the
palette is expected to be 1.

The implementation is allowed (and expected) to map the textures to its in-
ternal resources (e.g. cudaGraphicsResource in case of CudaFractalRenderer),
potentially locking the textures for modification and for exclusive writing.

If the user of the FractalRenderer wants to modify the textures (e.g. after
window resize or to pass it to some other renderer), it has to free it first by
calling freeRenderingResources.

The two methods described above form the lifecycle of the class, switching
between notInitialized and readyToRender states. See Figure A.7.

The approach we use is stateful and thus prone to errors (during development).
There exists a simpler, stateless approach: GLParams could be supplied directly
every time a rendering method is called. However, the stateless version would be

86

noticeably slower, as mapping a texture to a cuda resource (or similar resource)
is a time consuming task [81]. Performing such operation often (30 times per
second expected) would introduce a needless overhead.

A.4.3 Class GLRenderer and OpenGL loop
Class GLRenderer is implementation of GLEventListener provided by the li-
brary. Architecturally, it is the view of the MVC-triplet that is responsible for
canvas rendering. Its controller is RenderingController, and it has two models:
Model and RenderingStateModel.

It implements four lifecycle methods that are called by the GUI framework:
init, reshape, display, dispose. It also exposes API for RenderingController,
to be called after user interactions.

Lifecycle and flow

The program flow of GLRenderer is illustrated on Figure A.8 and described in
the following text. As can be seen from the illustration, most of the operations
performed are stateful and with no return value. This is due to the stateful nature
of both OpenGL API and FractalRenderer.

GLRenderer lifecycle sequence

:GLRenderer

pre rendering

determine
quality & speed

:Model :Rendering
Controller

:FractalRenderer

init()

display()

read

update

render

onRenderingDone()

draw texture

reshape()
update

unregister texture

register texture

destroy() close()

OpenGL / Swing

startProgressiveRenderingAsync()

reinitialize texture

Figure A.8: GLRenderer lifecycle sequence

Each time repaint method is called, it is forwarded to Swing, which causes

87

display to be invoked later, by OpenGL. The frequency of repaint calls is
managed by the controller.

When display is invoked, following operations are performed:

1. Pre-rendering operations are performed (see in Subsection A.4.3).
2. Data from both the models are read and evaluated.
3. Rendering quality/speed is computed, based on previous rendering experi-

ences, and model is updated accordingly (see in Subsection A.4.3).
4. Adequate FractalRenderer’s render is called with adequate parameters,

in blocking way.
5. The resulting texture is drawn on the screen using OpenGL.
6. The controller is informed that rendering is done.

When reshape is invoked, following operations are performed: (1) Model is
updated, (2) OpenGL texture is unregistered from the FractalRenderer, re-ini-
tialized to new size and registered again, and (3) progressive rendering is started,
to quickly fill the new resized texture with image data.

The init method is called at the program beginning, the dispose method
before program termination. Their implementation is straightforward and ex-
pressive.

Automatic quality

When automatic quality is enabled by the user, the GLRenderer is responsible
for its implementation. The implementation follows the idea described in Sec-
tion 4.2. The functionality is implemented by the determineRenderingMode-
Quality and setParamsToBeRenderedIn methods. The implementation heavily
uses the StateModel interface, which should be managed by the controller.

Pre-rendering operations

Due to the asynchronous nature of our program and due to OpenGL context
lifecycle, we introduce pre-rendering operations.

Calls to the OpenGL API, as well as CUDA calls that rely on OpenGL4

have to be performed when an OpenGL context is active in the program. Its
lifecycle is managed by the library and the context is available to us only during
GLEventListener’s lifecycle methods described above.

In response to controller’s requests, GLRenderer often needs to access the
OpenGL API. However, the callbacks from the controller are not part of the
lifecycle5 and the OpenGL context is not available during those calls.

For this, we introduce the doBeforeDisplay data structure. It is a list of tasks
that need to be performed when OpenGL context is active. The list is populated
during controller’s callbacks (e.g. the onFractalChanged method) and the tasks
it contains are invoked later, when display is called by OpenGL.

When display invocation is requested (via repaint) with the intention to
perform the doBeforeDisplay tasks without rendering, the doNotRenderRe-
quested flag is set.

4For example cudaGraphicsGLRegisterImage.
5They run in the same thread, and share the same Swing event loop, but OpenGL manages

its context independently

88

A.4.4 Model
The data model used by the rendering package is represented by the Model
class. Its public API is specified in the model sub-package, which contains various
interfaces and model-related data structures that Model implements/uses.

Model’s public API is following. It is also documented in the code.

• RenderingModel — the data needed by a FractalRenderer to render and
methods to give feedback
• DefaultFractalModel — extension of RenderingModel, allowing fractals

to supply default values (e.g. max iterations)
• GUIModel — data that ought to be visualized to the user;the interface is

used to communicate with the GUI and is located in the gui package for
better code-coherence
• PublicErrorLogger — allows for logging public error that are to be dis-

played to the user

Following the MVC architectural pattern, the model is both queried and up-
dated by both the controller and the view. The program’s data flow is visually
described by Figure A.9.

data fetch
:Fractal

Renderer

:Model

onRenderingDone()

repaint()

data update

:Rendering
Controller

onModelUpdated()

:GUIPresenter

request

:GLRenderer

render

display()

asynchronously
causes

user interacts

model

model copy

data update

data fetch
return data

onModelUpdated()
model copy

return data

Figure A.9: rendering package data flow

A.4.5 Class RenderingController
RenderingController is the logical core of the rendering process. It is responsible
for acting upon user requests, evaluating user commands and translating them
to model and/or view updates.

It reacts both on GLRenderer’s (a component of OpenGL/Swing) and
GUIPresenter’s (a component of JavaFX) requests. This follows the architectural
pattern Presentation–abstraction–control introduced in Section 3.10.1.

Mouse events

RenderingController extends Swing’s MouseAdapter and overrides some of its
mouse event handler methods to react upon user’s mouse interaction. It is re-

89

sponsible for recomputing boundaries of the plane segment that is being rendered
upon mouse move or zoom in/out.

Automatic quality and progressive rendering

Progressive
Rendering

Level 1
Zoom Once

N-2 stepsProgressive
Rendering

Level 2

Progressive
Rendering

Level N

Waiting

start moving

stop zooming

Zooming stop zooming

stop moving

start zooming
start moving

Zooming or
Moving

Zooming or
Moving
Stopped

start zooming

stop moving

Moving

do zoom once

start zooming

start moving

start Progressive rendering

reset

function call
(if at given state) automaton step

function call
(default)

Figure A.10: States and transitions of the rendering mode state machine

The controller is responsible for controlling which of the various rendering
approaches is used, especially in deciding whether the user interaction has stopped
and progressive rendering should be activated. Internally, this is achieved through
a finite state machine implemented by RenderingModeFSM extending StateModel.
The machine is controlled by the controller and queried through the StateModel
interface by GLRenderer. The states and transitions of the machine are visually
described by Figure A.10.

A.5 Graphical user interface
To allow for simple user interaction with the fractal, we implement a basic graph-
ical user interface (GUI). As discussed in Chapter 3, we use JavaFX and Swing
libraries. The class structure, including gui-component hierarchy, is visualized by
Figure A.11.

A.5.1 Swing GLCanvas
The renderer draws the fractal on an OpenGL texture, residing in the GPU
memory. This texture has to be displayed by our GUI. Based on the discussion
form Chapter 3, we use Swing library for this task.

90

javafx.scene.
Scene

javafx.scene.
Parent

...
various concrete
JavaFX controls

PresenterFX

«interface»
GUIPresenter

javafx.embed.swing.
JFXPanel

Constructed by
the FXMLLoader

javax.swing.
JFrame

javax.swing.
JPanel

com.jogamp.
opengl.awt
GLCanvas

«interface»
java.awt.event
MouseLisener

Rendering
Controller

«interface»
com.jogamp.opengl
GLEventListener

«interface»
GLView

GLRenderer

Bound by
the FXMLLoader

Swing technology JavaFX technology

Figure A.11: Class structure of the GUI, including gui-component hierarchy.

Swing provides GLCanvas class, a Swing Component that allows given OpenGL
context to render on it. GLCanvas relies on injected GLEventListener and, as
every Swing Component, allows for registering of variable mouse event listeners.

For the mouse listening, we use RenderingController class, described in Sec-
tion A.4.5. As an implementation of the required GLEventListener, we provide
GLRenderer class.

A.5.2 JavaFX and Swing integration
Both JavaFX and Swing provide easy-to-use menas to integrate with the other
technology. In both cases, the integration is done via injecting a JavaFX/Swing
panel into Swing/JavaFX window component tree, respectively. JavaFX provides
SwingNode, Swing provides JFXPanel. Each technology maintains its own event
loop in its own thread. Event bubbling (e.g. mouse interaction) is translated
between the loops transparently to the programmer [60].

Swing divides its components into two categories: lightweight and hard-weight.
Most of the common components are lightweight, but GLCanvas is hard-weight.

91

When Swing is embedded in JavaFX using SwingNode, only lightweight com-
ponents are enabled. Thus we cannot use JavaFX Panel as the root in our
implementation.

We use Swing’s JFrame as root of the application. The frame contains the
GLCanvas and the JFXPanel, the latter one being responsible for the user-intera-
ction part of the GUI. See Figure A.11 for illustration.

Thread safety

Each library runs in its own thread, in which it operates internal event loop.
Our code relies on callbacks from the library’s event loop. We have to ensure
proper communication between the two threads / loops. Again, both technologies
provide easy-to-use means for thread cooperation.

Swing provides SwingUtilities.invokeLater(Runnable task), JavaFX
provides Platform.runLater(Runnable task) methods. Both methods imple-
ment the same idea: they are safe to call from any thread and context, and
arrange that the given task is run from the platform’s event loop.

The OpenGL loop runs in the Swing event message thread, and thus so do
both the rendering logic of the program and the cuda calls.

The interface between the two threads is the PresenterFX class. It is respon-
sible for determining in what thread a method should be invoked when calling
methods of other classes or when being called. It is responsible for using adequate
invokeLater/runLater call. Calling any of its methods from Swing event loop
thread is safe. For all other classes in the application, threading is transparent.

Callers of PresenterFX (typically RenderingController via GUIController)
must be aware that the called function will be performed asynchronously. For
this reason, a deep copy of model, not the original object, is passed to GUICon-
troller.onModelUpdated when called from PresenterFX.

A.5.3 FXML
FXML is user interface markup language for defining JavaFX user interfaces. It is
based on XML and CSS technologies. It is a standard JavaFX-related technology
and we use it in a standard way[62].

We use this markup language to define the tree structure of the graphical user
interface. It is located in src/main/resources.window.fxml and loaded by a
FXMLLoader at the start of the application.

A.5.4 FX Presenter
The PresenterFX class is a presenter of the JavaFX part of the GUI. Its purpose
is to propagate user events to the rest of the application and to present changes
in the application data to the user.

It interacts with the RenderingController (following the PAC pattern intro-
duced in Section 3.10.1) and when supplied a GUIModel, updates the underlying
view.

It is implemented by standard JavaFX paradigm: the underlying view is con-
structed and supplied by the FXMLLoader, the Presenter can modify it program-
matically and can simply implements user-event handlers.

92

A.6 Developer README
All details needed for future-development are included in Attachment D.1, in
README.md. You can find there information about:

• Technical requirements
• Software prerequisites
• Build and compilation process
• Running the program
• Documentation of developer part of the GUI
• Troubleshooting

93

94

B. User documentation

B.1 Technical requirements
To run chaos-ultra, you will need a PC with Windows or Linux operation sys-
tem, equipped with CUDA-capable graphic cards by nvidia corporation. A
GPU with CUDA version 6 or higher is needed. To see if your graphic card
is CUDA-capable and has sufficient version, check https://www.geforce.com/
hardware/technology/cuda/supported-gpus or https://en.wikipedia.org/
wiki/CUDA.

B.2 Installation guide
If you meet the technical requirements, following steps apply for installation.

1. If you do not have it installed already, download and install CUDA toolkit
from https://developer.nvidia.com/cuda-downloads.

2. If you do not have it installed already, download and install Java (version
8 or higher), for example from https://java.com/en/download/. Note:
You need JavaFX library to be installed too. If you have downloaded Oracle
Java, you should be fine. If you are using openjdk, you will need to install
openjfx, see https://openjfx.io/.

3. Download and extract the compiled version of chaos-ultra from https:
//gimli.ms.mff.cuni.cz/̃tonik/chaos-ultra.zip. It is also included
as Attachment D.2.
• If you prefer to compile the application yourself, see Chapter A.6 for

instructions.
4. Run chaos-ultra-1.0-jar-with-dependencies.jar, either by double click-

ing it or with command
java -jar chaos-ultra-1.0-jar-with-dependencies.jar.
• Note: for the program to start correctly, the directory cudaKernels

must be located in the same directory as the chaos-ultra.jar file
and it must be populated with .ptx files.

B.3 Navigating the user interface
Interaction with the fractal

• use left mouse button to drag (move around)
• use right mouse button to continuous zoom in
• use middle mouse button to continuous zoom out
• use mouse wheel to one-step zoom in/out

When you stop the interaction, the program may be unresponsive for about
one second, before you can interact again. This is a known bug. Please, be
patient.

95

https://www.geforce.com/hardware/technology/cuda/supported-gpus
https://www.geforce.com/hardware/technology/cuda/supported-gpus
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
https://developer.nvidia.com/cuda-downloads
https://java.com/en/download/
https://openjfx.io/
https://gimli.ms.mff.cuni.cz/~tonik/chaos-ultra.zip
https://gimli.ms.mff.cuni.cz/~tonik/chaos-ultra.zip

Right menu

The right menu allows changing of default parameters. Its labels should be ex-
planatory.

Increasing maximum iterations usually leads to higher quality images but
significantly decreases real-time performance and vice versa.

Changing max supersampling does not take effect if automatic quality is en-
abled in research options.

Note that the research options are meant for experimenting, and tweaking
them may lead to bad user experience, for example laggy behavior.

B.4 Fractal change
The program allow for changing the displayed fractal. This is done via the choice
box in the right menu. Only correctly added fractals are available; consult Chap-
ter C if you want to add one.

Parameters

If the fractal needs some parameters, supply them to the text field.
The format of the data is not universal and is defined by each fractal’s

provider. Usual format, however, is comma/semicolon separated values, com-
ma/semicolon separated key value pairs in format key=value or JSON.

Parameter format of the default fractals is following:
• Mandelbrot — no parameters
• Julia — the c parameter in format re;im, re and im being floating point

numbers.
• Newton wired — no parameters
• Newton generic — JSON containing the polynomial coefficients and roots.

The provided example should be self-explanatory.
• Newton colored by iterations — Same as Newton generic, also adds color

magnifier that is used by the its coloring method to map chaotic values to
large palettes.

B.5 Changing the color palette
To change the color palette used for fractal coloring, edit the file palette.png to
contain desired colors (if the file does not exist, create it). The program needs to
be restarted for this to take effect.

Alternatively, you can change location and file-format of the palette through
program’s arguments, details are described in Attachment D.1, in README.md.

The format of the palette file is following: the first row of the image is in-
terpreted as the palette, all other rows are ignored. Common image formats are
supported, including jpg and png.

The palette is recommended to consist of smooth gradients rather than dis-
crete color areas; however, this depends on the coloring method of each fractal.
(For example for colorization of the Newton fractal, discrete palette would be
adequate.)

96

B.6 Image export
To export currently viewed image to a file, use the save as image functionality
from additional functionality pane.

The image is then stored in saved images directory with current timestamp
used as its name. The name and output location cannot be changed from the
program.

B.7 Troubleshooting
If an error occurs, the corresponding error message is shown in the system mes-
sages area.

If it is a CUDA-related error, the program usually needs to be restarted before
working properly again.

97

98

C. Adding a custom fractal
If you want to add a new fractal, following steps apply.

See implementations of the provided fractals for examples.

Prerequisites

We expect that you have gone through Chapter A.6 and know how to compile
and build the program.

We expect that you know the formula of the fractal you are adding.
We expect that you have basic programming skills in C or C++ and in Java.

In the cuda backend module

First, choose a unique name and filename for your fractal. In the following text,
we will use macros <name> and <filename> to refer to them.

1. Create file <filename>.cu in src/main/cuda/fractals.
2. Include #include ”fractal.cuh”
3. Implement the computeFractal method defined in fractal.cuh.

• If you need complex numbers arithmetics, include thrust/complex.h
and convert z to thrust::complex type. See newton generic for ex-
amples.
• If your implementation needs fractal-specific parameters, declare them

as constant . See more details in Section A.2.1.
4. Implement the colorize method defined in fractal.cuh. You can use and

copy-paste proposed default implementation.
5. Implement the debug method defined in fractal.cuh. Feel free to leave

the body empty. Common convention is to add printf("<name>\n").
6. Compile with

• .\compile.bat <filename> on Windows.
• ./compile.sh <filename> on Linux.

In Java

1. Create a new class in package cz.cuni.mff.cgg.teichmaa.chaos ultra.
cuda renderer.modules. The name of the class can be arbitrary, common
convention is Module<name>.

2. Inherit from cz.cuni.mff.cgg.teichmaa.chaos ultra.cuda renderer.
FractalRenderingModule.

3. Implement a parameterless constructor by adding the following call:
super(<filename>, <name>);

4. Implement the setFractalCustomParameters method.
• Leave the method blank if your fractal takes no parameters.
• Parsing the parameters from a user string is up to you. This allows for

great flexibility, as the format and number of parameters is unlimited.
• You can use helper functions parseParamsAsDoubles, parseParam-

sAsIntegers and parseParamsAsKeyValPairs.

99

• To set the fractal-specific parameters in the CUDA kernel, use ade-
quate writeToConstantMemory method. Details are described in Sec-
tion A.3.1.

5. Optional: you may override supplyDefaultValues callback if you want to
set specific initial rendering parameters for your fractal, e.g. maxIterations
or specific planeSegment or fractal-specific parameters.

6. Register your newly created class by adding it to modules collection in
the static initializer of cz.cuni.mff.cgg.teichmaa.chaos ultra.cuda -
renderer.CudaFractalRendererProvider.

7. Compile the program with maven, see more details in Attachment D.1, in
README.md.

Hello world

To see that your fractal code is called, you can use the Invoke debug method
button in the GUI, in additional functionality pane. Clicking the button will call
your debugFractal method on the device in a 1×1 grid.

100

D. Electronic attachments
Hereby we list electronic attachments of the thesis. Electronic attachments have
been uploaded to the repository as a zip-file file with following inner directory
structure.

D.1 Source code of the program
The source code of the program is located in directory chaos-ultra-source and
has a standard maven-project structure. The directory contains README.md file
that is referenced from the thesis.

D.2 Compiled executable
A compiled version of the source code, that can be executed at once, is located
in directory chaos-ultra-executable.

D.3 Experiments

D.3.1 Perception study videos
The videos that have been used for perception study are located in directory
perception-study-videos.

D.3.2 Perception study results
The full results of the perception study are located in directory perception-
study-results.

D.3.3 Real-time toolset evaluation
The videos that have been used for evaluation of the real-time toolset are are
located in two directories:

1. Recordings of chaos-ultra with the real-time toolset activated are same
as the recordings used for the perception study and hence are located in
perception-study-results.

2. Recordings of chaos-ultra with the real-time toolset deactivated are lo-
cated in directory recordings-with-real-time-toolset-deactivated.

D.3.4 Examples of program’s output
Examples of program’s output are located in directory program-output-examples.

101

102

Bibliography
[5] Munesh Chauhan. “FRACTALS IMAGE RENDERING AND COMPRES-

SION USING GPUS”. In: International Journal of Digital Information and
Wireless Communications (IJDIWC) 1 (Jan. 2012), pp. 813–818.

[25] K. J. Falconer. Fractal geometry : mathematical foundations and applica-
tions. 2nd edition. Wiley, 2006. isbn: 978-0-470-84862-3.

[27] Yuval Fisher. “Fractal Image Compression”. In: SIGGRAPH ‘92 Course
Notes (1992).

[30] Brian Guenter et al. “Foveated 3D graphics”. In: ACM Transactions on
Graphics 31.6 (Nov. 2012), p. 1. doi: 10.1145/2366145.2366183.

[36] et al. Jing Z. Liu. “Fractal Dimension in Human Cerebellum Measured by
Magnetic Resonance Imaging”. In: Biophysical Journal 85.6 (Dec. 2003),
pp. 4041–4046. doi: 10.1016/S0006-3495(03)74817-6.

[37] Martin Kahoun. “Procedural generation and realtime rendering of planetary
bodies”. MA thesis. Charles University in Prague, Faculty of Mathematics
and Physics, 2010.

[39] S. M. Levien R. B.; Tan. “Double Pendulum: An experiment in chaos”. In:
American Journal of Physics (1993). url: https://aapt.scitation.org/
doi/10.1119/1.17335.

[40] Edward N. Lorenz. “Deterministic Nonperiodic Flow”. In: Journal of the
Atmospheric Sciences 20.2 (Mar. 1963), pp. 130–141. doi: 10.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2.

[41] Edward N. Lorenz. “Predictability; Does the flap of a butterfly’s wings in
Brazil set off a tornado in Texas?” In: AAAS 139th meeting (1972). url:
http://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf.

[43] Benoit Mandelbrot. Fractals and chaos : the Mandelbrot set and beyond.
Vol. C. Springer, 2004. isbn: 978-1-4757-4017-2.

[44] Benoit Mandelbrot. Fractals: Form, Chance and Dimension. W.H. Free-
man, 1977. isbn: 0-7167-0473-0.

[45] Benoit Mandelbrot. “How Long Is the Coast of Britain? Statistical Self-
Similarity and Fractional Dimension”. In: Science 156.3775 (1967), pp. 636–
638. issn: 0036-8075. doi: 10 . 1126 / science . 156 . 3775 . 636. eprint:
https://science.sciencemag.org/content/156/3775/636.full.pdf.
url: https://science.sciencemag.org/content/156/3775/636.

[46] Benoit Mandelbrot. The Fractals Geometry Of Nature. San Francisco, Calif.
: Freeman, 1982. isbn: 978-0-7167-1186-5.

[47] Athanasios I. Margaris. “Simulation and Visualization of Chaotic Systems”.
In: Computer and Information Science 5.4 (June 2012). doi: 10.5539/cis.
v5n4p25.

[49] José Martı́nez et al. “Objective video quality metrics: A performance anal-
ysis”. In: (June 2019).

103

https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1016/S0006-3495(03)74817-6
https://aapt.scitation.org/doi/10.1119/1.17335
https://aapt.scitation.org/doi/10.1119/1.17335
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf
https://doi.org/10.1126/science.156.3775.636
https://science.sciencemag.org/content/156/3775/636.full.pdf
https://science.sciencemag.org/content/156/3775/636
https://doi.org/10.5539/cis.v5n4p25
https://doi.org/10.5539/cis.v5n4p25

[50] Will. D. Mayfield et al. “Fractal Art Generation using GPUs”. In: (Nov. 8,
2016). arXiv: http://arxiv.org/abs/1611.03079v1 [cs.GR].

[52] Curtis T McMullen. “Families of rational maps and iterative root-finding al-
gorithms”. In: Annals of Mathematics 125(3): 467–493 (1987). url: https:
//dash.harvard.edu/handle/1/9876064.

[53] Michel Millodot. Dictionary of Optometry and Visual Science E-Book. Else-
vier Health Sciences, July 30, 2014. 450 pp. url: https://www.ebook.de/
de/product/23252845/michel_millodot_dictionary_of_optometry_
and_visual_science_e_book.html.

[58] James Munkres. Topology (2nd Edition). Pearson, 2000. isbn: 0131816292.
[63] Robert P OShea. “Thumbs Rule Tested: Visual Angle of Thumbs Width is

about 2 Deg”. In: Perception 20.3 (June 1991), pp. 415–418. doi: 10.1068/
p200415.

[64] J P. Lewis. “Is the Fractal Model Appropriate for Terrain?” In: (Jan. 1990).
[66] Jaideep Pathak et al. “Hybrid Forecasting of Chaotic Processes: Using

Machine Learning in Conjunction with a Knowledge-Based Model”. In:
(Mar. 9, 2018). doi: 10.1063/1.5028373. arXiv: http://arxiv.org/
abs/1803.04779v1 [cs.LG].

[67] Anjul Patney et al. “Towards foveated rendering for gaze-tracked virtual
reality”. In: ACM Transactions on Graphics 35.6 (Nov. 2016), pp. 1–12.
doi: 10.1145/2980179.2980246.

[68] Clifford A Pickover. The math book from Pythagoras to the 57th dimension,
250 milestones in the history of mathematics. Sterling : New York, NY,
2009. isbn: 978-1-4027-5796-9.

[70] Kai Qian et al. Software Architecture And Design Illuminated. Jones and
Bartlett Publishers, Inc, Feb. 19, 2009. 388 pp. isbn: 076375420X. url:
https : / / www . ebook . de / de / product / 8104374 / kai _ qian _ xiang _
fu_lixin_tao_chong_wei_xu_software_architecture_and_design_
illuminated.html.

[71] Ping Chen Richard Hollis Day. Nonlinear dynamics and evolutionary eco-
nomics. 1993. isbn: 9780195078596.

[72] Leonid A. Safonov et al. “Multifractal chaotic attractors in a system of
delay-differential equations modeling road traffic”. In: Chaos: An Interdis-
ciplinary Journal of Nonlinear Science 12.4 (Dec. 2002), pp. 1006–1014.
doi: 10.1063/1.1507903.

[74] Mitsuhiro Shishikura. “The Hausdorff Dimension of the Boundary of the
Mandelbrot Set and Julia Sets”. In: The Annals of Mathematics 147.2 (Mar.
1998), p. 225. doi: 10.2307/121009.

[75] P. D. Sisson. “Fractal art using variations on escape time algorithms in the
complex plane”. In: Journal of Mathematics and the Arts 1.1 (Mar. 2007),
pp. 41–45. doi: 10.1080/17513470701210485.

[77] Scott Sutherland. “An Introduction to Julia and Fatou Sets”. In: Springer
Proceedings in Mathematics and Statistics 92 (Jan. 2014), pp. 37–60. doi:
10.1007/978-3-319-08105-2__3.

104

https://arxiv.org/abs/http://arxiv.org/abs/1611.03079v1
https://dash.harvard.edu/handle/1/9876064
https://dash.harvard.edu/handle/1/9876064
https://www.ebook.de/de/product/23252845/michel_millodot_dictionary_of_optometry_and_visual_science_e_book.html
https://www.ebook.de/de/product/23252845/michel_millodot_dictionary_of_optometry_and_visual_science_e_book.html
https://www.ebook.de/de/product/23252845/michel_millodot_dictionary_of_optometry_and_visual_science_e_book.html
https://doi.org/10.1068/p200415
https://doi.org/10.1068/p200415
https://doi.org/10.1063/1.5028373
https://arxiv.org/abs/http://arxiv.org/abs/1803.04779v1
https://arxiv.org/abs/http://arxiv.org/abs/1803.04779v1
https://doi.org/10.1145/2980179.2980246
https://www.ebook.de/de/product/8104374/kai_qian_xiang_fu_lixin_tao_chong_wei_xu_software_architecture_and_design_illuminated.html
https://www.ebook.de/de/product/8104374/kai_qian_xiang_fu_lixin_tao_chong_wei_xu_software_architecture_and_design_illuminated.html
https://www.ebook.de/de/product/8104374/kai_qian_xiang_fu_lixin_tao_chong_wei_xu_software_architecture_and_design_illuminated.html
https://doi.org/10.1063/1.1507903
https://doi.org/10.2307/121009
https://doi.org/10.1080/17513470701210485
https://doi.org/10.1007/978-3-319-08105-2__3

[78] R.P. Taylor. “Reduction of Physiological Stress Using Fractal Art and Ar-
chitecture”. In: Leonardo 39.3 (June 2006), pp. 245–251. doi: 10.1162/
leon.2006.39.3.245.

[79] Richard P. Taylor et al. “Perceptual and Physiological Responses to Jackson
Pollock’s Fractals”. In: Frontiers in Human Neuroscience 5 (2011). doi:
10.3389/fnhum.2011.00060.

[80] Gordon Teskey. The Poetry of John Milton. Cambridge, Mss. : Harvard
Univ. Press, 2015. isbn: 978-0674416642.

105

https://doi.org/10.1162/leon.2006.39.3.245
https://doi.org/10.1162/leon.2006.39.3.245
https://doi.org/10.3389/fnhum.2011.00060

106

Electronic sources
[1] Oskar Elek Ahmed Hassan Yousef. Can Scatter algorithm become faster

than the Gather Algorithm in GPU? Sept. 9, 2015. url: https://www.
researchgate.net/post/Can_Scatter_algorithm_become_faster_
than_the_Gather_Algorithm_in_GPU (visited on 06/26/2019).

[2] Eric Bainville. CPU/GPU Multiprecision Mandelbrot Set. 2009. url: http:
//www.bealto.com/mp-mandelbrot_intro.html.

[3] Paul Bourke. Fractals, Chaos, Self-Similarity. 2019. url: http://paulbourke.
net/fractals/ (visited on 04/06/2019).

[4] Steve Burbeck. Webarchive: Applications Programming in Smalltalk-80(TM):
How to use Model-View-Controller (MVC). url: https://web.archive.
org/web/20120729161926/http://st-www.cs.illinois.edu/users/
smarch/st-docs/mvc.html (visited on 06/26/2019).

[6] Ph.D. Christopher M. Danforth. Chaos in an Atmosphere Hanging on a
Wall. Mar. 17, 2013. url: http://mpe.dimacs.rutgers.edu/2013/
03/17/chaos- in- an- atmosphere- hanging- on- a- wall/ (visited on
04/02/2019).

[7] hpdz.net collective. Technical Info - Convergent Fractals. url: http://
hpdz.net/TechInfo/Convergent.htm#Nova (visited on 06/26/2019).

[8] Wikipedia contributors. Buddhabrot — Wikipedia, The Free Encyclope-
dia. url: https://en.wikipedia.org/wiki/Buddhabrot (visited on
06/26/2019).

[9] Wikipedia contributors. CUDA — Wikipedia, The Free Encyclopedia. url:
https://en.wikipedia.org/wiki/CUDA (visited on 06/26/2019).

[10] Wikipedia contributors. Exponential map (discrete dynamical systems) —
Wikipedia, The Free Encyclopedia. url: https://en.wikipedia.org/
wiki / Exponential _ map _ (discrete _ dynamical _ systems) (visited on
06/26/2019).

[11] Wikipedia contributors. File:Barnsley Fern — Wikipedia, The Free Ency-
clopedia. url: https://en.wikipedia.org/wiki/Barnsley_fern (visited
on 06/26/2019).

[12] Wikipedia contributors. File:EyeOpticsV400y.jpg — Wikipedia, The Free
Encyclopedia. url: https://en.wikipedia.org/wiki/Visual_angle#
/media/File:EyeOpticsV400y.jpg (visited on 06/26/2019).

[13] Wikipedia contributors. File:KochFlake — Wikipedia, The Free Encyclope-
dia. url: https://commons.wikimedia.org/wiki/File:KochFlake.svg
(visited on 06/26/2019).

[14] Wikipedia contributors. File:Peripheralvision.svg−−−Wikipedia,TheFreeEncyclopedia.
url: https://en.wikipedia.org/wiki/File:Peripheral_vision.svg.

[15] Wikipedia contributors. Fractal compression — Wikipedia, The Free Ency-
clopedia. url: https://en.wikipedia.org/wiki/Fractal_compression
(visited on 06/26/2019).

107

https://www.researchgate.net/post/Can_Scatter_algorithm_become_faster_than_the_Gather_Algorithm_in_GPU
https://www.researchgate.net/post/Can_Scatter_algorithm_become_faster_than_the_Gather_Algorithm_in_GPU
https://www.researchgate.net/post/Can_Scatter_algorithm_become_faster_than_the_Gather_Algorithm_in_GPU
http://www.bealto.com/mp-mandelbrot_intro.html
http://www.bealto.com/mp-mandelbrot_intro.html
http://paulbourke.net/fractals/
http://paulbourke.net/fractals/
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://mpe.dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/
http://mpe.dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/
http://hpdz.net/TechInfo/Convergent.htm#Nova
http://hpdz.net/TechInfo/Convergent.htm#Nova
https://en.wikipedia.org/wiki/Buddhabrot
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/Exponential_map_(discrete_dynamical_systems)
https://en.wikipedia.org/wiki/Exponential_map_(discrete_dynamical_systems)
https://en.wikipedia.org/wiki/Barnsley_fern
https://en.wikipedia.org/wiki/Visual_angle#/media/File:EyeOpticsV400y.jpg
https://en.wikipedia.org/wiki/Visual_angle#/media/File:EyeOpticsV400y.jpg
https://commons.wikimedia.org/wiki/File:KochFlake.svg
https://en.wikipedia.org/wiki/File:Peripheral_vision.svg
https://en.wikipedia.org/wiki/Fractal_compression

[16] Wikipedia contributors. Fractal, Common techniques for generating fractals
— Wikipedia, The Free Encyclopedia. Mar. 16, 2019. url: https://en.
wikipedia.org/wiki/Fractal#Common_techniques_for_generating_
fractals (visited on 04/02/2019).

[17] Wikipedia contributors. Julia Set — Wikipedia, The Free Encyclopedia.
url: https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials
(visited on 06/26/2019).

[18] Wikipedia contributors. List of chaotic maps — Wikipedia, The Free En-
cyclopedia. Apr. 1, 2019. url: https://en.wikipedia.org/wiki/List_
of_chaotic_maps (visited on 04/02/2019).

[19] Wikipedia contributors. List of fractals by Hausdorff dimension — Wikipedia,
The Free Encyclopedia. Mar. 16, 2019. url: https : / / en . wikipedia .
org / wiki / List _ of _ fractals _ by _ Hausdorff _ dimension (visited on
04/02/2019).

[20] Wikipedia contributors. Mandelbrot Set — Wikipedia, The Free Encyclope-
dia. url: https://en.wikipedia.org/wiki/Mandelbrot_set (visited on
06/26/2019).

[21] Wikipedia contributors. Newton’s method — Wikipedia, The Free Encyclo-
pedia. url: https://en.wikipedia.org/wiki/Newton’s_method (visited
on 06/26/2019).

[22] nvidia corporation. CUDA C Programming Guide. May 30, 2019. url:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html (visited on 06/26/2019).

[23] curran. WebGL Mandelbrot. url: https://github.com/curran/mandelbrot.
[24] Alan Dewar. Images from the Mandelbrot Set. url: http://www.cuug.ab.

ca/dewara/mandelbrot/images.html (visited on 06/26/2019).
[26] Pavel Fatin. gpu-fractal-renderer. url: https://github.com/pavelfatin/

gpu-fractal-renderer.
[28] Fractal Tutorial - Color Techniques For Fractals. url: http://fractalarts.

com/ASF/fractal_color_tutorial_1.html (visited on 06/26/2019).
[29] Anthony Frausto-Robledo. A Unified Graphics Future—How The Khronos

Group Intends To Get Us There (Part 1). Aug. 28, 2017. url: https :
//architosh.com/2017/08/a-unified-graphics-future-how-the-
khronos - group - intends - to - get - us - there - part - 1/ (visited on
06/26/2019).

[31] Shea Gunther. 14 amazing fractals found in nature. Apr. 13, 2013. url:
https://www.mnn.com/earth-matters/wilderness-resources/blogs/
14-amazing-fractals-found-in-nature (visited on 06/26/2019).

[33] Jan Hubička. GNU XaoS. url: http://matek.hu/xaos/doku.php (visited
on 06/26/2019).

[34] Isaac. Mandelbrot-like sets for functions other than f(z)=z2+c? July 29,
2010. url: https://math.stackexchange.com/questions/1099/mandelbrot-
like-sets-for-functions-other-than-fz-z2c (visited on 06/26/2019).

108

https://en.wikipedia.org/wiki/Fractal#Common_techniques_for_generating_fractals
https://en.wikipedia.org/wiki/Fractal#Common_techniques_for_generating_fractals
https://en.wikipedia.org/wiki/Fractal#Common_techniques_for_generating_fractals
https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials
https://en.wikipedia.org/wiki/List_of_chaotic_maps
https://en.wikipedia.org/wiki/List_of_chaotic_maps
https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension
https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Newton's_method
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/curran/mandelbrot
http://www.cuug.ab.ca/dewara/mandelbrot/images.html
http://www.cuug.ab.ca/dewara/mandelbrot/images.html
https://github.com/pavelfatin/gpu-fractal-renderer
https://github.com/pavelfatin/gpu-fractal-renderer
http://fractalarts.com/ASF/fractal_color_tutorial_1.html
http://fractalarts.com/ASF/fractal_color_tutorial_1.html
https://architosh.com/2017/08/a-unified-graphics-future-how-the-khronos-group-intends-to-get-us-there-part-1/
https://architosh.com/2017/08/a-unified-graphics-future-how-the-khronos-group-intends-to-get-us-there-part-1/
https://architosh.com/2017/08/a-unified-graphics-future-how-the-khronos-group-intends-to-get-us-there-part-1/
https://www.mnn.com/earth-matters/wilderness-resources/blogs/14-amazing-fractals-found-in-nature
https://www.mnn.com/earth-matters/wilderness-resources/blogs/14-amazing-fractals-found-in-nature
http://matek.hu/xaos/doku.php
https://math.stackexchange.com/questions/1099/mandelbrot-like-sets-for-functions-other-than-fz-z2c
https://math.stackexchange.com/questions/1099/mandelbrot-like-sets-for-functions-other-than-fz-z2c

[35] JCuda Documentation. url: http://www.jcuda.org/documentation/
Documentation.html.

[42] Michael Lucy. Fractals in nature. url: https://cosmosmagazine.com/
mathematics/fractals-in-nature (visited on 06/26/2019).

[48] Thomas Marsh and Jan Hubicka. XAOS ALGORITHMS. url: https :
//web.mit.edu/kolya/sipb/afs/root.afs/athena/activity/p/
peckers/OldFiles/Programs/XaoS-2.2/doc/algorithm.txt (visited on
06/26/2019).

[51] Steven C. McConnell. Progressive Image Rendering. Dec. 14, 2005. url:
https://blog.codinghorror.com/progressive- image- rendering/
(visited on 06/26/2019).

[54] Bryon Moyer. How Does Scatter/Gather Work? Feb. 9, 2017. url: https:
//www.eejournal.com/article/20170209-scatter-gather/ (visited on
06/26/2019).

[55] Robert Munafo. Mu-Ency - The Encyclopedia of the Mandelbrot Set. 1996.
url: https://mrob.com/pub/muency.html (visited on 04/06/2019).

[56] Robert P. Munafo. Mariani/Silver Algorithm. Sept. 8, 2010. url: https:
//www.mrob.com/pub/muency/marianisilveralgorithm.html (visited
on 06/26/2019).

[57] Robert P. Munafo. Successive Tradeoff Methods. 1993-01-23. url: https:
//mrob.com/pub/muency/successivetradeoffmethods.html (visited on
06/26/2019).

[59] Jeremy Norman. Mandelbrot’s “The Fractal Geometry of Nature” : History-
ofInformation.com. en. 2019. url: http://www.historyofinformation.
com/detail.php?entryid=1151.

[60] Oracle. Enriching Swing Applications with JavaFX Functionality. url: https:
//docs.oracle.com/javase/8/javafx/interoperability-tutorial/
jtable-barchart.htm#CHDBHIJJ.

[61] Oracle. The JavaFX Advantage for Swing Developers. url: https : / /
docs.oracle.com/javase/8/javafx/interoperability- tutorial/
overview.htm#CJAHBAHA (visited on 06/26/2019).

[62] Oracle. Using FXML to Create a User Interface. url: https://docs.
oracle.com/javafx/2/get_started/fxml_tutorial.htm (visited on
06/26/2019).

[65] PANKAJ. Bridge Design Pattern in Java. url: https://www.journaldev.
com/1491/bridge-design-pattern-java (visited on 06/26/2019).

[73] sgtatham. Fractals derived from Newton-Raphson iteration. url: https:
/ / www . chiark . greenend . org . uk / ̃sgtatham / newton/ (visited on
06/26/2019).

[76] LLC Spotworks. Electric Sheep. url: https://electricsheep.org/ (vis-
ited on 06/26/2019).

[81] Thomasdb. CUDA-OpenGL interop performance. May 26, 2014. url: https:
//devtalk.nvidia.com/default/topic/747242/cuda-opengl-interop-
performance/ (visited on 06/26/2019).

109

http://www.jcuda.org/documentation/Documentation.html
http://www.jcuda.org/documentation/Documentation.html
https://cosmosmagazine.com/mathematics/fractals-in-nature
https://cosmosmagazine.com/mathematics/fractals-in-nature
https://web.mit.edu/kolya/sipb/afs/root.afs/athena/activity/p/peckers/OldFiles/Programs/XaoS-2.2/doc/algorithm.txt
https://web.mit.edu/kolya/sipb/afs/root.afs/athena/activity/p/peckers/OldFiles/Programs/XaoS-2.2/doc/algorithm.txt
https://web.mit.edu/kolya/sipb/afs/root.afs/athena/activity/p/peckers/OldFiles/Programs/XaoS-2.2/doc/algorithm.txt
https://blog.codinghorror.com/progressive-image-rendering/
https://www.eejournal.com/article/20170209-scatter-gather/
https://www.eejournal.com/article/20170209-scatter-gather/
https://mrob.com/pub/muency.html
https://www.mrob.com/pub/muency/marianisilveralgorithm.html
https://www.mrob.com/pub/muency/marianisilveralgorithm.html
https://mrob.com/pub/muency/successivetradeoffmethods.html
https://mrob.com/pub/muency/successivetradeoffmethods.html
http://www.historyofinformation.com/detail.php?entryid=1151
http://www.historyofinformation.com/detail.php?entryid=1151
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/jtable-barchart.htm#CHDBHIJJ
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/jtable-barchart.htm#CHDBHIJJ
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/jtable-barchart.htm#CHDBHIJJ
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/overview.htm#CJAHBAHA
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/overview.htm#CJAHBAHA
https://docs.oracle.com/javase/8/javafx/interoperability-tutorial/overview.htm#CJAHBAHA
https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
https://www.journaldev.com/1491/bridge-design-pattern-java
https://www.journaldev.com/1491/bridge-design-pattern-java
https://www.chiark.greenend.org.uk/~sgtatham/newton/
https://www.chiark.greenend.org.uk/~sgtatham/newton/
https://electricsheep.org/
https://devtalk.nvidia.com/default/topic/747242/cuda-opengl-interop-performance/
https://devtalk.nvidia.com/default/topic/747242/cuda-opengl-interop-performance/
https://devtalk.nvidia.com/default/topic/747242/cuda-opengl-interop-performance/

[82] Steve Thompson. Adaptive Sampling. July 16, 2011. url: http://www.
mathstat.helsinki.fi/msm/banocoss/2011/Presentations/Thompson_
web.pdf (visited on 06/26/2019).

[83] John Tsiombikas. Nuclear / Mindlapse. url: http://nuclear.mutantstargoat.
com/articles/sdr_fract/.

[84] ultrafractal. Class StandardNovaMandel. url: http://formulas.ultrafractal.
com/reference/Standard/Standard_NovaMandel.html (visited on 06/26/2019).

[85] Wolfram. Mandelbar Set — Wolfram Math World. url: http://mathworld.
wolfram.com/MandelbarSet.html.

[86] Wolfram. Mandelbrot Set — Wolfram Math World. url: http://mathworld.
wolfram.com/MandelbrotSet.html (visited on 06/26/2019).

[87] WPF - Mono. url: https://www.mono-project.com/docs/gui/wpf/
(visited on 06/26/2019).

110

http://www.mathstat.helsinki.fi/msm/banocoss/2011/Presentations/Thompson_web.pdf
http://www.mathstat.helsinki.fi/msm/banocoss/2011/Presentations/Thompson_web.pdf
http://www.mathstat.helsinki.fi/msm/banocoss/2011/Presentations/Thompson_web.pdf
http://nuclear.mutantstargoat.com/articles/sdr_fract/
http://nuclear.mutantstargoat.com/articles/sdr_fract/
http://formulas.ultrafractal.com/reference/Standard/Standard_NovaMandel.html
http://formulas.ultrafractal.com/reference/Standard/Standard_NovaMandel.html
http://mathworld.wolfram.com/MandelbarSet.html
http://mathworld.wolfram.com/MandelbarSet.html
http://mathworld.wolfram.com/MandelbrotSet.html
http://mathworld.wolfram.com/MandelbrotSet.html
https://www.mono-project.com/docs/gui/wpf/

List of Figures

1.3 Inner part of the Mandelbrot set, example of an Escape-time fractal. 7
1.4 XaoS , real-time CPU renderer with GUI. 10

2.1 Visualization of the three given fractals. 21

3.1 Alternative algorithms for visualizing the Mandelbrot set. 24
3.2 The two coloring methods for Newton fractal. 27
3.3 Illustration of the definition of the rendering problem: pixel p is

mapped to dark-red color. 31
3.4 Rasterisation: what should be the color of each of the 8 pixels?

Below are pixel colors based on only one sample, taken in the
pixel’s center. 33

3.5 Examples of sample distribution methods within a pixel. 34

4.1 Illustration of chaotic regions of a function. 42
4.2 Adaptive supersampling: illustration of possible number of samples

per pixel and sample distribution. 43
4.3 Illustration of sample reprojection when reusing samples. 48
4.4 Human vision . 51
4.5 Foveated rendering: Mapping of the visual angle to sample count. 52

5.1 Illustrative screenshots from the perception study, study example 3. 57
5.2 Adaptive supersampling on Mandelbrot example 4 58
5.3 Adaptive supersampling on Mandelbrot example 5 58
5.4 Adaptive supersampling on Julia example 4 58
5.5 Adaptive supersampling on Newton iterations 59
5.6 Granularity of adaptive supersampling, illustrated on Julia exam-

ple 4. Both images have the same render time. maxSuperSampling
is 8. 59

5.7 Comparison of Mandelbrot example 4 with and without adaptive
supersampling, with maxSuperSampling set to 32. 60

5.8 Examples of chaos-ultra output. 63

A.1 Program architecture . 75
A.2 A texture rendered on CUDA, with all pixels within a warp col-

orized with the same color. Scaled up for clarity. Left: canonical
cuda warp, right: our rectangular warp. 78

A.3 Mapping of image indexes to warp index and vice-versa. 79
A.4 Class structure of the cudarenderer package. 82
A.5 class structure of the rendering package 84
A.6 Sequence of multiple fractals management 85
A.7 FractalRenderer lifecycle . 86
A.8 GLRenderer lifecycle sequence . 87
A.9 rendering package data flow . 89
A.10 States and transitions of the rendering mode state machine 90
A.11 Class structure of the GUI, including gui-component hierarchy. . . 91

111

112

	Introduction
	Motivation
	Aims
	Research aims
	Implementation aims

	Related work
	Software for fractal rendering
	Papers on fractal rendering and chaos prediction

	Goals
	Expectations on the reader
	Thesis structure

	Mathematical background on fractals
	General definitions
	Fractals
	Chaotic functions
	Continuous escape-time fractals
	Maps
	Complex maps
	Complex quadratic map
	Mandelbrot set
	Julia set and Julia fractals
	Newton fractal
	Other examples

	Problem analysis
	Rendering algorithms
	Making a fractal from the Mandelbrot set
	Julia fractals
	Newton fractal
	Rendering a fractal as a whole

	Generalization
	Chaotic functions
	Formal definition of the rendering problem
	Performance-increasing heuristics

	Supersampling
	Sample distribution
	Sample composition

	Fractal coloring
	GPGPU technology
	Backend and Frontend
	Programming languages
	Genericity
	Designing a graphical user interface
	Class architecture

	Number precision

	Methods of achieving real time performance
	Adaptive super-sampling
	Algorithm for adaptive supersampling

	Interactive mode and progressive visualization
	Fixed resource budget per frame
	Progressive visualization

	Sample reuse
	Foveated rendering
	Combining the methods into a toolset
	Conclusion
	Other possible methods

	Experiments
	Measurements methodology
	Hardware
	Comparing specific chaotic functions
	Choosing comparison method

	Comparing XaoS and chaos-ultra
	Adaptive supersampling
	The real-time heuristic toolset
	Rendering review

	Conclusion
	Appendices
	Development documentation
	CUDA terminology
	Fractal representation

	Program architecture
	CUDA backend
	Data structures
	Fractal interface
	Fractal specific parameters
	Specific fractals implementation
	Implementing the real-time heuristics
	API of the module: Available kernels
	Compilation and build

	Java-Cuda mapping
	Module object hierarchy
	Cuda Kernel
	Class CudaFractalRenderer

	Java renderer
	Supporting multiple fractals
	Interface FractalRenderer
	Class GLRenderer and OpenGL loop
	Model
	Class RenderingController

	Graphical user interface
	Swing GLCanvas
	JavaFX and Swing integration
	FXML
	FX Presenter

	Developer README

	User documentation
	Technical requirements
	Installation guide
	Navigating the user interface
	Fractal change
	Changing the color palette
	Image export
	Troubleshooting

	Adding a custom fractal
	Electronic attachments
	Source code of the program
	Compiled executable
	Experiments
	Perception study videos
	Perception study results
	Real-time toolset evaluation
	Examples of program's output

	List of Figures

