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Moreover we present an alternative proof which makes use of the CLT for U-
statistics of a Poisson facet process. In the second part we model planar segment
processes given by a density with respect to the Poisson process. Parametric
models involve reference distributions of directions and/or lengths of segments.
Statistical methods are presented which first estimate scalar parameters by known
approaches and then the reference distribution is estimated non-parametrically.
We also introduce the Takacs-Fiksel estimate and demonstrate the use of esti-
mators in a simulation study and also using data from actin fibres from stem
cells images. In the third part we study a stationary Gibbs particle process with
deterministically bounded particles on Euclidean space defined in terms of a fi-
nite range potential and an activity parameter. For small activity parameters,
we prove the CLT for certain statistics of this Gibbs particle process. To this end
an exponential decorrelation property is needed.
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Introduction
This work contains three main topics:

1. asymptotics of non-Poisson facet process functionals with increasing inten-
sity in Chapter 2,

2. applications and estimation of Poisson and non-Poisson models of segment
processes in Chapter 3,

3. asymptotics of particle process functionals with increasing window in Chap-
ter 4.

In Chapter 1 we start with defining general locally finite point process. As a
special case we introduce finite point process with density with respect to Poisson
point process (process with density). The key definition of a correlation function
of the point process is given and we continue with the definition and basic prop-
erties of functionals of the process. Moreover we introduce partitions in order
to express mixed moments of U-statistics. Then we define facet processes and a
specific form of the model for facet process with density. From subsection 1.4 we
focus on a particle processes, Gibbs particle process on Rd and we discuss their
basic properties, moreover we introduce a notion admissible Gibbs particle pro-
cess. Besides we define a special class of functionals of Gibbs particle processes
- admissible functions. Admissible Gibbs particle process and admissible func-
tion together form an admissible pair, which has important properties we later
explore.

In Chapter 2 we first discuss existing results for asymptotic properties of
functionals of Poisson facet processes and then introduce our results for processes
with density in Theorem 5. Our main result are the central limit theorem for a
functional of facet processes and evaluation of asymptotic moments, that hold for
processes with density with a special size and orientation distribution of facets.
The proof of the central limit theorem is based on the method of moments,
which utilizes moment formulas and calculation of limit values of the correlation
function. Furthermore we show an alternative proof of the Theorem 5. The results
are based on Večeřa and Beneš [2016], Večeřa [2016] and Večeřa and Beneš [2017].

In Chapter 3 we start with introducing two models of the segment process
(the facet process in R2) with density. Moreover we introduce the Takacs-Fiksel
methodology for parametric estimates and semiparametric estimates, which com-
bine the Takacs-Fiksel parametric estimates with kernel density estimates. We
discuss performance of parametric estimates for both models and of semipara-
metric estimates for the first model. Finally we show an application on some
real biological data. We use processed images of actin stress fibres in stem cell
samples and assume that the fibres are driven by the second model, we estimate
model parameters and validate the selected model. These results are based on
Beneš et al. [2017] and Beneš et al. [2019].

In Chapter 4 we first introduce percolation of a particle process, i.e. exis-
tence of infinite connected component. We show that, if the process does not
percolate almost surely, then it is admissible (under some other technical con-
ditions). Secondly we define an admissible pair as an admissible Gibbs particle
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process and a score function derived from a U-statistics. We present asymptotic
results for admissible pairs, namely the mean value and variance asymptotics in
Theorem 15 and the CLT in Theorem 16. The final part contains some proofs,
among them of an auxiliary result (Theorem 19) telling that in an admissible pair
the weighted mixed moments approximately factorize. The techniques are based
on Blaszczyszyn et al. [2019], they are modified from point processes in Rd to
our setting for particle processes. The whole Chapter 4 is based on Beneš et al.
[2019+] and only the results where we were employed in the proofs are presented
in detail. The assertions with proofs done by foreign co-authors are presented
without proofs.
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1. Theoretical background

1.1 Point processes
Let (Ω,A,P) be a probability space. Let B be a locally compact Polish space,
i.e. separable completely metrizable topological space with a reference measure Θ
and Y be a measurable space of integer-valued locally finite measures on B, Y is
the smallest σ-algebra which makes the mappings x ↦→ x(C), x ∈ Y, measurable
for all Borel sets C ∈ B(B).

Definition 1. Let x ∈ B and let δx be a measure on B, such that

δx(C) = 1[x ∈ C] , C ∈ B(B) , (1.1)

then δx is Dirac measure centered in x.

Definition 2. For k and x ∈ Y we define k-th factorial measure of x

x(k)(C1 × · · · ×Ck) =
∫

C1×···×Ck

1 [yi1 ̸= yi2 , 1 ≤ i1 < i2 ≤ k] xk(d(y1, . . . , yk)) ,

C1, . . . , Ck ⊆ B .

Definition 3. Let Ξ be a random variable with values in (Y,Y), then it is called
a point process.

Definition 4. The intensity measure Λ of a point process Ξ is the measure

Λ(C) := E[Ξ(C)] , C ∈ B(B) .

For k ∈ N and point process Ξ we define k-th factorial moment measure of Ξ

κ(k)(C1 × · · · ×Ck) = EΞ(k)(C1 × · · · ×Ck) , C1, . . . , Ck ⊆ B .

Definition 5. Let Λ be a non-atomic measure on B, such that Λ(B) > 0, and
let η be a point process, such that

(i) P(η(C) = n) = Λ(C)n

n! e−Λ(C) , C ∈ B(B) , Λ(C) <∞ , n ∈ N ∪ {0} ,

(ii) η(C1) , η(C2) are independent, whenever C1, C2 ∈ B(B) , C1 ∩C2 = ∅ ,

then η is a Poisson point process on B with intensity measure Λ and probability
distribution

Pη(A) := P(η−1(A)) , A ∈ Y .

See Last and Penrose [2017] for fundamental properties of general Poisson
processes.

Definition 6. Let Ψ : B×Y ↦→ [0,∞) be a measurable function. A point process
µ is called a Gibbs point process with (Papangelou) conditional intensity Ψ, if

E
[∫

f(y, µ− δy)µ(dy)
]

= E
[∫

f(y, µ)Ψ(y, µ)Θ(dy)
]

(1.2)

holds for all measurable f : B×Y→ [0,∞), where δy is the Dirac measure located
at y.
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Condition for the existence of Gibbs point process can be found in [Ruelle,
1970] and for uniqueness of the Gibbs point process in [Hofer-Temmel and Houde-
bert].

Definition 7. For k ∈ N, k ≥ 2, define the measurable function Ψk : Bk ×Y→
[0,∞) by

Ψk(y1, . . . , yk, x) := Ψ(y1, x)Ψ(y2, x + δy1) · · ·Ψ(yk, x + δy1 + · · ·+ δyk−1) . (1.3)

This function is called the (Papangelou) conditional intensity of k-th order.

Definition 8. For n ∈ N and y1, . . . , yn ∈ B distinct, we define the n-th order
correlation function of the Gibbs point process µ

ρn(y1, . . . , yn; µ) := EΨn(y1, . . . , yn; µ) .

Remark 1. Integer-valued measures can be represented by systems of points cor-
responding to their support, i.e. for x ∈ Y there exist {xi}i∈I , I ⊆ N, such that
x = ∑

i∈I δxi
.

Remark 2. If Ψ ≡ α in (1.2), then µ is Poisson point process with intensity
measure Λ = αΘ. It follows from Slivnyak-Mecke formula (1.2).
Remark 3. Equation (1.2) can be iterated so as to yield

E
[∫

f(y1, . . . , yk, µ− δy1 − · · · − δyk
)µ(k)(d(y1, . . . , yk))

]
= E

[∫
f(y1, . . . , yk, µ)Ψk(y1, . . . , yk, µ)Θk(d(y1, . . . , yk))

]
, (1.4)

for each measurable f : (C(d))k ×Y→ [0,∞).
Remark 4. Ψn and ρn are symmetric functions w.r.t. to the permutations of their
first n variables.
Remark 5. Let B be bounded, then Y are integer-valued finite measures on B, let
η be a Poisson point process on B with intensity measure Θ and g : Y ↦→ [0,∞)
be a measurable function satisfying∫

Y
g(x)dPη(x) = 1 .

Let µ be a finite point process on B with distribution defined by

P(µ−1(A)) =
∫

A
g(x)dPη(x) , A ∈ Y , (1.5)

then µ is a (finite volume) Gibbs point process and g is its density w.r.t. η. If g
satisfies

g(x1) > 0⇒ g(x2) > 0
for all x1, x2 : x2(C) ≤ x1(C) ,∀C ⊆ B, then we call it hereditary.

The consequence of (1.5) is a formula

EF (µ) = E[F (η)g(η)] .

In this case holds

Ψk(y1, . . . , yk, x) =

⎧⎨⎩
g(x+δy1 +...+δyk

)
g(x) , g(x) > 0 ,

0 , g(x) = 0 .
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1.2 Functionals
In this section we denote F a measurable map F : Y ↦→ R, η a Poisson process
with intensity measure Λ and µ is a Gibbs point process. We use symbol [n] :=
{1, . . . , n}, n ∈ N and [0] = ∅.

Definition 9. For n ∈ N, y1, . . . , yn ∈ B, we define the difference operator of the
n-th order

Dn
y1,...,yn

F (x) :=

⎧⎪⎪⎨⎪⎪⎩
D1

y1Dn−1
y2,...,yn

F (x) , n ∈ {2, . . . } ,

F (x + δy1)− F (x) , n = 1 ,

F (x) , n = 0 .

Definition 10. For n ∈ N, y1, . . . , yn ∈ B, point process Ξ, we define functions

T Ξ
n F (y1, . . . , yn) := EDn

y1,...,yn
F (Ξ) .

Theorem 1. [Last and Penrose, 2011, Theorem 1.1] For functionals F1, F2 :
Y ↦→ R, F1, F2 ∈ L2(Pη), it holds

E[F1(η)F2(η)] = EF1(η)EF2(η) +
∞∑

n=1

1
n!⟨T

η
n F1(·), T η

n F2(·)⟩ ,

where ⟨·, ·⟩ is the scalar product in L2(Λn).

Definition 11 (U -statistic). A U-statistic of an order k ∈ N of a point process
Ξ is a functional defined by

F (Ξ) :=
∫

f(y1, . . . , yk)Ξ(k)(d(y1, . . . , yk)) ,

where f : Bk ↦→ R is a function symmetric w.r.t. to the permutations of its
variables, f ∈ L1(Λk) and Ξ(k) is k-th factorial measure of Ξ. We say that F is
driven by f .

Definition 12. Let ∏̃M̂ be the set of all partitions {Ji} of [M̂ ], where ⋃ Ji = [M̂ ]
and Ji ∩ Jj = ∅, i ̸= j. For M̂ = k1 + · · ·+ km and blocks

Ji :=

⎧⎨⎩
i−1∑
j=1

kj + 1, . . . ,
i∑

j=1
kj

⎫⎬⎭ , i ∈ [m] ,

consider the partition
πk1,...,km := {Ji | i ∈ [m]}

and let Πk1,...,km ⊆
∏̃

M̂ be the set of all partitions σ ∈ ∏̃M̂ such that |J ∩ J ′| ∈
{0, 1} for all J ∈ πk1,...,km and all J ′ ∈ σ. Here |J | is the cardinality of a block
J ∈ σ. We will be referring to blocks of πk1,...,km as to rows and let

S(σ) := |{J ∈ πk1,...,km | ∀J ′ ∈ σ, |J ∩ J ′| = 1⇒ |J ′| = 1}|

be the number of singleton rows.
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Figure 1.1: Example of partition π5,4,2,3,3 ∈
∏̃

17 (upper frame) and σ ∈ ∏5,4,2,3,3
(lower frame).
π5,4,2,3,3 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11}, {12, 13, 14}, {15, 16, 17}}
σ = {{1, 6, 10}, {2}, {3, 7}, {4, 9}, {5, 14}, {8, 11, 13, 17}, {12, 15}, {16}}

For a partition σ ∈ Πk1,...,km and measurable functions fi : Bki ↦→ R, i ∈ [m],
we define the function (⊗m

i=1fi)σ : B|σ| ↦→ R by replacing all variables of the tensor
product ⊗m

i=1fi that belong to the same block of σ by a new common variable

(⊗m
i=1fi)σ(y1, . . . , y|σ|) =

m∏
i=1

fi

(
{yj | |J ′

j ∩ Ji| ≥ 1, J ′
j ∈ σ, Ji ∈ πk1,...,km}

)
,

where |σ| is the number of blocks in σ. We define Πm1,...,ms
1,...,s := Π1,...,1,...,s,...,s, where

i repeats mi times for i ∈ [s]. Finally we set
(

i1
i2

)
= 0 for i2 > i1.

Remark 6. Using the Slivnyak-Mecke Theorem [Schneider and Weil, 2008] for
U -statistic F (η)

EF (η) =
∫

Bk
f(y1, . . . , yk)Λk(d(y1, . . . , yk)) .

Moreover for a U -statistic F (µ) ∈ L2(Pη) of order k it holds

EF (µ) =
∫

Bk
f(y1, . . . , yk)ρk(y1, . . . , yk; µ)Λk(d(y1, . . . , yk)) . (1.6)

In integrals of type similar to (1.6) ρ is defined only for distinct arguments yj,
i.e. only Λk-almost everywhere.

In the rest of this section we assume, that B is bounded and µ is a Gibbs
point process with density g with w.r.t. η

Theorem 2. [Baddeley, 2006] It holds

E[F (η)] = e−Λ(B)
∞∑

n=0

1
n!

∫
B
· · ·

∫
B

F (y1, . . . , yn)Λn(d(y1, . . . , yn)) , (1.7)

where we write Λn(d(y1, . . . , yn)) instead of Λ(dy1) · · ·Λ(dyn).
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Theorem 3. [Beneš and Zikmundová, 2014] Let m ∈ N, ∏m
i=1 Fi ∈ L2(Pη),

g ∈ L2(Pη), where Fi are U-statistics of orders ki driven by non-negative functions
fi, respectively, i ∈ [m]. Then

E
[

m∏
i=1

Fi(µ)
]

=
∑

σ∈Πk1,...,km

∫
B|σ|

(⊗m
i=1fi)σ(y1, . . . , y|σ|)

× ρ|σ|(y1, . . . , y|σ|; µ)Λ|σ|(d(y1, . . . , y|σ|)) . (1.8)

Remark 7. For density g ∈ L2(Pη), n ∈ N, it holds

T η
n g(y1, . . . , yn) =

∑
J⊆[n]

(−1)n−|J |ρ|J |({yi | i ∈ J}; µ) ,

for Λn-almost all (y1, . . . , yn), where |J | is the cardinality of J .

1.3 Facet processes
Let d ∈ N, Bd be Borel σ-field of Rd, λd be the d-dimensional Lebesgue measure,
D ⊂ Rd be measurable, λd(D) ∈ (0,∞), υ ∈ (0,∞), Sd−1 be the hemisphere of
axial orientations in Rd.

Definition 13. Let us define a mapping ι : D × (0, υ]× Sd−1 ↦→ Bd:

ι((z, r, φ)) := {x ∈ Rd | ⟨φ, x− z⟩ = 0 , ∥x− z∥∞ ∈ [0, r]} , (1.9)

then B̃ := ι((D × (0, υ] × Sd−1)) is a space of facets, y ∈ B̃ is a facet, ∥ · ∥∞ is
supremum norm. For ι(z, r, φ) ∈ B̃, r is a facet size, z is a facet center, φ is
a normal vector to the hyperplane containing a facet. Further in this section we
specially denote

B := D × (0, υ]× Sd−1 (1.10)
a space of facet parameters.

We denote (Y,Y) the measurable space of integer-valued finite measures on
B and the corresponding σ-algebra.

Remark 8. B is isomorphic with B̃, where ι is the isomorphism.
When considering facets we assume, that the reference measure Θ has the

following form

Θ(d(z, r, φ)) := Θα(d(z, r, φ)) = αχ(z)dzQ(dr)V (dφ) , (1.11)

where α ∈ [1,∞), χ is a intensity measure of facet centres on D, Q is a size
distribution, a probability measure on (0, υ], V is an orientation distribution, a
probability measure on Sd−1.

Definition 14. Let Ξ be a random variable with values in (Y,Y), then it is called
a facet process.

Definition 15. The Poisson facet process ηα : (Ω,A,P) ↦→ (Y,Y) on B has an
intensity measure Λα

Λα(d(z, r, φ)) := Θα(d(z, r, φ)) = αχ(z)dzQ(dr)V (dφ) , (1.12)

where α, χ, Q, V are taken from (1.11).
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Definition 16. Let k ∈ [d], then

Hk(K)

= lim
t→0

inf
S⊂Bd

S countable

{∑
L∈S

(diam L)k |
⋃

L∈S
L ⊇ K; diam L < t, L ∈ S

}
, K ∈ Bd ,

(1.13)

is Hausdorff measure of order k, where

diam L = sup
x1,x2∈L

∥x1 − x2∥2 , L ̸= ∅ ,

= 0 , L = ∅ ,

and ∥ · ∥2 is Euclidean norm.

Definition 17. Let k ∈ [d] and Ξ be a facet process, then

Gk(Ξ) := 1
k!

∫
Bk

Hd−k
(
∩k

i=1ι(yi)
)

Ξ(k)(d(y1, . . . , yk)) , (1.14)

is the facet interaction U-statistic of k-th order.

Definition 18. Let ν := (ν1, . . . , νd) ∈ Rd, G := (G1, . . . , Gd) : Yd ↦→ R and

g(x) := c exp(⟨ν, G(x)⟩) , (1.15)

then µα is defined by density g with respect to ηα. We call µα facet process with
density.

We assume νk ∈ (−∞, 0], k ∈ {2, . . . , d}.
Remark 9. Let A ⊆ Y be such that

A := {x = {(z1, r1, φ1), . . . , (zn, rn, φn)} | (zi ̸= zj)∨(φi ̸= φj) , 1 ≤ i < j ≤ n} ,

then P(ηα ∈ A) = 1 and P(µα ∈ A) = 1, α ≥ 1 and for x ∈ A it holds

Gk(x) ≤ const.x(B)kυd−k ,

which together with the assumption νk ∈ (−∞, 0], k ∈ {2, . . . , d} proves using
(1.7) that

g ∈ L1(Pηα) ∩ L2(Pηα) .

Remark 10. If νk = 0, k ∈ {2, . . . , d}, then µα is Poisson facet process.
Example. Specially for d = 3 the facet process may serve as a model for platelike
particles in materials microstructure of metals. Here G1 yields the total area of
all plates, G2 is the total length of intersection segments of pairs of particles, G3 is
the total number of intersections of triplets of particles. The size of the negative
parameter ν2 or ν3 gives the measure of neglection of intersections (repulsion) of
the corresponding type.

Definition 19. Let q ∈ {1, . . . , d} and define µ(q)
α as facet process with density in

form (1.15) with νq′ = 0, ∀q′ ̸= q, then we say, that µ(q)
α is submodel of order q.
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1.4 Particle processes
Let (Ω,A,P) be a probability space and let Rd be the Euclidean d-dimensional
space with Borel σ-algebra Bd and let Bd

b denote the system of bounded Borel
sets.

Definition 20. We define Cd the space of compact subsets (particles) of Rd and
C(d) := Cd \ {∅}, which is equipped with a metric ∆H

∆H(K, L) = max
{

sup
x1∈K

inf
x2∈L
∥x1 − x2∥2, sup

x2∈L
inf

x1∈K
∥x1 − x2∥2

}

which is called the Hausdorff metric [Last and Penrose, 2017, Schneider and Weil,
2008] and with Borel σ-algebra B(C(d)) and we remind that ∥ · ∥2 is Euclidean
norm.

Moreover for non-empty sets R,S ∈ B(C(d)) define

∆(R,S) := inf
K∈R,L∈S

∆H(K, L) . (1.16)

and let ζ(K) ∈ Rd denote the centre of the circumscribed ball of K ∈ C(d), defined
as

ζ(K) := arg min
x∈Rd
{t | ∥x− x̃∥2 ≤ t, x̃ ∈ K} .

Finally define a reference measure on C(d):

Θ(·) :=
∫∫

1[K + x ∈ ·]Q(dK)dx , (1.17)

where Q is a fixed probability measure on C(d).

Remark 11. To avoid confusion our notation ∆(R,S) does not reflect the under-
lying metric ∆H .
Remark 12. Note that ζ(K + x) = ζ(K) + x for all (K, x) ∈ C(d) × Rd.

Definition 21. We define Y the space of all measures x on C(d) with values in
N ∪ {0,∞} such that x(B(K, t)) <∞ for each K ∈ C(d) and each t ≥ 0, where

B(K, t) := {L ∈ C(d) | ∆H(K, L) ≤ t}

is the C(d)-ball with radius t centered at K.
We equip this space with the smallest σ-algebra Y such that the mappings

x ↦→ x(R) are measurable for each R ∈ B(C(d)).

Remark 13. We use the same symbol (Y,Y) for the space of Particle process
realizations in this chapter as well as the space of Facet Process realizations in
the previous chapter.

Definition 22. A particle process Ξ on Rd is a random variable with values in
(Y,Y).

Such a particle process is said to be stationary if TxΞ D= Ξ, for each x ∈ Rd,
where for each measure x on C(d) we set

Txx :=
∫

1[K + x ∈ ·]x(dK) , K + x := {x′ + x | x′ ∈ K} .
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Definition 23. We say that a particle process Ξ is simple if

Ξ(ζ−1(x)) ∈ {0, 1} ,∀x ∈ Rd a.s. .

In the following we consider only simple stationary particle processes. We also
assume that P(Ξ(C(d)) ̸= 0) = 1.

Definition 24. The intensity α of a stationary particle process Ξ is defined by

α := E
[∫

1[ζ(K) ∈ [0, 1]d]Ξ(dK)
]

,

where [0, 1]d is d-dimensional unit cube. The intensity measure of a particle pro-
cess E [Ξ] of Ξ is the measure Λ(R) := E [Ξ(R)], R ∈ B(C(d)).

Remark 14. Theorem 4.1.1 in Schneider and Weil [2008] implies that there exists
a probability measure Q on C(d) along with a number α > 0 such that

Λ(·) = α
∫∫

1[K + x ∈ ·]Q(dK)dx , (1.18)

where dx refers to integration w.r.t. the Lebesgue measure λd on Rd, Q is called
the particle distribution of Ξ and α is the same as in Definition 24.

Definition 25. We define a Poisson particle process ηαΘ as a Poisson point
process (Def. 5) on C(d) with intensity measure αΘ, where α > 0.

Remark 15. Under some integrability assumptions on Q, the Poisson process ηαΘ
exists as a stationary particle process; see e.g. [Schneider and Weil, 2008][Theo-
rem 4.1.2.].

It is no restriction of generality to assume that

Q(Cd
0) = 1 , (1.19)

where Cd
0 := {K ∈ C(d) | ζ(K) = 0} and 0 denotes the origin in Rd. However, we

make a crucial assumption that there exists υ > 0 such that

Q({K ∈ C(d) | K ⊆ B(0, υ)}) = 1 , (1.20)

where B(x, υ) is the closed Euclidean ball with radius υ centered at x ∈ Rd. This
puts deterministic bound on the particle size.
Remark 16. We remind, that for m ∈ N and x ∈ Y, the m-th factorial measure
x(m) of x is the measure on (C(d))m defined by

x(m)(·) :=
∫

1[(K1, . . . , Km) ∈ ·]1[Ki ̸= Kj for i ̸= j]xm(d(K1, . . . , Km)) .

The m-th factorial moment measure κ(m) of a simple particle process Ξ is defined
by κ(m) := E[Ξ(m)].
Remark 17. For us this is only of relevance if x({K}) ≤ 1, for each K ∈ C(d)

(simple particle process). In this case, x(m) coincides with the standard definition
of the factorial measure; see [Last and Penrose, 2017].

Definition 26. Given R ∈ B(C(d)) define YR := {x ∈ Y | x(Rc) = 0} and
let YR denote the σ-algebra on this set of measures. Given x ∈ Y, L ∈ Bd

and R ∈ B(C(d)), denote by xL and xR the restrictions of x to ζ−1(L) and R,
respectively. Finally, we set Bb(C(d)) := {ζ−1(L) | L ∈ Bd

b}.
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1.5 Gibbs particle processes
In this section we present a few fundamental facts on Gibbs particle process in a
general setting.
Remark 18. We remind that for Ψ : C(d) × Y ↦→ [0,∞) measurable function, a
particle process µ is called a Gibbs particle process with (Papangelou) conditional
intensity Ψ, if

E
[∫

f(K, µ− δK)µ(dK)
]

= E
[∫

f(K, µ)Ψ(K, µ)Θ(dK)
]

(1.21)

holds for all measurable f : C(d) × Y → [0,∞), where δK is the Dirac measure
located at K and Θ is given by (1.17).

The existence of some Gibbs particle processes can be investigated using the
method in [Dereudre et al., 2012].
Remark 19. We remind that the k-th correlation function of a Gibbs particle
process µ with Papangelou conditional intensity Ψ is the function ρk : (C(d))k →
[0,∞) defined by

ρk(K1, . . . , Kk; µ) := E [Ψk(K1, . . . , Kk, µ)] , (1.22)

where Ψk is defined in (1.3).
Remark 20. Putting

F (K1, . . . , Kk, x) = 1[K1 ∈ R1, . . . , Kk ∈ Rk] , R1, . . . ,Rk ∈ B(C(d)) ,

in (1.4), we obtain that the k-th factorial moment measure of µ is given by

κ(k)(·) =
∫

1[(K1, . . . , Kk) ∈ ·]ρk(K1, . . . , Kk; µ)Θk(d(K1, . . . , Kk)) , (1.23)

justifying our terminology.

Definition 27. We define a measurable function (Hamiltonian) H : Y ×Y ↦→
(−∞,∞] by

H(x, Υ) :=

⎧⎪⎪⎨⎪⎪⎩
0, if x(C(d)) = 0,

− log Ψk(K1, . . . , Kk, Υ), if x = δK1 + · · ·+ δKk
for K1, . . . , Kk ∈ C(d),

∞, if x(C(d)) =∞.

Remark 21. This definition makes sense, since Ψk can be chosen to be symmetric
in the first k arguments; see Matthes et al. [1979].
Remark 22. For R ∈ B(C(d)), denote by ηR,τΘ = (ητΘ)R the restriction of the
Poisson process ητΘ to R. Define

cR(Υ) := E
[
e−H(ηR,τΘ,Υ)

]
, Υ ∈ Y ,

as the partition function of µ on R. The following DLR-equations (Dobrushin-
Lanford-Ruelle equations, see Matthes et al. [1979], Ruelle [1970], Kallenberg
[2017]) hold:

E[f(µR) | µRc = Υ] = cR(Υ)−1E
[
f(ηR,τΘ)e−H(ηR,τΘ,Υ)

]
, R ∈ Bb(C(d)) , (1.24)

for P(µRc ∈ ·)-a.s. Υ ∈ YRc and each measurable f : Y→ [0,∞).

13



Definition 28. The k-th Palm measure PK1,...,Kk
, K1, . . . , Kk ∈ C(d), k ∈ N, of

a particle process Ξ is a probability measure on Y satisfying

E
[∫

(C(d))k
F (K1, . . . , Kk, Ξ)Ξ(k)(d(K1, . . . , Kk))

]

=
∫

(C(d))k

∫
Y

F (K1, . . . , Kk, x)PK1,...,Kk
(dx)κ(k)(d(K1, . . . , Kk)) , (1.25)

for each non-negative measurable function F on (C(d))k ×Y.

Palm distributions are well-defined whenever the k-th factorial moment mea-
sure κ(k) of Ξ is σ-finite. They can be chosen such that (K1, . . . , Kk) ↦→ PK1,...,Kk

(R)
is a measurable function on (C(d))p, for each R ∈ Y . The reduced Palm distribu-
tion P!

K1,...,Kk
of Ξ is defined by means of equality∫

Y
F (K1, . . . , Kk, x)P!

K1,...,Kk
(dx)

=
∫

Y
F (K1, . . . , Kk, x− δK1 − . . .− δKk

)PK1,...,Kk
(dx) ,

valid for every non-negative measurable function F on (Cd)k ×Y. We abuse our
notation by writing, for each measurable F : Y ↦→ R,

EK1,...,Kk
[F (Ξ)] :=

∫
F (x)PK1,...,Kk

(dx) ,

E!
K1,...,Kk

[F (Ξ)] :=
∫

F (x)P!
K1,...,Kk

(dx) .

1.6 Admissible Gibbs particle processes
Definition 29. A family G := {Gl}∞

l=2 of higher-order interaction potentials con-
sists of measurable, symmetric and translation-invariant functions Gl : (Cd)l ↦→
(−∞,∞]. The potentials have finite interaction range υG, if Gl(K1, . . . , Kl) = 0,
for every l ≥ 2 and all K1, . . . , Kl ∈ Cd with max1≤i<j≤l ∆H(Ki, Kj) > υG.

Define the Papangelou intensity Ψ : Cd ×Y ↦→ [0,∞) by the measurable and
translation-invariant mapping with Ψ(K, x) := 0, if x(K) > 0, and otherwise

Ψ(K, x) := τ exp
[
−

∞∑
l=2

1
(l − 1)!

∫
Gl(K, L1, . . . , Ll−1)x(l−1)(d(L1, . . . , Ll−1))

]
,

(1.26)
where τ ∈ (0,∞) is called an activity parameter and we assume that the part sum
in the exponent of (1.26) over the negative parts of the potentials is finite a.e..

We assume that Ψ ≤ τ . While the individual potentials might be attractive
(i.e. negative), their cumulative effect must be repulsive (i.e., non-negative).
Remark 23. For all x, Υ ∈ Y with disjoint support, the Hamiltonian H takes the
form

H(x, Υ) :=
∞∑

l=2

l∑
i=1

1
i!(l − i)!

∫∫
Gl(K1, . . . , Ki, L1, . . . , Ll−i)

× x(i)(d(K1, . . . , Ki))Υ(l−i)(d(K1, . . . , Kl−i)) .
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The assumption Ψ ≤ τ implies that H ≥ 0. If assumptions (1.19) and (1.20)
hold, then (1.24) shows that the Gibbs process µ has bounded particles, that is∫

1[K ̸⊆ B(ζ(K), υ)]µ(dK) = 0,P−a.s..

Definition 30. Assume that G is a family of higher-order potentials with finite
interaction range. Define Ψ by (1.26) and assume that Ψ ≤ τ . Assume also that
Q is a probability measure on C(d) satisfying (1.19) and (1.20). Let τ > 0 be
given. Assume that µ is a Gibbs particle process as in Definition 6, where Θ is
defined by (1.17). Then, we call µ an admissible Gibbs process.

For an admissible Gibbs particle process it follows from (1.26), (1.3) and (1.4)

ρk(K1, . . . , Kk; µ) ≤ τ k , K1, . . . , Kk ∈ C(d) . (1.27)
The classic setup of a repulsive intersection-based pair potential arises from a
measurable translation invariant function F : Cd ↦→ [0,∞] with F (∅) = 0 and
setting G2(K, L) := F (K ∩ L) and Gl := 0, for l ≥ 3. Assumption (1.20) implies
an interaction range of at most 2υ.

1.7 Admissible functions
A function f : (C(d))k → R is called symmetric if

f(K1, . . . , Kk) = f(Kπ(1), . . . , Kπ(k)) ,

for all K1, . . . , Kk ∈ C(d) and every permutation π of k elements. It is translation
invariant, if

f(K1, . . . , Kk) = f(TxK1, . . . , TxKk) ,

for all K1, . . . , Kk ∈ C(d) and x ∈ Rd. Given a measurable symmetric and trans-
lation invariant function f we can define

Ff (x) := 1
k!

∫
f(K1, . . . , Kk) x(k)(d(K1, . . . , Kk)) , x ∈ Y ,

(1.28)

T(K, x) := 1
k!

∫
f(K, K2, . . . , Kk)x(k−1)(d(K2, . . . , Kk)) , (K, x) ∈ C(d) ×Y ,

(1.29)
where the case k = 1 has to be read as T(K) := f(K). Then

Ff (x) :=
∫
T(K, x)x(dK) , x ∈ Y . (1.30)

The authors of [Blaszczyszyn et al., 2019] call T a score function.
Definition 31. Let k ∈ N and let f : (C(d))k → R be measurable, symmetric
and translation invariant. Then Ff is called an admissible function of order k if
f(K1, . . . , Kk) = 0, whenever either

max
2≤j≤k

∆H(Kj, K1) > r , (1.31)

for some given r > 0, or when Kj = K1, for some j ∈ {2, . . . , k}. Moreover, we
assume that

∥f∥∞ := sup
K1,...,Kk∈C(d)

|f(K1, . . . , Kk)| <∞ . (1.32)
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2. Asymptotics of facet processes
In this chapter we use definitions introduced in Chapter 1.1 and further specify
them. We base this chapter on results developed in Večeřa and Beneš [2016],
Večeřa [2016] and Večeřa and Beneš [2017].

In Večeřa and Beneš [2016] we introduced methods to calculate first and sec-
ond moment of Gibbsian U-statistics of facets in a bounded window of arbitrary
Euclidean dimension. This approach was generalized to an arbitrary moment in
Večeřa [2016] and used to derive the central limit theorem for such statistics. In
Večeřa and Beneš [2017] we have shown a simplified version of the proof of central
limit theorem.

Central limit theorems for U-statistics of Poisson processes were derived based
on the Malliavin calculus and the Stein method in Reitzner and Schulte [2013].
The aims to extend developments of this type to functionals of a wider class of
spatial processes, e.g. Gibbs processes, were initiated by Schreiber and Yukich
[2013].

Our calculations are based on the achievements in Beneš and Zikmundová
[2014], where functionals of spatial point processes given by a density with re-
spect to the Poisson process were investigated using the Fock space representation
from Last and Penrose [2011]. This formula is applied to the product of a func-
tional and the density and using functionals called U-statistics closed formulas
for mixed moments of functionals are obtained. In processes with densities the
key characteristic is the correlation function [Georgii and Yoo, 2005] of arbitrary
order.

We call facets some compact subsets of hyperplanes with a given shape, size
and orientation, cf. Def. 13. Natural geometrical characteristics of the union of
the facets, based on Hausdorff measure of the intersections of pairs, triplets, etc.,
of facets form U-statistics. Building a parametric density from the exponential
family, the limitations for the space of parameters have to be given, so called
submodels are investigated. In applications of the moment formulas we are in-
terested in the limit behaviour as the intensity of the reference Poisson process
tends to infinity.

In this chapter we restrict ourselves to the facet model with finitely many
orientations corresponding to canonical vectors. When the order of the submodel
is not greater than the order of the observed U-statistic then asymptotically the
mean value of the U-statistic vanishes. This leads to a degeneracy in the sense
that some orientations are missing. On the other hand when the order of the
submodel is greater than the order of the observed U-statistic, then the limit of
correlation function is finite and nonzero and under selected standardization we
achieve a finite nonzero asymptotic variance. Even if these results are obtained
in a special situation with facets of a fixed shape, restricted orientations and size
related to the window size, it is important that they allow us to understand the
ongoing problems for a possible further investigation of the model.

2.1 The Poisson case
Theorem 4. [Last et al., 2014] For m ∈ N and i ∈ [m] let fi ∈ L1(Λki

1 ) be
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symmetric functions. Consider the following U-statistics

Fi(ηα) :=
∫

Bki

fi(y1, . . . , yki
)η(ki)

α (y1, . . . , yki
) ,

normalized to
F̃i(ηα) := α−(ki− 1

2 )(Fi(ηα)− EFi(ηα)) .

Then

(F̃1(ηα), . . . , F̃m(ηα)) D−−−→
α→∞

Z , (2.1)

where Z ∼ N(0, Σ), Σ := {σij}m
i,j=1,

σij := lim
α→∞

Cov(F̂i(ηα), F̂j(ηα)) =
∫

B
T ηα

1 Fi(y)T ηα
1 Fj(y)Λ(dy) , i, j ∈ [m] . (2.2)

The convergence under the distance between m-dimensional random vectors
U, Z

d3(U, Z) := sup
h∈H
|Eh(U)− Eh(Z)| ,

where H is the system of functions h ∈ C3(B) with

max
1≤i1≤i2≤m

sup
y∈B

⏐⏐⏐⏐⏐ ∂2h(y)
∂yi1∂yi2

⏐⏐⏐⏐⏐ ∈ [0, 1], max
1≤i1≤i2≤i3≤m

sup
y∈B

⏐⏐⏐⏐⏐ ∂3h(y)
∂yi1∂yi2∂yi3

⏐⏐⏐⏐⏐ ∈ [0, 1] ,

implies convergence in distribution. Based on the multi-dimensional Malliavin-
Stein inequality for the distance d3 of a random vector from a centered Gaussian
random vector Z with covariance matrix Σ := (σij)i,j=1,...,m, Last et al. [2014]
show that under the assumption∫

B
|T ηα

1 Fi(y)|3Λ(dy) <∞ , i ∈ [m] , (2.3)

there exists a constant such that

d3((F̃1(ηα), . . . , F̃m(ηα)), Z) ≤ const.α− 1
2 , α ∈ [1,∞) . (2.4)

Example. For the Poisson facet processes ηα, α ∈ [1,∞) on B (1.10) with intensity
measure Λα (1.12) and the U -statistics Gk(ηα), k ∈ [d], in (1.14) we obtain that

T ηα
1 Gk(x) = αk−1

(k − 1)!

∫
B
· · ·

∫
B
Hd−k

(
∩k−1

i=1 ι(yi) ∩ ι(x)
)

Λk−1(d(y1, . . . , yk−1)) .

(2.5)
The finiteness of the intensity measure Λ in (1.12) and the boundedness of the
facets guarantee that integrals in (2.2) and (2.3) are finite. Thus for the random
vector (G1(ηα), . . . , Gd(ηα)) both the CLT when α → ∞ and the Berry-Esseen
type inequality (2.4) hold.
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2.2 The non-Poisson case
Let

B := [0, υ]d × {2υ} × {e1, . . . , ed} ,

B̃ := ι−1(B)

be a constrained space of facet parameters and space of facets with fixed size 2υ
and centres in a cube [0, υ]d (facets are d−1 dimensional cubes), where ei is the i-
th vector of standard basis of Rd. That means facets have the same fixed size and
shape and any non-parallel facets intersect. In the case of k facets y1, . . . , yk ∈ B̃
with different orientations we have bounds for the volume of intersection

Hd−k
(
∩k

i=1ι(yi)
)
∈ [υd−k, (2υ)d−k] .

In the intensity measure Λ (1.12) we set Q := δυ, the orientation distribution V
is set to be uniform on {e1, . . . , ed}. Then for y = (z, r, φ), it holds

Λα(d(z, r, φ)) := αχ(z)dzδ2υ(r)
∑d

i=1 δei
(φ)

d
,

Denote I =
∫

[0,υ]d χ(z)dz.
Remark 24. In the special model it can be shown that for any q ∈ {2, . . . , d} if
νi = 0, i ̸= q and νq ∈ [0,∞), then g /∈ L1(Pη), thus the conditions applied to
parameters are not only sufficient, but also necessary conditions for the density
existence.

Our main result is that the selected functionals of facet processes are (with
increasing intensity) asymptotically normally distributed as are the functionals
of the Poisson process. This is expressed in the following theorem.
Theorem 5. Denote

G̃k(µ(q)
α ) := Gk(µ(q)

α )− EGk(µ(q)
α )

αk− 1
2

, k ∈ [d] , q ∈ {2, . . . , d} , (2.6)

then
(G̃1(µ(q)

α ), . . . , G̃d(µ(q)
α )) D−−−→

α→∞
Z , (2.7)

where Z ∼ N(0, Σ), Σ := {σk1k2}d
k1,k2=1,

σk1k2 := (q − 1)
dk1+k2−1

(
q − 2
k1 − 1

)(
q − 2
k2 − 1

)
Ik1k2 ,

Ik1k2 :=
∫

([0,υ]d)k1+k2−1
Hd−k2

(
∩k2

i=2ι(zi+k1−1, 2υ, ei) ∩ ι(z1, 2υ, e1)
)

×Hd−k1
(
∩k1

i=1ι(zi, 2υ, ei)
)

χ(z1) · · ·χ(zk1+k2−1)(d(z1, . . . , zk1+k2−1)) ,

moreover

Gk(µ(q)
α ) L1
−−−→
α→∞

0 , q ∈ {2, . . . , d} , k ∈ {q, . . . , d} ,

Gk(µ(q)
α )

αk

L2
−−−→
α→∞

Ik

dk

(
q − 1

k

)
, k ∈ {2, . . . , d} , k ∈ [q − 1] ,

where

Ik :=
∫

([0,υ]d)k
Hd−k

(
∩k

i=1ι(zi, 2υ, ei))
)

χ(z1) · · ·χ(zk)dz1 · · · dzk .
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Remark 25. Asymptotic moments (when α → ∞) of functionals Gk(x), k ∈
{1, . . . , d}, in the submodel µ(q)

α , q ∈ {2, . . . , d}, were investigated and see the
following Table where crosses mean that the expected value is non-zero.

α→∞ U -statistics Gk

Submodel EGd EGd−1 . . . EG2 EG1

µ(2)
α 0 0 . . . 0 ×

µ(3)
α 0 0 . . . × ×
... ... ... ... ...

µ(d−1)
α 0 0 . . . × ×

µ(d)
α 0 × . . . × ×

Random variables Gq(µ(q)
α ), . . . , Gd(µ(q)

α ), q ∈ {2, . . . , d}, are asymptotically de-
generate, i.e. their expectations tend to zero and asymptotic variances of these
variables are σjj = 0, j ∈ {q, . . . , d}.
Remark 26. For the random vector (G̃1(ηα), . . . , G̃d(ηα)) we have similar results
[Last et al., 2014, Theorem 4.1] with σk1k2 = d

dk1+k2−1

(
d−1
k1−1

)(
d−1
k2−1

)
Ik1k2 .

Corollary. Let G̃k be as in (2.6) , then it holds

G̃k(µ(q)
α ) D−−−→

α→∞
Z , q ∈ {2, . . . , d} , k ∈ [q − 1] , (2.8)

where Z ∼ N(0, σkk).
Now we state three auxiliary Lemmas, whose proofs are in Section 2.4.

Lemma 6. It holds

ρk(y1, . . . , yk; µ(q)
α ) = E exp(νkGk(ηα ∪ {y1, . . . , yk}))

E exp(νkGk(ηα)) −−−→
α→∞

(
d−l

d−k+1

)
(

d
d−k+1

) , (2.9)

as α tends to infinity, where yi ∈ B and l is number of distinct facet orientations
among {y1, . . . , yk} and k ∈ {2, . . . , d}.
Moreover there exist β0 ∈ [1,∞), β1, β2 ∈ (0,∞), which do not depend on
y1, . . . , yk, such that⏐⏐⏐⏐⏐⏐ρk(y1, . . . , yk; µ(q)

α )−

(
d−l

d−k+1

)
(

d
d−k+1

)
⏐⏐⏐⏐⏐⏐ < β1e

−β2α ,∀α ∈ [β0,∞) .

Remark 27. Consider rotation matrix A = {aij}d
i,j=1, where ∀i∃ji : aiji

= 1; aij =
0, j ̸= ji and ∀j∃ij : aijj = 1; aij = 0, i ̸= ij. Then it can be shown, that for
rotation mapping of facets Ã : B ↦→ B, Ã((z, r, φ)) = (z, r, Aφ) around their
centers given by A the following relation holds

ρp(y1, . . . , yp; µ(q)
α ) = ρp(Ã(y1), . . . , Ã(yp); µ(q)

α ) .
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Definition 32. For some i1, i2, i3 ∈ N ∪ {0}, i4, i5 ∈ N and p(i5) := (p1, . . . , pi5)
let

γ(i1, i2, i3, i4, p(i5)) :=
∑

F ⊆[i4]
i1−i2≤|F |≤i1

|F ∪[i3]|+i2−i3≥i1

∏
j∈F

pj .

If pj is the number of facets among y1, . . . , yn with orientation ej, then specially
γ(q, 0, 0, d, p(d)) is the total number of intersections of all q-tuples among facets
y1, . . . , yn and γ(q, l, l, d, p(d)) is the total number of intersections of all q-tuples
among facets y1, . . . , yn, (z1, 2υ, e1), . . . , (zl, 2υ, el).

Lemma 7. For any ν ∈ (−∞, 0), q ∈ {2, . . . , d}, l ∈ {0, . . . , q − 1}, there exist
β1, β2 ∈ (0,∞), such that for α ∈ [1,∞),
⏐⏐⏐⏐⏐⏐

∞∑
p1=0

. . .
∞∑

pd=0

αp1+···+pd

p1! · · · pd! exp
(
νγ(q, l, l, d, p(d))− α(q − 1)

)
− (d− l)!

(q − 1− l)!

⏐⏐⏐⏐⏐⏐
< β1e

−β2α .

For any ν ∈ (−∞, 0), q ∈ {2, . . . , d}, l = q, there exist β1, β2 ∈ (0,∞), such that
for α ∈ [1,∞),⏐⏐⏐⏐⏐⏐

∞∑
p1=0

. . .
∞∑

pd=0

αp1+···+pd

p1! · · · pd! exp
(
νγ(q, l, l, d, p(d))− α(q − 1)

)⏐⏐⏐⏐⏐⏐ < β1e
−β2α .

Lemma 8. For any q ∈ {2, . . . , d}, m1, . . . , md ∈ N ∪ {0} and σ ∈ Πm1,...,md
1,...,d ,

there exist β0 ∈ [1,∞), β1, β2 ∈ (0,∞), such that for α ∈ [β0,∞),
⏐⏐⏐⏐⏐
∫

B|σ|

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)ρ|σ|(y1, . . . , y|σ|; µ(q)

α )Λ|σ|(d(y1, . . . , y|σ|))

−
∫

B|σ|
q−1

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)Λ|σ|(d(y1, . . . , y|σ|))

⏐⏐⏐⏐⏐ < β1e
−β2α ,

where Bq−1 := [0, υ]d × {2υ} × {e1, . . . , eq−1} is the space of facets with d− q + 1
orientations missing (which can be selected arbitrarily) and H̄d−k(y1, . . . , yk) :=
Hd−k

(
∩k

i=1ι(yi)
)
.

Remark 28. The expression∫
B|σ|

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)ρ|σ|(y1, . . . , y|σ|; µ(q)

α )Λ|σ|(d(y1, . . . , y|σ|)) ,

in the statement of Lemma 8 is used in the calculation of the product of moments
and this Lemma shows that for large α the correlation function can be removed
from the integral, if we consider only q − 1 orientations instead of d.
This will be used in the proof of Theorem 5.
Remark 29. For ν = (ν1, . . . , νd), consider process µ with density in more general
form

g(x) := c exp (⟨ν, G(x)⟩) .
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Assume that there is q ∈ {2, . . . , d}, νq ∈ (0,∞) and select such minimal q. Then

E exp (ν ·G(ηα))

=
∞∑

n=0

αne−αI

n!

∫
Bn

exp (⟨ν, G({y1, . . . , yn})⟩) Λn(d(y1, . . . , yn))

≥ e−αI
∞∑

p1=0
. . .

∞∑
pd=0

(
αI
d

)p1+···+pd

p1! · · · pd! exp
⎛⎝ d∑

k=1
ν ′

k

∑
{i1,...,ik}⊆[d]

k∏
l=1

pil

⎞⎠
(1)
≥ e−αI

∞∑
p1=0
· · ·

∞∑
pq=0

(
αI
d

)p1+···+pq

p1! · · · pq!
exp

⎛⎝ q∑
k=1

ν ′
k

∑
{i1,...,ik}⊆[q]

k∏
j=1

pij

⎞⎠
(2)
≥ e−αI

∞∑
n=0

(
αI
d

)nq

(n!)q
exp

( q∑
k=1

ν ′
k

(
q

k

)
nk

)
, (2.10)

where

ν ′
k :=

⎧⎨⎩νk inf{Hd−k(∩k
i=1ι(yi)) | Hd−k(∩k

i=1ι(yi)) > 0} , νk ∈ [0,∞),
νk sup{Hd−k(∩k

i=1ι(yi)) | Hd−k(∩k
i=1ι(yi)) > 0} , νk ∈ (−∞, 0) .

In (1) we set the last d − q summing variables to zero and in (2) we kept only
summands, where all of the summing variables have the same value. It can be
proved (e.g. by using ratio test), that the sum in (2.10) is divergent, because
ν ′

k

(
q
k

)
> 0 is the highest power of n in the exponential. Therefore g ̸∈ L1(Pηα) in

this case.
On the other hand if all parameters νi are non-positivitem, then g ∈ L2(Pηα).

Thus it holds νk ∈ (−∞, 0] , k ∈ {2, . . . , d}, if and only if g ∈ L2(Pηα).
Remark 30. Consider process µα with density

g(x) = c exp (⟨ν, G(x)⟩) ,

where νk ∈ (−∞, 0], k ∈ {2, . . . , d}. Assume there is q ∈ {2, . . . , d}, νq ∈ (−∞, 0)
and select minimal such q. Then using similar techniques as in proof of Lemma 6
and Lemma 7 we can show that there exist β1, β2 ∈ (0,∞), β0 ∈ [1,∞) such that⏐⏐⏐⏐ρp(y1, . . . , yp; µ(q))− lim

α→∞
ρp(y1, . . . , yp; µ(q)

α )
⏐⏐⏐⏐ < β1e

−β2α , α ∈ [β0,∞) ,

which leads to the same asymptotic distribution of statistics (G̃1(µα), . . . , G̃d(µα))
as (G̃1(µ(q)

α ), . . . , G̃d(µ(q)
α )).
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2.3 Proof of the main theorem
Proof of Theorem 5. It holds for moments of U-statistic [Beneš and Zikmundová,
2014, Theorem 3]

EGk(µ(q)
α ) = αk

k!

∫
Bk

Hd−k
(
∩k

i=1ι(yi)
)

ρk(y1, . . . , yk; µ(q)
α )Λk(d(y1, . . . , yk))

(2.11)

E
q−1∏
k=1

Gmk
k (µ(q)

α ) =
∑

σ∈Π
m1,...,mq−1
1,...,q−1

q−1∏
k=1

1
k!mk

α|σ|
∫

B|σ|

(
⊗q−1

k=1

(
H̄d−k

)⊗mk
)

σ
(2.12)

× (y1, . . . , y|σ|)ρ|σ|(y1, . . . , y|σ|; µ(q)
α )Λ|σ|(d(y1, . . . , y|σ|)) .

We can also get a relation for joint moments of centered random variables

E
q−1∏
k=1

G̃mk
k (µ(q)

α ) = 1
αME

q−1∏
k=1

(
Gk(µ(q)

α )− EGk(µ(q)
α )
)mk (2.13)

= 1
αM

m1∑
i1=0
· · ·

mq−1∑
iq−1=0

(
m1

i1

)
· · ·

(
mq−1

iq−1

)
(−1)

∑q−1
k=1 ik

×

⎛⎝q−1∏
k=1

(
EGk(µ(q)

α )
)ik

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (µ(q)

α )
⎞⎠ ,

where M := ∑q−1
k=1(k − 1

2)mk.

Expectations Firstly we calculate normalized asymptotic expectations of the
U-statistics. Using Lemma 8 we obtain

EGk(µ(q)
α )

αk
−−−→
α→∞

1
k!

∫
Bk

q−1

Hd−k
(
∩k

i=1ι(yi)
)

Λk(d(y1, . . . , yk))

= 1
dk

Ik

(
q − 1

k

)
,

where
(

q−1
k

)
is the number of combinations how to select distinct k orientations

from q − 1 and dk is number of all k-selections of d orientations. The value Ik

is an integral of the Hausdorff measure of intersection of k facets with distinct
orientations. It does not depend on the currently selection orientations, they only
need to be distinct.

Using Lemma 6 for k ≥ q, we have that ρk(y1, . . . , yk; µ(q)
α ) tends to zero at

exponential rate, therefore limα→∞ αkρk(y1, . . . , yk; µ(q)
α ) = 0. Moreover the limit

and the integral can be interchanged by using Lebesgue’s dominated convergence
theorem and we obtain

Gk(µ(q)
α ) L1
−−−→
α→∞

0 , q ∈ {2, . . . , d} , k ≥ q .

So we only need to investigate the U-statistics of the order lower than q.
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Limit of correlation function Secondly we calculate all joint moments. To
do this we need first to use formula (2.13) and Lemma 8⎛⎝q−1∏

k=1
k!mk

⎞⎠⎛⎝q−1∏
k=1

(
EGk(µ(q)

α )
)ik

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (µ(q)

α )
⎞⎠ (2.14)

≃
q−1∏
k=1

(∫
Bk

q−1

Hd−k
(
∩k

i=1ι(yi)
)

Λk(d(y1, . . . , yk))
)ik

×
∑

σ∈Π
m1−i1,...,mq−1−iq−1
1,...,q−1

α|σ|+
∑q−1

k=1 kik

∫
B|σ|

q−1

(
⊗q−1

k=1

(
H̄d−k

)⊗(mk−ik)
)

σ

× (y1, . . . , y|σ|)Λ|σ|(d(y1, . . . , y|σ|)) ,

where we use the limit values of correlation function. To describe the relation
between the original formula and the formula with correlation function replaced
by its limit value we use ≃. We justify the use of the limit of the correlation
function, in general we are considering expression in the form

∑
i∈F

α|σi|+M̃(i)
ti

∫
B|σi|+M̃(i)

(
⊗q−1

k=1

(
H̄d−k

)⊗m̃
(i)
k

)
(x1, . . . , xM̃(i))

×
(
⊗q−1

k=1 ρk

(
·; µ(q)

α

)⊗m̃
(i)
k

)
(x1, . . . , xM̃(i))

×
(
⊗q−1

k=1

(
H̄d−k

)⊗m
(i)
k

)
σi

(y1, . . . , y|σi|)ρ|σi|(y1, . . . , y|σi|; µ(q)
α )

× Λ|σi|+M̃(i)(d(x1, . . . , xM̃(i) , y1, . . . , y|σi|, )) ,

where M̃ (i) = ∑q−1
k=1 km̃

(i)
k , F ⊂ N, ti ∈ R, mi

k, m̃i
k ∈ N ∪ {0}, σi ∈ Πm1,...,mq−1

1,...,q−1 and
ρk(·; µ(q)

α ) has a limit ρlim
k (·) with exponential rate of convergence to this limit,

such that |ρk − ρlim
k | < β

(k)
1 e−β

(k)
2 α for some β

(k)
1 , β

(k)
2 > 0 and

∑
i∈F

α|σi|+M̃(i)
ti

∫
B|σi|+M̃(i)

(
⊗q−1

k=1

(
H̄d−k

)⊗m̃
(i)
k

)(
⊗q−1

k=1 ρlim
k

(
·; µ(q)

α

)⊗m̃
(i)
k

)

×
(
⊗q−1

k=1

(
H̄d−k

)⊗m
(i)
k

)
σi

(
ρlim

|σi|

)
Λ|σi|+M̃(i) = 0 ,

where for better readability we omit integrating variables from the expression. It
holds⏐⏐⏐⏐⏐∑

i∈F

α|σi|+M̃(i)
ti

∫
B|σi|+M̃(i)

(
⊗q−1

k=1

(
H̄d−k

)⊗m̃
(i)
k

)(
⊗q−1

k=1

(
H̄d−k

)⊗m
(i)
k

)
σi

×
(

ρlim
|σi|

(
⊗q−1

k=1 ρlim
k

(
·; µ(q)

α

)⊗m̃
(i)
k

)
− ρ|σi|

(
⊗q−1

k=1 ρk

(
·; µ(q)

α

)⊗m̃
(i)
k

))
Λ|σi|+M̃(i)

⏐⏐⏐⏐⏐
≤ β1e

−β2α
∑
i∈F

α|σi|+M̃(i)
ti

∫
B|σi|+M̃(i)

(
⊗q−1

k=1

(
H̄d−k

)⊗m̃
(i)
k

)

×
(
⊗q−1

k=1

(
H̄d−k

)⊗m
(i)
k

)
σi

Λ|σi|+M̃(i) −−−→
α→∞

0 ,
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because it holds((
ρlim

|σi|

)(
⊗q−1

k=1 ρlim
k

(
·; µ(q)

α

)⊗m̃
(i)
k

)
−
(
ρ|σi|

)(
⊗q−1

k=1 ρk

(
·; µ(q)

α

)⊗m̃
(i)
k

))

≤
q−1∑
k=1

m̃
(i)
k β

(k)
1 exp

(
−β

(k)
2 α

)
+ β

(|σi|)
1 exp

(
−β

(|σi|)
2 α

)
,

we can choose

β1 =
∑
i∈F

⎛⎝q−1∑
k=1

m̃
(i)
k β

(k)
1 + β

(|σi|)
1

⎞⎠ ,

β2 = min
{

min
k∈{1,...,q−1}

β
(k)
1 , min

i∈F
β

(|σi|)
1

}
.

Higher moments Now we return to (2.14). We are interested only in terms
with power of α higher or equal than M, because the other terms will tend to zero
with increasing α due to normalization, i.e. for (i1, . . . , iq−1) partitions fulfilling
condition |σ| ≥M−∑q−1

k=1 ikk.
Moreover we do not have to examine odd moments, i.e. those with ∑q−1

k=1 mk

odd, because there is not any summand with the power of α matching M in the
denominator, thus asymptotically they can only be zero or infinite and if we prove
that there is finite even moment of higher order, then the odd moment tend to
zero.

So we fix (m1, . . . , mq−1) even mixed moment (∑q−1
i=1

mi

2 ∈ N) and moreover fix
s := (s1, . . . , sq−1), so that mk ≥ sk ≥ 0, k ∈ [q − 1] and ∃k′ ∈ [q − 1] : mk′ > sk′ ,
fix any partition σs ∈ Πs

1,...,q−1 fulfilling conditions |σs| ≥ M − ∑q−1
k=1 ikk and

S(σs) = 0.
Then for any v := (v1, . . . , vq−1), such that mk ≥ vk ≥ sk, k ∈ [q − 1] and

∃k′ ∈ [q − 1], vk′ > sk′ select all partitions σv ∈ Πv
1,...,q−1, such that, S(σv) =∑q−1

k=1(vk − sk), |σv| − |σs| =
∑q−1

k=1(vk − sk)k and for whom it holds

α|σv|
∫

B|σv|
q−1

(
⊗q−1

k=1

(
H̄d−k

)⊗vk
)

σv

(y1, . . . , y|σv|)Λ|σv|(d(y1, . . . , y|σv|))

= α|σs|
∫

B|σs|
q−1

(
⊗q−1

k=1

(
H̄d−k

)⊗sk
)

σs

(y1, . . . , y|σs|)Λ|σs|(d(y1, . . . , y|σs|))

×
q−1∏
k=1

(
αk
∫

Bk
q−1

Hd−k
(
∩k

i=1ι(yi)
)

Λk(d(y1, . . . , yk))
)vk−sk

,

because we can separate the singleton rows corresponding to the functions H̄d−k

in tensor product, which can be integrated separately, because they do not have
any common variables with the other functions in the tensor product and the
integral is equal to the expectation of U-statistic. We can see that all summands
corresponding to any of the partitions σv in the evaluation of (2.13) contain
common term

Θ := α|σs|
∫

B|σs|
q−1

(
⊗q−1

k=1

(
H̄d−k

)⊗sk
)

σs

(y1, . . . , y|σs|)Λ|σs|(d(y1, . . . , y|σs|))

×
q−1∏
k=1

(
αk
∫

Bk
q−1

Hd−k
(
∩k

i=1ι(yi)
)

Λk(d(y1, . . . , yk))
)mk−sk

,
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then for fixed s we sum over all possible v and all possible partitions σv in (2.13)

Θ
m1∑

v1=s1

· · ·
mq−1∑

vq−1=sq−1

(
m1

v1

)
· · ·

(
mq−1

vq−1

)(
v1

s1

)
· · ·

(
vq−1

sq−1

)
(−1)

∑q−1
k=1 vk

= Θ(−1)
∑q−1

k=1 sk

(
m1

s1

)
· · ·

(
mq−1

sq−1

)

×
m1−s1∑
v1=0

· · ·
mq−1−sq−1∑

vq−1=0

(
m1 − s1

v1

)
. . .

(
mq−1 − sq−1

vq−1

)
(−1)

∑q−1
k=1 vk = 0 ,

where we use the Binomial theorem for summing with necessary condition
q−1∑
k=1

sk <
q−1∑
k=1

mk

and
(

mk

vk

)
are original coefficients from formula (2.13) and

(
vk

sk

)
is the number of

options how to select additional singleton rows.
Therefore all partitions σ, such that S(σ) > 0 and the ones contained within
Πs

1,...,q−1, s < m := (m1, . . . , mq−1) cancel each other out in the summing in the
moment formula.

Now we sum over the remaining partitions in (2.13). They all fulfill σ ∈
Πm

1,...,q−1, S(σ) = 0 and |σ| ≥ ∑q−1
k=1(k − 1

2)mk. These partitions have each row
connected exactly to one another row by one block of two elements in σ (|σ| = M):⎛⎝q−1∏

k=1
k!mk

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (µ(q)

α )
⎞⎠ q−1∏

k=1

(
EGk(µ(q)

α )
)ik

≃
2∑

j
(2)
1 ,...,j

(2)
m2 =1

. . .
q−1∑

j
(q−1)
1 ,...,j

(q−1)
mq−1 =1

∑
σ∈
∏̃

M
|J |=2,J∈σ

∏
J={ς1,ς2}∈σ

αt(ς1)+t(ς2)−1

×
∫

Bt(ς1)+t(ς2)−1
q−1

Hd−t(ς1)
(
∩t(ς1)

i=1 ι(yi)
)
Hd−t(ς2)

(
∩t(ς2)−1

i=1 ι(yt(ς1)+i) ∩ ι(y1)
)

× Λt(ς1)+t(ς2)−1(d(y1, . . . , yt(ς1)+t(ς2)−1)) ,

t(ςi) := max
j∈[q−1]

⎧⎨⎩
j−1∑
k=1

mk < i

⎫⎬⎭ ,

where we sum first over all possible selections of common elements among the
partitions and then over all possible pairings of partition rows, we also divide
integral into several parts, where each part consists only of elements which are in
the same block of a partition. Function t connects row of partition to its length.
Using definition of Λ, it holds∫

Bt(ς1)+t(ς2)−1
q−1

Hd−t(ς1)
(
∩t(ς1)

i=1 ι(yi)
)
Hd−t(ς2)

(
∩t(ς2)−1

i=1 ι(yt(ς1)+i) ∩ ι(y1)
)

×Λt(ς1)+t(ς2)−1(d(y1, . . . , yt(ς1)+t(ς2)−1))

=
(q − 1)(t(ς1)− 1)!(t(ς2)− 1)!It(ς1)t(ς2)

(
q−2

t(ς1)−1

)(
q−2

t(ς2)−1

)
dt(ς1)+t(ς2)−1 , (2.15)

2∑
j

(2)
1 ,...,j

(2)
m2 =1

· · ·
q−1∑

j
(q−1)
1 ,...,j

(q−1)
mq−1 =1

1 =
q−1∏
k=1

kmk , (2.16)
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where q−1 is the number of choices of the one common facet orientation,
(

q−2
t(ς1)−1

)
,(

q−2
t(ς2)−1

)
is number of combinations how to select the remaining distinct orienta-

tions of the rest of the facets orientations in the first and the second function in
integrand and (t(ς1) − 1)!, (t(ς2) − 1)! are the numbers of their allocations into
t(ς1)− 1 and t(ς2)− 1 positions, dt(ς1)+t(ς2)−1 is t(ς1) + t(ς2)− 1-selection of d ori-
entations (even non-distinct ones) and It(ς1)t(ς2) is integral over facets with fixed
orientations over the space of the facet centres. Then using (2.15) and (2.16)

E

⎛⎝q−1∏
k=1

Gmk−ik
k (µ(q)

α )
⎞⎠ q−1∏

k=1

(
EGk(µ(q)

α )
)ik

≃
(

α

d

)M 2∑
j

(2)
1 ,...,j

(2)
m2 =1

· · ·
q−1∑

j
(q−1)
1 ,...,j

(q−1)
mq−1 =1

∑
σ∈
∏̃

M
|J |=2,J∈σ

∏
J={ς1,ς2}∈σ

⎛⎝q−1∏
k=1

1
k!mk

⎞⎠ (q − 1)(t(ς1)− 1)!(t(ς2)− 1)!It(ς1)t(ς2)

(
q − 2

t(ς1)− 1

)(
q − 2

t(ς2)− 1

)

=
(

α

d

)M ∑
σ∈
∏̃

M
|J |=2,J∈σ

∏
J={ς1,ς2}∈σ

(q − 1)It(ς1)t(ς2)

(
q − 2

t(ς1)− 1

)(
q − 2

t(ς2)− 1

)
,

because the factorial terms (t(ς1)− 1)!(t(ς2)− 1)! and the sums cancel out with
the term ∏ 1

k!mk
. Therefore it holds

E
q−1∏
k=1

G̃mk
k (µ(q)

α ) ≃
∑

σ∈
∏̃

M
|J |=2,J∈σ

∏
J={ς1,ς2}∈σ

(q − 1)It(ς1)t(ς2)

dt(ς1)+t(ς2)−1

(
q − 2

t(ς1)− 1

)(
q − 2

t(ς2)− 1

)

and as a special case we get

EG̃k1(µ(q)
α )G̃k2(µ(q)

α ) ≃ (q − 1)Ik1k2

dk1+k2−1

(
q − 2
k1 − 1

)(
q − 2
k2 − 1

)
.

Now consider vector of multivariate normal distribution Z = (Z1, . . . , Zd) ∼
N(0, Σ), then for any joint moment we have

E
d∏

k=1
Zmk

k =
∑

σ∈
∏̃

M
|J |=2,J∈σ

∏
J={ς1,ς2}∈σ

EZt(ς1)Zt(ς2).

We can see that asymptotically the distribution of statistics has the property of
normal distribution, i.e. joint moments of centered variables are equal to sum over
all pairs of unordered random variables and this implies the central limit theorem,
because normal distribution is defined by its moments [Billingsley, 1995, Theorem
30.2.].
There is only one remaining statement to prove

Gk(µ(q)
α )

αk

L2
−−−→
α→∞

Ik

dk

(
q − 1

k

)
, q ∈ {2, . . . , d} , k < q ,
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the first moment of the random variable on the left-hand side tends to right-hand
side and the variance tends to zero as can be seen from the proof of central limit
theorem.

Alternative proof of Theorem 5. Starting from formula (2.14) for fixed i1, . . . , iq−1
we have alternative way to prove the central limit theorem. The Poisson process
η(q−1)

α on Bq−1 with intensity measure Λ(q−1)
α , which is restriction of Λ to Bq−1

has higher moments in the following form⎛⎝q−1∏
k=1

k!mk

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (η(q−1)

α )
⎞⎠ q−1∏

k=1

(
EGk(η(q−1)

α )
)ik

=
q−1∏
k=1

(∫
Bk

q−1

Hd−k
(
∩k

i=1ι(yi)
)

Λk(d(y1, . . . , yk))
)ik

×
∑

σ∈Π
m1−i1,...,mq−1−iq−1
1,...,q−1

α|σ|+
∑q−1

k=1 kik

∫
B|σ|

q−1

(
⊗q−1

k=1

((
H̄d−k

)⊗(mk−ik)
))

σ

× (y1, . . . , y|σ|)Λ|σ|(d(y1, . . . , y|σ|))

where we used ρ ≡ 1 for Poisson process. Which combined with (2.14) gives us⏐⏐⏐⏐⏐
⎛⎝q−1∏

k=1
k!mk

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (η(q−1)

α )
⎞⎠ q−1∏

k=1

(
EGk(η(q−1)

α )
)ik

−

⎛⎝q−1∏
k=1

k!Mk

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (µ(q)

α )
⎞⎠ q−1∏

k=1

(
EGk(µ(q)

α )
)ik

⏐⏐⏐⏐⏐ < β1e
−β2α,

where β1, β2 > 0 and also

β1e
−β2α

⎧⎨⎩
⎛⎝q−1∏

k=1
k!mk

⎞⎠E

⎛⎝q−1∏
k=1

Gmk−ik
k (η(q−1)

α )
⎞⎠ q−1∏

k=1

(
EGk(η(q−1)

α )
)ik

⎫⎬⎭ −−−→α→∞
0 ,

(2.17)

because moments of Poisson process are at most polynomial in α.
The moments of the Poisson U -statistics behave asymptotically as the moments
of a Gaussian distribution, see [Last et al., 2014, Corollary 4.3 and Proposition
5.1]. Therefore using the moment method we have the central limit theorem (2.7)
for (G̃1(µ(q)

α ), . . . , G̃q−1(µ(q)
α ).

2.4 Proofs of the Lemmas
Proof of Lemma 6. First consider submodel µ(q)

α and facets y1, . . . , yk with l =
k ≤ q distinct orientations. Moreover without loss of generality we consider
orientations {e1, . . . , el}, because if we apply rotations from Remark 27, then
value of correlation function does not change. It holds

ρk(y1, . . . , yk; µ(q)
α )

=
∑∞

n=0
αn

n!
∫

Bn exp (νqGq({x1, . . . , xn, y1, . . . , yk})) Λn(d(x1, . . . , xn))∑∞
n=0

αn

n!
∫

Bn exp (νqGq({x1, . . . , xn})) Λn(d(x1, . . . , xn)) .
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We can obtain bounds for this expression by using the bounds for the volumes of
intersection of facets Hd−q (∩q

i=1ι(yi)) ∈ [υd−q, (2υ)d−q] as follows

∑∞
n=0

( αI
d

)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp

(
νq(2υ)d−qγ(q, k, k, d, p(d))

)
∑∞

n=0
( αI

d
)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp (νq(υ)d−qγ(q, 0, 0, d, p(d)))

≤ ρk(y1, . . . , yk; µ(q)
α )

≤
∑∞

n=0
( αI

d
)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp

(
νqυ

d−qγ(q, k, k, d, p(d))
)

∑∞
n=0

( αI
d

)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp (νq(2υ)d−qγ(q, 0, 0, d, p(d)))

, (2.18)

where pi are the numbers of facets among x1, . . . , xn with orientations ei and
p(d) := (p1, . . . , pd). Furthermore we will make use of definition γ(q, k, k, d, p(d)),
because specially γ(q, 0, 0, d, p(d)) is the total number of intersections of all q-
tuples of the facets among x1, . . . , xn and γ(q, k, k, d, p(d)) is the total number of
intersections of all q-tuples of the facets among facets x1, . . . , xn, y1, . . . , yk.
Then we substitute αI

d
for α̃, extend the both fractions by e−α̃(q−1) and we get in

the case of the lower bound of (2.18)
∑∞

p1=0 · · ·
∑∞

pd=0
α̃p1+···+pd

p1!···pd! exp
(
νq(2υ)d−qγ(q, k, k, d, p(d))− α̃(q − 1)

)
∑∞

p1=0 · · ·
∑∞

pd=0
α̃p1+···+pd

p1!···pd! exp (νqυd−qγ(q, 0, 0, d, p(d))− α̃(q − 1))

and in the case of the upper bound of (2.18)
∑∞

p1=0 · · ·
∑∞

pd=0
α̃p1+···+pd

p1!···pd! exp
(
νqυ

d−qγ(q, k, k, d, p(d))− α̃(q − 1)
)

∑∞
p1=0 · · ·

∑∞
pd=0

α̃p1+···+pd

p1!···pd! exp (νq(2υ)d−qγ(q, 0, 0, d, p(d))− α̃(q − 1))
.

Then using Lemma 7 we get the limit of the lower and upper bound, which are
both in the same form ( d−l

d−q+1)
( d

d−q+1)
. For d ≥ l = k > q and y1, . . . , yk ∈ B we can get

an upper bound

0 ≤ ρk(y1, . . . , yk; µ(q)
α ) ≤ ρq(y1, . . . , yq; µ(q)

α ) ,

lim
α→∞

ρq(y1, . . . , yq; µ(q)
α ) = 0 .

Now consider more than one facet with the same orientation among y1, . . . yk and
with l < k < q distinct orientations, which are without loss of generality set to
e1, . . . , el, then we can bound the correlation function in the following way

∑∞
n=0

( αI
d

)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp

(
νq(k − l + 1)d(2υ)d−qγ(q, k, k, d, p(d))

)
∑∞

n=0
( αI

d
)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp (νqυd−qγ(q, 0, 0, d, p(d)))

≤ ρk(y1, . . . , yk; µ(q)
α )

≤
∑∞

n=0
( αI

d
)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp

(
νqυ

d−qγ(q, k, k, d, p(d))
)

∑∞
n=0

( αI
d

)n

n!
∑

p1+···+pd=n

(
n

p1,...,pd

)
exp (νq(k − l + 1)d(2υ)d−qγ(q, 0, 0, d, p(d)))

.
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These bounds lead to expressions in the same form as in the case with unique
orientations and therefore we proceed in the same way and get the value of the
limit ( d−l

d−q+1)
( d

d−q+1)
.

For d ≥ l ≥ q we need only lower bound for the number of intersections in form
γ(q, l, l, d, p(d)), which forms an upper bound for the correlation function. This
upper bound tends to zero.
Bounds for the numerator and denominator of the correlation function converge
to their limits with at least exponential rate and we can also see that the upper
bounds can be selected to depend only on the ν and q, therefore they do not
depend on currently selected facets y1, . . . , yk in the argument of the correlation
function.
Rate of convergence can be extended to the whole fraction, if we denote by
ρnum(α) the value of numerator and by ρden(α) the value of denominator on the
left side in (2.9), respectively, and ρnum and ρden the limit of the numerator
and denominator on the right-hand side in (2.9), respectively, then there exist
β

(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2 > 0, such that for every α ∈ [1,∞) we have

|ρnum(α)− ρnum| < β
(1)
1 ρnume−β

(1)
2 α , |ρden(α)− ρden| < β

(2)
1 ρdene−β

(2)
2 α .

If we choose β0 := max{− 1
β

(2)
2

log 1
2β

(2)
1

, 1}, β1 := 4 max
{
β

(1)
1 , β

(2)
1

}
and β2 :=

min{β(1)
2 , β

(2)
2 }, then for α ≥ β0 we get bounds

ρnum(α)
ρden(α) −

ρnum

ρden
≤ ρnum

ρden

⎛⎝β
(1)
1 e−β

(1)
2 α + β

(2)
1 e−β

(2)
2 α

1− β
(2)
1 e−β

(2)
2 α

⎞⎠ ≤ ρnum

ρden
β1e

−β2α ,

ρnum(α)
ρden(α) −

ρnum

ρden
≥ −ρnum

ρden

⎛⎝β
(1)
1 e−β

(1)
2 α + β

(2)
1 e−β

(2)
2 α

1 + β
(2)
1 e−β

(2)
2 α

⎞⎠ ≥ −ρnum

ρden
β1e

−β2α .

Proof of Lemma 7. For i1, . . . , i4 ∈ N and t ∈ (0,∞), let

Γ(i1, i2, i3, i4, t) :=
∞∑

p1=0
· · ·

∞∑
pi4 =0

tp1+···+pi4

p1! · · · pi4 ! exp
(
νγ(i1, i2, i3, i4, p(i4))− t(i1 − 1)

)
.

and we calculate limα→∞ Γ(q, l, l, d, α). To do this firstly we calculate the values
of the limit by calculating the sum over

(p1 > 0 ∧ · · · ∧ pd > 0)

to show that this value tends to zero as α tends to infinity. We show this for
l = 0 because for l > 0, we get upper bound using l = 0, because γ(q, l, ·, ·, ·) ≥
γ(q, 0, ·, ·, ·) and the sum is non-negative. In the following we use Chernoff bound
for tail probabilities of Poisson distribution

n∑
i=0

αi

i! ≤
(eα)n

nn
, n < α .
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1. First we consider that all the summing variables are between 0 and α2/3:(
(α2/3 > p1 > 0) ∧ · · · ∧ (α2/3 > pd > 0)

)

α2/3∑
p1>0
· · ·

α2/3∑
pd>0

αp1+···+pd

p1! · · · pd! exp
(
νγ(q, 0, 0, d, p(d))− α(q − 1)

)
≤

α2/3∑
p1>0
· · ·

α2/3∑
pd>0

αp1+···+pd

p1! · · · pd! exp (−α(q − 1)) ≤
⎛⎝ (eα)dα2/3

(α2/3)dα2/3

⎞⎠ e−α(q−1) −−−→
α→∞

0 ,

where we used d times the Chernoff bound.

2. Now consider that one of the summing variables is greater than α2/3, with-
out loss of generality we select pd such that(

(α2/3 > p1 > 0) ∧ · · · ∧ (α2/3 > pd−1 > 0) ∧ (pd ≥ α2/3)
)

and we get

α2/3∑
p1>0
· · ·

α2/3∑
pd−1>0

∞∑
pd≥α2/3

αp1+···+pd

p1! · · · pd! exp
(
νγ(q, 0, 0, d, p(d))− α(q − 1)

)

≤
α2/3∑
p1>0
· · ·

α2/3∑
pd−1>0

∞∑
pd=0

αp1+···+pd

p1! · · · pd! exp (νpd − α(q − 1))

=
α2/3∑
p1>0
· · ·

α2/3∑
pd−1>0

αp1+···+pd

p1! · · · pd−1! exp (αeν − α(q − 1))

≤

⎛⎝ (eα)(d−1)α2/3

(α2/3)(d−1)α2/3

⎞⎠ exp (αeν − α(q − 1)) −−−→
α→∞

0

because eν − (q − 1) < 0.

3. When at least two of the summing variables are greater than α2/3, without
loss of generality select pd−1 and pd, then we have

α2/3∑
p1>0
· · ·

α2/3∑
pd−2>0

∞∑
pd−1≥α2/3

∞∑
pd≥α2/3

αp1+···+pd

p1! · · · pd! exp
(
νγ(q, 0, 0, d, p(d))− α(q − 1)

)

≤
α2/3∑
p1>0
· · ·

α2/3∑
pd−2>0

∞∑
pd−1≥α2/3

∞∑
pd≥α2/3

αp1+···+pd

p1! · · · pd! exp
(
να4/3 − α(q − 1)

)
≤ exp

(
να4/3 + α(d + 1− q)

)
−−−→
α→∞

0 .

4. The same applies to the case, where more than two variables are greater
than α2/3, because we are able to find terms with higher power of α in the
exponential.
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Therefore we need only to examine the remaining terms, where at least one of
the variables is equal to zero, thus we replace Γ(q, l, l, d, α) by d sums, where one
variable is set to zero

Γ(q, l, l, d, α) ≈ lΓ(q, l, l − 1, d− 1, α) + (d− l)Γ(q, l, l, d− 1, α) , (2.19)

where ≈ is the equality after omitting the summands, which tend to zero on
the left-hand side, Γ(q, l, l − 1, d − 1, α) is the sum after setting to zero one of
the variables p1, . . . , pl, Γ(q, l, l, d − 1, α) is the sum after setting to zero one of
the variables pl+1, . . . , pd and the multiplying numbers are the counts of possible
selections of these variables. It can be shown that

γ(q, i1, i2, q − 1, p(q−1)) =
∑

F ⊆[q−1]
q−i1≤|F |≤q

|F ∪[i2]|+i1−i2≥q

∏
j∈F

pj

⎧⎪⎨⎪⎩
= ∑

F ∈∅
∏

j∈F pj = 0 , i1 = i2 ,

≥ ∑F ⊆[q−1]
q−1∈F

∏
j∈F pj ≥ pq−1 , i1 > i2 .

Using this we see, that it holds

lim
α→∞

Γ(q, i1, i2, q − 1, α)

= lim
α→∞

∞∑
p1=0
· · ·

∞∑
pq−1=0

αp1+···+pq−1

p1! · · · pq−1! exp
(
νγ(q, i1, i2, q − 1, p(q−1))− α(q − 1)

)

=

⎧⎨⎩0 , i1 < i2 ,

1 , i1 = i2 .

Because the series on the right-hand side of (2.19) are in the same form as the
original one and we can again sum only over the indices, where at least one is
equal to zero, thus we repeat the (d− q + 1) times step in (2.19) and we get

Γ(q, l, l, d, α) ≈
d−q+1∑

j=0
tjΓ(q, l, l − j, q − 1, α) , (2.20)

where tj ∈ N. All summands tend to zero with one exception of t0Γ(q, l, l, q−1, α)
with

t0 =

⎧⎨⎩
(d−l)!

(q−1−l)! , q > l ,

0 , q = l ,
(2.21)

which is the number of all selections of variables set to zero from pl+1, . . . , pd in
d − q + 1 steps. The overall speed of convergence is implied by the convergence
speed of every part of the sum, which converges to its limit at least at exponential
rate.

Proof of Lemma 8. The limit of correlation function depends only on the num-
ber l of the distinct orientations among the facets (y1, . . . , y|σ|), then correlation
function tends to ( d−l

d−q+1)
( d

d−q+1)
and thus we can write

31



∫
B|σ|

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)ρ|σ|(y1, . . . , y|σ|; µ(q)

α )Λ|σ|

× (d(y1, . . . , y|σ|))

=
d∑

l=1

(
d

l

)∫
(B|σ|)[l]

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)

× ρ|σ|(y1, . . . , y|σ|; µ(q)
α )Λ|σ|(d(y1, . . . , y|σ|))

≤
d∑

l=1

(
d

l

)∫
(B|σ|)[l]

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , yσ)

(
d−l

d−q+1

)
(

d
d−q+1

)Λ|σ|(d(y1, . . . , y|σ|))

+
d∑

l=1

(
d

l

)∫
(B|σ|)[l]

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

|σ|
(y1, . . . , y|σ|)

×

⏐⏐⏐⏐⏐⏐
(

d−l
d−q+1

)
(

d
d−q+1

) − ρ|σ|(y1, . . . , y|σ|; µ(q)
α )

⏐⏐⏐⏐⏐⏐Λ|σ|(d(y1, . . . , y|σ|))

≤
q−1∑
l=1

(
q − 1

l

)∫
(B|σ|)[l]

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , y|σ|)Λ|σ|(d(y1, . . . , y|σ|))

+ β1e
−β2α

d∑
l=1

(
d

l

)∫
(B|σ|)[l]

(
⊗d

k=1

(
H̄d−k

)⊗mk
)

σ
(y1, . . . , yσ)

× Λ|σ|(d(y1, . . . , y|σ|)) , (2.22)

where (B|σ|)[k] is subspace of B|σ|, where facets (y1, . . . , y|σ|) use orientations
e1, . . . , ek (each orientation is used at least by one of the facets),

(
d
k

)
is the number

of possible selections of orientations used. We have an upper bound for the ex-
pression in the absolute value and we can get a lower bound in the same way.
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3. Modelling and estimates of
facet process
In this chapter we use definitions introduced in Chapter 1.1 and further specify
them. We base this chapter on results developed in Beneš et al. [2017] and Beneš
et al. [2019].

The facet process can be represented as a marked point process, where the
mark is the orientation and size of the facet. Our research addresses an important
problem in the statistics of spatial marked point processes given by a density with
respect to the Poisson process. Observing a realization of spatial data which shall
be fitted to such a model we first estimate the parameters by a method of point
estimation. However, among the quantities to be estimated there may appear
also the reference mark distribution which need not coincide with the observed
mark distribution of the process. Both the scalar parameters and the reference
mark distribution are needed e.g. when we try to simulate the model. Our aim
is to estimate the reference mark distribution non-parametrically, i.e. in total to
use a semiparametric approach instead of a fully parametric one.

An early paper Baddeley and Turner [2000] mentions parameter estimation
of a marked point process by means of the maximum pseudolikelihood method
but the authors do not identify our problem. Much more attention is paid to
it in Møller and Helisová [2010] where the marks form radii of circles centered
at the points of a point process given by a density with respect to the Poisson
process. The random set corresponding to the union of circles in a compact
window is investigated. Since an exact method is not available the authors use
an approximation what means that estimation of the distribution of radii is done
by methods for a Boolean model. Then an MCMC maximum likelihood method
(Møller and Waagepetersen [2004]) is used for the estimation of parameters of the
point process. A recent paper by Dereudre et al. [2014] deals with the same model
as Møller and Helisová [2010], their goal is to use the Takacs-Fiksel estimator
instead of the computationally demanding maximum likelihood method.

We present two models of a distribution of segment process (facet process
in R2). The first model with reference directional distribution has fixed size
segments and repulsive interaction among segments. We propose two methods
for the estimation of the directional distribution - the parametric Takacs-Fiksel
method (see Coeurjolly et al. [2011]) and a semiparametric method combining the
Takacs-Fiksel method for parameters and the kernel estimation of the density.
We study performance of these two approaches using simulation based on birth-
death Metropolis-Hastings algorithm of Markov chain Monte Carlo from Geyer
and Møller [1994].

The second model with a reference length distribution deals with segments
in an ellipsoidal window and uniform directional distribution. We show how to
estimate model parameters using the Takacs-Fiksel method and we examine per-
formance of this estimate using simulated data. Moreover we apply the suggested
method to the real data from fluorescence imaging of stress fibres in adult human
mesenchymal stem cells. The stem cells have been cultured on gels for a time
span of 24 hours. We evaluate especially the cells on a low stiffness gel since
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they present more randomness and less inhomogeneity than the others. Using
the Filament Sensor [Eltzner et al., 2016] algorithm it is possible to transform
the raw data onto a system of segments. Here, the true window corresponds to a
single cell which is roughly approximated by an ellipse. The parameters of this
model are estimated and the degree of fit of real data with the model is then
tested using various statistics by means of Monte-Carlo testing.

3.1 Models
We will consider two models - both present facet processes in R2, i.e. segment
processes.

3.1.1 Model I
The segment process with a reference directional distribution. Let D ⊆
R2 be bounded and measurable planar set such that λ2(D) > 0, let S1 = [0, π)
be the semicircle of axial directions, υ > 0 is fixed segment size, and put

B := D × {υ} × [0, π) ,

B̃ := ι(B) ,

as space of segment parameters and segments, where ι is defined in (1.9). A
segment ι((z, υ, φ)) ∈ B̃ has centre z, υ fixed segment size and direction φ.

We will use the Poisson segment process η with the intensity measure Λ on
B, where

Λ(d(z, r, φ)) := dzδυ(r)dr
1
π

dφ .

Let the segment process µ have a density g w.r.t. η, in form:

g(x) := cαx(B) exp(γ0G2(x))
∏

(z,υ,φ)∈x
w(φ) , (3.1)

where w is probability density on [0, π); α > 0, γ0 ≤ 0 are parameters; c is the
normalizing constant,

G2(x) :=
∫

B2
1[ι(y1) ∩ ι(y2) ̸= ∅]x(2)(d(y1, y2)) ,

is the total number of intersections among segments in x.
The conditional intensity corresponding to the density g in (3.1) is defined by

Ψ((z, υ, φ), x) = α exp
(

γ0

∫
B

1[ι((z, υ, φ)) ∩ ι(y) ̸= ∅]x(dy)
)

w(φ) , (3.2)

(z, υ, φ) /∈ x .

Furthermore let the directional density w be that of von Mises distribution
on [0, π) with parameters γ1 ≥ 0, γ2 ∈ [0, π), which is suitable for unimodal
distribution (γ2 is the mode and γ1 reflects the concentration around γ2) :

w(φ) := c̃γ1 exp(γ1 cos(2(φ− γ2))) , φ ∈ [0, π) .
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3.1.2 Model II
The segment process with reference length distribution. The next model
is working with a random segment length. The shape of the window and the
location of segments take into account the intended application on the real data.
Consider an ellipse D ⊆ R2 centred in the origin, with axes lengths e1 ≥ e2 > 0
and area λ2(D) := πe1e2

4 . Let be

B := D × (0, e1]× [0, π) ,

B̃ := ι(B) ,

as space of segment parameters and segments.
Let the Poisson segment process η have the intensity measure Λ on B of the

form
Λ(d(z, r, φ)) := 1

πe1
dzdrdφ .

Let the segment process µ have a density g with respect to η, we consider model
II:

g(x) := cαx(B) exp(γ0F (x))
∏

(z,r,φ)∈x
w
(

r

e1

)
1[ι((z, r, φ)) ⊆ D] ,

with parameters γ0 ∈ R, α > 0, c is the normalizing constant, w is a reference
probability density of normalized lengths on (0, 1] and

F (x) :=
∫

B
f(y)x(dy) , f(y) := max

x∈ι(y)

||x||
e1

.

For y ∈ B the f(y) ∈ (0, 1
2) is a distance of the most distant point of the segment

y from the centre of the cell. The corresponding conditional intensity is

Ψ((z, r, φ), x) = α exp(γ0f((z, r, φ)))w
(

r

e1

) ∏
y∈x∪(z,r,φ)

1[ι(y) ⊆ D] .

Furthermore suppose that the reference length density w of the beta distribution
with parameters γ1, γ2 > 0

w(x) := xγ1−1(1− x)γ2−1

B(γ1, γ2) , x ∈ (0, 1) ,

where B(·, ·) is the beta function in the denominator.

3.2 Estimates

3.2.1 Takacs-Fiksel
We will demonstrate the general use of Takacs-Fiksel method of parameter esti-
mation in Gibbs point process. From the Georgii-Nguyen-Zessin formula

E
[∫

B
h(y, µ \ {y})µ(dy)

]
=
∫

B
E(Ψ(y, µ)h(y, µ))dy , (3.3)
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we obtain the so called innovation∫
B

h(y, µ \ {y})µ(dy)−
∫

B
Ψ(y, µ)h(y, µ)dy ,

which is a centered random variable. Using suitable test functions h and setting
innovations equal to zero leads to a system of equations for the unknown pa-
rameters and the integral can be for the estimation replaced by its Monte Carlo
approximation. Then in general the Takacs-Fiksel estimate is solution of system
of equations∫

B
hk(y, µ \ {y})µ(dy) =

∫
B

Ψ(y, µ)hk(y, µ)x̃(dy) , k ∈ [m] ,

where x̃ is random sample from B represented by a random measure and ν
is vector of optimized parameters, which affect the innovation via Ψ. If the
conditional intensity is in form Ψ(y, x) = exp(∑m

k=1 νkFk(y, x)), then the optimal
choice of hk is

hk(y, x) := ∂

∂νk

log(Ψ(y, x)) = Fk(y, x) .

3.2.2 Semiparametric estimate
We use this estimate for a directional distribution density of a Model I, that has
von Mises distribution.

Definition 33. We define measure Λcen

µ on space (D,B(D)) and measure Λµ on
product space (D × [0, π),B(D × [0, π)))

Λcen

µ (K) := E
∫

B
δz(K)µ(d(z, r, φ)) , K ∈ B(D) ,

Λµ(K × L) := E
∫

B
δz(K)δφ(L)µ(d(z, r, φ)) , K ∈ B(D), L ∈ B([0, π)) ,

where B(·) denote Borel sets.

Theorem 9. For fixed L ∈ B([0, π)), the Λµ(· ×L) is absolutely continuous with
respect to the Λcen

µ (·) and with Radon-Nikodym density P(·, L), i.e.

Λµ(K × L) =
∫

K
P(z, L)Λcen

µ (d(z)) .

For given z ∈ D, P(z, ·) is absolutely continuous with respect to the λ measure
with Radon-Nikodym density w(z)

µ (φ)

w(z)
µ (φ) = ρ1((z, υ, φ); µ)∫ π

0 ρ1((z, υ, φ); µ)dφ
.

Proof. Absolute continuity in both cases is trivial and can be seen right from the
definition. For Borel sets K ⊆ D, L ⊆ [0, π) it holds using the Campbell theorem

Λµ(K × L) = 1
π

∫
K

∫
L

ρ1((z, υ, φ); µ)dφdz .
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Specially for L = [0, π) we have

Λµ(K × [0, π)) = Λcen

µ (K) = 1
π

∫
K

∫ π

0
ρ1((z, υ, φ); µ)dφdz .

We see that
P(z, L) =

∫
L ρ1((z, υ, φ); µ)dφ∫ π
0 ρ1((z, υ, φ); µ)dφ

and the results follows.

For x = (z, υ, φ) we get from (3.2) that

ρ1((z, υ, φ); µ) = αw(φ)E exp
(

γ0

∫
B

1[ι((z, υ, φ)) ∩ ι(y) ̸= ∅]µ(dy)
)

(3.4)

is the correlation function of µ. The expectation is not analytically tractable,
therefore Baddeley and Nair [2012] suggest an approximation

E exp
(

γ0

∫
B

1[ι(x) ∩ ι(y) ̸= ∅]µ(dy)
)
≈ E exp

(
γ0

∫
B

1[ι(x) ∩ ι(y) ̸= ∅]ηρ(dy)
)

,

(3.5)
where η(ρ) is a Poisson process with intensity function ρ1((z, r, φ); µ)Λ(d(z, r, φ)).

Lemma 10. For y = (z, r, φ) ∈ B we have

E exp
(

γ0

∫
B

1[ι(x) ∩ ι(y) ̸= ∅]ηρ(dy)
)

= exp
(

(eγ0 − 1)
∫

My

ρ1(x; µ)dx

)
,

where My := {x ∈ B | ι(y) ∩ ι(x) ̸= ∅}.

Proof. Using Theorem 2 we have

E exp
(

γ0

∫
B

1[ι(x) ∩ ι(y) ̸= ∅]ηρ(dy)
)

= e−
∫

B ρ1(y;µ)Λ(dy)
∞∑

n=0

1
n!

n∏
i=1

∫
B

exp(γ01[ι(x) ∩ ι(yi) ̸= ∅])ρ1(yi; µ)Λ(dyi)

= exp
(∫

B
(exp(γ01[ι(x) ∩ ι(y) ̸= ∅])− 1) ρ1(y; µ)Λ(dy)

)
= exp

(
(eγ0 − 1)

∫
Mx

ρ1(y; µ)dy
)

.

From Proposition 1 we have

ρ1((z, υ, φ); µ) = czw(z)
µ (φ) , φ ∈ [0, π) ,

where cz is normalizing constant, z ∈ D. Assuming that there exists a stationary
segment process in R2 with given conditional intensity (this time the conditional
intensity cannot be defined by means of densities, but from the energy function),
we have that c := cz, w(z)

µ (φ) = wµ(φ) do not depend on z in the extension of D
onto the whole R2. Under this assumption we estimate∫

M(z,υ,φ)

w(z)
µ (φ′)dz′dφ′ ≈

∫
R2×[0,π)

1[ι((z, υ, φ)) ∩ ι((z′, υ, φ′)) ̸= ∅]wµ(φ′)dz′dφ′

= υ2
∫ π

0
| sin(φ′ − φ)|wµ(φ′)dφ′ .
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We can then express the desired density w approximately as

w(φ) ≈ Cwµ(φ)
α exp((eγ0 − 1)Cυ2I(φ)) , (3.6)

where C is normalizing constant and

I(φ) =
∫ π

0
| sin(φ′ − φ)|wµ(φ′)dφ′ .

3.3 Results

3.3.1 Model I - Parametric estimate
We first suppose that the parameters γ0, γ1, α are unknown and υ, γ2 are known,
where the former is directly observable and the latter we assume to know. The
asymptotic properties of this estimator are studied in Coeurjolly et al. [2011]. We
use test functions

h1(y, µ) =
∫

B
1[ι(y) ∩ ι(x) ̸= ∅]µ(dx) ,

h2(y, µ) = 1 ,

h3((z, υ, φ), µ) =
∫

B
cos(2(φ− γ2))µ(d(z′, υ, φ′)) .

Dividing the first and third equations by the second one we obtain a system of
two equations for unknown γ0, γ1:

G2(µ)
µ(B)

=
∫

B
∫

B c(γ0, γ1, γ2, x)1[ι(y) ∩ ι(x) ̸= ∅]µ(dy)x̃(x)∫
B c(γ0, γ1, γ2, x)x̃(dx) ,∫

B cos(2(φ− γ2))µ(d(z, υ, φ))
µ(B)

=
∫

B c(γ0, γ1, γ2, (z, υ, φ)) cos(2(φ− γ2))x̃(d(z, υ, φ)∫
B c(γ0, γ1, γ2, x)x̃(x) ,

where

c(γ0, γ1, γ2, (z, υ, φ)) = exp(γ0

∫
B

1[ι((z′, υ, φ′)) ∩ ι((z, υ, φ) ̸= ∅]µ(d(z′, υ, φ′))

+ γ1 cos(2(φ− γ2))) .

On the left hand side of the equations we have statistics of the data µ. Having
solved (numerically) the above system of two equations we estimate the third
parameter α as

α =
(

πλ(D)
µ(B)I0(κ)x̃(B)

∫
B

c(γ0, γ1, γ2, x)x̃(x)
)−1

. (3.7)

For a numerical demonstration of the Takacz-Fiksel method we simulated 100
realizations of the segment process on [0, 1]2 of model I with parameters γ0 = −3,
γ1 = 1, γ2 = π/2, υ = 0.06, α = 1000.
The Takacz-Fiksel estimators of γ0, γ1, α were evaluated with random sample
of 1000 segments for each realization. Empirical means and standard deviations
(sd) of the estimators are printed in Table 3.1.
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Model I true mean sd
γ0 -3 -2.998 0.299
γ1 1 0.999 0.078
α 1000 1008.9 64.2

Table 3.1: Means and standard deviations (sd) of Takacz-Fiksel estimates from
100 simulations on [0, 1]2 of model I (with observable parameters γ2 = π/2,
υ = 0.06). The true values of estimated parameters are in the table.

Figure 3.1: Simulated realizations of model I segment processes on [0, 1]2 with
parameters γ1 = 1, γ2 = π/2, υ = 0.06, α = 1000 in the left pattern we have
γ0 = −0.5, and statistics µ(B) = 624, G2(µ) = 204. In the right pattern we have
γ0 = −3 (more repulsion) and statistics µ(B) = 433, G2(µ) = 5.

3.3.2 Model II
The parameters e1, e2 are known as described in the subsection on cell shape.

Here we use four test functions

h1((z, r, φ), x) = f((z, r, φ)) ,

h1((z, r, φ), x) = log
(

r

e1

)
,

h1((z, r, φ), x) = log
(

1− r

e1

)
,

h1((z, r, φ), x) = 1 ,

the second and third is not derived using the derivative of conditional intensity.
We divide the first three equations by the fourth one and we obtain system for
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Model II true mean sd
γ0 0.5 0.525 0.463
γ1 3 3.089 0.296
γ2 3 3.147 0.458
α 100 104.32 40.25

Table 3.2: Means and standard deviations (sd) of Takacz-Fiksel estimates from
100 simulations of model II with parameters e1 = e2 = 1, α = 100, γ0 = 0.5,
γ1 = 3, γ2 = 3. The true values of estimated parameters are in the table.

unknown γ0, γ1, γ2:∫
B F ((z, r, φ))µ(d(z, r, φ))

µ(B)

=
∫

B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r
e1

)F ((z, r, φ))x̃(d(z, r, φ))∫
B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r

e1
)x̃(d(z, r, φ)) ,∫

B log(r)µ(d(z, r, φ))
µ(B)

=
∫

B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r
e1

) log(r)x̃(d(z, r, φ))∫
B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r

e1
)x̃(d(z, r, φ)) ,∫

B log(e1 − r)µ(d(z, r, φ))
µ(B)

=
∫

B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r
e1

) log(e1 − r)x̃(d(z, r, φ))∫
B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r

e1
)x̃(d(z, r, φ)) ,

and finally we put the estimator of γ0 in the equation for α

α = x̃(B)µ(B)
Λ3(B)

∫
B 1[ι((z, r, φ)) ⊆ D] exp(γ0F ((z, r, φ)))w( r

e1
)x̃(d(z, r, φ)) . (3.8)

For a numerical demonstration of the Takacz-Fiksel method we simulated n = 100
realizations of the segment process of model II with parameters e1 = e2 = 1,
α = 100, γ0 = 0.5, γ1 = 3, γ2 = 3.
The Takacz-Fiksel estimators of α, γ0, γ1, γ2 were evaluated with x̃(B) = 1000 for
each realization. Empirical means and standard deviations (sd) of the estimators
are printed in Table 3.2.

3.3.3 Model I - Semiparametric estimate
In this section we suggest a method of estimation of parameters C, γ0, α and
the density w from the previous section using the Takacs-Fiksel method. From
formula (3.3) we obtain innovation equations∫

B
h(y, µ \ {y})µ(dy)−

∫
B

Ψ(y, µ)h(y, µ)dy = 0 (3.9)

and solve them for various test functions h. We take Ψ from (3.2) where we insert
approximation (3.6) for unknown w. First the density wµ is estimated using a
kernel estimator for directional data Mardia and Jupp [1999]. Then put

β(γ0, υ, C, φ) = exp((eγ0 − 1)υ2CI(φ)),
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true mean sd CV
γ0 -0.5 -0.496 0.071 0.14
α 1000 1011 154.7 0.15

true mean sd CV
γ0 -3 -3.03 0.356 0.12
α 1000 976 141.0 0.14

Table 3.3: Empirical mean, standard deviation (sd) and coefficient of variation
(CV) of Takacs-Fiksel estimates of scalar parameters in the model having density
(3.1) with reference directional distribution. It is based on 100 simulations, the
two cases correspond to γ0 = −0.5, γ0 = −3.

and we estimate C, γ0 from the system of Takacs-Fiksel equations:

G2(µ) = π2Λ(D)C
x̃(B)

∫
B

wµ(φ)Gµ
2((z, r, φ))eγ0Gµ

2 ((z,r,φ))

exp((eγ0 − 1)υ2CI(φ)) x̃(d((z, r, φ)))

µ(B) = π2Λ(D)C
x̃(B)

∫
B

wµ(φ)eγ0Gµ
2 ((z,r,φ))

exp((eγ0 − 1)υ2CI(φ)) x̃(d((z, r, φ)))

Gµ
2(x) =

∫
B

1[ι(y) ∩ ι(x) ̸= ∅]µ(d(y)) .

Here in the innovations equations we take score functions h(y, µ) = Gµ
2(y) and

h(y, µ) = 1, respectively, the integrals in the second term of (3.9) are evaluated by
Monte Carlo method using x̃(B) independent simulations of segments uniformly
distributed in B. Then we plug the estimators of C, γ0 in a formula obtained by
integrating (3.6)

α = πC

x̃(B)

∫
B

wµ(φ)
exp((eγ0 − 1)υ2CI(φ)) x̃(d((z, r, φ))) ,

and finally estimate w from (3.6).
A numerical study is based on twice 100 simulated realizations of segment

process with parameters γ1 = 1, γ2 = 0, α = 1000, υ = 0.12 on [0, 1]2 × {υ} ×
[−π

2 , π
2 ]. The two cases I, II investigated are γ0 = −0.5, γ0 = −3, respectively.

The results are in Table 3.3 and in Figures 3.2 and 3.3.
In Table 3.2 we observe a small difference between the true and mean values

for both estimates of γ0 and α. The coefficient of variation

CV = sd
|mean|

is also comparable. In Figure 3.2 we can observe how the kernel estimator of
the observed directional distribution differs from the true reference directional
distribution (von Mises). The results in Figure 3.3 suggest that the estimate of
the reference density is slightly better (smaller bias and variability) for the case I
than for the case II. We conclude that the approximation (3.5) works well in the
Takacs-Fiksel method here.
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Figure 3.2: Kernel estimation of the observed directional density based on 100
simulations of the segment process µ, γ0 = −0.5 (left), γ0 = −3 (right). The
average kernel estimator of the observed directional density (full line) compared
to the true reference density (dashed line) of von Mises distribution with param-
eters γ1 = 0, γ2 = 1. The envelopes (dotted lines) correspond to empirical 90%
confidence interval for the kernel estimator, pointwise in 100 points on horizontal
axis.

Figure 3.3: Semiparametric estimation based on 100 simulations of the segment
process µ, γ0 = −0.5 (left), γ0 = −3 (right). The average estimator of the
reference density (full line) compared to the true reference density (dashed line)
of von Mises distribution with parameters γ1 = 0, γ2 = 1. The envelopes (dotted
lines) correspond to empirical 90% confidence interval for the estimated reference
density, pointwise in 100 points on horizontal axis.
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3.4 Real data

3.4.1 Description
In many applications, systems of randomly dispersed segments in the plane or
space are investigated. In biology, such systems occur e.g. when using fluorescence
imaging to observe stress fibres in stem cells. Real data from an ongoing research
consists of actin stress fibres in human mesenchymal stem cells (hMSCs) taken
from the bone marrow. In the experiment, stem cells have been cultured on gels
of different stiffness for 24 hours. This stiffness is given in terms of the Young’s
modulus, the ratio of stress by strain, i.e. the force per area needed to deform the
material.

Earlier experiments have found that hMSCs can be mechanically guided to
differentiate towards various cell types depending on the substrate elasticity they
are grown on, namely neuron precursor cells for 1 kPa, muscle precursor cells for
10 kPa and bone precursor cells for 30 kPa Engler et al. [2006]. Especially the
differentiation into neuron precursor cells is remarkable, since hMSC stem from
the mesodermal tissue layer, while neurons are ectodermal cells. It has also been
found that these three populations of cells on different gels express significantly
disparate fibre patterns after 24 hours on the gel, Zemel et al. [2010]. It is
therefore interesting to closely examine the stress fibre patterns especially for
cells on a gel with 1 kPa stiffness. Here we investigate group G1 of n1 = 138 cells
which corresponds to a Young’s modulus of 1 kPa and it is mostly suitable for a
simple stochastic modeling.

Using the Filament Sensor algorithm Eltzner et al. [2016] it is possible to
transform the raw data into a system of segments. Fig. 3.4 shows an example
cell and the automatic line detection result. The corresponding segment systems
of each cell are characterized by the following geometrical parameters:

• cell shape,

• spatial distribution of segments,

• length distribution of segments,

• directional distribution of segments.

In the following we suggest a methodology of quantitative description of these
attributes using pixilized input from automatic image analysis.

3.4.2 Description of the cell shape
The cell shape is determined automatically by the Filament Sensor. From the
raw shape, the program derives the center point, the area and the aspect ratio
of the cell. This yields a simple approximation of the shape by an ellipse. An
elliptical window with axes e1 ≥ e2 can be realized in our simulations, however
this suggests restricting attention to cells whose real shape closely fits the elliptical
approximation. For the example cell from Fig. 3.4 we illustrate the corresponding
elliptical approximation in Fig. 3.5. If A is the cell and B is the ellipse, the
number of pixels of ellipsis outside of the cell is card (B \ A) and the number of
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Figure 3.4: Cell 12 on 1 kPa gel, original microscopy image (upper image) and
microscopy image overlayed with fibers (lower image) detected by the Filament
Sensor Eltzner et al. [2016].
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pixels of cell outside of ellipsis is card (A\B) and to find ideal ellipsis we minimize
the sum of these two numbers. For the cells considered in our study, less than
10% of the cells’ pixels lie outside the ellipse. Of the segment pixels even less
than 3% lie outside the ellipse for every image. For these images we can therefore
consider the elliptical approximation of the cell shape as sufficient and to accept
an assumption that the segments are completely included in the ellipse.

Figure 3.5: The shape of cell 12 on 1 kPa gel as detected by the Filament Sensor
Eltzner et al. [2016] compared to the elliptical approximation.

3.4.3 Real data estimates
In Fig. 3.4.3 there are twenty cells from group G1 for further analysis. Those
cells were selected which fit the ellipsoidal shape best. The cell numbers and the
relative amount of pixels outside the ellipse are given in Tab. 3.4.

No. AOE [%] No. AOE [%]
001 3.03 043 5.87
002 4.98 049 4.63
005 7.96 055 3.61
006 5.76 059 2.78
018 6.91 060 5.00
019 8.39 064 6.99
020 7.20 092 6.98
030 9.75 093 7.01
031 7.75 127 5.59
034 7.71 131 5.50

Table 3.4: Shape description: the numbers of cells from group G1 investigated
and their area outside ellipse (AOE) in percent of pixels.

The selected cells were then fitted to the model II with reference length dis-
tribution. The estimated parameter values are in the Table 3.5.

45



Figure 3.6: Analysed segment systems corresponding to stress fibres in cells from
group G1 and their numbers. The shape of the cell is approximated by ellipse
with axes lengths in Table 3.5.
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No e1 e2 α.103 γ0.102 γ1 γ2 I.102

001 59 54 0.46 4.99 1.76 4.27 0.83
002 76 43 1.67 2.88 1.58 4.35 1.13
005 83 46 4.49 0.45 1.59 4.50 0.97
006 57 53 1.98 1.70 2.00 4.47 0.76
018 97 69 1.77 1.65 1.34 4.95 1.03
019 62 46 1.12 3.97 1.87 4.05 1.05
020 94 78 4.07 0.41 1.41 4.67 1.12
030 69 57 3.54 1.13 1.75 4.38 1.27
031 88 50 1.18 2.40 1.44 4.46 0.81
034 92 83 9.44 -1.05 1.43 4.71 1.07
043 67 64 2.43 1.38 1.81 4.52 0.95
049 63 56 2.54 -0.02 1.86 4.34 0.48
055 72 66 2.25 1.85 1.91 5.22 1.20
059 49 45 19.03 -5.41 2.74 4.42 0.49
060 46 34 19.10 -2.57 2.84 4.92 1.31
064 109 89 1.48 0.28 1.29 5.75 0.42
092 86 80 7.89 -1.00 1.69 5.91 0.98
093 108 76 1.98 1.42 1.25 4.63 1.13
127 70 65 7.63 -0.60 1.65 4.28 1.13
131 48 34 0.14 10.26 5.73 12.3 0.90

Table 3.5: The results of the Takacz-Fiksel estimator with reference beta length
distribution, model II. The columns involve subsequently: the cell number, the
axes lengths e1, e2 (in pixels, where 1 pixel=0.32 µm), estimated parameters α,
γ0, γ1 ,γ2 and the ratio I = n(x)

e1e2
which is proportional to number density of

segments.

3.4.4 Testing of the fit of the model
Once we have estimated parameters of the model from the data, it is necessary to
test whether the model fits the data well. Monte Carlo tests are common in spatial
statistics, which are based on some scalar or functional test statistics of the data
pattern Møller and Waagepetersen [2004]. Then we simulate realizations of the
model based on estimated parameters, and find upper and lower limits of values
of estimated test statistics. In the case of test functions the envelopes formed by
pointwise minima and maxima are plotted and it is evaluated how well the test
function estimated from the data falls between the envelopes. Various designs of
these methods are developed in Myllymäki et al. [2015].

Here we restrict ourselves to scalar test statistics. Let h : Y ↦→ R, be a
test statistic and µ1, . . . , µm be a random sample from model with estimated
parameters of a statistic h,

hlower = min(h(µ1), . . . , h(µm)) , (3.10)
hupper = max(h(µ1), . . . , h(µm)) (3.11)

and h(µ) is the observed value from the data. If h(µ) > hupper or h(µ) < hlower

we reject the hypothesis that the data come from the model. The significance
level is unknown since the testing procedure is not independent of the estimation
procedure and also because we are doing multiple tests.
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The test of the fit of the model II is based on scalar test statistics n(x), D(x)
from the model and moreover on N(x), L(x), the total number of intersections,
total length of segments, respectively. In Figures 3.7 the results from n = 20
simulations are presented for each cell. The bounds (3.10) are plotted by dashed
lines and the values of the test statistic from real data lie between the bounds
in all cases. For the test statistics n(x), D(x) from the model naturally the
fit is better and the line corresponding to data lies almost in the middle of the
bounds. We summarize that based on the selected statistics we cannot reject the
hypothesis of model compatibility for any cell. To obtain the level of our test is
computationally demanding as explained above.

3.5 Discussion
The segment process having a density with respect to the Poisson process and
reference directional and/or length distributions presents a new model for segment
systems on a bounded set which may posses interactions. A more complex models
can be built by using joint direction-length distributions, but in fact model II is
of this kind where the directional distribution is uniform. It should be mentioned
that generally the reference distribution need not coincide with the observed
distribution. The model I is a Gibbs type homogeneous process while model II is
an inhomogeneous Poisson process. We suggested the parameter estimator based
on Takacz-Fiksel method for both models, the estimating equations were solved
numerically using the Nelder-Mead method. First we showed the capabilities of
the estimation procedure in simulated segment systems.

Model I was introduced for simulation and demonstration purposes, because
of its homogeneity it arised not to be useful for the modeling of real data from
hMSCs. Theferore we tried to apply the model II to real data of stress fibres ob-
served by fluorescence imaging and transformed into segment systems. In model
II we involve a special statistics D(x) which performs quite well. The negative
values of the corresponding parameter γ0 for cells 34, 49, 59, 60, 92, 127 (cf. Table
3.5) correspond to a uniform distribution of short filaments across the cell or even
tendency to cluster around the centre. Positive values in other cases correspond
to a typical accumulation more close to the boundary than to the centre of the
cell. The beta distribution of the length is also stable in parameters γ1, γ2 (with
the exception of cell 131). Positive results of the degree-of-fit test in Figure 3.7
do not yet mean that the data completely correspond to the model since the test
is conservative. Moreover functional characteristics (like the contact distribution
function) could be implemented as descriptors of spatial distribution. Never-
theless all the presented arguments together make the model II interesting and
valuable for the underlying biological problem.

48



Figure 3.7: The result of model II testing for the statistics D(x), n(x), N(x),
L(x) for analysed segment systems corresponding to selected cells from group
G1. On the horizontal axis there are numbers of cells. The bounds (3.10) are
plotted and joined by dashed lines, the values of the test statistics from real data
lie between them (joined by a full line). This does not lead to the rejection of
model II fit.
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4. Particle process asymptotics
In this chapter we use definitions introduced in Chapter 1.4 and further specify
them. This chapter is based on Beneš et al. [2019+].

Starting with the seminal paper Schreiber and Yukich [2013], the limit theory
for functionals of Gibbs point processes on Euclidean space has recently attracted
a lot of attention; see Blaszczyszyn et al. [2019], Torrisi [2017], Xia and Yukich
[2015]. In this chapter we derive variance asymptotics and central limit theo-
rems for certain statistics of Gibbs processes of geometrical objects (particles).
One possible approach is to extend asymptotic results to Gibbs marked point
processes, see e.g. Mase [2000]. In applications marks describe the geometric
properties of particles. The marks may be scalar, vectorial or particles them-
selves. In the literature we find remarks [Dereudre et al., 2012, Remark 3.7]
telling that results for (Gibbs) point processes on Rd generalize easily to marked
point processes. However, depending on the circumstances the details of such an
extension requires additional effort. Another approach is to parametrize some
particle attributes and to deal with the point processes on the parametric space,
see Chapter 2 of this thesis, Večeřa and Beneš [2016], Večeřa [2016], Večeřa and
Beneš [2017] for an application of the method of moments to a specific Gibbs
model of this type. In this chapter we work directly with particle processes, de-
fined as point processes on the space of compact sets equipped with the Hausdorff
distance as in Schneider and Weil [2008].

We study a stationary Gibbs particle process µ on Rd defined in terms of a
non-negative potential and an activity parameter, assuming that the size of the
particles is deterministically bounded. The background was presented in Sections
1.4-1.6.

Let Wn denote a centered cube of volume n ∈ N. We are interested in the
asymptotic behavior of statistics of the form

Fn := 1
k!

∫
f(K1, . . . , Kk)µ(k)

n (d(K1, . . . , Kk)) , n ∈ N ,

where f is a symmetric and measurable function of k ∈ N particles and µ(k)
n

is the restriction of the k-th factorial measure of µ to (Wn)k. For small activity
parameters (and under some additional technical assumptions) we prove a central
limit theorem (CLT) for the standardized sequence {Fn}n∈N. Our main technical
tools are some methods from Blaszczyszyn et al. [2019] combined with a new
decorrelation property.

In Section 4.1 we mention the fast decay of correlations provided that the
activity is below the percolation threshold of the associated Boolean model. This
result is of some independent interest. It not only strengthens and generalizes
the results in Schreiber and Yukich [2013], but also holds for a wider range of the
activity parameter. The main technical tool is a disagreement coupling [Hofer-
Temmel and Houdebert] of two Gibbs processes with a dominating Poisson par-
ticle process.

In Section 4.2 we derive the CLT through the factorization of weighted mixed
moments analogously to the procedure used for point processes on Rd in Blaszczyszyn
et al. [2019]. Our results are complemented by mean and variance asymptotics
of Fn.
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4.1 Percolation
Define a symmetric geometric relation on C(d) by setting K ∼ L, if and only if,
K ∩ L ̸= ∅. For x ∈ Y, this defines a combinatorial graph (supp(x),∼). For
{K, L} ⊆ C(d), we say that x connects K and L, if there exists a finite path
between K and L in the graph on x + δK + δL. For R,S ∈ B(C(d)), we say that x
connects R and S, if there exist K ∈ R and L ∈ S such that x connects K and
L. We write R x←→ S for this.

We say that x percolates, if its graph contains an infinite connected com-
ponent. There is a critical percolation intensity αc(d) := αc(d,Q) ∈ [0,∞] for
percolation of Poisson particle process ηαΘ.

Lemma 11. For 0 ≤ α < αc(d) and R,S ∈ Bb(C(d)) with R ⊆ S, there exist a
monotone decreasing ϖ1 : [0,∞) ↦→ [0,∞) and ϖ2 ∈ (0,∞) such that

P(R ηαΘ←−→ Sc) ≤ ϖ1(diam(R)) exp (−ϖ2∆(R,Sc)) . (4.1)

Monotonicity in the particle shapes allows to control the percolation threshold.
In the special case of Q = δB(0,υ), the measure Θ becomes

Θυ :=
∫

1[B(x, υ) ∈ ·]dx .

Assumption (1.20) implies that Θ-a.e. x fulfils⋃
K∈x

K ⊆
⋃

K∈x
B(ζ(K), υ) .

Hence, we can couple ηαΘ and ηαΘυ such that

P

⎛⎝ ⋃
K∈ηαΘ

K ⊆
⋃

L∈ηαΘυ

L

⎞⎠ = 1 .

A well known lower bound [Meester and Roy, 1996, Section 3.10] is

αc(d,Q) ≥ αc(d, δB(0,υ)) ≥
1

Bvol
d υd

, (4.2)

where Bvol
d is the volume of the d-dimensional unit sphere.

In the subcritical percolation regime of ητΘ, the finiteness of the percolation
clusters guarantees uniqueness of the Gibbs process µ.

Theorem 12. If τ < αc(d), then the distribution of µ is uniquely determined.

Proof. The proof generalises straightforward from the proof of [Hofer-Temmel and
Houdebert, Theorem 3.2], with the only change being that the interaction range
and particle size are here two separate parameters. Because of the deterministic
bound υ from (1.20) on the particle size and the finiteness of the interaction
range, the arguments remain the same.

With the following theorem we establish the particle counterpart of fast decay
of correlations in [Blaszczyszyn et al., 2019, Definition 2.1] in the subcritical
regime.
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Theorem 13. Assume that τ < αc. Then the Gibbs process µ satisfies

|ρk1+k2(K1, . . . , Kk1+k2 ; µ)− ρk1(K1, . . . , Kk1 ; µ)ρk2(Kk1+1, . . . , Kk1+k2 ; µ)|
≤ τ k1+k2 min{k1, k2}β1 exp(−β2∆({K1, . . . , Kk1}, {Kk1+1, . . . , Kk1+k2})) , (4.3)

for all k1, k2 ∈ N and κ(k1+k2)-a.e. (K1, . . . , Kk1+k2), where β1 and β2 are defined
in (4.1).

The proof of Theorem 13 is based on several lemmas, see Beneš et al. [2019+].
Combining Theorem 13 with known bounds on the percolation threshold (4.2)

implies the following constraint on the activity as sufficient condition for expo-
nential mixing:

τ ≤ 1
Bvol

d υd
. (4.4)

The equivalent statement in [Schreiber and Yukich, 2013] needs to be translated
into our language. Because our potentials have finite range υG and since Ψ ≤ τ ,
[Schreiber and Yukich, 2013, Proposition 2.1] gives the following constraint on
the activity as sufficient condition for exponential concentration:

τ ≤ 1
Bvol

d (1 + υG)d
. (4.5)

Our improvement (4.4) comes from a perfect usage of the information about
the percolation threshold and the proof of Theorem 13 does not weaken this
information.

4.2 Asymptotic properties of admissible func-
tions

In this section we fix an admissible Gibbs process µ as in Definition 30.
For n ∈ N, let Wn :=

[
−1

2n1/d, 1
2n1/d

]d
be the centered cube of volume n,

Cd
n := ζ−1(Wn) and xn := xWn , x ∈ Y. Let µn := µWn , µc

n be the restriction of
the Gibbs process to Cd

n, (Cd
n)c, respectively.

Theorem 14. Let Ff be an admissible function of order k and m ∈ N. Then

sup
n∈N

sup
1≤j≤m

sup
K1,...,Kj∈Cd

n

EK1,...,Kj
[max{|T(K1, µn)|, 1}m] <∞ , (4.6)

where T is given by (1.29) and the inner supremum is an essential supremum
with respect to the j-th reduced factorial moment measure of µ.

Proof. Complete proof can be found in [Beneš et al., 2019+].

Definition 34. We call (µ,T) an admissible pair if µ is an admissible Gibbs
process with τ < αc(d) and the score function T corresponds to an admissible
function Ff , cf. Definition 30 and Definition 31.

For a given mapping Ff in (1.30), we are interested in the asymptotic prop-
erties of F (µn) as n→∞, using notation from Subsection 1.7.

We state the mean and variance asymptotics of Fn = Ff (µn), n ∈ N, as well
as a central limit theorem. The proofs are presented in Subsection 4.2.1.
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Definition 35. Let n, k, m1, . . . , mk ∈ N we define the weighted mixed moment

M(m1,...,mk)(K1, . . . , Kk; n) := ρk(K1, . . . , Kk; µ)

×
∫

Y
(T(K1, xn)m1 · · ·T(Kk, xn)mk)PK1,...,Kk

(dx) , K1, . . . , Kk ∈ Cd . (4.7)

For the weighted mixed moments in (4.7) we denote some special cases in the
following definition.

Definition 36. For K, L ∈ C(d) we set

M(1)(K) := EK [T(K, µ)]ρ1(K; µ) ,

M(2)(K, L) := EK,L[T(K, µ)T(L, µ)]ρ2(K, L; µ) ,

M(1,2)(K) := EK [T2(K, µ)]ρ1(K; µ) .

Theorem 15. Let (µ,T) be an admissible pair. Then it holds that

lim
n→∞

1
n
EFn =

∫
Cd

0

M(1)(K)Q(dK) , (4.8)

lim
n→∞

1
n

varFn =
∫

Cd
0

M(1,2)(K)Q(dK)

+
∫

(Cd
0 )2

∫
Rd

(M(2)(K, L + x)−M(1)(K)M(1)(L))dxQ(dK)Q(dL) <∞ . (4.9)

Next, we write f(n) = Ω(g(n)) when g(n) = O(f(n)) as n→∞.

Theorem 16. Let (T, µ) be an admissible pair. If, for some c ∈ (0,∞),

varFn = Ω(nc) , (4.10)

then we have the CLT

Fn − EFn

(varFn)1/2
D−−−→

n→∞
N(0, 1) . (4.11)

Remark 31. Condition (4.10), which does not necessarily follow from (4.9), says
that there exists c > 0 such that

lim inf
n→∞

varFn

nc
> 0 .

In [Xia and Yukich, 2015, Theorem 1.1] it is shown that for Gibbs point processes
in Rd the condition (4.10) holds with c = 1. This assertion is based on a sufficient
non-degeneracy condition which can be rewritten in our context as follows: There
exists q ∈ (0,∞) and b0 = b0(q) > 0 such that

inf
n∈[q,∞)

E[var(Fn|ζ−1(W c
n) ∩ µ)] ≥ b0 . (4.12)

The result on CLT can be extended to the so called stabilizing functionals, as
defined and investigated in [Blaszczyszyn et al., 2019].
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4.2.1 Factorization of weighted mixed moments
In the following all equations and inequalities involving Palm distributions and
correlation functions are to be understood in the a.e.-sense with respect to the
appropriate factorial moment measures of µ.

Definition 37. We say that the weighted mixed moments approximately factorize,
if there exist constants β1,M , β2,M > 0, such that

|M(m1,...,mk1 )(K1, . . . , Kk1 ; n)M(mk1+1,...,mk1+k2 )(Kk1+1, . . . , Kk1+k2 ; n)
−M(m1,...,mk1+k2 )(K1, . . . , Kk1+k2 ; n)|

≤ β1,M exp(−β2,M∆({K1, . . . , Kk1}, {Kk1+1, . . . , Kk1+k2})) , (4.13)

for all n, k1, k2, m1, . . . , mk1+k2 ∈ N and for all K1, . . . , Kk1+k2 ∈ ζ−1(Wn), where
M = ∑k1+k2

i=1 mi.

In the following we use Theorem 13 to show that (4.13) holds in our context.
The method from [Blaszczyszyn et al., 2019] is used and transformed from point
processes on Rd to particle processes.

The space (C(d), ∆H) is a complete and separable metric space. By [Dudley,
1989, Theorem 13.1.1], the spaces (C(d),B(C(d))) and R equipped with the Borel
σ-algebra are Borel isomorph. That is, there exists a measurable bijection from
C(d) to R with measurable inverse. We use this bijection to pull back the total
order from R to C(d) and denote it by ≺. Hence, intervals with respect to ≺ are
in B(C(d)).

For x ∈ Y and K ∈ C(d), define the measure

x|K(·) := x(· ∩ {L | L ≺ K}) .

Let o be the zero-measure, i.e., o(R) = 0, for all R ∈ B(C(d)). We define
a difference operator for a measurable function F : Y → R, l ∈ N ∪ {0} and
K1, . . . , Kl ∈ C(d) by

Dl
K1,...,Kl

F (x) :=

⎧⎨⎩
∑

J⊆[l](−1)l−|J |F (x|K∗ +∑
j∈J δKj

) if l > 0,
F (o) if l = 0,

(4.14)

where the minimum K∗ := min{K1, . . . , Kl} is taken with respect to the order ≺.
We say that F is ≺-continuous at ∞ if, for all x ∈ Y, we have limK↑Rd F (x|K) =
F (x).

We use the following factorial moment expansion (FME) proved in [Blaszczyszyn
et al., 1997, Theorem 3.1] on a general Polish space. For stronger results in the
special case of a Poisson particle process we refer to [Last, 2014] and [Last and
Penrose, 2017, Chapter 19].

Theorem 17. Let F : Y→ R be ≺-continuous at∞. Assume that, for all l ∈ N,∫
(C(d))l

E!
K1,...,Kl

[Dl
K1,...,Kl

F (µ)]ρl(K1, . . . , Kl; µ)Θl(d(K1, . . . , Kl)) <∞

(4.15)
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and

lim
l→∞

1
l!

∫
(C(d))l

E!
K1,...,Kl

[Dl
K1,...,Kl

F (µ)]ρl(K1, . . . , Kl; µ)Θl(d(K1, . . . , Kl)) = 0.

(4.16)

Then, E[F (µ)] has the FME

E[F (µ)] = F (o) +
∞∑

l=1

1
l!

∫
(C(d))l

[Dl
K1,...,Kl

F (o)]ρl(K1, . . . , Kl; µ)Θl(d(K1, . . . , Kl)) .

(4.17)

Definition 38. For an admissible pair (T, µ), K1, . . . , Kl ∈ C(d) and x ∈ Y, set

Fm1,...,ml
(K1, . . . , Kl; x) :=

l∏
i=1

T(Ki, x)mi , (4.18)

F !
m1,...,ml

(K1, . . . , Kl; x) :=
l∏

i=1
T(Ki, x +

l∑
j=1

δKj
)mi , (4.19)

with m1, . . . , ml ≥ 1.

Remark 32. It holds that EK1,...,Kl
[F (µn)] = E!

K1,...,Kl
[F !(µn)].

Definition 39. For l, k ∈ N, K1, . . . , Kl, L1, . . . , Lk ∈ C(d) we denote by

ρ
(K1,...,Kl)
l (L1, . . . , Lk; µ)

the l-th correlation function of P!
K1,...,Kl

.
Further for l, k ∈ N, K1, . . . , Kl ∈ C(d) we denote

(P!
K1,...,Kl

)!
L1,...,Lk

, L1, . . . , Lk ∈ C(d) ,

the reduced Palm distributions of P!
K1,...,Kl

.

Remark 33. It is easy to show that

ρl(K1, . . . , Kl; µ)ρ(K1,...,Kl)
k (L1, . . . , Lk; µ) = ρl+k(K1, . . . , Kl, L1, . . . , Lk; µ) ,

(4.20)
and

(P!
K1,...,Kl

)!
L1,...,Lk

= P!
K1,...,Kl,L1,...,Lk

. (4.21)

Lemma 18. For distinct K1, . . . , Kp ∈ C(d), non-negative integers m1, . . . , mp, n
and Mp := ∑p

i=1 mi, the functional F ! admits the FME

E!
K1,...,Kp

[F !
m1,...,mp

(K1, . . . , Kp; µn)] = F !
m1,...,mp

(K1, . . . , Kp; o)

+
Mp(k−1)∑

l=1

1
l!

∫
(C(d))l

Dl
L1,...,Ll

F !
m1,...,mp

(K1, . . . , Kp, o)

× ρ
(K1,...,Kp)
l (L1, . . . , Ll; µ)Θl(d(L1, . . . , Ll)) .
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Proof. We abbreviate Fm1,...,mp(K1, . . . , Kp; µ) by F (K1, . . . , Kp; µ). The radius
bound r from (1.31) for the function f implies that F ! is ≺-continuous at ∞.
In [Blaszczyszyn et al., 2019, Lemma 5.1] it is shown that F ! is the sum of
admissible statistics of orders not larger than Mp(k − 1), where k is the order of
admissible statistics. Thus, for l ∈ (Mp(k − 1),∞) and all L1, . . . , Ll ∈ C(d), we
have

Dl
L1,...,Ll

F !(K1, . . . , Kp; x) = 0 . (4.22)
This implies that (4.15), for l ∈ (Mp(k − 1),∞), and (4.16) are satisfied for F !

from (4.19). We need to verify (4.15), for l ∈ [1, Mp(k−1)]. For L1, . . . , Ll ∈ C(d),
x ∈ Y and J ⊆ [l], set

xJ := x |L∗ +
∑
j∈J

δLj
,

where the minimum L∗ := min{L1, . . . , Ll} is taken with respect to the order ≺.
The difference operator Dl

L1,...,Ll
vanishes like in (4.22) as soon as Lq /∈ ⋃p

i=1 B(Ki, 2r)
for some q ∈ [l]. To prove this, expand (4.14) to obtain

Dl
L1,...,Ll

F !(K1, . . . , Kp; x) =
∑

J⊆[l],q /∈J

(−1)l−|J |F !(K1, . . . , Kp; xJ)

+
∑

J⊆[l],q /∈J

(−1)l−|J |−1F !(K1, . . . , Kp; xJ∪{q}) = 0 ,

since, for fixed J ⊆ [l] and q /∈ J , F !(K1, . . . , Kp; xJ) = F !(K1, . . . , Kp; xJ∪{q}).
Then, we have

F !(K1, . . . , Kp; xJ) ≤
p∏

i=1
∥f∥mi

∞

(
x
( p⋃

i=1
B(Ki, 2r)

)
+ |J |+ p

)mi(k−1)

≤ ∥f∥Mp
∞

(
x
( p⋃

i=1
B(Ki, 2r)

)
+ |J |+ p

)Mp(k−1)

.

Using this for difference operator we get

|Dl
L1,...,Ll

F !(K1, . . . , Kp; x)| ≤ ∥f∥Mp
∞

∑
J⊆[l]

(
x
( p⋃

i=1
B(Ki, 2r)

)
+ |J |+ p

)Mp(k−1)

≤ ∥f∥Mp
∞ 2l

(
x
( p⋃

i=1
B(Ki, 2r)

)
+ l + p

)Mp(k−1)

.

(4.23)

Using (4.21), the defining equation (1.25) and (4.23) results in

1
l!

∫
(C(d))l

(E!
K1,...,Kp

)!
L1,...,Ll

[|Dl
L1,...,Ll

F !(K1, . . . , Kp; µn)|]

× ρ
(K1,...,Kp)
l (L1, . . . , Ll; µ)Θl(d(L1, . . . , Ll))

= 1
l!

∫
(C(d))l

E!
K1,...,Kp,L1,...,Ll

[|Dl
L1,...,Ll

F !(K1, . . . , Kp; µn)|]

× ρ
(K1,...,Kp)
l (L1, . . . , Ll; µ)Θl(d(L1, . . . , Ll))

≤∥f∥Mp
∞ 2lEK1,...,Kp

⎡⎣µ

( p⋃
i=1

B(Ki, r)
)l (

µ

( p⋃
i=1

B(Ki, r)
)

+ l + p

)Mp(k−1)
⎤⎦ .
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Since µ has all moments under the Palm measure the finiteness of the last term
and hence the validity of the condition for l ∈ [1, Mp(k−1)] follows. This justifies
the FME expansion.

Theorem 19. Let (T, µ) be an admissible pair. Then the weighted moments
approximately factorize.

Proof. Let k1, k2, m1, . . . , mk1+k2 ∈ N be fixed. Let t := max(4υ + υG, r), with υG

being the finite interaction range of the admissible particle process as outlined
in Definition 30 and taking into account the particle size from (1.20), as well as
(1.31).

Given n ∈ N, K1, . . . , Kk1+k2 ∈ ζ−1(Wn), we set

R := ∆({K1, . . . , Kk1}, {Kk1+1, . . . , Kk1+k2}) .

Without loss of generality we assume that R ∈ (8t,∞). Put M := ∑k1+k2
i=1 mi,

Mk1 := ∑k1
i=1 mi and Mk2 := ∑k1+k2

i=k1+1 mi. Then, using Lemma 18, (4.22) and (4.20)
we obtain

M(m1,...,mk1+k2 )(K1, . . . , Kk1+k2 ; n)
= E!

K1,...,Kk1+k2
[F !(K1, . . . , Kk1+k2 ; µn)]ρk1+k2(K1, . . . , Kk1+k2 ; µ)

=
M(k−1)∑

l=0

1
l!

∫
(Cd

n)l
Dl

L1,...,Ll
F !(o)

× ρl+k1+k2(K1, . . . , Kk1+k2 , L1, . . . , Ll; µ)Θl(d(L1, . . . , Ll))

=
M(k−1)∑

l=0

1
l!

∫
(
⋃k1+k2

i=1 B(Ki,2t))l
Dl

L1,...,Ll
F !(o)

× ρl+k1+k2(K1, . . . , Kk1+k2 , L1, . . . , Ll; µ)Θl(d(L1, . . . , Ll)) .

Let ϖp1,p2 := (⋃k1
i=1 B(Ki, 2t))p1 × (⋃k2

i=1 B(Kk1+i, 2t))p2 . Then, using the FME
from Lemma 18,

M(m1,...,mk1+k2 )(K1, . . . , Kk1+k2 ; n)

=
M(k−1)∑

l=0

1
l!

l∑
j=0

l!
j!(l − j)!

∫
ϖj,l−j

Dl
L1,...,Ll

F !(K1, . . . , Kk1+k2 ; o)

× ρl+k1+k2(K1, . . . , Kk1+k2 , L1, . . . , Ll)Θl(d(L1, . . . , Ll))

=
M(k−1)∑

l=0

l∑
j=0

1
j!(l − j)!

∫
ϖj,l−j

∑
J⊆[l]

(−1)l−|J |F !(K1, . . . , Kk1+k2 ;
∑
j∈J

δLj
)

× ρl+k1+k2(K1, . . . , Kk1+k2 , L1, . . . , Ll)Θl(d(L1, . . . , Ll)) .

To compare the (k1 +k2)-th mixed moment with the product of the k1-th and k2-
th mixed moments we use factorization that holds for L1, . . . , Lj ∈

⋃k1
i=1 B(Ki, 2t)

and Lj+1, . . . , Ll ∈
⋃k2

i=1 B(Kk1+i, 2t). If

N1 ∈
k1⋃

i=1
B(Ki, 2t) , N2 ∈

k2⋃
i=1

B(Kk1+i, 2t) ,
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then N1 ∩N2 = ∅. Hence

F !(K1, . . . , Kk1+k2 ;
l∑

i=1
δLi

)

= F !(K1, . . . , Kk1 ;
j∑

i=1
δLi

)F !(Kk1+1, . . . , Kk1+k2 ;
l∑

i=j+1
δLi

) . (4.24)

Using (4.24) and the similar steps as in the case of the (k1 +k2)-th mixed moment
we work with the product of k1-th and k2-th mixed moments.

M(m1,...,mk1 )(K1, . . . , Kk1 ; n)M(mk1+1,...,mk1+k2 )(Kk1+1, . . . , Kk1+k2 ; n)
= E!

K1,...,Kk1
[F !(K1, . . . , Kk1 , µn)]

× E!
Kk1+1,...,Kk1+k2

[F !(Kk1+1, . . . , Kk1+k2 , µn)]
× ρk1(K1, . . . , Kk1 ; µ)ρk2(Kk1+1, . . . , Kk1+k2 ; µ)

=
∞∑

l1,l2=0

∫
ϖl1,l2

Dl1
L1,...,Ll1

F !(K1, . . . , Kk1 ; o)

×Dl2
N1,...,Nl2

F !(Kk1+1, . . . , Kk1+k2 ; o)
× ρl1+k1(K1, . . . , Kk1 , L1, . . . , Ll1 ; µ)
× ρl2+k2(Kk1+1, . . . , Kk1+k2 , N1, . . . , Nl2 ; µ)
×Θl1(d(L1, . . . , Ll1))Θl2(d(N1, . . . , Nl2))

=
∞∑

l1,l2=0

1
l1!l2!

∫
ϖl1,l2

∑
J1⊆[l1],J2⊆[l2]

(−1)l1+l2−|J1|−|J2|

× F !(K1, . . . , Kk1 ;
∑
i∈J1

δLi
)F !(Kk1+1, . . . , Kk1+k2 ;

∑
i∈J2

δNi
)

× ρl1+k1(K1, . . . , Kk1 , L1, . . . , Ll1 ; µ)
× ρl2+k2(Kk1+1, . . . , Kk1+k2 , N1, . . . , Nl2 ; µ)
×Θl1(d(L1, . . . , Ll1))Θl2(d(N1, . . . , Nl2))

=
M(k−1)∑

l=0

l∑
j=0

1
j!(l − j)!

∫
ϖj,l−j

∑
J1⊆[j],J2⊆[l]\[j]

(−1)l−|J1|−|J2|

× F !(K1, . . . , Kk1 ;
∑
i∈J1

δLi
)F !(Kk1+1, . . . , Kk1+k2 ;

∑
i∈J2

δLi
)

× ρj+k1(K1, . . . , Kk1 , L1, . . . , Lj; µ)
× ρl−j+k2(Kk1+1, . . . , Kk1+k2 , Lj+1, . . . , Ll; µ)Θl(d(L1, . . . , Ll))

=
M(k−1)∑

l=0

l∑
j=0

1
j!(l − j)!

∫
ϖj,l−j

∑
J⊆[l]

(−1)l−|J |

× F !(K1, . . . , Kk1+k2 ;
∑
i∈J

δLi
)ρj+k1(K1, . . . , Kk1 , L1, . . . , Lj)

× ρl−j+k2(Kk1+1, . . . , Kk1+k2 , Lj+1, . . . , Ll; µ)Θl(d(L1, . . . , Ll)) .

58



Altogether we have, using β1, β2 from (4.3), that

|M(m1,...,mk1+k2 )(K1, . . . , Kk1+k2 ; n)
−M(m1,...,mk1 )(K1, . . . , Kk1 ; n)M(mk1+1,...,mk1+k2 )(Kk1+1, . . . , Kk1+k2 ; n)|

≤
M(k−1)∑

l=0

l∑
j=0

∑
J⊆[l]

(−1)l−|J |

j!(l − j)!

∫
ϖj,l−j

F !(K1, . . . , Kk1+k2 ;
∑
i∈J

δLi
)

× |ρj+k1(K1, . . . , Kk1 , L1, . . . , Lj)ρl−j+k2(Kk1+1, . . . , Kk1+k2 , Lj+1, . . . , Ll)
− ρl+k1+k2(K1, . . . , Kk1+k2 , L1, . . . , Ll)|Θl(d(L1, . . . , Ll))

≤
M(k−1)∑

l=0

l∑
j=0

∑
J⊆[l]

(−1)l−|J |

j!(l − j)!

∫
ϖj,l−j

F !(K1, . . . , Kk1+k2 ;
∑
i∈J

δLi
)

× τ l+k1+k2 min{j + k1, l − j + k2}β1

× exp(−β2∆({K1, . . . , Kk1 , L1, . . . , Lj}, {Kk1+1, . . . , Kk1+k2 , Lj+1, . . . , Ll})
×Θl(d(L1, . . . , Ll)) .

Using

T(K, x)1[x(C(d)) = p] ≤ pk−1

k
∥f∥∞ ,

we have
∑

J⊆[l]
|F !(K1, . . . , Kk1+k2 ;

∑
i∈J

δLi
)| ≤ 2l

(
∥f∥∞

|k1 + k2 + l|k−1

k

)M

.

The difference of weighted mixed moments is finally bounded by

|M(m1,...,mk1+k2 )(K1, . . . , Kk1+k2 ; n)
−M(m1,...,mk1 )(K1, . . . , Kk1 ; n)M(mk1+1,...,mk1+k2 )(Kk1+1, . . . , Kk1+k2 ; n)|

≤
M(k−1)∑

l=0

l∑
j=0

(
∥f∥∞

|k1 + k2 + l|k−1

k

)M exp(−8t)2l(−1)l−|J |

j!(l − j)! Θ(B({0}, 3t))l

× τ l+k1+k2 min{j + k1, l − j + k2}
× β1 exp(−β2∆({K1, . . . , Kk1}, {Kk1+1, . . . , Kk1+k2}) .

As min{j + k1, l − j + k2} ≤ l + k1 + k2 ≤ kM , we obtain the desired constants
for approximate factorization depending only on M and the attributes of the
admissible pair.

4.2.2 Proofs of limit theorems
In this subsection we prove mean and variance asymptotics of Fn = Ff (µn),
n ∈ N, as well as a central limit theorem. For K, L ∈ Cd, n ∈ N, x ∈ Rd we
abbreviate

M(1)(K; n, x) = EK [T(K, µx
n)]ρ1(K; µ) , (4.25)

M(2)(K, L; n, x) = EK,L[T(K, µx
n)T(L, µx

n)]ρ2(K, L; µ) , (4.26)

where µx
n := µ ∩ (Wn − n

1
d x).
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Proof of Theorem 15. From (1.25), (1.23) and (1.17), we have

EFn =
∫

Cd
n

EKT(K, µn)ρ1(K; µ)Θ(dK)

=
∫

Cd
0

∫
Wn

EK+x[T(K + x, µn)]ρ1(K + x; µ)dxQ(dK) .

The stationarity of µ and translation invariance of T imply that

ρ1(K + x; µ) = ρ1(K; µ) and T(K + x, µ) = T(K, µ) , K ∈ C(d) , x ∈ Rd .

Thus,∫
Cd

0

∫
Wn

EK+x[T(K + x, µ)]ρ1(K + x; µ)dxQ(dK) = n
∫

C(d)
M(1)(K)Q(dK) .

To prove (4.8) it remains to show that

1
n

∫
Cd

0

∫
Wn

|EK+x[T(K + x, µn)]− EK+x[T(K + x, µ)]|dxρ1(K; µ)Q(dK)

tends to zero as n→∞. The function ρ1 is bounded. For K ∈ Cd
0 , K ⊆ B(0, υ)

fixed and x ∈ Wn, we use (1.31) to obtain T(K + x, µn) = T(K + x, µ) whenever
∆(x, ∂Wn) ≤ 2υ for the distance from x to the boundary of Wn holds. The
1-moment condition (4.6) implies the existence of some 0 < t < ∞ such that
|T(K + x, µn)| ≤ t and |T(K + x, µ)| ≤ t, uniformly in n ∈ N and K + x ∈ Cd

n.
Since

lim
n→∞

1
n

λd{x ∈ Wn | ∆(x, ∂Wn) ≤ 2υ} = 0 ,

the first assertion of the theorem is proved.
For the second moment we obtain as above

EF 2
n = J1 + J2 =

∫
Cd

0

∫
Wn

EK+x1T2(K + x1, µn)ρ1(K + x1; µ)dx1Q(dK)

+
∫

(Cd
0 )2

∫
(Wn)2

EK+x1,L+x2 [T(K + x1, µn)T(L + x2, µn)]

× ρ2(K + x1, L + x2; µ)dx1dx2Q(dK)Q(dL) .

Then
lim

n→∞

J1

n
=
∫

C(d)
M(1,2)(K)Q(dK)

is obtained analogously to the mean value asymptotics above using the 2-moment
condition (4.6).
In the second term J2 we use the substitutions x̃1 = n− 1

d x1, x̃2 = x2−x1, obtaining

J2

n
=
∫

(Cd
0 )2

∫
W1

∫
Wn−n

1
d x̃1

ρ2(K + n
1
d x̃1, L + x̃2 + n

1
d x̃1; µ)

× E
K+n

1
d x̃1,L+x̃2+n

1
d x̃1

[T(K + n
1
d x̃1, µn)T(L + x̃2 + n

1
d x̃1, µn)]

× dx̃2dx̃1Q(dK)Q(dL)

=
∫

(Cd
0 )2

∫
W1

∫
Wn−n

1
d x̃1

ρ2(K, L + x̃2; µ)

× EK,L+x̃2 [T(K, µx̃1
n )T(L + x̃2, µx̃1

n )]dx̃2dx̃1Q(dK)Q(dL) ,
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Since var(Fn) = EF 2
n − (EFn)2, we investigate the expression 1

n
(J2− (EFn)2).

It takes the form∫
(Cd

0 )2

∫
W1

∫
Wn−n

1
d x̃1

(M(2)(K, L + x̃2; n, x̃1)−M(1)(K; n, x̃1)M(1)(L + x̃2; n, x̃1))

× dx̃2dx̃1dQ(K)dQ(L) . (4.27)

Splitting the innermost integral in (4.27) into the two terms
∫

Wn−n
1
d x̃1

(. . . )dx̃2

=
∫

Wn−n
1
d x̃1

(. . . )1[|x̃2| ≤ t]dx̃2 +
∫

Wn−n
1
d x̃1

(. . . )1[|x̃2| > t]dx̃2 , (4.28)

for an arbitrary t > 0, we observe that the part of (4.27) corresponding to the
first term of (4.28), i.e.
∫

(Cd
0 )2

∫
W1

∫
Wn−n

1
d x̃1

(M(2)(K, L + x̃2; n, x̃1)−M(1)(K; n, x̃1)M(1)(L + x̃2; n, x̃1))

× 1[|x̃2| ≤ t]dx̃2dx̃1dQ(K)dQ(L) , (4.29)

converges to∫
(Cd

0 )2

∫
Rd

(M(2)(K, L + x)−M(1)(K)M(1)(L))dxQ(dK)Q(dL),

when first n → ∞ and then t → ∞. Using (4.13) absolute value of the second
term in (4.28) can be bounded uniformly in n by

β1,2

∫
|x|>t

exp (−β2,2∆H(K, L + x)) dx ,

which tends to zero when t → ∞. Thus the part of (4.27) corresponding to the
second term in (4.28), i.e.
∫

(Cd
0 )2

∫
W1

∫
Wn−n

1
d x̃1

(M(2)(K, L + x̃2; n, x̃1)−M(1)(K; n, x̃1)M(1)(L + x̃2; n, x̃1))

× 1[|x̃2| > t]dx̃2dx̃1dQ(K)dQ(L) , (4.30)

converges to zero. We can justify these statements in detail similarly to [Blaszczyszyn
et al., 2019, p.39-41]. The boundedness in (4.9) follows from the 2-moment con-
dition (4.6) for the first term and from (4.13) for the second term.

Sketch of the proof of Theorem 16. Denote F̄n = Fn − EFn. The idea is to
prove that the k-th order cumulants of (varFn)−1/2(F̄n) vanish as n → ∞ and k
large. This follows by showing that (4.6) and (4.13) imply volume order growth
(i.e., of order O(n)) for the k-th order cumulant of F̄n, k ≥ 2, and using the
assumption (4.10). Then (4.11) holds. The details are analogous to [Blaszczyszyn
et al., 2019, p.43-49], with the difference that we deal with measures defined on
Cd

n.
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Conclusion
We have presented our results divided into three parts based on topics.

• The first part in Chapter 2 presented central limit theorem for U-statistics
of Gibbs facet process based on method of moments and moment formulas
for moments of such statistics.

• The second part shows parametric and semiparametric methods for estima-
tion in facet (segment) processes. We illustrate usage of these methods in
simulation study and on real data retrieved from stem cells imaging.

• The third part deals with Gibbs particle process modeling. We derive con-
ditions under which the mean and variance asymptotics and the central
limit theorem for some statistics of Gibbs particle processes hold.

62



Bibliography
A. Baddeley. Spatial Point Processes and their Applications. Springer, 01 2006.

A. Baddeley and G. Nair. Fast approximation of the intensity of Gibbs point
processes. Electron. J. Statist., 6, 2012.

A. Baddeley and R. Turner. Practical Maximum Pseudolikelihood for Spatial
Point Patterns. Australian & New Zealand Journal of Statistics, 42(3), 2000.

B. Blaszczyszyn, E. Merzbach, and V. Schmidt. A note on expansion for func-
tionals of spatial marked point processes. Statistics & Probability Letters, 36
(3), 1997.
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