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Abstrakt 

N6-metylace adenosinu (m6A) je nejčastější modifikací mRNA u eukaryot. Na RNA je vytvářena 

metyltransferázami během transkripce, navíc může být odstraněna konkrétními demetylázami. 

Přítomnost těchto demetyláz umožňuje vratnost modifikace a její potenciální dynamičnost, proto 

by se N6-metyladenosin mohl účastnit regulace genové exprese. Od objevu první m6A-specifické 

demetylázy FTO, m6A modifikace začala být oblíbeným tématem ve výzkumu biologie RNA. N6-

metyladenosin je přítomen v mRNA ale také v různých nekódujících RNA. Analýza distribuce m6A 

na mRNA odhalila obohacení kolem 3’ nepřekládané oblasti a pravděpodobně kolem sestřihových 

míst. Zatím byly objeveny dvě m6A metyltransferázy, METTL3/METTL14 metyltransferáza je 

hlavním metyltransferázovým komplexem a metyltransferáza METTL16 metyluje jen malou 

skupinu RNA. Také jsou známy dvě demetylázy – FTO a ALKBH5. Navíc byly identifikovány 

proteiny vázající m6A, které spolu sdílí strukturní doménu YTH. m6A slouží jako buněčný signál 

ovlivňující různé kroky metabolismu RNA, například sestřih RNA, jaderný export, translaci nebo 

odbourávání RNA. Některé tyto vlivy jsou zprostředkovány m6A-vázajícími proteiny, ale mohou 

se účastnit i jiné mechanismy. Přítomnost m6A modifikace na RNA může také ovlivňovat 

sekundární strukturu dané RNA a tím i přístup některých RNA-vazebných proteinů, tento 

regulační mechanismus se nazývá „m6A switch“. 

 

 

 

 

 

 

 

Klíčová slova 

N6-metyladenosin, m6A, RNA modifikace, RNA metylace, epitranskriptom 

  



Abstract 

The N6-methylation of adenosine (m6A) is the most abundant modification in eukaryotic mRNA. 

This modification is deposited on RNA co-transcriptionally by the methyltransferase complexes 

and can also be “erased” by specific demethylases. The existence of m6A demethylases makes the 

modification reversible and potentially dynamic, therefore, m6A could have a function in gene 

expression regulation. Since the discovery of the first m6A demethylase FTO, the m6A has become 

a hot-topic in RNA-biology research. m6A is found in mRNAs but also in various non-coding 

RNAs. Analysis of m6A distribution on mRNAs revealed the enrichment of m6A in proximity of a 

stop codon, in 3’ UTRs and possibly around 5’ and 3’ splice-sites. So far two m6A 

methyltransferases have been discovered in vertebrates, METTL3/METTL14 complex is the 

major methyltransferase and METTL16 deposits m6A just on a specific subset of RNAs. 

Additionally, two m6A demethylases are known – FTO and ALKBH5. Finally, members of protein 

family with a so-called YTH RNA binding domain were identified as m6A binding proteins. m6A 

serves as a signal affecting various steps of RNA metabolism such as mRNA splicing, nuclear 

export, translation or RNA degradation. Some of the effects are clearly mediated by the m6A 

binding proteins, but also other mechanisms can be involved. m6A presence on RNA can also 

modify the RNA secondary structure, changing the accessibility of the RNA to various RNA-

binding proteins, this regulatory mechanism is called m6A switch. 
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3’ UTR 3’ untranslated region 
5’ UTR 5’ untranslated region 
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hnRNP heterogeneous nuclear ribonucleoprotein 
KO knock-out 
lncRNA long non-coding RNA 
m6A N6-methyladenosine 
m6Am N6 ,2′-O-dimethyladenosine 
MAT2A-RI MAT2A-retained intron isoform 
MeRIP-Seq m6A-specific methylated RNA immunoprecipitation, sequencing 
miCLIP  m6A individual nucleoside resolution cross-linking and 

immunoprecipitation 
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ncRNA non-coding RNA 
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ssRNA single-stranded RNA 
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Introduction 

Multicellular organisms are composed of many various cell types which differ dramatically in their 

biological characteristics including morphology and metabolism. Besides, cells can change 

markedly during development or even in response to a changing outer environment and conditions. 

All this cellular flexibility is a product of a complex regulation of gene expression. There are many 

steps during gene expression which can be dynamically controlled, starting with transcription that 

is modulated by transcription factors and by the epigenetic marks including DNA methylation or 

various histone modifications (reviewed in Branco et al., 2012; Jones, 2012; Rothbart and Strahl, 

2014; Strahl and Allis, 2000; Suzuki and Bird, 2008). Moreover, there are many post-transcriptional 

steps that can be finely tuned, such as RNA splicing, polyadenylation, export, translation or 

degradation. 

For several decades, epigenetic modifications of DNA and histones have been studied extensively 

as signals affecting the gene expression. The existence of different chromatin-modifying enzymes 

which counteract each other enables the cells to dynamically change the patterns of chromatin 

marks and therefore change the transcription output (reviewed in Klose et al., 2006; Kohli and 

Zhang, 2013; Rothbart and Strahl, 2014; Shi, 2007). In contrast to DNA modifications, covalent 

modifications of RNA have been for many years considered stable and generally independent on 

the broader cellular context, therefore not important for the gene expression regulation (reviewed 

in Fu et al., 2014). The view on the RNA modification dynamics has changed rapidly in 2011 after 

the discovery of a protein called Fat-mass and obesity-associated factor (FTO), the RNA 

demethylase with the affinity toward N6-methylated adenosine (m6A) in single-stranded RNA 

(ssRNA) regions (Jia et al., 2011). m6A is probably the most abundant internal modification of 

mRNA in eukaryotes (Wei et al., 1975b). The discovery of the m6A demethylase raised the question 

whether this very abundant modification could be dynamically regulated and thus also involved in 

regulation of gene expression. Recently, the research of m6A methylation of various RNAs has 

become a very competitive and rapidly evolving field of RNA biology. Possible dynamics of m6A 

and other other post-transcriptional modifications, which have been identified within mRNAs such 

as N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytidine (ac4C), 

N6 ,2′-O-dimethyladenosine (m6Am) and pseudouridine (Ψ) (Arango et al., 2018; Carlile et al., 

2014; Desrosiers et al., 1974; Dominissini et al., 2016; Squires et al., 2012; Wei et al., 1975a) gave 

rise to the idea of a new regulatory information layer in a cell called epitranscriptome. 
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It is estimated, that 0.1-0.4 % of total adenosines in mammalian transcriptome are N6-methylated 

(Wei et al., 1975b). To a smaller extent, m6A modification is also present in various non-coding 

RNAs (ncRNAs) (Dominissini et al., 2012; Meyer et al., 2012). The distribution of m6A residues 

within the transcripts is not random and it follows specific enrichment patterns (Dominissini et al., 

2012; Meyer et al., 2012). This differential density of m6A across the transcript is likely connected 

to the signaling function of the modification, therefore the precise determination of the m6A 

density patterns could help us understand the biological relevance and function of m6A 

modification. Moreover, the m6A modification can be found throughout the transcriptomes of 

eukaryotic organisms from yeasts (Schwartz et al., 2013) to plants (Nichols, 1979), mammals 

(Dominissini et al., 2012; Meyer et al., 2012) or insects (Lence et al., 2016)., or even in some bacterial 

(Deng et al., 2015) and viral RNAs (Beemon and Keith, 1977; Canaani et al., 1979). Not just the 

m6A connected protein machineries but also the m6A distribution features on RNAs are often 

conserved throughout the species, suggesting the evolutionary old and important role of m6A 

(Dominissini et al., 2012; Schwartz et al., 2013; Stoilov et al., 2002; Zhang et al., 2010). 

The biological relevance of the m6A modification on RNAs is supported by the abnormal 

phenotypes of the cells or whole organisms after the m6A deposition or erasure is impaired. 

Knock-out (KO) of the methyltransferase protein METTL3 or METTL16 is embryonic-lethal 

(Batista et al., 2014; Mendel et al., 2018). Knock-outs of demethylases have milder but still distinct 

effect, FTO KO in mice leads to postnatal growth retardation and overall dysregulation of energy 

homeostasis (Fischer et al., 2009), while ALKBH5 KO causes infertility (Tang et al., 2018; Zheng 

et al., 2013). m6A modification was as well connected to the various biological processes such as 

gametogenesis (Hongay and Orr-Weaver, 2011; Lin et al., 2017; Tang et al., 2018; Xu et al., 2017; 

Zheng et al., 2013), stem-cell differentiation (Batista et al., 2014; Bertero et al., 2018; Chen et al., 

2015; Geula et al., 2015; Wang et al., 2014b), zygotic development (Mendel et al., 2018; Zhao et al., 

2017) , tumorigenesis (Cui et al., 2017; Li et al., 2017b; Zhang et al., 2016, 2017) or even meiosis 

and sporulation in yeast (Schwartz et al., 2013). But how are the m6A-deposition sites determined? 

What are the molecular mechanisms behind the various effects of this modification and is m6A 

methylation pattern really changed in response to cellular stimuli? 

Here I present so far known information about distribution of m6A modification on mRNAs, the 

enzymes depositing, removing or recognizing m6A modification and about the effects of m6A 

modification on the metabolism of modified transcripts. This text is focusing mainly on the 
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molecular mechanisms underlying the various effects of m6A modification on RNA and on the 

importance of m6A modification in RNA metabolism in the context of mammalian, mostly human 

and murine cells. However, at least some of the mechanism seem to be conserved across the 

eukaryotes. 

m6A distribution patterns on different RNAs 

The m6A marks were shown to affect different aspects of RNA metabolism, such as splicing 

(Louloupi et al., 2018; Tang et al., 2018; Xiao et al., 2016; Xu et al., 2017; Zheng et al., 2013), 

nuclear export (Roundtree et al., 2017), RNA stability (Du et al., 2016; Ke et al., 2017; Tang et al., 

2018; Wang et al., 2014a, 2014b) and translation (Barbieri et al., 2017; Li et al., 2017a; Lin et al., 

2017; Meyer et al., 2015; Wang et al., 2015). Determining the specific position of m6A within the 

transcripts and quantifying the methylated transcripts could lead to a better understanding of m6A 

functional role and the underlying mechanisms by which it affects the fate of various RNAs. Our 

knowledge about localization and quantity of m6A residues in RNAs is dependent on the limitations 

of the methods used for the identification of m6A methylated sites. Because the N6-methyl group 

of m6A does not interfere with Watson-Crick base pairing of adenosine (Roost et al., 2015) (Figure 

1) and therefore it generally does not lead to an introduction of a mutation during 

reverse-transcription, more sophisticated methods than RNA sequencing had to be developed for 

transcriptome-wide m6A mapping (Aschenbrenner et al., 2018). The first used methods such as 

m6A-seq or MeRIP-Seq (m6A-specific methylated RNA immunoprecipitation, sequencing) and 

currently widely used miCLIP (m6A individual nucleoside resolution cross-linking and 

immunoprecipitation) are all based on RNA fragmentation, anti-m6A antibody recognition of m6A, 

enrichment of the recognized fragments by immunoprecipitation (IP) and finally next-generation 

sequencing of the fragments (Dominissini et al., 2012; Linder et al., 2015; Meyer et al., 2012). 

miCLIP can have a single-nucleotide resolution and is independent of the bioinformatic 

consensus-based prediction of m6A sites, therefore this method can identify m6A residues outside 

the common consensus motif (Linder et al., 2015). However, the usage of an antibody still 

introduces a bias in the method – often used antibodies cannot discriminate between different 

ribose modifications at the 2’-position, therefore between m6A and m6Am. Moreover, nucleotides 

adjacent to an m6A site or secondary structures can affect the antibody affinity to the site. Finally, 

due to the enrichment steps, above-mentioned methods cannot provide the precise information 

about quantity of methylated vs unmethylated transcripts (reviewed in Hartstock and Rentmeister, 

2019). 
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Figure 1 Structure of 
N6-methylated adenine 
base-paired with uracil 
within RNA duplex. 
N6-methyladenine (left) 
base and methylamino 
group are both in anti 
conformation adopting a 
Watson-Crick base 
pairing with uracil (right). 
Adopted from (Roost et 
al., 2015). 

 

 

First transcriptome-wide m6A mapping experiments were performed in 2012, using the newly 

established m6A-seq and MeRIP-Seq methods and identified the m6A consensus sequence RRACH 

(R stands for A or G; H for A, C or U), where the central adenine is methylated (Dominissini et 

al., 2012; Meyer et al., 2012). However, only some of the sequences consistent with the m6A 

consensus are methylated within the transcripts, implying that other signals are also needed to 

determine the m6A methylation site (Dominissini et al., 2012). Later, the major methyltransferase 

complex METTL3/METTL14 was identified and was shown to specifically recognize the m6A 

consensus sequence (Liu et al., 2014). 

m6A residues were found in various groups of RNAs – messenger RNAs (Dominissini et al., 2012; 

Meyer et al., 2012), ribosomal RNAs (rRNAs) (Liu et al., 2013), long non-coding RNAs (lncRNAs) 

(Dominissini et al., 2012; Meyer et al., 2012), small nucleolar RNAs (snoRNAs) (Linder et al., 2015), 

microRNAs (miRNAs) (Alarcón et al., 2015a) or some small nuclear RNAs (snRNAs) (Karijolich 

and Yu, 2010; Pendleton et al., 2017; Warda et al., 2017). Most of those RNAs have the majority 

of m6A residues within the m6A consensus sequence but specific m6A sites which do not localize 

in the consensus sequence are also found (Pendleton et al., 2017; Warda et al., 2017). snRNAs and 

rRNAs harbor several m6A residues and none of them localizes in the consensus sequence 

(Karijolich and Yu, 2010; Liu et al., 2013; Pendleton et al., 2017; Warda et al., 2017). Considering, 

that the METTL3/METTL14 methyltransferase complex was shown to be consensus-specific, the 

m6A residues outside of the consensus are probably deposited by a different methyltransferase 

complex (Liu et al., 2014). 
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Analysis of m6A distribution within mRNA transcripts revealed a significant enrichment of m6A 

marks in the proximity of a stop codon (Dominissini et al., 2012; Linder et al., 2015; Meyer et al., 

2012; Schwartz et al., 2014) and at 3’ untranslated region (3’ UTR) (Ke et al., 2015; Meyer et al., 

2012). First used methods also showed m6A peaks close to a transcription start site (Dominissini 

et al., 2012) however, those results were later shown to be due to the limited specificity of the used 

antibody and the recognition of m6Am methylation mark, which in some mRNAs follows directly 

the guanosine 5' cap structure (Linder et al., 2015; Schwartz et al., 2014). Coding sequence (CDS) 

of mRNAs is relatively depleted of m6A, with the highest levels within the long internal exons, 

suggesting a possible role of m6A modification in exon definition during splicing (Dominissini et 

al., 2012; Ke et al., 2017; Schwartz et al., 2014). Moreover, differentially spliced exons and introns 

showed an enrichment of m6A methylation (Dominissini et al., 2012). Some of the m6A sites are 

organized into clusters of 150 – 500 bp, which contain up to 15 m6A residues (Linder et al., 2015). 

Because the first m6A distribution analysis used total cellular RNA, where the nascent, unspliced 

mRNAs are under-represented, there was not much data about methylation of intronic regions, 

hence they were believed to be rarely methylated (Meyer et al., 2012). Later, techniques for specific 

isolation of the nascent RNA were used to assess the methylation patterns of the nascent 

transcripts. Nevertheless, data from various research groups are not consistent. For example, 

analysis of the partially spliced RNA fraction bound to chromatin by Ke et al. (Ke et al., 2017) 

revealed that although the nascent mRNAs already contain the m6A residues in the exonic 

sequences, introns are very rarely methylated. However, using bromouridine (BrU) metabolic 

labelling and isolation of labelled nascent transcripts, Louloupi et al. (Louloupi et al., 2018) showed 

that more than 50 % of m6A marks is located in intronic regions. They also showed the enrichment 

of m6A residues in exonic regions near splice junctions in nascent mRNAs, but those sites are not 

enriched anymore in the steady-state mRNAs. Both groups (Ke et al., 2017; Louloupi et al., 2018) 

detected m6A peaks in the nascent mRNA molecules, which are then not present in mature 

transcripts, suggesting that m6A in this regions acts as a transient mark potentially with a function 

during mRNA maturation (Louloupi et al., 2018). 

It was shown that the general m6A distribution patterns on mRNAs are highly conserved between 

human and mice and often the m6A residues are localized at the orthologous positions in the 

transcripts (Dominissini et al., 2012; Meyer et al., 2012). Moreover m6A sites are often located in 

the evolutionarily conserved sequences (Meyer et al., 2012). Those observations suggest an 
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important functional role of this modification (Dominissini et al., 2012). Several research groups 

also tried to compare the m6A mapping results for various samples, showing that m6A distribution 

patterns are mostly similar across diverse conditions and different cell types (Dominissini et al., 

2012; Schwartz et al., 2014) but the analysis also revealed the subsets of transcripts that exhibit a 

distinct cell-type or treatment-dependent methylation patterns (Anders et al., 2018; Chen et al., 

2015; Dominissini et al., 2012). On the other hand, the m6A methylation was shown to be 

non-stoichiometric, meaning that not every molecule of a specific transcript is methylated 

(considering a specific position) and instead there is a ratio of N6-methylated vs unmethylated 

(m6A/A) transcripts (Horowitz et al., 1984; Liu et al., 2013). Therefore, it is also reasonable to 

estimate and compare the methylation ratios in various cell types and conditions. According to 

MeRIP-Seq data by Meyer et al., in contrast to the high conservation of m6A distribution ,the 

overall methylation levels differ widely between various cell types and their differentiation stages, 

with highest methylation levels in brain, liver and kidney and during neuronal maturation (Meyer 

et al., 2012). However, Schwartz et al. suggest that those differences are simply due to the changes 

in expression levels of m6A-methylated transcripts (Schwartz et al., 2014). The comparison 

restricted to the transcripts with relatively stable expression levels across the tested conditions 

shows no significant changes in m6A levels (detected by m6A-seq) (Schwartz et al., 2014). 

Nevertheless, the methods for more precise quantification of m6A containing transcripts must be 

used to confirm the estimations based on MeRIP-Seq and m6A-seq data (Hartstock and 

Rentmeister, 2019). 

The number of methylation sites differ between the transcripts, from highly methylated ones to 

the transcripts which have just one or no m6A site (Meyer et al., 2012). The genes encoding m6A 

containing RNAs are not clustered in a specific functional category, instead they are involved in 

many various cellular functions, for example signaling cascades, transcriptional regulation or RNA 

metabolism (Meyer et al., 2012). Interestingly, in coherence with the high levels of m6A in brain 

tissue, many of the highly m6A methylated transcripts belong to the genes connected with 

neurodevelopmental and neurological disorders (Meyer et al., 2012). Between the genes completely 

lacking m6A methylation, there is an enrichment of housekeeping genes, for example genes 

important for translation such as ribosomal proteins, chromatin regulation, splicing and 

mitochondrial metabolism (Ke et al., 2017; Schwartz et al., 2014). The trend of lacking methylation 

is conserved between yeasts and mammals (human, mouse and yeast transcriptomes were 
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compared) for some Gene Ontology (GO) categories such as genes for ribosomal or splicing 

proteins and GTPases (Schwartz et al., 2014). 

m6A methyltransferases (m6A writers) 

METTL3/METTL14 complex 

In 1997, METTL3 (originally named MT-A70) was recognized as a core protein of 

methyltransferase responsible for m6A methylation of mammalian RNAs (Bokar et al., 1997). Later, 

another protein METTL14 was shown to form a complex with METTL3 (Liu et al., 2014; Ping et 

al., 2014; Wang et al., 2014b). Together, METTL3-METTL14 heterodimer functions as a cellular 

m6A methyltransferase (Liu et al., 2014; Wang et al., 2014b) and is essential for the methylation of 

most of the m6A sites on mRNA (Ke et al., 2017; Knuckles et al., 2017) and some non-coding 

RNAs (Alarcón et al., 2015a). 

METTL3 is the only component of the 

methyltransferase complex able to bind the 

methylation substrate S-adenosylmethionine (SAM), 

with its highly conserved binding pocket (Figure 2) 

and therefore execute the methylation reaction (Wang 

et al., 2016). It also contains a zinc-finger domain 

responsible for the recognition of the target sequence 

on RNA – the m6A consensus sequence RRACH, 

where the central adenine is methylated (Huang et al., 

2018b). Other component of the methyltransferase 

core, METTL14, facilitates the contact with RNA and 

is essential for structural stability and proper function 

of METTL3 (Wang et al., 2016) (Figure 3). In a recent 

study Huang et. al (Huang et al., 2019) also suggest a 

role of METTL14 in recognition and binding of 

chromatin modifications, however no direct structural 

data are yet available to support this hypothesis. 

  

Figure 2 Degree of sequence conservation projected on the 
surface of methyltransferase domain of METTL3 
(MTD3). MTD3 is highly conserved around the SAM 
(blue sticks) binding site. Adopted from (Wang et al., 
2016). 
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Figure 3 Annotated structural model of MTD3-MTD14 complex. MTD3 (green) and MTD14 (orange and yellow) are 
methyltransferase domains of METTL3 and METTL14. MTD3 forms the SAM (cyan sticks) binding site. The interface 
of MTD3 and MTD14 (purple sphere) surrounded by loops (purple) might accommodate the RNA substrate. Residues 
labeled by blue spheres were shown to be essential for enzymatic activity of the complex. Grey sphere shows the MTD14 
residue, which does not impair the enzymatic activity of the complex. Adopted from (Wang et al., 2016). 

METTL3-METTL14 dimer was shown to interact transiently with several other proteins, together 

forming the complete METTL3/METTL14 methyltransferase complex in vivo. Five METTL3-

METTL14-interacting proteins are known so far: WTAP, VIRMA, RBM15 or RBM15B, ZC3H13 

and HAKAI (Patil et al., 2016; Ping et al., 2014; Schwartz et al., 2014; Yue et al., 2018). While those 

proteins are not essential for the methylation activity of METTL3/METTL14 complex in vitro (Liu 

et al., 2014), they can modulate its activity, site specificity and localization in living cells. (Ping et 

al., 2014). WTAP is a METTL3/METTL14 complex regulatory subunit, known to be essential for 

the localization of the complex in nuclear speckles and even the methylation activity in vivo (Ping 

et al., 2014). The function and importance of other mentioned proteins is less known. ZC3H13 

was reported to stabilize the interaction of several METTL3/METTL14 complex components 

(Knuckles et al., 2018) and its knock-down also resulted in the cytoplasmic localization of the 

METTL3/METTL14 complex components (Wen et al., 2018). The interaction of the 

methyltransferase components with VIRMA and RBM15/RBM15B might be important for the 

recruitment of the complex to a specific sites of methylation (Patil et al., 2016; Yue et al., 2018). 

HAKAI was shown to interact with the METTL3/METTL14 complex (Yue et al., 2018), but its 

function is not yet fully understood. 



 

9 

 

As mentioned previously, METTL3/METTL14 complex is localized into nuclear speckles (Liu et 

al., 2014; Ping et al., 2014). Nuclear or also so-called splicing speckles are nuclear membrane-less 

bodies enriched for proteins involved in transcription regulation or RNA processing, such as 

transcription factors, splicing factors or chromatin remodeling factors, and are suggested to 

integrate different steps of gene expression regulation (reviewed in Galganski et al., 2017). 

Interestingly, METTL3/METTL14 localization into speckles is RNA-dependent and is disrupted 

after the RNase treatment (Ping et al., 2014). 

Since just a minority of sequences consistent with the m6A consensus sequence is methylated, some 

other mechanism for recognition of those specific target sites by methyltransferase complex needs 

to be present (Dominissini et al., 2012). So far it was shown by several research groups, that the 

deposition of m6A by METTL3/METTL14 complex happens co-transcriptionally (Barbieri et al., 

2017; Bartosovic et al., 2017; Bertero et al., 2018; Huang et al., 2019; Ke et al., 2017; Knuckles et 

al., 2017). This is also in agreement with the findings of m6A residues in intronic regions of nascent 

mRNAs (Louloupi et al., 2018) and the mostly co-transcriptional timing of splicing (reviewed in 

Herzel et al., 2017). However, the exact mechanism of the m6A target site recognition by the 

METTL3/METTL14 is not yet fully understood. It has been shown by Liu et al. that the 

methyltransferase complex does not have a distinct structural preference (Liu et al., 2014). The 

research of Bertero et al. and Barbieri et al. suggest, that the complex is recruited to the methylation 

sites by specific transcription factors (Barbieri et al., 2017; Bertero et al., 2018). It could also be 

guided to the target sequence by specific miRNAs (Chen et al., 2015), or, as suggested recently, the 

methyltransferase complex binds directly to the chromatin at a site of transcription where 

METTL14 recognizes H3K36me3 histone marks. Then the contact of the METTL3/METTL14 

complex with a nascent RNA is facilitated by its interaction with the elongating form of polymerase 

II (Huang et al., 2019). After the methyltransferase complex is recruited to the specific target site, 

methylation reaction occurs within the m6A consensus sequence RRACH (Liu et al., 2014). 

METTL16 

In 2017 another m6A methyltransferase, METTL16, was discovered (Pendleton et al., 2017; Warda 

et al., 2017). METTL16 is not a part of the METTL3/METTL14 complex and methylates just a 

small subset of m6A sites on RNAs, independently of the m6A consensus sequence (Pendleton et 

al., 2017; Warda et al., 2017). It is localized in the nucleus (Brown et al., 2016). The METTL16 

protein itself has a SAM-binding site at the N-terminus (Mendel et al., 2018; Ruszkowska et al., 
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2018) (Figure 4) and displays a methyltransferase activity toward RNA in vitro (Warda et al., 2017). 

The crystal structure revealed also a positively charged groove of METTL16 N-terminal domain 

which could be responsible for RNA binding (Mendel et al., 2018; Ruszkowska et al., 2018) 

(Figure 5) and disordered loop essential for catalytic activity of METTL16 (Mendel et al., 2018) 

(Figure 4). In vivo, METTL16 probably acts as a homodimer (Ruszkowska et al., 2018). So far, other 

proteins, which would interact and form a methyltransferase complex together with METTL16 

were not discovered. 

A search for METTL16 RNA substrates 

revealed several interesting METTL16 

binding sites and potential role of METTL16 

in post-transcriptional regulation: 

METTL16 associates with U6 small nuclear 

RNA (U6 snRNA), an important 

component of the spliceosome. It is 

responsible for a specific N6-methylation of 

A43 of U6 snRNA during its early 

maturation stages (Warda et al., 2017). 

m6A43 is localized in a highly conserved 

region of U6, which participates in binding 

5' splice site of pre-mRNA during splicing, 

therefore it is possible that this specific m6A 

modification is important for proper splice 

site recognition and might even play a 

regulatory role in splicing (Warda et al., 

2017). 

 
 

Figure 4 Scheme and structure of the methyltransferase domain and N-terminus of METTL16 crystalized with S-adenosyl homocysteine 
(SAH). The catalytical domain of METTL16 (green) consists of conserved Rossman fold with disordered loop (dotted line) containing the 
catalytical residues. N-terminal module (red) is METTL16-specific and essential for its enzymatic activity. SAH is depicted in grey sticks. 
Adopted from (Mendel et al., 2018) 



 

11 

 

Figure 5 Electrostatic charge-representation of surface of 
METTL16 methyltransferase domain. Positively charged 
groove (blue) is extended in catalytic pocket and probably 
binds RNA. SAH is shown in grey lines. Adopted from 
(Mendel et al., 2018) 

Moreover, in vertebrates METTL16 was shown 

to play a major role in SAM homeostasis 

(Mendel et al., 2018; Pendleton et al., 2017; 

Shima et al., 2017). In the cell SAM is generated 

from methionine and ATP by a SAM synthetase 

called MAT2A (Murray et al., 2016). METTL16 

binds MAT2A pre-mRNA (Pendleton et al., 

2017; Shima et al., 2017; Warda et al., 2017) and 

regulates the MAT2A protein levels and 

therefore SAM abundance in the cytoplasm 

(Pendleton et al., 2017; Shima et al., 2017). 

There are two research groups addressing the 

molecular mechanism of METTL16-dependent 

regulation of intracellular SAM levels. According to their findings, METTL16 recognizes a 

methylation target site within the MAT2A pre-mRNA and this site is m6A methylated by 

METTL16 in normal conditions, however when the intracellular SAM levels are low, METTL16 

reacts to the low levels of the methyl donor and does not proceed with the methylation reaction 

(Pendleton et al., 2017; Shima et al., 2017). It is known that there are two transcript isoforms of 

MAT2A gene, one is translated into a functional protein while the other contains a retained intron 

(MAT2A-RI). MAT2A-RI does not get exported from the nucleus and is subjected to a nuclear 

decay pathway (Bresson et al., 2015). According to the findings of Pendleton et al. low levels of 

SAM promote splicing of the retained-intron, which leads to the production of translated isoform 

of MAT2A and thus higher levels of MAT2A synthetase in the cell (Pendleton et al., 2017). On the 

other hand, the results of Shima et al. suggest, that there are no SAM-dependent changes in 

MAT2A mRNA splicing. They also show that the m6A modification deposited by METTL16 on 

MAT2A mRNA is recognized by the m6A binding protein YTHDC1. Based on those findings, 

Shima et al. proposed a model, where YTHDC1 recognizes m6A methylated MAT2A mRNA and 

subjects it for the degradation. When SAM levels are low, MAT2A mRNA is not methylated and 

therefore not recognized and not degraded (Shima et al., 2017). However, YTHDC1 was shown 
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to play a role mostly in splicing regulation (Xiao et al., 2016) which would be more consistent with 

the hypothesis by Pendleton et al. Aditionally, results by Mendel et al. also show change in splicing 

of MAT2A mRNA in METTL16 knock-out mice embryos (Mendel et al., 2018). 

METTL16 was also shown to bind other various non-coding RNAs (ncRNAs) (Warda et al., 2017) 

and mainly intronic sequences of pre-mRNAs (Pendleton et al., 2017; Warda et al., 2017), for 

example cancer-associated lncRNA MALAT1 or XIST lncRNA important for X chromosome 

inactivation (Warda et al., 2017).  

The recognition mechanism of the METTL16 target sites is probably based on a combination of 

structural and sequence preference. Mendel et al. showed that methylation happens preferentially 

on the consensus nonamer UACm6AGAGAA (Mendel et al., 2018), which was detected as a 

methylated sequence in both, U6 snRNA and MAT2A pre-mRNA (Pendleton et al., 2017). 

Additionally, the targeted adenosine must be unpaired, but in otherwise structured region for 

example in a bulge within a stem or between two stems (Mendel et al., 2018). The suggested 

structural preference of METTL16 is also supported by the fact that binding sites of METTL16 in 

MALAT1 and MAT2A were detected among a secondary-structured regions and also other 

METTL16 substrates are highly structured (Warda et al., 2017). On the other hand, bioinformatic 

analysis of other METTL16 binding sites did not show any enrichment of any sequence motif 

(Pendleton et al., 2017). 

It was shown that after the METTL16 knock-down, m6A signal on many transcripts is reduced, 

however since specific m6A methylation of MAT2A by METTL16 affects cellular SAM levels, the 

change in m6A levels on some transcripts might be due to the comprised effectivity of methylation 

itself and might be independent on direct METTL16 binding (Warda et al., 2017). 

m6A demethylases (m6A erasers) 

So far two mammalian enzymes are known to exhibit efficient m6A demethylase activity. The first 

m6A demethylase, fat mass and obesity-associated protein (FTO), was identified in 2011(Jia et al., 

2011) and then in 2013 another demethylase, α-ketoglutarate-dependent dioxygenase alkB 

homolog 5 (ALKBH5) was discovered (Zheng et al., 2013). Both enzymes belong to the AlkB 

protein family (Gerken et al., 2007; Kurowski et al., 2003; Zheng et al., 2013). Members of this 

family contain the non-heme Fe(II) and the oxidative demethylation process is alpha-ketoglutarate 

(α-KG)-dependent (Aravind and Koonin, 2001). Several other proteins of AlkB family were 
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previously described to oxidatively demethylate N-methylated DNA, lot of them acting in DNA 

repair pathway (Duncan et al., 2002; Falnes et al., 2002; Trewick et al., 2002). Both demethylases, 

FTO and ALKBH5, are localized in the nuclear speckles and in the nucleoplasm (Berulava et al., 

2013; Jia et al., 2011; Zheng et al., 2013). 

Both, FTO and ALKBH5 show differential expression levels in various tissues. FTO is highly 

expressed in brain (Fischer et al., 2009), whereas the highest levels of ALKBH5 are expressed in 

testes (Zheng et al., 2013), where ALKBH5 is most abundant in spermatocytes (Tang et al., 2018). 

Both demethylases probably act on a specific subset of m6A residues or methylated transcripts 

(Bartosovic et al., 2017; Tang et al., 2018) but how those specific sites are recognized is not known. 

The recent knowledge about FTO and ALKBH5 role in expression regulation is based mostly on 

the experiments using depletion, knock-out or over-expression of the m6A demethylase. 

Knock-down of FTO or ALKBH5 results in the significant increase of the overall levels of m6A 

modified adenosines in mRNA (Jia et al., 2011; Zheng et al., 2013) and in impaired expression of 

various genes (Bartosovic et al., 2017; Zheng et al., 2013). ALKBH5 knock-out mice display 

spermatogenesis defects and massive cell death by apoptosis in testes (Tang et al., 2018; Zheng et 

al., 2013), no other significant defects neither during knock-out mice development nor in adults 

were observed, suggesting a specific role of ALKBH5 in spermatogenesis (Tang et al., 2018). FTO 

knock-out in mice leads to a postnatal growth retardation (Fischer et al., 2009). 

Recent articles also showed that FTO can sufficiently demethylate m6Am residues, which are found 

adjacent to the 5’ cap of mRNAs and snRNAs (Mauer et al., 2017, 2019). Whether this modification 

is a major modification regulated by FTO is a subject of discussion. 
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m6A binding proteins and effect of the m6A modification on RNA 

metabolism 

The effect of m6A modification on fate of methylated RNA is extensively studied. It was shown 

that m6A modification might affect RNA splicing (Louloupi et al., 2018; Tang et al., 2018; Xu et 

al., 2017; Zheng et al., 2013), nuclear export (Zheng et al., 2013), translation (Barbieri et al., 2017; 

Li et al., 2017a; Lin et al., 2017; Meyer et al., 2015) or stability (Ke et al., 2017; Wang et al., 2014a, 

2014b). Those effects on RNA metabolism are determined by differential recruitment or binding 

blockage of regulatory RNA binding proteins. The RNA binding proteins can directly recognize 

m6A residue (so-called m6A readers) (Xu et al., 2015) or, more interestingly, they can bind to 

specific m6A-dependent secondary structures on RNAs (Liu et al., 2015, 2017). The mechanism, 

when m6A controls binding of the proteins by structural change of the m6A modified region is 

called m6A switch (Liu et al., 2015). The recognition of m6A modification by specific regulatory 

proteins is probably region-dependent, meaning that different proteins bind preferentially to 

different parts of RNA such as 5’ UTRs or CDS (Anders et al., 2018; Wang et al., 2014a; Xiao et 

al., 2016; Zhou et al., 2015). This region preference of m6A binding proteins can explain why 

differently localized m6A marks can have different effects on the RNA metabolism. Moreover, the 

expression, localization and binding properties of each m6A reader can be dependent on the 

presence and binding of other readers and on the cell type and it can be modulated by various 

signaling pathways. This makes the m6A-dependent regulation network very complex and hard to 

study. 

m6A switch 

It was shown that the m6A residues within the RNA double-stranded structures such as stems can 

alter the thermal stability of those structures (Kierzek and Kierzek, 2003; Roost et al., 2015). Since 

many RNA binding proteins have a structural preference for either single-stranded or structured 

regions (Ray et al., 2013), the presence of the m6A modification can affect their binding to 

surrounding regions. This m6A switch effect was shown to regulate the binding of heterogeneous 

nuclear ribonucleoprotein C and G (HNRNPC, HNRNPG), which are important for various RNA 

maturation steps (Hofmann and Wirth, 2002; König et al., 2010; McCloskey et al., 2012; Wang et 

al., 2011; Zhao et al., 2008). m6A destabilizes the stem secondary structure and therefore reveals 
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the ssRNA binding motif of those proteins (Liu et al., 2015, 2017). Additionally, RNA binding of 

another hnRNP, HNRNPA2/B1, was recently suggested to be modulated by m6A switch 

mechanism (Wu et al., 2018). HNRNPA2/B1 was showed to affect RNA splicing and miRNA 

processing of m6A methylated transcripts (Alarcón et al., 2015b). 

m6A binding proteins (readers) 

The only so far known m6A binding structural module is the YTH (YT521-B homology) domain 

(Xu et al., 2015). Proteins with YTH domain are found exclusively in eukaryotes and the amino 

acid sequence of the YTH domain is highly conserved across the species (Stoilov et al., 2002). 

Those proteins are classified into a so-called YTH protein family (Stoilov et al., 2002). So far, there 

are 5 proteins in human known to posses the YTH RNA-binding domain: YTHDC1 (also known 

as YT521-B), YTHDC2, YTHDF1, YTHDF2, YTHDF3 (Xu et al., 2014), and for example 13 

proteins in Arabidopsis thaliana (Bhat et al., 2018; Stoilov et al., 2002). 

YTH domain binds m6A within the single stranded RNA regions independently on the presence 

of m6A consensus motif (Xu et al., 2015), except for YTHDC1 protein, which shows a slight 

preference for m6A consensus (Theler et al., 2014; Xu et al., 2014, 2015; Zhang et al., 2010). NMR 

structures of YTHDC1 protein revealed, that the conserved hydrophobic residues form a cavity in 

YTH domain and a so-called aromatic cage (Theler et al., 2014; Xu et al., 2014) (Figure 6). The 

aromatic cage composed of two tryptophan (W377, W428) and the leucine (L439) sidechains is 

responsible for m6A recognition and binding (Xu et al., 2014). Both tryptophan residues are strictly 

conserved in YTH proteins, the leucine residue is replaced by another tryptophan at the 

corresponding position in YTHDF protein family, however it does not affect the function of the 

aromatic cage (Li et al., 2014; Xu et al., 2015). The tryptophan W428 side chain interacts with the 

m6A methyl group, which provides the YTH domain specificity for the N6-methylated adenosine 

versus unmodified nucleotide (Xu et al., 2014). Also, the widely conserved positively charged amino 

acid residues surrounding the aromatic cage contribute to the RNA binding by the interaction with 

phosphate groups of RNA (Theler et al., 2014; Zhang et al., 2010). Outside the YTH domain, no 

sequence similarity is found between the YTHDC1, YTHDC2 and YTHDF family (Stoilov et al., 

2002). Other domains of the YTH proteins probably determine their various localization and their 

interacting partners, affecting the function of those proteins in m6A modified RNA metabolism 

(Zhang et al., 2010). 
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Some other proteins such as a group of insulin-like growth factor 2 mRNA-binding proteins 

IGF2BPs  were suggested to directly bind m6A modified RNAs, but the structural data are needed 

to further validate those findings (Huang et al., 2018a). 

 

Figure 6 Structure of the YTHDC1 YTH domain in complex with m6A-containing RNA pentamer (GG(m6A)CU). m6A 

residue is accommodated in cavity in so-called aromatic cage, visible in (c), which is formed by the sidechains of W377, W428 

and L439. The RNA strand resides in positively charged groove of YTH domain. Color code: (a) The protein structure is 

shown in blue with loop L45 in orange and two helices (a0, a4) in pink, RNA pentamer is shown in yellow sticks. (b) Positive 

electrostatic potential on the YTH domain surface shown in blue, negative potential in red. (c) Protein residues in m6A binding 

pocket are depicted in orange and blue sticks, m6A residue in yellow sticks, hydrogen bonds are shown in grey dashes. Distances 

between N6 of m6A and residues forming aromatic cage are shown in black. Adopted from (Xu et al., 2014). 

YTHDC1 affects RNA splicing and nuclear export 

Many studies have suggested a connection between m6A modification and alternative splicing. 

First, m6A is enriched in long internal exons (Dominissini et al., 2012; Ke et al., 2017), close to the 

3’ and 5’ splice sites (Louloupi et al., 2018; Zhao et al., 2014), it is also more abundant in 

differentially spliced exons and introns (Dominissini et al., 2012). m6A methyltransferase proteins 

and demethylases – METTL3/METTL14 complex, ALKBH5, FTO – localize in nuclear speckles 

(Jia et al., 2011; Liu et al., 2014; Ping et al., 2014; Zheng et al., 2013), the main reservoir of splicing 

factors (Galganski et al., 2017). Next, depletion of the methyltransferase protein METTL3 or 

demethylases FTO and ALKBH5 affect the alternative splicing patterns of many genes (Bartosovic 

et al., 2017; Dominissini et al., 2012; Louloupi et al., 2018; Ping et al., 2014; Tang et al., 2018; Xu 

et al., 2017; Zhao et al., 2014; Zheng et al., 2013). It was shown that m6A modification can affect 

structure-dependent accessibility to the hnRNP family proteins HNRNPC, HNRNPG and 

HNRNPA2/B1 (Liu et al., 2015, 2017; Wu et al., 2018) All the mentioned hnRNP proteins are 
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involved in splicing regulation (Alarcón et al., 2015b; Hofmann and Wirth, 2002; König et al., 2010; 

Wang et al., 2011). Finally, recent studies revealed a mechanism of a direct effect of m6A reader 

YTHDC1 on alternative splicing by influencing the splice site selection (Xiao et al., 2016). 

YTHDC1 is the only human YTH protein predominantly localized in the nucleus, where it forms 

specific dot-like foci called YT bodies. YT bodies are often adjacent to the nuclear speckles (Nayler 

et al., 2000). In lower concentration YTHDC1 is also dispersed in the nucleoplasm (Hartmann et 

al., 1999; Nayler et al., 2000). It interacts with several splicing factors such as TRA2B, KHDRBS1 

(alternative name SAM68), SRSF1/3/7/9/10 (Hartmann et al., 1999; Imai et al., 1998; Xiao et al., 

2016). YTHDC1 preferentially binds m6A in exonic regions near the splice sites (Xiao et al., 2016). 

Overexpression or depletion of YTHDC1 causes the changes in alternative exon 

exclusion/inclusion ratio of some mRNAs in concentration-dependent manner (Hartmann et al., 

1999; Kasowitz et al., 2018; Rafalska et al., 2004; Xiao et al., 2016; Zhang et al., 2010). The binding 

of YTHDC1 to its recognition motif within the alternative exon results in the exon inclusion (Xiao 

et al., 2016; Zhang et al., 2010). Mechanistically, after YTHDC1 is bound, it recruits the splicing 

factor SRSF3 to the target region of pre-mRNA and SRSF3 then promotes inclusion of alternative 

exon. Moreover, SRSF10 binding to RNA, which would promote exon skipping, is repressed by 

YTHDC1 (Xiao et al., 2016). SRSF3 recruited by YTHDC1 to mRNA can further interact with 

the nuclear RNA export factor 1 (NXF1) and therefore promote the m6A-dependent RNA export 

to the cytoplasm (Roundtree et al., 2017). As mentioned earlier YTHDC1 was also suggested to be 

involved in m6A-dependent regulation of intracellular levels of SAM (Shima et al., 2017). 

Additionally, it was shown that YTHDC1 plays a role in XIST-mediated gene silencing. XIST RNA 

is heavily m6A methylated, those m6A residues are preferentially recognized by YTHDC1 and its 

binding is necessary for the silencing function of XIST (Patil et al., 2016). However, the exact 

mechanism of YTHDC1 effect on XIST is so far not known. 

Cytoplasmatic YTH proteins regulate RNA translation and degradation 

m6A methylation is found more often in the transcripts with shorter half-lives (Tang et al., 2018; 

Zhao et al., 2014) and the m6A density is negatively correlated with mRNA half-life (Schwartz et 

al., 2014). Additionally, the half-lives of the N6-methylated transcripts increase after the knock-

down of various METTL3/METTL14 methyltransferase components (Bertero et al., 2018; Liu et 

al., 2014). The changes in m6A levels affect the translation efficiency of specific m6A target mRNAs, 

the translation efficiency can be changed in both directions – increased or decreased, since the 
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effect seems to be transcript-specific (Lin et al., 2017; Wang et al., 2015, 2014b). Although those 

effects can be partially a product of an overall dysregulation of a complex regulatory network, 

specific mechanisms of m6A-dependent regulation of RNA stability and translation through m6A 

reader proteins have been proposed. 

YTHDC2 is an m6A reader with cytoplasmic localization (Abby et al., 2016; Soh et al., 2017) with 

the possible enrichment in perinuclear region (Kretschmer et al., 2018). It contains several 

structural domains, for example the helicase domain with ATPase-dependent 3’→5’ RNA helicase 

activity (Wojtas et al., 2017). YTHDC2 was shown to associate in an RNA-independent manner 

with several proteins, among them the XRN1 exonuclease (Kretschmer et al., 2018; Wojtas et al., 

2017) and meiosis-specific protein MEIOC (Abby et al., 2016; Soh et al., 2017; Wojtas et al., 2017). 

MEIOC was shown to affect mRNA stability during meiosis (Abby et al., 2016; Soh et al., 2017). 

YTHDC2 also binds to the small ribosomal subunit even when the whole ribosome is assembled, 

in the vicinity of RNA entrance and exit site (Kretschmer et al., 2018). Some research groups 

speculate that those YTHDC2 interactors could affect the metabolism of YTHDC2-bound RNAs 

(Abby et al., 2016; Kretschmer et al., 2018; Soh et al., 2017; Wojtas et al., 2017). For example, 

YTHDC2 targets show altered stability after MEIOC knock-out (Soh et al., 2017) similarly to 

YTHDC2 knock-out (Wojtas et al., 2017). Nevertheless, the general effects of YTHDC2 binding 

or mechanisms beyond them are not fully understood. 

Together, YTHDF family proteins are also suggested to control translation efficiency and stability 

of mRNAs, but the underlying mechanism are likely to be different from YTHDC2-dependent 

regulation (Du et al., 2016; Li et al., 2017a; Wang et al., 2014a, 2015; Zhou et al., 2015). YTHDF2 

is localized in cytoplasm in processing bodies (P-bodies) (Wang et al., 2014a), where the RNA 

degradation process takes place (Sheth and Parker, 2003). It is composed of two domains: 

C-terminal RNA binding domain and N-terminal P/Q/N-rich domain, both domains are required 

for YTHDF2 proper function (Wang et al., 2014a). C-terminal domain selectively recognizes m6A 

modified RNAs and the N-terminal domain targets the YTHDF2 in P-body (Wang et al., 2014a). 

N-terminal domain of YTHDF2 was also shown to interact with CNOT1 protein, subunit of the 

CCR4-NOT mRNA deadenylase complex (Du et al., 2016). Via this interaction CCR4-NOT 

deadenylase is recruited to the m6A methylated transcripts recognized by YTHDF2 and those 

transcripts are deadenylated and subjected to degradation (Du et al., 2016). Additionally, it was 

shown that the YTHDF2-targeted transcripts get accumulated specifically in the translatable 
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polysome fraction after depletion of YTHDF2, which implies a role of YTHDF2 in translational 

repression (Wang et al., 2014a). 

Not much is known about the YTHDF1 function. It binds m6A in 3’ UTR region and might be 

responsible for translation efficiency enhancement of a specific subset of mRNAs (Wang et al., 

2015). This effect is probably connected to the association of YTHDF1 with small ribosomal 

subunit and the translation initiation factors such as eIF3 complex (Wang et al., 2015). Interestingly, 

YTHDF1 and YTHDF2 have some common RNA targets, Wang et al. showed that YTHDF1 is 

bound earlier than YTHDF2, this mutual regulation could be used in the cell for a fast response 

of protein production – the protein would be translated rapidly and at the same time, the short 

half-life of mRNA could help achieve the expression steady-state faster (Wang et al., 2015). 

YTHDF3 was shown to interact with ribosomal proteins and to enhance the translation efficiency. 

Interestingly, the translation is enhanced cooperatively by YTHDF1 and YTHDF3, there is no 

enhancement of translation for YTHDF3-specific targets (Li et al., 2017a). Considering that 

YTHDF3 was also shown to interact with both YTHDF2 and YTHDF1 and increase their binding 

specificity, YTHDF3 could have a main role in modulating the function of the other two YTHDF 

proteins (Li et al., 2017a). 

YTHDF2 and YTHDF3 also play specific regulation roles in the stress conditions. YTHDF2 

localization is changed during the heat shock response. It is translocated into the nucleus where it 

is suggested to bind N6-methylated adenosines within the 5’ UTR of stress-induced transcripts and 

therefore restrict it from demethylation by FTO (Zhou et al., 2015). The m6A residue at 5’ UTR 

promotes cap-independent translation (Meyer et al., 2015; Zhou et al., 2015). Under oxidative stress 

YTHDF3 selectively recognizes a subset of 5’ UTR methylated transcripts and localizes them into 

the stress granules (Anders et al., 2018). YTHDF family proteins were also shown to bind m6A 

modified viral RNAs and affect the production of viral particles probably by various mechanisms 

(Gokhale et al., 2016; Kennedy et al., 2016; Tirumuru et al., 2016). 
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Summary and discussion 

In the last few years, m6A methylation and potential epitranscriptomic regulations have become a 

hot-topic in RNA biology. m6A modification can be found throughout various species and is 

abundant in eukaryotic RNAs (Beemon and Keith, 1977; Canaani et al., 1979; Deng et al., 2015; 

Dominissini et al., 2012; Lence et al., 2016; Meyer et al., 2012; Nichols, 1979; Schwartz et al., 2013; 

Sommer et al., 1976). In mRNAs, it is enriched within the specific regions such as 3’ UTR (Ke et 

al., 2015; Meyer et al., 2012), differentially spliced and long exons (Dominissini et al., 2012; Ke et 

al., 2017; Schwartz et al., 2014) or the proximity of splice junctions (Louloupi et al., 2018). It is 

worth noticing, that the regions enriched for m6A are often bound by RNA-processing factors. It 

was shown that m6A presence can modulate the binding of RNA-processing factors and therefore 

change the metabolism of m6A modified transcripts including alternative splicing (Alarcón et al., 

2015b; Liu et al., 2015, 2017; Xiao et al., 2016), nuclear export (Roundtree et al., 2017), translation 

(Wang et al., 2015) efficiency or RNA degradation (Du et al., 2016). This modulation of RNA 

metabolism is achieved by at least two different mechanisms – directly by the structural change of 

RNA region promoted by m6A (so-called m6A switch mechanism)(Liu et al., 2015, 2017; Wu et al., 

2018) or it is mediated by specific m6A binding proteins (Du et al., 2016; Roundtree et al., 2017; 

Wang et al., 2015; Xiao et al., 2016). m6A is also present on various non-coding RNAs (Alarcón et 

al., 2015a; Dominissini et al., 2012; Karijolich and Yu, 2010; Linder et al., 2015; Meyer et al., 2012; 

Warda et al., 2017) but its function on those RNAs is so far not well known. Interestingly, it was 

shown that m6A modification of miRNAs could be essential for their biogenesis (Alarcón et al., 

2015a) and specific m6A site in U6 snRNA might be functionally important for 5’ splice-site 

recognition (Warda et al., 2017). 

Several enzymes are known to be involved in m6A modification of RNA. METTL3/METTL14 is 

a major methyltransferase complex, which methylates adenosine within the m6A consensus 

sequence RRACH (Liu et al., 2014). METTL16 is responsible for some m6A sites outside the 

established m6A consensus, so far it was shown to deposit the m6A in U6 snRNA splice-site 

recognition region (Warda et al., 2017) and in SAM synthetase MAT2A mRNA, where the m6A is 

important for regulation of intracellular SAM levels (Pendleton et al., 2017; Shima et al., 2017). So 

far known m6A demethylases ALKBH5 and FTO are suggested to demethylate just specific m6A 

sites and specific subsets of RNAs (Bartosovic et al., 2017; Tang et al., 2018). Finally, proteins with 

the YTH domain such as human YTHDC1-2 and YTHDF1-3 directly bind m6A (Xu et al., 2014, 

2015) and each of the proteins has its specific effect on metabolism of the target RNAs (Du et al., 
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2016; Roundtree et al., 2017; Wang et al., 2015; Xiao et al., 2016). Some other RNA binding 

proteins outside the YTH protein family were suggested to bind m6A (Huang et al., 2018a), 

however more data about their binding properties and effects on RNA metabolism are needed. 

Recently, FTO was suggested to preferentially demethylate the m6Am modification which is 

adjacent to the 5’ cap of some RNAs (Mauer et al., 2017, 2019). Since some m6A readers were 

suggested to cooperate with FTO (Zhou et al., 2015), it would be interesting to test, whether they 

are truly m6A specific or they can also bind m6Am. 

It is known that the specific localization of m6A site determines the effect m6A has on the RNA. 

However, it is not clear how the sites for m6A deposition are determined. METTL3/METTL14 

methyltransferase binding was shown to be sequence-specific (Liu et al., 2014), but the recognized 

consensus is much more abundant in the RNA, than actual m6A modification, therefore not every 

consensus sequence is recognized and modified by the methyltransferase (Dominissini et al., 2012). 

The specificity of METTL16 recognition is a little higher since METTL16 binding requires specific 

sequence features but also a specific secondary structure of the target region (Mendel et al., 2018). 

It is a subject of discussion whether the m6A site is determined just based on the sequence-related 

signals or whether the other signals are involved, potentially connecting the m6A-related regulation 

to for example regulation of transcription or epigenetics. Indeed, it was suggested that 

METTL3/METTL14 recruitment to its target site could be mediated co-transcriptionally by the 

transcription factors (Barbieri et al., 2017; Bertero et al., 2018) or it could even be dependent on 

the histone modifications surrounding the transcribed region (Huang et al., 2019). On the other 

hand, there are groups which claim that the majority of m6A sites can be successfully predicted 

using just the sequence information (Schwartz et al., 2013). 

Another so far unclear feature of m6A modification is its dynamics. The existence of demethylases 

could provide cells with a potential of changing the m6A patterns under certain conditions 

independently on the primary signals which define the m6A target sites. Studies of m6A 

demethylases showed their differential expression in various tissues and tissue specific effects of 

the demethylase knock-out, suggesting that reversibility of m6A modification is important for some 

tissue-specific processes (Fischer et al., 2009; Tang et al., 2018). Data from m6A mapping 

experiments suggest that overall distribution of m6A modification is generally stable throughout 

the cells in various conditions or differentiation stages (Batista et al., 2014; Dominissini et al., 2012; 

Schwartz et al., 2014) but it can probably change distinctly under stress conditions such as heat 
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shock or ultraviolet-induced damage as observed by (Meyer et al., 2015; Xiang et al., 2017; Zhou 

et al., 2015). Moreover, the m6A modification is non-stoichiometric (Horowitz et al., 1984; Liu et 

al., 2013) and it is possible, that the ratio of methylated and demethylated transcripts is changed 

more dynamically. The methods widely used for transcriptome-wide m6A mapping such as miCLIP 

are not sensitive enough to quantitative changes in m6A levels and other methods must be 

established to precisely quantify the m6A/A ratios in various conditions (Hartstock and 

Rentmeister, 2019). 

Not just the m6A modification itself, but also the m6A readers can be regulated in response to 

certain cellular processes or outer stimuli, resulting in different m6A-dependent regulation of 

specific transcripts. It was shown that the m6A reader YTHDC1 is a kinase target and its 

phosphorylation alters its localization and activity (Rafalska et al., 2004). Similarly, m6A binding 

protein YTHDF2 is translocated from cytoplasm to the nucleus during the heat shock response, 

where it probably gains totally different function (Zhou et al., 2015). 

m6A was shown to be important for many biological processes such as pluripotency exit (Batista 

et al., 2014; Bertero et al., 2018; Chen et al., 2015; Geula et al., 2015; Wang et al., 2014b), 

spermatogenesis (Lin et al., 2017; Tang et al., 2018; Xu et al., 2017; Zheng et al., 2013), maternal-

to-zygotic transition in zebrafish (Zhao et al., 2017), stress responses (response to heat shock and 

UV damage), (Meyer et al., 2015; Xiang et al., 2017; Zhou et al., 2015), viral infection (Gokhale et 

al., 2016; Kennedy et al., 2016; Tirumuru et al., 2016), tumorigenesis (Cui et al., 2017; Li et al., 

2017b; Zhang et al., 2016, 2017) or even for meiosis and sporulation in yeast (Schwartz et al., 2013). 

All those processes require fast and distinct changes of gene expression. Considering for example 

the possible functional interplay of YTHDF m6A readers, which can together provide a quick 

change in protein production by increasing the translation efficiency and decreasing the half-life of 

the transcript (Li et al., 2017a), we can speculate that m6A-dependent regulation of RNA 

metabolism is partially responsible for the fast changes in gene expression during the mentioned 

processes. 

Taken together, m6A modification of RNA is a unique RNA modification with dual function. It 

directly modulates the RNA structure and its accessibility for RNA binding proteins. Furthermore, 

similarly to epigenetic modifications, m6A serves as a signal on RNA, possibly further increasing 

the coding capacity.  



 

23 

 

References 

Abby, E., Tourpin, S., Ribeiro, J., Daniel, K., Messiaen, S., Moison, D., Guerquin, J., Gaillard, J.-

C., Armengaud, J., Langa, F., et al. (2016). Implementation of meiosis prophase I programme 

requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat. Commun. 7, 

10324. 

Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F. (2015a). N6-methyladenosine 

marks primary microRNAs for processing. Nature 519, 482–485. 

Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015b). 

HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell 162, 1299–

1308. 

Anders, M., Chelysheva, I., Goebel, I., Trenkner, T., Zhou, J., Mao, Y., Verzini, S., Qian, S.-B., and 

Ignatova, Z. (2018). Dynamic m6A methylation facilitates mRNA triaging to stress granules. Life 

Sci. Alliance 1, e201800113. 

Arango, D., Sturgill, D., Alhusaini, N., Dillman, A.A., Sweet, T.J., Hanson, G., Hosogane, M., 

Sinclair, W.R., Nanan, K.K., Mandler, M.D., et al. (2018). Acetylation of Cytidine in mRNA 

Promotes Translation Efficiency. Cell 175, 1872–1886.e24. 

Aravind, L., and Koonin, E. V (2001). The DNA-repair protein AlkB, EGL-9, and leprecan define 

new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2, research0007.1. 

Aschenbrenner, J., Werner, S., Marchand, V., Adam, M., Motorin, Y., Helm, M., and Marx, A. 

(2018). Engineering of a DNA Polymerase for Direct m 6 A Sequencing. Angew. Chemie Int. Ed. 

57, 417–421. 

Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano, G., Robson, S.C., Aspris, D., 

Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid 

leukaemia by m6A-dependent translation control. Nature 552, 126–131. 

Bartosovic, M., Molares, H.C., Gregorova, P., Hrossova, D., Kudla, G., and Vanacova, S. (2017). 

N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 

3’-end processing. Nucleic Acids Res. 45, 11356–11370. 

Batista, P.J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D.M., Lujan, E., Haddad, B., 

Daneshvar, K., et al. (2014). m(6)A RNA modification controls cell fate transition in mammalian 

embryonic stem cells. Cell Stem Cell 15, 707–719. 



 

24 

 

Beemon, K., and Keith, J. (1977). Localization of N6-methyladenosine in the Rous sarcoma virus 

genome. J. Mol. Biol. 113, 165–179. 

Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., Kadiwala, J., Hubner, 

N.C., de los Mozos, I.R., Sadée, C., et al. (2018). The SMAD2/3 interactome reveals that TGFβ 

controls m6A mRNA methylation in pluripotency. Nature 555, 256–259. 

Berulava, T., Ziehe, M., Klein-Hitpass, L., Mladenov, E., Thomale, J., Rüther, U., and Horsthemke, 

B. (2013). FTO levels affect RNA modification and the transcriptome. Eur. J. Hum. Genet. 21, 

317–323. 

Bhat, S.S., Bielewicz, D., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2018). N6-

methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered 

Review. Genes (Basel). 9, 596. 

Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F.M. (1997). Purification 

and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-

methyltransferase. RNA 3, 1233–1247. 

Branco, M.R., Ficz, G., and Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in 

the epigenome. Nat. Rev. Genet. 13, 7–13. 

Bresson, S.M., Hunter, O. V., Hunter, A.C., and Conrad, N.K. (2015). Canonical Poly(A) 

Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs. PLOS 

Genet. 11, e1005610. 

Brown, J.A., Kinzig, C.G., DeGregorio, S.J., and Steitz, J.A. (2016). Methyltransferase-like protein 

16 binds the 3’-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. U. 

S. A. 113, 14013–14018. 

Canaani, D., Kahana, C., Lavi, S., and Groner, Y. (1979). Identification and mapping of N6-

methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Res. 6, 2879–2899. 

Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W. V. (2014). 

Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. 

Nature 515, 143–146. 

Chen, T., Hao, Y.-J., Zhang, Y., Li, M.-M., Wang, M., Han, W., Wu, Y., Lv, Y., Hao, J., Wang, L., 

et al. (2015). m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming 

to Pluripotency. Cell Stem Cell 16, 289–301. 



 

25 

 

Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., Sun, G., Lu, Z., Huang, Y., Yang, C.-G., et al. 

(2017). m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma 

Stem Cells. Cell Rep. 18, 2622–2634. 

Deng, X., Chen, K., Luo, G.-Z., Weng, X., Ji, Q., Zhou, T., and He, C. (2015). Widespread 

occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 43, 6557–6567. 

Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of Methylated Nucleosides in 

Messenger RNA from Novikoff Hepatoma Cells. Proc. Natl. Acad. Sci. 71, 3971–3975. 

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, 

S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human 

and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206. 

Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M.S., 

Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W.C., et al. (2016). The dynamic N1-

methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446. 

Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., Liu, M., Ma, J., and Wu, L. (2016). YTHDF2 destabilizes 

m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. 

Commun. 7, 12626. 

Duncan, T., Trewick, S.C., Koivisto, P., Bates, P.A., Lindahl, T., and Sedgwick, B. (2002). Reversal 

of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. 99, 16660–16665. 

Falnes, P.Ø., Johansen, R.F., and Seeberg, E. (2002). AlkB-mediated oxidative demethylation 

reverses DNA damage in Escherichia coli. Nature 419, 178–182. 

Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Brüning, J.C., and Rüther, U. (2009). 

Inactivation of the Fto gene protects from obesity. Nature 458, 894–898. 

Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression regulation mediated 

through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306. 

Galganski, L., Urbanek, M.O., and Krzyzosiak, W.J. (2017). Nuclear speckles: molecular 

organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368. 

Gerken, T., Girard, C.A., Tung, Y.-C.L., Webby, C.J., Saudek, V., Hewitson, K.S., Yeo, G.S.H., 

McDonough, M.A., Cunliffe, S., McNeill, L.A., et al. (2007). The obesity-associated FTO gene 

encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472. 



 

26 

 

Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., 

Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). Stem cells. m6A mRNA methylation 

facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006. 

Gokhale, N.S., McIntyre, A.B.R., McFadden, M.J., Roder, A.E., Kennedy, E.M., Gandara, J.A., 

Hopcraft, S.E., Quicke, K.M., Vazquez, C., Willer, J., et al. (2016). N6-Methyladenosine in 

Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe 20, 654–665. 

Hartmann, A.M., Nayler, O., Schwaiger, F.W., Obermeier, A., and Stamm, S. (1999). The 

Interaction and Colocalization of Sam68 with the Splicing-associated Factor YT521-B in Nuclear 

Dots Is Regulated by the Src Family Kinase p59 fyn. Mol. Biol. Cell 10, 3909–3926. 

Hartstock, K., and Rentmeister, A. (2019). Mapping N6-Methyladenosine (m6A) in RNA: 

Established Methods, Remaining Challenges, and Emerging Approaches. Chem. - A Eur. J. 

Herzel, L., Ottoz, D.S.M., Alpert, T., and Neugebauer, K.M. (2017). Splicing and transcription 

touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 

637–650. 

Hofmann, Y., and Wirth, B. (2002). hnRNP-G promotes exon 7 inclusion of survival motor neuron 

(SMN) via direct interaction with Htra2-beta1. Hum. Mol. Genet. 11, 2037–2049. 

Hongay, C.F., and Orr-Weaver, T.L. (2011). Drosophila Inducer of MEiosis 4 (IME4) is required 

for Notch signaling during oogenesis. Proc. Natl. Acad. Sci. U. S. A. 108, 14855–14860. 

Horowitz, S., Horowitz, A., Nilsen, T.W., Munns, T.W., and Rottman, F.M. (1984). Mapping of 

N6-methyladenosine residues in bovine prolactin mRNA. Proc. Natl. Acad. Sci. U. S. A. 81, 5667–

5671. 

Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., Yuan, 

C.L., et al. (2018a). Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances 

mRNA stability and translation. Nat. Cell Biol. 20, 285–295. 

Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X., Xiao, G., Auer, 

F., et al. (2019). Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-

transcriptionally. Nature 567, 414–419. 

Huang, J., Dong, X., Gong, Z., Qin, L.-Y., Yang, S., Zhu, Y.-L., Wang, X., Zhang, D., Zou, T., 

Yin, P., et al. (2018b). Solution structure of the RNA recognition domain of METTL3-METTL14 

N6-methyladenosine methyltransferase. Protein Cell 1–13. 



 

27 

 

Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M., and Takagi, T. (1998). Cloning of a gene, YT521, 

for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res. Mol. Brain 

Res. 53, 33–40. 

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.-G., et 

al. (2011). N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. 

Nat. Chem. Biol. 7, 885–887. 

Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. 

Nat. Rev. Genet. 13, 484–492. 

Karijolich, J., and Yu, Y.-T. (2010). Spliceosomal snRNA modifications and their function. RNA 

Biol. 7, 192–204. 

Kasowitz, S.D., Ma, J., Anderson, S.J., Leu, N.A., Xu, Y., Gregory, B.D., Schultz, R.M., and Wang, 

P.J. (2018). Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during 

mouse oocyte development. PLOS Genet. 14, e1007412. 

Ke, S., Alemu, E.A., Mertens, C., Gantman, E.C., Fak, J.J., Mele, A., Haripal, B., Zucker-Scharff, 

I., Moore, M.J., Park, C.Y., et al. (2015). A majority of m6A residues are in the last exons, allowing 

the potential for 3’ UTR regulation. Genes Dev. 29, 2037–2053. 

Ke, S., Pandya-Jones, A., Saito, Y., Fak, J.J., Vågbø, C.B., Geula, S., Hanna, J.H., Black, D.L., 

Darnell, J.E., and Darnell, R.B. (2017). m6A mRNA modifications are deposited in nascent pre-

mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 31, 990–

1006. 

Kennedy, E.M., Bogerd, H.P., Kornepati, A.V.R., Kang, D., Ghoshal, D., Marshall, J.B., Poling, 

B.C., Tsai, K., Gokhale, N.S., Horner, S.M., et al. (2016). Posttranscriptional m(6)A Editing of 

HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host Microbe 19, 675–685. 

Kierzek, E., and Kierzek, R. (2003). The thermodynamic stability of RNA duplexes and hairpins 

containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31, 

4472–4480. 

Klose, R.J., Kallin, E.M., and Zhang, Y. (2006). JmjC-domain-containing proteins and histone 

demethylation. Nat. Rev. Genet. 7, 715–727. 

Knuckles, P., Carl, S.H., Musheev, M., Niehrs, C., Wenger, A., and Bühler, M. (2017). RNA fate 

determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. 



 

28 

 

Struct. Mol. Biol. 24, 561–569. 

Knuckles, P., Lence, T., Haussmann, I.U., Jacob, D., Kreim, N., Carl, S.H., Masiello, I., Hares, T., 

Villaseñor, R., Hess, D., et al. (2018). Zc3h13/Flacc is required for adenosine methylation by 

bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component 

Wtap/Fl(2)d. Genes Dev. 32, 415–429. 

Kohli, R.M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. 

Nature 502, 472–479. 

König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J., Luscombe, N.M., 

and Ule, J. (2010). iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide 

resolution. Nat. Struct. Mol. Biol. 17, 909–915. 

Kretschmer, J., Rao, H., Hackert, P., Sloan, K.E., Höbartner, C., and Bohnsack, M.T. (2018). The 

m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5’-3’ 

exoribonuclease XRN1. RNA 24, 1339–1350. 

Kurowski, M.A., Bhagwat, A.S., Papaj, G., and Bujnicki, J.M. (2003). Phylogenomic identification 

of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics 4, 48. 

Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C.H., Kreim, N., Andrade-Navarro, 

M.A., Poeck, B., Helm, M., et al. (2016). m6A modulates neuronal functions and sex determination 

in Drosophila. Nature 540, 242–247. 

Li, A., Chen, Y.-S., Ping, X.-L., Yang, X., Xiao, W., Yang, Y., Sun, H.-Y., Zhu, Q., Baidya, P., 

Wang, X., et al. (2017a). Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 

27, 444–447. 

Li, F., Zhao, D., Wu, J., and Shi, Y. (2014). Structure of the YTH domain of human YTHDF2 in 

complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24, 

1490–1492. 

Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S., Dong, L., Hu, C., 

et al. (2017b). FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine 

RNA Demethylase. Cancer Cell 31, 127–141. 

Lin, Z., Hsu, P.J., Xing, X., Fang, J., Lu, Z., Zou, Q., Zhang, K.-J., Zhang, X., Zhou, Y., Zhang, 

T., et al. (2017). Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine 

spermatogenesis. Cell Res. 27, 1216–1230. 



 

29 

 

Linder, B., Grozhik, A. V, Olarerin-George, A.O., Meydan, C., Mason, C.E., and Jaffrey, S.R. 

(2015). Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. 

Nat. Methods 12, 767–772. 

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). 

A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. 

Nat. Chem. Biol. 10, 93–95. 

Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., and Pan, T. (2013). Probing N6-methyladenosine 

RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 

19, 1848–1856. 

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015). N6-methyladenosine-

dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564. 

Liu, N., Zhou, K.I., Parisien, M., Dai, Q., Diatchenko, L., and Pan, T. (2017). N 6-methyladenosine 

alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–

6063. 

Louloupi, A., Ntini, E., Conrad, T., and Ørom, U.A.V. (2018). Transient N-6-Methyladenosine 

Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. Cell Rep. 23, 

3429–3437. 

Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A. V., Patil, D.P., Linder, B., Pickering, B.F., 

Vasseur, J.-J., Chen, Q., et al. (2017). Reversible methylation of m6Am in the 5′ cap controls mRNA 

stability. Nature 541, 371–375. 

Mauer, J., Sindelar, M., Despic, V., Guez, T., Hawley, B.R., Vasseur, J.-J., Rentmeister, A., Gross, 

S.S., Pellizzoni, L., Debart, F., et al. (2019). FTO controls reversible m6Am RNA methylation 

during snRNA biogenesis. Nat. Chem. Biol. 15, 340–347. 

McCloskey, A., Taniguchi, I., Shinmyozu, K., and Ohno, M. (2012). hnRNP C tetramer measures 

RNA length to classify RNA polymerase II transcripts for export. Science 335, 1643–1646. 

Mendel, M., Chen, K.-M., Homolka, D., Gos, P., Pandey, R.R., McCarthy, A.A., and Pillai, R.S. 

(2018). Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse 

Embryonic Development. Mol. Cell 71, 986–1000.e11. 

Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). 

Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop 



 

30 

 

Codons. Cell 149, 1635–1646. 

Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T. V, Qian, 

S.-B., and Jaffrey, S.R. (2015). 5’ UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 

999–1010. 

Murray, B., Antonyuk, S. V, Marina, A., Lu, S.C., Mato, J.M., Hasnain, S.S., and Rojas, A.L. (2016). 

Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes. Proc. 

Natl. Acad. Sci. U. S. A. 113, 2104–2109. 

Nayler, O., Hartmann, A.M., and Stamm, S. (2000). The ER Repeat Protein Yt521-B Localizes to 

a Novel Subnuclear Compartment. J. Cell Biol. 150, 949–962. 

Nichols, J.L. (1979). N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci. Lett. 15, 

357–361. 

Patil, D.P., Chen, C.-K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., and Jaffrey, S.R. 

(2016). m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 

369–373. 

Pendleton, K.E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B.P., and Conrad, N.K. (2017). The 

U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 

169, 824–835.e14. 

Ping, X.-L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., Adhikari, S., Shi, Y., Lv, Y., 

Chen, Y.-S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-

methyladenosine methyltransferase. Cell Res. 24, 177–189. 

Rafalska, I., Zhang, Z., Benderska, N., Wolff, H., Hartmann, A.M., Brack-Werner, R., and Stamm, 

S. (2004). The intranuclear localization and function of YT521-B is regulated by tyrosine 

phosphorylation. Hum. Mol. Genet. 13, 1535–1549. 

Ray, D., Kazan, H., Cook, K.B., Weirauch, M.T., Najafabadi, H.S., Li, X., Gueroussov, S., Albu, 

M., Zheng, H., Yang, A., et al. (2013). A compendium of RNA-binding motifs for decoding gene 

regulation. Nature 499, 172–177. 

Roost, C., Lynch, S.R., Batista, P.J., Qu, K., Chang, H.Y., and Kool, E.T. (2015). Structure and 

Thermodynamics of N 6 -Methyladenosine in RNA: A Spring-Loaded Base Modification. J. Am. 

Chem. Soc. 137, 2107–2115. 

Rothbart, S.B., and Strahl, B.D. (2014). Interpreting the language of histone and DNA 



 

31 

 

modifications. Biochim. Biophys. Acta 1839, 627–643. 

Roundtree, I.A., Luo, G.-Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., Sha, J., Huang, X., Guerrero, 

L., Xie, P., et al. (2017). YTHDC1 mediates nuclear export of N6-methyladenosine methylated 

mRNAs. Elife 6. 

Ruszkowska, A., Ruszkowski, M., Dauter, Z., and Brown, J.A. (2018). Structural insights into the 

RNA methyltransferase domain of METTL16. Sci. Rep. 8, 5311. 

Schwartz, S., Agarwala, S.D., Mumbach, M.R., Jovanovic, M., Mertins, P., Shishkin, A., Tabach, Y., 

Mikkelsen, T.S., Satija, R., Ruvkun, G., et al. (2013). High-Resolution Mapping Reveals a 

Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis. Cell 155, 1409–

1421. 

Schwartz, S., Mumbach, M.R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G.G., Mertins, P., 

Ter-Ovanesyan, D., Habib, N., Cacchiarelli, D., et al. (2014). Perturbation of m6A Writers Reveals 

Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Rep. 8, 284–296. 

Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic 

processing bodies. Science 300, 805–808. 

Shi, Y. (2007). Histone lysine demethylases: emerging roles in development, physiology and disease. 

Nat. Rev. Genet. 8, 829–833. 

Shima, H., Matsumoto, M., Ishigami, Y., Ebina, M., Muto, A., Sato, Y., Kumagai, S., Ochiai, K., 

Suzuki, T., and Igarashi, K. (2017). S-Adenosylmethionine Synthesis Is Regulated by Selective N6-

Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Rep. 

21, 3354–3363. 

Soh, Y.Q.S., Mikedis, M.M., Kojima, M., Godfrey, A.K., de Rooij, D.G., and Page, D.C. (2017). 

Meioc maintains an extended meiotic prophase I in mice. PLOS Genet. 13, e1006704. 

Sommer, S., Salditt-Georgieff, M., Bachenheimer, S., Darnell, J.E., Furuichi, Y., Morgan, M., and 

Shatkin, A.J. (1976). The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic 

Acids Res. 3, 749–766. 

Squires, J.E., Patel, H.R., Nousch, M., Sibbritt, T., Humphreys, D.T., Parker, B.J., Suter, C.M., and 

Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding 

RNA. Nucleic Acids Res. 40, 5023–5033. 

Stoilov, P., Rafalska, I., and Stamm, S. (2002). YTH: a new domain in nuclear proteins. Trends 



 

32 

 

Biochem. Sci. 27, 495–497. 

Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 

41–45. 

Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from 

epigenomics. Nat. Rev. Genet. 9, 465–476. 

Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., Zheng, H., Klungland, A., and 

Yan, W. (2018). ALKBH5-dependent m6A demethylation controls splicing and stability of long 

3’-UTR mRNAs in male germ cells. Proc. Natl. Acad. Sci. U. S. A. 115, E325–E333. 

Theler, D., Dominguez, C., Blatter, M., Boudet, J., and Allain, F.H.-T. (2014). Solution structure 

of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. 

Nucleic Acids Res. 42, 13911–13919. 

Tirumuru, N., Zhao, B.S., Lu, W., Lu, Z., He, C., and Wu, L. (2016). N6-methyladenosine of HIV-

1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5. 

Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T., and Sedgwick, B. (2002). Oxidative 

demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419, 174–178. 

Wang, P., Doxtader, K.A., and Nam, Y. (2016). Structural Basis for Cooperative Function of Mettl3 

and Mettl14 Methyltransferases. Mol. Cell 63, 306–317. 

Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et 

al. (2014a). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 

117–120. 

Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and 

He, C. (2015). N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 

1388–1399. 

Wang, Y., Wang, J., Gao, L., Stamm, S., and Andreadis, A. (2011). An SRp75/hnRNPG complex 

interacting with hnRNPE2 regulates the 5’ splice site of tau exon 10, whose misregulation causes 

frontotemporal dementia. Gene 485, 130–138. 

Wang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014b). N6-methyladenosine 

modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–

198. 



 

33 

 

Warda, A.S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., Sloan, K.E., and 

Bohnsack, M.T. (2017). Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that 

targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18, 2004–2014. 

Wei, C.-M., Gershowitz, A., and Moss, B. (1975b). Methylated nucleotides block 5′ terminus of 

HeLa cell messenger RNA. Cell 4, 379–386. 

Wei, C.-M., Gershowitz, A., and Moss, B. (1975a). N6, O2′-dimethyladenosine a novel methylated 

ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature 257, 251–253. 

Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang, P., Tan, L., et al. (2018). 

Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. 

Mol. Cell 69, 1028–1038.e6. 

Wojtas, M.N., Pandey, R.R., Mendel, M., Homolka, D., Sachidanandam, R., and Pillai, R.S. (2017). 

Regulation of m6A Transcripts by the 3’→5’ RNA Helicase YTHDC2 Is Essential for a Successful 

Meiotic Program in the Mammalian Germline. Mol. Cell 68, 374–387. 

Wu, B., Su, S., Patil, D.P., Liu, H., Gan, J., Jaffrey, S.R., and Ma, J. (2018). Molecular basis for the 

specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. 

Commun. 9, 420. 

Xiang, Y., Laurent, B., Hsu, C.-H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, 

J., Wang, S., et al. (2017). RNA m6A methylation regulates the ultraviolet-induced DNA damage 

response. Nature 543, 573–576. 

Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F., Sun, H.-Y., Li, A., Ping, X.-

L., Lai, W.-Y., et al. (2016). Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell 

61, 507–519. 

Xu, C., Wang, X., Liu, K., Roundtree, I.A., Tempel, W., Li, Y., Lu, Z., He, C., and Min, J. (2014). 

Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. 

Biol. 10, 927–929. 

Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M., and Min, J. (2015). Structural Basis for the 

Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B Homology 

Domain Family of Proteins. J. Biol. Chem. 290, 24902–24913. 

Xu, K., Yang, Y., Feng, G.-H., Sun, B.-F., Chen, J.-Q., Li, Y.-F., Chen, Y.-S., Zhang, X.-X., Wang, 

C.-X., Jiang, L.-Y., et al. (2017). Mettl3-mediated m6A regulates spermatogonial differentiation and 



 

34 

 

meiosis initiation. Cell Res. 27, 1100–1114. 

Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., Cheng, T., Gao, M., Shu, X., Ma, H., et al. 

(2018). VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and 

associates with alternative polyadenylation. Cell Discov. 4, 10. 

Zhang, C., Samanta, D., Lu, H., Bullen, J.W., Zhang, H., Chen, I., He, X., and Semenza, G.L. 

(2016). Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-

mediated m6A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. U. S. A. 113, E2047-56. 

Zhang, S., Zhao, B.S., Zhou, A., Lin, K., Zheng, S., Lu, Z., Chen, Y., Sulman, E.P., Xie, K., Bögler, 

O., et al. (2017). m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-

like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 31, 591–

606.e6. 

Zhang, Z., Theler, D., Kaminska, K.H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., 

Heinrich, B., Bujnicki, J.M., Allain, F.H.-T., et al. (2010). The YTH domain is a novel RNA binding 

domain. J. Biol. Chem. 285, 14701–14710. 

Zhao, B.S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R.K., and He, C. (2017). 

m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. 

Nature 542, 475–478. 

Zhao, S., Korzan, W.J., Chen, C.-C., and Fernald, R.D. (2008). Heterogeneous nuclear 

ribonucleoprotein A/B and G inhibits the transcription of gonadotropin-releasing-hormone 1. 

Mol. Cell. Neurosci. 37, 69–84. 

Zhao, X., Yang, Y., Sun, B.-F., Shi, Y., Yang, X., Xiao, W., Hao, Y.-J., Ping, X.-L., Chen, Y.-S., 

Wang, W.-J., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA 

splicing and is required for adipogenesis. Cell Res. 24, 1403–1419. 

Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, 

W.-L., Song, S.-H., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA 

metabolism and mouse fertility. Mol. Cell 49, 18–29. 

Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S.R., and Qian, S.-B. (2015). Dynamic m6A mRNA 

methylation directs translational control of heat shock response. Nature 526, 591–594. 

 


	Charles University
	Faculty of Science
	Poděkování
	Prohlášení
	Abstrakt
	Klíčová slova
	Abstract
	Keywords:
	Table of contents
	Glossary
	Introduction
	m6A distribution patterns on different RNAs
	m6A methyltransferases (m6A writers)
	METTL3/METTL14 complex
	METTL16

	m6A demethylases (m6A erasers)
	m6A binding proteins and effect of the m6A modification on RNA metabolism
	m6A switch
	m6A binding proteins (readers)
	YTHDC1 affects RNA splicing and nuclear export
	Cytoplasmatic YTH proteins regulate RNA translation and degradation

	Summary and discussion
	References

