
MASTER THESIS

Bc. Artur Finger

User interface of system ERIAN based
on web technologies

Department of Software Engineering

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D.
Study programme: Master of Computer Science

Study branch: Software and Data Engineering (Web)

Prague 2019

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that
the Charles University has the right to conclude a license agreement on the use
of this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: User interface of system ERIAN based on web technologies

Author: Bc. Artur Finger

Department: Department of Software Engineering

Supervisor: doc. Mgr. Martin Nečaský, Ph.D., Department of Software Engi-
neering

Abstract: ERIAN is a complex business rule management system developed
by company Komix. Part of this system is the Rule Management Interface (RMI)
which allows users to create, edit, schedule, test and otherwise manage their busi-
ness rules. The RMI is implemented as a thick client based on C# and WPF,
which has its disadvantages. This thesis provides a prototypical implementation
of the RMI as a thin client based on cutting-edge web technologies. This the-
sis predominantly deals with the choice of the correct technologies for the task,
while allowing development and maintainance of different customized versions
of the RMI and making sure the prototype handles working with business rules
seamlessly even if they are exceptionally large. The resultant RMI prototype is
well testable and adds several new functionality features, compared to the orig-
inal. It lays a good foundation for a complete re-implementation of the RMI as
a thin client.

Keywords: BRMS UI ERIAN JS framework SVG

iii

iv

I would like to thank doc. Mgr. Martin Nečaský, PhD. for his time and super-
vision of this thesis.

Additionally, I would like to thank Ing. Jan Vrána and Ing. Radovan Jupa
from Komix for introducing me to ERIAN and allowing me to work on a project
that is meaningful.

v

vi

Contents

Introduction 3

1 Goals 7

2 Specification of Rules 9
2.1 Elements . 9
2.2 Variables . 12
2.3 Types . 12
2.4 Expressions . 14

2.4.1 Literals . 14
2.4.2 Operations . 14
2.4.3 Variable Accesses . 14
2.4.4 Array Accesses . 14

3 Analysis of the Requirements 19
3.1 Functional Requirements . 19
3.2 Quality Requirements . 22

4 Design 25
4.1 Preliminaries . 25
4.2 Architecture . 27
4.3 Choice of Programming Language 28
4.4 Choice of JS Framework . 29

4.4.1 Choosing between React, Angular, Vue, Ember and Knockout 30
4.5 Rule Browsing, Rendering and Interaction 37

4.5.1 Visual Representation . 37
4.5.2 Choice of the Underlying Technology 38
4.5.3 Layout Solution . 39
4.5.4 Choice of a Diagram Library 42
4.5.5 Optimizing Rendering for Speed 44

4.6 Customization Mechanism . 46
4.6.1 Loading of Customizations 46
4.6.2 Integration of Customizations into Existing Code 46
4.6.3 The React Solution . 48
4.6.4 The Angular Solution (Suboptimal) 52

4.7 Testing Tools . 53
4.7.1 Jest . 53
4.7.2 TS Testing with Jest . 55
4.7.3 UI Component Testing with Jest 55
4.7.4 End-to-end testing . 56

5 Implementation 61
5.1 Client Module . 61
5.2 Diagram Module . 62

5.2.1 The Rendering Algorithm 63
5.2.2 Command Invoker Module 64

1

5.3 Enhancers . 65
5.4 GUI Modules . 67

5.4.1 GUI Rule Editor Module 68
5.4.2 GUI Expression Module 69
5.4.3 GUI Value Input Module 70

5.5 Rule Module . 71
5.5.1 Types Module . 74
5.5.2 Expression Module . 75

5.6 Validation . 76

6 Evaluation 79
6.1 Performance of Rule Rendering 79
6.2 Customization Mechanism . 81
6.3 Testability . 81
6.4 Usability . 81
6.5 Acceptance Tests . 81

Conclusion 85

Bibliography 87

List of Figures 93

List of Abbreviations 95

Attachments 97

2

Introduction
ERIAN is a Business Rule Management System (BRMS) developed by the com-
pany Komix. A BRMS is a software system used to define, deploy, test, execute,
monitor and maintain decision logic used by operational systems of an enterprise.
Such systems can also be referred to as Automatic Decision Support (ADS) sys-
tems. An example of an enterprise which uses ERIAN is the Customs Adminis-
tration of the Czech Republic, which uses it to check for illegal activity and fraud
in customs declaration documents.

From an architectural standpoint, ERIAN has a client-server architecture.
The server component is responsible for storing and executing the decision logic.
The client component, known as the Rule Management Interface (RMI) (Figure
1), is used by enterprises (customers of Komix) to create, edit, schedule, test and
otherwise manage their decision logic.

The decision logic (a.k.a. business rules or just rules) includes policies and
requirements that are used to determine the tactical actions that take place
in the operational systems of the enterprise. In ERIAN’s RMI rules are repre-
sented visually as sequential diagrams (Figure 2) similar to a flowchart diagram.1

Rules are composed of elements that may perform actions (e.g. an assignment
to a variable - Figure 3) or control flow (e.g. a conditional statement element).

The main drawback of the RMI is that it is implemented as a thick client
(using WPF technology and C#). The goal of this thesis is to design, create and
test a thin client prototype of the RMI using modern web technologies for the im-
plementation. This approach will allow the customers of Komix to use the RMI
in a SaaS fashion via a web browser, thus eliminating the drawbacks of a thick
client (i.e. the need for installation, distribution of updates, etc). In addition,
the prototype also contains several new functionality features.

This thesis was developed in cooperation with Komix which provided detailed
explanation of the GUI and functionality of the current RMI, specified the goals,
answered questions during the analysis of the requirements and provided feedback
about the emerging prototype.

The work entailed getting acquainted with the current RMI, understanding
the goals, reverse-engineering the logical model of rules based on a demonstra-
tion of the current RMI (the model was then reviewed by Komix), analyzing
the requirements, choosing suitable technologies and designing and implementing
a functional prototype.

3

Figure 1: The original Rule Management Interface
This screenshot shows a menu at the top, which allows many action to be performed. These actions include

creating, deleting, editing, saving, testing and scheduling rules. On the left there is a folder structure
containing rules. On the right, a group of rules is shown. This GUI allows rules to be grouped into so called

profiles.

4

Figure 2: The original Rule Management Interface
This screenshot shows the rule editor, which allows adding elements into the rule or into any sub-rule. A rule
is a sequence of elements and some of them can contain a sub-rule (e.g. if conditional statement element has

two sub-rules and one or the other is executed based on the truth value of the condition). The panel
on the left offers types of elements that can be instantiated by dragging them into the rule. Elements

of the rule can be collapsed or deleted and they also have a description. After double-clicking an element,
a pop-up windows appears and it allows editing of the elements meta-data (e.g. double-clicking a conditional

statement element allows the user to edit its condition, etc).

5

Figure 3: The original Rule Management Interface
This screenshot shows the GUI for creating expressions (in the Assignment pop-up window). The expression is
built by dragging operations from the upper left box and variables or their attributes from the lower left box

into the expression tree on the right. Values and operations are typed and can be multi-valued.

6

1. Goals
The goal of this thesis is to analyze, design and implement a thin client prototype
of the RMI using modern web technologies.

In order to reduce the functional complexity of the RMI, the prototype is
only required to implement the most essential component of the RMI, which is
the rule editor. Other components should be left out and the prototype should
be ready for their addition.

The prototype should satisfy the following functional and qualitative require-
ments:

1. Internationalization - It must be possible to change the language of all
text displayed in the GUI.

2. Component-based UI - A mechanism that allows the definition of UI
components must be used to implement the GUI. UI components are reusa-
ble and testable parts of the UI, usually written using a combination of pseu-
do-HTML, CSS and JS.

3. Customizability - ERIAN is currently being used by several enterprise
customers. Some of them have made additional feature requests, which
has led to the development and support of multiple customized versions
of the RMI.
It must be possible to write customized versions of the RMI, so that it
can be tailored to the specific needs of different customers. It should be
possible to add or remove functionality and GUI components, and change
GUI styling and layout.

4. Testability - The correctness of the functionality of the prototype must be
testable.

5. Functionality of the rule editor

• add an element to the rule via drag and drop
• edit the meta-data of an element (e.g. specify the condition of a con-

ditional statement element)
• edit mathematical expressions
• prevent saving elements in an invalid state (e.g. when the condition is

empty, the meta-data cannot be saved)
• select multiple elements
• delete elements
• undo and redo
• collapse and expand sub-rules
• browse the rule (e.g. by scrolling up and down)
• copy and paste elements
• zoom
• save the graphical representation of a rule as image
• serialize and deserialize rules in order to save them or send them

to the server component

7

8

2. Specification of Rules
A rule describes decision logic as a sequence of basic building blocks called ele-
ments 2.1. Elements in a rule will be executed by the server component in se-
quential order (visually from top to bottom).

An important part of a rule are variables and mathematical expressions 2.2.
Expressions allow the user to compute a value out of variables and literals using
mathematical operators and calls to predefined functions. Variables allow storing
of the computed results and they can be created inside the rule or passed to it
from an outside context (e.g. in the case of the Customs Administration, the rules
that ERIAN’s server component executes for them usually get passed a customs
declaration document which was submitted for risk analysis).

The whole rule and all the algorithmic information within in it must be se-
rializable and deserializable, so that it can be sent to the server to be saved or
executed, or downloaded from the server, so that it can be edited in the RMI.

2.1 Elements

Elements represent individual commands or actions executed by the server com-
ponent. An element can contain zero or multiple sub-rules (e.g. the if element
has two sub-rules, one for the true branch and one for the false branch). For sim-
plicity, only the following most important types of elements will be implemented
2.1:

• Assignment element - It tells the server component to assign a mathemat-
ical expression to a variable. The assignment works in two ways:

If the variable has not been declared yet (in the particular variable scope
where the element appears), it gets declared and its type is inferred from
the return type of the expression that is assigned to it.

Otherwise, the expressions is assigned to the already declared variable and
the return type of the expression is checked against the declared type
of the variable.

It is possible to assign an expression containing a variable to the same
variable, but not inside an element that declares that variable.

• If element - It allows flow control via a conditional statement. It has two
sub-rules (the true and false branches) and one condition. The condition
is a boolean expression and depending on its truth value, either the true
branch or the false branch will be executed by the server component.

• Iteration element - It declares an iteration variable, which loops through
the values of some multi-valued variable. The element has a sub-rule, which
gets executed by the server component once for every item contained in the
iterated variable. The iteration variable is accessible only inside the sub-
rule.

9

Sub-Rule

+ elements: Element[]

Element

+ description: string

If

+ brachTrue: Sub-Rule

+ brachFalse: Sub-Rule

+ condition: Expression

Assignment

+ variable: Variable

+ value: Expression

Iteraition

+ iterationVariable: Variable

+ iteratedArray: VariableAccess

+ cycle: Sub-Rule

0..*

Extends

Rule

+ name: string

+ description: string

+ rule: Sub-Rule

Figure 2.1: Logical model of rules
A rule has a name, a description and one sub-rule. Sub-rules contain an array of elements (order matters).

Elements may contain sub-rules.
Expressions and variable accesses are described in figure 2.7, variables are described in figure 2.3.

10

Assignment
x = 1

Assignment
x = 2

If
if x > 1

Assignment
y = 2

Assignment
y = 'Hello'

Assignment
x = 3

no yes

1

3

Start

End

Declarations:
1: x: integer
2: y: string
3: y: integer

(non of them is multi-valued)

Operation "Greater than"
(a: integer, b: integer) => boolean

Variable Access
x (integer)

Literal
1

a b

Expression

2

Iteration
for each item in

Doc.items

Assignment
x = x + 1

loop

Figure 2.2: Example of a rule
This rule makes a few very simple expression assignments to variables x and y. It also has one conditional

statement element and one iteration element.
The elements where declaration of a variable occurs are highlighted in red. This example demonstrates the fact
that multiple variables of the same name can be declared independently inside different variable scopes. In this
example, it is no longer possible to declare the variable y at positions 1, 2 or 3, because this declaration would
over-shadow the declarations present inside the sub-rules of the conditional statement element (”if” element).

The condition of the ”if” element is a boolean expression with the comparison operator as its root and
a variable access of x and an integer literal as its leaves.

11

2.2 Variables
Variables are used by the server component to hold values. They act as references
to their declaration 2.3. They are typed and the type is stored with the decla-
ration.

As already mentioned, there are two types of variables - local and global.

• Local variables can be declared and used inside the rule using dedicated
elements (e.g. the assignment element). They are block-scoped, i.e. a vari-
able is visible only in the rule where it is declared and only to the elements
that follow the declaration. Plus, it is also visible inside of all sub-rules
of those elements.

• Global variables are passed to the rule by the server component during
the execution of the rule and they are accessible by all elements. Declara-
tions of all global variables for a specific rule are downloaded from the server
component.
Since ERIAN is usually used for processing documents (making automated
decisions based on an input document), a very important global variable is
the one representing the input document.

Since variables may hold a complex type, it is possible to access their at-
tributes via dot notation (e.g. document.author.name). The type of a variable is
determined during its declaration and it cannot be changed later on.

Variables can also be multi-valued (i.e. representing an array) and it is possible
to access their concrete elements using an integer index.

2.3 Types
Rules are statically typed. Variables and operations are typed and only expres-
sions of a correct type can be assigned to a concrete variable or supplied as
an argument to an operation.

Types are uniquely identified by their name and they can be complex or
simple. Complex types have typed attributes, simple types do not 2.3.

The list of all available types and their type definitions is downloaded from
the server component 2.4. However, the implementation of the RMI requires
the presence of four basic simple types:

• boolean - because the condition of a conditional statement element is
boolean

• integer - because the index used for array access must be an integer
• float - because it allows the use of a float literal as an argument of an op-

eration
• string - same reason as float

These types must always appear int the list of downloaded types.
For example, if a document is supplied as a global variable and it is an XML

document, the server component generates its type definitions directly based on its
XML Schema 2.5.

12

TypeDefinition

+ name: string

+ attributes: Attribute[]

Attribute

+ name: string

+ type: string

+ isMultiValued: boolean

0..*

Declaration

+ id: number

+ variableName: string

+ type: Type

Type

+ name: string

+ isMultiValued: boolean

refers to

Variable

+ id: number

+ name: string

+ type: Type

+ name: string

refers to

refers to

Figure 2.3: Logical model of variables, declarations and type definitions
Type definitions describe complex or simple types. A complex type is recursively defined by its name and

typed attributes, whereas a simple type only has a name and no attributes (e.g. number, string, etc). Types
are uniquely identified by their names.

Variables refer to their declarations, which store the type. The type is also stored with each variable to make
debugging and working with variables easier, but it is always equal to the type of the declaration.

IDs 0-999 are reserved for global variables and 1000 and higher are used by local variables.

{ "name ": "Doc", " attributes ": [
{ "name ": " People ", "type ": " Person ", " isMultiValued ": true }
]},
{ "name ": " Person ", " attributes ": [
{ "name ": "age", "type ": " integer " },
{ "name ": " passport ", "type ": " string " }
]},
{ "name ": " string " },
{ "name ": " number " },
{ "name ": " integer " },
{ "name ": "float" }

Figure 2.4: Example of type definitions
This is an example of how type definitions downloaded from the server component may look in JSON format.

13

In addition, type conversions are allowed (e.g. for converting integer to float,
etc). They are transitive and the list of conversions is again downloaded from
the server component 2.6.

2.4 Expressions
Mathematical expressions are used for computing values (eg. the value assigned
to a variable is an expression and the condition of a conditional statement is
a boolean expression).

An expression is a tree with operations as its inner nodes and variable accesses,
array accesses or literals as its leaves 2.7 2.8.

The types of operation arguments must be checked and it should not be
possible to build and save an invalid expression.

2.4.1 Literals
When creating an expression, the user can specify literal values. However, array
literals are not supported, even though variables can be multi-valued.

2.4.2 Operations
Operations are described by their name, an ordered list of named and typed argu-
ments (including whether the argument is multi-valued or not) and a return type.
The list of available operations is again downloaded from the server component.

For illustration purposes, the list of operations usually entails the following:

• logical (and, or, not) argument and return types are boolean
• mathematical (+, −, ∗, /, %, max, min, avg, exp) argument and return types

are integer or float
• relational (=, >, >=, ! =, <, <=,)
• classic date and time operators
• and many more...

2.4.3 Variable Accesses
Variable accesses allow two ways of using a variable in an expression.

The first way is simply using the variable (e.g. x = y) and it can be applied
to variables of both simple or complex type.

The second way is accessing an attribute of a variable or recursively an at-
tribute of an attribute, etc (e.g. document.id or document.person.name). This is
only possible with variables of a complex type.

2.4.4 Array Accesses
Array accesses are used to access specific elements of a multi-valued variable using
an integer index (starting at zero).

14

Simple types

integer
float
number
string
boolean
any

Complex types

Document
 - author: Person

Person
 - name: string
 - ids: string []
 - age: int

the document can be described by two
complex types Document and Person

Example of an input document
(represented as XML)

<doc>
 <author>
 <name>John Doe</name>
 <ids>1532 1255 0871</ids>
 <age>25</age>
 </author>
</doc>

type Document

type Person

Figure 2.5: Example of types
In this example there are a few simple types and two complex types.

The server component supports the same classic types that are found in most programming languages (integer,
string, boolean, etc).

Complex types may be generated by the server component based on the XML Schema of an input document.

{ from: " integer ", to: "float" },
{ from: "float", to: " number " },
{ from: " number ", to: " string " },
{ from: " string ", to: "any" }

Figure 2.6: Example of type conversions
This is an example of how a list of supported type conversions downloaded from the server component may

look in JSON format.
Type conversions are transitive, for instance in this example it is possible to convert an integer variable

to string.

15

Expression

+ expression: Argument
Argument

+ name: string

+ type: Type

+ value: Value

Literal

+ value: string

Value

+ type: Type

Variable Access

+ declaration: Declaration

+ attributePath: string

Array Access

+ array: Variable

+ index: Argument

Extends

Type

+ name: string

+ isMultiValued: boolean

0..*

Operation

+ id: number

+ name: string

+ arguments: Argument[]

Figure 2.7: Logical model of an expression
Expressions are composed of a tree of operations, with literals, variable accesses and array accesses in its
leaves. Each node is typed and the type of the argument is supposed to be the same (or convertible to)

the type of the value assigned to it. Otherwise, the expression is invalid.
Variables and declarations are described in figure 2.3.

16

Operation "Or"
=> boolean

left: number

Operaion
"GreaterThan"

=> boolean

Operation
"IsValidItem"
=> boolean

a: boolean b: boolean

Expression

(Doc.ItemCount > x + 10) OR IsValidItem(Doc.Items[0])

Variable Access
"Doc.ItemCount"

(type integer)

Variable Access
"x"

(type integer)

Operation "Plus"
=> integer

right: number

a: number

Literal
"10"

(inferred type integer)

b: number

Array Access
"Doc.Items"
(type Item)

item: Item

Literal
"0"

(inferred type integer)

index: number

Operations used in this example:
Plus(x: number, y: number) => number
Divide(x: number, y: number) => number
Concat(a: string, b: string) => string
Prefix(a: string, length: number) => string
GetHistoricalDocuments() => Document
IsValidItem(item: Item) => boolean

Figure 2.8: Example of an expression
Expressions are composed of a tree of operations, with literals, array accesses and variable accesses in its leaves.

17

18

3. Analysis of the Requirements
Functional and quality requirements of the RMI prototype were analyzed in order
to understand and describe more precisely what should be implemented.

3.1 Functional Requirements
The functional requirements were put together based on observing and trying out
the functionality of the current RMI, as well as leading discussions with Komix
employees (more specifically with two member of the team working on the RMI),
which were accompanied by developing several pre-prototypes.

The difference between the functionality of the current RMI and the new
functional requirements is that they are focused on keeping the rule valid at all
times.

In the current RMI it is possible to create an invalid rule by not finishing
expressions, mismatching argument types, etc. There is also a lack of auto-
completion and filtering.

The resulting functional requirements are described by a use-case diagram
3.1, which is elaborated in the following scenarios:

1. Save a rule
Starting situation A rule is open.
Normal scenario The user clicks Save or leaves the page. The rule gets sent to the server

component where it is saved.
Final situation The rule is saved on the server component and the user is notified about

success or failure.

2. Load a rule
Starting situation A user sees a list of available saved rules (loaded from the server compo-

nent).
Normal scenario The user selects a rule from the list.
Final situation The selected rule is open in the rule editor.

3. Export a rule as an image
Starting situation A rule is open.
Normal scenario The user clicks Export. The rule is rendered, which is downloaded

to the user’s computer.
Final situation The user’s folder with downloaded files contains a vector graphic im-

age of the whole rule (not just the part currently visible on the screen),
at 100% zoom. Collapsed elements remain collapsed in the downloaded
image.

4. View and edit the details of an assignment element
Starting situation A rule is open.
Normal scenario The user clicks a specific assignment element inside the rule to open it.

A dialog appears where the user can edit the description text of the el-
ement, select a variable and edit the expression that is assigned to it.
The user inputs the name of the variable and creates / edits the expres-
sion.

What can go wrong If the user inputs a variable name that overshadows an existing variable
used further in the rule, the user is alerted an the details will not save
until the error is corrected.
Ditto when the variable name is left empty.
Ditto when the type of the expression differs from the type of the variable
(when using an existing variable, visible in the scope of this element).
Ditto when there is any validation error with the expression (scenario 5).

Final situation The details of the assignment element are saved. If the variable name
is not among the variables visible in the scope of this element, a new
variable of this name gets declared and its type is inferred from the type
of the expression.

19

Enterprise
customer

RMI

view a graphical
representation of a rule

and interact with it

view a part of the rule
that can fit on the

screen

move
up / down / left / right

zoom in / out
navigate the rule

export a rule
as an image

view and edit the details
(meta-data) of an element

edit the description

add / remove
specific nodes

in the tree of the
expression

choose an operation
from a list

of available operations
of fitting type

choose a variable
from a list of visible

variables

back to start

select multiple
elements

delete elements

extends

view and edit
an expression

extends

extends

input a literalspecify a variable access
of fitting type aided by auto-

completion

add new elements
to a rule by drag and drop

on the desired position
in a rule

create new elements
(i.e. assign, condition

or iteration)

collapse and
expand a sub-rule

save / load a rule

edit the name and
the description of a rule

copy and paste
elements

create a new variable

undo / redo (for adding,
deleting, selecting and
deselecting elements)

Legend: includes
extends extends

1,2

3

4,6,7

5

8

9

10

11

Figure 3.1: Functional requirements
This use-case diagram was put together based on observing the current RMI and having discussions

with Komix.
The numbered use cases are elaborated into use case scenarios.

20

5. Edit an expression
Starting situation A dialog containing an expression is open (e.g. the dialog of an assignment

element or a conditional statement element).
Normal scenario The user builds the expression by filling empty arguments shown in the ex-

pression tree.
The user inputs literals via a text input.
For each empty argument, only the operations and variable accesses of cor-
responding type are shown (i.e. only those of the same type or type con-
vertible to the expected type of the argument). The user can see a list
of all such operations and variable accesses and he / she can also filter
them by typing in their name / attribute path.
Only the variables visible in the scope of the element that owns this
expression are listed among available variables.
Also, the user can delete any node of the expression tree in order to change
the expression.

What can go wrong If the user forgets to fill some empty arguments, he / she gets alerted and
the expression will not save until the errors are fixed.
Ditto when the type of the expression does not correspond to the expected
type (e.g. the type of a conditional statement has to be boolean).
Ditto when the user specifies a literal as an argument, but the type
of the literal does not correspond (i.e. the literal cannot be parsed
as a type that is convertible to the expected type of the argument).

Final situation The valid expression gets saved.
Explanation The ability to filter operations / variable accesses allows the user to be ef-

ficient even in a situation where there are many operations or variables
and attributes.
On the other hand, it is important to show the list of all available op-
erations and variable accesses, because the user likely does not know all
of them by heart.

6. View and edit the details of a conditional statement element
Starting situation A rule is open.
Normal scenario The user clicks a specific conditional statement element inside the rule

to open it. A dialog appears where the user can edit the description text
of the element, select a variable and edit the condition of the conditional
statement. The user edits the condition (scenario 5).

What can go wrong If the type of the condition that the user has built is not boolean, the user
gets alerted and the dialog will not close until the error is fixed.

Final situation The details of the conditional statement element are saved.

7. View and edit the details of an iteration element
Starting situation A rule is open.
Normal scenario The user clicks a specific iteration element inside the rule to open it. A di-

alog appears where the user can edit the description text of the element,
select the iterated variable access and create a new iteration variable that
will loop through the values of the iterated variable.
The list of all multi-valued variable accesses visible in the scope of this
element is shown and it can be filtered by typing the attribute path.
The user selects a variable from this list. The user also input the name
of the newly created iteration variable.

What can go wrong If no multi-valued variable is selected, the user is notified and the details
will not save until the error is fixed.
Ditto when the name of the iteration variable is the same as a name of any
variable visible in the scope of this element.

Final situation The details of the iteration element are saved. A new variable (the itera-
tion variable) is declared and its type is the same as the type of the iterated
variable, only not multi-valued.

8. Add a new element to a rule
Starting situation A rule is open. A list of all available element types is visible (i.e. assign,

condition, iteration).
Normal scenario The user drags an element type from the list and drops it somewhere

in the rule in a designated area. Each of these areas corresponds to a po-
sition between some two elements in some sub-rule or a position at the
start / end of a sub-rule.

What can go wrong If the user drops the element outside any designated area, nothing hap-
pens.

Final situation A new empty element of the chosen type is created and inserted
into the rule at the position corresponding to the area the element was
dropped on.
An element editing dialog opens immediately to allow the user to input
the details of the element (scenarios 4, 6, 7)

21

9. Copy and paste
Starting situation A rule is open.
Normal scenario The user selects multiple elements, presses Ctrl + C, then Ctrl + V and

selects where to drop the pasted elements.
What can go wrong If the pasted elements declare a variable that collides with an already

declared variable in the target scope, or over-shadow another variable
declaration, or they use** a variable that is not declared in the target
scope, then the elements in question will be invalidated. They and all
their ancestor elements* are highlighted in red and the rule cannot be
saved until the invalid elements have been dealt with.

Final situation The copied elements are inserted into the rule on the specified position
in the same order as they appeared in the rule originally. Elements are
copied including all their sub-rules.

Definitions: (*) A parent element is an element that contains a sub-rule, which con-
tains the invalid element. Ancestor elements are defined recursively as
the parent element, its parent, etc.
(**) A variable declaration is being used by another element either when
it assigns a value to that variable (e.g. in an assignment element) or
when it uses that variable (e.g. via a variable access) inside an expression
(e.g. in the condition of a conditional statement).

10. Remove selected elements from the rule
Starting situation A rule is open.
Normal scenario The user selects multiple elements and presses the Delete key.
What can go wrong If a declaration is deleted, but some elements that use** this declaration

remain in the rule, the elements get invalidated. They and all their an-
cestor elements* are highlighted in red and the rule cannot be saved until
the invalid elements have been dealt with.

Final situation The selected elements are removed from the rule.

11. Navigate / browse a rule
Starting situation A rule is open.
Normal scenario The user navigates the rule by moving it up / down / left / right or

zooming, e.g. by pressing the Arrow keys.
Final situation The graphical representation of the rule is moved or resized according

to the user’s request. All rules and sub-rules and their elements that fit
inside the screen are displayed.

Explanation It is important that the browsing of a rule happens in a single window
and that the structure of the rule is fully visible (i.e. sub-rules,
elements of sub-rules, their sub-rules, etc). This functionality is required
by the stakeholders.
Therefore, it is, for example, insufficient to display a rule without its
sub-rules and then navigate it by opening the sub-rules in a new tab, and
perhaps using breadcrumbs to keep track of all the open sub-rules. (This
technique, by the way, would decrease the demands on rendering and also
it might easily decrease the cognitive overhead the user has to deal with
when working with a complex rule, by allowing the user to focus on each
sub-rule separately.)

3.2 Quality Requirements
The quality requirements were put together based on analyzing the goals and
the functionality requirements, and prototyping.

1. Performance:

(a) A rule containing up to 1000 elements and / or 100 levels deep nesting
of sub-rules shall render in under 1s during browsing at 100% zoom.*

Explanation: Some enterprise customers have created rules that con-
tain up to 1000 elements and up to 60 nested sub-rules (60 levels deep
nesting). The rule editor must therefore support rules of this size and
render them reasonably fast, even though customers should be discour-
aged from creating such large rules, since they are very hard to work
with.

22

One second seems to be a generally accepted time limit during which
”the user’s flow of thought stays uninterrupted” 57.

(b) A rule containing up to 1000 elements and / or 100 levels deep nesting
of sub-rules shall render in under 3s when it is being exported as
an image.*

(*) Measured on a regular computer (1920x1080 screen resolution, 8GB RAM, Intel i7 CPU) in Google

Chrome browser.

2. Architecture:

(a) It shall be possible to translate all text visible to the user to a new
language simply by translating a dictionary file.

(b) A mechanism that allows the definition of UI components shall be used
to implement the GUI.

(c) There shall be only one web application for all enterprise customers
at once.
Explanation: From the point of view of creating customized versions
for different customers, this means the following:
The application shall be loaded in two steps. First, a generic part
of the application (common to all customers) is loaded. Then, after
the successful authentication of the user, the customer-specific part
of the application is loaded and integrated into the previously loaded
part 3.2. Afterwards, the user can start utilizing the application.
As a result, the architecture shall include a mechanism that allows this
kind of 2-step configuration-based loading.
Note that customers are companies and users are their employees.
Therefore there will be just several customized versions (max 5).
Side notes: Implementing authentication is not a part of this thesis
and neither is the creation of a customized version of the RMI pro-
totype. This thesis only deals with finding the technical solution that
allows the creation of customized versions of the RMI under the de-
scribed conditions.

3. Tooling:

(a) Unit tests shall be demonstrated.
Explanation: The prototype shall include a unit test runner and
a testing library, and several examples of unit tests including the tests
of UI components.

(b) End-to-end tests shall be demonstrated.
Explanation: End-to-end tests are tests that simulate user’s behavior
in an open web browser (using web browser drivers) and check the vis-
ible changes that occur in the application as the result of that behavior.
The prototype shall include an end-to-end test runner and a testing
library, and several examples of end-to-end tests. The tests shall run
on the latest version of Google Chrome.

23

Figure 3.2: Architectural requirement: single application
There is only one application for all enterprise customers. After successful authentication the customer receives

the rest of the application (the components specific to this customer) and can start using the application.

24

4. Design
The RMI prototype is designed to satisfy the functional and quality require-
ments and to adhere to software engineering best practices. The design is mainly
concerned with choosing the right technologies for development, finding a way
of rendering rules which is optimized for speed and designing a customization
mechanism.

4.1 Preliminaries
• ES5 - EcmaScript 5 is the old classic version of JavaScript. The specifica-

tion of verions 5 was finished in 2009 and is now supported by all modern
browsers. The features of the language are obsolete and the syntax is lim-
iting. It is intended for small projects only.

• ES8 - EcmaScript 8 is the most modern version of JavaScript. It offers
very useful language constructs that were missing in ES5 such as classes,
constructors, block-scoped variables, constants and modules.

However, due to the lack of support on older versions of browsers, ES8 is
usually not used directly. Instead, the standard approach is to transpile
ES8 code to ES5 before deploying it. The de-facto standard transpilation
tool is Babel.

• ES8 module - An ES8 module is a file containing ES8 code, which exports
some classes, functions or variables, etc. Other ES8 modules can import
what is exported and use it. (This is a big improvement over ES5, where
code is executed in a way analogous to concatenating all files together.)

• TypeScript - TypeScript is a statically typed superset of ES8. It prevents
type-related errors in code and adds several useful constructs to ES8 in-
cluding enums, interfaces, generics and access modifiers for class attributes.
These features make TS suitable for large projects.

TypeScript is compiled to JavaScript (again usually to ES5) using the Type-
Script compiler.

• TS typings - TS typings are a statically typed description of the API
of a JS library (using TypeScript). Whenever a TS application wants to use
a JS library, it is preferred that the library has typings and many libraries
do.

Typings can come with the installation of a library or they can be often
found in the de-facto standard DefinitelyTyped repository for typings.

When typings for a library cannot be found anywhere, it is possible to write
custom typings for it or just bypass the need for typings completely by using
type any. Bypassing typings obviously means the loss of intellisense and
the other advantages of static typing.

25

• Babel - Babel is a transpilation tool, which can translate one flavor of Java-
Script to another (e.g. ES8 to ES5, ES6 to ES5, etc).
Additionally, Babel can be configured via plugins to extend its transforma-
tional capabilities.

• Webpack - Webpack is a module bundling tool. It searches the dependency
tree of ES8 modules and bundles all the required modules into a single file.
Webpack can be heavily customized with plugins and it is usually used
in conjunction with Babel and the TypeScript compiler.
Modern front-end frameworks (e.g. Angular, React and Vue) use Webpack
in order to be able to leverage ES8.

• Webpack code-splitting feature - Code splitting23 is a feature of Web-
pack, which allows code to be bundled into multiple bundles instead of just
one. One of the bundles is the main bundle and it can download the other
bundles during runtime via a Promise.

• Promises - A JS Promise is a class which represents the eventual comple-
tion or failure of an asynchronous operation, and its resulting value.

• Front-end framework - A front-end framework (a.k.a. a JavaScript
framework) is a set of tools that facilitate the development of single-page
applications by solving common problems. It is a mixture of libraries, exe-
cutables, configurations, boiler-plate code best practices.
Most of them provide a template-based mechanism for defining UI compo-
nents using a mixture of JS, CSS, HTML and custom syntax.
Some frameworks force the developer to use a predefined architectural pat-
tern such as model-view-controller or dependency injection. Some frame-
works allow the programmer to use ES8 or TS by providing a pre-configured
transpilation pipeline (e.g. Webpack and Babel or TypeScript compiler).
It is common that frameworks come with a pre-configured test runner and
a testing library (if the code uses transpilation, the testing pipeline must
also be set up to use transpilation).
It is also worth noting that popular JS frameworks have an additional
ecosystem of plugins and styling libraries with pre-defined UI components.
Examples of the most popular modern JS frameworks are React, Angular
and Vue.
Frameworks make setup and development of large projects easy. Of course
this comes at the cost of having to learn them and accepting any limita-
tions they might impose on the project. Nevertheless, a strong advantage
of frameworks is that by imposing structure on the project they make it much
easier for other developers to understand the code (if they are familiar with
the framework).

• Selenium - Selenium is a browser automation tool, which is most widely
used for end-to-end testing of web applications. Selenium runs a real web
browser of choice (e.g. Chrome, Firefox, etc.) and simulates DOM events.

26

• Angular - Angular is a popular JS framework created and maintained
by Google. It uses TS and comes with pre-configured transpilation and
testing tools. Its API is extensive.
(For a more in-depth description of Angular see Section 4.4.1)

• React - React is a popular JS framework created and maintained by Face-
book. By some statistics64 is is the most popular JS framework of 2017
world-wide. It uses ES8 by default, but can be configured to use TS. Its
API is small compared to Angular, but it has many plugins to balance that
out.
(For a more in-depth description of React see Section 4.4.1)

• Front-end routing - Front-end routing is a technique used in SPAs in or-
der to structure the UI into multiple pages or views, which can be book-
marked (basically, it is an imitation of classic web browsing but done inside
an SPA and without page loads). This is done by manipulating the URL
and browser history.
Most modern JS frameworks offer an API for fronted-routing either directly
or via a plugin.

4.2 Architecture
From the high level point of view the architecture of the RMI has the following
modules 4.1:

• Client - The Client module is responsible for exchanging data with the ser-
ver component. It can send and receive serialized rules and download the list
of all saved rules, available operations, type definitions and type conversion
rules.

• Rule - The Rule module contains all the rule logic including the logic
of elements, variables, declarations, expressions and type conversions. It
implements algorithms for finding visible variables in a block scope, checking
variable over-shadowing, etc. Everything in this module can be serialized
and de-serialized in order to be sent to the server component (or received).

• Diagram - The Diagram module is responsible for rendering the visual
representation of a rule (or at least the part of it that can fit on the screen).
It is also responsible for most of the interactivity including zoom, moving
the rule in different directions, selection of elements, deletion, copying and
pasting.
In the future, if there is a requirement to completely change the visual
representation of rules, it is sufficient to re-implement only this module and
everything will work correctly.

• GUI - The GUI module is responsible for rendering an interactive GUI
using UI components. The most important submodule is the Rule Editor,
which includes components for editing the meta-data of concrete elements
(e.g. their expressions, variables, etc).

27

• Internationalization - The Internationalization module manages transla-
tions and allows the other modules to display text in a chosen language. It
is implemented by the react-i18next library.
This module satisfies the requirement for internationalization of the proto-
type.

Rule

Diagram

Rule editor GUI

uses

uses

Client

uses

Internationalization

uses

GUI

uses

uses

Figure 4.1: High level architecture of the RMI prototype
Legend: This is a usage view of the modules of the RMI prototype. A module uses another module if and only

if its correctness depends on the correctness of the other module.

4.3 Choice of Programming Language
TypeScript is the optimal choice of programming language. It is a popular stati-
cally typed alternative to JS.

There are many potential alternatives to JS and all of them work by being
transpiled to JS (mostly to ES5). However when choosing one, it is essential that
it is statically typed.

Static typing is crucial, because it dramatically improves productivity thanks
to intellisense. Additionally, it prevents type-related errors and it automatically
servers as code documentation (because it describes the types of method argu-
ments, attributes of interfaces, etc). For these reasons, statically typed languages
are very beneficial for larger projects and the RMI definitely falls into that cate-
gory.

There seem to be at least fourteen statically typed alternatives to JS59.
The three most popular ones are the ones developed, used and maintained by some
of the most notorious software companies:

• TypeScript - TS was created by Microsoft in 2012. It is a boosted version
of ES8 with even more powerful language features (enums, access modifiers,
interfaces, etc).
There are IDEs that directly support it (e.g. Visual Studio Code) and offer
intellisense and other static analysis tools for better coding experience.
TS is probably much more popular that the alternatives, because it is
the language used in Angular. It is reasonable to assume that JS pro-
grammers know Angular at least marginally, since it is one of the two most

28

popular JS frameworks, and therefore they should be acquainted with TS
as well.

At Komix, an overwhelming majority of JS teams (including the ERAIN
team) use Angular and therefore know TS. This is a very good reason to pick
TS over Flow or Dart.

Otherwise, from the technical point of view, TS, Flow and Dart are compa-
rable. They all have similar syntax and offer a similar variety of language
constructs.

• Flow - Flow was created by Facebook in 2014. It is similar to TS in that it
is also a boosted version of ES858 and is supported in Visual Studio Code
(via a plugin).

• Dart - Dart was created by Google in 2011. It syntax also seems to be
a superset of ES8 and again, it is supported in Visual Studio Code (via
a plugin).

4.4 Choice of JS Framework

In order to satisfy the requirement for a component based UI, five of the most
popular JS frameworks were considered and React was chosen as the most
suitable option. This chapter provides detailed reasoning for this choice, which
was based on the following criteria: current popularity, expected future popular-
ity (if a framework does not have a good support team, it’s development might
stop abruptly), ease of development (IDE support - code highlighting, comple-
tion and static analysis), TypeScript support (this requires a CLI tool capable
of transpilation) and the ability to satisfy requirement 2c (the framework must
support loading of components in runtime).

JS frameworks facilitate the development of large JS applications. They solve
common problems one of which is providing a mechanism for the definition of UI
components using templates. Additionally, they bring many other benefits, such
as pre-configured transpilation pipelines (which allow the programmer to leverage
ES8 or TS), test runners, etc. Plus, by imposing structure on the code, they make
it easier to understand to other programmers. All these are good reasons to use
a JS framework instead of just a simple component definition library.

There are at least fifteen JS frameworks to choose from. Searching Google
for ”top frontend frameworks” and filtering out the most frequent names from
the first thirty most relevant articles narrows the list down to six frameworks:
React, Angular, Vue, Ember, Knockout and Meteor.

Meteor is actually not a front-end framework. It is a full-stack framework
that uses React, Angular or Blaze for front-end.

Blaze was developed as part of Meteor and used to be the only front-end option
for Meteor, but then the authors realized that ”React and Angular are more
developed and have larger communities” 60. Therefore, Blaze can be dismissed
in favor of React and Angular.

29

4.4.1 Choosing between React, Angular, Vue, Ember and
Knockout

React, Angular, Vue, Ember and Knockout all offer a mechanism for defining UI
components, are open-source, licensed under the MIT license, can be used with
TS and offer the appropriate tooling and configurations for it. This makes all
of them reasonable choices.

Filtering by Activity

The selection can be narrowed down by observing the activity on these projects
(i.e. how often are the frameworks updated with bug fixes and new features).

The activity statistics during the last month 4.2 and last year 4.3 reveal that
Angular, React and Ember have continuous support by at least three larger con-
tributors and the activity is reasonably stable throughout the whole year. Vue
and Knockout, on the other hand, have only a single contributor (the author
of the framework) and the activity is sporadic throughout the year.

Indeed, these findings correspond nicely with the fact that Angular, React
and Ember all have dedicated teams of people working on them, whereas Vue
and Knockout do not.

This makes Angular, React and Ember preferable to Vue and Knockout. First
of all, it is because they have a more stable support and second, if the author
of Vue or Knockout decides to stop supporting the framework, then likely there
is nobody to take over and that is a problem.

Choosing between React, Angular and Ember

React, Angular and Ember all have the same UI component philosophy and they
all come with sufficient tooling. They are all reasonable choices.

UI components in these frameworks work in the following way. Components
are composed of sub-components, they receive input parameters from their parent
component and they can notify the parent component about custom events. It
is also possible to return data to the parent component via these custom events.
The lowest level of sub-components are classic HTML tags. 4.4

• Angular - Angular2,3,4,5,6,7,8 was created in 2016 by Google as a successor
of AngularJS. The latest version is Angular 6, which came out in 2018.

– Tools - Angular comes with the following tools: a CLI for project ini-
tialization and simpler generation of new components, pre-configured
testing environment for unit and end-to-end tests, string extractor
for internationalized text.
Syntax highlighting and static analysis for UI components is supported
in Visual Studio Code IDE. A browser inspector extension for debug-
ging UI components is available in Google Chrome.
A myriad of plugins is available as well as several component styling
libraries (Material-UI, Semantic-UI, Bootstrap, etc).

30

Figure 4.2: Frameworks - recent activity
These charts show the number of commits with improvements and bug fixes made to the five chosen

frameworks during June 2018 (most recent at the time of writing).
React, Angular and Ember have between three to five significant contributors.

Vue and Knockout however, only have contributions from the single author of the framework. This is not
an optimal situation, since if anything happens to the author or the author decides to stop supporting

the framework, it is likely that there will be no more improvements and bug fixes and the framework will
deteriorate.

Charts were taken from Github insights of each project.

31

Figure 4.3: Frameworks - activity during the last year
These charts show the number of commits with improvements and bug fixes made to the five chosen

frameworks from June 2017 through June 2018 (chunked by weeks).
React and Angular show stable activity.

Vue and Knockout show sporadic activity that seems to deteriorate during the last three months.
Charts were taken from Github insights of each project.

UI component

- stores and changes
its internal state

includes other
components

as sub-components

Receives parameters from
its parent component

Notifies parent
component via
custom events

Figure 4.4: Architecture of UI Components in React, Angular and Ember
A component contains sub-components. It passes input parameters to them and can listen to their custom

events.
In React parameters are called Props, in Angular they are Input bindings.

In React custom events are implemented by passing a callback function to the sub-component via props.
In Angular there is special API for custom events.

32

– API - Code is split into modules that contains UI components and
services 4.7. Dependency injection is used for services and UI compo-
nents.
The API also offers front-end routing, an HTTP client and interna-
tionalization.

– UI components - Components are defined as TS classes with a tem-
plate and styles supplied in an annotation. 4.5 4.6
The template syntax offers structural directives (e.g. for, if, switch),
one-way and two-way data binding (for display and input of values)
and binding of event handlers (both for browser events and custom
events).
Components offer life-cycle hooks (i.e. it is possible to execute han-
dler code when a component is mounted, unmounted, gets new input
parameters, etc).

– Notes: Angular is complicated and difficult to learn. Reading articles
and guides about Angular is sometimes a nuisance because people tend
to confuse Angular with AngularJS.

• React - React13,14,15 was created in 2013 by Facebook. The latest version
is React 16, which came out in 2018.
React on its own is just a UI component library. However, there are official
plugins (e.g. React Router) and a CLI (Create React App) that can be
added to React to make it comparable to Angular with respect to both
tooling and API. The following text assumes the use of these add-ons.

– Tools - React comes with the following tools: a CLI for project ini-
tialization and a pre-configured testing environment for unit tests.
Syntax highlighting and static analysis for UI components is supported
in Visual Studio Code IDE. A browser inspector extension for debug-
ging UI components is available in Google Chrome.
A myriad of plugins is available as well as several component styling
libraries (Material-UI, Semantic-UI, Bootstrap, Antd, etc).

– API - There are plugins for frontend-routing and internationalization.
– UI components - Components are defined as ES8 classes with special

JSX syntax for templates, which is a combination of JS and HTML
and it gets transpiled to JS. 4.8
JSX must be returned from the render() method, but otherwise it
can be used anywhere (e.g. stored in a variable), which is useful.
The template syntax offers one-way data binding and binding of event
handlers.
Components have state and when it changes, the component gets re-
rendered. They also offer life-cycle hooks.

• Ember - Ember30 was created in 2011. The latest version is Ember 3,
which came out in 2018.

33

Figure 4.5: Angular API - Example UI Components
There are two components app-hello and app-welcome, the latter uses the former. Both have their template

and style defined inside an annotation (a.k.a. a decorator), which is special Angular syntax and it gets
transpiled to JS. Decorators are used heavily in Angular.

(1) One-way data binding, which displays the name.
(2) The click event handler is registered.

(3) Style is specified in the decorator and it applies only locally to this component.
(4) The component specifies that a MessageService service should be injected into it via DI.

(5) The app-welcome component uses the app-hello component in its template.
(6) The app-welcome component passes a name as an input parameter to the app-hello component.

(The example continues in figure 4.6.)

34

Figure 4.6: Angular API - Example Service and a Module
There is an Angular service and a module with all its components and services registered in its decorator.

(1) The message service is normal TS class with the @Injectable decorator, which signifies that it is a service
and can be injected into components and other services via DI.

(2) All components used in a module are registered in its decorator.
(3) All services used in a module are registered in its decorator.

Angular uses the list of component and services to make Dependency Injection work.

other services
on which a service

depends get injected
via Angular DI

Service

UI component

used services get
injected via Angular DI registered with

the parent module

includes other components
as sub-components

Module

- imports
- providers
- declarations

registered with
the parent module

modules on which
this module depends

are registered
with this module

Figure 4.7: Angular API - Components, Modules and Services
Angular has rather strict rules about the architecture of the application. The application is split into modules.

Modules can be purely logical or they can be a collection of UI components.
In the latter case, all UI components that are used in a module must be registered with it.

Services implement logic and data manipulation. Components are supposed to just display data gathered from
services or pass user input to services for processing. Again, all services used in a modules must be registered

with it. Angular instantiates all services of a module as singletons and injects them via DI
into the components that use them.

35

Figure 4.8: Example of React Component Syntax
There are two components Hello and Welcome, the latter uses the former as a sub-component.

(1) The Hello component declares that it must receive a name as input (via props).
(2) The Hello component stores information about greeting as its state.

(3) The Hello component initializes its state.
(4) The Hello component returns its template in the render() method.

(5) Styling is passed via props and it applies only locally, only to the component in question.
(6) The click event handler is registered.

(7) The Welcome component uses the Hello component in its template.
(8) The Welcome component passes a name as a prop to the Hello component.

36

– Tools - Ember comes with the following tools: a CLI for project ini-
tialization and a pre-configured testing environment for unit tests and
end-to-end tests.
Syntax highlighting and static analysis for UI components is supported
in Visual Studio Code IDE. A browser inspector extension for debug-
ging UI components is available in Google Chrome.
A myriad of plugins is available as well as several component styling
libraries (Material-UI, Semantic-UI, etc).

– API - Code is divided into UI components, models for storing data
and controllers for adding functionality to models. Everything works
in conjunction with front-end routing.

– UI components - Components are defined as ES5 objects.
The template syntax offers structural directives, one-way data binding
and binding of event handlers.
Components offer life-cycle hooks.

There are two advantages of Angular and React over Ember. First, Angular
and React both have paid dedicated teams maintaining them, whereas Ember has
only an unpaid steering committee composed of volunteers. Second, Komix only
uses Angular and React organization-wide. From this perspective, it is a good
idea to stick to these two frameworks, especially when they are reasonably suitable
for the task.

Angular is actually preferred, because the ERAIN team specifically is trained
in Angular and not React. However, as described in section 4.6, React is much
more suitable for the implementation of the customization mechanism, which is
one of the quality requirements. This makes React the optimal choice.

4.5 Rule Browsing, Rendering and Interaction
Several libraries and options were considered for the implementation of the Di-
agram module, which is the module responsible for the interactive visual repre-
sentation of a rule.

A low level SVG library was chosen. SVG makes the solution testable. A low
level library is preferred over a high level diagram library among other things
because it is more versatile and easier to learn by other programmers.

The requirement for fast rendering of large rules will be handled by a combi-
nation of using a custom layout algorithm and rendering only a part of the rule
(only the part that can actually fit into the browser window).

4.5.1 Visual Representation
Rules will be visually represented as flowchart diagrams.

Since rules represent business logic algorithms, this representation makes per-
fect sense. In fact, the visual representation of rules in the current RMI resembles
a flowchart diagram to a large degree 4.9.

37

Figure 4.9: Visual representation
On the left is the visual representation of rules in the current RMI, it is basically a combination of a flowchart

diagram and nested windows.
On the right is the same rule redrawn as a classic flowchart diagram with arrows and without the nested

windows. This is the representation that will be used in the prototype (i.e. nodes and arrows with labels).

4.5.2 Choice of the Underlying Technology

There are three possible ways of drawing a flowchart diagram in a web browser
- using HTML, the canvas element or SVG. Out of these three, SVG is definitely
the best choice.

Even though diagram libraries based on HTML do exist, HTML was never
intended for graphics and it is impossible to use it for drawing custom shapes.
This is why all serious diagram libraries leverage SVG or the canvas element.

The canvas element allows drawing of arbitrary custom shapes, however it
lacks many of the perks of SVG.

SVG elements are part of the DOM, therefore they can listen to DOM events
and crucially, the testing methods developed for HTML can be applied to SVG
as well (e.g. end-to-end testing via Selenium). In addition, it is possible to ap-
ply geometric transformations to SVG via CSS, which could easily be leveraged
to implement zoom and panning.

Even though the canvas element may be faster performing, SVG is clearly
a better choice for an interactive diagram.

38

4.5.3 Layout Solution

The visual layout of elements and sub-rules of a rule will be computed by a custom
algorithm, because the available libraries are too generic and too slow.

There seem to be no libraries for calculating the layout of a flowchart diagram.
The next closest solution to the layout problem is to use a generic mathematical
graph layout library and use a layered algorithm.

Graph layout libraries take a set of nodes and edges as input and calcu-
late their positions. They usually offer a variety of different layout algorithms
and the algorithm that produces a result best resembling a flowchart diagram is
usually called a layered algorithm. This algorithm chunks the graph into layers
by traversing it in a breath-first manner and returns a layout where all nodes
from the first layer are at the top, below them is the second layer and so on.

Dagre51 and ElkJS52 are two such libraries that offer a layered algorithm and
there do not seem to be many others. However, the problem with Dagre and ElkJS
is that they do not take into account edge priority. This results in inconsistent
layouts of rules with conditional statement elements where the true and false
branches sometimes swap sides, which is a problem.

Also, it takes ElkJS up to two seconds to calculate the layout of a graph with
only a hundred nodes and a hundred edges, which is too slow.

It is reasonable to assume that other potential graph layout libraries also suffer
from the lack of edge priority. Therefore it is best to calculate the layout using
a custom algorithm.

Custom Layout Algorithm

The custom layout algorithm calculates the layout of elements based on a grid.
Elements of a rule or sub-rules are placed into subsequent squares in the grid
going from top to bottom. 4.10

Sub-rules are placed right below the elements that they belong to. If there
are multiple sub-rules, then they are placed next to each other horizontally from
left to right. If there is only a single sub-rule, one additional column is reserved
on the right for a loop-back edge. On row right below the sub-rules of an element
is reserved so that their edges can be reconnected.

This algorithm is independent of concrete element types, it only depends
on the knowledge of rules, sub-rules and abstract elements. Therefore, it is pos-
sible to add new element types to the RMI without changing this algorithm.

The resulting elements positions are used to render a flowchart diagram rep-
resentation of a rule. 4.11

39

iterate

assign

if

assign assign

assign

START

END

space for
a connector

of the IF element

space for
a connector

of the ITERATE
element

sub-rule of the
ITERATE
element

first sub-rule
of the IF element

second sub-rule
of the IF element

additional
space for the

ITERATE
element

Figure 4.10: Custom layout algorithm
The custom layout algorithm positions elements into squares of a grid. The positions of elements in sub-rules

are calculated recursively. Multiple sub-rules are laid out next to each other and space is reserved
for connector spaces and loop-back edges.

40

iterate

assign

loop

if

assign assign

true

false

assign

START

END

Figure 4.11: Rule rendering concept
This is a concept showing how the custom layout algorithm can be leveraged produce a visual flowchart

representation of a rule. This rendering depends on the knowledge of concrete element types unlike the layout
algorithm.

At the top, sub-rules are connected to their parent element by labeled arrows. At the bottom, their arrows are
merged into a connector spot. The reserved row next to the sub-rule of an iteration element is used to render

the loop-back arrow.

41

4.5.4 Choice of a Diagram Library
It would be useful to use a diagram library for the implementation of the flowchart
diagram. Ideally, it would save time and testing, and it would make the prototype
more future-proof thanks to the extra functionality that libraries offer. However,
the two most promising libraries (JointJS and MxGraph) have several issues,
which make them a liability. In the end, using pure SVG turns out to be more
optimal.

In order to avoid potential problems with browser incompatibilities the Snap-
.svg53 library will be used. It is a simple wrapper of SVG functionality and it
was chosen because it is popular (however, any other simple SVG library could
be used just as well).

There are quite a few diagram libraries of different kinds. Twelve of those suc-
cessful enough to be mentioned in an article32,33,34,35,36 were considered. JointJS
was the most often mentioned free library.

JointJs

JointJS47 would be a good candidate. It has a great documentation and demos,
it is very popular (6K downloads monthly) and it has a large community mostly
active on Google Groups.

To describe it briefly, it is SVG-based, it supports serialization to/from JSON,
allows the programmer to listen to events, gives access to the SVG properties
of any vertex or edge, supports translation and zoom, has automatic routing
of edges (i.e. finding the most visually pleasing path for an edge), has algorithms
for automatic layout of vertices, all vertices are draggable, clickable, etc.

The fact that it spans 16K lines of code, plus it uses powerful libraries - Back-
bone, jQuery, Lodash and Dagre - confirms that it has a lot of useful functionality.

However, there are five big issues with JointJS:

• Even though it has 4K lines of typings, they are so incomplete and bugged
that even the first example among official demos fails to compile with
a Typescript compiler.

Even though this could be solved by writing a custom typings file, it is not
a good thing.

• It should be possible to create custom SVG shapes using JointJS, but
the documentation is lacking completely.

Based on some unofficial examples it seems to be possible at least partially,
but the code is very complicated.

• Listening to all DOM events that happen on the SVG elements is not pos-
sible. JointJS gives access only to a subset of the events.

• The learning curve is steep - it takes a few days to understand JointJs and
learn its API. This is not optimal, code should be easily understandable
to other programmers if possible.

42

This learning curve is a result of the fact that it is a large library and it also
uses the Backbone library20 and mixes its API into the API of JointJS.
Therefore, more advanced code also requires the knowledge of Backbone.

The negative aspects of JointJS outweigh its positives, especially its learning
curve is a problem. This is the reason why a low level SVG library was chosen
instead.

MxGraph

MxGraph42 is diagram library with functionality comparable to JointJS. The po-
pular diagram editing application Draw.io50 is written using MxGraph, which is
a proof of its capabilities. However, it has substantial problems with bugs and
bad documentation, which renders it unsuitable for use.

At the time of writing there was a bug which prevented the installation
of the library altogether44. It took the authors several months, to fix it, but
the fixed version (21. 3. 2018) prevented the library from being imported and
used in code, which is not a big improvement.

This inability of the authors to publish a version of the library that can be
installed and used without first hacking it is definitely not a good sign.

In addition, the API43 and documentation is approximately half as good as
that of JointJS and examples of code are missing.

An Overview of Other Dismissed Libraries

The following are the other ten libraries that were found to be unfitting either
because they are paid, are not based on SVG or do not support interactivity
(events):

• GoJS41 - paid (22K CZK)
• Rappid40 - paid (40K CZK)
• Mindfusion JavaScript Diagram Library39 - paid (10K CZK)
• JsPlumb45 - paid (70K CZK)
• Vis.js Network49 - it uses the canvas element, not SVG
• Mermaid - completely static, no events
• FlowChart - completely static, no events
• JS Sequence Diagrams - completely static, no events, only supports

UML sequence diagrams
• Dracula Graph Library37 - virtually no documentation at all, no events
• Js-graph.it38 - based on pure HTML, doesn’t have almost any functional-

ity

It should be noted that diagram libraries should not be mistaken for graph
theory libraries, which are similar, but they focus on visualization of large amounts
data. In literature (articles), diagram and graph theory libraries often get thrown
into the same category.

Such libraries usually display vertices as small dots, offer automated layout
algorithms (e.g. force-directed layout), etc., but they do not focus on the interac-
tivity that is needed for this prototype. Examples of such libraries are Cytoscape46

and SigmaJS.
Graph theory libraries were not considered, because they do not fit the purpose.

43

4.5.5 Optimizing Rendering for Speed

A simple solution for rendering a rule would be to take an empty SVG element
of a fixed size and render all of the elements and edges of the rule in it. This
way all the SVG sub-elements would be added to the DOM, but only the ones
with coordinates inside the parent SVG element would be visible. This solution
is clean and it makes it very easy to implement exporting as an image, browsing
and zooming (browsing and zooming could be implemented very simply via CSS
geometric transformations).

However, even though only a lightweight SVG library is used, this solution is
still too slow to satisfy the performance requirements when browsing large rules.
A more sophisticated and complicated approach has to be taken.

Benchmark: The Snap.svg library takes on average 1 second to render 1K
relatively complex elements (composed of an SVG rectangle, shadow, text and
an arrow) 4.12. If the graphical representation of a rule becomes more detailed or
the application is run on a slower machine, the library will not be able to satisfy
the quality requirement for rendering under 1 second. (The reproducible benchmark can be

found in Attachment 3. This benchmark was measured on the same computer as specified in quality require-

ments.)

Figure 4.12: Speed of Snap.svg library
The speed of Snap.svg library is measured when creating visual representations of business rule elements (this
equates approximately to one rectangle, some text, a shadow and a an arrow). The time complexity function is

linear and becomes steeper with extreme number of nodes, which can probably be attributed to DOM
behavior, but it is irrelevant to this application. This behavior is probably caused by DOM.
The library does not meet the quality requirement for rendering 1000 elemens in under 1 s.

The solution is to use a view-port object 4.13 representing a cut-out of the area
of a rule which is currently visible on the screen, and only rendering the elements
and edges that are inside that area or cross that area.

The layout still has to be calculated for the whole rule in order to find out
which elements fit into the view-port. Luckily though, calculating the layout us-
ing the custom algorithm is very fast.

44

iterate

assign

loop

if

assign assign

true

false

assign

START

END

x: 100-500
y: 200-600

viewport

Figure 4.13: Partial rendering for browsing of a rule
A view-port object specifies the ranges of coordinates visible on the screen. The layout of the whole rule is

computed and only the elements inside the view-port and the edges crossing the view-port are actually
rendered.

45

Benchmark: Calculating the layout of a rule consisting of 1K elements takes
on average 2 ms. 4.14 (The reproducible benchmark can be found in Attachment 3. This benchmark

was measured on the same computer as specified in quality requirements.)

Figure 4.14: Speed of the layout algorithm
The time complexity function is linear and the layout is calculated extremely fast.

The consequences of this partial rendering approach are that a rule has to be
re-rendered each time it is moved or zoomed. Also browsing and zooming can
no longer be implemented via CSS transformations, because there are no hidden
elements outside the visible area of the SVG element.

4.6 Customization Mechanism
To satisfy the requirement for a 2-step configuration-based loading of customized
versions of the RMI, solutions in React and Angular were considered. Even
though some sort of a customization mechanism can be designed in both cases,
React is much more suitable for this task.

The configuration-based loading consists of two steps - loading of customiza-
tions and their integration into the already existing code.

4.6.1 Loading of Customizations
Both Angular and React deploy their code by using Webpack to bundle all
the code after transpilation into a single ES5 file.

Luckily, Webpack offers a code-splitting feature (enabled in both Angular and
React), which enables bundling the code into multiple ES5 files. One of them is
the main file and the others are lazily loaded as Promises. 4.15

Loading of code-splits can be successfully used to load customizations (custom
pieces of code - classes, GUI components, methods, etc).

4.6.2 Integration of Customizations into Existing Code
The customizations (i.e. the code that implements custom functionality of a con-
crete customer) can be either pure TS code or it can be UI components written

46

// dynamic import syntax
const loadedCodeSplit = await import ('./A.ts');

Webpack

- resolve all dependencies
- transform, transpile

- bundle into a single file

ES8 modules

import

import
import

import

ES5 bundle
(A) Classic behavior

A.ts

Webpack

- resolve all dependencies
- transform, transpile

- bundle into a single file

ES8 modules

import

import
import

dynamic
import

main bundle

loadable
bundle 1

(B) Using code-splitting

import

ES5 bundles

Figure 4.15: Webpack bundling
(A) The normal operation of Webpack is that it finds all the files needed by the application by following

the dependency tree, applies transformations to them (such as transpiling ES8 to ES5) and bundles the result
into a single JS file.

(B) Webpack also offers code-splitting, which bundles the code in the same way, but into multiple code splits.
Code-splitting is based on dynamic imports, which are module imports that are executed in runtime,

e.g. inside of a function call (as opposend to classic imports, which are found at the top of a file). In this
example a TypeScript modules A.ts is imported dynamically, therefore it and all its dependencies get bundled

into a separate loadable bundle.
Dynamic imports are transpiled to ES5 code, which when executed loads the loadable bundle via AJAX

as a Promise.

47

in the syntax of the used JS framework.
Pure TS code can be integrated into existing code easily (e.g. a class can be

instantiated, a function can be called, etc).
However, integrating UI components into existing code (i.e. adding them

as sub-components of already existing components) may or may not be possi-
ble depending on the concrete JS framework and how it operates. In order for
the integration to be possible, it is necessary that the chosen JS framework sup-
ports instantiating a previously unknown UI component in runtime. This shall be
termed ’dynamic component instantiation’ for the purposes of this thesis for lack
of an official term in literature.

Definition: Dynamic component instantiation is the act of instantiating a UI
component whose type is not known by the application during startup and it only
becomes known later on in runtime.

Note: Dynamic component instantiation should not be confused with classic
component instantiation, which is the instantiation of a previously known type
of component at runtime. This is a very common ability of probably any modern
JS framework including Angular, React and Vue.

Dynamic Component Instantiation in React

In React dynamic component instantiation is supported thanks to two details
of its component syntax. The first is that JSX allows tag names to be supplied
as variables 4.16. The second is that templates are returned from the render()
method, which makes it possible to conditionally change parts of the template.

This makes the integration of customizations in React simple.
This behavior of JSX is a side-effect of the fact that JSX tags work by getting

transpiled into JS function calls 4.17.

Dynamic Component Instantiation in Angular

Angular is more complex than React. All Angular UI components must be con-
tained in Angular modules and data and logic should be handled by Angular
services, which are injected (via Angular DI) into the UI components that de-
pend on them.

Angular requires that all services and UI components inside a module must
be declared when the module is instantiated. This makes dynamic component
instantiation impossible.

Note: Confusingly enough, Angular offers a so called ComponentFactoryResol-
ver whose purpose is ”to add components dynamically” 62. However, in fact it
cannot be used for dynamic component instantiation because it only works for
previously known component types. (It requires that all the dynamically instan-
tiated components are registered with a parent module).

4.6.3 The React Solution
A full customization mechanism can be implemented in React using a Customiza-
tions class, Webpack code-splitting and dynamic component instantiation.

48

Figure 4.16: Dynamic component instantiation in React
It is possible to pass tag name as a variable.

49

Figure 4.17: An example of transpiled JSX
This example was taken from the official React docs 61.

50

Customizations

- customizations: Map<Customization, any>

+ static getCustomizationsFor(id: string): Customizaitons

+ get(key: Customziation): any

load config for the logged-in
enterprise customer

from the server
as a code-split

- config: Map<Customization, any>

/customizations/[id]/config.ts

enum Customization

Figure 4.18: Customizations class - the loading phase
The Customizations class holds a map of all customizations of the currently logged in user.
The map of customizations gets downloaded as a code-split after the user authenticates.

Class

pass strategy
or configuration
as an argument

React Component

pass sub-component, method
or configurations as a prop

Customizations

- customizations: Map<Customization, any>

+ static getCustomizationsFor(id: string): Customizaitons

+ get(key: Customziation): any

Figure 4.19: Customizations class - the integration phase
The existing code (Classes and React components) gets customizations form the Customizations class and uses

them (integrates them).

51

After the user gets authenticated, the Customizations class loads their cus-
tomizations via a code-split 4.18. Afterwards, the existing code gets the cus-
tomizations from the Customizations class and integrates them into the places
where they belong 4.19.

Note: This solution is inspired by the feature toggles21 design pattern, which
is used in A/B testing. However, unlike toggled features, the customizations are
not meant to be temporary.

Implementation and usage of this customization mechanism can be found in at-
tachment 1.

4.6.4 The Angular Solution (Suboptimal)
Even though dynamic instantiation of Angular components is not possible, there
is an alternative solution, but it is unnecessarily complicated, not flexible and has
other drawbackss.

The Technical Idea

Angular offers a mechanism for lazy loading routed modules called Lazy Loaded
Feature Modules.

Lazy Loaded Feature Modules 24 are a feature of Angular that is meant to be
used in SPAs that contain multiple views that are navigated via front-end routing
(changing URL in the browser). In such a scenario, it becomes reasonable to
postpone the loading of some views until they are actually needed (until they are
routed to), in order to speed up the initial loading of the application. In this case
the view is a complex UI component (consisting of sub-components and services)
and it is called a feature module in Angular documentation.

The router contains a list of routes and their corresponding feature modules,
which are instantiated and rendered when the route is gets routed to. The routed
modules may be configured to be loaded lazily or not.

In order to implement loading of previously unknown modules, it is necessary
to clear and re-set the list of front-end routes dynamically in runtime. It should
be noted that this is a very uncommon way of working with front-end routes.

This way the integration of customizations in Angular can technically be im-
plemented, but it is not a good practice.

The Solution

Lazy loaded feature modules combined with re-configuration of routes can be
leveraged to implement a solution for customized versions in the following way
4.20:

1. Implement customizations as feature modules.

2. Map the customizations to unique routes.

3. After the user authenticates, download the list of routes and customizations
via a code-split. Then reconfigure the router to use them, thus integrating
the customizations into the existing code.

52

The Drawbacks

This solution has several drawbacks:

1. It uses routing for something it is not intended for. This makes the archi-
tecture confusing and hard to understand to other programmers.

2. It forces the prototype to use routing, even though it may not need it.
(Each customized part of the UI has to be accessed via a route.)

3. It does not work well for small customizations of large modules. It results
in a lot of file duplication, because the whole hierarchy of parent components
has to be duplicated due to changed imports 4.21.

4. There is also a considerable problem with sharing services (and therefore
sharing data) among lazily loaded modules.
By default lazy-loaded feature modules cannot share services. (If they de-
clare the same service, each will have one dedicated instance).
The only way to overcome this behavior is to register the services in a parent
module common to both of the lazy-loaded modules.63 However, this is
discouraged for two reasons:

(a) it is analogous to writing code dependent on a global variable, which
is a very bad practice

(b) the module is no longer self-sufficient (it depends on an external ser-
vice), which is a very bad practice

An example implementation of this customization mechanism can be found
in attachment 2.

4.7 Testing Tools
As already mentioned, React comes with a zero-configuration test runner, which
supports TS. It is called Jest and same as React, it is developed and maintained
by a paid dedicated team at Facebook. The API, developer experience and speed
of Jest are good enough that there is no need to look for an alternative.

Enzyme shall be used as the UI component testing library and Cypress for
end-to-end testing.

4.7.1 Jest
Jest is not only a test runner. It also includes a testing library with an API very
similar to Jasmine (a popular testing library).

The API covers everything that is expected from a testing library. This in-
cludes:

• tests and test suites
• assertions of identity and deep equality (i.e. equality of JS objects and

arrays)

53

Rule editor module

Rule list module

original modules
(not ocustomized)

Rule list module 2
routes for customer #2

/rule-editor: RuleEditor
/rule-list: RuleList2

customizations for customer #2

downloads the list
of routes

for customer #2
RMI prototype

RMI prototype

downloads and instantiates
Rule list 2

RMI prototype

downloads and instantiates
Rule editor

configure the Angular router
to use the downloaded routes

when URL /rule-editor is accessed

after customer #2
authenticates
successfully

when URL /rule-list is accessed
(e.g. the user clicks a button

to open the list of rules)

Figure 4.20: A possible customization mechanism in Angular
This example shows how the proposed customization mechanism works for customer #2. The RMI prototype

contains the Rule Editor module and the Rule List module. Customer #2 needs some special functionality
from the Rule List module, therefore a custom version of that module was created for them. A new route

leading to that module was also added so that the module can be lazily loaded when it is routed to. This way
customer #2 now receives the customized Rule List 2 module, whereas the other customers receive the original

Rule List module.
It is important to note that a side-effect of this mechanism is that a new module and a route has to be created

per each customization. (Unless multiple customizations fall inside the same module.) This is one
of the several drawbacks of this solution.

54

• assertions for thrown exceptions
• asynchronously executed assertions for testing asynchronous code
• setup and tear-down functions
• a mocking API

The mocking API consists of spies (or spy functions), which can mock a method
of an instantiated JS class and observe how many times it was called, with what
arguments, etc. A spy can also be used to return a different value from the mocked
method.

Jest achieves high execution speed by running tests in parallel.
Jest has several features that improve developer experience. It has a watch

mode, which watches changes to files and reruns only those tests that have
changed or their dependencies have changed. It has easy to understand error
messages when a test fails (e.g. it shows the difference of two compared JS ob-
jects, etc). It includes a test coverage tool. It can run tests selectively and it runs
failing tests first. Additionally, it has a plugin for integration with Visual Studio
Code IDE.

One thing is that may be seen as a disadvantage is that Jest is Node.js based,
i.e. it does not run the tests inside a real web browser (such as Google Chrome).
This architecture allows Jest to run faster than it would using a real web browser,
but it comes at the cost of not being able to test browser-specific features.

4.7.2 TS Testing with Jest
All testing of TS classes and functions can be done with Jest. There is not need
to install any additional assertion libraries.

(More details about Jest API can be found in attachment 5.)

4.7.3 UI Component Testing with Jest
Enzyme library is used for testing React UI components.

There are several libraries for testing React components, but Enzyme is recom-
mended by the authors of React. Enzyme is developed and maintained by Airbnb.
It instantiates React components and offers a simple API for their manipulation,
traversal and the simulation of user events.

Enzyme offers three ways of instantiating React components:
1. Shallow instantiation creates and instance of the component and keeps

track of sub-components and their props. However, it does not instanti-
ate the sub-components. This allows unit testing of React components,
because the tests do not depend on the functionality of sub-components.

2. Full instantiation instantiates a component with all sub-components recur-
sively.

3. Full DOM rendering is the same as full instantiation, but it allows the com-
ponents to interact with the DOM.
In case of Jest the real DOM is not available, because Jest does not run
in a web browser, therefore a mock DOM is used.

(More details about Enzyme API can be found in attachment 5.)

55

4.7.4 End-to-end testing
Cypress was chosen as the preferred end-to-end testing solution. Its main strength
is good developer experience.

Cypress

Cypress is a test runner, a page traversal and manipulation library and a testing
library all in one. It requires no configuration. Cypress was developed with
the following goals in mind: to optimize developer experience, to make end-to-
end TDD possible, to allow easy testing of SPAs and to make Selenium obsolete.
Additionally, it has perfect documentation.

Cypress allows easy testing of SPAs by automatic waiting for asynchronous
events. This is an improvement over Selenium, where the programmer must use
waiting statements in code.

Unlike Selenium, Cypress runs inside the browser, which makes it faster65 and
it also allows the programmer to access the JS context (e.g. to put mock values
into local storage before the test runs, etc).

It runs end-to-end tests in two modes - development mode and execution
mode.

In the execution mode Cypress runs headlessly. This mode should be used for
running existing tests.

In the development mode Cypress runs in an open browser, this allows the de-
veloper to see exactly what the test is doing. While the browser is being auto-
mated, Cypress displays the progress of the test broken down into individual
commands. When the test fails, it is immediately visible which command caused
the problem. In addition, Cypress remembers the state during each command,
therefore it is possible to step over individual commands back and forth, which is
extremely useful for debugging tests 4.22. Additionally, Cypress error messages
are very easy to understand (this is one of the goals of Cypress). It also has a
watch mode, which automatically re-runs changed test files. The development
mode should be used for writing and debugging new tests.

Cypress compared to other end-to-end test runners

There are several other end-to-end test runners for JS. Going through the twenty
most relevant Google search results for the query ”JS end-to-end tester” yields
eight popular alternatives. Four of them are Selenium-based: WebDriver.io,
CodeceptJs, Nightwatch, Protractor. The other four are not: TestCafe, CasperJS,
Puppeteer and Cypress.

Cypress makes Selenium-based test runners obsolete thanks to its automatic
waiting feature and the ability to access JS context. It also claims to run faster65,
but no benchmarks can be found to support that claim.

What separates Cypress from the non-Selenium-based alternatives is mostly
its development mode GUI with its great developer experience - especially the step
over feature.

There are two downsides to Cypress. First, it can currently only run on Google
Chrome, but that is fine with respect to the requirements of this prototype.

56

Second, it cannot run tests in parallel, but this feature is currently under active
development.

(More details about Cypress API can be found in attachment 5.)

57

UI component 1

UI component 2

UI component 4

UI component 1.1

UI component 2.1

UI component 4.1

small change

Original module Customized module

UI component 3 UI component 3

Figure 4.21: The impact of a small change inside a large module in Angular
This problem arises when a small change needs to be made to a part of a complex module composed of multiple
levels of sub-modules. When such a change is made, a new version of every parent module has to be created.

The code of component 4 is changed, therefore component 2 must change its imports to import the customized
component 4.1 instead of 4. And this chain of changing imports propagates up to the root component and

the parent module, in which all theses components are registered.

58

Figure 4.22: Cypress - development mode GUI
The development mode GUI of Cypress shows on the left a list of all test cases of a specific test suite and

on the right a real-time display of what is happening to the application.
(1) The code of the test case is broken down into individual actions. It is possible to click on an action and see

the before and after state of the application. This is extremely useful for the development and debugging
of end-to-end tests.

(2) Changes to the application are visible as they are being executed by the test runner or as they are being
stepped-through.

In conclusion, Cypress offers very good developer experience.

59

60

5. Implementation
This chapter provides the architectural description and implementation details
of each module of the RMI prototype.

5.1 Client Module
The Client module is responsible for communication with the server component
of ERIAN.

Due to lack of access to the actual server component of ERIAN, the Client
module is actually a mock module which only imitates communication with
the server component. To integrate this prototype with ERAIN, the Client class
should be extended with an implementation that actually communicates with
the server component.

MockClient

Client
(abstract)

ILoadables

Figure 5.1: Client module
This is an architectural module usage view of TS classes and UI components.

Legend:
”Uses” arrow means that the correctness of the source depends on the correctness of the target. ”Produces”

arrow means that the source creates instances of the target. Empty-headed arrow represents inheritance.
Bold borders signify a sub-module, which is described in more detail in a different figure. Dashed border

signifies data objects (classes with no functionality), only important data objects are shown.
Grey color signifies classes belonging to a different module than that which is being described.

Sharp corners signify a React UI component, only important UI components are shown (rounded corners
signify a TS class).

• Client - it is an abstract class, which defines abstract methods for loading
data from the server component of ERIAN and saving data there.
It also automatically checks the presence of hard-wired types (as per specifi-
cation) and converts the loaded data to a more useful format (type converter
and type definition map).
To integrate the RMI prototype to work with the real server component
of ERIAN, all that is needed is to supply an implementation inheriting
from the client class.

• ILoadables - it is a data object, which holds all the loaded data needed
when manipulating elements - list of operations, a map of type definitions
and a type converter.

• MockClient - it is the current implementation of the Client class. It does
not use the server component, instead it save everything to local storage
and loads it from there.
Also, at first load it generates some useful example data (for testing, bench-
marking and demonstration purposes).

61

5.2 Diagram Module
The Diagram module is responsible for rendering a rule. It triggers its re-
rendering and validation when necessary and adds interactivity (via keyboard
shortcuts and mouse gestures).

The rendering of SVG shapes uses Snap.SVG library for convenience.

Viewport

Sizes

Keyboard

ClipBoard

Selection

Graphics

Interactivity

uses

Rubber
Band

Rendereruses

uses

Enhancer

uses

Diagram

Layoutuses

uses

uses

Interactivity

uses

uses

CommandInvoker

Rule

uses

uses
Utils

uses

DeleteCommand

PasteCommand

SelectCommand

Undoable Commands

Deserializeruses

Figure 5.2: Diagram module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• ClipBoard - holds a set of copied elements.

• Graphics - it is responsible for rendering of all SVG shapes and text.

• Interactivity

– Interactivity - it is responsible for several interactive features such
as collapsing of sub-rules, creating new elements via drag and drop,
pasting and displaying drop spaces.

– RubberBand - it is an interactivity feature. A rubber band that
stretches when mouse is dragged and selects the elements inside when
the mouse is released.

– Selection - it is an observable set of currently selected elements.

• Keyboard - it is responsible for keeping track of pressed keyboard com-
binations (e.g. Ctrl + C). It allows listening to these keyboard combina-
tions. It can listen to key presses on any HTML element, but in the case

62

of the Diagram module it is used for listening to the main SVG element
which contains the rendered rule.

• Layout - computes positions in pixels for all elements of a rule and returns
only the ones that fit inside the view-port.

The computation of the layout is independent of element types, so the code
does not have to be changed after adding a new element type.

• Renderer - takes a set of elements and their positions are renders them
(shape and text) onto a given SVG element (without any interactivity - no
event listeners are registered).

The Renderer has a simple implementation, it just calls the renderSvg()
method of the enhancers of the given elements. This design minimizes
the impact factor of adding new types of elements.

• Sizes - it holds sizes. All rendered SVG elements and text get their dimen-
sions from the Sizes class. Zooming in and out is implemented by changing
the magnification of the Sizes class. It also holds the sizes for grid cells used
for computing the layout of a rule.

• Undoable Commands - these are commands (pieces of functionality) that
are executed by the CommandInvoker module and therefore can be undone
or re-done.

– DeleteCommand - it performs the deletion of selected elements.

– PasteCommand - it performs the pasting of copied elements (from
the ClipBoard).

– SelectCommand - it performs selection of elements.

• ViewPort - it represents a two-dimensional sliding window. it has a posi-
tion, width and height all in pixels.

Its dimensions are intended to be set to be the same as the dimensions
of the root SVG element on the screen.

It is used by the Layout class to determine which elements should be ren-
dered and which do not need to be rendered, because they would not fit
on the screen. Browsing is implemented by moving the position of the view-
port and re-rendering the rule.

5.2.1 The Rendering Algorithm

The rule is rendered by calculating its layout by the Layout class. Then all el-
ements that fit into the view-port have their SVG representation rendered by
the Renderer class. Finally interactivity is added to the rendered rule by the In-
teractivity class.

63

Layout

Renderer

a rule as input

positions for elements
inside the view-port

visual representation of the rule
as an interactive SVG element

Viewport

Enhancer

Interactivity

rendered elements,
positions for droppers

renders elements
and edges in SVG

renders interactive
parts of the SVG

Figure 5.3: Steps of the rendering algorithm
Legend: Dashed arrows show how steps are executed after each other and what data is passed as input

to the next step. Modules that are important for the implementation of each step are grey.

5.2.2 Command Invoker Module
The CommandInvoker module is a straight forward implementation of the well-
known design pattern. It stores all executed commands and can travel back and
forward undoing or re-doing them.

CommandInvoker

Command
(abstract)

MultiCommand

Command Invoker

uses

Figure 5.4: Command invoker module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• Command - it is an abstract class representing an arbitrary action. It
contains one method to execute the action and one to undo it.

• CommandInvoker - executes commands and keeps track of them. Allows
undo and redo.

64

• MultiCommand - represents several commands grouped together so that
they can be undone or re-done all at once.

It is useful in situations where a command is composed of multiple smaller
commands (e.g. delete and unselect).

5.3 Enhancers

Each different type of element (e.g. assignment, conditional statement, etc.) has
a different GUI popup for editing its data and a different SVG representation.

Enhancers are used in order to separate the GUI and SVG rendering logic
from the Rule module, while still allowing the use of dynamic polymorphism
for rendering the GUI popups and SVG representation.

They also minimize the impact factor of adding new types of elements.
Enhancers have two important methods:

• renderGuiPopup() - returns the UI component that allows editing of this
type of element

• renderSvg() - renders an SVG representation of the given type of element,
including arrows.

The method takes the result of layout computation as input 5.6 and returns
the rendered element along with all necessary data needed by the interactiv-
ity module 5.7. It also uses element.graphicalMetadata and element.errors.

End

If

Assign

Iteration

Element
(abstract)

- enhance()

Enhancer
(abstract)

- renderGuiPopup(...)
- renderSvg(...)

EndEnhancer

IfEnhancer

AssignEnhancer

IterationEnhancer

produces

uses

Figure 5.5: Element enhancers
Elements produce their corresponding enhancers by calling the enhance() method.

Legend: This is a usage view of the classes. A module uses another module if and only if its correctness
depends on the correctness of the other module.

65

ILayoutPosition

+ x, y: number

+ element: Element

+ hasArrow: boolean

+ hasDropper: boolean

+ subrules: ILayoutSubrule[]

+ subruleEndY: number

+ isInsideViewport: boolean

+ hasConnectorInsideViewport: boolean

+ hasArrowCrossingViewport: boolean

if x > 1

y = 1z = 2

y = 2

x = 2

x
y true

true

Viewport

connector

true

true

false

ILayoutSubrule

+ x: number

+ width: number

+ yStart: number

+ yEnd: number

+ positions: ILayoutPosition[]

dropper

positions of sub-rules

positions of elements
of the sub-rule

Figure 5.6: Input of the Enhancer.renderSVG method
The conditional statement element is inside the view-port and has a dropper where new elements can be
dropped after interactivity is added to the SVG. It renders five arrows - two which connect the element

to the beginning of each of its sub-rules, two which connect the end of each sub-rule to a connector and one
coming out of the connector.

The UML classes represent data objects passed as input to the renderSVG method. The rest of the diagram is
an example of a part of a rendered rule, which illustrates the meaning of each attribute.

66

if x > 1

IInteractivityInfo

+ element: IWrapElementAndSvg

+ droppers: IDropperPosition[]

IWrapElementAndSvg

+ element: Element

+ svg: IRenderInfo

IDropperPosition

+ element: Element

+ position: IPoint
IRenderInfo

+ boundingBox: Snap.Element

+ shape: Snap.Element

+ position: IPoint

highlighter
(Snap.Element)

IPoint

+ x: number

+ y: number

Figure 5.7: Output of the Enhancer.renderSVG method
Dropper positions are used by the interactivity module to create doppers (places where new or copied elements

can be dropped and added to the rule).
Bounding boxes are used by the interactivity module to implement selection. An element gets selected only if

its bounding box fix inside the selection rubber band.
The UML classes represent data objects passed as output from the renderSVG method. The rest
of the diagram is an example of a rendered element shape with a highlighter and a bounding box.

5.4 GUI Modules
GUI is composed of React UI components. App is the root component, which
includes all other components and gets mounted onto the HTML page. More
complex UI components are called modules.

Most UI components use the antd component library, which provides nicely
styled UI components and the react-i18next library, which provides international-
ization of UI and non-UI components. (More details about the libraries and React
can be found in attachment 4.)

App

RuleList

RuleEditor

Login
IClient

Customizations

Rule

uses

uses

uses

Figure 5.8: GUI value input module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• App - loads customizations according to the identity of the logged-in user
and passes the Customizations object to all sub-components that contain

67

code customizations. (The customization mechanism is implemented and
used exactly as described in chapter Design 4.6.3.)

• Login - simulates the login process for the purposes of demonstrating
the customization mechanism (implementation of authentication is not
part of the RMI prototype).

• RuleList - shows a list of rules currently available at the server component
and allows the user to open any of them for editing.

5.4.1 GUI Rule Editor Module

Header

Rule Editor

Element GUI Popup

Diagram
Enhanceruses

produces

Rule

uses

Legend

ExportSvgButton

GuiIterationPopup

Assign

If

Iteration

uses

uses

uses

GuiExpression

GuiExpression

GuiAssginPopup

GuiIfPopup

Figure 5.9: GUI rule editor
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

The RuleEditor module provides a graphical way of editing a rule.

• Diagram - displays the graphic representation of a rule interactively and
allows editing.

• Element GUI Popup - appears when an element is clicked and it allows
editing of its data. Each type of element has its own popup.
The editing of elements works in the following way. When a popup is
opened, the element is cloned and all subsequent changes made to that

68

element by the user are preformed on the clone only. When the user wants
to save the changes, the clone is validated. If the clone is valid, its data get
merged into the original element, otherwise the save action is prevented.
If the user cancels the editing, the clone is discarded and the rule is not
affected in any way.

• ExportSvgButton - exports the graphical representation of the whole rule
rendered as SVG.

• Header - displays and allows editing of the name and description of a rule.

• Legend - displays a list of keyboard shortcuts available on the Diagram
component.

5.4.2 GUI Expression Module
The GuiExpression module displays and allows editing of an expression.

GuiExpression

GuiLiteral

GuiArrayAccess

GuiVariableAccess

GuiOperation

GuiArgument

Expression

Arg

Literal

ArrayAccess

Operation

VariableAccess

uses

uses

uses

uses

uses

uses

ValueInput

Figure 5.10: GUI expression module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• GuiArgument - displays a value or an empty argument, allows deletion
of the value and the input of a new value.

• GuiArrayAccess - displays an array access.

• GuiLiteral - displays a literal.

• GuiOperation - displays an operation and its arguments.

• GuiVariableAccess - displays a variable access.

69

5.4.3 GUI Value Input Module
The ValueInput module allows the input of a value (e.g. literal, operation, etc)
with powerful auto-completion similar to the intellisense of an IDE.

It offers a list of all matching variables accesses, array accesses and operations,
and it only offers the ones that have the correct type (convertible to the type
of the argument).

ValueInput

OfferOperations

OfferVariableAccesses

VariableAccessFilter

OperationFilter

Parser

Offer
Indexuses

uses

uses

uses
uses

ArrayIndexInput

IScope

ILoadables

uses
uses

Value

uses

uses
VariableAccessGenerator

uses

Figure 5.11: GUI value input module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• ArrayIndexInput - allows the input of an integer index for an array access.

• Index - keeps track of which auto-completable option is currently selected.

• Offer - shows a list of auto-completable operations and variable/array ac-
cesses.

• OfferOperations - shows a list of auto-completable operations.

• OfferVariableAccesses - shows a list of auto-completable variable/array
accesses.

• OperationFilter - filters groups of operations by a string prefix.

• Parser - parses the current input string, decides what type of value it
represents and returns the correctly typed value (e.g. a literal, an operation,
etc).

• VariableAccessFilter - filters variable/array accesses by a string prefix.

70

• VariableAccessGenerator - generates all auto-completable variable/ar-
ray accesses of compatible type based on the current variable scope and
a list of all type definitions.

5.5 Rule Module
The rule module implements the rule according to the specified logical model,
plus it provides all the necessary functionality related to editing the rule, such as
computing the scope of variables, validation, etc.

End

If

Assign

Iteration

Rule

Sub-Rule

Element
(abstract)

IGraphical
Metadata

Traverser uses

uses

usesuses

Validator

usesuses

Declarations
uses

Declaration

uses

Deserializer

uses

uses

produces

usesExpression
uses

AutoCorrect

usesSerializable part

Types

uses

uses

IVariable

uses

uses

Figure 5.12: Rule module
The serializable part of the Rule module is the one that gets sent to the server component.

This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• AutoCorrect - is used after copying and pasting. It scans the pasted sub-
set of a rule for all variable declarations and it redeclares all those variables
and auto-corrects the IDs of all occurrences of those variables in the pasted
sub-set of the rule.

• Declaration - represents a declaration of a variable.

71

• Declarations - stores local and global declarations and it can create new
ones.

• Deserializer - de-serializes elements based on the elementType attribute
of their JSON serialization.

This is the only class that needs to be updated when a new element type
is implemented.

• Element - implements elements according to the specification. Plus it
offers many useful methods - it can clone itself, serialize, return IDs of all
used variables and all declared variables, etc.

Elements also hold a list of errors (see Validator module for more details).

– Assign - implemented per specification.

– End - it is a trivial useful element that simplifies traversal of rules and
working with empty rules. End elements are not visible, except the
ones in the first sub-rule in the hierarchy.

– If - implemented per specification.

– Iteration - implemented per specification.

– IterationHelper - solves the visibility problem of the iteration vari-
able of the Iteration element. The iteration variable is declared in the i-
teration element, but it should be visible only inside the iteration cycle
(so it should actually be declared inside the sub-rule and that is exactly
what the IterationHelper does).

The IterationHelper is placed as the second element of each iteration
cycle. It declares the iteration variables and serves as a proxy for
the Iteration element. Any mutation methods called on the Itera-
tionHelper are also called on the Iteration element (e.g. if an error is
set on the IterationHelper, it automatically gets set on the Iteration
element as well).

The purpose of IterationHelpers only to provide correct variable scop-
ing in the RMI. They are not part of the serialization and are never
sent to the server component. They are also not visible.

72

End

IterationHelper

End

next

next

next

prev

prev

prev

Sub-Rule start

end

parentRule

parentRule

parentRule

Iteration

parent

...

master

cycle

Figure 5.13: Iteration helper element
The problem with iteration element is that it holds the iteration variable, but it should only be visible inside its
sub-rule, not outside. This is why IterationHelper element is introduced to hold the iteration variable instead.
The IterationHelper is placed as the second element of the iteration cycle and it forwards all mutation method

calls to the master Iteration element.
Legend: This is an example of an Iteration element instance. Arrows are pointers.

• IGraphicalMetadata - is a data object, which holds all visualization-
related data of an element (whether it is visible, selected, collapsed, etc).
This data is not relevant to the server component.

• Rule - implemented per specification. It contains all variable declarations
and the rule (a recursively defined structure of sub-rules and elements).

It is responsible for variable scoping. It can find out which variables are
visible in the scope of a given element and which variable names cannot
be declared by an element, because they would collide with declarations
further down the rule.

The Rule class and everything it contains (i.e. declarations, sub-rules, ele-
ments, expressions, variables, etc.) is serializable and deserializable, so that
it can be sent to the server component. Serialization formats are defined
in the corresponding interfaces for each class (e.g. ISubRule, IElement,
IExpression, IValue, etc).

• SubRule - it contains a linked list of elements.

Elements are stored in a linked list instead of an array because this makes
it easier to traverse the sub-rule, add and remove elements.

73

End

Assign
x= 1

Assign
x= 2

End

next

next

next

prev

prev

prev

Sub-Rule start

end

parentRule

parentRule

parentRule

parentRule

Element

parent

Figure 5.14: Example of a sub-rule
Each sub-rule starts and ends with an End element. Elements of a sub-rule are kept in a doubly-linked list and

each of them also references the sub-rule object.
Each sub-rule has references its parent element (with the exception of the first sub-rule in the hierarchy).

Legend: This is an example of a sub-rule instance with element instances. Arrows are pointers.

• Traverser - implements all kinds of traversal algorithms for traversing
a rule (all predecessors, all ancestors, all successors, etc). All traversals
can be stopped an configured with an options object.

• Validator - checks for logical errors in a rule (introduced specifically to han-
dle errors arising from copy and pasting).

The following errors can occur:

– an undeclared variable is assigned to

– an undeclared variable is used as a value (e.g. in an expression)

– redeclaration of a variable with the same name

– redeclaration of a variable with the same ID and name (never happens
thanks to auto-correction of declaration IDs)

The validator class checks for these errors and invalidates erroneous ele-
ments. It also marks all ancestors of invalid elements, in order to facilitate
easy localization of the invalid elements when browsing the graphical rep-
resentation of a rule.

5.5.1 Types Module

The Types module handles types and type conversions.

74

TypeConverter

Types

uses

IType

TypeDefinitionMap

ITypeDefinition ITypeConversion

HardwiredTypes

Types

uses uses

uses

uses

Figure 5.15: Types module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• HardwiredTypes - is an enum of types that are hard-wired to the RMI,
because the code depends on them (boolean, integer, float, string).

• TypeConverter - tells whether it is possible to convert from one type
to another (transitively).

• IType - represents a type.

• ITypeConversion - represents a type conversion.

• ITypeDefinition - represents a type definition.

• TypeDefinitionMap - maps type names to type definitions.

• Types - has utility methods for working with types (checks equality, clones
type objects, etc).

5.5.2 Expression Module

The Expression class represents a mathematical expression. It can infer the type
of the expression and check whether it is empty or unfinished.

It can also get IDs of all variables used in the expression and replace them
by new IDs (useful for auto-correction after copy and pasting). Lastly, it can
traverse all values of the expression.

75

IType

TypeConverter

uses

uses

Arg

Value
(abstract)

usesuses

VariableAccess

ArrayAccess

Literal

Expression uses

Expression uses

IVariable

uses

uses

uses

Operation

Figure 5.16: Expression module
This is an architectural module usage view of TS classes and UI components. (Legend in figure 5.1.)

• Arg - holds a typed and named argument.
It de-serializes values based on the what attribute of their JSON serializa-
tion. It can also recursively traverse all values beneath it.

• IVariable - represents a variable.
Variables have a boolean flag isDeclaration, this is an important detail,
because scoping and Validator and AutoCorrector modules depend on it.
The flag was introduced to resolve confusing situations that could otherwise
arise during copy and pasting.

• Value - abstract class for classes that hold a value.
Each value can return a set of IDs of variables that it uses, which is useful
for validation of the rule (especially after copy and pasting). Each can also
replace IDs of their used variables, which is useful for auto-correction (used
after copy and pasting).

– ArrayAccess - represents an array access, which is a mixture of vari-
able attribute access and an integer argument (e.g. Doc.Items[1]).

– Literal - represents a literal value and is capable of type inference.
– Operation - represents an operation.
– VariableAccess - represents a variable attribute access (e.g. Doc.ID).

5.6 Validation
Before every time a rule is rendered it undergoes validation and if errors are found
they are reported in the GUI 5.17. A rule can get into an invalid state after a

76

paste or a delete operation. Other operations do not allow the user to create
invalid elements thanks to autocompletion and checking of variable names and
attributes.

Figure 5.17: Validation of a rule
Validation is performed before each time a rule is rendered. If errors are discovered, they are reported

in the upper right corner. Clicking on the error brings the invalid element into the center of the screen.
Hovering over the invalid element reveals information about its invalidity.

Validation is done by the Validator class 5.5 and the following cases of inva-
lidity can occur:

• an undeclared variable is assigned to (the declaration was deleted)

• an undeclared variable is used as a value (e.g. in an expression)(the decla-
ration was deleted)

• redeclaration of a variable with the same name (the declaration was copied
under a different one of same name, this includes iteration variables as well)

• redeclaration of a variable with the same ID and name (the declaration was
copied under itself, this includes iteration variables as well)
(this should never happen thanks to auto-correction of declaration IDs dur-
ing copy/paste operations. However, the check is still used in order to keep
consistency even in case of bugs)

The validation algorithm is based on multiple traversals of the rule and its
time complexity is quadratic in the number of elements.

77

78

6. Evaluation
All functional and quality requirements were met.

React framework is used for the definition of UI components (requirement
2b) and internationalization (requirement 2a) is handled by react-i18next library.
(Details about internationalization can be found in attachment 6.)

It should be noted this thesis is concerned only with the client side and there-
fore evaluation does not cover the server side of system ERIAN.

6.1 Performance of Rule Rendering

Rendering of the graphical representation of a rule and export as SVG image
(requirement 1a and 1b) are both sufficiently fast and the RMI can handle large
rules efficiently.

• Rendering a rule containing 1000 elements takes on average less than 30
ms, provided the shape of the rule is not very dense, which easily meets the
requirement for 1 s. 6.1

• Rendering a ”pathological” worst-case scenario rule takes on average 302
ms, which meets the requirement for 1 s. 6.1

• Exporting a rule containing 1000 elements as an SVG image takes on aver-
age 1.2 s, which meets the requirement for 3 s. 6.2

• There is no limit on the number of sub-rules nested inside of each other.

(The reproducible benchmarks can be found in Attachment 3. The benchmarks were measured on the same

computer as specified in quality requirements.)

79

Figure 6.1: Rendering speed of a rule in the UI
The time complexity function is constant. It is independent of the number of elements comprising the rule but

it is dependent on the shape of the rule. If the shape is normal and not dense, the rendering is very fast
at approximately 30 ms. If the rule is denser the rendering slows down to the extreme case of 302 ms when

the whole screen is covered by 186 elements.
In any case, the speed is enough to meet the quality requirements.

Figure 6.2: Speed of exporting a rule as SVG
The time complexity function is linear and becomes steeper with extreme number of nodes, which can

probably be attributed to DOM behavior, but it is irrelevant to this application. The export is fast enough
to meet the quality requirements easily.

80

6.2 Customization Mechanism
A customization mechanism (requirement 2c) was successfully implemented based
on Webpack code-splitting and dynamic component instantiation in React (as
described in section 4.6.3). The simplicity of loading and using UI components
in runtime in React was the main reason why it was chosen over Angular.

Attachment 1 demonstrates the usage of the customization mechanism. Two
versions of the RMI are implemented for two different customers of Komix. For
simplicity the customers are called ”1” (figure 6.3) and ”2” (figure 6.4).

6.3 Testability
Test runners and libraries for testing TS classes, React UI components are con-
figured and ready to be used. The same is true of end-to-end tests (reqirements
3a and 3b).

Testability was an important reasons why SVG was chosen for the graphical
representation of rules.

Test examples which sufficiently demonstrate the APIs of the different testing
libraries are included with the code (attachment 4).

1. /src/rule contains many examples of TS class tests using Jest API.
2. /src/gui contains examples of React UI component tests using Enzyme API

and Jest API.
3. /src/cypress/integration contains examples of end-to-end tests using Cy-

press API.

(Testing guides and APIs are described in attachment 5.)

6.4 Usability
Usability of the prototype was tested using the System Usability Scale (SUS).66

(Note: usability improvement was not one of the requirements, this evaluation is
purely informative.)

The results show that the usability of both the original software and the new
prototype are comparable (according to their SUS score). However, using the pro-
totype, test users were able to complete most of their tasks in half the time (unless
they were well trained in using the original software).

(Details about the test and its results can be found in attachment 7.)

6.5 Acceptance Tests
All functional requirements 3.1 were tested with acceptance tests using browser
automation.

(Acceptance tests can be found in attachment 8.)

81

Figure 6.3: Customization example - user 1
User 1 has several customizations made to the RMI.

1. The layout of the rule editor is customized (diagram on the left, buttons on the right).
2. A button, which exports the rule serialized in a JSON representation.
3. Rendering information (number of elements and elapsed time) is hidden.

82

Figure 6.4: Customization example - user 2
User 2 has no customizations made to the RMI.

83

84

Conclusion
This thesis is concerned with the implementation of a thin client prototype
of the Rule Management Interface of system ERIAN. The purpose of the proto-
type is to prove the viability of a thin client solution, which will make the existing
thick client obsolete, and lay a foundation for the full implementation of the new
thin client based on modern web technologies.

First, functional and quality requirements were analyzed based on a demon-
stration of the existing thick client, prototyping and discussing the needs of Komix
stakeholders.

Then the prototype was designed in order to satisfy the requirements. A lot
of attention was given to choosing the appropriate technologies for the task.
The prototype focuses on staying responsive even when handling exceptionally
large data (business rules). Another very important property of the design is
that it provides the ability to develop and maintain multiple customized versions
of the RMI for different enterprise customers. It is also well testable, internation-
alized and uses a modern component-based approach for building a UI.

Finally, the prototype was implemented using the chosen technologies and par-
tially tested. Thorough testing does not make sense, since this is just a prototype
and it will likely go through many changes before it is production-ready.

Even though the prototype is not supposed to cover the full functionality
of the existing thick client, it is already an improvement over it in serveral as-
pects. The most important functional improvements are copy and pasting, error
prevention while editing elements and type-aware value auto-completion during
editing of expressions.

It is expected that the full thin client of the RMI will be implemented based
on this prototype. The prototype is ready for the addition of the remaining
modules and all the technologies needed for the implementation and testing are
tried and ready.

85

86

Bibliography
[1] Schultheiss, Louis A. Techniques of flow-charting.

Graduate School of Library Science. University of Illinois at Urbana-
Champaign ISSN 0069-4789

[2] Singh, Anil. Angular 5 vs. Angular 4.
https://www.code-sample.com/2017/09/angular-5-vs-angular-4-whats-new-
in.html [Online; accessed 2018]

[3] Silva, Filipe. Angular mutliple apps integration.
https://github.com/angular/angular-cli/wiki/stories-multiple-apps [Online;
accessed 2018]

[4] Google, Angular team. Angular official tutorial and documentation.
https://angular.io [Online; accessed 2018]

[5] Motto, Todd. Angular, TypeScript and JavaScript articles.
https://toddmotto.com/ [Online; accessed 2018]

[6] Kwiatek, Wojciech. Making use of RxJS in Angular.
https://auth0.com/blog/making-use-of-rxjs-angular/ [Online; accessed
2018]

[7] Podwysocki, Matthew et. al. RxJS (aka Reactive Extensions library) offi-
cial documentation.
http://reactivex.io/rxjs/manual/overview.html [Online; accessed 2018]

[8] Brocchi, Mike. Using non-UMD libraries with Angular.
https://github.com/angular/angular-cli/wiki/stories-global-scripts [Online;
accessed 2018]

[9] Angular articles.
https://alligator.io/angular/ [Online; accessed 2018]

[10] Romuald, Brillout. Catalog of Angular 2+ Components & Libraries.
https://github.com/brillout/awesome-angular-components [Online; ac-
cessed 11.3.2018]

[11] You, Evan. Vue official documentation.
https://vuejs.org/ [Online; accessed 2018]

[12] Kazuya, Kawaguchi. A curated list of awesome things related to Vue.js
(plugins).
https://github.com/vuejs/awesome-vue [Online; accessed 2018]

[13] Facebook. React official documentation.
https://reactjs.org/ [Online; accessed 10.3.2018]

[14] Abramov, Dan. Getting Started with Redux.
https://egghead.io/courses/getting-started-with-redux [Online; accessed
10.3.2018]

87

[15] Stoiber, Max et al. create-react-app: a zero-configuration, pre-packaged
React with TS, linting, Jest test framework and more.
https://github.com/facebook/create-react-app [Online; accessed 10.3.2018]

[16] Rauschmayer, Axel. ES proposal: import() – dynamically importing ES
modules.
http://2ality.com/2017/01/import-operator.html [Online; accessed 2018]

[17] James, Kyle. If TypeScript is so great, how come all notable ReactJS
projects use Babel?.
https://discuss.reactjs.org/t/if-typescript-is-so-great-how-come-all-notable-
reactjs-projects-use-babel/4887 [Online; accessed 2016]

[18] Zavelevsky, Doron. Protractor vs. Selenium: Which is Easier?.
http://testautomation.applitools.com/post/94994807787/protractor-vs-
selenium-which-is-easier [Online; accessed 10.3.2018]

[19] Resig, John. JQuery official documentation.
http://jquery.com/ [Online; accessed 12.3.2018]

[20] Ashkenas, Jeremy. Backbone official documentation.
http://backbonejs.org/ [Online; accessed 12.3.2018]

[21] Fowler, Martin. Feature Toggles (aka Feature Flags).
https://martinfowler.com/articles/feature-toggles.html [Online; accessed
2018]

[22] Koppers, Tobias (probably). Webpack official documentation.
https://webpack.js.org/ [Online; accessed 4.4.2018]

[23] Koppers, Tobias (probably). Code Splitting, webpack official documenta-
tion.
https://webpack.js.org/guides/code-splitting/ [Online; accessed 4.4.2018]

[24] Google, Angular team. Lazy Loading Feature Modules.
https://angular.io/guide/lazy-loading-ngmodules [Online; accessed 4.4.2018]

[25] Cooter, Kaelan. Frontend in 2018: More consensus, less complexity.
https://blog.logrocket.com/what-im-looking-for-from-frontend-in-2018-
2f1de300b548 [Online; accessed 13.3.2018]

[26] Chartrand, Ryan. The Top JavaScript Trends to Watch in 2018.
https://x-team.com/blog/top-javascript-trends-2018/ [Online; written
27.12.2017]

[27] Codeburst, (company). JavaScript Trends in 2018.
https://codeburst.io/javascript-trends-in-2018-3fb0077259 [Online; written
1.3.2018]

[28] Morelli, Brandon. The 2018 Web Developer Roadmap.
https://codeburst.io/the-2018-web-developer-roadmap-826b1b806e8d [On-
line; published 22.1.2018]

88

[29] Cuelogic, (company). Top 3 Best JavaScript Frameworks in 2018.
http://www.cuelogic.com/blog/top-3-best-javascript-frameworks-in-2018/
[Online; published 1.3.2018]

[30] Ember team. EmberJS official documentation.
https://www.emberjs.com/ [Online; accessed 14.3.2018]

[31] Moshe, Dor. ES8 was Released and here are its Main New Features.
https://hackernoon.com/es8-was-released-and-here-are-its-main-new-
features-ee9c394adf66 [Online; published 10.7.2017]

[32] Delgado, Carlos (probably). Top 5 : Best free diagrams javascript li-
braries.
https://ourcodeworld.com/articles/read/159/top-5-best-free-diagrams-
javascript-libraries [Online; accessed 10.3.2018]

[33] OfficeJS (group). 10 Javascript Flowcharting Libraries (a draft).
https://www.erp5.com/officejs/javascript-10.Flow.Chart [Online; accessed
10.3.2018]

[34] Ed-Douibi, Hamza. 10 JavaScript libraries to draw your own diagrams.
https://modeling-languages.com/javascript-drawing-libraries-diagrams/
[Online; accessed 21.3.2018]

[35] Nexedi (company). Javascript Flowcharting Libraries.
https://www.nexedi.com/javascript-Flow.Chart [Online; 9.5.2017]

[36] Dascalescu, Dan. Graph visualization library in JavaScript.
https://stackoverflow.com/questions/7034/graph-visualization-library-in-
javascript [Online; 23.5.2017]

[37] Philipp, Johann. Dracula Graph Library official documentation.
https://www.graphdracula.net/ [Online; accessed 21.3.2018]

[38] zenluca (username at sourceforge.net). Js-graph-it a javascript library for
graph representation.
http://js-graph-it.sourceforge.net/index.html [Online; accessed 21.3.2018]

[39] MindFusion LLC. (company). JavaScript Diagram Library.
https://www.mindfusion.eu/javascript-diagram.html [Online; accessed
21.3.2018]

[40] Durman, David et. al. Rappid Diagramming Framework.
https://www.jointjs.com/ [Online; accessed 21.3.2018]

[41] Northwoods Software (company). GoJS - Interactive JavaScript Dia-
grams in HTML.
https://gojs.net/latest/index.html [Online; accessed 21.3.2018]

[42] JGraph Ltd. (company). mxGraph 3.9.3 - a diagram library.
https://jgraph.github.io/mxgraph/ [Online; accessed 10.3.2018]

89

[43] JGraph Ltd. (company). mxGraph API documentation.
https://jgraph.github.io/mxgraph/docs/js-api/files/index-txt.html [Online;
accessed 21.3.2018]

[44] Finger, Artur. mxgraph issue #116.
https://github.com/jgraph/mxgraph/pull/116 [Online; accessed 10.3.2018]

[45] jsPlumb Pty Ltd. (company). JsPlumb diagram library.
https://jsplumbtoolkit.com/ [Online; accessed 21.3.2018]

[46] Cytoscape Consortium (non-profit company). Cytoscape - Network
Data Integration, Analysis, and Visualization in a Box.
http://www.cytoscape.org/ [Online; accessed 21.3.2018]

[47] Durman, David et. al. JointJS - JavaScript diagramming library official
documentation and tutorial.
http://resources.jointjs.com/docs/jointjs/v2.0/joint.html [Online; accessed
10.3.2018]

[48] Durman, David et. al. A generated documentation for JointJs (more accu-
rate and complete than the official documentation).
http://definitelytyped.org/docs/jointjs–jointjs/modules/joint.html [Online;
accessed 10.3.2018]

[49] Almende B.V. (company). vis.js Network - a visualization to display net-
works consisting of nodes and edges.
http://visjs.org/docs/network/ [Online; accessed 21.3.2018]

[50] JGraph LTd. (company). Draw.io - a well known online graph editor tool.
https://www.draw.io/ [Online; accessed 22.3.2018]

[51] Pettitt, Chris. Dagre - directed graph layout for JavaScript.
https://github.com/dagrejs/dagre [Online; accessed 13.6.2018]

[52] Real-Time and Embedded Systems Group, Kiel University. ELK.js
library - Eclipse Layout Kernel.
https://github.com/OpenKieler/elkjs [Online; accessed 13.6.2018]

[53] Baranovskiy, Dmitry. Snap.svg - an SVG library.
http://snapsvg.io/ [Online; accessed 13.6.2018]

[54] Bruckner, Roman. JointJS performance tips.
http://jsfiddle.net/fjzvqhhk/287/ [Online; accessed 2.3.2018]

[55] Finger, Artur. Implementing customer-specific software versions in React.
https://github.com/fingerartur/react-cssv [Online]

[56] Finger, Artur. Angular - a good practical example of testing using all kinds
of tests (testing the tour of heroes).
https://github.com/fingerartur/angular-tour-of-heroes [Online]

[57] Nielsen, Jakob. Usability Engineering, 1993.
Excerpt: https://www.nngroup.com/articles/response-times-3-important-
limits/

90

[58] Schulz, Marius. TypeScript vs. Flow.
https://blog.mariusschulz.com/2017/01/13/typescript-vs-flow [Online; pub-
lished 13.1.2017]

[59] Clark, Paul. List of languages that compile to JS.
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-
compile-to-js [Online; accessed 13.7.2018]

[60] Meteor, team. Meteor Guide - User Interfaces.
https://guide.meteor.com/ui-ux.html [Online; accessed 16.7.2018]

[61] Facebook, Inc. React Without JSX.
https://reactjs.org/docs/react-without-jsx.html [Online; accessed 24.7.2018]

[62] Google, Inc. Dynamic Component Loader.
https://angular.io/guide/dynamic-component-loader [Online; accessed
24.7.2018]

[63] Koretskyi, Maxim. Avoiding common confusions with modules in Angular.
https://blog.angularindepth.com/avoiding-common-confusions-with-
modules-in-angular-ada070e6891f [Online; 9.8.2017]

[64] Voss, Laurie. The State of JavaScript Frameworks, 2017.
https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
[Online; 3.1.2018]

[65] Cypress.io, company. Cypress: How is this different from ‘X’ testing tool?.
https://docs.cypress.io/faq/questions/general-questions-faq.html [Online;
accessed 6.8.2018]

[66] Sauro Jeff. Measuring Usability with the System Usability Scale (SUS).
https://measuringu.com/sus/ [Online; 2.2.2011]

91

92

List of Figures
1 The original Rule Management Interface 4
2 The original Rule Management Interface 5
3 The original Rule Management Interface 6

2.1 Logical model of rules . 10
2.2 Example of a rule . 11
2.3 Logical model of variables, declarations and type definitions . . . 13
2.4 Example of type definitions . 13
2.5 Example of types . 15
2.6 Example of type conversions . 15
2.7 Logical model of an expression . 16
2.8 Example of an expression . 17

3.1 Functional requirements . 20
3.2 Architectural requirement: single application 24

4.1 High level architecture of the RMI prototype 28
4.2 Frameworks - recent activity . 31
4.3 Frameworks - activity during the last year 32
4.4 Architecture of UI Components in React, Angular and Ember . . 32
4.5 Angular API - Example UI Components 34
4.6 Angular API - Example Service and a Module 35
4.7 Angular API - Components, Modules and Services 35
4.8 Example of React Component Syntax 36
4.9 Visual representation . 38
4.10 Custom layout algorithm . 40
4.11 Rule rendering concept . 41
4.12 Speed of Snap.svg library . 44
4.13 Partial rendering for browsing of a rule 45
4.14 Speed of the layout algorithm . 46
4.15 Webpack bundling . 47
4.16 Dynamic component instantiation in React 49
4.17 An example of transpiled JSX . 50
4.18 Customizations class - the loading phase 51
4.19 Customizations class - the integration phase 51
4.20 A possible customization mechanism in Angular 54
4.21 The impact of a small change inside a large module in Angular . . 58
4.22 Cypress - development mode GUI 59

5.1 Client module . 61
5.2 Diagram module . 62
5.3 Steps of the rendering algorithm 64
5.4 Command invoker module . 64
5.5 Element enhancers . 65
5.6 Input of the Enhancer.renderSVG method 66
5.7 Output of the Enhancer.renderSVG method 67
5.8 GUI value input module . 67

93

5.9 GUI rule editor . 68
5.10 GUI expression module . 69
5.11 GUI value input module . 70
5.12 Rule module . 71
5.13 Iteration helper element . 73
5.14 Example of a sub-rule . 74
5.15 Types module . 75
5.16 Expression module . 76
5.17 Validation of a rule . 77

6.1 Rendering speed of a rule in the UI 80
6.2 Speed of exporting a rule as SVG 80
6.3 Customization example - user 1 82
6.4 Customization example - user 2 83

94

List of Abbreviations
1. AMD - Asynchronous Module Definition

2. API - Application Programming Interface

3. CLI - Command Line Interface

4. CSS - Cascading Style Sheets

5. CZK - Czech currency (koruna česká)

6. DI - Dependency Injection

7. DOM - Document Object Model

8. ERIAN - Electronic Risk Analysis (name of a software product)

9. ES8 - Ecmascript 8 (the latest version at the time of writing)31

10. GUI - Graphical User Interface

11. HTML - HyperText Markup Language 5

12. IDE - Integrated Development Environment

13. JS - JavaScript

14. JSX - JavaScript XML (an HTML-like syntax used for writing UI compo-
nents in React)

15. SPA - Single Page Application - a modern web application written in JS
that appears very fast because it uses only one page load (e.g. gmail.com).

16. SVG - Scalable Vector Graphics 1.1

17. TDD - Test-Driven Development

18. TS - TypeScript 2.7 (the latest version at the time of writing)

19. UI - User Interface

20. UMD - Universal Module Definition

95

96

Attachments
1. /code/readme-customize.md (Implementation of a customization mecha-

nism in React)

2. /customization angular (An example implementation of a customization
mechanism in Angular)

3. /code/src/ benchmark (Code for running benchmarks along with their de-
scription)

4. /code (All code of the RMI along with readme files)

5. /code/readme-testing.md (Advice about and APIs of testing tools)

6. /code/readme-i18n.md (API and demo of internationalization)

7. /code/sus test (Details and results of System Usability Scale test)

8. /code/readme-acceptance.md (Acceptance tests)

97

https://github.com/fingerartur/angular-cssv

98

	Introduction
	Goals
	Specification of Rules
	Elements
	Variables
	Types
	Expressions
	Literals
	Operations
	Variable Accesses
	Array Accesses

	Analysis of the Requirements
	Functional Requirements
	Quality Requirements

	Design
	Preliminaries
	Architecture
	Choice of Programming Language
	Choice of JS Framework
	Choosing between React, Angular, Vue, Ember and Knockout

	Rule Browsing, Rendering and Interaction
	Visual Representation
	Choice of the Underlying Technology
	Layout Solution
	Choice of a Diagram Library
	Optimizing Rendering for Speed

	Customization Mechanism
	Loading of Customizations
	Integration of Customizations into Existing Code
	The React Solution
	The Angular Solution (Suboptimal)

	Testing Tools
	Jest
	TS Testing with Jest
	UI Component Testing with Jest
	End-to-end testing

	Implementation
	Client Module
	Diagram Module
	The Rendering Algorithm
	Command Invoker Module

	Enhancers
	GUI Modules
	GUI Rule Editor Module
	GUI Expression Module
	GUI Value Input Module

	Rule Module
	Types Module
	Expression Module

	Validation

	Evaluation
	Performance of Rule Rendering
	Customization Mechanism
	Testability
	Usability
	Acceptance Tests

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments

