Abstract

The N6-methylation of adenosine (m⁶A) is the most abundant modification in eukaryotic mRNA. This modification is deposited on RNA co-transcriptionally by the methyltransferase complexes and can also be "erased" by specific demethylases. The existence of m⁶A demethylases makes the modification reversible and potentially dynamic, therefore, m⁶A could have a function in gene expression regulation. Since the discovery of the first m⁶A demethylase FTO, the m⁶A has become a hot-topic in RNA-biology research. m⁶A is found in mRNAs but also in various non-coding RNAs. Analysis of m⁶A distribution on mRNAs revealed the enrichment of m⁶A in proximity of a stop codon, in 3' UTRs and possibly around 5' and 3' splice-sites. So far two m⁶A methyltransferases have been discovered in vertebrates, METTL3/METTL14 complex is the major methyltransferase and METTL16 deposits m⁶A just on a specific subset of RNAs. Additionally, two m⁶A demethylases are known - FTO and ALKBH5. Finally, members of protein family with a so-called YTH RNA binding domain were identified as m⁶A binding proteins. m⁶A serves as a signal affecting various steps of RNA metabolism such as mRNA splicing, nuclear export, translation or RNA degradation. Some of the effects are clearly mediated by the m6A binding proteins, but also other mechanisms can be involved. m⁶A presence on RNA can also modify the RNA secondary structure, changing the accessibility of the RNA to various RNAbinding proteins, this regulatory mechanism is called m⁶A switch.