
BACHELOR THESIS

Patŕıcia Schmidtová

A chatbot for the banking domain

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: Mgr. et Mgr. Ondřej Dušek, Ph.D.
Study programme: Computer Science

Study branch: IOI

Prague 2019





I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In Prague 19.07.2019 signature of the author

i



ii



Title: A chatbot for the banking domain

Author: Patŕıcia Schmidtová

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondřej Dušek, Ph.D., Institute of Formal and
Applied Linguistics

Abstract: This thesis designs, implements and evaluates a task-based chat-
bot, which is expected to answer questions and give advice from the banking
domain. We present an extendable natural language understanding (NLU)
module based on GATE Framework which serves to create interpretations of
the user’s utterance. We implement a rule-based dialog manager component
which is responsible for answering based on the NLU’s interpretations and a
stored context. We also implement a template-based natural language gen-
eration module. We then evaluate the chatbot with human testers, verifying
it performs well in most cases and identifying areas for future improvement.

Abstract in Czech: Tato práce navrhuje, implementuje a vyhodnocuje
úkolově zaměřeného chatbota, jehož úkolem je odpov́ıdat na dotazy a posky-
tovat rady ohledně bankovnictv́ı. Uvád́ıme rozšǐritelný modul porozuměńı
přirozeného jazyka (NLU), založený na technologii GATE Framework, který
slouž́ı k vytvořeńı interpretaćı uživatelova dotazu. Pak implementujeme
pravidlový dialogový manažer, který je odpovědný za odpov́ıdáńı na základě
interpretaćı od NLU a uloženého kontextu. Dále implementujeme model gen-
erováńı přirozeného jazyka, založený na šablonách. Chatbota hodnot́ıme za
pomoci lidských tester̊u, ověřujeme, že ve většině př́ıpad̊u je schopen plnit
své úlohy, a identifikujeme možná budoućı vylepšeńı.

Keywords: dialog system, natural language understanding, NLP, chatbot,
dialog manager

Keywords in Czech: dialogový systém, porozuměńı přirozeného jazyka, NLP,
chatbot, dialogový manažer

iii



iv



I would like to thank my thesis supervisor, Mgr. et Mgr. Ondřej Dušek,
Ph.D. and this thesis consultant Mgr. Vojtěch Hudeček for all their help
and guidance, quick responses to my emails and being an endless source of
motivation.

I would also like to thank my family, boyfriend and friends for their
continuous support during my Bachelor’s studies.

Last but not the least, I would like to thank my former colleagues from
RobotReader and Datlowe for supporting me while working on this thesis.
Especially Lucka, because if it wasn’t for the conversation with her three
years ago, this thesis would very likely be on a different topic.

v



vi



Contents

1 Introduction 3
1.1 Dialog Systems in General . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . 4

2 Task Description 7
2.1 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . 7
2.2 Questions About Investment Products . . . . . . . . . . . . . 8
2.3 Individualized Advice . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Conversation-specific Phrases . . . . . . . . . . . . . . . . . . 11

3 Natural Language Understanding 13
3.1 Used Frameworks, Tools & Technologies . . . . . . . . . . . . 13
3.2 Methods and Approaches . . . . . . . . . . . . . . . . . . . . . 15
3.3 Inner Structure of the NLU Module . . . . . . . . . . . . . . . 19

3.3.1 Common Entity Processing . . . . . . . . . . . . . . . 19
3.3.2 Chitchat Layer . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Banking Domain Layer . . . . . . . . . . . . . . . . . . 21

4 Dialog Manager 25
4.1 Processing a List of Possible Intents . . . . . . . . . . . . . . . 25
4.2 Answer Generation . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Evaluation 29
5.1 Evaluation Method and Results . . . . . . . . . . . . . . . . . 29
5.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Missing vocabulary / database entries . . . . . . . . . . 33
5.2.2 Ontology ambiguity . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Implicit Queries . . . . . . . . . . . . . . . . . . . . . . 35
5.2.5 Other NLU errors . . . . . . . . . . . . . . . . . . . . . 36
5.2.6 Grammar and Typos . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 37
6.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

1



A Questionnaire Results 43

B Setup Guide 45

2



1. Introduction
In the last decade, chatbots have become more popular and available than
ever before. Thanks to the current technology, we can carry them in pockets,
and they can wait for us at home. They have evolved into virtual assistants,
such as Apple Siri, Amazon Alexa or Google Home, which are available 24/7
and never have to take a day off.

1.1 Dialog Systems in General

Three main components are in some way present in almost all dialog systems:
natural language understanding (NLU), dialog manager (DM), and natural
language generation (NLG). Natural language understanding is responsible
for decoding the user’s message and transforming it into a format that can
be further processed by the DM. The dialog manager keeps track of the pre-
ceding context (dialog state) and uses it to find an answer to the NLU’s rep-
resentation of the user’s message. Before we send the answer to the user, the
natural language generation has to translate it into natural language. Spo-
ken (voice-based) dialog systems also contain automated speech recognition
(ASR) and text-to-speech synthesis (TTS). Automated speech recognition
is responsible for transcribing the user’s spoken utterance into written text,
which is then passed to the NLU. Text-to-speech synthesis takes the answer
from the NLG and generates its audio representation. This thesis deals with
written chatbots, so we do not need ASR and TTS.

Dialog systems can be conversation-oriented and/or task-oriented. The
former are used almost exclusively for amusement, while the latter usually
perform a given task. The first chatbot, Eliza (Weizenbaum, 1966) was a
conversation-oriented dialog system designed to behave like a Rogerian psy-
chologist. The most recent advances in the field of conversational chatbots
have centered around the Amazon Alexa Prize (Ram et al., 2018). In con-
trast, most of the virtual assistants, such as Siri, are task-oriented and help
users by finding a nearby restaurant or by looking up the weather forecast.
This thesis presents a fully task-oriented chatbot.

We can also divide chatbots based on their implementation. Accord-
ing to Jurafsky and Martin (2019), we can divide chatbots into rule-based
and corpus-based. Rule-based chatbots usually have a dictionary and a set
of rules that deterministically models their behavior. On the other hand,
corpus-based chatbots use statistical methods in order to provide answers,

3



such as information retrieval and sequence to sequence neural networks. Such
architectures are further described and compared in Gao et al. (2018).

1.2 Thesis Goals

This thesis aims to implement and evaluate a task-oriented chatbot in the
banking domain. The development started as a project in the RobotReader
company. The expectations for the chatbot were defined by an unnamed
client of the company, who was in the process of starting a bank. Since the
client had almost no data, it was more reasonable to make the chatbot rule-
based. The client’s vision was a friendly chatbot who would be able to show
people that investments are not something to be scared of. Unfortunately,
this chatbot was not deployed because the client’s project was cancelled after
a few months. We finished the implementation for the purposes of this thesis.
We set the following goals:

1. We will design and implement a rule-based natural language under-
standing module. The module should be easy to extend to another
task, language, or domain.

2. We will design and implement a rule-based dialog manager, which will
be able to respond using natural language using a built-in template
NLG component.

3. We will evaluate this chatbot based on how well it performs the tasks
it was designed for. Furthermore, we aim to learn from the mistakes
discovered while testing and suggest further improvements.

1.3 Structure of This Thesis

In Chapter 2 we introduce the tasks to be solved by the chatbot. We further
analyze each task and divide them into smaller tasks for the NLU module
and the dialog manager.

In Chapter 3 we focus on the natural language understanding module and
the representation of domain information. We introduce the used technolo-
gies, methods, and the architecture of the module.

In the first part of Chapter 4, we describe the dialog manager component
of the chatbot. In the second part, we discuss the natural language generation
component.

4



In Chapter 5 we introduce the experiments and provide their results. In
the second part, we analyze the errors and suggest improvements for future
work.

We provide a brief installation guide in Appendix B.
The complete JavaDoc and KDoc documentations of this thesis source

code are included with the source code. Due to their length and layout, they
are not suitable to be included in the printed version of the thesis.

5



6



2. Task Description
In this chapter, we will introduce the tasks to be solved by the chatbot. We
will define them, suggest the motivation for them, and further divide the
tasks into the goals of the NLU module and the Dialog Manager. We will
also provide examples to deepen the understanding of the tasks. The tasks
have been defined by the client of RobotReader and their solutions were
implemented by the author of this thesis. All of the tasks are situated in the
banking domain, and related to investments.

2.1 Frequently Asked Questions

The motivation for the first task is to create a more user-friendly alternative
to lengthy and opaque pages full of frequently asked questions. The client
provided a list of over a hundred questions about real estate fund investments,
paired with answers. The chatbot is expected to analyze the user’s message
and either return the correct answer or apologize for not having the answer.

In this case, the output of the NLU module is a list of reasonable inter-
pretations of the user’s question. Since the frequently asked questions do not
follow a specific pattern, the interpretations have to be as universal as pos-
sible. In order to keep the representation flexible, it cannot have a prepared
rigid structure, so we need to put as much information about the words in
the sentence into the representation itself. On the other hand, we do not
want to clutter the representation with unnecessary words, so we also need
to distinguish which words in the sentence contribute to its meaning. There-
fore, the task of the NLU module is to identify as many important words as
possible and then combine them into the final representation.

The Dialog Manager is expected to match the representation it gets from
the NLU module with a question that is already in the database1. In order
to do this, the Dialog Manager’s task is to compare the input question with
all of the questions in the database and compute a similarity measure we will
use to find the best match. In case there are multiple matches, we will select
the few best ones to make sure the user’s question will be answered. In case
none of the questions in the database is similar enough, the Dialog Manager
admits its failure and apologizes.

1The questions in the database went through the same NLU processing in order to
produce the final representation.

7



Now let us further demonstrate this task on an example:

(2.1) Co
What

všechno
all

obsahuje
includes

cena
price

uvedená
displayed

u
next to

nemovitosti
the property

?
?

‘What does the price displayed next to the property include?’

The meaning of this sentence is contained in the following four words:
the interrogative pronoun what, the verb to include, and the terms price and
property. The remaining words do not appear in the output representation
of this message because they are not essential. Similarly, if the user decides
to be more eloquent and use auxiliary verbs or more padding words, they
will not be included, which simplifies the Dialog Manager’s matching task.

2.2 Questions About Investment Products

The goal of this task is to provide information about various investment
products. In most cases, the user is interested in the properties of a given
product or seeks a product that fulfills given criteria. In order to succeed
in this task, the NLU module needs to identify all mentions of products,
attributes, and restricting criteria. It is also necessary to classify the type of
question asked. We divided the questions into the following groups based on
their nature2:

• What is it?: The user wants to know the definition of a product or an
attribute. It is the easiest type of questions to identify because there
are not many variations of it. As for the extraction part, we only need
to know the term to be defined.
The Dialog Manager’s task is also simple; it needs to query the database
for the definition of a given term. In case the term is not found in the
database, the chatbot should specify it understood the essence of the
question but did not recognize the term.

• What is the value of an attribute of a product?: The user in-
quires the value of an attribute of a given product. The product and
attribute in question must be extracted. Reliably identifying this type
of queries is more difficult than the previous type. There are more ways
to ask this question, but their syntax can be completely different, for
example:

2The types listed here were designed and implemented by the author of this thesis.
There are more types in the final product.

8



Figure 2.1: Two different variations of the ”What is it” type question. First
translates to “What are bonds?”, the second roughly translates to “And what
are those bonds anyway?”. They both correctly receive the same answer.

(2.2) What is the attribute of product? – What is the liquidity of
bonds?

(2.3) How attributeAdverb is product? – How liquid are bonds?

The Dialog Manager tries to find the answer in the database. There
are three potential outcomes: it can find a prepared answer, a value to
pass to a template, or it can find no answer. In the first two cases, the
Manager returns the answer, and in the last case, it apologizes.

• What is the value of an attribute?: Similarly to the previous type
of questions, the user expects to find out the value of an attribute of a
specific product. However, the product is not explicitly mentioned - it
is either implied or replaced by the pronoun “it”.
We used basic coreference resolution (Clark et al., 2010, p. 611ff.) in
order to answer messages of this type. The Dialog Manager remembers
the products mentioned by the user, so it takes the last mentioned
product and carries out its task as if it was a query of the previous
type.

• Compare two products: In case the user cannot decide between two
products, it might be helpful to provide a comparison between them.
While there is no way of telling which product is better because different
people have different preferences, it is possible to compare them based

9



on an attribute. This type of query will surely have an adjective in
comparative and therefore, is easily distinguished.
The Dialog Manager gets the value of the attribute for both products
and passes them to a template. The intended reply, however, is not the
name of the product with a higher value. The should contain the values
of the given attributes for both products which still implicitly answers
the user’s question. If the attribute is not supplied, the products are
compared based on all attributes.

• Tell me everything you know about ...: The user might opt for a
simpler question and asks about the product in general. The questions
of this type might look like: What can you tell me about product?
So far, the Dialog Manager’s task is to list the known values of all of
the attributes in separate messages. Future work might include priority
rankings of attributes, so just the few essential ones would be selected.

2.3 Individualized Advice

The last task has been created as a proof of concept to show that this chatbot
could be used to collect information from the user. The information could
then be used to make a recommendation or a calculation. The demonstration
task we chose was to build an investment profile of a person and subsequently
give them a recommendation for the best investment product for them.

In this task, the Dialog Manager takes the initiative and asks the user
questions in order to provide investment advice tailored to the user’s needs
and expectations. It is different from the previously mentioned tasks because
the user does not have to write out whole sentences, but rather the minimal
utterance that answers the question posed by the Dialog Manager. All of the
extracted information can be either provided at once or message by message.

The first goal of the NLU module is to inform the Dialog Manager that
the user is seeking personalized advice, such as the example below, and it
should start asking questions. Then it has to relay every piece of information
that could be valuable to the Dialog Manager.

(2.4) Do čeho bys mi doporučil investovat? – What would you recommend
for investment?

The Dialog Manager has to identify what kind of information it needs
and ask for it. It should keep asking questions until it has all the informa-
tion. However, we anticipated that some users might ask a question before

10



answering, and in that case, answers that question first. Then it reminds the
user to answer its previously asked question. Once it has all the information,
it should create a recommendation based on a set of decision rules.

2.4 Conversation-specific Phrases

Apart from the domain-specific questions, the chatbot also recognizes greet-
ings and polite phrases. Future work might include recognizing more out-
of-scope questions and requests that are in no way essential to the chatbot’s
primary goal. That is because many testers were disappointed that the chat-
bot could not provide a weather forecast or tell a joke. This shows that small
talk is important for some users’ overall impression.

11



12



3. Natural Language
Understanding
In this chapter, we will describe the natural language understanding com-
ponent of the chatbot. First, we will introduce the frameworks, tools, and
technologies used (Section 3.1). Second, we will discuss the methods and
approaches used throughout the whole NLU Module (Section 3.2). Finally,
we will take a look at its inner structure of and implementation (Section 3.3).

The primary goal of the Natural Language Understanding module is to
decode the user’s message into a format that can be further processed by the
Dialog Manager, which is a separate module. In this thesis, we will refer to
the meaning of the user’s message as intent. Additionally, we set a secondary
goal for practical purposes: to make the module easy to extend to another
task within the domain, a distinct domain, or a different language. The
NLU is designed to provide a variety of possible interpretations in order to
maximize the chance that the Dialog Manager will understand the dialog act
(McTear et al., 2016, p. 164ff.) successfully. The NLU module tries to find
all the possibilities, identify all the fragments, and finally ranks and orders
them by their likelihood. This enables us to keep the task-dependent dialog
context separate from the NLU module.

We will show an example first and use it throughout the entire chapter
to demonstrate various aspects of the NLU:

(3.1) Co
What

je
is

rizikověǰśı,
riskier,

akcie
stock

nebo
or

dluhopisy
bonds

?
?

‘Which one is riskier, stock or bonds?’

The best interpretation of this question is the product comparison type
query presented in Section 2.2, where the comparison criterion is risk and
the products to be compared are stock and bonds.

3.1 Used Frameworks, Tools & Technologies

The main building block of the NLU module is GATE Framework 8.4 (Cun-
ningham et al., 2013), which is an open source software for text analysis and
natural language processing. It allows us to construct a complicated but

13



well-structured pipeline by neatly organizing resources. The analyzed text
is stored in a structure called a GATE Document and will be referred to as
Document in this thesis. The Document has its content and Annotations
stored in Annotation Sets. The sole purpose of AnnotationSets is to group
Annotations. For example, the “address” AnnotationSet stores Annotations
that help us identify addresses, such as streets or towns. Every Annotation
has a start and end offset, a type, and a FeatureMap. In this thesis, Annota-
tions serve as an abstraction of concepts represented by words or phrases and
allow us to write rules in a bottom up approach. Moreover, GATE comes
with a variety of built-in tools, such as gazetteer and finite state automa-
ton implementations. Those allow us to create and manipulate Annotations
based on word lookups and rules.

Figure 3.1: A preview of the GATE Developer. ‘banking’ is the name of the
Annotation Set, the highlighted keywords below are Annotation types.

In addition to working with GATE, RobotReader provided a library called
lama-framework1 which serves as an extra layer and allows to access GATE
API in the Kotlin language. Its primary function is to make the development
and deployment of the NLU module smoother and more pleasant.

Since Czech is a fusional language with flexible word order, it would be a
tedious task to extract information without any morphological and syntactic
analysis. For this purpose, this thesis heavily relies on tools developed at the
Institute of Formal and Applied Linguistics, namely MorphoDiTa for tok-
enization, part-of-speech tagging and lemmatization (Straková et al., 2014),
UDPipe for dependency parsing (Straka and Straková, 2017), and NameTag
for named entity tagging (Straková et al., 2014). Using them in the GATE
environment has been possible thanks to the czsem package (Dědek, 2012).

1“LAMA” Stands for Linguistic Analysis and MAchine learning.

14



3.2 Methods and Approaches

In this section, we will cover some general principles, methods, and ap-
proaches that were used throughout the entire NLU Module implementation.
The central idea is that the understanding of the user’s utterance was built
using a bottom-up approach; first, words or phrases that match specific rules
get labeled with Annotations. In the next step of processing, those words and
phrases are generalized - further represented only by their Annotation type
and features. We form a solid foundation that can be expanded by merging
Annotations into higher-level ones.2

In the first step, the utterance is tokenized, and the tokens are morpho-
logically and syntactically analyzed. In the context of GATE, this means
that Annotations of type Token3 covered each token and the results of the
morphological analysis (such as the part-of-speech tag or the lemma) were
stored in the Token’s FeatureMap.

The first of the methods we used is an in-domain entity gazetteer lookup.
Solely looking up keywords or key phrases in the text would be ineffective, as
Czech words usually appear in an inflected form. That is why the majority
of gazetteers we use have been lemmatized first, and the entries are matched
against Token lemmas. In this thesis, we use gazetteers to find banking-
related terms from the domain ontology, and entities that will be further
discussed in Section 3.3.

The majority of the understanding of the banking domain stems from
the domain ontology provided by RobotReader. The ontology itself is not
included in this thesis because it remains the property of the company. How-
ever, its role in the NLU Module is essential, and therefore, we will discuss
it in this section. In Figure 3.2, we can see a preview of the ontology in the
Protégé ontology editing tool (Musen, 2015).

The ontology divides instances into the following main 7 classes:

• The verb class mostly contains verbs related to banking or investment,
such as to invest or to buy. In addition to those, the class also contains
auxiliary verbs.

• Attributes, such as risk, represent the properties of products.

• The products are listed in the products or services class. Those include
bonds and stock from Example 3.1.

2For example First name + Last name = Full name
3Token with a capital T will denote the Annotation

15



Figure 3.2: Preview of the RobotReader banking ontology

• Objects include other banking terms that could neither be classified
as attributes nor as products, such as price or contract.

• Modifiers include quantifiers, derivations of words in the previously
mentioned classes, and other adjectives that could further modify the
meaning of a sentence.

• The instances in the organizations class are types of institutions
which mediate the investments or state bureaus that regulate them,
for example, cadastre.

• Finally, the other helpful keywords include query words and prepo-
sitions that are essential to the meaning of the sentence.

We also used regular expressions as they are a simple but powerful tool.
They were used in their standard form, as well as in a GATE-enhanced
form called JAPE. What makes JAPE unique is that it allows us to define
sequences of Annotations. It is essential for building understanding from the
bottom up. Typically when using JAPE, we have already previously created
a collection of annotations, whether they are keywords, named entities, or
possible values to be extracted. For example, a JAPE rule might consist of
a sequence Number and Period, such as 5 years. The JAPE then suggests

16



that the two Annotations form a bigger Annotation which is again a Period,
but this time has the duration of 5 years and not just one.

Keeping in mind that Czech has a flexible word order, we realize it would
take an immense number of combinations in order to capture all possibilities.
Therefore, we needed a stronger tool and decided to utilize syntactic depen-
dencies with a tool called GrExt4. In Figure 3.3 we can see that changing the
word order does not change the dependency tree of the given sentence. Let
us recall that the dependencies have been created by UDPipe during the very
first step of the processing. Similarly to the previous case, we also worked
with the Annotations to provide some generalization. This helps us create
broader rules because we do not need to specify the lemmas or tags of the
words. Instead, we say that a given node in the syntactic tree should be a
Product.

Figure 3.3: Three syntactically equivalent sentences with a different word
order

However, the rules that were based on dependencies still proved to be
quite rigid and required several rules to express a single type of query, for
example due to word derivations. A new tool developed by RobotReader
was explicitly designed to target this issue. This leads us to the last tool we
used, the Frames. Each Frame models a query or a part of it in two ways:
slots and rules. The slots represent essential parts of the query, and the rules
check the integrity of data filling the slots and the relations among slots.
The used relations can be dependencies or relative position in the sentence.
Figure 3.4 gives an example on how slots are defined. The slots are defined
in a JSON file, such as in Figure 3.4. Please note that there can be more
types of slots, which is particularly helpful for tackling derivation. In the
context of Example 3.1 this means that the attribute can either be the noun
risk from the Attribute class, or the adjective risky from the Modifier class.

The rules are a set of boolean conditions and are a part of the source
code. The following simplified rule corresponds to the slots in Figure 3.4:

4Developed by Datlowe, short for Graph Extractor.

17



Figure 3.4: JSON frame definition for questions of type ‘what is it?’.

(3.2) equals(instance(what), ‘what’) AND equals(instance(activity), ‘be’)
AND exists(entity)

This rule essentially means that the query word needs to have the meaning
‘what’, the verb needs to mean ‘to be’ and the entity in question must be
present in the query. This Frame has one rule, however, other Frames can
have more. Each rule has a weight, and if met, the weight is added to a
measure called optionValue. A higher optionValue means a better match.
In order to create an Annotation, the optionValue has to exceed a given
minimal threshold. For example, if the rule above does not apply to the
user’s message, then the output will not contain a ‘what is it?’ type question.

Even with Frames, we still build Annotations from the bottom up and
that is why we first use Frames in order to group concepts into bigger anno-
tations, such as grouping a verb with its subject and object. In Example 3.1
we first use Frames to group ‘stock or bonds’ into an Annotation which rep-
resents the logical disjunction of products. The final Frame which marks the
question as product comparison then takes the contents of this Annotation
into a designed slot.

The tools mentioned in this section were either partially (Frames) or fully
(the rest) defined in GATE resource files, since GATE Developer works by
interpreting resource files and applying them to the Document.

18



3.3 Inner Structure of the NLU Module

As mentioned before, the primary goal of the NLU Module is to provide all
possible interpretations of the user’s utterance. The secondary goal is to max-
imize portability to another language, another task, or a different domain.
In order to achieve both goals, the module consists of three smaller ones: a
domain-independent module that mostly processes entities (Section 3.3.1),
a chitchat layer that handles small talk with the user (Section 3.3.1, and a
layer of domain information that extracts the final concepts to be further
analyzed in the dialog manager (Section 3.3.3.

3.3.1 Common Entity Processing

In this section, we will cover the domain-independent part referred to as com-
mon. It consists of 4 smaller separate modules: numbers, dates, addresses,
and names. In all of the modules, recall was favored over precision, because
the extracted Annotations still had to fit into the rules of the banking mod-
ule in order to be used. The used technologies were only gazetteers, regular
expressions, and JAPE (see Section 3.2).

As this portion of the NLU module is domain-independent, it produces
far more detailed output than the chatbot actually needs. However, this
makes it ready to use as a base for other domains.

The goal of the numbers module is to find and interpret all numbers,
including those that are written out as words, Roman numerals, and ordinal
numbers. Interpretation means that in case the number in a digit format
contains a period or a comma, the module needs to decide whether it is a
digit separator or a decimal point, based on the number format. This module
is also responsible for recognizing various units, such as currencies so that it
can adequately mark numbers as amounts. As preparation for different tasks
and domains, the module also annotates birth IDs, ID numbers of companies,
credit card numbers, phone numbers, and dates in purely numeric format.
All of those are not only annotated, but also extracted into a structural form
for future use.

The date module expands on the information retrieved by the numbers
module. It also annotates dates where the days and months are written out as
words. However, the annotation of time periods and frequencies is this mod-
ule’s most significant contribution. That is because the investment advice
depends on how long the user is willing to store their money in an investment
product. The frequency of additional regular investments is also an essen-

19



tial factor. Apart from the previously mentioned Annotations, this module
can also extract information about time intervals which could be particularly
useful in case a client wanted to see information about the development on
the stock market in a given time frame.

The address module recognizes and segments addresses, so there is no
need for the user to fill out a form. This module combines the keywords
from a gazetteer with named entities tagged by NameTag(Straková et al.,
2014) in order to produce a reliable result. This module is redundant for
the given tasks. Nonetheless, its intended purpose was for a task where the
chatbot has the competence to gather information in order to generate and
suggest a framework contract5 for the user. Additionally, as it is one of the
chatbot’s task to inform about property investments, addresses seemed like
a reasonable entity to extract.

The names module annotates personal names and titles. This information
could be used in order to create a framework contract. The extracted data
could also be stored in the dialog manager (as an extension of this work) so
that the chatbot could address the user by name in order to create a more
pleasant experience.

3.3.2 Chitchat Layer

The Chitchat layer serves to identify the user’s utterances if they are not
banking-related but rather greetings or polite phrases. This layer is simple
so far because it has not been considered a priority. So far, the gazetteer
lookup in this layer contains three types of concepts: greetings, requests,
and signals. Greetings include basic welcome greetings, farewells and also
friendly questions, such as How are you?. Requests contain keywords such
as Repeat it, or requests to change the language of the conversation. Phrases
such as thank you and please, yes and no are included in the Signal group.

Apart from the keyword lookup, this layer also includes dependency rules.
Those serve to identify questions about the chatbot’s abilities, such as What
can you do?

Future work can expand on the keywords and also on the rules, in order to
give the chatbot a friendlier personality and more everyday topics to discuss.

5A framework contract can be described as a rough draft for the final contract.

20



3.3.3 Banking Domain Layer

The understanding of the banking domain stems from the RobotReader bank-
ing ontology. The data from the ontology has been processed into gazetteers
which are used to label all the words associated with a class in the ontology
with an Annotation that represents a specific concept.

Feature Transfer After we have the entities from the domain-independent
module, and all of the banking and task-related words and phrases are ap-
propriately annotated, the Annotations are post-processed, which means that
various important features, such as selected parts of the POS tag, are copied
from the base Tokens to the Annotations that cover them. For example, in
verbs, this means that the ontology-created annotation now carries informa-
tion about the number, person, tense, negation, or a flag that the verb was
found in the infinitive.

Syntactic preprocessing Before we apply dependency rules, we need to
make sure that we can reasonably extract specific nodes in the dependency
tree. The problem is that the Tokens that form one concept, for example, an
amount of money, often appear far from each other in the dependency tree.
To solve this problem, we create a new set of Tokens, where the concept that
should not be separated into several concepts is glued together in one Token.
Then we rerun syntactic analysis and use the resulting trees in the rules to
come.

Syntactic rules Now that we have what we need, we can use the group-
ing rules mentioned in Section 3.2. All of the graph extraction rules have
confidence scores, which denote how confident we are that the Annotations
created by this rule are true positives. On the other hand, Annotations cre-
ated by Frames use the optionValue (see Section 3.2 computed on-the-fly
based on matched data; they are not given by the specific rule used but
rather by the sum of importance of applicable rules. There is also an ad-
ditional measure of the quality of the match called coverage. It represents
the portion of the sentence that is covered by a given Annotation. Having
a second measure proved to be essential because there were cases when a
rule matched a portion of the sentence very well but ignored the rest, which
changed the meaning of the sentence.

First, we use dependency rules, some to just group phrases and some
to find and annotate whole queries. However, after the first few rules, it

21



became clear that while these rules are accurate, they are complicated even
if they are supposed to model simple sentences, as illustrated in Figure 3.5. It
would be manageable to write the dependency rules for the questions about
investment products from Section 2.2, which all have a similar structure, but
writing them for the frequently asked questions (Section 2.1) would be very
impractical.

Figure 3.5: A type of query with the corresponding dependency rule.

In order to represent the frequently asked questions, we used a structure
that resembles a set of vertices of a tectogrammatical tree (Sgall et al., 1986;
Žabokrtský et al., 2008; Bejček et al., 2012). We chose this representation
because it captures the semantics of the sentence well for our purposes while
removing redundancy. Every node in the t-tree, which can be either a word
or a phrase, is represented by the corresponding instance in the RobotReader
banking ontology. Thanks to this approach, if two sentences differ in words
which are synonyms, their output representations are identical. However, in
most cases, auxiliary verbs do not make a difference in meaning, as illustrated
in Example 3.3.3. Therefore, in order to recognize a question, it should not
matter whether an auxiliary verb was used or not. To address this issue
in the implementation, we replace it with the verb that was dependent on
it. Since that verb was in the infinitive, we copy the information about the
number, person, tense, and negation from the auxiliary verb. After that, we
can safely delete the node representing the auxiliary verb.

(3.3) Na čem záviśı cena pod́ılových list̊u? – What influences the price of
shares?

(3.4) Na čem m̊uže záviset cena pod́ılových list̊u? – What may influence the
price of shares?

The other types of queries are represented by Annotations. Their type
is the name of the query type and they contain all extracted information
in their FeatureMap. Each type of query discussed in Chapter 2 has one or
more Frames corresponding to it and for that reason, there are 29 Frames at

22



the moment. Annotations created by Frames account for the vast majority
of the output. Before they are passed over to the Dialog Manager, they are
first scored and ordered based on the score. The score is computed as op-
tionValue times coverage times a coefficient. The coefficient depends on the
type of Annotation, and its role is to balance out the differences between the
maximum possible values of optionValues. When the Annotations are in the
right order, they are transformed into a JSON format per the company’s con-
ventions. The final JSON includes all types of entities that could potentially
be the answer to the chatbot’s question, the sorted list of JSON represen-
tations and the document content. All entities, products and attributes are
referenced by their URI in the RobotReader ontology.

23



24



4. Dialog Manager
In this chapter, we will focus on the Dialog Manager component. First, we
will explain how intents coming from the Natural Language Understanding
Module are evaluated (Section 4.1). We will also discuss how answers are
generated (Section 4.2). The Dialog Manager is rule-based, so in order to
explain how it works, we will cover the critical decision points.

Before the Dialog Manager can start answering the user’s questions, it
needs to know the answers. So the very first step is loading the answers from
the database into a designed class.
In order to characterize whether an answer was found, we use five basic Result
Types:

• Success: An answer was successfully found, and the Dialog Manager
will send it to the user

• Failure: The Dialog Manager has not found an answer, and does not
know what the user’s utterance means.

• Verify: The Dialog Manager successfully recognized the question (and
the question makes sense) but did not find any answer in the database.

• Next Slot: This type is used when the Dialog Manager is asking the
user for information and implies that it is ready to fill the next slot by
asking a question. This is also considered a success.

• Challenge: The Dialog Manager asked a question, but the user said
something that can not be used as an answer.

The first decision point is right at the beginning of the processing when
the Dialog Manager receives its input from the NLU Module. It may receive
the answer to a question it previously asked, a list of possible intent repre-
sentations, or in case no intents were recognized, at least information about
the keywords that appeared in the utterance.

4.1 Processing a List of Possible Intents

As mentioned at the end of Chapter 3, the possible intents1 that are passed
to the Dialog Manager are ranked and sorted by their score. The Dialog

1Referred to as concepts in the implementation

25



Manager can then proceed to go through the representations until it succeeds
in finding an answer or until it runs out of intents.
The processing of the intents is based upon their type:

• Frequently Asked Questions are matched against all of the ques-
tions in the database. First, the content and lemmatized content are
compared, and in case one of them matches, the questions have a match
score of 1. If not, the sets of annotations and words are compared and
produce a score. If the score is higher than a threshold, the answer is
stored. When the question has been compared to all of the questions
in the database, the matches are sorted, and only the best answers are
sent to the user.

• Questions About Investment Products Recall that the NLU Mod-
ule has already extracted the URIs2 of the essential parts of the ques-
tion, such as the products and attributes mentioned. The only thing
the Dialog Manager has to do is to look into the database and either
find a pre-written answer, or a value of the attribute in question that
will be filled into the corresponding template (see Section 4.2.

• Chitchat The NLU Module already marks what kind of phrase it is,
so the only thing left for the Dialog Manager to do is to pick a random
answer from the possible set of answers and send it to the user.

• Individualized Advice We use frame-based dialog management for
this task (Bobrow et al., 1977; Jurafsky and Martin, 2019, p. 427f). If
the Dialog Manager receives a query of type individualized or recom-
mend, it changes the state and starts up a Frame. Similarly to the
Frames in the NLU Module, it has slots of a certain type. The user
might provide some information in the same utterance, so all values
that could be used to fill slots are moved to the Frame. If the Frame is
not complete, it asks the user for additional information and changes
the state in order to anticipate the answer. In case the user provided
the answer, it will be used to fill the slot, and the Dialog Manager will
keep asking until it fills all required spots. In case the Dialog Manager
expects an answer but gets a question instead, it answers it. However,
if no questions were recognized, the Dialog Manager will kindly remind
the user to provide the answer.

2The database uses the same URIs as the ontology.

26



As the Frequently Asked Questions (see Section 2.1) look similar to the
Questions About Investment Products (see Section 2.2), the NLU Module
often provides representations of both types. In those cases, the Dialog
Manager has to iterate through a couple of intents in order to reach the
right one. In some cases, especially if the question is out of scope, the right
representation of the intent might not even be present at all. In order to
find the best possible option, the Dialog Manager returns the first successful
answer. However, in case that none of the representations lead to a successful
answer, the Dialog Manager remembers the first answer with the type Verify
and returns it if no other option works out. Thanks to this approach, we
can show that the Dialog Manager understood the type of the question by
transcribing it to the user in the natural language generation module.

4.2 Answer Generation

In this section, we will discuss the ways how the Dialog Manager generates
the replies it sends to the user. First, we will need to introduce the structure
that the Dialog Manager uses to describe answers. Then we will go over the
three main approaches we used to generate answers.

The Dialog Answer has a type, a textual template, and a map of values.
The map is important to the answer generation because that is where the
Dialog Manager stores the parameters for the templates. The text of the
Dialog Answer is what is sent and shown to the user. In case the type of
answer was Verify, the Dialog Manager will first transcribe its understanding
of the question type, which is stored in a template, and then give the answer.

The easiest case is when the response is pre-written, saved in the database
and there are no values to be filled-in. It makes sense for the frequently asked
questions because each question is different and requires a different answer.
However, writing such responses for every type of queries about products
would be time-consuming and would not make sense. In some cases, such as
the conversation-related utterances, there are several possible answers, and
the Dialog Manager picks one randomly.

For most of the queries about investment products, the answers are gen-
erated using values from the database and templates. When the Dialog
Manager finds the answer, it stores the values and the type of the query (and
hence, the template to use) in the map. In the last stage, we iterate through
the map with values, and the answers are sent to the user. We attempted to
write the templates in a way that would not require the inflection of values
that are filled in. The obvious negative is that the answers seem very rigid

27



and not human-like. However, using a statistical tool, such as MorphoDiTa
(Straková et al., 2014) for the inflection of rarely used Czech words with a
foreign origin often led to mistakes that were less likely to be forgiven by the
user. Since the number of necessary inflections is limited, future work can
include the prepared inflections in the database and then there will be no
need to generate them.

The last approach is calculating the values first and then putting them
into a template, such as the one in Example 4.1. It is used when giving
individualized investment advice. First, the dialog manager has to decide
which templates to use based on its calculations. In the previous case, the
templates are picked beforehand no matter what the output values were.
However, in this case, there is a set of template types, and the Dialog Manager
needs to pick a subset of the templates to fill with values and concatenate.

(4.1) “Jednorázovou investici (amountStarting) Kč s pravidelnou investićı
(amountRegular) Kč si raději ukládej do prasátka :)” –
It might be a better idea to store the (amountStarting) CZK with a
regular investment of (amountRegular) CZK in a piggy bank :)

28



5. Evaluation
In this chapter, we will discuss the evaluation methods and results. We will
also provide analysis of the errors that occurred during the evaluation. In
order to evaluate the chatbot, we prepared four tasks for the users, each task
testing a different aspect of the chatbot.

5.1 Evaluation Method and Results

The experiments were evaluated using a questionnaire with the following
questions in addition to entries for tester anonymous ID and task ID):

• Did the chatbot complete its task? The possible answers were yes,
no, and I do not know/There was no task

• Did the chatbot understand your questions?

• Were the chatbot’s answers relevant?

• Would you use it again to obtain financial advice?

The last three questions were rated on a Likert scale (Hastie, 2012,
p. 143f.) with the following options: agree, mostly agree, neither agree nor
disagree, rather disagree, disagree. There was also an option for the testers
to write additional feedback.

We gave the same basic instructions to all groups of testers (Table 5.1).
The testing was done through a web interface depicted in Figure 5.1.

Free chat task. The first group had no specified task , just to talk to
the bot freely. They had to figure out what to ask and how to ask it by
themselves. The main goal of this experiment was to find out whether the
chatbot is intuitive to use. The secondary goal was to test how many of
the testers’ questions would fall into the frequently asked questions category.
There were three testers in this group. Two of them rather agreed that
the chatbot understood them, one was neutral. The chatbot’s answers were
relevant according to two testers (agree and rather agree) and one was again
neutral.

29



Original Investbot je chatbot, jehož úkolem je poradit ti ohledně
investičńıch produkt̊u. Umı́ odpov́ıdat na dotazy o
nich, porovnávat je mezi sebou a př́ıpadně na základě
źıskaných informaćı doporučit vhodný produkt. Mluv́ı
česky a rozumı́ jenom větám s diakritikou. Předpokládá,
že ve zprávě najde jenom jeden dotaz nebo vzkaz.

Translation Investbot is a chatbot whose task is to give you ad-
vice about investment products. It can answer ques-
tions about them, compare them, and recommend the
best product based on the given information. It speaks
Czech and only understands sentences with proper dia-
critics. It expects only one question within a message.

Table 5.1: Basic Instructions for Testers

Figure 5.1: A screenshot of the testing interface.

Investment strategy task. The second group was supposed to ask the
chatbot how to invest a certain amount of money, as shown in Table 5.2.

The goal of this experiment was to simulate the individualized advice

30



Original Máš k dispozici částku nad 20 000 Kč (Konkrétńı částku
si, prośım, domysli), kterou si chceš nějakým zp̊usobem
nechat dlouhodobě zhodnotit. Nech si od Investbota
poradit, který investičńı produkt je pro tvoje potřeby
nejvhodněǰśı.

Translation You have over 20 000 CZK (please think of a specific
amount) worth of savings, and you want to increase that
amount through investing for an extended period. Let
Investbot recommend the best investment product for
your needs.

Table 5.2: The Instructions for the Savings Task

task (see Section 2.3). The chatbot successfully noticed the testers wanted
individualized advice and started asking questions. It was able to lead the
testers through the questions without any significant problems. All of the
users rather agreed the user understood their questions and its answers were
relevant.

Product comparison task. The third group’s task was to compare prod-
ucts. In order to do that, the testers needed to learn what products they
could compare by asking the chatbot. The exact wording of the task in Czech
can be found in Table 5.3.

There were several goals for this task. It tested how easy it would be for
the testers to get the names of some products and their attributes. Then
it examined how well the NLU Module would respond to various requests
for comparison. Two of the three testers rather agreed that the chatbot
understood their questions and gave relevant answers and one agreed to both.

Product explanation task. The last task assumes that the user already
knows some terms from the field of investments, but does not know what
they mean (Table 5.4).

This task was supposed to test how well the chatbot handles specific
questions about investment products. All four testers rather agreed that the
chatbot understood them and its answers were relevant.

Overall, all testers with a task description declared that the chatbot ful-
filled its job. Furthermore, most testers continued after the task was com-

31



Original Už deľśı dobu uvažuješ nad investováńım svých úspor.
V investičńıch produktech se moc nevyznáš a na Invest-
bota se obraćı̌s v naději, že ti pomůže źıskat alespoň
základńı povědomı́ o tvých možnostech. Vyber si pár
produkt̊u, informuj se o jejich vlastnostech a nech In-
vestbota, ať je mezi sebou srovná na základě kritérii, na
kterých ti zálež́ı.

Translation You have been considering investing your savings for a
while. You do not know much about investment prod-
ucts and you are hoping that Investbot can help you
gain some basic knowledge about investment products.
Choose a couple of products, ask for information about
their properties, and let Investbot compare them based
on your criteria.

Table 5.3: The Instructions for the Product Comparison Task

Original Kamarád se ti chlubil, že investoval do dluhopis̊u/akcíı,
ovšem tobě to nic neř́ıká. Ptej se Investbota na vše, co
tě o daném produktu zaj́ımá.

Translation One of your friends bragged that he invested into
bonds/stock, however, you have no idea what that
means. Ask Investbot anything you would like to know
about the given product.

Table 5.4: Caption

pleted until they ran out of questions. The testers were students of colleges
and universities in Prague. There were 13 testers randomly divided into four
groups corresponding to the tasks.

The questionnaire results are in Appendix A in pie chart form, please see
the thesis attachments for the .csv version and the dialog history.

5.2 Error Analysis

In this section, we will analyze the different types of errors that happened
during testing. We will divide the problems into groups based on the cause.
For each cause, we will give examples and make suggestions for future work.

32



5.2.1 Missing vocabulary / database entries

Some questions referred to attributes that were present neither in the ontol-
ogy nor in the database, such as the recommended investment horizon. In
one case a wrong calculation was made because the number dictionary did
not contain the fraction half. Instead of interpreting the amount as half a
million, the chatbot assumed that the user wanted to invest a million.

The most severe missing vocabulary problem was users asking about a
term used in a definition that was unclear to them:

(5.1) User: Jaké je riziko akcíı? – What is the risk of stock?

(5.2) Chatbot: Investováńı do konkrétńıch akcíı s sebou nav́ıc ve srovnáńı
s akciovým fondem, nese rizika defaultu konkrétńıho akciového titulu.
– Investing in specific stock has additional risks in comparison to the
stock fund, because it carries the risk of the default of the specific
stock.

(5.3) User: Co je to default konkrétńıho akciového titulu? – What is the
default of the specific stock?

In some cases, the chatbot replied, “Was this the question?” and pro-
ceeded to rephrase the user’s query, including the identification for the men-
tioned products, illustrated in Table 5.5.

Original Zněla otázka takto?, Otázku jsem pochopil jako “Jaký
je (atribut) státńı podpora (stateSubsidy)1 u (produkt)
Akcie (stock).”

Translation Was this the question? I understood the question as
“What is the (attribute) state subsidy (stateSubsidy) of
the (product) Stock (stock).”

Table 5.5: Response when the value in the database was not found.

This type of answer is very helpful to the system developer because it
can tell us exactly what went wrong. In this case, both state subsidy and
stock are in the database. However, the database has no entries about state
subsidy of stock. In case either the product name or the attribute name was
null, it means that the product or attribute (respectively) does not exist in
the database.

All of the problems mentioned in this section can be solved by adding the
given vocabulary into the ontology, by adding information into the database,
or both.

33



5.2.2 Ontology ambiguity

During testing, we found out that hedge funds and mutual funds are both
stored in the ontology under the instance mutual fund. Therefore, when
found in the text by the NLU, they are labeled with the same URI (see
Section 3.3.3). However, they are considered to be separate concepts in the
database. In order to fix this problem, the two instances must be separated
in the ontology.

We also ran into the opposite problem: A request for ‘products’ was easily
handled; however, when asking the same question with ‘investment products,’
the chatbot failed to respond. This is because the two are considered to be
different instances in ontology even though for the given tasks, there is no
difference. In order to handle this problem, these two instances should be
merged.

(5.4) Jaké produkty znáš? – Which products do you know?

(5.5) Jaké investičńı produkty znáš? – Which investment products do you
know?

5.2.3 Context

The users expected a more context-aware chatbot. Let us recall that this
chatbot simply remembers a history of products explicitly mentioned by the
user (see Section 4.1). Then it can tap into the history in order to retrieve
the values of attributes of the previously mentioned product.

The first context-related problem occurred whenever the users followed
the chatbot’s questions until they received individualized advice. Then the
chatbot offered them a product they have never heard about before, so natu-
rally, they asked what it was. We imagine that adding the chatbot-suggested
products into the context would not be much of an issue. However, the rule
that would model a definition question with no term to define would have to
be more strict in order to achieve a satisfactory precision.

(5.6) Chatbot: Doporučuji ti investovat 2000 Kč do fond̊u peněžńıho trhu.
– I recommend you to invest 2000 CZK in monetary funds.

(5.7) User: To je co? – What is it?

The next context-related problem can be referred to as the negative con-
text. Let us analyze it based on an example:

34



(5.8) Řekni mi, prośım, něco ještě o nějakém daľśım produktu. – Please tell
me something about some other product.

The user either expects to hear details about any specific product that
has not been mentioned yet or he might want to hear a listing of products
that have not been previously discussed. In both cases, the proposed solution
for future work would be to get the set difference of products in the database
and products mentioned. In case the user just wanted to hear something
about one product, we can either select it by some given priority measure or
randomly.

5.2.4 Implicit Queries

In some cases, the user’s utterance did not contain any explicit questions or
requests, but still carried a meaning:

(5.9) No jde o to, že m̊uj kamarád investoval do dluhopis̊u. – Well, my
friend invested in bonds.

In this specific case, the chatbot made a correct guess by responding
with the definition of bonds. However, it might not always be so lucky, and
therefore, it is essential to find a way to handle these types of messages. The
chatbot should not say that it has no idea what the user is asking, because
the user is not even asking. There are, of course, multiple possibilities of
answering such messages. We suggest replying to the declarative sentences
with no recognized meaning in a way that encourages the user to talk more,
such as “I’m listening” until the user declares his intent in a more obvious
way.However, finding the optimal strategy in this case would require more
extensive testing.

Unsupported Types of Questions

Several users asked the chatbot “personal” questions, such as “Were you
programmed in C++?” or “Who are your parents?”. These questions would
fall into the ChitChat category, so replying to them is not a priority.

A significant amount of people asked questions about why they should
invest in some product. Even though this kind of questions is out-of-scope
for the task of providing factual information, it makes sense to consider it in
future work because it would make the chatbot more persuasive and lead to
higher user satisfaction.

35



5.2.5 Other NLU errors

We have expected unsupported variants of supported questions to occur be-
cause it is never possible to think of all possibilities of asking the same ques-
tion.

One example that occurred during the user tests is the following:

(5.10) Mám
Should I

tedy
then

zvolit
choose

sṕı̌se
rather

dluhopisy
bonds

či
or

akcie
stock

?
?

‘Should I choose bonds or stock?’

In the context of the existing tasks, this could be interpreted as a re-
quest to compare bonds and stock. However, there were no rules that would
describe the example above as a product comparison query. Adding them
should solve the issue.

One of the trickier errors discovered while testing was when testers asked
about the attributes of a previously mentioned product, but received a defi-
nition of the attribute instead. This initially seemed like a context problem.
Nonetheless, upon examining the output JSON of the NLU Module, we dis-
covered that the product-attribute interpretation was ranked lower than the
attribute definition question that caught on. In order to fix this issue, we
suggest either changing the weight coefficients used when ordering the inter-
pretations or adding more importance to the coverage (see Section 3.3.3).

5.2.6 Grammar and Typos

A significant portion of the questions was not recognized correctly because
the testers made typos or forgot to use diacritics. For these purposes, we sug-
gest trying a statistical spellchecker, such as Korektor (Richter et al., 2012),
and then running NLU with the corrected version as an input if running with
the original fails.

36



6. Conclusion
Throughout this thesis, we designed, implemented and evaluated a task-
based chatbot. We started by introducing dialog systems in general. We
introduced the goals of this thesis.

We provided a detailed description of the tasks to be carried out by
the chatbot: recognition of frequently asked questions, answering questions
about investment products, providing individualized advice, and handling a
small set of chitchat phrases. We analyzed the tasks and described the roles
of the NLU module and the dialog manager in those tasks.

Then we introduced the natural language understanding component of the
chatbot. First we discussed the frameworks, tools, and technologies we used.
Then we presented the methods and approaches for rule-making. Finally, we
described the structure of the NLU module and its output.

Then we discussed the dialog manager component. We explained how the
dialog manager produces answers based on the NLU interpretations and the
context it holds. We also explained how the answers are transformed into
natural language.

Finally, we evaluated the chatbot using human testers. First, we de-
scribed how the experiments were conducted and presented the results based
on the testers’ satisfaction. Finally, we carefully examined the evaluation
results and provided thorough error analysis. We provided suggestions that
could lead to improvements in future work.

6.1 Lessons Learned

Through the evaluation, we noticed that less than 5% of the tester messages
were in the frequently asked questions category. This shows that the formu-
lation of the task itself may be even more critical than its implementation.
We suggest that in order to implement such a task, it should be based on a
history of real questions of real customers. Even so, we believe most of them
could successfully be represented using the product-attribute approach.

On the other hand, the questions about investment products were able to
systematically cover the majority of the testers’ questions. Furthermore, the
existing database of products and attributes could gradually be expanded
in order to support even more types of questions. We conclude this is a
reasonable approach for a rule-based dialog manager.

37



The frame-based individualized advice task proved to be a good way to
lead a user that has no prior knowledge of the banking domain or investments.
We also consider this to be a good approach.

Overall, the chatbot succeeded in most of the types of questions it was
supposed to understand. The majority of users concluded that the chatbot
understood them correctly and provided relevant responses. Therefore, we
are satisfied with the achieved results.

38



Bibliography
Eduard Bejček, Jarmila Panevová, Jan Popelka, Pavel Straňák, Magda

Ševč́ıková, Jan Štěpánek, and Zdeněk Žabokrtský. Prague Dependency
Treebank 2.5 – a revisited version of PDT 2.0. In Proceedings of the 24th In-
ternational Conference on Computational Linguistics (Coling 2012), pages
231–246, 2012. URL http://www.aclweb.org/anthology/C12-1015.

Daniel G Bobrow, Ronald M Kaplan, Martin Kay, Donald A Norman, Henry
Thompson, and Terry Winograd. GUS, A Frame-Driven Dialog System.
Artificial Intelligence, 8:155–173, 1977.

Alexander Clark, Chris Fox, and Shalom Lappin, editors. The hand-
book of computational linguistics and natural language processing. Black-
well handbooks in linguistics. Wiley-Blackwell, Chichester, West Sussex ;
Malden, MA, 2010. ISBN 978-1-4051-5581-6 978-1-118-34718-8. OCLC:
ocn500823419.

Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina
Bontcheva. Getting more out of biomedical documents with gate’s full
lifecycle open source text analytics. PLOS Computational Biology, 9
(2):1–16, 02 2013. doi: 10.1371/journal.pcbi.1002854. URL https:
//doi.org/10.1371/journal.pcbi.1002854.

Jan Dědek. Semantic Annotations. PhD thesis, Charles University in Prague,
Czech Republic, 2012.

Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to conver-
sational AI. CoRR, abs/1809.08267, 2018. URL http://arxiv.org/abs/
1809.08267.

Helen Hastie. Metrics and evaluation of spoken dialogue systems. Springer,
New York, 2012.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2019. ISBN
0131873210.

Michael McTear, Zoraida Callejas, and David Griol. The Conversational
Interface: Talking to Smart Devices. Springer Publishing Company, Incor-
porated, 1st edition, 2016. ISBN 3319329650, 9783319329659.

39

http://www.aclweb.org/anthology/C12-1015
https://doi.org/10.1371/journal.pcbi.1002854
https://doi.org/10.1371/journal.pcbi.1002854
http://arxiv.org/abs/1809.08267
http://arxiv.org/abs/1809.08267


Mark A. Musen. The protégé project: a look back and a look forward. AI
Matters, 1(4):4–12, 2015. doi: 10.1145/2757001.2757003. URL https:
//doi.org/10.1145/2757001.2757003.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer
Gabriel, Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish
Nagar, Eric King, Kate Bland, Amanda Wartick, Yi Pan, Han Song,
Sk Jayadevan, Gene Hwang, and Art Pettigrue. Conversational AI: the
science behind the alexa prize. CoRR, abs/1801.03604, 2018. URL
http://arxiv.org/abs/1801.03604.

Michal Richter, Pavel Straňák, and Alexandr Rosen. Korektor–a system for
contextual spell-checking and diacritics completion. In Martin Kay and
Christian Boitet, editors, Proceedings of the 24th International Conference
on Computational Linguistics (Coling 2012), pages 1–12, Mumbai, India,
2012. IIT Bombay, Coling 2012 Organizing Committee.

P. Sgall, E. Hajičová, and J. Panevová. The meaning of the sentence in
its semantic and pragmatic aspects. D. Reidel, Dordrecht, 1986. ISBN
90-277-1838-5.

Milan Straka and Jana Straková. Tokenizing, pos tagging, lemmatizing and
parsing ud 2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada, August 2017. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/K/K17/
K17-3009.pdf.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Mor-
phology, Lemmatization, POS Tagging and Named Entity Recognition.
In Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages 13–18, Baltimore,
Maryland, June 2014. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf.

Joseph Weizenbaum. Eliza&mdash;a computer program for the study of
natural language communication between man and machine. Commun.
ACM, 9(1):36–45, January 1966. ISSN 0001-0782. doi: 10.1145/365153.
365168. URL http://doi.acm.org/10.1145/365153.365168.

Z. Žabokrtský, J. Ptáček, and P. Pajas. TectoMT: highly modular MT sys-
tem with tectogrammatics used as transfer layer. In Proceedings of the

40

https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
http://arxiv.org/abs/1801.03604
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://doi.acm.org/10.1145/365153.365168


Third Workshop on Statistical Machine Translation, pages 167–170. Asso-
ciation for Computational Linguistics, 2008. URL https://www.aclweb.
org/anthology/W08-0325.

41

https://www.aclweb.org/anthology/W08-0325
https://www.aclweb.org/anthology/W08-0325


42



A. Questionnaire Results

43



44



B. Setup Guide
The source code of this thesis requires proprietary libraries to func-
tion, it is impossible to run or build the chatbot without it!

Other requirements:

• Java 8

• Kotlin 1.2.50

• GATE Developer 8.4

• Gradle 4.4.1 (in order to build the project)

• Although not necessary, we strongly recommend IntelliJ Idea.

• postgres 10

The open source libraries will download automatically during the build.
Instructions for building the project on Ubuntu 18.10:

1. Navigate into the root project folder (chatbot)

2. run “./gradlew build -x test –refresh-dependencies”

Once the project is built, there are two ways to test the chatbot:

1. Using the BankingTest Class: This approach tests the NLU mod-
ule alone. Write any textual data to be analyzed into the testing doc-
ument, change the gatePath variable to the actual location of GATE
Developer, and run the test. Using this approach, the GATE Devel-
oper window will pop up and enable exploring the created Annotations.
This approach does not require the database to be running.

2. Using the Application in the Backend Module: This approach
runs the full chatbot as a client-server program based on Spring Web-
socket. First, you need to change the gatePath variable in
src/main/application.properties to the actual location of GATE Devel-
oper. Make sure the postgres database is running and then run the
Application. Once the Application is running, you can connect to it on
localhost:8080.

45



46


	Introduction
	Dialog Systems in General
	Thesis Goals
	Structure of This Thesis

	Task Description
	Frequently Asked Questions
	Questions About Investment Products
	Individualized Advice
	Conversation-specific Phrases

	Natural Language Understanding
	Used Frameworks, Tools & Technologies
	Methods and Approaches
	Inner Structure of the NLU Module
	Common Entity Processing
	Chitchat Layer
	Banking Domain Layer


	Dialog Manager
	Processing a List of Possible Intents
	Answer Generation

	Evaluation
	Evaluation Method and Results
	Error Analysis
	Missing vocabulary / database entries
	Ontology ambiguity
	Context
	Implicit Queries
	Other NLU errors
	Grammar and Typos


	Conclusion
	Lessons Learned

	Bibliography
	Questionnaire Results
	Setup Guide

