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Abstract: Traditional music recommender systems rely on collaborative-filtering
methods. This, however, puts listeners who do not enjoy mainstream songs at a
disadvantage because CF systems depend on popularity patterns. Content-based
recommendation methods might be useful in solving this issue. Since tag-based
searches are a widespread tool to aid traditional music recommendation, this
paper presents content-based methods measuring similarity between songs with
focus on methods utilizing song’s lyrics and audio recordings. First, we evaluated
the accuracy of several approaches based on lyrics and audio information on real
user playlists and found that lyrics-based methods yield competitive results to
audio-based methods. Results also revealed that both categories include methods
that are 100 times more accurate compared to random suggestions and that they
have potential for even better results. After the evaluation phase, we selected
well-performing methods and implemented them in a web application aiming on
recommending novel music to the users based on their content-based profile.
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Introduction

Millions of songs online provide an opportunity to find great songs for people with
all kinds of music tastes. However, only a small fraction of all the songs that are
produced becomes popular. Those are the ones people are being exposed to the
most. They are promoted on various platforms such as YouTubeE] or Spo‘ciny]7
and played across all radio stations sometimes several times a day. After a while,
older songs become less popular, one could use the term “overplayed” and other
(usually new) songs take their place. But what if a person’s next favorite song
already existed, it just did not become popular? It is unlikely to hear unpopular
but possibly likeable songs for people with unusual music preferences on the radio.
Radio stations try to target as many listeners as possible. A recommender system
that collects data about what a user listens to could on the other hand specifically
target the person’s taste and help anyone discover tracks perfectly tailored for
them without being dependant on their popularity.

The suggestions recommender systems provide for basically any online content
are crucial. With the amount of songs, movies, books, clothes, electronics and
many more, it would be extremely time consuming for a person to go through all
of the items in order to find what they are looking for. Recommendation systems
are trying to make it easier for people to find what they want. They even try to
predict, what they will be looking for next or what they might want but do not
know it yet.

There are three main method groups to generate (not only) music recom-
mendations for users. First are collaborative-filtering methods (CF) where rec-
ommendations are based on the preferences of like-minded users. Second are
content-based methods where recommendations are based on the song content
(tags, audio, lyrics, ...) and the third group are hybrid methods combining the
first two together.

Generally, CF methods for all kinds of recommendation systems appear to
be researched more extensively [I] however, there are certain drawbacks of these
approaches. Most obviously, there is a problem with new, unrated songs because
no user has viewed or liked them, so they cannot be recommended to like-minded
users with a method based only on collaborative filtering. This is called the
cold-start problem. Also, the recommendations tend to be dependent on user
popularity patterns. Nevertheless, with enough user data, collaborative filtering
methods generally outperform content-based methods [2].

Due to these observations, there are not many applications that would rec-
ommend songs based solely on their content and to the best of our knowledge,
there is no music recommendation application that would recommend songs to
its users based only on lyrics. As this is a logical consequence of the findings
above, we believe that a recommender system based exclusively on content-based
methods could be helpful for users with an unusual taste since it would not be
popularity-dependant. We decided to introduce such a recommender application.

In order to create a content-based music recommender application we need
to decide on the source(s) of content information. A basic CB recommender is

Thttps:/ /www.youtube.com
https://www.spotify.com



attribute-based. Common song attributes are the genre, the artist, creation year
and so on. Nonetheless, we decided not to use these simple CB attributes in this
thesis, because almost all music related application allow users to search based
on tags so it would not bring anything new really.

Instead of simple CB attributes, we chose lyrics and audio as the sources of
content information. The audio channel of the song is probably the ultimate
low-level content information of every song. People listen to music because it is
a pleasant sound and it is likely that it is audio features that define, whether a
person likes a song or not. On the other hand, processing a song’s audio channel to
acquire meaningful features is an expensive and complex task with many options
and hyperparameters that need to be set.

Song lyrics, i.e., a textual transcript of the vocals in the song is somewhat less
informative, however it may still possess valuable information, for which, multi-
ple processing methods were already developed. The process of transforming raw
lyrics into some meaningful attributes is less demanding compared to the pro-
cessing of raw audio. There is an intuitive a notion that their performance might
be doubtful, however, many studies evaluate them on their genre classification
accuracy [3] or compare them to collaborative filtering systems [4] which does not
always mimic actual user behaviour.

Recommendation is mostly based on similarity between items which can be
defined in various ways. Both lyrics and audio need pre-processing before estab-
lishing similarity.

Goals
The goals of this thesis are:

e to determine whether lyrics and audio-based methods mimic actual user
behaviour and are relevant in recommender systems

e create a web application where these methods will be implemented to pro-
vide a recommender system which is not dependant on song popularity

In order to do so we take the following steps. We describe various ways of pre-
processing text and audio signals in an unsupervised manner for content-based
song similarity calculations. Then we select some of them based on previous stud-
ies and their features, evaluate their performance on real user playlists, compare
the results and then implement fitting methods in a web application.

Although it originally seemed that processing both content modalities are sim-
ilar, during our work on the thesis, it turned out that the complexity and diversity
of the pre-processing steps exceeded our expectations. It includes language, text
representation and similarity metrics for lyrics-based methods and audio extrac-
tion, audio representation and similarity metrics for audio-based similarity.

We decided to focus on unsupervised learning of song feature representation
of both audio and text. This includes encoding a song into a vector so that
a standard similarity-based recommendation technique can be used to evaluate
similarity of two arbitrary songs without having any information about genre or
other tags. The vectors can also be used for more advanced algorithms using
for example Recurrent neural networks to calculate similarity. That is however
above the scope of this work.



The web application’s main purpose is to introduce the user to new songs he
has not listened to yet based on a song similarity method he selects. The songs
are provided by the application’s default database but adding songs is possible
too and its distance to other songs is taken into account for recommendations.






1. Data

1.1 Datasets

1.1.1 Lyrics dataset

We chose the 55000+ Song Lyrics dataset from Kaggle.comﬂ to obtain lyrics
data. The Kaggle dataset originally contained 57,650 English songs. Its lyrics
are scraped from LyricsFreakH. Extremely long and short lyrics were removed
as well as all non-ASCII symbols from the lyrics. Figure shows the first two
entries of the dataset.

artist song link lyrics
ABBA She's My Kind Of | /a/abba/ Look at her face, it's a wonderful face
Girl ahes+my+kind+of+ And it means something special to

girl_20598417.html me Look at the way that she smiles
when she sees me How lucky can
one fellow be? She's just my kind of

girl, she ma...
ABBA Andante, Andante | /a/abba/ Take it easy with me, please Touch
andante+andante_  me gently like a summer evening
20002708.html breeze Take your time, make it slow

Andante, Andante Just let the
feeling grow Make your fingers soft
and light Let yo...

Figure 1.1: First two entries of the 55000+ Lyrics Dataset

1.1.2 User-information dataset

To evaluate text and audio based methods on real-life user data, we had to
select a dataset containing song information and lyrics as well as a dataset with
information about users and their played tracks. First we tried to match the
lyrics dataset onto the Thisismyjam dataseiﬁ. However we were able to match
only 6800 songs with lyrics as well as user data. We then tried the Echo Nest
Taste Profile Subseﬁ [5] dataset available on the Milion Song Dataset (MSD)
website. The Echo Nest Taste Profile Subset provides 48,373,586 triplets of user
id, song id and the number of times the user has played a song. This then had
to be mapped onto the MSD dataset to get a name and artist for each song and
then mapped onto our lyrics dataset.

After removing songs we did not have lyrics for, we ended up with 16,594
unique songs and 45,054 unique users. Even though it is a significant reduction
it still provides enough data to carry out all the desired experiments. For each of
the 16,594 songs we also acquired a mono .wav file.

Thttps:/ /www.kaggle.com/mousehead /songlyrics
https://www.lyricsfreak.com

3http:/ /www.thisismyjam.com
4https://labrosa.ee.columbia.edu/millionsong/tasteprofile



1.2 Final dataset statistics

Overall our final dataset had 160,454 entries containing a user id, artist, song
title and lyrics. We extracted two of different datasets, suited for different tasks
throughout the thesis.

e The Song dataset denoted as SD in this work. It contains the 16,594 unique
songs with their metadata (title, artist, lyrics and audio), the users were
omitted.

e The User dataset denoted as UD. Each one of its 110,826 entries consists of
a userID, song name and artist. It contains 11,123 unique users who have
at 4 songs assigned to them so it is a dataset of all playlists of length at
least 4.

Since the evaluation method is aimed to reveal the missing entries based on the
implemented recommendation techniquesﬂ we studied the dataset and especially
the playlist’s lengths in more detail.

Here are some important remarks:

e Each user only has one playlist. This means there is a one to one mapping
between users and playlists and the terms are used interchangeably.

e We do not know which songs the user has played most recently.
e Users with only one song are not useful for the purpose of evaluation.

When analyzing our dataset, it turned out, that out of 45,054 playlists, there are
22,257 with only one song, which left us with 22,797 we could use. We however
decided to use only playlists of length at least four for evaluation because it still
leaves us with enough unique playlists — 11,123 to be specific — and allows us
to study deeper connections than song to song similarities.

The distribution of the lengths for useful playlists is shown in more detail in
Figure[1.2l We can see that most of the playlists are short, almost a third of them
only contains two songs. The average number of songs per playlists (including
those containing only one song) is 3.56.

The average number of playlists a song from our dataset belongs to is 10.84.
The distribution and the most popular songs are depicted in Figure [I.3] The by
far most popular song with a total of 816 plays was Royals by Lorde. Second
came Radioactive by Imagine Dragons with 674 users who played it. All other
songs have been played by less than 500 users.

5Chapter
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2. Lyrics-based methods

In this chapter we will briefly describe some of the most prominent methods to
represent songs based on their lyrics. After specifically focusing on the positive
and negative aspects of these methods, we will select suitable candidates for
testing and potentially for our web application.

The reason to explore lyrics-based methods in this thesis is based on several
factors. It is the belief of the authors that although the utilization of song lyrics
is not completely unexplored as shown in Section [2.2] there is space for innovative
research. For example, to the best of our knowledge, there are no recommender
systems that would rely solely on lyrics analysis. An advantage of these methods
could lie in providing relevant recommendations that would be more variable
compared recommendations from other, more traditional techniques.

2.1 Text embedding methods

2.1.1 Bag of Words

The Bag of Words commonly referred to as BoW is a text representation method
which counts how many times a word appears in a document. In the context of
this thesis, it counts, how many times a word appears in the song lyrics. BoW
represents each text (song) as a word-count vector where each index corresponds
to the number of times a certain word appeared in it. An advantage of this
encoding is its simplicity. The simplicity, however, brings some drawbacks. It for
example ignores the fact that some words which can be found in most documents
have a smaller informative value than others that only appear in a small fraction
of the documents.

2.1.2 Tf-idf

Term Frequency-Inverse Document Frequency is another way of transforming
documents into vectors. Unlike the BoW, Tf-idf does not measure only the counts
of words in a document but it also measures their relevance. As can be deduced
from the title term frequency, first the number of appearances of a word t in each
document d proportional to the number of all words in that document - ¢f(t,d) -
is computed. Then comes the inverse document frequency part - idf - where the
words are weighted as seen in Formula [2.1, The words that appear frequently in
most documents have lower weights than those who only appear in some.

df (1) = log% +1 2.1)

Formula is then the final Tf-idf formula multiplying the word frequencies
with their weights:

tf-idf(t,d) = idf ()  Lf(t,d) (2.2)

In both of the formulas above ¢ is the word d is the document df (¢) is the number
of documents containing the word ¢ and ny is the total number of documents.

13



2.1.3 Word2Vec

Word2Vec is a two-layer neural network trained to encode the linguistic context
of a word introduced by Tomas Mikolov [6]. Each word has an assigned vector in
a vector space of typically hundreds of dimensions generated from a large corpus.
The position of a word corresponds to its context, meaning, that words that share
common context are closer to each other.

There are two possible Word2Vec architectures, the continuous bag-of-words
(CBOW) and the continuous skip gram. The CBOW predicts the current word
from the words surrounding it — the context. It does not keep the order of the
surrounding context words. The skip gram does, which makes it slower but also
more effective, especially for infrequent words [6]. The Skip-Gram architecture
takes one word and predicts all the context around it.

Input Projection Output Input Projection Output
W(t-2) W(t-2)
w(t-1) Sum W(t-1)
> W(t) W(t) »
W(t+1) W(t+1)
() CBOW (b) Skip-Gram
W(t+2) W(t+2)

Figure 2.1: The CBOW and Skip-gram Word2Vec architectures from [7]

Multiple things have to be taken into account when training a W2V model.
The information value of words that occur in all training documents is quite low
so they can be removed to increase training speed. The dimensionality of the
space also elevates accuracy only to a certain point so some threshold has to
be set. Another parameter is the context window, which determines, how many
words before and after a given word are included as its context.

2.1.4 Doc2Vec

Doc2Vec is an unsupervised algorithm that learns the feature representation of
texts with varying lengths and encodes them into vectors of the same length. As
the name suggests it is heavily based on the idea of Word2Vec. It was also first
presented by the same group of researches in this paper [8]. The main idea of the
method is to use the Word2Vec model but add one more vector to represent the
paragraph as a whole. As in the Word2Vec model, there are two architectures
for the Doc2Vec approach. The Distributed Memory (DM) version of Paragraph
vector and the Distributed Bag of Words (DBOW) version of the Paragraph
vector. The DBOW is faster but does not consider the order of the words as
it predicts a random group of words from the paragraph vector. The DM on

14



the other hand takes previous words and the paragraph vector into account and
predicts just one word. This way, because the paragraph does not shift across
the text, the DM architecture is able to capture some word order but it requires
more time to be trained.

Classifier Classifier [the] [cat] [sat| [en |
[aananns}

Average/Concatenate o

— 71
OO oo o Ooom
Paragraph Matrix-----» * Paragraph Matrix ---------= >
sat

Paragraph the cat Paragraph
id id
DM (Distributed Memory) DBOW (Distributed Bag of Words)

Figure 2.2: The Doc2Vec DM and DBOW architecture taken from [§]

2.1.5 Self organizing maps

A self organizing map (SOM) is a type of a neural network that learns how
to reduce the dimension of input data in an unsupervised manner. SOMs were
introduced by Teuvo Kohonen [9]. They use competitive dimensionality reduction
(meaning the nodes in the SOM network compete to get the right to respond to
the input data) which is quite unusual for neural networks as they usually use
backpropagation. The models that SOMs compute are (usually) two dimensional
spaces of neurons (called codebook vectors) where similar examples are close to
each other and dissimilar examples further from each other.

The SOM network is trained through an iterative process which is visualized
in Figure[2.3] It chooses one sample x € R™ from the input training set at random
and teaches it to itself. During teaching, the network feeds the chosen sample into
all its units. A winner unit is calculated based on a similarity measure (usually
Euclidean distance) between x and the codebook vectors. Finally the values of
the network units are updated. The best-matching unit is moved a closer to x
and so are all the topological neighbours of the best unit.

The neighbours are defined by a neighbourhood function. It decreases with
time and decides how radical the change around the winner will be. There are
multiple functions that can be used. One can use the Gaussian kernel around
the winner, however this is quite computationally expensive. A good and more
efficient function is sometimes called the "bubble” function which is constant over
the whole neighbourhood of the winner and zero elsewhere [10].

15
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Figure 2.3: Visualization of the training algorithm used for SOM networks. The
blue area represents the distribution of the data. The white dot is the randomly
selected sample. On the left, the SOM network nodes are randomly spread ac-
cross the space. When finding a winner (middle) and its defined neighbourhood
(the yellow area) the network moves towards the datapoint and eventually after
repeated iterations spreads mimicking the distribution of the data (left). This
image is taken from Wikipediaﬂ

2.2 Related work

There are several papers on music recommendation based on lyrics. For example
[4] has shown, that simple Tf-idf song embedding was 12.6 times more accurate
then just random suggestions on the musiXmatch datasetP] In [IT] the authors
compared the Doc2Vec and the SOM algorithm using cosine similarity for vector
aggregation on a dataset containing Hindi songs and found that in their experi-
ments, the SOM outperforms Doc2Vec. Paper [3] even studies using intact lyrics
as input for Recurrent (LSTM) and Hierarchical neural networks and evaluates
it based on genre classification.

2.3 Text representation choices

When choosing methods for our web application there are several factors to con-
sider. Besides the expected accuracy of the algorithms, which is often difficult to
estimate since lyrics-based recommendation methods have not been researched
extensively, we have to consider the implementation as well as temporal complex-
ity features of all the methods. Also, the fact that we want to focus more on a
cross-sectional approach rather than a thorough optimization of one particular
algorithm means, we prefer diversity in our chosen algorithms.

The Bag of Words representation could be a good choice to get some kind of
baseline results. Nevertheless, since the Tf-idf algorithm is widely based on the
BoW and is still quite simple, we choose Tf-idf as our baseline. As mentioned
at the beginning of this chapter, it was shown to be 12.6 times more accurate
on the musiXmatch Dataset (MXD)E| than just random suggestions, and that is

Thttps://commons.wikimedia.org/wiki/File:Somtraining.svg
Zhttps://labrosa.ee.columbia.edu/millionsong /musixmatch
3https://labrosa.ee.columbia.edu/millionsong/musixmatch
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what we hope to achieve with all of our text methods. A downside of the Tf-idf
method is the length of its vectors. Even though they consist mostly of zeros, for
our dataset, the length of each of them is over 40,000.

Word2Vec and Doc2Vec are two similar approaches. The issue with Word2Vec
when representing a whole document, in our case the lyrics for one song, is the
transition between the word vectors and the whole document encoding. A com-
monly used aggregation method is to define the document vector as the mean of
all the word vectors.

Doc2Vec does not suffer from this problem, as its default is suited to represent
a complete text. However, the problem with Doc2Vec is the amount of data it
needs for training. Because every document is one sample, the number of docu-
ments necessary to achieve reasonable results is much higher than for Word2Vec
where one sample is one word. What is also convenient with Word2Vec is, that
there already exists a pre-trained Word2Vec model from Googlelz_f]. It consists of 3
million words with a 300-dimensional vector for each. Three hundred dimensions
is a reasonable number (especially considering the fact that the Tf-idf vectors
have over 40,000 dimensions). It was trained on roughly a billion words from
a Google News dataset. Therefore we chose the Word2Vec method over the
Doc2Vec.

We also decided to implement the SOM network rather than Doc2Vec to
represent songs because of a study showing, that Self organizing maps perform
better than a Doc2Vec-based algorithm [11]. It also does not need as much data
as the Doc2Vec to be trained.

One more thing we had to chose for the SOM was the form of the input. We
decided to try the W2V representation. Mainly because the training of a self
organizing map is quite computationally expensive and having vectors with over
40,000 dimensions would make it extremely time-consuming. We did not give up
on the Tf-idf representation though. We trained another SOM where used Tf-idf
vectors pre-processed by PCA which were reduced to length 4,457.

4https://code.google.com /archive/p/word2vec/
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3. Audio-based methods

In this section we will describe the possibilities of how to transform an audio
signal (in our case from a .wav file) into representations suitable for song similarity
calculations. This process consists of many steps and a lot of research has been
done on all of them as illustrated in Section [3.4

The reason we are focusing on audio in this thesis is the notion, that what
people care about in a song is its sound. There are patterns in music that are
pleasant to the human auditory system, otherwise, music would not be so popular.
We believe it is the sound wave that contains these patterns. It is difficult to define
what exactly they are, so we hope that with the use of unsupervised machine
learning algorithms, we will be able to find them and then locate them in unseen
songs as well.

Figure [3.1] illustrates the steps of audio extraction. The blue part of the
diagram describes the steps that are taken to acquire various basic music rep-
resentations which are explained in Section [3.1] Each of these representations
can be given as input to a machine learning algorithm as depicted in green from
Section or deep learning algorithm from Section depicted in purple. Both
simple and deep learning algorithms yield a final vector representation of the
song.

Short-time fourier

transformation Mel filters + log scaling Discrete fourier transformation

Mel-spectrogra

Audio signal Spectrogram = MFCCs
S (o) o) S <
S s £ < S )
$ > I A £ e
) S % o )
g 2 O e L %
v % 3 % v 3,
N 2. ~ 2, N4 >
< > S 2 $
Vector Vector Vector Vector Vector Vector

Figure 3.1: A diagram displaying the steps taken in audio extraction and feature
learning. ML stands for machine learning and DL for deep learning.

3.1 Basic audio representation methods

3.1.1 Raw waveform

Sound is as vibration that spreads through gas, liquid or solid as a wave of pres-
sure. For humans, the sound we hear has a frequency between 20Hz and 20kHz.
Other sound waves are inaudible for humans. The most basic representation of
sound as an audio signal is a waveform. It captures the variation of pressure
over time. As we cannot store infinite data to capture the state of the wave in
every moment, we need to establish a sample rate. A sample rate is the number
of samples per second at which the pressure is recorded as amplitude. Common
sample rates are 44,100 Hz and 22,050 Hz that capture oscillation up to 22,050
Hz and 11,025Hz [12].
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3.1.2 Spectrograms

Raw waveform data have a lot of data points which make them spaciously de-
manding. Luckily, they also display strong regularities in their oscillations which
gives us a different, more compact possibility to represent audio signal. The signal
can be encoded as the strength of oscillations at various frequencies as opposed
to amplitudes over time. Such an encoding is called a spectrum when sinusoids
are used as prototypical oscillations.

A spectrum is obtained from a waveform by applying Discrete Fourier Trans-
formation. The signal after DF'T is represented by oscillations of a few frequencies
spanning the full signal.

However, a problem with this approach is, that for longer recordings, many
oscillations are present only over some limited time span or they change frequency.
To represent all the oscillations the Short-Time Fourier Transformation can be
computed. It slices the audio into small often overlapping windows, computes
their spectra and then puts them together in a chronological order. This spectra
matrix is called the spectrogram and for the song ’Someone Like You’ by ’Adele’ it
has the shape of (2206 x 7796). It can be visualized as a graph with frequency on
one axis and time on the other axis. The intensity of a frequency is represented
by color.
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Figure 3.2: Spectrogram of the song 'Someone Like You’ by "Adele’. The intensity
of different frequencies over time is converted to decibels.
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3.1.3 Mel Spectrograms

Mel-spectrograms are another approach to reducing the dimensionality of the
audio data. They are filtered spectrograms. Frequency bands are extracted by
applying triangular Mel-scale filters to the power spectrum. The mel scale after
which these spectrograms are called was named in 1937 in a study by Volkmann
and Newman [13]. Since then it has been re-formulated multiple times, for ex-
ample by Umesh at al [I4]. It is based on the human perception of pitch and
loudness and allows us to convert from Hz to Mels. Mels are more discriminatory
at lower frequencies and less at higher frequencies - as is the human ear.

Each of the triangular filters has a response going from 1 to 0. They respond
1 at the center of some frequency and then their response decreases linearly to 0
towards to the place where they meet the neighbouring filters. When these filters
are applied to a spectrogram, we get a mel-spectrogram. It is again a matrix of a
smaller shape this time (320 x 7796) for the song 'Someone Like You’ and it can
also be visualized as illustrated in Figure
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Figure 3.3: Mel-spectrogram of the song ’Someone Like You’ by ’Adele’. The
intensity of different frequencies over time is converted to decibels.

3.1.4 Mel Frequency Ceptral Coefficients

Mel-Frequency Ceptral Coefficients (MFCC) are another step further in compress-
ing audio features. They are obtained by applying Discrete cosine transformation
to mel-spectrograms. For the song ’'Someone Like You’ by ’Adele’ which we used
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as an example for spectrograms as well as mel-spectrograms, it created a matrix

of shape (128 x 7796) which looks as Figure [3.4] illustrates.
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Figure 3.4: MFCCs of the song ’Someone Like You’ by "Adele’. The intensity of
different frequencies over time is converted to decibels.

A nice introduction to music signal processing with respect to deep machine
learning, where spectrograms, mel-spectrograms and MFCCs are explained in
more detail can be found here [12] where we also drew a lot of our information
from.

3.2 Simple audio representation methods

3.2.1 PCA

PCA is a common machine learning algorithm used to reduce dimensionality of
the feature space that was invented by Karl Pearson in 1901 [I5]. It tries to keep
features with most variance and discards feature in which all the data points are
highly correlated. The data space is transformed in such a way, that the first
principal component (PC) has the largest possible variance, the second PC the
second largest variance etc.

Mathematically it is an orthogonal linear transformation to a new coordinate
system where the base vectors are the principal components. To achieve this, it is
first necessary to center the data around the origin. That is done by subtracting
the mean of each variable from the data. After that a covariance matrix is
computed with its eigenvalues and corresponding eigenvectors. After normalizing
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the eigenvectors, they can be interpreted as the new basis vectors. This new
basis transforms the covariance matrix, so that it becomes diagonal. Each of
the diagonal elements represents the variance of each axis. All the components
without any reduction give us the whole information about the input data, only
in a vector space with a different basis. Every component explains some portion
of the data’s variance.

The variance can be calculated by dividing every eigenvalue corresponding to
an eigenvector with the sum of all eigenvalues. The dimensionality reduction is
dependant on how many components we want. If we want to visualize the input
data in a 2D graph, we create a space with only the first two PCs as a base and
map all the data onto it. The reason to use this algorithm in our thesis would be
mainly to reduce the length of the audio flattened audio matrices.

The PCA assumes that there is linear correlation between features. If there
is not, the PCA will not discover it and will loose a lot of information with the
dimensionality reduction it performs.

3.3 Deep audio representation methods

3.3.1 Convolutional neural networks

Convolutional neural networks are neural networks that have become extensively
researched after AlexNet (a form of CNN) was demonstrated in 2012 and out-
performed all other methods for visual classification [16]. As with other neural
networks, CNN’s biggest advantage is to emulate behavior of unknown non-linear
functions. CNNs have the ability to map high-dimensional data into a space of
finite categories (with hundreds or thousands of classes). They are widely used
in visual imagery tasks.

The idea behind convolutional neural networks is to use local filters instead
of creating fully connected layers. This has risen from the idea that in images,
there are correlated compositions on short scale distances, rather than at large
distances. For example when detecting a human face in an image with a tree in
the background, the tree does not have much to say about the face, unlike the
eyes or the nose by which the face can be identified and are in a much greater
proximity to each other. This is also the reason why in the CNN’s architecture,
the layers are not fully connected.

There are 4 main components that are generally included in a CNN network.
The Convolution layer, the ReL U, the Maxpooling layer and the Fully connected
layer that yields the output. To briefly describe these layers lets start with
convolution. The convolutional layer helps to reduce the number of connections
and weights. It consists of filters that can be learned. These only take a small
number of nearby features into account at a time but extend through the whole
input. Each of the filters creates a 2D activation map by computing the dot
product of entries of the filter and the input. ReLU (rectified linear unit) is
generally used to increase non linear properties of the decision function. Its
function is f(x) = max(0, ) which is applied to the results of the convolution to
speed up training — compared to previously used functions for example sigmoid
functions — without affecting the receptive fields of the convolution layer. The
pooling layer also reduces the number of parameters and helps prevent over-
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fitting. The most common function to implement is maz pooling. The features
are partitioned into a set of non-overlapping rectangles (if input is 2D) and each
of these rectangles is represented by its maximal value. The final layer is usually
fully connected. Its neurons have connections to all activations of the previous
layer and their activation is then computed as an affine transformation [17].

3.3.2 Deep belief networks

Deep belief networks introduced by Hinton [I8] are multiple Restricted Boltzmann
machines greedily stacked on top of each other. RBMs are shallow two-layer
neural nets created by Paul Smolensky in 1986 [19]. The first layer is called the
visible layer, the second layer is called the hidden layer. The nodes of each layer
communicate with the previous and subsequent layer but there are no connections
between nodes of the same layer. Each visible node takes a low level feature to
be learned and multiplies it by some weight. The results for each feature of an
input sample are then summed, bias is added and the result is passed through an
activation algorithm which produces output for each hidden node. These outputs
then can be redirected into another hidden layer instead of the output of the
neural network.

RBMs also have the ability to reconstruct data without supervision. When
the input makes it through both layers it then becomes input for the hidden layer
and travels through the neural network in the opposite direction. The activations
are multiplied by the same weights and passed to the visible layer where a new
bias is added. The output of the visible layer is then compared to the initial input
and the network adjusts weights so that it minimizes the difference between the
input and the output.

3.3.3 Recurrent neural networks

Recurrent neural networks have one major difference compared to other neural
networks. They include feedback loops in their structure which allows them to
exhibit dynamic behaviour and makes them useful for processing sequential data.
RNNs have a hidden state that is determined by previous states and is updated
with every subsequent step. There are many variants of RNNs such as Fully
recurrent, Long short-term memory introduced by Hochreiter and Schmidhuber
in [20], Gated recurent units first described in [21], or Bi-directional invented by
Schuster and Paliwal in [22].

Recurrent neural networks are used for working with sequential data for ex-
ample in speech recognition [23] or time-series anomaly detection [24].

3.3.4 Autoencoders

Autoencoders are not tied to one type of neural network. They can be build from
recurrent layers, convolutional layers or from a simple Multi-layer Perceptron.
The autoencoder has two parts the encoder and the decoder. It is trained
in an unsupervised manner. The encoder takes the input data and reduces its
dimensions. The decoder then tries to recreate it into its original form without
knowing, what the data looked like before the encoder processed it. The idea is,
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that over time, the encoder learns how to shrink the data with retaining as much
information as possible for the decoder so the decoder it is able to recreate the
original form as accurately as possible.

3.4 Related work

For the signal representation, there is obviously the possibility to use raw audio
data as input for any machine learning algorithm. This however is a quite un-
common approach and when tested recently in tag prediction [25] it had worse
results than standard spectrograms. Multiple studies and experiments have been
done using spectrograms as audio representation for classification tasks — for
example [26] — or for unsupervised feature learning [2], [27], [28], which is what
also our area of interest.

In these studies the inputs were fed into various neural networks. The output
of those was then evaluated on music classification or compared to music similarity
estimation using similarity metrics directly on spectrograms. We are going to do
a similar thing in this thesis. Our evaluation will be done on user playlists and
the methods will be compared to each other.

3.5 Audio implementation choices

3.5.1 Basic audio representation choices

The flattened vectors from spectrograms, mel-spectrograms and MFCCs have
tens sometimes even hundreds of thousands of features which is a big disadvan-
tage, especially, when we have an intention of implementing them inside the web
application. Nevertheless, we decided to test recommendations based at least on
raw mel-spectrograms and raw mfccs to have an idea on how audio data
without intervention of machine learning behave. We also decided to use the
PCA to transform spectrograms, mel-spectrograms because we believe that it
could reasonably reduce their vector lengths and remove noise from the data.

3.5.2 Deep Audio representation choices

Neural networks are a quickly developing and expanding field with many various
applications. It is extremely time consuming to build an accurate neural network
for a specific task. Therefore, we decided to choose our neural network archi-
tecture and parameters based on literature relevant to the topic of audio feature
learning. The main requirements we had for the algorithms was that they have to
work in an unsupervised manner and that they have to reduce the feature space.
This pruned the number of possibilities for us considerably, as most architectures
are designed for music classification (mostly into genres) or speech and sound
recognition.

We decided that autoencoders suite the task in this thesis best. It is an
unsupervised algorithm. The encoder part does exactly what we desire which is
encoding the input sample into a smaller dimension. The decoder transforms it
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again into the same vector. The decoder part is only necessary for training and
only the encoder is then used for the song representation.

Since we are working with sound data, the choice was to use sequence-to-
sequence RNN layers which have the ability to encode sequences (spectrograms,
mel-spectrograms and mfccs are m x n matrices). The autoencoder architecture
and the choice of layers was mainly inspired by this paper [29] where they used
GRU layers with mel-spectrograms as input. However, we want to add more
methods into comparison, so we implemented not only neural networks with
GRU layers but also LSTM layers and used spectrograms, mel-spectrograms
and also MFCCs as input rather than focusing on one type of layer or input and
tuning one particular neural network to give the best results possible. A more
detailed description of the architectures is provided in Section [£.5]
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4. Experiments

In this chapter we describe the experiments we performed on song preprocessing
methods chosen in Chapters [2] and [8] This includes describing every method’s
input, training (if there was any) and output (meaning the vector-encoded repre-
sentations for each song in the SD). All this is presented in Sections and
Another thing we did not cover yet and will be presented here, in Section
is describing how the different vector representations will be aggregated into
a definition of similarity.

In Section [4.7|we acquaint the reader with evaluation methods, the reasons we
decided to use them and the evaluation results for each method. The results are
first presented separately for each method (or a group of closely related methods)
in Sections[4.8] [4.9and [£.10] and then summarized and interpreted in Section [4.11]
where various graphs and tables illustrating the prominent or interesting trends
and tendencies can be found. Before all this however, we start with stating, what
the expected outcomes were initially.

4.1 Expectations

Even before reading any literature, we made two main predictions:
e First: Audio-based methods will perform better than text-based methods.

e Second: More advanced methods will outperform simpler machine learning
methods.

By more advanced methods we mean methods that were invented more recently,
are more computationally expensive and/or have a more complicated mathemat-
ical idea behind them.

The first prediction was mostly based on the intuition, that audio contains
more information about a song than the lyrics and it is also what people care
about more when listening to music, both of which makes it more relevant for
song encoding.

The second prediction was also based on intuition and later supported by
reading into this topic. Most of the papers we studied (meaning those in Sec-
tions and were describing neural networks performing audio or text-based
recommendation or classification. Their results were then compared to simpler
algorithms which they mostly outperformed.

4.2 Experimentation protocol

Every method was trained on either lyrical or audio data of all 16,594 songs from
the SD dataset. For each method (except of raw audio methods which do not need
any), we created a model. In addition, we created a matrix — the Representation
matriz, denoted as R,, where m stands for a particular method — after training
the method’s model. Each R,, has the shape of (16594 x I(v,,)) where [(v,,) is
the length of the song vector representation for method m. Row R, , contains
the representation of song s; from the SD dataset using method m.
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We also calculated a Distance matrixz denoted as D,,, for every method. The
shape of the D,, is (16594 x 16594) and it is the same regardless of the method.
On position Dy, ; is the similarity of R, , and Ry, .. We talk more about simi-
larity in Section 4.6

To make things easier for the rest of the thesis we now present all the methods
that were tested and introduce a nomenclature. There are 3 different parts each
method name has — the name of the main algorithm, the name of the input and
the length of the output vector. Every method can be uniquely identified by a
combination of these three parts. Where there is only one or two parts necessary
to uniquely identify the method, we omit those parts which are surplus.

The tested methods are:

Tf-idf which stands for the Tf-idf method.
Training is described in and the results in [4.8.1]

PCA _Tf-idf which stands for PCA with Tf-idf vectors as input.
Training is described in and the results in [4.8.2]

W2V which represents the Word2Vec method.
The training is described in and the results in [£.8.3]

SOM _PCA _Tf-idf and SOM_W2V which stand for the SOM network
with PCA _Tf-idf vectors as input and the SOM network with W2V vectors
as input.

Training is described in and the results in [£.8.4]

Raw mels which are raw mel-spectrograms.
Training described in [4.4.2| and the results in 4.9.1]

Raw MFCCs which are raw MFCCs.
Training is described in and the results in [4.9.2

PCA spec_1106 and PCA _spec_320 which stand for PCA with spectro-
grams as input and output lengths of 1,106 for the first method and 320 for
the second method.

Training is described in and the results in [4.9.3

PCA mel 5715 and PCA _mel 320 which stand for the PCA with mel-
spectrograms as input and the output length of 5,715 for the first method
and 320 for the second method.

Training is described in and the results in 4.9.4]

GRU_spec_20400 and GRU _spec_5712 which stand for an autoencoder
with GRU layers and spectrogram input. The output vectors have length
20,400 for the first method and 5,712 for the second method.

The architecture is described in training is described in and the
results in [1.10.1]

LSTM spec_20400 and LSTM _spec_5712 which stand for an autoen-
coder with LSTM layers and spectrogram input.

The architecture is described in training is described in and the
results in [£.10.2]
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e GRU_mel which stands for an autoencoder with GRU layers and mel-
spectrogram input.
The architecture is described in [4.5.1] training is described in [4.5.5 and the
results in 1.10.3l

e LSTM_mel which stands for an autoencoder with LSTM layers and mel-
spectrogram input.
The architecture is described in [4.5.1] training is described in [4.5.5 and the
results in [£.10.3

e GRU_MFCC which stands for an autoencoder network with GRU layers
and MFCCs as input.
The architecture is described in [4.5.1] training is described in and the
results in [4.10.4]

e LSTM MFCC which stands for an autoencoder with LSTM layers and
MFCCs as input.
The architecture is described in [4.5.1] training is described in [4.5.6and the
results in 4.10.4

4.3 Text method experiments

4.3.1 Tf-idf experiments
Input

The lyrics of each song from SD were stripped of all punctuation characters as well
as apostrophes and converted into a single string. All lyric-strings were appended
into a list of strings which formed the training dataset.

Training

The training dataset was given to the fit_transform method as a parame-
ter. The method was called on an instance of TFidfVectorizer from Python’s
sklearn package. The results were saved into the Ry s_;qr. The TFidfVectorizer
instance was saved as the model to be potentially used in the proposed web ap-
plication.

Output

The song representations were vectors of length 40,165. They contained a lot of
zeros so it was possible to store them as sparse vectors. Sparse vectors however,
are more difficult to operate with and therefore we also converted them into dense
vectors.

4.3.2 PCA on Tf-idf

Because simple Tf-idf yielded good results we wanted to implement it. The long
vectors posed a problem to our web application though. It is sometimes necessary
in the application to calculate the distance between a newly added song and all
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the songs that are already in the database and this calculation is more complex
for longer vectors. To reduce the complexity of this task but still use Tt-idf we
decided to try to reduce the dimensions of the vectors using PCA.

Input

As input, we provided the Tf-idf vectors for songs from SD to the PCA which we
acquired as described 4.3.1] We did not normalize them.

Training

We first trained a PCA from Python’s sklearn.decomposition.PCA without
any dimensionality reduction. We then chose a space were the explained variance
ratio was equal to 90%. This space had 4,457 dimensions. Knowing this, we
trained a new PCA instance with 4,457 components which reduced our Tf-idf
vector’s length from 40,165 to 4,457 and saved it as the model.

Output

The output were vectors of length 4457 and were saved to the Rpca 1f—idr-

4.3.3 Word2Vec experiments
Input

The input for the W2V model was the same as for the Tf-idf method.

Training

In the case of Word2Vec, we did not perform any training. Instead, we used the
a subset of the pre-trained W2V model from Googld'| containing 200,000 most
common words which cover all meaningful words in the song lyrics we have. Most
common means, that they appeared most in their training documents. If there
was a word in a song that was not in the subset it was ignored.

Output

Because the Google model takes always just one word as input and returns its
vector of fixed length 300, we had to put the word vectors together into one
song-representation vector. We chose a basic approach where we averaged all the
word vectors into one final song vector. The song vector’s position ¢ contained
the average over the values of word vectors’ position ¢. This approach yielded a
vector of length 300 which is significantly lower than the Tf-idf vector.

Thttps://code.google.com/archive/p/word2vec/
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4.3.4 SOM experiments
Input

We tried the W2V vectors from as input for the self organizing map, mainly
because of their length and also because we were hoping, that the SOM could
improve the results of the W2V method. We also tried to train the SOM on the
output vectors of the PCA_Tf-idf method. We did not try the raw Tf-idf vectors
as they are longer and it would prolong training significantly. Also, it makes sense
to use PCA_Tf-idf because it yielded better results than raw Tf-idf.

Training

We used a python library called minisom [30] to create the self organizing maps.
We build a map with a grid size 5% |SD| and the number of iterations was also 5
times the size of SD. We saved a model after each multiple of 16,594 iterations and
interestingly, the representations did not change after 33,187 iterations (which is
2*%16,594). It was also necessary to normalize the input vectors and set learning
rate to 0.2. Otherwise the songs formed 3 to 5 large clusters on the grid placing
thousands of songs on the same coordinate.

Output

The output representation for each song was a vector of length two. It is possible
to display the songs on a 2D map which we also did and it can be seen in Figure
4.9

4.4 Simple audio method experiments

4.4.1 Audio preparation

In order to encode audios of songs, we first needed to define some kind of stan-
dard audio-form to make the audio information suitable for the machine learning
methods that we are testing in this section and the next. We decided to extract
chunks of the same duration from all songs, so the input vectors for each cat-
egory (spectrograms, mel-spectrograms and mfces) are also of the same length
within each category. Since all songs have different lengths and one complete
3.5 minute long song results in a spectrogram of size 5,214x2,206 which when
flattened is a vector of length 11,502,084 we decided to extract only 15 second
excerpts from each song to create spectrograms, mel-spectrograms and MFCCs
from those. We took 5 seconds between the 15th and 20th second, 5 seconds start-
ing in the middle of the song and 5 seconds starting 15 seconds before the end.
We did not start at the beginning and at the end because in some songs, there
is silence or applause or some talking before the actual song starts or after it ends.

It was also necessary to decide on some parameters for spectrogram, mel-
spectrogram and MFCC extractions such as window width, window overlap and
the number of mel-frequency bands. As stated previously, our neural networks
were inspired by [29] where they also performed parameter optimisation for the
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mel-spectrograms which they used as input for neural networks. We decided to
use the reported parameters to create the spectrograms, mel-spectrograms in this
thesis. We use spectrograms, mel-spectrograms and MFCCs as input for not only
neural networks but also the PCA.

The resulting choices were following. We set window width w to 0.2 and
window overlap w, to 0.5w = 0.1. For mel-spectrograms it is also necessary to
choose mel-frequency bands which were set to 320 because in the findings from
[29], the performance of neural networks did not increase for values higher than
320. For MFCCs we decided to set the number of coefficients to 320 which is the
same as the number of Mel- frequency bands.

With these parameters, the shape of an extracted spectrogram was (408 x
2206) which is a vector of lenght 900,048 when flattened. A mel-spectrogram
matrix had the shape of (408 x 320) which when flattened is 130,560 and the
MFCC matrix had the shape of (646 x 128) which when flattened is a vector of
length 82,688.

We used Python’s 1librosa library [31] to cut songs into the 15 second excerpts
which we then stored the in .wav files. We used methods librosa.core.stft
to generate spectrograms librosa.feature.mel spectrogram to generate mel-
spectrograms and for the MFCC coefficients we used 1librosa.feature.mfcc all
of which received the 15 second audio excerpt from the .wav file loaded using
librosa.core.load as a parameter. These functions return a matrix of shape
(m x n) where m is the number of timestamps and n the number of features.
The reason why the MFCC matrix has a different number of timestamps than
spectrograms and mel-spectrograms for the same length of audio is, that we
only set the number of MFCCs in the 1ibrosa.core.mfcc function but left the
window width and window overlap default.

4.4.2 Raw Mel-spectrograms

The mel-spectrograms were created from the 15 second long audios described in
4.4l Extracting spectrograms respectively mel-spectrograms does not require
any training. It a is mathematical procedure explained in [3.1.3]

As mentioned in the previous section, the mel-spectrograms we got after trans-
forming a 15 second long audio with 320 mel-frequencies bands were matrices of
size (408 x 320) which when flattened turned into vectors of size 130,560. This
turned out to be too long to implement in our application, however, we still tested
this method and the results are in Subsection [4.9.1]

4.4.3 Raw MFCCs

The 15 second audios of all songs from SD were given as parameters into the
librosa.feature.mfcc method one by one with parameters defined in
Training was not necessary since acquiring mel-frequency cepstral coefficient is
a matter of Fourier Transformations and is explained in Subsection [3.1.4] The
resulting MFCC matrix for one song from SD had the shape of (646 x 128).
When flattened we got a vector of length 82.866. That turned out to be too long
for practical use in the application. Nevertheless we tested this method and the
results can be found in Subsection [£.9.21
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4.4.4 PCA with spectrograms
Input

We used spectrograms acquired as described in Section as input for the PCA.
Because the output of the 1ibrosa.core.stft method is a complex matrix, we
computed the absolute value of each matrix entry. Afterwards, we flattened the
matrix into a single vector and normalized it using a MinMaxScaler from the
sklearn Python package. Normalization was very important, without it, the
resulting rankings were almost random.

Training

Training was a little bit challenging with input vectors of length 900,048. As
the whole (16594 x 900048) matrix did not fit into memory at once instead of
using sklearn.decomposition.PCA we turned to a PCA with the possibility
to be trained in batches. This kind of PCA is also provided by skearn in the
sklearn.decomposition.incrementalPCA module.

Our batch size was 1,106. When we tried to increase it, we got a memory er-
ror. This was a little inconvenient because the PCA’s the maximum number of
components is min(n_samples, n_features). In our case, n_samples was only
1,106 meaning we could get a maximum of 1,106 components which explained
about 57% of the dataset’s variance. We saved this incrementalPCA instance
with 57% varince explained as our first model and the method was denoted as
PCA _spec_1106.

We then tried to decrease the number of components even more to get vectors
of length 320. The lenght was inspired by the number of Mel-frequency bands
used when extracting mel-spectrograms. The training was the same as for the
PCA _spec_1106 but we kept only 320 components and saved the incrementalPCA
instance as the model for this method called PCA _spec_320.

Output

The output vectors for PCA spec_1106 were of length 1,106 and for PCA _spec_320
they were of length 320.

4.4.5 PCA with mel-spectrograms
Input

The input for the PCA_mel method were mel-spectrograms from which
were flattened and normalized using a MinMaxScaler from the sklearn Python
package.

Training

Unlike the spectrograms, mel-spectrograms did fit into memory so we were able
to train the PCA on the whole dataset at once. This allowed us determine what
number of components explains 90% of the variance ratio and use it. We found
that 90% of variance is explained by 5,715 components which is what we used to
train one model.
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The results were good, therefore we decided to try reducing the dimension even
more to 320 as we did with PCA having spectrograms as input. Like this, we
again created two models, the first one is called the PCA_mel_5715 the other the
PCA _mel_320.

Output

The output for the bigger model was a vector of length 5715, for the smaller
model, it was a vector of length 320.

4.5 Deep audio experiments

4.5.1 Architecture

Before analysing each of the deep audio methods independently, we will describe
the two neural network architectures we used.

As stated multiple times before, we decided to build the networks based on
the [29] paper. We designed the architecture in a way they did with some slight
adjustments and extensions. The audio representation learning they performed
is displayed in Figure [4.1, The first most notable thing is, that their network was
designed to classify sounds, not encode songs. However, it consisted of two parts.
The first part was an autoencoder and the second part a multi-layer perceptron.
The autoencoder was trained in an unsupervised manner and the outputs were
then fed into the MLLP which did the classification.

We therefore figured, that we can take advantage of the first part of their
neural network and discard the MLP. The portion of their procedure that we also
performed is marked with the red rectangle which we added to their illustration.
The reason why they performed feature fusion in (d) is because they worked with
stereo wav files and were putting together the features of the different channels.
In our case this was not done as we only had a mono wav files for each song.

® ® ©
e e et KO ®

> Feature Multilayer Final
Fusion Perceptron Classification
A d: ] [ Feature
Extraction Training ] l Generation

Figure 4.1: The steps in feature learning from [29] where we also got this diagram
from. We added the red rectangle which represents the portion of their procedure
that was also (with adjustments) performed by us.

This means, we only used the autoencoder part. Unlike them, instead of using
the auDeep library? we decided to build the networks with the Keras library [32]
as it has a convenient model-creation API for Python. We had also access to
GPU computers and Keras (with Tensorflow backend) makes it easy to take
advantage of faster training on GPUs.

Zhttps://github.com/auDeep/auDeep
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We created two architectures. One with two GRU layers for the encoder
and one Bidirectional layer for the decoder. This follows the paper. We also
decided to create another architecture with LSTM layers instead of GRU layers
even though [29] found in their work that the additional complexity did not yield
better results. Both architectures can be seen in Figure [4.5.1] We decided to use
sequence-to-sequence RNNs to encode the vectors.

input: InputLayer input: InputLayer
Y l
gru_l: GRU Istm_1: LSTM
l Y
gru_2: GRU Istm_2: LSTM

l ‘,

bidirectional_1(output): Bidirectional(GRU) | | bidirectional _I(Istm_3): Bidirectional(LSTM)

Figure 4.2: The general architecture Figure 4.3: The general architecture
of GRU neural networks of LSTM neural networks

The main motivation behind using LSTMs as well as GRU layers in this thesis
was that LSTM layers are specifically suited for sequential data such as audio.
GRU layers are a newer, simplified version of LSTMs. We were hoping that the
more complex layers could encode audio data into the same dimensions as the
GRU networks but help to make the similarities more accurate.

We used the mean squared error as the loss function which is the standard
for autoencoder networks. We used the adam optimiser, the same as in the [29]
paper. We had to decrease the learning rate from 0.001 to 0.0001. Before we did
that, the resulting predicted vectors often consisted of just NalVs.

4.5.2 Inputs and outputs

Both the GRU and the LSTM network architectures were used to create mod-
els with all three kinds of inputs — the spectrograms, mel-spectrograms and
the MFCCs. The inputs were all passed in the form of matrices containing
(n_features x n_timestamps). GRU as well as LSTM networks take matrices,
not just vectors as input. Before training, the input matrices were normalized
using the MinMaxScaler.

One important thing to note here is that we used sequence-to-sequence RNNs
so the dimensionality of only the n_features and not the n_timestamps was
reduced. The 15 second audios yielded 408 time stamps and 2206 features for
spectrograms which when flattened is a vector of length 900,048 and 408 time
stamps and 320 features for mel-spectrograms which is a vector of length 130,560.
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With MFCCs the number of time stamps was 646 and the number of features 128
which gives us a vector of length 82,688 when flattened. Therefore, we did not
attempt a dimensionality reduction as big as with PCA which does not care if a
feature is a time stamp or a sample and the output vectors had to be of length
at least 408 for autoencoders with spectrograms and mel-spectrograms as input
and 646 for autoencoders with mfccs as input.

The output lengths for the different autoencoders were different depending on
the kind of input. The specific values are described in specific method sections
along with the reasons for choosing them. Their length is specified as the length
of the flattened matrix.

4.5.3 GRU network with spectrogram input
Training

We trained two GRU spectrogram networks with variable output vector lengths.
We decided to base the output vector’s length on the PCA’s output vectors that
explained 90% of the variance ratio. For spectrograms however, we only found
out that 1,106 explains 57% of variance. Therefore, we took the information from
the mel-spectrogram PCA where 5,715 compnents explain 90% of variance and
did a simple calculation:

l(mel_specirans formed)/l(mel_spec) = l(Specirans formed) /L (speC)

to keep the proportional reduction of spectrograms same as for mel-spectrograms.

This would mean an output vector length of almost 40,000 which is too much
for any practical use in the proposed web application. Because of that we reduced
it to 20,400 (408 x 50) which at that point we thought could be potentially used.
The fist GRU layer cut the number of features to 100 and the second then to 50.

The second model produced shorter vectors as encodings of songs. The first
GRU layer cut the number of features to 28 and the second GRU layer cut it to
14. They were of length 5,712 (we wanted them to be a multiple of 408 so they
are not 5,715 as the output vectors of PCA_mel) when flattened which means,
that the output matrix had the shape (408 x 14). This is inspired by the mel-
spectrogram PCA reduction as we thought that the neural network could mimic
mel-scaling of the spectrogram as well as additional reduction.

In [29], they trained their autoencoders for 50 epochs using batch sizes of 64.
We found this to be insufficient, especially with the learning rate reduction. For
GRU networks with spectrograms we set the number of epochs to 100 and the
batch size to 295 (bigger batches did not fit into memory).

The training losses of these two methods and all other neural network methods
are illustrated in Figure 4.4}

4.5.4 LSTM network with spectrogram input
Training

We chose the same training strategy for LSTMs with spectrogram input as we
did for the GRU spec networks. We created two versions of LSTM models, one
is LSMT _spec_20400 and the shorter version is LSTM _spec_5712. The output
lengths are also the same as with GRU _specs.
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Model loss

GRU_spec_20400 loss
GRU_spec_5712 loss
LSTM_spec_20400 loss
LSTM_spec_5712 loss
GRU_mel loss
LSTM_mel loss

GRU MFCC loss

LSTM MFCC loss
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Figure 4.4: The training mean squared error loss values for all the neural network

methods that were trained.
The blue curve for the GRU_spec_20400 is hidden behind the orange curve.

4.5.5 GRU and LSTM networks with Mel-spectrogram
input

Training

The GRU_mel and LSTM _mel networks were both trained under the same con-
ditions. We trained them on mel-spectrograms for 150 epochs with a batch size
of 256. The output length of the encoded song vector was based on keeping 90%
of the variance ratio of the PCA_mel which was 5,715. The final output length
however was not 5,715 but 5,712 (408 x 14) to be divisible by 408. The first
GRU/LSTM layer reduced the number of featrues to 28 and the second layer to
14.

We did not attempt any further reductions here partly because as stated be-
fore, we were reducing only the number of features with the sequence-to-sequence
RNN, so that the minimum length for the encoded vector had to be 408 (which
is the number of timestamps). Partly also because vectors of length 5,712 are of
acceptable length to be implemented in the proposed web application.

4.5.6 GRU and LSTM networks with MFCC input
Training

At first we did not plan on using MFCCs as input into neural networks. However
because it turned out that raw MFCCs are too long to be used in the proposed
application directly we decided to try to reduce their dimension with both the
GRU and LSTM network architectures.

We trained both architectures for 150 epochs and a batch size of 256 which
is the same number as for neural networks having mel-spectrograms as input.
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The output vectors were of length 5,168 when flattened which means the output
matrix had the shape of (646 x 8), where the first GRU/LSTM layer cut the
number of features to 18 and the second to 8. We were again trying to come close
to the number of dimensions that explains 90% of the variance ratio when using
PCA which is 5,715. We chose 646 x 8 which is 5,168 rather than 646 x 9 which

is 5,814 because we favored bigger reduction over proximity to 5,712.

4.6 Similarity metrics

As the reader might have noticed, we presented several possible methods which
encode a song into a vector. But we still need to define similarity between these
vectors. There are many ways of asserting how similar two vectors are, however,
we do not consider studying these to be main focus of this thesis. After the initial
exploration of this topic, we decided to use the cosine similarity metrics for
all the representation methods.

Although throughout the proposed web application the metric is referred to
as distance, it in fact is a similarity measure, meaning, the greater value the
more similar two songs are. We use the metrics.pairwise.cosine similarity
method from Python’s sklearn package for all the similarity calculations.

4.7 Evaluation

4.7.1 Desired recommender-system features

We already touched this in the introduction but it is useful to revise what we
want from a good recommendation system and what its most important features
are. Let’s skip the software part for now as it is further discussed in Chapter
and focus purely on the quality of recommendations. Probably the most crucial
property a recommender system should have is that it should include the relevant
items between the first 10 to maybe 50 recommendations. Because it does not
really matter if an item the user would like ends up on the 500th or 5,000th
position. People rarely go that deep.

Another thing we want is for the system to be able to improve recommenda-
tions when it has more data about a user. In the context of this thesis it means,
that we would expect the predictions to be better for users with longer playlists.

Even though the whole idea of this thesis is to provide variable recommenda-
tions, we still want our methods to posses these features to a reasonable extend.
Also, since these are the properties other recommendation systems are being eval-
uated on, we can gain a better understanding of the features our methods share
with other recommendation techniques as well as where they differ.

4.7.2 FEvaluation measures

To test the wanted features described in the section above we performed evalua-
tion as follows.

The UD dataset contains 11,123 playlists that were used for evaluation. We
chose to evaluate the tested methods only on playlists of length at least four.
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For each method, we did a 5-cross-validation where in a validation epoch, ev-
ery playlists p; was divided into two parts a training part p;, . and a testing
part p;,.., and the values of the evaluation measures below were determined. The
playlists were split in an approximately 80:20 ratio. A higher priority was set on
the fact that the test part always had to contain at least one entry (meaning that
for playlists of length 2, the ratio would be 50:50).

The processing of one playlists was performed as follows:
For each song s; from the song dataset SD, the similarity of the whole p;, ..
to sy which we denote as sim(p;, si) was calculated as

sim(p;, sg) = >, cos_sim(sk, s;)
Sjepitrain

where k # j and cos_sim is the cosine similarity. These similarities were then
sorted in a descending order and it was determined at what position the songs
from p;,,,, came as those are the ones that actually belong to the playlist.

These positions were then used to calculate multiple evaluation measures to
assess how well each algorithm predicts the missing part of a user’s playlist. We
chose the following evaluation measures:

e Recall at 10 (= R@10) defined as the proportion of songs from p;,, ., that
placed between the top ten most similar songs.

e Recall at 50 (= R@50) defined as the proportion of songs from p;,, ., that
placed between the top fifty most similar songs.

e Recall at 100 ( = R@100 ) defined as the proportion of songs from p;,,.,
that placed between the top hundred most similar songs.

e Normalized cumulative discounted gain (= nCDG) defined as

DCG@G,
nDCG = Theey
where
DCG, = Z rely,

= log,(k + 1)

is the discounted cumulative gain at position r and

|REL| 2T€lk -1

IDCG, = —_—
1; log,(k + 1)

is the ideal discounted cumulative gain at r where r is the number of songs
that had to be predicted, the rel;, meaning relevance, is the same for all
songs because all songs in one playlists have the same relevance and |REL|
is the length of the list of relevant items (in this case the songs from p;,_, ).

e Average rank of a song from the p;,_, set (= rank) which we included to
have also an indicator of the overall behaviour, not only the first 100 ranks.
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The overall evaluation results for a tested method were then taken as its av-
erage evaluation-measure values over all the playlists over the 5 cross-validations.
In addition we also retrieved the evaluation values for only certain playlist’s
lengths again by averaging over the 5 cross-validations but selecting only val-
ues of playlists of desired lengths.

Moreover, we created one more evaluation technique whose purpose was to
visualize the results of a method. It is a graph plotting the distribution of rankings
of songs from the test part of each playlists. It is denoted as the RDG (=rank
distribution graph). The number of songs from p.s; (which is a union of all songs
from all p;, ) for each individual rank from 1 to 16,594 is summed and divided
it by the number of all songs in p;.. So for example if we had two playlists
both with two songs in ps.s; and a method assigned ranks 30 and 2,900 to the
Prest songs from the first playlist and 2,900 and 4,872 to those from the second
playlists, the graph would plot the values 0.25 for rank 30, 0.5 for rank 2,900 and
0.25 for rank 4,872 and 0 for the rest of the ranks. We did this with all playlist
lengths included but we also plotted these distributions for chosen playlist lengths
separately to see if the predictions improve for longer playlists which we expect
from a good recommender system. The x-axis of the RDG was log-scaled as we
are much more interested in what is going on among the first 100 positions than
in what is going on in the middle or towards the end.

After running the evaluation, we noticed from the RDGs that for most of
the similarity methods, the positions for songs from p;,.., where p; was a short
playlist were higher up, than those from long playlists, especially for the first
three ranks. We concluded that the reason for such behaviour could be, that
inside all playlists, there are groups of very similar songs but the groups are
rather dissimilar to each other. Songs which are somewhat similar to all groups
then cloud the recommendations and take place of songs that are very similar to
one group but dissimilar to the other groups.

Because of this, we changed the recommendation method a little bit. We set
a threshold for each similarity metrics, and if the similarity between two songs
was smaller than this threshold, we set the similarity to 0. This means, that the
new similarity function cos_sim(s;, s;) is defined as follows:

cos_sim(s;, s;) if cos_sim(s;, s;) > threshold
0 if cos_sim(s;, s;) < threshold

cos_simy(s;, s;) = {

The threshold for a method was chosen as the value of the 846,294th biggest
element from its D,,. 846,294 is 51 % |SD|. The most similar song is always
the song itself, so it leaves us with approximately 50 most similar songs for each
song. 50 is approximately 0.03% of 16,594 so we also refer to the threshold as the
0.03%-threshold throughout this thesis.

The results presented in Sections [4.8] 4.9 and are all acquired by evalu-
ation of recommendations using the similarity with threshold. If the evaluation
of similarity without threshold had better results for a method, it is mentioned
in the method’s section.

Another reason to use the threshold-similarity is the fact, that we use the
threshold to calculate similarity in the proposed application. Not only because of
the better results as we shall see, but also because of the fact, that it dramatically
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