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Introduction

Inverted indexes are a powerful data structure commonly used for fast full-text
search in document retrieval systems. The most important ability of inverted
indexes is to quickly retrieve documents that contains a certain feature (called
a term, usually a keyword), or their combination. Their performance is based
on an efficient way of storing the contained data in a form suitable for quickly
producing the required output.

More formally, the contained dataset is modeled as a system of subsets of the
set of terms, where each subset represents one document. An inverted index is
a data structure that stores this model as document sets for each term, where
a document is a member of this set when it constains the corresponding term.
Usual methods of storage (e.g. as sorted posting-lists) aid efficient computation
of set intersections and unions of the term sets, which results in fast processing
of Boolean queries usual in search engines.

Currently available inverted-index-providing software is typically oriented
towards textual model of information. While this is the most common ap-
plication of the indexes, the text-oriented interface is redundant in more spe-
cific usecases, where the additional text processing may unnecessarily waste
resources. Common examples of such use-cases include e.g. spatial index-
ing [Fon+06], biopolymer sequence indexing [BTNK10], and structural search
in molecules [KVG18].

This thesis aims to implement the obvious improvement: An inverted-index
database with the text-adaptation layer removed. This allows to vastly simplify
the database internals and focus on different aspects of the database, mainly
the consumed space, cache efficiency and search performance. The thesis thus
mainly concerns efficient implementation strategies of inverted indexes. Ad-
ditionally, these are examined from the view of a suitable cache-based model,
and the related data structures are adjusted to behave efficiently in this model.
The implementation performance is analyzed on a cheminformatics-originated
dataset, and compared with a similar existing database.
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Related work

Many available databases use the inverted index structure: especially the search
engines, such as Solr, Xapian, Lucene and Lucy [Smi+15; Bia+12a; Luc], but also
the more traditional databases, including PostgreSQL with GiST and GIN1 in-
dexes. Inverted indexes are also widely used for Google-style search in World
Wide Web contents [BP98].

Ongoing research aims at spatial indexing [Fon+06], the effort to compress
existing inverted index implementations [AM05; YDS09; Che+10] and to increase
the inverted index performance [Gan+16].

Thesis layout This thesis is organized as follows: Chapter 1 examines the in-
verted index fundamentals, their cache behavior and their possibke improve-
ments for search performance. More precisely, we explain the ideal cache model
in which we examine a simple implementation of inverted indexes. We continue
describing the skip list data structure used for faster conjunctive query evalu-
ation, a more efficient way of the inverted index implementation in the cache
ideal model. Finally, we introduce compression techniques capable of a massive
reduction in the inverted index size.

The implementation of the inverted index database is described in chapter 2,
which includes the data storage, implementation structure and the low-level stor-
age interface.

In chapter 3 we discuss the resulting library search performance and themea-
sured effect of the inverted index compression.

The thesis is concluded by an overview of accomplished goals and possible
applications of the new results.

1Generalized inverted Search Tree, Generalized Inverted Index
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Chapter 1

Cache-efficient inverted indexes

Inverted indexes are a popular data structure widely used in document retrieval
systems, especially in search engines. The usual purpose of an inverted index
is to provide fast full-text search, used (among other) for Google-style search
in World Wide Web contents. [BP98] The ability to quickly process conjunctive
queries is also highly useful in research, e.g. for biopolymer sequence search
(such as DNA and protein sequences [BTNK10]) and for structural search in
molecules [KVG18].

The search performance of inverted indexes is derived from an efficient way
of storing the contained data. Database contents are organized in simple, quickly
reversible sequences of content identifiers (usually references to text documents)
for each described content property (a text keyword), which allows e.g. fast re-
trieval of documents that contain a particular queried keyword, or a combination
thereof.

In this chapter we define and describe the inverted indexes. For the reasons
of performance analysis, we will review the ideal-cache model [Pro99], and ex-
amine the basic implementation of inverted indexes from the view of cache effi-
ciency. This is motivated by the requirements on the usual inverted-index-based
databases and used further in the thesis.

In the prepared framework, we describe skip-lists as the usual data structure
that aids efficiency of inverted index traversal; together with their determinis-
tic version suitable for high-performance and cache-efficiency-oriented environ-
ments. We continue by introducing balanced postings, which form a basis for
database design and implementation discussed later.
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1.1 Ideal cache model

In this section we describe the ideal-cache model popularized by Prokop [Pro99],
which we will later use to evaluate the inverted index implementation.

(Z,L) ideal-cache model is a model where a memory is represented by two
basic parts; an ideal data cache ofZ words and an arbitrarily large main memory.
Data are transferred between the main memory and the cache in blocks, called
cache lines. Each cache line consists of L consecutive words.

In current computers, sizes of cache lines and words differ among differ-
ent levels of cache. For example, CPU caches and RAM operate on several-byte
words in 64-byte cache lines. Cache lines grow bigger when moving away from
CPU; to several kilobytes (disk cache), megabytes (networked storage) or, in ex-
treme, terabytes in cold storage.

Since the word size is basically fixed by CPU design, for the purposes of this
thesis we will pragmatically assume that the word size is constant, and does not
affect asymptotic analysis. Prokop also assumes that the cache is tall, i.e. the
cache lines are relatively short when compared to large cache size:

Z = Ω(L2).

Processor can access only the data that are currently stored in the cache. If
the referenced data are found in the cache, the data are transferred to the pro-
cessor. This situation is known as a cache hit. The alternative situation, when
the cache does not contain referenced data, is known as a cache miss and it re-
quires to retrieve the data from the main memory. When the cache is full and the
cache miss occurs, some heuristic is used to choose a suitable cache line which
is replaced.

In the ideal-cache model, cache complexity of an algorithm with an input of
size n is measured as the number of cache missesQ(n;Z,L), where Z and L are
the cache size and the cache line length, respectively. If the algorithm depends on
some parameters (set at compile-time or run-time) that can influence the cache
complexity for particular cache size and line length, we say the algorithm is cache
aware. If the cache complexity is independent of parameters, the algorithm is
called cache oblivious.

Thanks to the possibility of optimizing the parameters for a particular cache
properties, the cache-aware algorithms usually provide best achievable cache-
efficient behavior. Despite of that, there are many cache oblivious algorithms
that are proved to be asymptotically as efficient as their optimized cache-aware
counterparts. Moreover, the multitude of diverse (and often unpredictable) cache
layers found in current computer environments favors use of cache oblivious
algorithms that behave ideally without assuming any specific cache properties.
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Figure 1.1: The ideal-cache model.

Figure 1.1 shows how the ideal-cache model is designed, which simplifies
some aspects of a real cache (e.g. by reducing several cache layers to just one).

The analysis of inverted index implementation conducted further in this the-
sis is done with respect to this ideal-cache model.

1.2 Inverted indexes

For this section, we will consider a finite set of documents D, where each doc-
ument is a sequence of occurrences of terms from a finite set T . For purposes
of text search, we simplify each document to ‘bag of terms’, and mathematically
represent the whole collection as a map I : D → 2T .

A database that stores data required to model evaluation of function I is usu-
ally called a forward index. Forward indexes allow fast search for all terms con-
tained in a given document. A search for documents that contain a given term
can be performed by testing the term occurrence in each document, which (with-
out any supporting data structure) requires traversing all term occurrences in all
document in O(|T | · |D|).

If the collection function I is reversed as a mapping J : T → 2D and stored
in a database, we obtain an inverted index. This method of storage allows efficient
evaluation of a common kind of query: Finding all n documents that contain a
given term can be conducted in optimal time O(n).

Inverted indexes are the typical, widely-used data structures that power high-
performance text search. Boldi and Vigna [BV05] describe the following storage
of the function J :

Definition 1 (Inverted index and its contents). Inverted index is formally

built from following components:

• A term is an uniquely identifiable data item. In practice, terms are usually

words (i.e. short text strings); in this thesis we consider mainly non-textual

terms identified by unique integers.
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Figure 1.2: A posting where each item contains a document pointer p, count c
and positions ⟨o0, o1, o2, . . . ⟩.

• A document is a finite sequence of terms. Terms are said to have occurrences
in documents if they are contained in the corresponding sequences.

• A document pointer is a unique identifier of a document. In practice, we

identify the documents by positive integers.

• Consider a document d that contains a term t. An item for the document d is a
pair consisted of the corresponding document pointer, and a (possibly empty)

collection of arbitrary additional data, such as the number of occurrences

of term t in document d, or a list of all positions where term t appears in
document d.

• A posting for term t is a sequence of items for each document where t appears;
ordered by increasing value of the document pointer.

• An inverted index for collectionD is a data structure made of one posting for

each term t.

A graphical example of a posting is shown in fig. 1.2.
Because the purpose of this thesis does not require any complicated process-

ing of the additional item data, we will, for brevity, discuss postings that contain
only plain document pointers. Nevertheless, all further data structures can be
easily adjusted to work with the additional data.

1.2.1 Simple inverted index search

Since the purpose of postings is to retrieve a sequence of documents that contains
a queried term, postings are accessed sequentially; a simple way of the posting
implementation is to store its document pointers in a singly linked list, i.e. each
document pointer is extended by an additional reference that points at the next
document pointer.

A search for documents that contain a particular term is performed by iter-
ating through the corresponding posting.

Theorem 1. Considering posting P that contains n document pointers the cache

complexity Q(n;Z,L) of P traversal is O(n).
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Proof. Because posting P is accessed sequentially and its document pointers are
not stored in one consecutive block, accessing n document pointers results in
O(n) cache misses.

However, conjunctive queries (formally defined later in section 1.6) such as a
several words search in Internet search engine increase the requirements on the
posting data structure. Instead of retrieving all documents from the posting, a
verification of the document presence (in a posting) is required. Then, it would
be highly inefficient to access every single posting item in a sequential manner.
It is useful to add some extra information which allows to process the queries
without reading the whole posting list contents. Skip-list-based data structures
are commonly used for this purpose.

1.3 Skip lists

Boldi and Vigna [BV05] describe skip lists as a data structure where elements are
represented as in an ordered linked list; each element holds several additional
references that are used to skip forward in the list as needed.

The usual definitions are as follows:

Definition 2 (Linked lists). A singly linked list is a linear collection of data ele-

ments ⟨x0, x1, . . . , xn−1⟩ where every element xi that appears in the list contains a

reference to the next element xi+1. The last element is linked to a terminator used

to signify the end of the list.

An ordered singly linked list of data elements ⟨x0, x1, . . . , xn−1⟩ is a singly

linked list where elements in the list are increasingly ordered w.r.t. some fixed order

relation, that is, x0 ≤ x1 ≤ · · · ≤ xn−1.

Definition 3 (Skip list, skip tower). A skip list of data elements ⟨x0, x1, . . . , xn−1⟩
is an ordered singly linked list where each element xi contains a certain number

hi ≥ 0 of extra references that are called the skip tower of the element xi. A t-
reference contained in this tower references the first element hj with j > i such that
hj ≥ t.

Searching a skip list for an element x is performed by traversing forward ref-
erences that advance to the highest elements that are still lower than the element
we search for. Algorithmically, that is performed by scanning the first tower from
the top, stopping before the first reference pointing at an element smaller than
or equal to x; then we skip to the element that the reference is pointing at and
repeat the process until x is found or no more elements are available.

Skip lists are usually implemented as a probabilistic data structure which is
built in layers. The bottom layer is an ordered singly-linked list; each additional

9



Figure 1.3: A skip list constructed from a singly-linked list in a bottom layer, and
three extra layers of references.

Figure 1.4: A perfect skip list. Gray references from the original skip-list (fig. 1.3)
were replaced by the references marked by a plus sign.

skip-list reference acts as a shortcut for the list below and belongs to a separate
layer. The layer where the reference belongs is chosen by tossing a p-biased coin
(0 < p < 1 is fixed) until the outcome is positive. This construction ensures
maintaining logarithmic access time on average.[BV05]

Although the usual probabilistic presentation of the data structure behaves
well in practice, we do not require the dynamic properties granted by the proba-
bilistic behavior. Instead, we use perfect skip list, a deterministic version of skip
lists described in Boldi and Vigna [BV05]. Static nature of the perfect skip-list is
more suitable for the postings implementation that behavewell in the ideal-cache
model.

Definition 4 (Perfect skip list). Let LSB(x) and MSB(x) be defined as the position
of least significant bit in the integer x and the position of the most significant bit

in the integer x, respectively, where x ∈ N0. We say that a skip list of n elements

is perfect if the following condition holds on the height of the skip tower hi at the

position of item xi:

hi =

{

LSB(i) i > 0

MSB(n) i = 0

A graphical example of the perfect skip-list is shown in fig. 1.4. We can see
that each reference of a particular layer skip just one reference from the imme-
diate lower layer.
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1.4 Postings with perfect skip-lists

Intuitively, perfect skip lists can be used to implement the inverted-index post-
ings by using the items of the posting (i.e. term occurrences) to form the contents
of the bottom skip-list layer (i.e. the singly linked list).

This straightforward implementation, however, is not designed to be cache
efficient (e.g. long postings are not guaranteed to fit the cache). To make better
use of the cache, a suitable improvement is necessary.

1.4.1 Cache-efficient storage of posting data

To improve the utilization of the available cache, we group posting document
pointers into blocks (called also posting blocks), and transform the bottom layer
of the perfect skip list so that it contains only minimal information about the
block content, namely:

· the value of the lowest element (document pointer) in the block, and

· a reference to the place where the block is stored.

Each block now contains a small interval of the original linked list. Since this list
was ordered, the elements of consecutive blocks are ordered as well.

The resulting structure already reduces cache misses e.g. when traversing
the index: Retrieving list elements from a block generates at most 1 cache miss
if the block is cache-aligned; which is a great improvement when compared to
the original worst-case 1 cache miss per each list element.

Similarly, the whole skip list can be improved: Either we decompose skip-list
layers into blocks or we somehow force skip lists to be cache-efficiently stored in
the memory. Because the aim of this thesis is to benefit from the cache-oblivious
behavior, we choose the latter, in order to avoid using parameters that influence
the cache complexity (as stated in section 1.1). The resulting parameterless struc-
ture is detailed in the next section.

1.5 Balanced postings

Definition 5 (Balanced postings). Consider a posting that contains n document

pointers divided intom blocks ⟨b0, b1, . . . , bm−1⟩ wherem ≤ n and the size of each

block is |bi| = ⌈n/m⌉. We denote Low(bi) to be the lowest value of bi. Then, we

create a perfect skip list S with the bottom layer containing pairs (Low(bi), Ref(bi))
for each i, where Ref(x) represents a reference to x.

11



Figure 1.5: Illustration of the size equality between perfect skip list and blocks in
a balanced posting.

The resulting posting is balanced if

∀i : ⌈n/m⌉ = |bi| = |S|,

where the size of the perfect skip list |S| is equal to the number of all elements

(references, document pointers) included in all layers.

Balanced postings are designed to make equal use of the cache for both the
perfect skip list and posting blocks, as illustrated in fig. 1.5. Note that the defini-
tion does not require specific location of the referenced blocks and also does not
specify the organization of each skip list layer. For purposes of simpler explana-
tion of skip-list elements organization, we look at them as binary trees.

Binary trees can be represented in several different layouts [BFJ02] depen-
dently on the order of nodes traversal. A depth-first search tree traversal is a
process of visiting each child before going to the next sibling; we say that nodes
are visited in DFS order. A DFS layout is a representation of a tree where nodes
are stored in DFS order.

We represent perfect skip lists as binary trees in DFS layout: Each item of the
bottom layer is a leaf and all items of other layers are inner nodes. A graphical
transformation from a perfect skip list into a binary tree is shown in fig. 1.7.

A search for a document pointer in a balanced posting is performed by
traversing a binary tree (i.e. a perfect skip list) until a leaf is reached. The leaf
contains a reference to a blockwhich is iterated till the document pointer is found
or no more document pointers are available.

1.5.1 Cache efficiency of balanced posting traversal

Theorem2. Thework required for finding a document pointer in a balanced posting

with n document pointers divided intom blocks is

O(log2 m+
n

m
).
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Figure 1.6: The example of the DFS layout of a complete tree with height 4 where
each node is represented by a node record. All node records are stored in one
array and the numbers in the graphical representation of a node designate their
positions in this array.

Figure 1.7: A perfect skip list transformation into a binary tree.
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In ideal cache model with cache of size Z with lines of size L, the number of

cache misses caused by the search for k document pointers at once is

O(n+ n
m

L
+

k

L
) if Z ≥ 2

n

m

O(k(n+ n
m
)

L
+

k

L
) if Z < 2

n

m

Proof. The work complexity is straightforward; to find a pointer in the posting,
we first search for the corresponding block that contains the pointer, by travers-
ing through the tree-structured perfect skip list made of m leaves in O(log2 m)
time Then, the block is searched for pointer p, causing O( n

m
) cache misses.

To analyze the cache misses, the cache complexity of balanced posting
searching is divided into two basic cases: Z ≥ 2 n

m
, that is, the perfect skip list

fits the cache together with one posting block; or Z < 2 n
m
if they do not.

In the first case, the cache misses occur only when the posting is loaded into
the cache, which results in O((n + n

m
)/L) cache misses. All k queries are eval-

uated at once so all blocks of total size n are accessed at most once; additionally
the perfect skip list of size n

m
is accessed.

In the second case, the skip list must be loaded for each searched document
pointer, which may result in reloading the cache k times.

Furthermore, both cases require to load k searched document pointers, which
takes O(k/L) cache misses.

As a consequence, if at least 1 block and a the perfect skip list from the posting
fit the cache, the cache complexity does not depend on the number of searched
document pointers. Since the size of the block in a balanced posting of size n is
effectively O(√n) (see theorem 3); postings of practical sizes usually satisfy the
conditions for the first case, and behave efficiently. This is the main motivation
for grouping the searches for document pointers together, which is examined
later in section 1.6.

1.5.2 Storage characteristics of balanced postings

The balanced posting definition provides a useful relation between the document
count and block count.

Theorem 3. A balanced posting with n document pointers divided into m blocks

is tall:

n = O(m2).

14



Before proving the theorem, we show that the skip list size linearly increases
while adding new elements.

Lemma 4. For a perfect skip list S with m leaves holds:

|S| = O(m),

where the size of the perfect skip list |S| is equal to the number of all elements

(references, document pointers) included in all layers.

Proof. We construct a skip list iteratively. Assume a perfect skip list S made of
m leaves; let denote its size as Cm. Adding a new leaf l to the skip list S we
distinguish two situations:

· m is odd; since the skip list is a binary tree, there is one space left in the
lowest layer and we simply add l without creating any of inner nodes of
the tree which costs 2 (a reference and a value), or

· m is even; there is no space left in the lowest layer and we need to add two
inner nodes plus l and hence the cost is 6.

The size of S can be easily expressed by a recurrence Cm = Cm−1 + 2 when
m is odd and Cm = Cm−1 + 6 otherwise; C1 = 4; The solution of recurrences
is Cm = 8m + k, where k > 0 is a fixed constant specific for odd and even m.
Thus, |S| = O(m).

With this, we can prove theorem 3.

Proof of theorem 3. From the definition of the balanced posting (definition 5) we
have:

∀i ∈ ⟨0,m− 1⟩ : |bi| = |S|, |bi| = ⌈n/m⌉
from which we according to lemma 4 obtain

n = O(m · |bi|) = O(m · |S|) = O(m ·m) = O(m2)

.

1.6 Search with propagating buffers

Common requirement on search engines is an ability to retrieve documents that
satisfy a particular combination of terms, i.e. all queried terms must be contained
in each document in the resultset. Such queries are usually called conjunctive;
systematically described as follows:

15



Definition 6 (Query and results structure). • A literal is a small logical for-

mula that describes a requirement on term occurrence in a document. For

term t, we write t for a positive literal (requirement that the term is present

in the document) and ¬t for a negative literal (requirement that the term is

not present).1

• A query is a non-empty conjunction of literals. A query describes a complex

requirement on document contents that is satisfied if and only if all contained

literals are satisfied. For practical purposes, we will additionally require all

queries have at least one positive literal.

• A resultset is a set of all documents in an inverted index that satisfy a given

query. Elements of resultsets are called hits.

Each term of a non-empty query denotes a posting. The evaluation of a query
simplymeans to take an arbitrary posting (that corresponds to one queried term),
denote its document pointers as the intermediate resultset of the query, traverse
through all the remaining postings (of the queried terms) and remove from the
resultset each document pointer that is not contained in the remaining postings.
At the end, the resultset contains only document pointers that match the query.

To adjust this simple algorithm to be cache efficient, we describe an algorithm
that works with buffers, in a way similar to buffer handling in the funnel sort
algorithm [Pro99].

We use the buffers to store fixed-size parts of the intermediate resultsets. As a
result, cache misses occur only when the buffers are loaded into the cache. Next,
instead of traversing all postings at once, we only work with limited amount of
buffers, which directly limits the cache misses.

For demonstration of the process, consider a query Q of n terms
t0, t1, . . . , tn−1 and a list of n postings P0, P1, . . . , Pn−1; each posting Pi corre-
sponds to term ti. We denote r and rmin to be the buffer maximal and minimal
size, respectively.

At the beginning, the initial buffer F0 is filled by the first r document pointers
fromP0. We traverse through the next postingP1 and remove document pointers
from F0 that are not present in P1 — this step is called a propagation of F0 to P1.

We continue by propagating F0 to each posting Pi>1 until the size of the
buffer F0 decreases below rmin. At this point, further propagation of F0 would
cause disproportionate amount of cache misses to the little work done. There-
fore, we fill a new buffer F1 with up to next r document pointers from P0 and
continue by propagating F1. During the propagation of the subsequent buffers
F>0, several (not necessarily disjunctive) scenarios may occur:

1For brevity, we will sometimes refer to literals as terms. This is supported by almost identical
handling of both kinds of literals in most of the implementation.
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Figure 1.8: Buffer propagation process. Rows represent buffer propagation steps;
states of individual buffers are grouped in columns. In the first column, F0 prop-
agates (moves down) until it is smaller than rmin. After that, F1 is created and
propagated (second column). Upon reaching F0, the propagation of F1 stops, and
the content of F1 is appended to F0. After some effort, buffer Fi (last column)
propagates to the last posting list, at which point its contents are moved to the
search results.

· |Fi| ≤ rmin, at which point we stop the propagation of Fi and continue
with Fi+1, if available.

· Fi reaches Fj , i.e. Fi approaches posting Pj where the propagation of Fj

stopped before. In that case, the content of Fi is added to Fj , and Fi is
removed.

· Fi cannot propagate because it has reached the last posting; in this case
Fi is a partial resultset of the query, and therefore reported as such and
removed from propagation.

When all buffers are smaller than rmin, a new buffer is created by filling next r
document pointers (if available) fromP0 and the largest buffer is propagated. This
process continues until there are no more buffers available for the propagation.

We can see that one buffer propagation is directly implementable by the
several-item-search subroutine from theorem 2 by setting k = r. Cache is thus
efficiently used even for long postings.

The whole algorithm is summarized as algorithm 1. Illustration of the buffer
propagation can be seen in fig. 1.8.
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Algorithm 1 Buffered search algorithm

Require: |P | > 0, a set of postings
1: procedure BufferedSearch(P )
2: B ← ∅ ▷ Initialize the set of buffers B
3: repeat

4: FL ← Pop(P,B)
5: add FL to search results
6: until FL = ∅
7: end procedure

8: procedure Pop(P , B)
9: last← NP − 1
10: while (|B| ≠ 0) ∨ ¬End(P [0]) do ▷ An unfinished posting exists
11: Fi ← ChooseBuffer(P,B)
12: if Fi = B[last] then
13: return B[last]
14: end if

15: Propagate(B,Fi)
16: end while

17: return ∅
18: end procedure

19: procedure ChooseBuffer(P , B)
20: Fi ← max(B) ▷ Get the longest buffer Fi

21: if (|Fi| < rmin) ∧ ¬End(P [0]) then
22: F0 ← AddNewBuffer(P [0]) ▷ Create a new buffer F0 from P0

23: return F0

24: end if

25: return Fi

26: end procedure

27: procedure Propagate(B, Fi)
28: j ← NextPosting(Fi) ▷ Index of the following unprocessed posting
29: while |Fi| > rmin do

30: for all p ∈ Fi do

31: if p ̸∈ P [j] then
32: Remove(Fi[p]) ▷ Remove p from Fi

33: end if

34: end for

35: j ← j + 1
36: if Exists(B[j]) then ▷ If Fi reaches Fi−1

37: Join(Fi, B[j]) ▷ Items of Fi are added at the end of Fi−1

38: end if

39: end while

40: end procedure
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Figure 1.9: The memory layout of ordered postings.

1.7 Efficient merge of postings

Postings are designed to be static objects. Therefore, updates are performed by
adding new postings for each newly added set of documents. To improve the
search performance, multiple postings are usually combined into a single one,
by an operation called merge. Because postings can be expected to be arbitrarily
long (such that the size of usual available RAM memory is not sufficient), the
common requirements on the merge operation include constant space complex-
ity and linear time complexity.

For that purpose, we define ordered postings that designate the placement of
blocks in a way efficient for a merge.

Definition 7 (Ordered posting). A balanced posting is ordered when all blocks

are stored consecutively in the memory (denoted as a block section of the posting),

directly followed by the perfect skip list.

To merge two ordered postings, we first compute the size of the result post-
ing (the sum of all document pointers from both postings) and its block count
according to theorem 3. Second, we iterate through both block sections paral-
lelly and create the result block section by merging them. During the iteration,
we temporarily store lowest values of result blocks, which are used for creating
a perfect skip list from them.

Despite the fact that a merge of block sections requiresO(1) space, the num-
ber of lowest values depends on the block count which is definitely not a con-
stant. Thus, we shall suppose that the block count can be bounded by a reason-
ably big constant which is usually true in practice.

Theorem 5. The merge operation of two ordered postings of sizes n1 and n2 uses

O(n1 + n2 +
√
n1 + n2) work and requires O(1) memory.

Proof. Merging block sections is performed in O(n1 + n2) work and requires
O(1) memory space. The size of the result posting is O(n1 + n2), which
corresponds to O(√n1 + n2) perfect skip list size according to theorem 3,
and lemma 4.
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Since a perfect skip list can be represented as a binary tree traversed in the
DFS order, the result perfect skip list made of O(√n1 + n2) leaves is created in
O(√n1 + n2) time. Assuming that the result block count can be bounded by a
constant, memory requirements are O(1).

1.8 Compression of ordered posting lists

A balanced posting list (as in definition 5) is divided into blocks, where each
block contains an ordered sequence of document pointers. The density of the
document pointers gets (asymptotically) higher with increasing document count,
as two adjacent document pointer numbers get closer.

To exploit this behavior, we use delta-encoding [BB02]: Instead of storing the
full document pointer integers, we compute and store only differences between
them.

1.8.1 Block compression

Definition 8 (Deltas). Consider two values a, b ∈ N0, a < b. A delta between

them is computed as

∆(a, b) = b− a.

Because computing deltas decreases the absolute values that occur in bal-
anced postings, we can compress those numbers using a suitable encoding.

Definition 9 (VW encoding). Let x2 be a binary representation of a number x ∈
N0, 0 ≤ x < 256. VW encoding (variable-width encoding) encodes x as

x2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0bbbbbbb 0 ≤ x < 27

10bbbbbb bbbbbbbb 28 ≤ x < 214

110bbbbb bbbbbbbb bbbbbbbb 214 ≤ x < 221

...
...

11111110 bbbbbbbb . . . 249 ≤ x < 256

where b is binary digit of x2. Additionally, we define ∥x∥ to be size of the encoded
x2 in bytes.

The VW encoding is similar to the widely used UTF-8 character encod-
ing [All+12]. As the main difference, UTF-8 additionally uses control marks at
the beginning of each byte that aid decoding error recovery; these are not re-
quired for our purposes.
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Figure 1.10: First three blocks of a plain posting, where each block occupies 15
bytes. Gray rectangles at the end of some blocks represent a termination mark.

1.8.2 Skip list compression

The bottom layer of a perfect skip list contains pairs, each formed by the lowest
value of a particular block and a reference to this block (definition 5).

Despite the number of document pointers in every block is constant, the byte
size of each compressed block varies, which would force the skip-list to use pre-
cise byte-references. Instead, by fixing the length of blockswe can compute block
offsets without the references — because a perfect skip list can be seen as a full
binary tree, skipping subtrees is simply performed by integer arithmetics on the
reference, in O(1) time.

Moreover, since such block section followed by the prefect skip list has a
suitable layout for the effective merge of ordered postings, the fixed size of blocks
influences neither the cache complexity analysis nor the merge layout.

Definition 10 (Plain posting). A balanced posting that contains m blocks

⟨b0, b1, . . . , bm−1⟩ is plain if and only if this posting is ordered and the following

condition holds:

∀i, j, i ̸= j : ∥bi∥ = ∥bj∥.

A free unused space left at the end of each block due to the alignment can be
filled with a specific sequence of bits representing a special termination mark, as
shown in fig. 1.10. Despite the fact that those marks cost extra memory, in result
the complete postings occupy less memory.

Finally, in section 1.2 we have defined that the postings may store additional
amount of attributes along the document pointers. Since these are typically rep-
resented by integers, we can compress them individually by the VW encoding
(this is discussed more precisely in the following chapter).
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Chapter 2

Implementation

This chapter describes the structure and inner workings of the resulting software
implementation.

Following the naming convention of search engines that motivated this work
(Lucene, Lucy), the resulting software library is called Mary.

We have chosen the C++ programming language for the implementation. The
choice is substantiatedmainly by the system-level interfaces of C++ that allow us
to use UNIX system facilities directly and manage the memory effectively, which
is necessary for achieving optimal cache behavior and performance.

2.1 Data storage

Asmentioned in section 1.7, postings (and therefore inverted indexes as well) are
static data structures, i.e each newly added set of documents creates new post-
ings. A commonly used way to maintain inverted indexes is to decompose them
into multiple subindexes called segments. Each segment is a fully independent
inverted index and can be searched separately. Operations over the database are
the following [Bia+12b]:

· read, i.e. a sequential traversal of each active (see later) segment, the re-
sultsets are joined together,

· update, i.e. an addition of a new segment that contains newly added docu-
ments,

· merge, i.e. a process of compaction 2 segments into one, which is applied
on each posting (as stated in section 1.7)

In general, we allow only expanding of the inverted index (from this point
onward simplified as index). If a deletion of some documents is required, we
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simply add all terms occurred in this document to a query as negative literals,
which excludes them from the resultset (see definition 6).

Since the index is composed of several segments, index evolving can be per-
formed independently of searching unless it modifies the index. Therefore, if we
merge segments that exist, instead of deleting the old ones, we just mark them
as inactive and they are removed when none of them is searched.

We distinguish operations over the index between these that modify the
database and those that do not. The modifying operations cannot be run at the
same time, in order to prevent write-write conflicts and data corruption. This is
accomplished by placing an exclusive lock on the database. The operations that
do not modify the index acquire a shared lock.

Locking is maintained by flock [McK+96], a UNIX syscall that provides an
exclusive and shared lock exactly as the subroutines require. Since flock applies
locks on files (not directories), we create two additional files; write.lock — for
holding exclusive locks — and read.lock — for holding shared locks.

For the purposes of implementation, we first define the index structure and
follow with description of the subroutines that operate on the index.

Index An index is an overarching abstraction of a database using an inverted
index as its storing data structure. The database is completely identified by
its root directory, which contains:

· a separate directory for each segment,

· segments.alive file, which contains identifications of active seg-
ments and their lengths.

Segment A segment is a fully independent index that contains two files:

· postings.data— the file that contains plain postings for each term,
in increasing order of term;

· lexicon.data — the file that contains several attributes for each
posting P : the beginning offset of P in postings.data, block sec-
tion size, perfect skip list size and the length (the number of document
pointers) of P .

2.2 Implementation structure

The index is maintained by subroutines implemented in the searcher, indexer,
optimizer and collector classes. Before their thorough examination, we describe
following classes that each subroutine uses:
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Index (defined in global/index.hpp)

The index class holds and manages all necessary data about the active seg-
ments and provides locking, unlocking and a method draft segment()

which returns a draft of a new segment holding its id and path.

This draft is used when a segment builder (see below) creates a new seg-
ment. The index object is meant to be used as a singleton that provides
access to global database properties.

Posting (defined in global/posting.hpp)

The posting class represents the plain posting implementation which can
create, copy and merge postings. It manages block objects in its block sec-
tion together with the skip list object, and provides amethod contains(d)
that reports whether the document pointer d is contained in the posting
list.

Skiplist (defined in global/skiplist.hpp)

The skiplist class provides the functionality for creating skip lists as binary
trees, implements skip-list operation onmemory-mapped blocks andwhile
searching term t determines the block which might contain t.

Block (defined in global/block.hpp)

The block class provides the functionality for creating blocks and imple-
ments the contains(t) method which returns true if term t is included
in the block. For storing values uses a coder object.

Coder (defined in global/coder.hpp)

The coder namespace is responsible for encoding and decoding block val-
ues according to the VW encoding defined in definition 9.

2.2.1 Indexer

Given a set of documents an indexer is an object that exclusively locks the
index, creates a new segment by flushing postings data of the set into the
postings.data file and their attributes into the lexicon.data file. Then, mod-
ifies the segments.alive file and unlocks the index.

Indexer (defined in store/indexer.hpp)

The indexer environment provides two operations — add(S, n) and
commit(B), where S, n and B represent schema object, document count
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and segment builder object, respectively. The add(S, n) operation pre-
pares postings data of n documents, as described in the given schema S.The
commit(B) operation creates a new segment using the segment builder B.
If segment count reaches themaximum, two shortest segments aremerged.

Builder (defined in store/builder.hpp)

The builder environment provides two operations — create(SD, P) and
merge(SL, SR, SD), where P, SL, SR and SD represent prepared post-
ings data, left segment, right segment and segment draft, respectively. The
create(SD, P) operation creates a segment from the draft SD by flushing
the postings data P. The merge(SL, SR, SD) operation creates a segment
from the draft SD by merging two given segments SL and SR.

Schema (defined in store/schema.hpp)

The schema provides an environment for running two operations —
next document() and next term(), which describe an input (i.e. the
representation of documents that are added to the database). The
next document() method returns a document pointer of next document
and the next term() method returns next term of this document.

2.2.2 Searcher

After giving a query, a searcher is an object that places a shared lock on all active
segments recorded in the segments.alive file, sequentially traverse through
them and retrieves the resultset of the query. Then, unlocks the segments.

Searcher (defined in search/searcher.hpp)

The searcher environment requires a query and provides two operations
— has next() and search next(). The has next() method indicates
whether there are available active segments that have not been searched
so far. The search next() method traverse next active segment using
segment walker object and returns a result represented by hit object.

Walker (defined in search/walker.hpp)

The segment walker environment requires a segment path in file system
which is set by searcher object, and provides an operation find(Q) that
search given query Q using hitheap object. Returns hit object.

Hitheap (defined in search/hitheap.hpp)

The hitheap environment requires detailed information about the queried
terms — the posting offset, block section size, skip-list size and the posting
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length —which is set by segment walker object. The purpose of the hitheap
is to manage the search with propagating buffers as we have described
in section 1.6. The only operation that the hitheap provides is pop()which
returns the last buffer that represents a partial resultset of the given query.

Hit (defined in search/hit.hpp)

The hit environment requires a reference to hitheap object and provides an
iterator that allows to loop through the hit. After obtaining resulting buffer
from the hitheap, the iterator sequentially returns the hit content until the
end of the buffer is reached. Then, the iterator calls hitheap::pop() per
se and continues with returning document pointers of the next buffer. The
process is repeated till the hitheap object has no more buffers available.

The whole searching process can be seen in fig. 2.1.

2.2.3 Optimizer

An optimizer is an object that exclusively locks the index, takes and merges two
shortest segments. Then, it modifies the segments.alive file and unlocks the
index.

Optimizer (defined in store/optimizer.hpp)

The optimizer environment provides an operation optimize(B) which
takes a segment builder object B and merges two shortest segments.

2.2.4 Collector

A collector is an object that exclusively locks the index, takes inactive segments
that are not locked by a shared lock and removes them. Then, unlocks the index.

Collector (defined in store/collector.hpp)

The collector environment provides an operation collect()which simply
deletes those inactive segments that are not locked by a shared lock.

2.3 Low-level storage interface

During the search, all data loading is handled by mmap [McK+96], a UNIX syscall
that provides mapping of file contents into memory.
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Figure 2.1: Simplified view of the interactions between main implementation
classes.

Mmap maps pages that start at a given address, which is easily directly appli-
cable to the postings — each posting has defined its beginning offset and size in
the lexicon.data file.

The mapped memory is used for binary search over all offsets of postings
(postings are sorted in increasing order of term).

Mmapper (defined in global/mmapper.hpp)

Themmapper environment provides an operation get(O, S)where O and
S denote beginning offset of the file to be mapped and the size of mapping
content, respectively. Moreover, the mmapper object behaves as a cache —
given themaximal allowed size n to bemapped it holds themapped content
until n is reached. At that point, the oldest unneeded mapped content is
unmapped.
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Chapter 3

Results and discussion

In this chapter, we analyze search performance and compression capabilities of
the implementation. The results are compared with the performance of Apache
Lucy database [Luc], a search engine library that provides full-text search, which
is a ‘loose port’ of the Apache Lucene search engine into C language.

3.1 Benchmark setup

The testing datasets were prepared to simulate a realistic workload in chem-
informatics. The documents were prepared from compounds in ChEMBL
database [Gau+11], which were converted to integer fingerprints using the same
method as in Sachem database [KVG18]. For the fingerprinting algorithm, we
used parameter GraphSize=5 and multiplicity encoding of up to 22 feature re-
peats [KVG18, section ‘Fingerprint structure’]. From the result we extracted ran-
dom 10,000, 100,000 and 500,000 documents to obtain three testing datasets.

To obtain the queries, we prepared 250 queries by applying the same fin-
gerprinting algorithms to random compounds from the ChEMBL database. The
queries were then randomly reduced to lower number of query terms, which
simulates the effect of query filtering in Sachem. Using that, we obtained five
query sets for query sizes 1, 3, 10, 30, and 100, each with 50 queries.

Each query set was tested 10 times and 2 iterations were used to cache data.

All benchmarks were measured on Intel® Core™ i7-4790K CPU clocked at
4.00GHz with 16 GiB RAM running a Linux kernel version 4.15.54, using a
7200rpm rotational disk drive.
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Figure 3.1: Search performance comparison of both libraries.

3.2 Search performance

The search performance of both libraries is shown in fig. 3.1. Overall, the perfor-
mance can be viewed as similar.

We can see that the cache efficiency of Mary emerges while evaluating the
queries of the length 1 (it is a simple access of the posting data) and the longest
queries in 500k dataset (the effect of the balanced-posting cache-based model).

Otherwise, the result shows that the performance of Mary is either compa-
rable or slightly slower than of Lucy. Since Mary was optimized only for cache
efficiency and raw performance optimizations were not implemented yet, we
consider the resulting performance to be a very good result that can be easily
improved by focusing on the relevant parts of the implementation.
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Lucy Mary saved

10k 40.2 MiB 3.5 MiB 91%

100k 387.4 MiB 30.1 MB 92%

500k 2.0 GiB 152.7 MiB 91%

Table 3.1: Size comparison of the datasets stored in Lucy and Mary; percentages
of saved space are rounded to integers.

postings.data lexicon.data

original compressed saved original compressed saved

10k 22.2 MiB 3.1 MiB 86% 1.0 MiB 365.0 KiB 63%

100k 209.8 MiB 29.3 MiB 86% 1.9 MiB 731.6 KiB 61%

500k 798.9 MiB 151.5 MiB 81% 2.7 MiB 1.2 MiB 56%

Table 3.2: Differences between files postings.data and lexicon.data before
and after compression with various stored datasets; percentages of saved space
are rounded to integers.

3.3 Effect of compression

The space used for index storage by both libraries is compared in table 3.1. The
results show that the saved space ofMary is 91% in average. Themajority of occu-
pied space of Lucy is caused by storing terms in the string format and, moreover,
Lucy does not compress skip lists. Thus, to show the effectivity of the compres-
sion techniques described in section 1.8, we compute the compression ratio of
single files (postings.data and lexicon.data), i.e the relative reduction in
size of the files produced by discussed encodings.

In table 3.2 each test shows that saved space of postings.data files is greater
than 80%, mainly as the result of powerful delta encoding described in sec-
tion 1.8.1. Lexicon.data sizes are reduced by more than 50%, which is not as
much as postings because the attributes are only encoded by VW encoding.

Generally, we can see that the storage requirements of Mary are more than
10×better than the requirements of Lucy, which appears notably useful, espe-
cially in large databases.
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Conclusion

This thesis describes the design and implementation of a cache-efficient inverted-
index database that processes general integer data, and is not complicated by the
text processing layer usually present in current software.

The inverted index implementation was examined from the view of ideal-
cache model, and the design of implemented data structures has been optimized
to behave efficiently in this model. We specially focus on the most common
performance-critical algoritms used in inverted indexes, including the parallel
traversal of multiple postings, and merging of the inverted index segments.

The resulting implementation focuses on optimizing the cache efficiency and
consumed storage space. This was verified by a benchmark conducted with a
realistic dataset based on molecular structure-indexing data. The benchmark
has shown the viability of implemented data compression (providing almost
10×improvement over the currently available databases). Although the raw per-
formance optimization was not the main goal of the thesis, the result displays
similar performance as current databases. In test cases that stress cache-efficient
behavior, the other databases are outperformed.

Future work

Thework on the thesis showed several possible directions of future research and
implementation improvements:

· The buffered search algorithm described in section 1.6 currently consumes
the majority of computation time in search. Better implementation of the
buffer propagation, or perhaps another efficient way to speed up the eval-
uation of conjunctive queries, could massively improve the search perfor-
mance.

· The current design of posting lists focuses on cache-oblivious behaviour,
but does not take in account the computational efficiency of the traver-
sal, or any of the properties of the underlying hardware. Optimizing the
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data structure is the second main future goal that can bring performance
improvements.

· The library API currently does not allow to store additional information
in the posting lists (such as the bookkeeping required for efficient simi-
larity search implementation). Designing a correct API and compression
methods will allow more applications of the library.

· Since this thesis was originally motivated by the cheminformatics require-
ments of Kratochvı́l, Vondrášek, and Galgonek [KVG18], the results will be
applied to the ongoing research of the high-performance chemical struc-
ture search. For example, the space efficiency of the new software allows an
immediate improvement of the existing deployments of Sachem cartridge,
where terabytes of storage can be saved.
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Appendix A

Installation and usage

A.1 Installation

A C++17 capable compiler is needed for the library to compile. To compile all
necessary sources that are attached to the thesis, simply run:

$ make

This also includes the installation of example programs indexer.demo,
searcher.demo, collector.demo and optimizer.demo. To install only these
subroutines, run:

$ make demo

A.2 Using the example programs

An inverted index database can be created by running:

$ ./indexer.demo documents-file

Documents-file contains a set of documents, each document occupies one row
and contains its document pointer followed by terms. When the database exists,
the same command can be used for adding new documents.

The database is implicitly stored in the directory ./index which can be con-
figured in the defaults.hpp file.

After this, to perform a search, run:

$ ./searcher.demo

To merge two shortest segments, run:
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$ ./optimizer.demo

Otherwise, segments are automatically merged after reaching the
MAX SEGMENT COUNT constant which can be adjusted in the defaults.hpp file
as well.

Removing inactive segments can be done by running:

$ ./collector.demo

A.3 Running the benchmarks

To run all benchmarks, change directory to ./tests/ and run:

$ ./mary-analyze.sh # the results will appear in ./results/
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