
BACHELOR THESIS

Jakub Tětek

Compact I/O-Efficient Graph
Representations

Department of Applied Mathematics

Supervisor of the bachelor thesis: Mgr. Tomáš Gavenčiak, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

I would like to thank my supervisor, Tomáš Gavenčiak. Many thanks for the
countless hours spent in front of a whiteboard or discussing theoretical computer
science over a cup of tea.

iii

iv

Title: Compact I/O-Efficient Graph Representations

Author: Jakub Tětek

Department: Department of Applied Mathematics

Supervisor: Mgr. Tomáš Gavenčiak, Ph.D., Department of Applied Mathematics

Abstract: The objective of this thesis is to develop a fast memory-efficient repre-
sentation of some graphs that occur in real-world applications.

We consider separable graph classes (e.g. planar graphs or graphs of bounded
genus) and show how to represent them in a way that (1) makes accessing ver-
tices in a walk cache-efficient on average and (2) is highly memory-efficient. In
particular, we show a compact representation of separable graph classes with the
I/O cost of a random walk of length k being O(K/(Bw)1−c) w.h.p.

In the second part of the thesis, we consider layout of trees with optimal worst-
case I/O cost for root-to-leaf traversal, show an additive (+1)-approximation of
I/O optimal compact layout and contrast this with a proof of NP-hardness of
exact solution.

In this thesis, we also prove generalisations of the recursive separator theorem.
The first one generalises the theorem for weighted graphs and the second one
replaces minimum region size by average region size in the bound.

Keywords: graph theory, cache-oblivious algorithms, compact representation,
separable graphs

v

vi

Contents

1 Introduction 3
1.1 About the problem . 3
1.2 Related work . 4
1.3 Our contribution . 5

2 Preliminaries 7
2.1 Separators . 7
2.2 Compact data representation . 8
2.3 I/O complexity . 8

3 Representation for Random Walks 11
3.1 Summary of results . 11
3.2 Proofs of Theorems 1 – 3 . 12
3.3 Expanding relative offsets to relative bit-offsets 14

4 Generalisations Separator Hierarchy 17

5 Representation for Paths in Trees 21
5.1 The representation . 21
5.2 Hardness of worst-case optimal compact layouts 24

6 Conclusions 27
6.1 Summary of the thesis . 27
6.2 Further research . 27

Bibliography 29

1

2

Chapter 1

Introduction

1.1 About the problem
Many graphs that are present in real-world applications have small separators,
as we further discuss. Formally, a graph class is said to be separable graphs if all
graphs have a cuts of size O(nc) for c < 1 that breaks the graphs into connected
components each having no more than αn vertices for some fixed α < 1. It has
been proven by Lipton and Tarjan (1979) that the class of planar graphs has
such property with c = 1/2 and α = 2/3. Later it has been shown that, more
generally, the class of graphs of bounded genus as well as nontrivial minor-closed
graph classes have this property. Real-world networks, such as the road network
graph, often have small separators. There are also generative models of real real-
world graphs which produce graphs with strongly sublinear separators on the large
scale (all subgraphs of size Ω(

√
log n) have them) with high probabilityBringmann

et al. (2017).
Separable graphs have linear information entropy and can be represented using

O(n) bits of memory. Compact as well as succinct (that is, one using O(H) and
H +o(H) bits respectively, where H is the class information entropy) representa-
tions are known. Much research has been done on space-efficient representation
of separable graphs as well as on representations which are I/O efficient when
performing walks. This thesis combines these two approaches.

Modern computer architectures consist of several layers of memory. The fur-
ther a level is from the CPU, the slower it is and the larger capacity it has. This
allows for storage of data that are being currently used on a faster memory closer
to the CPU, which allows for faster access times. Optimising algorithms to take
advantage of the memory hierarchy can speed them up even by an order of mag-
nitude. We use a model where there is CPU with fast cache of size M words and
main memory of unlimited size. The complexity is then measured in the number
of accesses of the main memory, while allowing to read/write a block of size B
when accessing the main memory. While some algorithms do need the knowledge
of B and M (called cache-aware), some (including those shown in this thesis) do
not require this knowledge. The memory hierarchy is discussed in greater detail
in 2.3.

Computations where the bottleneck is I/O throughput can obviously profit
from memory-efficient data representation and the memory hierarchy allows for
similar improvements in computations where the bottleneck is the I/O latency.

3

The memory-efficiency of our representation amplifies the gains from the caches.
Random walks and markov chains have numerous applications, including

image segmentation Grady (2006) and partial-information game theory algo-
rithms Lanctot et al. (2009).

Some of the work present in this thesis appeared at the SVOČ 2018 com-
petition. A paper upon which this thesis is based Gavenčiak and Tětek (2019)
has been publish in the proceedings of the Theory and Applications of Models of
Computation 2019 conference where it has also been presented. All results in this
thesis appear in the mentioned paper and are original to the best of the authors’
knowledge.

1.2 Related work

A practical compact representation of separable graphs has been devised and
benchmarked by Blandford et al. (2003). Succinct representation was first intro-
duced by Turán (1984) for planar graphs and later generalised by Blelloch and
Farzan (2010) to separable graph classes. Our representation is inspired by the
one of Blandford et al. (2003).

A cache-aware I/O-efficient graph representation has been introduced by Agar-
wal et al. (1998). This representation achieves an improvement by factor of
O(log n) compared to the trivial representation, which is asymptotically optimal
as greater improvement is not possible even for trees in the worst case (for com-
parison, our representation achieves on average an improvement polynomial in
B). It does this by using recursive separator theorem to partition the graph and
storing each partition subgraph contiguously in memory together with copies of
vertices in the Θ(log n) neighbourhood of the subgraph. Note that this makes the
representation unfit for straightforward use with the many algorithms which store
auxiliary information in vertices as there can be multiple copies of single vertex.
This representation has been extended to an I/O efficient succinct representation
of planar graphs by Dillabaugh et al. (2017).

Note that it appears unlikely that either of the mentioned compact represen-
tations could be modified in a straightforward way to achieve the same bounds
as our representation, since they both use a global indexing structure.

A succinct representation of trees which uses asymptotically optimal number
of I/O operations when performing root-to-leaf traversal has been introduced by
Dillabaugh et al. (2012).

Among other notable I/O-efficient algorithms, Maheshwari and Zeh (2002) de-
velop I/O-efficient algorithms for computing vertex separators, shortest paths and
several other problems in planar and separable graphs. Jampala and Zeh (2005)
extends this to a cache-oblivious algorithm for planar shortest paths. While there
are representations even more efficient than succinct (e.g. implicit representations,
which use only O(1) bits more than the class information entropy, see Kannan
et al. (1992) for an implicit graph representation), these do not seem to admit
I/O-efficient access.

4

1.3 Our contribution
Random walks on separable graphs. We present a compact cache-oblivious
representation of graphs satisfying the nc edge separator theorem. We also present
a cache-oblivious representation of weighted graphs satisfying weighted nc edge
separator theorem, where the transition probabilities depend on the weights. The
representations are I/O-efficient when performing random walks of any length on
the graph, starting from a vertex selected according to the stationary distribution
and with transition probabilities at each step proportional to the weights on the
incident edges, respectively choosing a neighbour uniformly at random for the
unweighted compact representation.

Namely, if every vertex contains q bits of extra (user) information, the repre-
sentation uses O(n log(q + 2)) + qn bits and a random path of length K (sampled
w.r.t. edge weights) uses O(K/(Bw

(1+q))
1−c) I/O operations with high probability.

The graph representation is compact (as the structure entropy including the
extra bits is Θ((q + 1)n). The amount of memory used for the representation of
the graph is asymptotically strictly smaller than the memory used by the user
data already for the common case of q = Θ(w), in which case only O(K/B1−c)
I/O operations are used. For q = O(1), the representation uses O(n) bits.

In contrast with previous I/O-efficient results for planar graphs, our represen-
tation is only compact (and not succinct) but works for all separable graph classes,
is cache-oblivious (in contrast to only cache-aware in prior work), and, most im-
portantly, comes with a much better bound on the number of I/O operations for
randomly sampled paths (order of O(K/B1−c) rather than O(K/ log B)).
Fast tree path traversal is a ubiquitous requirement for tree-based structures
used in external storage systems, database indexes and many other applications.
With Theorem 19, we present a linear time algorithm to compute a layout of the
vertices in memory minimising the worst-case number of I/O operations for leaf-
to-root paths in general trees and root-to-leaf paths in trees with unit vertex size.
We show an additive (+1)-approximation of an optimal compact layout (i.e. one
that fully uses a consecutive block of memory) and show that finding an optimal
compact layout is NP -hard.

The above layout optimality is well defined assuming unit vertex size, an as-
sumption often assumed and satisfied in practice. Using techniques from Chap-
ter 3 we can turn the layout into a compact representation using O(n) bits of
memory, requiring at most OPTL I/O operations for leaf-to-root paths in general
trees and root-to-leaf paths in trees of fixed degree where OPTL is the I/O com-
plexity of the optimal layout, i.e. I/O-optimal layout with the vertices using any
conventional vertex representation with Θ(w) bits for inter-vertex pointers. See
Theorem 21.

Compared to previous results Dillabaugh et al. (2012), our representation is
compact and we present the exact optimum over all layouts while they provide the
asymptotic optimum O(K/B). However, this does not guarantee that our repre-
sentation has lower I/O complexity, since our notion of optimality only considers
different layouts with each vertex stored by a structure of unit size.
Separable graph theorems. We prove two natural generalisations of the sepa-
rator theorem (Theorem 10) and show that their natural joint generalisation does
not hold by providing a counterexample (Theorem 12). The Recursive Separator

5

Theorem involves graph partitions coming from recursive applications of the Sep-
arator Theorem. Let r and r̄ denote the maximum and average size of a region
in the partition, respectively. We prove stronger bound on number of edges going
between regions – O(n

r̄1−c) instead of O(n
r1−c). The second generalisation is for

weighted graphs, showing that n in the bound O(n
r1−c) can be replaced by the

total weight W to get O(W
r1−c). We show that the bound O(W

r̄1−c) does not hold
in general by providing a counterexample.

6

Chapter 2

Preliminaries

Throughout this thesis, we use standard graph theory notation and terminology
as in Bollobas (2010). We denote the subtree of T rooted in vertex v by Tv,
the root of tree T by rT and the set of children of a vertex v as δ(v). All the
logarithms are binary unless noted otherwise.

We use standard notation and results for Markov chains as introduced in the
book by Grinstead and Snell (2006) (chapter 11) and mixing in Markov chains, as
introduced in the chapter on mixing times in a book by Levin and Peres (2017).

2.1 Separators
The following is a standard definition. Let S be a class of graphs closed under
the subgraph relation. It is said that S satisfies the vertex (edge) f(n)-separator
theorem iff there exist constants α < 1 and β > 0 such that any graph in S has a
vertex (edge) cut of size at most βf(n) that separates the graph into components
of size at most αn. We newly define a weighted version of vertex (edge) separator
theorem, which requires that there is a balanced vertex (edge) separator of total
weight at most β f(n)

n
W , where W is the sum of weights of all the edges. Note that

these definitions make sense even for directed graphs. f(n)-separator theorem
without explicit statement whether it is edge or vertex separator, means f(n)
vertex separator theorem.

Many graphs that arise in real-world applications satisfy nc vertex or edge
separator theorem.

It has been extensively studied how to find balanced separators in graphs. In
planar graphs, a separator of size

√
n can be found in linear time Lipton and

Tarjan (1979). Separators of the same size can be found in minor-closed families
in time O(n1+ϵ) for any ϵ > 0 Kawarabayashi, K. I. and Reed (2010). A balanced
separator of size n1−1/d can be found in finite-element mesh in expected linear time
Miller et al. (1998). Good heuristics are known for some graphs which arise in real-
world applications, such as the road network Schild and Sommer (2015). A poly-
logarithmic approximation which works on any graph class is known Leighton and
Rao (1988). A poly-logarithmic approximation of the separators will be sufficient
to achieve almost the same bounds in our representation (differing by a factor at
most poly-logarithmic in B).

We define a recursive separator partition to be a partition of vertex set of a
graph, obtained by the following recursive process. Given a graph G, we either set

7

the whole V (G) to be one set of the partition (e.g. when some stopping condition
is met) or do the following:

1. Apply separator theorem. This gives us partition of V (G) into two sets
A, B from the separator theorem.

2. Recursively obtain recursive separator partitions of A and B.

3. Return the union of the partitions of A and B as the partition of V (G).

We call the sets in a recursive separator partition regions.
If there is an algorithm that computes balanced separator in time O(f(n)), there
is an algorithm that computes recursive separator partition with region size Θ(r)
in time O(f(n) log n) for any r. A stronger version called r-division can be
computed in linear time on planar graphs Goodrich (1995).

2.2 Compact data representation
Let C be a class of objects we want to define and H(C) be its information entropy.
It is said that a representation of C is

• compact if it uses O(H(C)) bits

• succinct if it uses H(C) + o(H(C)) bits

• implicit if it uses H(C) + O(1) bits

Much research has been done on compact data structures. We refer an inter-
ested reader to a book by Navarro (2016).

2.3 I/O complexity
The processor caches have a big impact on the practical performance of algo-
rithms. These effects have been studied extensively and there are many re-
sults, both theoretical and experimental. The number of cache-to-main-memory
transfers, called the I/O complexity, is used as the theoretical measure of cache-
efficiency. For definitions related to I/O complexity, refer to Demaine (2002).
We use the standard notation with B being the block size and M the cache size.
Both B and M is counted in words. Each word has w bits and it is assumed that
w ∈ Ω(log n).

We consider computation in the I/O model. For The computer consists of
two-level memory hierarchy with cache and main memory. Both cache and main
memory are partitioned into blocks. Each block consists of B consecutive words
that are always moved together between cache and main memory. The processor
can only work with data in the cache. Whenever a word that is already in cache
is accessed, a cache hit occurs. When a word that is not in cache is accessed,
the whole memory block that the word belongs to is loaded from main memory
to cache. Only M words fit into the cache. If the cache is full and a block is to
be moved into the cache, at least one block has to be evicted. When analysing

8

algorithms in the I/O model, it is standard to assume that the eviction strategy
is to evict the least recently used block.

We define the I/O complexity of an algorithm to be function f , such that f(n)
is equal to the greatest number of block moves made by the algorithm over all
inputs of size n. As with time complexity, we will only care about the asymptotics
of this function.

We say an algorithm is cache-oblivious if it is an algorithm in the I/O model,
which does not use the values of B and M . We call it cache-aware otherwise.
Real-world computers have several levels of cache hierarchy. Great advantage of
cache-oblivious algorithms is that they optimise all levels in the cache hierarchy,
whereas cache-aware algorithm optimises only one level in the hierarchy.

9

10

Chapter 3

Representation for Random
Walks

In this chapter, we present our cache-oblivious representation of separable graphs
optimised for random walks as well as general markov chains. We then show an
exponential concentration bound on the I/O complexity of a random walk.

3.1 Summary of results
The following theorem is the main result of this thesis. It says that a separable
graph can be represented in a way which uses asymptotically optimal number of
bits of memory and which allows for I/O-efficient random walks (when started
from the stationary distribution). Moreover, our representation allows additional
data to be stored in the vertices. This is an important feature which allows our
approach to be used in many practical settings. Note that the number of bits used
by the representation is optimal only when constant number of bits of additional
data is stored per vertex. The data could be stored separately, resulting again in
a representation which uses asymptotically optimal number of bits, but accessing
data associated with a vertex, when we decide to do so, would cost additional
O(1) I/O’s. We then show an algorithm running in near-linear time which can
find such representation of a given graph.

Theorem 1. Let G be a graph from a graph class satisfying the nc edge separator
theorem where every vertex contains q extra bits of information. Then there is
a cache-oblivious representation of G using O (n log(q + 2)) + qn bits in which
a random walk of length k starting in a vertex sampled from the stationary dis-
tribution uses in expectation O

(
k/

(
Bw

(1+q)

)1−c)
I/O operations. Moreover, such

representation can be computed in time O(n1+ϵ) for any ϵ > 0.

For other random walks and weighted graphs where the transition probabil-
ities are proportional to the random walk stationary distribution, we can show
a weaker result. Namely, we can no longer guarantee a compact representation.
This in turn results in a weaker bound on the I/O complexity as fewer vertices
fit into a cache line.

Theorem 2. Let M be any Markov chain of random walks on a graph G and
assume M has a unique stationary distribution π. Assume G satisfies the nc edge

11

separator theorem with respect to the edges-traversal probabilities in π. Let M ′ be
a Markov chain of random walks on G with transition probabilities proportional to
M , e.g. π′(e) = Θ(π(e)). Then there is a layout of vertices of G into blocks with
Θ(B) vertices each such that a random walk in M ′ of length k crosses memory
block boundary in expectation O(k/B1−c) times.

Note that this gives an efficient memory representation when NG(v) and the
probabilities on incident edges can be represented by (or computed from) O(1)
words, which is the case for bounded degree graphs with some chains M ′. We
also note that such partially-implicit graph representations are present in the
state graphs of some MCMC probabilistic graphical model inference algorithms.

Additionally, we present a result on the concentration of the number of I/O
operations which applies to both Theorems 1 and 2.
Theorem 3. Let G be a fixed graph, tmix the mixing time of G and X the number
of edges going between blocks crossed during the random walk. Then the probability
that (1 − δ)E(X) ≤ X ≤ (1 + δ)E(x) does not hold is O

(
me−c′ δ2nBc−1

m

)
for some

value c′ and m = tmix log(n2/E(X1)), where the variable Xi indicates if the walk
crossed an edge between two different blocks in step i.

3.2 Proofs of Theorems 1 – 3
We will use the following lemma which is implicit in Blandford et al. (2003),
as the authors use the same layout to get compact representation of separable
graphs and they use the following property.
Lemma 4 (Blandford et al. (2003)). If π in Theorem 2 gives the same traversal
probability to all edges, the representation induces a vertex order l : V → 1 . . . n
such that ∑

e=uv∈E log |l(u) − l(v)| = O(n).
Proof of Theorem 1. Since the stationary distribution on an undirected graph
assigns equal probability to every edge, we can apply Lemma 4 on G to obtain
vertex ordering r : V → 1 . . . n such that ∑

e=uv∈EG
log |r(u) − r(v)| = O(n). We

could therefore compactly store the edges as variable-width vertex order differ-
ences (offsets). However, it is not straightforward to find the memory location of
a given vertex when a variable-width encoding is used. To avoid an external (and
I/O inefficient) index used in some other approaches, we replace the edge offset
information with relative bit-offsets, directly pointing to the start of the target
vertex, using Theorem 5 on the edge offsets. We expand the representation by
inserting the q bits of extra information to every vertex, adjusting the pointers
and thus widening each by O(log q) bits.

To prove the bound on I/O complexity, we use the same argument as in
the proof of Theorem 2. Average of O(1 + q) bits is used for representation of
single vertex and, therefore, average of Θ(Bw

q+1) vertices fit into one cache line. By
Theorem 10, part i, the total probability on edges going between memory blocks
is O(1/ Bw

q+1). Again, by linearity of expected value, this proves the claimed I/O
complexity.

Compact representation as in Theorem 5 can be computed in the claimed
bound, as is shown in Theorem 7.

12

Proof of Theorem 2. We use the following recursive layout. Let S be an edge
separator with respect to edge-traversal probabilities in π. Then S partitions G
into two subgraphs X and Y . We recursively lay out X and Y and concatenate
the layouts. Note that X and Y are stored in memory contiguously. At some
level of recursion, we get partition into subgraphs represented by between ϵB and
B words for ϵ > 0 constant. We call these subgraphs block regions. Since the
average degree in graphs satisfying nc edge separator theorem is O(1) Lipton et al.
(1979), the average vertex representation size is also O(1) and the average number
of vertices in a block region is, therefore, Θ(B). It follows from Theorem 10, part
ii, that the total probability on edges going between block regions is O(1/B1−c).
From linearity of expectation, O(1/Bc−1)-fraction of steps in the random walk
cross between block regions in expectation. Moreover, each of the block regions
in the partition is stored in O(1) memory blocks, which proves the claimed bound
on I/O complexity.

Proof of Theorem 3. Let X be the number of edges crossed during the random
walk that go between blocks. We are assuming that there is at least one edge
going between two blocks in the graph.

We choose δ′ =
√

3
4δ (arbitrary constant c′′ < 1 would work). Note that m

is a number of steps, after which the probabilities on edges differ from those in
stationary distribution by at most E(X1)/n2, regardless from what distribution
we started the random walk since tmix(ϵ) ≤ ⌈log ϵ−1⌉tmix Levin and Peres (2017).
This means that the probability that an edge going between two blocks is crossed
after m steps differs by at most 1

n
-fraction from the probability in stationary

distribution.
Let Xi be indicator random variable that is 1 iff the random walk crosses

edge going between blocks in step i. We consider the following sets of random
variables Si = {Xj|Xj−m : j mod m} = i} for 1 ≤ i ≤ m (not conditioning on
variables with nonpositive indices). Note that the random variables in each of
sets Si are independent and (1 − 1

n
)E(Xj) ≤ E(Xj|Xj−m) ≤ (1 + 1

n
)E(Xj), as

mentioned above. Let µi be E(∑
X∈Si

X) and µ = E(∑
i

∑
X∈Si

X). Note that
µi ∈ Θ(nBc−1/m) for each i. By applying the Chernoff inequality, we get that
the following bounds hold for all n ≥ n0 for some n0 for each i:

P
(∑

X∈Si

X ≥ (1 + δ′)µi

)
≤ e− δ′2µi

3 = e− δ2µi
4

P
(∑

X∈Si

X ≤ (1 − δ′)µi

)
≤ e− δ′2µi

2 ≤ e− δ2µi
4

The probability that there exists i such that either ∑
X∈Si

X ≥ (1 + δ′)µi or∑
X∈Si

X ≤ (1 − δ)µi is by the union bound for some value of c′ at most the
following:

2⌈log(n/E(X1))⌉tmixe− δ2µ
4m ∈ O(me−c′ δ2nBc−1

m)
Note that µi converges to |Si|E(X1), which is the value that we are showing

concentration of ∑
X∈Si

X around. The asymptotic bound on the probability
follows.

13

3.3 Expanding relative offsets to relative bit-
offsets

Having the edges of a graph encoded as relative offsets to the target vertex and
having these numbers encoded by a variable-length encoding, we need a way to
find the exact location of the encoded vertex. Others have used a global index
for this purpose but this is generally not I/O-efficient.

Our approach encodes the relative offsets as slightly wider numbers that di-
rectly give the relative bit-index of the target. However, this is not straight-
forward as expanding just one relative offset to a relative bit-offset can make
other bit-offsets (spanning over this value) larger and even requiring more space,
potentially cascading the effect.

Note that one simple solution would be to widen every offset representation
by Θ(log log N) bits where N is the total number of bits required to encode all
the n offsets, yielding N + n ∗ O(log log N) encoding. log n bits are sufficient to
store each offset. Therefore, by expanding the offsets, they increase at most log n
times. By adding log(2 log n) bits, we can encode increase of offsets by factor of
up to 2 log n ≥ log n + log(2 log n).

However, we propose more efficient encoding with the following theorem. We
interpret the numbers ai as relative pointers, i-th number pointing to the location
of the (i + ai)-th value. In the proof, we use a dynamic width gamma number en-
coding in the form [(sign)B00B10B20 . . . Bi1], where 2i+1-th bit encodes whether
Bi is the last bit encoded.

Theorem 5. Let a1 . . . an be a sequence of numbers such that −i ≤ ai ≤ n − i
and ∑n

i=0 log |an| = m. Then there are n-element sequences {wi} (the encoded
bit-widths) and {bi} (the bit-offsets) of numbers such that for all 1 ≤ i ≤ n,
wi ≥ 2 log |bi| + 1 (i.e. bi can be gamma-encoded in wi bits), P (i) + wi = P (i + ai)
where P (j) := ∑j−1

i=1 wi (so wi is a relative bit-offset of encoded position i + ai)
and ∑n

i=1 wi = O(m + n).

Proof. There are certainly some non-optimal valid choices for wi’s and bi’s, and
we can improve upon them iteratively by shrinking wi’s to fit gamma-encoded bi

with sign (i.e. wi = 1 + 2 log |bi|), which may, in turn, decrease some bi’s. Being
monotonic, this process certainly has a fixpoint {bi}i and {wi}i and we assume
arbitrary such fixpoint.

Let C < 1 and D > 1 be constants to be fixed below. Denote vi = log |ai|
and Ri = {i . . . i + ai − 1} (resp. {i + ai . . . i − 1} when ai < 0). Intuitively,
when expanding offsets ax to bit offsets bx, it may happen that Rx contains y
with wy ≫ ax, forcing wx ≫ vx. We amortise such cases by distributing ”extra
bits” to such ”smaller” offsets.

Let x ≺ y ⇐⇒ y ∈ Rx ∧ vx ≤ C log wy ∧ vx > D and let x↑ = arg maxy≻xwy

(or undefined if there is no such y) and let y↓ = {x|y ∈ x↑}. Observe that
|y↓| ≤ 2 · 2C log wy = 2wC

y since all x ∈ y↓ have |ax| ≤ 2vx ≤ wC
y . We also note that

y = x↑ implies wx < wy since wy ≤ wx would imply bx ≤ |ax|wx and wx > 2vx/C

leading to wx ≤ vx + log wx and 2vx/C < wx ≤ 2vx, which gives the desired
contradiction with D large enough (depending only on C).

We will distribute the extra bits starting from the largest wi’s. Every y uses wy

bits for its encoding and distributes another wy bits to y↓. Let rx = wx↑/|(x↑)↓| ≥

14

1
2w1−C

x↑ be the number of extra bits received from x↑ in this way.
For every offset x we use 10vx + 2D bits and the received bits rx. Since

the received bits are accounted for in other offsets, this uses ∑n
i=1 10vx + D =

10m + O(n) bits in total. Therefore we only need to show that the number of
bits thus available at x is sufficient, i.e. that 2wx ≤ rx + 10vx + 2D (one wx to
represent bx, one to distribute to x↓).

Now either there is y = x↑ and we have bx ≤ |ax|wy so wx ≤ 1 + 2vx + 2 log wy

and noting that for large enough D only depending on C: 2 log wy ≤ 1
4w1−C

y +D ≤
1
2rx + D, so we obtain wx ≤ 1

2rx + 5vx + 2D as desired.
On the other hand, undefined x↑ implies that ∀y ∈ Rx : wy ≤ 2vx/C . Therefore

bx ≤ |ax|2vx/C and wx ≤ 1 + 2vx + 2vx/C = 1 + (2 + 2/c)vx. Now we may fix
C = 2/3, obtaining wx ≤ 5vx + D as required for D ≥ 1. This finishes the proof
for any fixpoint {bi}i and {wi}i.

The algorithm from the beginning of the proof can be shown to run in poly-
nomial time. We start with e.g. wi = w0 = 1 + 4 log n and bi = sign(ai)

∑
j∈Ri

wj.
Then we iteratively update wi := 1 + 2⌈log bi⌉ and recompute bi as above. Since
every iteration takes O(n2) time and in every iteration at least one wi decreases,
the total time is at most O(n3 log n). In the following section, we show an algo-
rithm that computes a representation with the same asymptotic bounds, running
in time O(n1+ϵ) for any ϵ > 0.

Constructing the compact representation

In this section, we use notation defined in section 3.3, specifically Re and be. Recall
that Re is the set of edges of G spanned by the edge e in the representation and
be is the relative offset of edge e in the (expanded) representation). Let G be the
graph we want to represent. We assume that G satisfies the nc edge separator
theorem.

We find a representation using O(n log log n) bits, as mentioned above by
expanding all pointers and then modify it to make it compact.

We define a directed graph H on the set E(G) with arc going from v to u iff
v ∈ Ru. Let us fix a recursive separator hierarchy of G. We call l(e) the level of
recursion on which the edge e is part of the separator. We define a graph H≤k

to be the subgraph of H induced by vertices corresponding to edges of G which
appear in the recursive separator hierarchy in a separator of subgraph of size at
most k.

The following lemma will be used to bound the running time of the algorithm:

Lemma 6. The maximum out-degree of H≤nc′ is nc∗c′. For any fixed c′ > 0,
|H \ H≤nc′ | ∈ n1−ϵ′ where ϵ′ > 0 is some constant depending only on c and c′.

Proof. We first prove that maximum out-degree of H is O(nc).
There are O(nc) edges e ∈ G with l(e) = 1 spanning any single vertex. The

number of edges e spanning some vertex with l(e) = k decreases exponentially
with k, resulting in a geometric sequence summing to O(nc).

The maximum out-degree of H≤nc′ is the same as that of graph H ′ corre-
sponding to a subgraph of G of size at most nc′ . Maximum out-degree of H≤nc′

is, therefore, O(nc∗c′).

15

The number of vertices in H \ H≤nc′ is equal to the number of edges in G

going between blocks of size Θ(nc′). This number is, by Theorem 10, equal to
n/nc′(1−c), which is O(n1−ϵ) for some ϵ′ > 0.

Theorem 7. Given a separator hierarchy, the representation from Theorem 1
can be computed in time O(n1+ϵ) for any ϵ > 0.

Proof. We first describe an algorithm running in time O(n1+c log log n), where c
is the constant from the separator theorem, and then improve it.

Just as in the proof of Theorem 5, bv denotes the relative offset of edge v in
the representation. We store a counter cv for each vertex v ∈ H equal to the
decrease of bv required to shrink its representation by at least one bit. That
is, cv = bv − ⌊bv⌋2k + 1, where ⌊i⌋2k is i rounded down to closest power of two.
When we shrink the representation of edge corresponding to vertex v ∈ H, we
have to update counters cu for all u, such that vu ∈ E(H). Since the out-degree
of H is O(nc), the updates take O(nc) time. We start with representation with
O(n log log n) bits and at each step, we shorten the representation by at least one
bit. This gives the running time of O(n1+c log log n).

To get the running time of O(n1+ϵ log log n), we consider the graph H≤nϵ′ for
some sufficiently small epsilon. Note that the maximum out-degree of H≤nϵ′ is
O(ncϵ′). We can fix ϵ′ small enough to decrease the maximum out-degree to nϵ.
Therefore, by using the same algorithm as above on graph H≤nϵ′ for ϵ′ sufficiently
small, we can get a running time of O(n1+ϵ log log n) for any fixed ϵ > 0. The
representations of edges corresponding to vertices not in the graph H≤nϵ′ are not
shrunk.

Note that the presumptions of Theorem 5 are fulfilled by the edges corre-
sponding to vertices in H≤nϵ and the obtained representation of graph G′ =
(V (G), V (H≤nϵ)), is therefore compact. The edges not in H≤nϵ are then added,
increasing some offsets. The representation of an offset of length at least nϵ′′ for
ϵ′′ > 0 is never increased asymptotically by inserting edges since it already has
Θ(log n) bits. There are at most O(nϵ′′) edges of G′ shorter than nϵ′′ that span
any single inserted edge. Lengthening of offsets shorter than nϵ′′ , therefore, con-
tributes at most O(n1−ϵ′

nϵ′′ log log n) ∈ o(n) for some ϵ′′ sufficiently small. The in-
serted edges themselves have representations of total length O(n1−ϵ′ log n) ∈ o(n).
Additional o(n) bits are used after the insertion of edges and the representation,
therefore, remains compact.

16

Chapter 4

Generalisations Separator
Hierarchy

In this chapter, we prove two generalisations of the separator hierarchy theorem.
Our proof is based on the proof from Klein and Mozes (no date). Most impor-
tantly, we show that the recursive separator theorem also holds if we want the
regions to have small size on average and not in the worst case. We also prove the
theorem for weighted separator theorem with weights on edges. We show that
the natural generalisation of our two generalisations does not hold by presenting
a counterexample.

Since the two theorems are very similar and their proofs only differ in one
step, we present them as one theorem with two variants and show only one proof
proving both variants. The difference lies in the reason why the Inequality 4.1
holds. The following lemma and observation prove the inequality under some
assumptions and they will be used in the proof of the theorem.

c′γwW

r1−c
1

+ c′(1 − γw)W
r1−c

2
≤ c′Wn

r1−c
(4.1)

Observation 8. The Inequality 4.1 holds for r1 = r2 = r.

Lemma 9. The Inequality 4.1 holds for γw = γn and r1, r2 and r satisfying the
following.

r = 1
γn

r1
+ 1−γn

r2

= r1r2

γnr2 + (1 − γn)r2
. (4.2)

Proof. Let γ = γw = γn. We simplify the inequality

γ

r1−c
1

+ 1 − γ

r1−c
2

≤ 1
r1−c

for r1, r2 and r satisfying the equality (4.2). By substituting for r and rearranging
the inequality, we get

γr1−c
1 + (1 − γ)r1−c

2 ≤ (γr1 + (1 − γ)r2)1−c

We substitute r2 = λr1. Note that this holds for λ = 1 and that we may
assume r1 ≤ r2 by symmetry. Since the inequality holds for λ = 1, it is sufficient

17

to show the inequality for λ ≥ 1 with both sides differentiated with respect to λ.
By differentiating both sides and simplifying the inequality, we get

(x − (λ − 1)γ)−c ≥ x−c

which obviously holds, since λ ≥ 1 and γ > 0.

Now we proceed to prove the two generalisations of the recursive separator the-
orem. Note that in the following, r is the average or maximum region size,
depending on whether the graph is weighted or not.

Theorem 10. Let G be a (possibly weighted) graph satisfying the nc separator
theorem with respect to its weights and let P be its recursive balanced separator
partition. Then if either

(i) the graph in not weighted and r is the average size of a region in the partition
P , or

(ii) the graph is weighted and r is the maximum size of a region in the partition
P .

Then the total weight of edges not contained inside a region of P is O(W/r1−c),
where W is the total weight (resp. number if unweighted) of all edges of G.

In this proof, let w(S) be the total weight of the edges in S with w(e) denoting
the weight of the single edge e.

Proof. We use induction on the number of vertices to prove the following claim.

Claim 11. Let us have a recursive separator partition P of n-vertex graph G of
average region size r. Then w(E(G) \ ⋃

p∈P p) < c′W
r1−c − c′′W

n1−c for some c′ and c′′.

Before the actual proof of this claim, let us define some notation. Let c, α
and β be the constants from the separator theorem (recall that separator theorem
ensures existence of a partition of V (G) into two sets of size at least αV (G) with
edges of total weight at most β W

n1−c going across). Let B(W, n, r) be the maximum
value of w(E(G)\⋃

p∈P p) over all n-vertex graphs of total weight W and all their
recursive separator partitions with average region size r. We use γn to denote a
fraction of the number of vertices and γw to denote a fraction of the total weight.

Proof of the claim. We defer the proof of the base case until we fix the constant
c′.
By the separator theorem, B(W, n, r) satisfies the following recurrence.

B(W, n, r) = 0 for n ≤ r

B(W, n, r) ≤ β
W

n1−c
+ max

α≤γn≤1−α
γw∈[0,1]

B(γwW, γnn, r1) + B((1 − γw)W, (1 − γn)n, r2)

where r1, r2 are the respective average region sizes in the two subgraphs. It,
therefore, holds that r = 1

γn
r1

+ 1−γn
r2

= r1r2
γnr2+(1−γn)r2

.

18

From the inductive hypothesis, we get the first inequality of the following.
The second inequality follows from the Observation 8 for the case i and from the
Lemma 9 for the case ii.

B(W, n, r) ≤ β
W

n1−c
+ c′γwW

r1−c
1

+ c′(1 − γw)W
r1−c

2
− c′′ W

n1−c
(γc

n + (1 − γn)c) ≤ (4.3)

≤ β
W

n1−c
+ c′Wn

r1−c
− c′′ W

n1−c
(γc

n + (1 − γn)c)

It holds that γc
n + (1 − γn)c ≥ 1 + ϵα, where ϵα > 0 is a constant depending

only on α, since γn ∈ [α, 1 − α] for α > 0. We can therefore set c′′ such that

c′′ W

n1−c
(γc

n + (1 − γn)c) − β
W

n1−c
≥ c′′ W

n1−c

This completes the induction step.
For c′ large enough, the claimed bound in the base case is negative and it, there-
fore, holds.

We conclude this section by showing that the following natural generalisation
of Theorem 10 does not hold:

Theorem 12. The following generalisation does not hold: Let G be a weighted
graph satisfying the nc separator theorem with respect to its weights and let P
be its recursive separator partition. Let r be the average size of a region in the
partition P . Then the total weight of edges not contained in a region of P is
O(W/r1−c), where W is the total weight of all edges of G.

Proof. We show that there is a weighted graph satisfying the nc-separator theorem
with respect to its weight and a recursive partition P of G with edges going
between partition regions of P that have total weight Θ(W), where W is the
total weight of all edges, and with average region size of Θ(n/ log n).

Let G be an unweighted graph of bounded degree satisfying the nc-separator
theorem. We set weights of all its edges to be 1, except for one arbitrary edge e
with weight m − 1, where m is the number of edges of G. Note that w(e) = W/2.
We denote this weighted graph by Gw.

Let S be a separator in G from the separator theorem. We modify S in order
to obtain a balanced separator Sw in Gw of weight O(W/n1−c). If e ̸∈ S, we set
Sw = S. Otherwise, we remove e from S and add all other edges incident to its
endpoints. This gives us Sw which is a separator and its weight differs from the
weight of S only by an additive constant, since the graph G has bounded degree.
It follows that Gw satisfies the nc-separator theorem with respect to its weights.

We consider a partition P constructed by the following process. Let S be a
separator from the separator theorem on Gw, partitioning V (Gw) into vertex sets
A and B. If e ∈ S, we stop and set A and B as the regions of P . Otherwise,
without loss of generality, e ∈ A. We set B as a region of P and recursively
partition A.

19

At the end of this process, we get P with edges of total weight at least W/2
between regions (as e is not contained within any region). The partition P has
Θ(log n) regions, so the average region size is Θ(n/ log n).

20

Chapter 5

Representation for Paths in Trees

5.1 The representation
In this chapter, we show a linear-time algorithm that computes a cache-optimal
layout of a given tree. We are assuming that the vertices have unit size and B
is the number of vertices that fit into a memory block. The same assumption
has been used previously by Gil and Itai (1999). This is a reasonable assumption
for trees of fixed degree and for trees in which each vertex only has a pointer to
its parent. It does not matter in which direction the paths are traversed and we
may, therefore, assume that the paths are root-to-leaf.

We also show that it is NP-hard to find an optimal compact layout of a tree
and show an algorithm which gives a compact layout with I/O complexity at
most OPT + 1.

Definition 13. Laid out tree: A laid out tree is an ordered triplet T = (V, E, L),
where (V, E) is a rooted tree and L : V → {0, 1, 2, · · · , |V |} assigns to each vertex
the memory block that it is in. We require that at most B vertices are assigned
to any block. We treat the block 0 specially as the block already in the cache.

We define c′
L(P) = |{L(v) for v ∈ P}\{0}| to be the cost of path P in a given

layout L. We define c(T, k), the worst-case I/O complexity given k free slots, as

c(T, k) = min
L

(max
P

(c(P)))

where P ranges over all root-to-leaf paths and L over all layouts that assign at
most k vertices to block 0. Since block 0 is assumed to be already in cache,
accessing these vertices does not count towards the I/O complexity. We define
c(T), the worst-case I/O complexity of laid out tree T , to be c(T, 0). This means
c(T) is the maximum number of blocks on a root-to-leaf path. We define a worst-
case optimal layout of a tree T given k free memory slots as a layout attaining
c(T, k).

We can observe that c(T) ≤ 1 + maxu∈δ(rT)(c(Tu)). From the lemmas below
follows that c(T) only depends on the subtrees rooted in children of rT with the
maximum value of c(Tu).

Lemma 14. For any k1, k2 ∈ [B], |c(T, k1) − c(T, k2)| ≤ 1 and c(T, k) is non-
increasing in k.

21

Proof. The function c(T, k) is monotonous in k since a layout given k1 free slots
is a valid layout given k2 slots for k2 ≥ k1. Moreover c(T, 0) = c(T, B) − 1, since
we can map vertices in the root’s block to block 0 instead. From this and the
monotonicity, the lemma follows.

We define deficit of a tree k(T) = min{k, such that c(T, k) < c(T, 0)}. Note
that k(T) ≤ B. It follows from Lemma 14 that c(T, k′) = c(T, 0) = c(T, B) + 1
for all k′ < k(T) and c(T, k′) = c(T, 0) − 1 = c(T, B) for k′ ≥ k(T).

Lemma 15. For k ≥ 1, there is a worst-case optimal layout attaining c(T, k)
such that root is in block 0.

Proof. Let L be a layout that does not assign block 0 to the root. If no vertex is
mapped to block 0, we can move root to block 0. Since block 0 does not count
towards I/O complexity, doing this can only improve the layout. Otherwise, let
v be vertex, which is mapped to block 0. We construct layout L′ such that
L′(v) = L(r), L′(r) = L(v) and L′(u) = L(u) for all other vertices u. For any
path P , c′

L(P) ≥ c′
L′(P), since any path which contains v in layout L′ already

contained it in L and block 0 does not count towards the I/O complexity.

It is natural to consider layouts in which blocks form connected subgraphs.
This motivates the following definition

Definition 16. A partition of a rooted tree is convex if the intersection of any
root-to-leaf path with any set of the partition is a (possibly empty) path.

Let Mv be the set of successors u of vertex v with maximum value of c(Tu).

Lemma 17. The function c(T, k) satisfies the following recursive formula for
k ≥ 1.

c(T, k) = min
{ku}

max
u∈Mv

c(Tu, ku)

where the min is over all sequences {ku} such that ∑
u∈δ(v) ku = k − 1.

Proof. By lemma 15, we may assume that an optimal layout attaining c(T, k) for
k ≥ 1 puts the root to block 0 and allocates the remaining k − 1 slots of block 0
to root’s subtrees, ku slots to the subtree Tu. On the other hand, from values of
ku, we can construct a layout with cost maxu∈Mv(c(Tu, ku)).

Problem 18.
Input: Rooted tree T
Output: Worst-case optimal memory layout of T .

Theorem 19. There is an algorithm which computes a worst-case optimal layout
in time O(n). Moreover, this algorithm always outputs a convex layout.

Proof. We solve the problem using a recursive algorithm. For each vertex, we
compute k(Tv) and c(Tv). First, we define d(T) and cmax(v).

d(Tv) = 1 +
∑

u∈Mv

k(u)

22

cmax(v) = max
u∈δ(v)

(c(Tu))

If d(T) < B, we let k(Tv) = d(T) and c(Tv) = cmax(v). Otherwise k(Tv) = 1
and c(Tv) = cmax(v)+1. As a base case, we use that c(T, k) = 0 when |V (T)| ≤ k.
For k = 0, we use that c(T, 0) = c(T, B) + 1.

Using the values k(Tu) and c(Tu) calculated using the above recurrence, we
reconstruct the worst-case optimal layout in a recursive manner. When laying
out a subtree given k free slots, we check whether k ≥ d(T). If it is, we distribute
the k − 1 empty slots (one is used for the root) in a way that subtrees Tv for
v ∈ M(rT) get at least k(Tv) empty slots. Otherwise, distribute them arbitrarily.
We put the root of a subtree into a newly created block if the subtree gets 0 free
slots. Otherwise, we put the root into the same block as its parent. It follows
from the way we construct the solution that it is convex.

It follows from lemmas 14 and 17 that c(T, k) = c(T, 0)−1 if and only if k −1
free slots can be allocated among the subtrees Tu, u ∈ δ(rT) such that subtree
Tu gets at least k(Tu) of them. It can be easily proven by induction that the
algorithm finds for each vertex the smallest number of free slots required to make
the allocation possible and calculates the correct value of c(Tv).

If the subtree sizes are computed beforehand, we spend deg(v) time in vertex
v. By charging this time to the children, we show that the algorithm runs in
linear time.

This algorithm can be easily modified to give a compact layout which ensures
I/O complexity of walking on a root-to-leaf path to be at most c(T) + 1. This
is especially relevant since finding the worst-case optimal layout is NP-hard, as
we show in section 5.2. The algorithm can be modified to give a compact layout
by changing the reconstruction phase such that we never give more than |V (Tv)|
free slots to the subtree of T rooted in v unless k > |V (T)|. Note that only the
last block on a path can have unused slots. We can put blocks which are not full
consecutively in memory, ignoring the block boundaries. Any path goes through
at most c(T) blocks out of which at most one is not aligned, which gives total
I/O complexity of c(T) + 1.

The following has been proven before in Demaine et al. (2015) and follows
directly from Theorem 19.

Corollary 20. For any tree T , there is a convex partition of T which is worst-case
optimal.

Proof. The corollary follows from Theorem 19, since the algorithm given in the
proof is correct and always gives a convex solution.

Since the layout computed by the algorithm is always convex, we never re-
enter a block after leaving it. This means that c(T) really is the worst-case I/O
complexity.

Finally, we show how to construct a compact representation with similar prop-
erties. Note that we do not claim I/O optimality among all compact representa-
tions but only relative to the tree layout optimality as in Theorem 19.

23

Theorem 21. For a given tree T with q bits of extra data per vertex, there is
a compact memory representation of T using O(nq) bits of memory requiring at
most OPTL I/O operations for leaf-to-root paths in general trees and root-to-leaf
paths in bounded degree d trees. Here OPTL is the I/O complexity of the optimal
layout from Theorem 19 when we set the vertex size to be q+2 log n for leaf-to-root
paths, or to q + 2d log n for root-to-leaf paths.

Proof. The theorem is an indirect corollary of Theorems 19 and 5. We set the
vertex size as indicated in the theorem statement (depending on the desired di-
rection of paths) and obtain an assignment of vertices to blocks by Theorem 19.
We call the set of the blocks D. Note that for q = Ω(log n), this is already a
compact representation.

For smaller q, we construct an auxiliary tree T ′ on the blocks D representing
their adjacency in T . We can assume that T ′ is a tree due to the convexity of the
blocks of D. We apply the separator decomposition to obtain an ordering R of
VT ′ with short representation of offset edge representation (Lemma 4). Similarly,
we can get an ordering for each block in D. We order the vertices of T ′ according
to R, ordering the vertices within blocks according to orderings of the individual
blocks. We obtain an ordering having offset edge representation of total length
O(n log q), as there is O(n/B) edges going between blocks with offset edge repre-
sentations of total length O(n log B log q/B) and edges within blocks with offset
edge representations of total length O(n log q).

We now apply Theorem 5 on the edge offsets still split in memory blocks
according to D, obtaining a bit-offset edge representation where the vertex rep-
resentation of every block of D still fits within one memory block, as we have
previously reserved 2 log n + Θ(1) memory for every pointer and wi ≤ 1 + 2 log n.
We merge consecutive blocks whose vertices fit together into one block. This
ensures that every block has at least B/2 vertices.

5.2 Hardness of worst-case optimal compact lay-
outs

In this section, we prove that it is NP-hard to find a worst-case optimal compact
layout (that is, the packing with minimum I/O complexity out of all compact
layouts). We show this by reduction from the 3-partition problem, which is
strongly NP-hard Garey and Johnson (1979) (i.e. it is NP-hard even if all input
numbers are written in unary). This result is in contrast with Theorem 19 which
shows how to find worst-case optimal non-compact layout.

Problem 22 (3-partition).
Input: Natural numbers x1, · · · , xn.
Output: Partition of {xi}n

1 into sets Y1, · · · , Yn/3 such that ∑
x∈Yi

x = 3(∑n
1 xi)/n =

S for each i.

Problem 23 (Worst-case optimal compact layout, decision version).
Input: Tree T , number k.
Output: YES/NO, depending on whether there is a compact layout of T with

24

worst-case I/O complexity at most k.

Theorem 24. The Problem 23 is NP-complete.

Proof. It is obviously in NP. It remains to prove that it is NP-hard.
We let B = S. We construct the following tree. It consists of a path P =

p1p2 · · · pB of length B rooted in p1. For each number xi from the 3-partition
instance, we create a path of length xi. We connect one of the end vertices of
each of these paths to pB.

Next, we prove the following claim. There is a layout of I/O complexity 2 iff
the instance of 3-partition is a yes instance. We can get such layout from a valid
partition easily by putting in a memory block exactly the paths corresponding to
xi’s that are in the same partition set. For the other implication, we first prove
that P is stored in one memory block. If it were not, we would visit at least
two different memory block while traversing P and there would be a root-to-leaf
path that would visit three memory blocks. If P is stored in one memory block,
the I/O complexity of the tree is 2 iff the paths pi can be partitioned such that
ever no part is stored in multiple memory blocks. There is such partition iff the
instance of 3-partition is a yes instance.

25

26

Chapter 6

Conclusions

6.1 Summary of the thesis
In Chapter 3, we have shown a memory and I/O efficient representation of sep-
arable graphs. This result is based on several other previously known results as
well as several results that we prove in the chapter and a generalisation of the
recursive separator hierarchy theorem which we prove in Chapter 4. In Chap-
ter 5, we used the developed techniques as well as a newly developed dynamic
programming algorithm to find memory and I/O efficient representation of trees.

6.2 Further research
Finally, we propose several open problems and future research directions.

Experimental comparison of traditional graph layouts with the layouts pre-
sented in our work and layouts proposed in prior work could both direct and
motivate further research in this area.

The worst-case performance of the algorithm for finding the bit-offsets in
Section 3.3 is most likely not optimal. We also suspect that if implemented in a
manner when all possible offset representation contractions would be done in one
iteration, few iterations would be enough to get a good representation in practice.

For the sake of simplicity, both our and prior representations of trees assume a
fixed vertex size (e.g. implicitly in the results on layouts) or allow q = O(1) extra
bits per vertex in the compact separable graph representation. Our representation
could be generalised for vertices of different sizes and unbounded degrees.

27

28

Bibliography

Agarwal, P.K., Arge, L., Murali, T., Varadarajan, K.R., Vitter, J.S.: I/O-efficient
algorithms for contour-line extraction and planar graph blocking. In: SODA.
pp. 117–126 (1998)

Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separa-
ble graphs. In: Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms. pp. 679–688. SIAM (2003)

Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In:
Annual Symposium on Combinatorial Pattern Matching. pp. 138–150. Springer
(2010)

Bollobas, B.: Modern graph theory. Springer (2010)

Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous
random graphs in linear time. In: 25th Annual European Symposium on Al-
gorithms, ESA 2017, September 4-6, 2017, Vienna, Austria. pp. 20:1–20:15
(2017)

Demaine, E.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets (2002)

Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in
external memory. Algorithmica 72(2), 369–378 (Jun 2015)

Dillabaugh, C., He, M., Maheshwari, A.: Succinct and I/O efficient data struc-
tures for traversal in trees. Algorithmica 63(1), 201–223 (Jun 2012), https:
//doi.org/10.1007/s00453-011-9528-z

Dillabaugh, C., He, M., Maheshwari, A., Zeh, N.: I/O-efficient path traversal in
succinct planar graphs. Algorithmica 77(3), 714–755 (2017)

Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the The-
ory of NP-Completeness (1979)

Gavenčiak, T., Tětek, J.: Compact i/o-efficient representation of separable graphs
and optimal tree layouts. Lecture Notes in Computer Science Theory and
Applications of Models of Computation p. 222–241 (2019)

Gil, J., Itai, A.: How to pack trees. Journal of Algorithms 32(2), 108 – 132 (1999)

Goodrich, M.: Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences 51(3), 374 – 389 (1995)

29

https://doi.org/10.1007/s00453-011-9528-z
https://doi.org/10.1007/s00453-011-9528-z

Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 28(11), 1768–1783 (Nov 2006), https://doi.org/10.1109/
TPAMI.2006.233

Grinstead, C.M., Snell, J.L.: Introduction to probability. American Mathematical
Society (2006)

Jampala, H., Zeh, N.: Cache-oblivious planar shortest paths. In: Proceedings of
the 32Nd International Conference on Automata, Languages and Programming.
pp. 563–575. ICALP’05, Springer-Verlag, Berlin, Heidelberg (2005)

Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM
Journal on Discrete Mathematics 5(4), 596–603 (1992)

Kawarabayashi, K. I., Reed, B.: A separator theorem in minor-closed classes. In:
2010 IEEE 51st Annual Symp. on Foundations of Comp. Sci. pp. 153–162 (Oct
2010)

Klein, P., Mozes, S.: Optimization algorithms for planar graphs (no date), http:
//planarity.org/

Lanctot, M., Waugh, K., Zinkevich, M., Bowling, M.: Monte carlo sampling for
regret minimization in extensive games. In: Advances in neural information
processing systems. pp. 1078–1086 (2009)

Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms.
In: 29th Annual Symposium on Foundations of Computer Science. pp. 422–431
(Oct 1988)

Levin, D.A., Peres, Y.: Markov Chains and Mixing Times. 2 edn. (2017)

Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM
Journal on Numerical Analysis 16(2), 346–358 (1979), http://www.jstor.
org/stable/2156840

Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36(2), 177–189 (1979)

Maheshwari, A., Zeh, N.: I/O-optimal algorithms for planar graphs using sep-
arators. In: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms. pp. 372–381. Society for Industrial and Applied Mathe-
matics (2002)

Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Geometric separators for
finite-element meshes. SIAM Journal on Scientific Computing 19(2), 364–386
(1998)

Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Uni-
versity Press, New York, NY, USA, 1st edn. (2016)

Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E.
(ed.) Experimental Algorithms. pp. 286–297. Springer International Publishing,
Cham (2015)

30

https://doi.org/10.1109/TPAMI.2006.233
https://doi.org/10.1109/TPAMI.2006.233
http://planarity.org/
http://planarity.org/
http://www.jstor.org/stable/2156840
http://www.jstor.org/stable/2156840

Turán, G.: On the succinct representation of graphs. Discrete Applied Mathe-
matics 8(3), 289–294 (1984)

31

32

	Introduction
	About the problem
	Related work
	Our contribution

	Preliminaries
	Separators
	Compact data representation
	I/O complexity

	Representation for Random Walks
	Summary of results
	Proofs of Theorems 1 – 3
	Expanding relative offsets to relative bit-offsets

	Generalisations Separator Hierarchy
	Representation for Paths in Trees
	The representation
	Hardness of worst-case optimal compact layouts

	Conclusions
	Summary of the thesis
	Further research

	Bibliography

