
BACHELOR THESIS

Michaela Vystrčilová

Similarity methods for music
recommender systems

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Ladislav Peška, Ph.D.
Study programme: Computer Science

Study branch: IOI

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

I would hereby like to thank my supervisor Mgr. Ladislav Peška, Ph.D. for his
time, feedback, advice and for the knowledge he has shared with me.

I am also grateful to the people who supported and encouraged me while
writing this thesis.

iii

iv

Title: Similarity methods for music recommender systems

Author: Michaela Vystrčilová

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., department

Abstract: Traditional music recommender systems rely on collaborative-filtering
methods. This, however, puts listeners who do not enjoy mainstream songs at a
disadvantage because CF systems depend on popularity patterns. Content-based
recommendation methods might be useful in solving this issue. Since tag-based
searches are a widespread tool to aid traditional music recommendation, this
paper presents content-based methods measuring similarity between songs with
focus on methods utilizing song’s lyrics and audio recordings. First, we evaluated
the accuracy of several approaches based on lyrics and audio information on real
user playlists and found that lyrics-based methods yield competitive results to
audio-based methods. Results also revealed that both categories include methods
that are 100 times more accurate compared to random suggestions and that they
have potential for even better results. After the evaluation phase, we selected
well-performing methods and implemented them in a web application aiming on
recommending novel music to the users based on their content-based profile.

Keywords: music recommendation, unsupervised feature learning, audio-based
song similarity, lyrics-based song similarity

v

vi

Contents

Introduction 5

1 Data 9
1.1 Datasets . 9

1.1.1 Lyrics dataset . 9
1.1.2 User-information dataset 9

1.2 Final dataset statistics . 10

2 Lyrics-based methods 13
2.1 Text embedding methods . 13

2.1.1 Bag of Words . 13
2.1.2 Tf-idf . 13
2.1.3 Word2Vec . 14
2.1.4 Doc2Vec . 14
2.1.5 Self organizing maps . 15

2.2 Related work . 16
2.3 Text representation choices . 16

3 Audio-based methods 19
3.1 Basic audio representation methods 19

3.1.1 Raw waveform . 19
3.1.2 Spectrograms . 20
3.1.3 Mel Spectrograms . 21
3.1.4 Mel Frequency Ceptral Coefficients 21

3.2 Simple audio representation methods 22
3.2.1 PCA . 22

3.3 Deep audio representation methods 23
3.3.1 Convolutional neural networks 23
3.3.2 Deep belief networks . 24
3.3.3 Recurrent neural networks 24
3.3.4 Autoencoders . 24

3.4 Related work . 25
3.5 Audio implementation choices . 25

3.5.1 Basic audio representation choices 25
3.5.2 Deep Audio representation choices 25

4 Experiments 27
4.1 Expectations . 27
4.2 Experimentation protocol . 27
4.3 Text method experiments . 29

4.3.1 Tf-idf experiments . 29
4.3.2 PCA on Tf-idf . 29
4.3.3 Word2Vec experiments . 30
4.3.4 SOM experiments . 31

4.4 Simple audio method experiments 31

1

4.4.1 Audio preparation . 31
4.4.2 Raw Mel-spectrograms . 32
4.4.3 Raw MFCCs . 32
4.4.4 PCA with spectrograms 33
4.4.5 PCA with mel-spectrograms 33

4.5 Deep audio experiments . 34
4.5.1 Architecture . 34
4.5.2 Inputs and outputs . 35
4.5.3 GRU network with spectrogram input 36
4.5.4 LSTM network with spectrogram input 36
4.5.5 GRU and LSTM networks with Mel-spectrogram input . . 37
4.5.6 GRU and LSTM networks with MFCC input 37

4.6 Similarity metrics . 38
4.7 Evaluation . 38

4.7.1 Desired recommender-system features 38
4.7.2 Evaluation measures . 38

4.8 Text method results . 41
4.8.1 Tf-idf results . 42
4.8.2 PCA Tf-idf results . 42
4.8.3 W2V results . 43
4.8.4 SOM results . 44

4.9 Simple audio representation results 46
4.9.1 Raw mel-spectrogram results 46
4.9.2 Raw MFCCs results . 47
4.9.3 PCA on spectrograms . 48
4.9.4 PCA on Mel-spectrograms 49

4.10 Deep audio representation results 50
4.10.1 GRU network with spectrogram input 50
4.10.2 LSTM network with spectrogram input 50
4.10.3 GRU and LSTM networks with Mel-spectrogram input . . 51
4.10.4 GRU and LSTM networks with MFCC input 52

4.11 Discussion . 53
4.11.1 Expectations vs. reality 53
4.11.2 Relative results . 54
4.11.3 Result interpretation . 55
4.11.4 Additional findings . 56

5 Web Application 63
5.1 Analysis . 63
5.2 Implementation . 63

5.2.1 Technologies . 64
5.2.2 Design . 64
5.2.3 Similarity measure implementation 66
5.2.4 Base data import . 70

5.3 Configuration options . 70
5.3.1 Similarity method configurations 70
5.3.2 Email . 70
5.3.3 Server . 71

2

Conclusion 74

Bibliography 75

List of Figures 79

List of Tables 81

A Attachments 83
A.1 First Attachment . 83

3

4

Introduction
Millions of songs online provide an opportunity to find great songs for people with
all kinds of music tastes. However, only a small fraction of all the songs that are
produced becomes popular. Those are the ones people are being exposed to the
most. They are promoted on various platforms such as YouTube1 or Spotify2,
and played across all radio stations sometimes several times a day. After a while,
older songs become less popular, one could use the term ”overplayed” and other
(usually new) songs take their place. But what if a person’s next favorite song
already existed, it just did not become popular? It is unlikely to hear unpopular
but possibly likeable songs for people with unusual music preferences on the radio.
Radio stations try to target as many listeners as possible. A recommender system
that collects data about what a user listens to could on the other hand specifically
target the person’s taste and help anyone discover tracks perfectly tailored for
them without being dependant on their popularity.

The suggestions recommender systems provide for basically any online content
are crucial. With the amount of songs, movies, books, clothes, electronics and
many more, it would be extremely time consuming for a person to go through all
of the items in order to find what they are looking for. Recommendation systems
are trying to make it easier for people to find what they want. They even try to
predict, what they will be looking for next or what they might want but do not
know it yet.

There are three main method groups to generate (not only) music recom-
mendations for users. First are collaborative-filtering methods (CF) where rec-
ommendations are based on the preferences of like-minded users. Second are
content-based methods where recommendations are based on the song content
(tags, audio, lyrics, ...) and the third group are hybrid methods combining the
first two together.

Generally, CF methods for all kinds of recommendation systems appear to
be researched more extensively [1] however, there are certain drawbacks of these
approaches. Most obviously, there is a problem with new, unrated songs because
no user has viewed or liked them, so they cannot be recommended to like-minded
users with a method based only on collaborative filtering. This is called the
cold-start problem. Also, the recommendations tend to be dependent on user
popularity patterns. Nevertheless, with enough user data, collaborative filtering
methods generally outperform content-based methods [2].

Due to these observations, there are not many applications that would rec-
ommend songs based solely on their content and to the best of our knowledge,
there is no music recommendation application that would recommend songs to
its users based only on lyrics. As this is a logical consequence of the findings
above, we believe that a recommender system based exclusively on content-based
methods could be helpful for users with an unusual taste since it would not be
popularity-dependant. We decided to introduce such a recommender application.

In order to create a content-based music recommender application we need
to decide on the source(s) of content information. A basic CB recommender is

1https://www.youtube.com
2https://www.spotify.com

5

attribute-based. Common song attributes are the genre, the artist, creation year
and so on. Nonetheless, we decided not to use these simple CB attributes in this
thesis, because almost all music related application allow users to search based
on tags so it would not bring anything new really.

Instead of simple CB attributes, we chose lyrics and audio as the sources of
content information. The audio channel of the song is probably the ultimate
low-level content information of every song. People listen to music because it is
a pleasant sound and it is likely that it is audio features that define, whether a
person likes a song or not. On the other hand, processing a song’s audio channel to
acquire meaningful features is an expensive and complex task with many options
and hyperparameters that need to be set.

Song lyrics, i.e., a textual transcript of the vocals in the song is somewhat less
informative, however it may still possess valuable information, for which, multi-
ple processing methods were already developed. The process of transforming raw
lyrics into some meaningful attributes is less demanding compared to the pro-
cessing of raw audio. There is an intuitive a notion that their performance might
be doubtful, however, many studies evaluate them on their genre classification
accuracy [3] or compare them to collaborative filtering systems [4] which does not
always mimic actual user behaviour.

Recommendation is mostly based on similarity between items which can be
defined in various ways. Both lyrics and audio need pre-processing before estab-
lishing similarity.

Goals
The goals of this thesis are:

• to determine whether lyrics and audio-based methods mimic actual user
behaviour and are relevant in recommender systems

• create a web application where these methods will be implemented to pro-
vide a recommender system which is not dependant on song popularity

In order to do so we take the following steps. We describe various ways of pre-
processing text and audio signals in an unsupervised manner for content-based
song similarity calculations. Then we select some of them based on previous stud-
ies and their features, evaluate their performance on real user playlists, compare
the results and then implement fitting methods in a web application.

Although it originally seemed that processing both content modalities are sim-
ilar, during our work on the thesis, it turned out that the complexity and diversity
of the pre-processing steps exceeded our expectations. It includes language, text
representation and similarity metrics for lyrics-based methods and audio extrac-
tion, audio representation and similarity metrics for audio-based similarity.

We decided to focus on unsupervised learning of song feature representation
of both audio and text. This includes encoding a song into a vector so that
a standard similarity-based recommendation technique can be used to evaluate
similarity of two arbitrary songs without having any information about genre or
other tags. The vectors can also be used for more advanced algorithms using
for example Recurrent neural networks to calculate similarity. That is however
above the scope of this work.

6

The web application’s main purpose is to introduce the user to new songs he
has not listened to yet based on a song similarity method he selects. The songs
are provided by the application’s default database but adding songs is possible
too and its distance to other songs is taken into account for recommendations.

7

8

1. Data

1.1 Datasets

1.1.1 Lyrics dataset
We chose the 55000+ Song Lyrics dataset from Kaggle.com1 to obtain lyrics
data. The Kaggle dataset originally contained 57,650 English songs. Its lyrics
are scraped from LyricsFreak2. Extremely long and short lyrics were removed
as well as all non-ASCII symbols from the lyrics. Figure 1.1 shows the first two
entries of the dataset.

Figure 1.1: First two entries of the 55000+ Lyrics Dataset

1.1.2 User-information dataset
To evaluate text and audio based methods on real-life user data, we had to
select a dataset containing song information and lyrics as well as a dataset with
information about users and their played tracks. First we tried to match the
lyrics dataset onto the Thisismyjam dataset3. However we were able to match
only 6800 songs with lyrics as well as user data. We then tried the Echo Nest
Taste Profile Subset4 [5] dataset available on the Milion Song Dataset (MSD)
website. The Echo Nest Taste Profile Subset provides 48,373,586 triplets of user
id, song id and the number of times the user has played a song. This then had
to be mapped onto the MSD dataset to get a name and artist for each song and
then mapped onto our lyrics dataset.

After removing songs we did not have lyrics for, we ended up with 16,594
unique songs and 45,054 unique users. Even though it is a significant reduction
it still provides enough data to carry out all the desired experiments. For each of
the 16,594 songs we also acquired a mono .wav file.

1https://www.kaggle.com/mousehead/songlyrics
2https://www.lyricsfreak.com
3http://www.thisismyjam.com
4https://labrosa.ee.columbia.edu/millionsong/tasteprofile

9

1.2 Final dataset statistics
Overall our final dataset had 160,454 entries containing a user id, artist, song
title and lyrics. We extracted two of different datasets, suited for different tasks
throughout the thesis.

• The Song dataset denoted as SD in this work. It contains the 16,594 unique
songs with their metadata (title, artist, lyrics and audio), the users were
omitted.

• The User dataset denoted as UD. Each one of its 110,826 entries consists of
a userID, song name and artist. It contains 11,123 unique users who have
at 4 songs assigned to them so it is a dataset of all playlists of length at
least 4.

Since the evaluation method is aimed to reveal the missing entries based on the
implemented recommendation techniques5, we studied the dataset and especially
the playlist’s lengths in more detail.

Here are some important remarks:

• Each user only has one playlist. This means there is a one to one mapping
between users and playlists and the terms are used interchangeably.

• We do not know which songs the user has played most recently.

• Users with only one song are not useful for the purpose of evaluation.

When analyzing our dataset, it turned out, that out of 45,054 playlists, there are
22,257 with only one song, which left us with 22,797 we could use. We however
decided to use only playlists of length at least four for evaluation because it still
leaves us with enough unique playlists — 11,123 to be specific — and allows us
to study deeper connections than song to song similarities.

The distribution of the lengths for useful playlists is shown in more detail in
Figure 1.2. We can see that most of the playlists are short, almost a third of them
only contains two songs. The average number of songs per playlists (including
those containing only one song) is 3.56.

The average number of playlists a song from our dataset belongs to is 10.84.
The distribution and the most popular songs are depicted in Figure 1.3. The by
far most popular song with a total of 816 plays was Royals by Lorde. Second
came Radioactive by Imagine Dragons with 674 users who played it. All other
songs have been played by less than 500 users.

5Chapter 4

10

Figure 1.2: Playlists’ lengths histogram

Figure 1.3: The histogram of playlist counts per individual songs

11

12

2. Lyrics-based methods
In this chapter we will briefly describe some of the most prominent methods to
represent songs based on their lyrics. After specifically focusing on the positive
and negative aspects of these methods, we will select suitable candidates for
testing and potentially for our web application.

The reason to explore lyrics-based methods in this thesis is based on several
factors. It is the belief of the authors that although the utilization of song lyrics
is not completely unexplored as shown in Section 2.2, there is space for innovative
research. For example, to the best of our knowledge, there are no recommender
systems that would rely solely on lyrics analysis. An advantage of these methods
could lie in providing relevant recommendations that would be more variable
compared recommendations from other, more traditional techniques.

2.1 Text embedding methods

2.1.1 Bag of Words
The Bag of Words commonly referred to as BoW is a text representation method
which counts how many times a word appears in a document. In the context of
this thesis, it counts, how many times a word appears in the song lyrics. BoW
represents each text (song) as a word-count vector where each index corresponds
to the number of times a certain word appeared in it. An advantage of this
encoding is its simplicity. The simplicity, however, brings some drawbacks. It for
example ignores the fact that some words which can be found in most documents
have a smaller informative value than others that only appear in a small fraction
of the documents.

2.1.2 Tf-idf
Term Frequency-Inverse Document Frequency is another way of transforming
documents into vectors. Unlike the BoW, Tf-idf does not measure only the counts
of words in a document but it also measures their relevance. As can be deduced
from the title term frequency, first the number of appearances of a word t in each
document d proportional to the number of all words in that document - tf(t,d) -
is computed. Then comes the inverse document frequency part - idf - where the
words are weighted as seen in Formula 2.1. The words that appear frequently in
most documents have lower weights than those who only appear in some.

idf(t) = log
1 + nd

1 + df(t) + 1 (2.1)

Formula 2.2 is then the final Tf-idf formula multiplying the word frequencies
with their weights:

tf -idf(t, d) = idf(t) ∗ tf(t, d) (2.2)

In both of the formulas above t is the word d is the document df(t) is the number
of documents containing the word t and nd is the total number of documents.

13

2.1.3 Word2Vec
Word2Vec is a two-layer neural network trained to encode the linguistic context
of a word introduced by Tomas Mikolov [6]. Each word has an assigned vector in
a vector space of typically hundreds of dimensions generated from a large corpus.
The position of a word corresponds to its context, meaning, that words that share
common context are closer to each other.

There are two possible Word2Vec architectures, the continuous bag-of-words
(CBOW) and the continuous skip gram. The CBOW predicts the current word
from the words surrounding it — the context. It does not keep the order of the
surrounding context words. The skip gram does, which makes it slower but also
more effective, especially for infrequent words [6]. The Skip-Gram architecture
takes one word and predicts all the context around it.

Figure 2.1: The CBOW and Skip-gram Word2Vec architectures from [7]

Multiple things have to be taken into account when training a W2V model.
The information value of words that occur in all training documents is quite low
so they can be removed to increase training speed. The dimensionality of the
space also elevates accuracy only to a certain point so some threshold has to
be set. Another parameter is the context window, which determines, how many
words before and after a given word are included as its context.

2.1.4 Doc2Vec
Doc2Vec is an unsupervised algorithm that learns the feature representation of
texts with varying lengths and encodes them into vectors of the same length. As
the name suggests it is heavily based on the idea of Word2Vec. It was also first
presented by the same group of researches in this paper [8]. The main idea of the
method is to use the Word2Vec model but add one more vector to represent the
paragraph as a whole. As in the Word2Vec model, there are two architectures
for the Doc2Vec approach. The Distributed Memory (DM) version of Paragraph
vector and the Distributed Bag of Words (DBOW) version of the Paragraph
vector. The DBOW is faster but does not consider the order of the words as
it predicts a random group of words from the paragraph vector. The DM on

14

the other hand takes previous words and the paragraph vector into account and
predicts just one word. This way, because the paragraph does not shift across
the text, the DM architecture is able to capture some word order but it requires
more time to be trained.

Figure 2.2: The Doc2Vec DM and DBOW architecture taken from [8]

2.1.5 Self organizing maps

A self organizing map (SOM) is a type of a neural network that learns how
to reduce the dimension of input data in an unsupervised manner. SOMs were
introduced by Teuvo Kohonen [9]. They use competitive dimensionality reduction
(meaning the nodes in the SOM network compete to get the right to respond to
the input data) which is quite unusual for neural networks as they usually use
backpropagation. The models that SOMs compute are (usually) two dimensional
spaces of neurons (called codebook vectors) where similar examples are close to
each other and dissimilar examples further from each other.

The SOM network is trained through an iterative process which is visualized
in Figure 2.3. It chooses one sample x ∈ Rn from the input training set at random
and teaches it to itself. During teaching, the network feeds the chosen sample into
all its units. A winner unit is calculated based on a similarity measure (usually
Euclidean distance) between x and the codebook vectors. Finally the values of
the network units are updated. The best-matching unit is moved a closer to x
and so are all the topological neighbours of the best unit.

The neighbours are defined by a neighbourhood function. It decreases with
time and decides how radical the change around the winner will be. There are
multiple functions that can be used. One can use the Gaussian kernel around
the winner, however this is quite computationally expensive. A good and more
efficient function is sometimes called the ”bubble” function which is constant over
the whole neighbourhood of the winner and zero elsewhere [10].

15

Figure 2.3: Visualization of the training algorithm used for SOM networks. The
blue area represents the distribution of the data. The white dot is the randomly
selected sample. On the left, the SOM network nodes are randomly spread ac-
cross the space. When finding a winner (middle) and its defined neighbourhood
(the yellow area) the network moves towards the datapoint and eventually after
repeated iterations spreads mimicking the distribution of the data (left). This
image is taken from Wikipedia1

2.2 Related work
There are several papers on music recommendation based on lyrics. For example
[4] has shown, that simple Tf-idf song embedding was 12.6 times more accurate
then just random suggestions on the musiXmatch dataset2. In [11] the authors
compared the Doc2Vec and the SOM algorithm using cosine similarity for vector
aggregation on a dataset containing Hindi songs and found that in their experi-
ments, the SOM outperforms Doc2Vec. Paper [3] even studies using intact lyrics
as input for Recurrent (LSTM) and Hierarchical neural networks and evaluates
it based on genre classification.

2.3 Text representation choices
When choosing methods for our web application there are several factors to con-
sider. Besides the expected accuracy of the algorithms, which is often difficult to
estimate since lyrics-based recommendation methods have not been researched
extensively, we have to consider the implementation as well as temporal complex-
ity features of all the methods. Also, the fact that we want to focus more on a
cross-sectional approach rather than a thorough optimization of one particular
algorithm means, we prefer diversity in our chosen algorithms.

The Bag of Words representation could be a good choice to get some kind of
baseline results. Nevertheless, since the Tf-idf algorithm is widely based on the
BoW and is still quite simple, we choose Tf-idf as our baseline. As mentioned
at the beginning of this chapter, it was shown to be 12.6 times more accurate
on the musiXmatch Dataset (MXD)3 than just random suggestions, and that is

1https://commons.wikimedia.org/wiki/File:Somtraining.svg
2https://labrosa.ee.columbia.edu/millionsong/musixmatch
3https://labrosa.ee.columbia.edu/millionsong/musixmatch

16

what we hope to achieve with all of our text methods. A downside of the Tf-idf
method is the length of its vectors. Even though they consist mostly of zeros, for
our dataset, the length of each of them is over 40,000.

Word2Vec and Doc2Vec are two similar approaches. The issue with Word2Vec
when representing a whole document, in our case the lyrics for one song, is the
transition between the word vectors and the whole document encoding. A com-
monly used aggregation method is to define the document vector as the mean of
all the word vectors.

Doc2Vec does not suffer from this problem, as its default is suited to represent
a complete text. However, the problem with Doc2Vec is the amount of data it
needs for training. Because every document is one sample, the number of docu-
ments necessary to achieve reasonable results is much higher than for Word2Vec
where one sample is one word. What is also convenient with Word2Vec is, that
there already exists a pre-trained Word2Vec model from Google4. It consists of 3
million words with a 300-dimensional vector for each. Three hundred dimensions
is a reasonable number (especially considering the fact that the Tf-idf vectors
have over 40,000 dimensions). It was trained on roughly a billion words from
a Google News dataset. Therefore we chose the Word2Vec method over the
Doc2Vec.

We also decided to implement the SOM network rather than Doc2Vec to
represent songs because of a study showing, that Self organizing maps perform
better than a Doc2Vec-based algorithm [11]. It also does not need as much data
as the Doc2Vec to be trained.

One more thing we had to chose for the SOM was the form of the input. We
decided to try the W2V representation. Mainly because the training of a self
organizing map is quite computationally expensive and having vectors with over
40,000 dimensions would make it extremely time-consuming. We did not give up
on the Tf-idf representation though. We trained another SOM where used Tf-idf
vectors pre-processed by PCA which were reduced to length 4,457.

4https://code.google.com/archive/p/word2vec/

17

18

3. Audio-based methods
In this section we will describe the possibilities of how to transform an audio
signal (in our case from a .wav file) into representations suitable for song similarity
calculations. This process consists of many steps and a lot of research has been
done on all of them as illustrated in Section 3.4.

The reason we are focusing on audio in this thesis is the notion, that what
people care about in a song is its sound. There are patterns in music that are
pleasant to the human auditory system, otherwise, music would not be so popular.
We believe it is the sound wave that contains these patterns. It is difficult to define
what exactly they are, so we hope that with the use of unsupervised machine
learning algorithms, we will be able to find them and then locate them in unseen
songs as well.

Figure 3.1 illustrates the steps of audio extraction. The blue part of the
diagram describes the steps that are taken to acquire various basic music rep-
resentations which are explained in Section 3.1. Each of these representations
can be given as input to a machine learning algorithm as depicted in green from
Section 3.2 or deep learning algorithm from Section 3.3 depicted in purple. Both
simple and deep learning algorithms yield a final vector representation of the
song.

Figure 3.1: A diagram displaying the steps taken in audio extraction and feature
learning. ML stands for machine learning and DL for deep learning.

3.1 Basic audio representation methods

3.1.1 Raw waveform
Sound is as vibration that spreads through gas, liquid or solid as a wave of pres-
sure. For humans, the sound we hear has a frequency between 20Hz and 20kHz.
Other sound waves are inaudible for humans. The most basic representation of
sound as an audio signal is a waveform. It captures the variation of pressure
over time. As we cannot store infinite data to capture the state of the wave in
every moment, we need to establish a sample rate. A sample rate is the number
of samples per second at which the pressure is recorded as amplitude. Common
sample rates are 44,100 Hz and 22,050 Hz that capture oscillation up to 22,050
Hz and 11,025Hz [12].

19

3.1.2 Spectrograms

Raw waveform data have a lot of data points which make them spaciously de-
manding. Luckily, they also display strong regularities in their oscillations which
gives us a different, more compact possibility to represent audio signal. The signal
can be encoded as the strength of oscillations at various frequencies as opposed
to amplitudes over time. Such an encoding is called a spectrum when sinusoids
are used as prototypical oscillations.

A spectrum is obtained from a waveform by applying Discrete Fourier Trans-
formation. The signal after DFT is represented by oscillations of a few frequencies
spanning the full signal.

However, a problem with this approach is, that for longer recordings, many
oscillations are present only over some limited time span or they change frequency.
To represent all the oscillations the Short-Time Fourier Transformation can be
computed. It slices the audio into small often overlapping windows, computes
their spectra and then puts them together in a chronological order. This spectra
matrix is called the spectrogram and for the song ’Someone Like You’ by ’Adele’ it
has the shape of (2206 x 7796). It can be visualized as a graph with frequency on
one axis and time on the other axis. The intensity of a frequency is represented
by color.

Figure 3.2: Spectrogram of the song ’Someone Like You’ by ’Adele’. The intensity
of different frequencies over time is converted to decibels.

20

3.1.3 Mel Spectrograms
Mel-spectrograms are another approach to reducing the dimensionality of the
audio data. They are filtered spectrograms. Frequency bands are extracted by
applying triangular Mel-scale filters to the power spectrum. The mel scale after
which these spectrograms are called was named in 1937 in a study by Volkmann
and Newman [13]. Since then it has been re-formulated multiple times, for ex-
ample by Umesh at al [14]. It is based on the human perception of pitch and
loudness and allows us to convert from Hz to Mels. Mels are more discriminatory
at lower frequencies and less at higher frequencies - as is the human ear.

Each of the triangular filters has a response going from 1 to 0. They respond
1 at the center of some frequency and then their response decreases linearly to 0
towards to the place where they meet the neighbouring filters. When these filters
are applied to a spectrogram, we get a mel-spectrogram. It is again a matrix of a
smaller shape this time (320 x 7796) for the song ’Someone Like You’ and it can
also be visualized as illustrated in Figure 3.3.

Figure 3.3: Mel-spectrogram of the song ’Someone Like You’ by ’Adele’. The
intensity of different frequencies over time is converted to decibels.

3.1.4 Mel Frequency Ceptral Coefficients
Mel-Frequency Ceptral Coefficients (MFCC) are another step further in compress-
ing audio features. They are obtained by applying Discrete cosine transformation
to mel-spectrograms. For the song ’Someone Like You’ by ’Adele’ which we used

21

as an example for spectrograms as well as mel-spectrograms, it created a matrix
of shape (128 x 7796) which looks as Figure 3.4 illustrates.

Figure 3.4: MFCCs of the song ’Someone Like You’ by ’Adele’. The intensity of
different frequencies over time is converted to decibels.

A nice introduction to music signal processing with respect to deep machine
learning, where spectrograms, mel-spectrograms and MFCCs are explained in
more detail can be found here [12] where we also drew a lot of our information
from.

3.2 Simple audio representation methods

3.2.1 PCA
PCA is a common machine learning algorithm used to reduce dimensionality of
the feature space that was invented by Karl Pearson in 1901 [15]. It tries to keep
features with most variance and discards feature in which all the data points are
highly correlated. The data space is transformed in such a way, that the first
principal component (PC) has the largest possible variance, the second PC the
second largest variance etc.

Mathematically it is an orthogonal linear transformation to a new coordinate
system where the base vectors are the principal components. To achieve this, it is
first necessary to center the data around the origin. That is done by subtracting
the mean of each variable from the data. After that a covariance matrix is
computed with its eigenvalues and corresponding eigenvectors. After normalizing

22

the eigenvectors, they can be interpreted as the new basis vectors. This new
basis transforms the covariance matrix, so that it becomes diagonal. Each of
the diagonal elements represents the variance of each axis. All the components
without any reduction give us the whole information about the input data, only
in a vector space with a different basis. Every component explains some portion
of the data’s variance.

The variance can be calculated by dividing every eigenvalue corresponding to
an eigenvector with the sum of all eigenvalues. The dimensionality reduction is
dependant on how many components we want. If we want to visualize the input
data in a 2D graph, we create a space with only the first two PCs as a base and
map all the data onto it. The reason to use this algorithm in our thesis would be
mainly to reduce the length of the audio flattened audio matrices.

The PCA assumes that there is linear correlation between features. If there
is not, the PCA will not discover it and will loose a lot of information with the
dimensionality reduction it performs.

3.3 Deep audio representation methods

3.3.1 Convolutional neural networks
Convolutional neural networks are neural networks that have become extensively
researched after AlexNet (a form of CNN) was demonstrated in 2012 and out-
performed all other methods for visual classification [16]. As with other neural
networks, CNN’s biggest advantage is to emulate behavior of unknown non-linear
functions. CNNs have the ability to map high-dimensional data into a space of
finite categories (with hundreds or thousands of classes). They are widely used
in visual imagery tasks.

The idea behind convolutional neural networks is to use local filters instead
of creating fully connected layers. This has risen from the idea that in images,
there are correlated compositions on short scale distances, rather than at large
distances. For example when detecting a human face in an image with a tree in
the background, the tree does not have much to say about the face, unlike the
eyes or the nose by which the face can be identified and are in a much greater
proximity to each other. This is also the reason why in the CNN’s architecture,
the layers are not fully connected.

There are 4 main components that are generally included in a CNN network.
The Convolution layer, the ReLU, the Maxpooling layer and the Fully connected
layer that yields the output. To briefly describe these layers lets start with
convolution. The convolutional layer helps to reduce the number of connections
and weights. It consists of filters that can be learned. These only take a small
number of nearby features into account at a time but extend through the whole
input. Each of the filters creates a 2D activation map by computing the dot
product of entries of the filter and the input. ReLU (rectified linear unit) is
generally used to increase non linear properties of the decision function. Its
function is f(x) = max(0, x) which is applied to the results of the convolution to
speed up training — compared to previously used functions for example sigmoid
functions — without affecting the receptive fields of the convolution layer. The
pooling layer also reduces the number of parameters and helps prevent over-

23

fitting. The most common function to implement is max pooling. The features
are partitioned into a set of non-overlapping rectangles (if input is 2D) and each
of these rectangles is represented by its maximal value. The final layer is usually
fully connected. Its neurons have connections to all activations of the previous
layer and their activation is then computed as an affine transformation [17].

3.3.2 Deep belief networks
Deep belief networks introduced by Hinton [18] are multiple Restricted Boltzmann
machines greedily stacked on top of each other. RBMs are shallow two-layer
neural nets created by Paul Smolensky in 1986 [19]. The first layer is called the
visible layer, the second layer is called the hidden layer. The nodes of each layer
communicate with the previous and subsequent layer but there are no connections
between nodes of the same layer. Each visible node takes a low level feature to
be learned and multiplies it by some weight. The results for each feature of an
input sample are then summed, bias is added and the result is passed through an
activation algorithm which produces output for each hidden node. These outputs
then can be redirected into another hidden layer instead of the output of the
neural network.

RBMs also have the ability to reconstruct data without supervision. When
the input makes it through both layers it then becomes input for the hidden layer
and travels through the neural network in the opposite direction. The activations
are multiplied by the same weights and passed to the visible layer where a new
bias is added. The output of the visible layer is then compared to the initial input
and the network adjusts weights so that it minimizes the difference between the
input and the output.

3.3.3 Recurrent neural networks
Recurrent neural networks have one major difference compared to other neural
networks. They include feedback loops in their structure which allows them to
exhibit dynamic behaviour and makes them useful for processing sequential data.
RNNs have a hidden state that is determined by previous states and is updated
with every subsequent step. There are many variants of RNNs such as Fully
recurrent, Long short-term memory introduced by Hochreiter and Schmidhuber
in [20], Gated recurent units first described in [21], or Bi-directional invented by
Schuster and Paliwal in [22].

Recurrent neural networks are used for working with sequential data for ex-
ample in speech recognition [23] or time-series anomaly detection [24].

3.3.4 Autoencoders
Autoencoders are not tied to one type of neural network. They can be build from
recurrent layers, convolutional layers or from a simple Multi-layer Perceptron.

The autoencoder has two parts the encoder and the decoder. It is trained
in an unsupervised manner. The encoder takes the input data and reduces its
dimensions. The decoder then tries to recreate it into its original form without
knowing, what the data looked like before the encoder processed it. The idea is,

24

that over time, the encoder learns how to shrink the data with retaining as much
information as possible for the decoder so the decoder it is able to recreate the
original form as accurately as possible.

3.4 Related work
For the signal representation, there is obviously the possibility to use raw audio
data as input for any machine learning algorithm. This however is a quite un-
common approach and when tested recently in tag prediction [25] it had worse
results than standard spectrograms. Multiple studies and experiments have been
done using spectrograms as audio representation for classification tasks — for
example [26] — or for unsupervised feature learning [2], [27], [28], which is what
also our area of interest.

In these studies the inputs were fed into various neural networks. The output
of those was then evaluated on music classification or compared to music similarity
estimation using similarity metrics directly on spectrograms. We are going to do
a similar thing in this thesis. Our evaluation will be done on user playlists and
the methods will be compared to each other.

3.5 Audio implementation choices

3.5.1 Basic audio representation choices
The flattened vectors from spectrograms, mel-spectrograms and MFCCs have
tens sometimes even hundreds of thousands of features which is a big disadvan-
tage, especially, when we have an intention of implementing them inside the web
application. Nevertheless, we decided to test recommendations based at least on
raw mel-spectrograms and raw mfccs to have an idea on how audio data
without intervention of machine learning behave. We also decided to use the
PCA to transform spectrograms, mel-spectrograms because we believe that it
could reasonably reduce their vector lengths and remove noise from the data.

3.5.2 Deep Audio representation choices
Neural networks are a quickly developing and expanding field with many various
applications. It is extremely time consuming to build an accurate neural network
for a specific task. Therefore, we decided to choose our neural network archi-
tecture and parameters based on literature relevant to the topic of audio feature
learning. The main requirements we had for the algorithms was that they have to
work in an unsupervised manner and that they have to reduce the feature space.
This pruned the number of possibilities for us considerably, as most architectures
are designed for music classification (mostly into genres) or speech and sound
recognition.

We decided that autoencoders suite the task in this thesis best. It is an
unsupervised algorithm. The encoder part does exactly what we desire which is
encoding the input sample into a smaller dimension. The decoder transforms it

25

again into the same vector. The decoder part is only necessary for training and
only the encoder is then used for the song representation.

Since we are working with sound data, the choice was to use sequence-to-
sequence RNN layers which have the ability to encode sequences (spectrograms,
mel-spectrograms and mfccs are m x n matrices). The autoencoder architecture
and the choice of layers was mainly inspired by this paper [29] where they used
GRU layers with mel-spectrograms as input. However, we want to add more
methods into comparison, so we implemented not only neural networks with
GRU layers but also LSTM layers and used spectrograms, mel-spectrograms
and also MFCCs as input rather than focusing on one type of layer or input and
tuning one particular neural network to give the best results possible. A more
detailed description of the architectures is provided in Section 4.5.

26

4. Experiments
In this chapter we describe the experiments we performed on song preprocessing
methods chosen in Chapters 2 and 3. This includes describing every method’s
input, training (if there was any) and output (meaning the vector-encoded repre-
sentations for each song in the SD). All this is presented in Sections 4.3, 4.4 and
4.5. Another thing we did not cover yet and will be presented here, in Section
4.6, is describing how the different vector representations will be aggregated into
a definition of similarity.

In Section 4.7 we acquaint the reader with evaluation methods, the reasons we
decided to use them and the evaluation results for each method. The results are
first presented separately for each method (or a group of closely related methods)
in Sections 4.8, 4.9 and 4.10, and then summarized and interpreted in Section 4.11
where various graphs and tables illustrating the prominent or interesting trends
and tendencies can be found. Before all this however, we start with stating, what
the expected outcomes were initially.

4.1 Expectations
Even before reading any literature, we made two main predictions:

• First: Audio-based methods will perform better than text-based methods.

• Second: More advanced methods will outperform simpler machine learning
methods.

By more advanced methods we mean methods that were invented more recently,
are more computationally expensive and/or have a more complicated mathemat-
ical idea behind them.

The first prediction was mostly based on the intuition, that audio contains
more information about a song than the lyrics and it is also what people care
about more when listening to music, both of which makes it more relevant for
song encoding.

The second prediction was also based on intuition and later supported by
reading into this topic. Most of the papers we studied (meaning those in Sec-
tions 3.4 and 2.2) were describing neural networks performing audio or text-based
recommendation or classification. Their results were then compared to simpler
algorithms which they mostly outperformed.

4.2 Experimentation protocol
Every method was trained on either lyrical or audio data of all 16,594 songs from
the SD dataset. For each method (except of raw audio methods which do not need
any), we created a model. In addition, we created a matrix — the Representation
matrix, denoted as Rm where m stands for a particular method — after training
the method’s model. Each Rm has the shape of (16594 x l(vm)) where l(vm) is
the length of the song vector representation for method m. Row Rmi,∗ contains
the representation of song si from the SD dataset using method m.

27

We also calculated a Distance matrix denoted as Dm for every method. The
shape of the Dm is (16594 x 16594) and it is the same regardless of the method.
On position Dmi,j

is the similarity of Rmi,∗ and Rmj,∗ . We talk more about simi-
larity in Section 4.6.

To make things easier for the rest of the thesis we now present all the methods
that were tested and introduce a nomenclature. There are 3 different parts each
method name has — the name of the main algorithm, the name of the input and
the length of the output vector. Every method can be uniquely identified by a
combination of these three parts. Where there is only one or two parts necessary
to uniquely identify the method, we omit those parts which are surplus.
The tested methods are:

• Tf-idf which stands for the Tf-idf method.
Training is described in 4.3.1 and the results in 4.8.1.

• PCA Tf-idf which stands for PCA with Tf-idf vectors as input.
Training is described in 4.3.2 and the results in 4.8.2.

• W2V which represents the Word2Vec method.
The training is described in 4.3.3 and the results in 4.8.3.

• SOM PCA Tf-idf and SOM W2V which stand for the SOM network
with PCA Tf-idf vectors as input and the SOM network with W2V vectors
as input.
Training is described in 4.3.4 and the results in 4.8.4.

• Raw mels which are raw mel-spectrograms.
Training described in 4.4.2 and the results in 4.9.1.

• Raw MFCCs which are raw MFCCs.
Training is described in 4.4.3 and the results in 4.9.2

• PCA spec 1106 and PCA spec 320 which stand for PCA with spectro-
grams as input and output lengths of 1,106 for the first method and 320 for
the second method.
Training is described in 4.4.4 and the results in 4.9.3.

• PCA mel 5715 and PCA mel 320 which stand for the PCA with mel-
spectrograms as input and the output length of 5,715 for the first method
and 320 for the second method.
Training is described in 4.4.5 and the results in 4.9.4.

• GRU spec 20400 and GRU spec 5712 which stand for an autoencoder
with GRU layers and spectrogram input. The output vectors have length
20,400 for the first method and 5,712 for the second method.
The architecture is described in 4.5.1, training is described in 4.5.3 and the
results in 4.10.1.

• LSTM spec 20400 and LSTM spec 5712 which stand for an autoen-
coder with LSTM layers and spectrogram input.
The architecture is described in 4.5.1, training is described in 4.5.4 and the
results in 4.10.2.

28

• GRU mel which stands for an autoencoder with GRU layers and mel-
spectrogram input.
The architecture is described in 4.5.1, training is described in 4.5.5 and the
results in 4.10.3.

• LSTM mel which stands for an autoencoder with LSTM layers and mel-
spectrogram input.
The architecture is described in 4.5.1, training is described in 4.5.5 and the
results in 4.10.3.

• GRU MFCC which stands for an autoencoder network with GRU layers
and MFCCs as input.
The architecture is described in 4.5.1, training is described in 4.5.6 and the
results in 4.10.4.

• LSTM MFCC which stands for an autoencoder with LSTM layers and
MFCCs as input.
The architecture is described in 4.5.1, training is described in 4.5.6 and the
results in 4.10.4.

4.3 Text method experiments

4.3.1 Tf-idf experiments
Input

The lyrics of each song from SD were stripped of all punctuation characters as well
as apostrophes and converted into a single string. All lyric-strings were appended
into a list of strings which formed the training dataset.

Training

The training dataset was given to the fit transform method as a parame-
ter. The method was called on an instance of TFidfVectorizer from Python’s
sklearn package. The results were saved into the RT f−idf . The TFidfVectorizer
instance was saved as the model to be potentially used in the proposed web ap-
plication.

Output

The song representations were vectors of length 40,165. They contained a lot of
zeros so it was possible to store them as sparse vectors. Sparse vectors however,
are more difficult to operate with and therefore we also converted them into dense
vectors.

4.3.2 PCA on Tf-idf
Because simple Tf-idf yielded good results we wanted to implement it. The long
vectors posed a problem to our web application though. It is sometimes necessary
in the application to calculate the distance between a newly added song and all

29

the songs that are already in the database and this calculation is more complex
for longer vectors. To reduce the complexity of this task but still use Tf-idf we
decided to try to reduce the dimensions of the vectors using PCA.

Input

As input, we provided the Tf-idf vectors for songs from SD to the PCA which we
acquired as described 4.3.1. We did not normalize them.

Training

We first trained a PCA from Python’s sklearn.decomposition.PCA without
any dimensionality reduction. We then chose a space were the explained variance
ratio was equal to 90%. This space had 4,457 dimensions. Knowing this, we
trained a new PCA instance with 4,457 components which reduced our Tf-idf
vector’s length from 40,165 to 4,457 and saved it as the model.

Output

The output were vectors of length 4457 and were saved to the RP CA T f−idf .

4.3.3 Word2Vec experiments

Input

The input for the W2V model was the same as for the Tf-idf method.

Training

In the case of Word2Vec, we did not perform any training. Instead, we used the
a subset of the pre-trained W2V model from Google1 containing 200,000 most
common words which cover all meaningful words in the song lyrics we have. Most
common means, that they appeared most in their training documents. If there
was a word in a song that was not in the subset it was ignored.

Output

Because the Google model takes always just one word as input and returns its
vector of fixed length 300, we had to put the word vectors together into one
song-representation vector. We chose a basic approach where we averaged all the
word vectors into one final song vector. The song vector’s position i contained
the average over the values of word vectors’ position i. This approach yielded a
vector of length 300 which is significantly lower than the Tf-idf vector.

1https://code.google.com/archive/p/word2vec/

30

4.3.4 SOM experiments
Input

We tried the W2V vectors from 4.3.3 as input for the self organizing map, mainly
because of their length and also because we were hoping, that the SOM could
improve the results of the W2V method. We also tried to train the SOM on the
output vectors of the PCA Tf-idf method. We did not try the raw Tf-idf vectors
as they are longer and it would prolong training significantly. Also, it makes sense
to use PCA Tf-idf because it yielded better results than raw Tf-idf.

Training

We used a python library called minisom [30] to create the self organizing maps.
We build a map with a grid size 5 ∗ |SD| and the number of iterations was also 5
times the size of SD. We saved a model after each multiple of 16,594 iterations and
interestingly, the representations did not change after 33,187 iterations (which is
2*16,594). It was also necessary to normalize the input vectors and set learning
rate to 0.2. Otherwise the songs formed 3 to 5 large clusters on the grid placing
thousands of songs on the same coordinate.

Output

The output representation for each song was a vector of length two. It is possible
to display the songs on a 2D map which we also did and it can be seen in Figure
4.9.

4.4 Simple audio method experiments

4.4.1 Audio preparation
In order to encode audios of songs, we first needed to define some kind of stan-
dard audio-form to make the audio information suitable for the machine learning
methods that we are testing in this section and the next. We decided to extract
chunks of the same duration from all songs, so the input vectors for each cat-
egory (spectrograms, mel-spectrograms and mfccs) are also of the same length
within each category. Since all songs have different lengths and one complete
3.5 minute long song results in a spectrogram of size 5,214x2,206 which when
flattened is a vector of length 11,502,084 we decided to extract only 15 second
excerpts from each song to create spectrograms, mel-spectrograms and MFCCs
from those. We took 5 seconds between the 15th and 20th second, 5 seconds start-
ing in the middle of the song and 5 seconds starting 15 seconds before the end.
We did not start at the beginning and at the end because in some songs, there
is silence or applause or some talking before the actual song starts or after it ends.

It was also necessary to decide on some parameters for spectrogram, mel-
spectrogram and MFCC extractions such as window width, window overlap and
the number of mel-frequency bands. As stated previously, our neural networks
were inspired by [29] where they also performed parameter optimisation for the

31

mel-spectrograms which they used as input for neural networks. We decided to
use the reported parameters to create the spectrograms, mel-spectrograms in this
thesis. We use spectrograms, mel-spectrograms and MFCCs as input for not only
neural networks but also the PCA.

The resulting choices were following. We set window width w to 0.2 and
window overlap wo to 0.5w = 0.1. For mel-spectrograms it is also necessary to
choose mel-frequency bands which were set to 320 because in the findings from
[29], the performance of neural networks did not increase for values higher than
320. For MFCCs we decided to set the number of coefficients to 320 which is the
same as the number of Mel- frequency bands.

With these parameters, the shape of an extracted spectrogram was (408 x
2206) which is a vector of lenght 900,048 when flattened. A mel-spectrogram
matrix had the shape of (408 x 320) which when flattened is 130,560 and the
MFCC matrix had the shape of (646 x 128) which when flattened is a vector of
length 82,688.

We used Python’s librosa library [31] to cut songs into the 15 second excerpts
which we then stored the in .wav files. We used methods librosa.core.stft
to generate spectrograms librosa.feature.mel spectrogram to generate mel-
spectrograms and for the MFCC coefficients we used librosa.feature.mfcc all
of which received the 15 second audio excerpt from the .wav file loaded using
librosa.core.load as a parameter. These functions return a matrix of shape
(m x n) where m is the number of timestamps and n the number of features.
The reason why the MFCC matrix has a different number of timestamps than
spectrograms and mel-spectrograms for the same length of audio is, that we
only set the number of MFCCs in the librosa.core.mfcc function but left the
window width and window overlap default.

4.4.2 Raw Mel-spectrograms
The mel-spectrograms were created from the 15 second long audios described in
4.4.1. Extracting spectrograms respectively mel-spectrograms does not require
any training. It a is mathematical procedure explained in 3.1.3.

As mentioned in the previous section, the mel-spectrograms we got after trans-
forming a 15 second long audio with 320 mel-frequencies bands were matrices of
size (408 x 320) which when flattened turned into vectors of size 130,560. This
turned out to be too long to implement in our application, however, we still tested
this method and the results are in Subsection 4.9.1.

4.4.3 Raw MFCCs
The 15 second audios of all songs from SD were given as parameters into the
librosa.feature.mfcc method one by one with parameters defined in 4.4.1.
Training was not necessary since acquiring mel-frequency cepstral coefficient is
a matter of Fourier Transformations and is explained in Subsection 3.1.4. The
resulting MFCC matrix for one song from SD had the shape of (646 x 128).
When flattened we got a vector of length 82,866. That turned out to be too long
for practical use in the application. Nevertheless we tested this method and the
results can be found in Subsection 4.9.2.

32

4.4.4 PCA with spectrograms
Input

We used spectrograms acquired as described in Section 3.1.2 as input for the PCA.
Because the output of the librosa.core.stft method is a complex matrix, we
computed the absolute value of each matrix entry. Afterwards, we flattened the
matrix into a single vector and normalized it using a MinMaxScaler from the
sklearn Python package. Normalization was very important, without it, the
resulting rankings were almost random.

Training

Training was a little bit challenging with input vectors of length 900,048. As
the whole (16594 x 900048) matrix did not fit into memory at once instead of
using sklearn.decomposition.PCA we turned to a PCA with the possibility
to be trained in batches. This kind of PCA is also provided by skearn in the
sklearn.decomposition.incrementalPCA module.
Our batch size was 1,106. When we tried to increase it, we got a memory er-
ror. This was a little inconvenient because the PCA’s the maximum number of
components is min(n samples, n features). In our case, n samples was only
1,106 meaning we could get a maximum of 1,106 components which explained
about 57% of the dataset’s variance. We saved this incrementalPCA instance
with 57% varince explained as our first model and the method was denoted as
PCA spec 1106.

We then tried to decrease the number of components even more to get vectors
of length 320. The lenght was inspired by the number of Mel-frequency bands
used when extracting mel-spectrograms. The training was the same as for the
PCA spec 1106 but we kept only 320 components and saved the incrementalPCA
instance as the model for this method called PCA spec 320.

Output

The output vectors for PCA spec 1106 were of length 1,106 and for PCA spec 320
they were of length 320.

4.4.5 PCA with mel-spectrograms
Input

The input for the PCA mel method were mel-spectrograms from 4.4.1 which
were flattened and normalized using a MinMaxScaler from the sklearn Python
package.

Training

Unlike the spectrograms, mel-spectrograms did fit into memory so we were able
to train the PCA on the whole dataset at once. This allowed us determine what
number of components explains 90% of the variance ratio and use it. We found
that 90% of variance is explained by 5,715 components which is what we used to
train one model.

33

The results were good, therefore we decided to try reducing the dimension even
more to 320 as we did with PCA having spectrograms as input. Like this, we
again created two models, the first one is called the PCA mel 5715 the other the
PCA mel 320.

Output

The output for the bigger model was a vector of length 5715, for the smaller
model, it was a vector of length 320.

4.5 Deep audio experiments

4.5.1 Architecture
Before analysing each of the deep audio methods independently, we will describe
the two neural network architectures we used.

As stated multiple times before, we decided to build the networks based on
the [29] paper. We designed the architecture in a way they did with some slight
adjustments and extensions. The audio representation learning they performed
is displayed in Figure 4.1. The first most notable thing is, that their network was
designed to classify sounds, not encode songs. However, it consisted of two parts.
The first part was an autoencoder and the second part a multi-layer perceptron.
The autoencoder was trained in an unsupervised manner and the outputs were
then fed into the MLP which did the classification.

We therefore figured, that we can take advantage of the first part of their
neural network and discard the MLP. The portion of their procedure that we also
performed is marked with the red rectangle which we added to their illustration.
The reason why they performed feature fusion in (d) is because they worked with
stereo wav files and were putting together the features of the different channels.
In our case this was not done as we only had a mono wav files for each song.

Figure 4.1: The steps in feature learning from [29] where we also got this diagram
from. We added the red rectangle which represents the portion of their procedure
that was also (with adjustments) performed by us.

This means, we only used the autoencoder part. Unlike them, instead of using
the auDeep library2 we decided to build the networks with the Keras library [32]
as it has a convenient model-creation API for Python. We had also access to
GPU computers and Keras (with Tensorflow backend) makes it easy to take
advantage of faster training on GPUs.

2https://github.com/auDeep/auDeep

34

We created two architectures. One with two GRU layers for the encoder
and one Bidirectional layer for the decoder. This follows the paper. We also
decided to create another architecture with LSTM layers instead of GRU layers
even though [29] found in their work that the additional complexity did not yield
better results. Both architectures can be seen in Figure 4.5.1. We decided to use
sequence-to-sequence RNNs to encode the vectors.

Figure 4.2: The general architecture
of GRU neural networks

Figure 4.3: The general architecture
of LSTM neural networks

The main motivation behind using LSTMs as well as GRU layers in this thesis
was that LSTM layers are specifically suited for sequential data such as audio.
GRU layers are a newer, simplified version of LSTMs. We were hoping that the
more complex layers could encode audio data into the same dimensions as the
GRU networks but help to make the similarities more accurate.

We used the mean squared error as the loss function which is the standard
for autoencoder networks. We used the adam optimiser, the same as in the [29]
paper. We had to decrease the learning rate from 0.001 to 0.0001. Before we did
that, the resulting predicted vectors often consisted of just NaN s.

4.5.2 Inputs and outputs
Both the GRU and the LSTM network architectures were used to create mod-
els with all three kinds of inputs — the spectrograms, mel-spectrograms and
the MFCCs. The inputs were all passed in the form of matrices containing
(n features x n timestamps). GRU as well as LSTM networks take matrices,
not just vectors as input. Before training, the input matrices were normalized
using the MinMaxScaler.

One important thing to note here is that we used sequence-to-sequence RNNs
so the dimensionality of only the n features and not the n timestamps was
reduced. The 15 second audios yielded 408 time stamps and 2206 features for
spectrograms which when flattened is a vector of length 900,048 and 408 time
stamps and 320 features for mel-spectrograms which is a vector of length 130,560.

35

With MFCCs the number of time stamps was 646 and the number of features 128
which gives us a vector of length 82,688 when flattened. Therefore, we did not
attempt a dimensionality reduction as big as with PCA which does not care if a
feature is a time stamp or a sample and the output vectors had to be of length
at least 408 for autoencoders with spectrograms and mel-spectrograms as input
and 646 for autoencoders with mfccs as input.

The output lengths for the different autoencoders were different depending on
the kind of input. The specific values are described in specific method sections
along with the reasons for choosing them. Their length is specified as the length
of the flattened matrix.

4.5.3 GRU network with spectrogram input
Training

We trained two GRU spectrogram networks with variable output vector lengths.
We decided to base the output vector’s length on the PCA’s output vectors that
explained 90% of the variance ratio. For spectrograms however, we only found
out that 1,106 explains 57% of variance. Therefore, we took the information from
the mel-spectrogram PCA where 5,715 compnents explain 90% of variance and
did a simple calculation:

l(mel spectransformed)/l(mel spec) = l(spectransformed)/l(spec)
to keep the proportional reduction of spectrograms same as for mel-spectrograms.

This would mean an output vector length of almost 40,000 which is too much
for any practical use in the proposed web application. Because of that we reduced
it to 20,400 (408 x 50) which at that point we thought could be potentially used.
The fist GRU layer cut the number of features to 100 and the second then to 50.

The second model produced shorter vectors as encodings of songs. The first
GRU layer cut the number of features to 28 and the second GRU layer cut it to
14. They were of length 5,712 (we wanted them to be a multiple of 408 so they
are not 5,715 as the output vectors of PCA mel) when flattened which means,
that the output matrix had the shape (408 x 14). This is inspired by the mel-
spectrogram PCA reduction as we thought that the neural network could mimic
mel-scaling of the spectrogram as well as additional reduction.

In [29], they trained their autoencoders for 50 epochs using batch sizes of 64.
We found this to be insufficient, especially with the learning rate reduction. For
GRU networks with spectrograms we set the number of epochs to 100 and the
batch size to 295 (bigger batches did not fit into memory).

The training losses of these two methods and all other neural network methods
are illustrated in Figure 4.4.

4.5.4 LSTM network with spectrogram input
Training

We chose the same training strategy for LSTMs with spectrogram input as we
did for the GRU spec networks. We created two versions of LSTM models, one
is LSMT spec 20400 and the shorter version is LSTM spec 5712. The output
lengths are also the same as with GRU specs.

36

Figure 4.4: The training mean squared error loss values for all the neural network
methods that were trained.
The blue curve for the GRU spec 20400 is hidden behind the orange curve.

4.5.5 GRU and LSTM networks with Mel-spectrogram
input

Training

The GRU mel and LSTM mel networks were both trained under the same con-
ditions. We trained them on mel-spectrograms for 150 epochs with a batch size
of 256. The output length of the encoded song vector was based on keeping 90%
of the variance ratio of the PCA mel which was 5,715. The final output length
however was not 5,715 but 5,712 (408 x 14) to be divisible by 408. The first
GRU/LSTM layer reduced the number of featrues to 28 and the second layer to
14.

We did not attempt any further reductions here partly because as stated be-
fore, we were reducing only the number of features with the sequence-to-sequence
RNN, so that the minimum length for the encoded vector had to be 408 (which
is the number of timestamps). Partly also because vectors of length 5,712 are of
acceptable length to be implemented in the proposed web application.

4.5.6 GRU and LSTM networks with MFCC input
Training

At first we did not plan on using MFCCs as input into neural networks. However
because it turned out that raw MFCCs are too long to be used in the proposed
application directly we decided to try to reduce their dimension with both the
GRU and LSTM network architectures.

We trained both architectures for 150 epochs and a batch size of 256 which
is the same number as for neural networks having mel-spectrograms as input.

37

The output vectors were of length 5,168 when flattened which means the output
matrix had the shape of (646 x 8), where the first GRU/LSTM layer cut the
number of features to 18 and the second to 8. We were again trying to come close
to the number of dimensions that explains 90% of the variance ratio when using
PCA which is 5,715. We chose 646 ∗ 8 which is 5,168 rather than 646 ∗ 9 which
is 5,814 because we favored bigger reduction over proximity to 5,712.

4.6 Similarity metrics
As the reader might have noticed, we presented several possible methods which
encode a song into a vector. But we still need to define similarity between these
vectors. There are many ways of asserting how similar two vectors are, however,
we do not consider studying these to be main focus of this thesis. After the initial
exploration of this topic, we decided to use the cosine similarity metrics for
all the representation methods.

Although throughout the proposed web application the metric is referred to
as distance, it in fact is a similarity measure, meaning, the greater value the
more similar two songs are. We use the metrics.pairwise.cosine similarity
method from Python’s sklearn package for all the similarity calculations.

4.7 Evaluation

4.7.1 Desired recommender-system features
We already touched this in the introduction but it is useful to revise what we
want from a good recommendation system and what its most important features
are. Let’s skip the software part for now as it is further discussed in Chapter 5
and focus purely on the quality of recommendations. Probably the most crucial
property a recommender system should have is that it should include the relevant
items between the first 10 to maybe 50 recommendations. Because it does not
really matter if an item the user would like ends up on the 500th or 5,000th
position. People rarely go that deep.

Another thing we want is for the system to be able to improve recommenda-
tions when it has more data about a user. In the context of this thesis it means,
that we would expect the predictions to be better for users with longer playlists.

Even though the whole idea of this thesis is to provide variable recommenda-
tions, we still want our methods to posses these features to a reasonable extend.
Also, since these are the properties other recommendation systems are being eval-
uated on, we can gain a better understanding of the features our methods share
with other recommendation techniques as well as where they differ.

4.7.2 Evaluation measures
To test the wanted features described in the section above we performed evalua-
tion as follows.

The UD dataset contains 11,123 playlists that were used for evaluation. We
chose to evaluate the tested methods only on playlists of length at least four.

38

For each method, we did a 5-cross-validation where in a validation epoch, ev-
ery playlists pi was divided into two parts a training part pitrain

and a testing
part pitest and the values of the evaluation measures below were determined. The
playlists were split in an approximately 80:20 ratio. A higher priority was set on
the fact that the test part always had to contain at least one entry (meaning that
for playlists of length 2, the ratio would be 50:50).

The processing of one playlists was performed as follows:
For each song sk from the song dataset SD, the similarity of the whole pitrain

to sk which we denote as sim(pi, sk) was calculated as

sim(pi, sk) =
∑︂

sj∈pitrain

cos sim(sk, sj)

where k ̸= j and cos sim is the cosine similarity. These similarities were then
sorted in a descending order and it was determined at what position the songs
from pitest came as those are the ones that actually belong to the playlist.

These positions were then used to calculate multiple evaluation measures to
assess how well each algorithm predicts the missing part of a user’s playlist. We
chose the following evaluation measures:

• Recall at 10 (= R@10) defined as the proportion of songs from pitest that
placed between the top ten most similar songs.

• Recall at 50 (= R@50) defined as the proportion of songs from pitest that
placed between the top fifty most similar songs.

• Recall at 100 (= R@100) defined as the proportion of songs from pitest

that placed between the top hundred most similar songs.

• Normalized cumulative discounted gain (= nCDG) defined as

nDCGr = DCGr

IDCGr

where
DCGr =

r∑︂
k=1

relk
log2(k + 1)

is the discounted cumulative gain at position r and

IDCGr =
|REL|∑︂
k=1

2relk − 1
log2(k + 1)

is the ideal discounted cumulative gain at r where r is the number of songs
that had to be predicted, the relk, meaning relevance, is the same for all
songs because all songs in one playlists have the same relevance and |REL|
is the length of the list of relevant items (in this case the songs from pitest).

• Average rank of a song from the pitest set (= rank) which we included to
have also an indicator of the overall behaviour, not only the first 100 ranks.

39

The overall evaluation results for a tested method were then taken as its av-
erage evaluation-measure values over all the playlists over the 5 cross-validations.
In addition we also retrieved the evaluation values for only certain playlist’s
lengths again by averaging over the 5 cross-validations but selecting only val-
ues of playlists of desired lengths.

Moreover, we created one more evaluation technique whose purpose was to
visualize the results of a method. It is a graph plotting the distribution of rankings
of songs from the test part of each playlists. It is denoted as the RDG (=rank
distribution graph). The number of songs from ptest (which is a union of all songs
from all pitest) for each individual rank from 1 to 16,594 is summed and divided
it by the number of all songs in ptest. So for example if we had two playlists
both with two songs in ptest and a method assigned ranks 30 and 2,900 to the
ptest songs from the first playlist and 2,900 and 4,872 to those from the second
playlists, the graph would plot the values 0.25 for rank 30, 0.5 for rank 2,900 and
0.25 for rank 4,872 and 0 for the rest of the ranks. We did this with all playlist
lengths included but we also plotted these distributions for chosen playlist lengths
separately to see if the predictions improve for longer playlists which we expect
from a good recommender system. The x-axis of the RDG was log-scaled as we
are much more interested in what is going on among the first 100 positions than
in what is going on in the middle or towards the end.

After running the evaluation, we noticed from the RDGs that for most of
the similarity methods, the positions for songs from pitest where pi was a short
playlist were higher up, than those from long playlists, especially for the first
three ranks. We concluded that the reason for such behaviour could be, that
inside all playlists, there are groups of very similar songs but the groups are
rather dissimilar to each other. Songs which are somewhat similar to all groups
then cloud the recommendations and take place of songs that are very similar to
one group but dissimilar to the other groups.

Because of this, we changed the recommendation method a little bit. We set
a threshold for each similarity metrics, and if the similarity between two songs
was smaller than this threshold, we set the similarity to 0. This means, that the
new similarity function cos simt(si, sj) is defined as follows:

cos simt(si, sj) =

⎧⎨⎩cos sim(si, sj) if cos sim(si, sj) ≥ threshold
0 if cos sim(si, sj) < threshold

The threshold for a method was chosen as the value of the 846,294th biggest
element from its Dm. 846,294 is 51 ∗ |SD|. The most similar song is always
the song itself, so it leaves us with approximately 50 most similar songs for each
song. 50 is approximately 0.03% of 16,594 so we also refer to the threshold as the
0.03%-threshold throughout this thesis.

The results presented in Sections 4.8, 4.9 and 4.10 are all acquired by evalu-
ation of recommendations using the similarity with threshold. If the evaluation
of similarity without threshold had better results for a method, it is mentioned
in the method’s section.

Another reason to use the threshold-similarity is the fact, that we use the
threshold to calculate similarity in the proposed application. Not only because of
the better results as we shall see, but also because of the fact, that it dramatically

40

reduces the number of similarities that have to be stored in the database. The
0.03%-threshold values for various methods are in Table 4.1.

Tf-idf W2V PCA Tf-idf SOM W2V
0.2817861171 0.956714893 0.189907224 0.999997393
PCA mel 320 PCA mel 5715 PCA spec 1106 PCA spec 320
0.383122074 0.189912771 0.3368717729 0.442181335

GRU spec 20400 GRU spec 5712 LSTM spec 20400 LSTM spec 5712
0.999742671 0.99999024 0.975920383 0.981116184
GRU mel LSTM mel GRU MFCC LSTM MFCC

0.3634592744 0.994544642 0.953069695 0.997860599

Table 4.1: Table containing the value of the similarity threshold we used. The
threshold for a particular method is always below the method’s name.

To give an idea about how the results changed with the threshold, lets take
a look at the plot in Figure 4.5. We plotted the change in the maximum, av-
erage and minimum values of our evaluation measures for all playlists and also
for different playlist lengths with and without using the threshold for similarity
definition. Short playlists in this graph are defined as playlists of lengths 4 to 7
and their evaluation values have an ” S” appended at the end. Medium playlists
are of lengths 8 to 15 and have ” M” appended. Long playlists are playlists 16
and longer with and ” L” appended. Although, the minimum values did not
improve much, the difference for the maximum and most notably the average
values is appreciable. The most crucial remark here is the behaviour of short
and long playlists. The results for short playlists did not improve much, espe-
cially the maximum values, whereas the results for long playlists improved quite
a lot. This is exactly what we anticipated when applying the threshold and also
better performance for longer playlists is the desired behaviour for recommender
systems.

Even with the threshold, we can observe in the RDG graphs later on in specific
method result sections, that for short playlists, the first one to four ranks are very
numerous. For the following ranks however, there is a sharp drop, which does
not happen so noticeably with longer playlists. This behaviour inspired us to use
the threshold and even though it is less significant after applying it, it is still
observable in almost every method.

4.8 Text method results

As mentioned in Section 4.7 we calculated each of the five measures (R@10, R@50,
R@100, rank and nGDC for each playlist and then averaged the values over the
whole playlist dataset. Every method section (not only for text methods but
also for simple and deep audio methods) contains a table with the five measure
averages and a RDG graph. Both are accompanied with a short summary of the
most prominent observations.

41

Figure 4.5: The comparison of absolute max, average and min values for the
evaluation measures for recommendation with and without threshold

4.8.1 Tf-idf results
The results of the Tf-idf method place well above average between our methods.
This was a bit of a surprise as we did not expect this ”simple” method to perform
so well compared to others.

method R@10 R@50 R@100 nGDC rank

Tf-idf 0.05045 0.06187 0.06648 0.04214 7795

PCA on Tf-idf 0.05417 0.0635 0.06649 0.04371 7838

Table 4.2: Table summarizing average Tf-idf and Tf-idf with PCA evaluation
measure values averaged over the 5 cross validation that were performed.

When looking at the numbers in Table 4.2 we can see that 5% of songs that
were in our ptest set ranked in the top ten, 6.2% in the top fifty and 6.6% in the
top hundred. The average rank of a song from the ptest was 7795 which is quite
close to the middle. We also created an RDG as one can see in Figure 4.6. It
appears that according to the distribution, a song is more likely to end up in the
first 10-100 songs than it is at the end.

Another thing to notice in 4.6 is that there is a general trend not only for
the Tf-idf to rank a lot of songs between the first few but then drop sharply for
further ranks in short playlists. Longer playlists seem to drop more steadily but
do not start so well.

4.8.2 PCA Tf-idf results
The results of the PCA-reduced Tf-idf vectors turned out to be better then full
Tf-idf vectors. As we can see in Table 4.2 the numbers are better for the R10
and R50. The R@100 the values are almost the same. Figure 4.27 illustrates the

42

Figure 4.6: RDG of the TF-idf
method

Figure 4.7: RDG of the PCA Tf-idf
method

fact, that after the application of the threshold, this method became the best one
for long playlists and also the best method overall overtaking the PCA mel 5715
which was the best method when defining similarity without threshold as can be
seen in Figure 4.26.

4.8.3 W2V results

Results

The small size of the vectors being produced by the W2V method are a significant
advantage of this method. However the evaluation-measure values it yielded make
it average to below average compared to methods. It ought to be mentioned that
methods producing vectors of similar length such as PCA mel 320 outperform
the W2V.

method R@10 R@50 R@100 nGDC rank

W2V 0.03519 0.04780 0.05544 0.030313 7804

Table 4.3: Table summarizing average W2V evaluation values averaged over the
5 cross validation that were performed

Table 4.3 shows lower numbers than for the Tf-idf method. 3.5% of songs
from the ptest set ranked in the top 10, 4.8% in top 50 and 5.5% in top 100. The
average rank was 7804. When looking at the distribution graph in Figure 4.8, it
is very clear that the gap between the number of predicted ranks within the first
5 ranks for short and longer playlists is big and Figures 4.26 and 4.27 show us,
that the threshold helped this method especially for ranking of songs from longer
playlists, where it even outmatched the PCA mel 320.

43

Figure 4.8: Distribution of ranks of songs from the test set the w2v method
assigned them.

4.8.4 SOM results

Results

When we then tried to display resulting SOM map with all the songs, the size
of the image would have to be immense for all 16,594 songs to be recognizable.
The problem was that there are many songs to display on the map and the titles
and artists overlap. Because of that, we decided to randomly select 20 playlists
and show where the different songs that belong to each playlist are placed on
the map. Each playlist has its own color. The playlist map for the SOM with
W2V input is depicted in Figure 4.9. The playlists do not really form any visible
clusters which suggests that songs that should be similar because they are in the
same playlist are not close to each other in the space created by the SOM W2V.

This observation supports the results of the self organizing map algorithm
which are quite poor. Actually, it is the worse method that we implemented and
our hope to enhance the results of W2V were not fulfilled. The threshold did not
make it better either. The results improved but it still stayed at the bottom of
the method rankings as the dark red color in Figure 4.27 suggests.

method R@10 R@50 R@100 nGDC rank

SOM with W2V 0.00103 0.00427 0.00720 0.00200 8034

SOM wiht PCA Tf-idf 0.00044 0.00208 0.00462 0.00125 8243

Table 4.4: Table summarizing average SOM evaluation values averaged over the
5 cross validations

44

Figure 4.9: The location of different songs from 20 randomly selected playlists on
the map created by SOM. Each playlist has its own colour.

45

The RDG of the SOM W2V depicted in Figure 4.10 method clearly shows,
that the distribution of ranks is random or worse. The main reason for the
failure of this method is unclear but it is possible that the data from the W2V
vectors compress the information so much, that the SOM network is not able
to cluster data based on it. But since we received even worse results for the
SOM Tf-id as can be seen in Figure 4.11 and Table 4.4 we are more inclined
to another possibility which is, that the SOM network is not able to provide
satisfying results because two dimensions are simply too little to represent input
data of such complexity.

Figure 4.10: RDG of the SOM W2V
method

Figure 4.11: RDG of the SOM Tf-idf
method

4.9 Simple audio representation results

4.9.1 Raw mel-spectrogram results

As can be seen in Table 4.5 with the raw mel-spectrogram method, 3.7% of songs
ended up between top ten predictions, 4.3% between the top 50 and 4.7% in
between the top 100. This method was actually better than any other method
using mel-spectrograms as input was before applying the threshold, except of the
two PCA mel methods.

46

Results

method R@10 R@50 R@100 nGDC rank

Raw mel-spectrograms 0.03696 0.04275 0.0473 0.03063 7604

PCA mel 5715 0.05287 0.06298 0.06765 0.04317 7803

PCA mel 320 0.04716 0.05928 0.06550 0.03989 8357

GRU mel 0.04628 0.05715 0.06285 0.03856 7601

LSTM mel 0.03197 0.04291 0.04978 0.02750 7776

Table 4.5: Table summarizing average evaluation values for all methods with
mel-spectrogram input averaged over the 5 cross validations.

The patterns observed in Figure 4.12 display the same tendencies as all other
methods we are studying (except of those that appear to be random such as
SOM). The short playlists go through a sharp drop at the beginning. Longer
playlists are worse in the beginning as the top ranks for them are a bit less
numerous, especially for playlists of length 21 and more but they drop more
steadily.

Figure 4.12: RDG of raw Mel-spectrograms.

4.9.2 Raw MFCCs results
The results of raw MFCCs are quite poor compared to other methods. Only 0.4%
of songs rank between the top 10, 0.9% in the top 50 and 1.4% in the top 100 as
we can see in Table 4.6. It was better than the LSTM MFCC method before we
applied the threshold to our evaluation but not very good overall.

47

method R@10 R@50 R@100 nGDC rank

Raw MFCC 0.00415 0.00919 0.01423 0.00607 7552

LSTM MFCC 0.03887 0.04935 0.05670 0.033058 7774

GRU MFCC 0.03769 0.04737 0.05438 0.032151 7774

Table 4.6: Table summarizing average evaluation values for all methods with
MFCC input averaged over 5 cross validations with threshold.

When looking at the traditional RDG, we again observe a drop for short
playlists, not as sharp as for other methods though. Nevertheless, the rankings
for longer playlists, do not seem to be very stable and this method does not
behave as a good recommendation method should.

Figure 4.13: RDG of raw MFCCs.

4.9.3 PCA on spectrograms
The dimensionality reduction in this method was the biggest of all methods. Our
song representation went from 900,048 to 1,106 respectively 320 dimensions. Even
with only 57% of explained variance for the PCA spec 1106, this method’s results
were above average compared to other methods. So it seemed reasonable to go
for an even more radical reduction to vectors of length 320. The results of the
method encoding songs into shorter vectors were only slightly worse than those
of the one yielding longer vectors with similarity defined without threshold.

One interesting thing is, that the PCA spec 320 method is the only one whose
results worsened with the application of the threshold and the gap between the
performance of these two methods widened. It can be observed in Figure 4.26
where method ranking without the use of similarity with threshold is depicted

48

and both methods are green, and Figure 4.27 where methods are ranked with
using the threshold in the similarity definition and the PCA spec 320 is in the
orange area and the PCA spec 1106 stays green.

method R@10 R@50 R@100 nGDC rank

PCA spec 1106 0.04747 0.05915 0.06472 0.03982 7797

PCA spec 320 0.03166 0.04289 0.05094 0.02890 7496

GRU spec 20400 0.04287 0.05196 0.05723 0.03563 7824

GRU spec 5712 0.00248 0.00628 0.01076 0.003757 7761

LSTM spec 20400 0.03641 0.05096 0.05921 0.03126 7786

LSTM spec 5712 0.01892 0.03263 0.04252 0.01899 7643

Table 4.7: Table summarizing average evaluation values for methods with spec-
trogram input averaged over 5 cross validations

Figure 4.14: RDG of the
PCA spec 1106 method.

Figure 4.15: RDG of the
PCA spec 320 method

4.9.4 PCA on Mel-spectrograms
We had two PCA methods taking mel-spectrograms as input. The more radical
dimension reduction did not lead to better performance. It actually worsened the
results significantly and the PCA mel 320 was our worse method. But only until
we applied the threshold. For this method, the threshold improved the results
over ten times. It is interesting because it was the PCA spec 320 for which the
results worsened after applying the threshold and one might think, that PCA
methods with audio inputs will behave similarly.

Figure 4.16 and Figure 4.17 illustrate the distributions for PCA mel 5715 and
PCA mel 320. A thing to notice in the PCA mel 5715 RDG graph is that the
number of the top 1-5 rankings for longer playlists is not quite as low compared to
the other methods we tested. We still observe the trend of a considerably higher

49

number of the top 1-5 ranks for shorter playlists, however, it is not as significant
as for example for raw mel-spectrograms.

Figure 4.16: RDG of the
PCA mel 5712.

Figure 4.17: RDG of the
PCA mel 320 method.

4.10 Deep audio representation results

4.10.1 GRU network with spectrogram input
As can be observed in Figure 4.4 the training loss is basically constant for both
GRU networks with spectrogram input (the GRU spec 20400 is hidden behind
the orange line of GRU spec 5712 as their progress or rather the lack of it is the
same). This means, that the network did not really learn. Therefore it is not
suprising that the GRU spec 5712 does not rank among the best. And it is quite
surprising, that the GRU spec 20400, even though it appeared to be quite bad
before the application of the threshold, improved with defining similarity with
the threshold and became the second best method with spectrogram input (right
behind the PCA spec 1106) as can be seen in Table 4.7. The table shows that
4.3% of songs were ranked in the top 10, 5.2% in the top 50 and 5.7% in the
top 100 for the longer GRU spectrogram model. For the short GRU spectrogram
model, the results are significantly worse with 0.2% for the top ten songs 0.6%
ranked in the top 50 and a little over 1% ranked in the top 100.

The RDGs depicted in Figures 4.18 and 4.19 of both GRU specs is are dis-
similar too. The overall trend for the short playlist drop and stability of long
playlists is visible in the graph for GRU spec 20400 but not so much in the graph
for GRU spec 5712 where there is a trace of it but the values seem to be quite
random so it fades.

4.10.2 LSTM network with spectrogram input
Unlike the GRU model which showed almost no improvement even after 100
epochs of training, the LSTM specs as one can observe in Figure 4.4, where
the LSTM spec 20400 is rendered in green and the LSTM spec 5712 in red, went

50

Figure 4.18: RDG of the
GRU spec 20400 method.

Figure 4.19: RDG of the
GRU spec 5712 method.

through progress. The decrease of training loss slowed down significantly towards
the end of the 100 epochs.

The bigger improvement of the training loss correlated with better results
for the LSTM spec methods. But only until we applied the threshold. It raised
performance of all methods but the boost for GRU spec 20400 was so big that it
vaulted over both LSTM methods. In Table 4.7 are the results of both LSTM spec
models.

A thing worth noting is that the LSTM spec method with bigger dimension
reduction had worse results even before applying the threshold. And it stayed
that way after the threshold similarity as we can see in Table 4.7 and in Figures
4.20 and 4.21 which visualize the difference between the two LSTM spec methods.

Figure 4.20: RDG of the
LSTM spec 20400 method.

Figure 4.21: RDG of the
LSTM spec 5712 method

4.10.3 GRU and LSTM networks with Mel-spectrogram
input

Methods with mel-spectrograms as input seem to yield better results than meth-
ods with spectrogram inputs and GRU mel network confirms it as it has the

51

best results within the neural network method group. The GRU mel network
performed better than the one with LSTM layers and also showed the smallest
training loss. Figures 4.22 and 4.23 display typical tendencies most of the meth-
ods have, with the sharp drop for short playlists and more stability for longer
playlists. This is more apparent with the GRU mel method. For the LSTM mel,
longer playlists drop unconventionally early.

Table 4.5 puts recalls and nDGC of ”mel” neural networks into perspective
with other ”mel” methods. As we can see, the GRU mel network placed 4.6%
of songs into the top 10, 5.7% into the top 50 and 6.3% into the top 100. The
LSTM mel network is worse. It puts 3.2% of songs in the top 10. For R@50 and
R@100 it outperforms raw mel-spectrograms with 4.3% of songs in the top 50
and 5% of songs with assigned ranks in the top 100.

Figure 4.22: RDG of the
GRU mel method

Figure 4.23: RDG of the
LSTM mel method

4.10.4 GRU and LSTM networks with MFCC input

The MFCC networks seem to have the biggest potential of improving if they
were to be trained for a longer period of time as their losses in Figure 4.4 do
not stagnate as much towards the end of training as the other networks. This
is especially true for the GRU MFCC network. They would, however, probably
never achieve a loss as small as the ”mel” networks have.

Compared to the raw MFCCs the GRU MFCC and LSTM MFCC were an
improvement as the values in Table 4.6 suggest. The Figures 4.24 and 4.25
containing both method’s RDGs indicate the superiority of the LSTM MFCC
method over the GRU MFCC. Both methods made a huge jump upwards with the
threshold similarity. Without it, they were at the bottom of the tested methods
as the orange color suggests in Figure 4.26, but the threshold helped them to
perform around average as they are in the green-yellow zone in Figure 4.27.

52

Figure 4.24: RDG of the
GRU MFCC method

Figure 4.25: RDG of the
LSMT MFCC method

4.11 Discussion
In this section, we first state, in Subsection 4.11.1, if the results match the expec-
tations from Section 4.1. Then to summarize the results and put all the methods
into perspective we did two things. First in Subsection 4.11.2 we compared the
methods relatively to each other. Secondly in Subsection 4.11.3 we focused on the
values of the evaluation measures compared to values of random recommendations
and we also considered what the absolute numbers of the evaluation measures sug-
gest. This was to estimate the recommendation qualities of the tested methods.
In subsection 4.11.4 we introduce multiple graphs of performance depending on
properties which we found during the evaluation could correlate with it.

4.11.1 Expectations vs. reality
Let’s recapitulate what we expected. First we expected, that audio-based meth-
ods will perform better than lyrics-based methods. Because the best method –
PCA Tf-idf – is a lyrics based method, we cannot say that this prediction was
confirmed. Raw Tf-idf also performed very well compared to others and outper-
formed most audio-based methods. The W2V was a little behind and the SOM
network was a failure, however we definitely cannot declare, that when a method
is audio-based it means it will have better results than a lyrics-based method.

There are various theories that could explain this. It could be connected to
the user dataset we did the evaluations on. Therefore, we tested the playlists on
diversity. To calculate diversity of a playlist, we divided the number of unique
artists it contained with its length. When we averaged over all the playlists of
length at least four, we got 0.83 which means, that an artist rarely repeats in a
playlist.

This variety could have suited the Tf-idf and PCA Tf-idf methods as the
presumed diversity of their recommendations poses an advantage for such hetero-
geneous playlists. To test this hypothesis, we took 1000 random songs and found
100 most similar songs for each of the songs using each of the tested methods. We

53

than computed the average diversity of the 101 song playlists for each method as
we did for the playlists in the dataset. The results are in Table 4.8.

method playlist diversity
PCA mel 5715 0.739
PCA mel 320 0.746

PCA spec 1106 0.700
PCA spec 320 0.702

LSTM mel 0.749
GRU mel 0.725

LSTM spec 20400 0.721
GRU spec 20400 0.752
LSTM spec 5712 0.729
GRU spec 5712 0.751

LSTM mfcc 0.794
GRU mfcc 0.776

TF-idf 0.800
SOM W2V 0.861
PCA tf idf 0.812

W2V 0.71186

Table 4.8: Table containing the value of the diversity index that was also calcu-
lated for the UD we have.

As one can see, the most diverse method is SOM W2V which is not very sur-
prising as it yields basically random results. Nonetheless, the best lyrics methods,
PCA Tf-idf and Tf-idf are those with the second and third biggest diversity which
confirms, that is probably where lays their advantage.

Another reason for the evenness of the audio and lyrics-based methods might
be, that 15 seconds from each song’s audio was not enough and if we made the
excerpts longer, the results for audio-based methods would have been better.

We also expected that more advanced methods will outperform simpler meth-
ods. This did not happen at all. The Tf-idf which we though of as a simple
baseline outperformed almost all of the other methods. Overall, PCA methods
were the most successful ones (with the exception of PCA spec 320) and left the
neural networks behind.

This could be caused by the fact that we did not tune our neural networks.
There is not much to improve about the PCA but a lot of parameter optimisation
and also architecture re-creation can be done on all of the neural networks we
implemented. Moreover, the training conditions can be also altered. The batch
size as well as the number of epochs can be lowered or increased.

4.11.2 Relative results
We created two heat maps to compare the methods mutually. One is depicted in
Figure 4.26 for results without threshold and one in Figure 4.27 for results with
threshold. We ranked the methods on how well they performed in each evaluation
measure and we took playlist lengths into account.

54

We can see, that the PCA Tf-idf was the most successful method winning
in 8 out of the 20 measures. It performed best on long playlists. The average
rank, where its performance is in the red area, is not that important for recom-
mendation. We included it to have some understanding of what is going on on
throughout the ranks, not only at the first 100 places which are, however, most
important for recommendation.

Second comes PCA mel 5715, then Tf-idf with PCA spec 1106 right behind
it. Then we have the GRU mel method which is orange for short playlists, nev-
ertheless, otherwise in the green area and it is the best neural network method,
lyrics or audio-based.

Overall we can see, that the PCA methods were very successful compared to
other methods. Except of the PCA spec 320, they are all green and the only
method that comes between them on the top places 4 is the Tf-idf.

Within text-based methods, the PCA Tf-idf and Tf-idf show strong dom-
inance, the W2V is below average and the SOM has the worst results of all
methods. For audio-based methods, the winner is PCA mel 5715.

4.11.3 Result interpretation
Because we did not perform classification on a standardised set and no one has
used the datasets we are using to evaluate their algorithms, it is a little challenging
to find something outside of this thesis what we could compare the results to.

We decided to compare our methods to random suggestions. If songs were
assigned ranks from 1 to 16,594 in a uniform distribution, meaning each rank
had the probability of 1/16594 to be assigned to a song the values of the recall
evaluation measures would be following:

• R@10 = 10 ∗ (1/16594) = 0.06% of songs

• R@50 = 50 ∗ (1/16594) = 0.3% of songs

• R@100 = 100 ∗ (1/16594) = 0.6% of songs

Knowing this, we created Figure 4.28 showing the multiples of how many times
a method is better than random recommendation would be. We divided it into
categories based on playlist lengths. Measures with L” appended contain results
of long playlists (length 16 and more), methods with ” M” are the results for
medium playlists (length 8-15) and methods with ” S” are evaluation measures
of short playlists (length 4-7). When there is nothing appended to the evaluation
measure name, it is the value for all playlists. We can see, that there is major
improvement especially for values of R@10 where the best method, the PCA Tf-
idf is 90.3 times better than random recommendation. This means, that when
random recommendation places 0.06% of songs into the top 10, the PCA Tf-idf
places 90.3 ∗ 0.06% of songs into the top 10.

If we disregard the SOM W2V and GRU spec 5712 methods which appear to
be basically random, we can see, that the rest of the methods are significantly
better than random suggestions. Especially for the first ten ranks, it seems that
with the method we implemented, we can provide relevant recommendations.

55

However, if we look at it from another perspective and realize that if using
the best method — PCA Tf-idf we placed 6.6% of songs into the top 100, and
93.4% percent of songs somewhere further, we probably want a recommendation
system to perform better. Nevertheless, some of the methods have shown great
potential of providing good recommendations and with for example more param-
eter optimisation for the neural networks they could improve even more. An
incorporation into a collaborative-filtering recommender system, could also be a
good idea.

4.11.4 Additional findings
Additionally we also created some interesting graphs. We tried to find a corre-
lation between the training loss of neural networks and their recommendation
performance. The training curves are displayed in Figure 4.4.

Figure 4.29 visualizes the dependency of the values of the evaluation measure
of neural networks (y-axis) on the training loss the neural networks had when they
finished training (x-axis). We can see that, except of the four dots in the upper
right corner that belong to the GRU spec 20400 method, there is some correlation
that suggests that a smaller training loss indicates better recommendations. This
would be logical as an that is able to more accurately recreate its input can learn
the features better and so provide better recommendations.

The 0.03%-threshold inspired us to look at the relative similarities between
songs for each method because the value of the threshold varied a lot for differ-
ent methods. We again created a correlation graph between the performance of
methods and the value of the 0.03%threshold. It is depicted in Figure 4.30. We
can see, that for methods with threshold values smaller than 0.5 there is a visible
trend of better performance being dependant on smaller threshold value. Then
there is a big gap as no method had its threshold value between 0.5 and 0.95.
For the methods with threshold close to 1 correlation is not present. Some are
very low which would follow the trend of thresholds between 0 and 0.5 but there
is a significant number of methods that have good results and do not follow the
decrease in performance.

The reason for the correlation for methods with smaller threshold values could
be, that they are better at distinguishing songs. They place them more variably
in the feature space they create, whereas methods with bigger threshold values
stuff the songs nearby each other which results in the unclarity of which songs
are similar to which as all are very close.

56

Figure 4.26: Method performance comparison heat map without threshold ap-
plied.
The relative performance of methods based on how they performed for various
evaluation measures when similarity was defined without threshold. Each method
was assigned a rank from 1 to 16 (16 is the number of the methods in this figure)
for each measure based on how it performed for the particular measure compared
to the other methods. The more darker green the better was the performance,
yellow are the average ones and red are the for the worst performances. The
evaluation measures are displayed on the x-axis. Measures with ” L” appended
contain results of long playlists (length 16 and longer), measures with ” M” are
the results for medium playlists (length 8-15) and measures with ” S” are evalu-
ation measures of short playlists (length 4-7). When there is nothing appended
to the evaluation measure name, it is the value for all playlists.

57

Figure 4.27: Method performance comparison heat map with threshold.
The relative performance of methods based on how they performed for various
evaluation measures when similarity was defined with threshold. Each method
was assigned a rank from 1 to 16 (16 is the number of the methods in this figure)
for each measure based on how it performed for the particular measure compared
to the other methods. The more darker green the better was the performance,
yellow are the average ones and red are the for the worst performances. The
evaluation measures are displayed on the x-axis. Measures with ” L” appended
contain results of long playlists (length 16 and more), measures with ” M” are the
results for medium playlists (length 8-15) and measures with ” S” are evaluation
measures of short playlists (length 4-7). When there is nothing appended to the
evaluation measure name, it is the value for all playlists.

58

Figure 4.28: Method comparison to random suggestions heat map.
Each rectangle contains the multiple of how many times the method on its corre-
sponding y coordinate is better than random suggestions of the evaluation mea-
sure on the corresponding x coordinate. For example if random recommendation
would place 0.5% of songs into the top 10 meaning, that its value for R@10 was
0.005 the Tf-idf method would place 84.1 ∗ 0.05% of songs into the top ten so the
value of R@10 for Tf-idf would be 84.1 ∗ 0.005 because 84.1 is the value in the
rectangle that has Tf-idf on the y coordinate and R@10 at the x coordinate.

59

Figure 4.29: Training loss and performance correlation graph.
This graph visualized the correlation between the final training loss displayed on
the x axis and the performance of neural networks on various evaluation measures.
The values of the evaluation measures are displayed on the y axis. Each evaluation
measure has a different color which is illustrated in the legend.

60

Figure 4.30: 0.03%-threshold value and performance correlation graph.
This graph visualized the correlation between the value of the threshold at po-
sition 846,700 in the Dm of every method and the method’s performances on
various evaluation measures.

61

62

5. Web Application
In this section, we will describe the proposed web application for novel song rec-
ommendation which we called the SongRecommender. The section is structured
as follows:

• In Section 5.1 we analyze our application goals and describe what the user
can expect from our application.

• In Section 5.2 We briefly introduce the building blocks of our application
with focus on the individual similarity measures implementation and cal-
culation of recommendations.

• In Section 5.3 We present the possible configurations of our application.

The source code of this project is included in Attachment A.1 together with
user documentation which we decided not to include in this thesis. The modules
we are referring to in this chapter can also be found there. To navigate the various
modules and directories, see README.md which can be found in the attachment in
the songRecommender project directory.

5.1 Analysis
There exist many music recommendation apps on the web such as YouTube1,
Spotify2 etc. They have a lot of data about users, user activity, a lot of songs, a
lot of tags. Our application does not aspire on growing to such extend. We want
to provide our users with an inspiration for new songs which they can then play
on another musical platform (for example on YouTube or Spotify).

We aim to provide common web app functionalities such as creating accounts,
logging in and out, browsing individual songs, etc. Besides that, since it is a song
recommender application, we also want to propose recommendations to users, let
them create playlists, search for songs and like and dislike songs to improve the
suggestions. Moreover, we want the users to be able to add songs they already
know and that are missing in the application in order to explore which songs are
similar to it based on various recommendation methods. We are also aiming on
providing information about the application and its similarity measures, so even
if the recommendations do not seem relevant to the user, it might be interesting
for him to see, which songs are similar to which based on, for example, lyrics. It
is an opportunity for a more hands on experience and it makes it not only about
music but also a bit about the theory behind this application.

5.2 Implementation
In this section, we present the overall architecture of our application with fo-
cus on the recommendation functionalities which are described in more detail in
Subsection 5.2.3.

1www.youtube.com
2www.spotify.com

63

5.2.1 Technologies
We build our web application in the Django3 framework using Python 3.6. We
chose Python4 because it is well suited for machine learning and Django because
it is a Python based framework. To ensure a smooth user experience while per-
forming complex computational tasks, we included Celery5, an asynchronous task
queue, to run expensive tasks in the background. We used RabbitMQ6 as Celery’s
message broker. We chose the PostgreSQL7 database to store the data instead
of Django’s default — SQLite — because it provides support for ArrayFields
which are an efficient and convenient way of storing the calculated song’s feature
vectors.

5.2.2 Design
The application follows the Model-Template-View (MTV) pattern which is a vari-
ation of the standard Model-View-Controller (MVC) pattern with the difference
that the Django framework handles the controller part itself. The controller part
would in this case be the processes that send the requests to the appropriate view
according to the url configuration. This pattern is pre-wired in Django.

The model part handles the data representation as it does in the MVC pattern.
The main things we need to store are the songs with their attributes such as title,
artist, etc. and the representations of the implemented methods. We also need to
store the users, lists that users create and similarities which we use to calculate
recommendations.

The template part is an analogy to the view part in MVC and handles how
the data is displayed to the user in the form of HTML5 templates.

The view handles what data is displayed to the user so it does a part of the
job of the view from MVC. It also contains the business logic of the application so
one could say that it is also a variation of the controller or rather a bridge between
the models and templates and the Django controller. In the songRecommender
application, the views call functions from the ”logic” part of the application which
takes care of calculating recommendations.

Models and Database

For every table in the database, there is a class-based model in the module
models.py specifying its features. There is a class of the same name for the
Song and the List tables. The Profile model which is an extension of the
build-in Django User model is included to enable storing the similarities of songs
to the user and also checking if the user has confirmed his email.

The class Song in list keeps track of songs and lists that belong to each
other, an instance of the Played song model specifies a user and a song he has
played. One cannot un-play a song but it can be disliked and it will not appear

3https://www.djangoproject.com
4https://www.python.org
5http://www.celeryproject.org
6https://www.rabbitmq.com
7https://www.postgresql.org

64

anymore in recommendations and it will also not be used to calculate recommen-
dations of other songs.

There are three different models for storing similarities. As mentioned in
Chapter 4 even though we calculate and store similarities between songs they
are named as if it were distances. The models are called Distance whose in-
stances store basic similarities between two songs, Distance to list whose in-
stance stores a similarity of a song to a particular list and Distance to user
whose instance stores the similarity of a song to a particular user. The database

Figure 5.1: Diagram of the applications database

is structured as Figure 5.1 illustrates. Build-in Django tables are omitted for
clarity.

Views

Views handle the requests users send. Each request from some HTML page is
processed by a function from views.py. It takes it request’s parameters, calls a
functions from the ”logic” part of the application if necessary, collects the context
for the next HTML page based on that and displays that page to the user.

There are two main kinds of views in this application. First are build-in
class-based views which are structured around a model class from models.py.
For exapmle the SongDetailView displaying a detail page of a song is a class-
based view structured around the Song class. The second kind are function-based
views which are not tied to a model. In the application, these are used for example
for handling, liking and disliking songs.

We used both kinds of views as we could make use of the abstraction and code
simplification class-based views offer for most of the pages that revolved around
models. The function based views on the other hand provided a more flexible
choice for more operational views, not only liking and disliking songs, but also
changing the distance metrics etc.

65

Server

All the logic of the application is running on the server. Most expensive tasks
are sent to Celery to be handled asynchronously, so users do not have to wait.
The expensive tasks are those that include calculating and recalculating song
similarities. They can be triggered by four main events:

First demanding event is adding a new song. The song’s mp3 is downloaded
from the link the user provides, then the 15 second audio excerpt is created and
turned into a mel-spectrogram and MFCC which are then input for corresponding
audio method models. The songs lyrics are stripped of punctuation characters and
prepared as input for the lyrics methods. After obtaining the various encodings
of the newly added song, the application then calculates and stores the similarity
of this song to all the other songs that are already in the database for each
implemented method separately.

Afterwards, the similarity of the song to other users and to all the lists in
the database is calculated and stored. It is again, for each of the implemented
methods. Adding a song takes about 15 seconds if there are no other songs in
the database, there is 1 user, 1 list and the five similarity methods we chose in
Section 5.2.3 are implemented. It takes about 555 seconds if the full song dataset
is loaded into the database and there is 1 user with 1 list and the same 5 methods
are implemented.

Secondly, the user can play a song for the first time. The overall recommen-
dations are based on the songs the user has played so it is necessary recalculate
similarities of all songs to the user when adding something to his played songs.

The third event is adding a song to a list. In that case, the similarities of all
songs to this list are recalculated.

And the fourth event is liking or disliking a song, which results in recalculating
similarities of all songs to the user.

These are quite time consuming tasks especially with a growing song, list and
user counts. The addition of a song is by far the most complex one.

Client

The client only receives pre-computed HTML5 pages with some CSS for better
design. We used the Bootstrap8 library which provides nice page layouts even on
smaller screens and phone screens. There is no computation on the client side.

5.2.3 Similarity measure implementation

We did not chose methods for the application in Chapter 4 because in order
to implement them, we cannot look only at their performance but also at their
computational properties — the time and space complexities. Therefore, we first
describe the time/space complexities of the various tested methods and then we
finalize our choice of methods for implementation.

8https://getbootstrap.com

66

Time and space complexity

There are four main events described in 5.2.2 that trigger the similarity calcu-
lations and recalculations in the application. However, only the duration of an
addition of a new song into the database is dependant on the length of the vector
representation. All the other events only use similarities already stored in the
database which are represented by a single floating point number.

When a new song is added, it is transformed into the respective vector-
encoding for each implemented method. Afterwards, its similarity to all the
songs inside the database has to be calculated. This step is the one which takes
significantly longer for longer vector representations.

A for cycle over all songs in the database is inefficient for Python. Therefore,
we take advantage of the pairwise.metrics.cosine similarity method from
Python’s sklearn package. It is the same function as we used for calculating
Dm matrices for evaluation. We insert the new vector as the first parameter and
all the vector representations in the database as the second parameter of this
method. The similarities are calculated for each implemented method.

Because the server has limited RAM and because we do not want to limit
the number of songs inside the database, we split the songs in the database into
chunks and the similarities are calculated for one chunk, then saved and then the
next chunk is processed. This helps us avoid a memory error even with a growing
song count.

The chunk-size differs for different methods. With an increasing chunk-size
the similarity calculations are faster so we made them as big as possible. The size
is smaller for longer vectors and bigger for shorter vectors as it is there merely to
avoid a memory error and more short vectors fit into memory at once.

The reason we care about how fast the calculations are is not really to make
the next page load faster as the user does not have to wait in any case because of
the asynchronous task queue. We however want our application to be responsive
and recommend relevant songs as soon as possible.

The biggest issue with space complexity for methods is the size of their trained
model. The models are needed when a new song is added to predict the respec-
tive song-representation for the implemented methods. To avoid re-loading the
models every time a new song is added, they are loaded into memory once at the
beginning when the server starts. For some methods, the models are quite small
(tens to hundreds of kilobytes) but for some, their size goes up to Gigabytes.

This poses a problem. It takes time to load big models which is the smaller
issue as it happens only once in theory. However, some of them are as big as
the RAM of the server so it has to put them aside while performing other tasks,
which makes predictions much slower when it loads them again.

Method selection

With keeping the above in mind, let’s look at Table 5.1 and Figure 4.27. We put
our final choices together based on these values but there is also a third thing to
consider. We are setting a higher priority on lyrics-based methods as they are
more unique and their recommendations maybe a bit more interesting for the
user. We also take the diversity of our methods into account as we want to offer

67

an insight on how recommendtaions for various methods with various inputs look
like.

First we rule out the methods that seem to perform badly/are ranked last in
most categories. It is the SOM W2V, the GRU Spec 5712, the LSTM Spec 5712,
and the LSTM mel, and the PCA spec 320.

We also will not implement the GRU spec 20400 and LSTM spec 20400 and
Tf-idf, raw mel-spectrograms and MFCCs because of the length of their vectors.
The PCA spec 1106 and PCA spec 5712 disqualify because of the size of their
models.

This leaves us with two text based methods — the W2V, and the PCA Tf-idf
— and four audio-based methods — the PCA mel 320,GRU mel, LSTM MFCC
and the GRU MFCC. As we can see, none of these has spectrograms as input so
we will not use any spectrogram method. Out of these, the worst one is W2V,
however, it is a lyric method and it is very different from all other methods,
so we decided to implement it. We left out the GRU MFCC as we still have
have the LSTM MFCC network method with the same input and GRU MFCC
is the second worst after W2V. We could keep all the six methods but we want
to reduce the number of methods because the distance calculations are not calcu-
lated in parallel but one after another. More methods are therefore more complex.

Let’s recapitulate our method choices:

• PCA Tf-idf is a lyrics-based method and also the best method we pre-
sented and it has reasonable vector length.

• W2V is also a lyrics-based method, it is the worst from the ones we decided
to implement but it has short vectors and a small model and helps with
method diversity.

• PCA mel 320 is a audio based method. It appears to be good in the
average rank of a song, however, that is not so important for recommen-
dation. Its overall results are average and its time and space complexities
very convenient.

• GRU mel is also deep neural network method which performed best be-
tween neural networks.

• LSTM MFCC is another deep neural network method which has two
components we have not used in any of our implemented methods, the
LSTM layers in its architecture and it takes the MFCCs as input. It is
unique with good results relative to other methods.

Recommendation calculation

The similarity of two songs is calculated using the cosine similarity with threshold
cos simt as described in Subsection 4.7.2. The similarity of a song to a user is
an addition of similarities. To be specific, the similarity of a song si to a user U
is calculated as:

k=n∑︂
k=0

c ∗ cos simt(si, sk)

68

method vector length model size in KB

raw mel-spectrograms 130,560 no model

raw MFCCs 82,688 no model

Tf-idf 40,165 2,600

PCA on Tf-idf 4,457 1,430,000

W2V 300 251,100

SOM W2V 2 358,792

PCA spec 1106 1,106 7,980,000

PCA spec 320 320 2,320,000

PCA mel 5715 5,715 5,970,000

PCA mel 320 320 336,300

GRU spec 20400 20,400 67,000

GRU spec 5712 5,712 59,000

LSTM spec 20400 20,400 3700

LSTM spec 5712 5,712 1003

GRU mel 5,712 146

LSTM mel 5,712 185

GRU MFCC 5,168 48

LSTM MFCC 5,168 471

Table 5.1: The vector length and model size for different methods

where i ̸= k and sk is a song from the user’s played songs and n is the number
of songs the user has played. c is a constant which is either 1 when the song sk

was played, 2 when sk was also liked or 0 when it was disliked. The similarity of
a song si to a list L is calculated as:

l=m∑︂
l=0

c ∗ cos simt(si, sl)

where i ̸= l, m is the number of songs in list L, sl is a song from list L and c is
the same constant as before.

The displayed recommendations do not include songs the user has already
played. It is also possible to see always only the top 10 recommendations, overall
and for a each list. For the detail page of a song there is an audio area where it
is possible to play the song. Its 10 most similar song are displayed on the right.
There is also a possibility to like it or dislike the song.

69

5.2.4 Base data import
To provide songs to users of the application from the beginning, we uploaded the
data from the SD dataset and the data we acquired during experimentation to
the database. This made them available in the application from the moment of
its launching.

The methods that were used to transfer the data into the database are in
the data/load distances.py module. The songs from SD with correspond-
ing titles, artists, lyrics, YouTube links, and relative paths to .mp3 files in
the file system were stored using the load song to database method as in-
stances of the class Song. Afterwards, we added all five vector representations
for the five implemented methods to each of the 16,594 Song instances using the
load all representations method. The representations were extracted from
the Rm matrices. Finally, we called the load all distances method to create
and store instances of the Distance class for the similarities from Dm matrices
that were above the 0.03%-threshold, meaning, there are about 829,700 instances
of Distance for each of the five implemented similarity methods. We did not
store the similarity of the song to itself.

5.3 Configuration options
In this section we will describe the configuration options the application pro-
vides. There are some options that influence recommendation as well as op-
tions to change the server settings. All of the configurations are in the module
setting.py.

5.3.1 Similarity method configurations
The things that can be set for similarity methods are the threshold values for
the implemented methods. Right now, the threshold values correspond the to
keeping 827,900 biggest similarities for each similarity method, meaning, there
are about 50*16594 instances of Distance stored in the database for each of the
implemented methods. Changing the threshold does not influence the songs that
are already in the database. Nevertheless, when a new song is added, potentially
more distances will be created, when the threshold is lowered, or less, when its
raised. Another thing that can be configured in the setting.py module is the
default similarity method that is assigned to a new user account. The user can
then change it once he is logged in.

5.3.2 Email
There is a boolean variable called EMAIL DISABLED which is set on True by default
as there is no email service set up with our application. However, if an email ser-
vice and a domain is provided, it is only necessary to change the EMAIL DISABLED
variable to False, delete the EMAIL BACKEND and replace it with an email service
configuration. If the variable is set to False without configuring an email service,
the email is printed to the console and the user has no way of authenticating his
account.

70

5.3.3 Server
The application has not been completely deployed. It runs on http://acheron.
ms.mff.cuni.cz:42009/index/ in debug mode. Since the launching, there were
songs added to it and multiple users have created accounts and lists. To actually
deploy the application, it is necessary go to settings.py and change the Debug
variable to False. Then it is necessary to collect all static files (including all the
mp3 files) and tell Django where they are as it stops handling static files itself
without the debug mode on. It is also necessary to choose some wsgi, for example
gunicorn9 with nginx10 or apache11 as web servers and configure those.

9https://gunicorn.org
10https://nginx.org/en/
11https://httpd.apache.org

71

http://acheron.ms.mff.cuni.cz:42009/index/
http://acheron.ms.mff.cuni.cz:42009/index/

72

Conclusion
We tested multiple content-based recommendation techniques and the results
show that both lyrics-based and audio-based methods are able to provide relevant
recommendations. The numbers suggest that for some methods the recommen-
dations are more than hundred times better than random recommendation.

A closer examination of the results also indicates that lyrics-based methods –
specifically the Tf-idf and PCA with Tf-idf as input — profit from the variability
of items they recommend which appears to suit real user playlists well. The
deep audio-based methods, even though they stayed a bit behind in performance,
seem to be prospective methods especially with additional hyper-parameter and
architecture adjustments.

We also successfully introduced a running web application with recommenda-
tion methods that provide users with novel, relevant suggestions without being
dependant on song popularity. The fact that our dataset, which was loaded into
the application, probably contains mostly at least somewhat popular songs is
compensated by the fact that each user can add his own songs. Like this less
popular songs can become part of the database and have an equal chance of
being recommended as popular songs which was the goal of this work.

Future work

Recommendation methods
Further study of lyrics-based methods is one way to go in the future. We could
use for example the Tf-idf vectors not only as input for the PCA or SOM but also
for other types of neural networks. They might not be suited for RNN networks
as there is no kind of sequential information stored in the Tf-idf vector but it
would be interesting to try different architectures.

As we tested our audio methods, some proved to be more perspective than
others. Mel-spectrograms and MFCCs seem to be a better input for similarity
methods than raw spectrograms. Also the PCA showed to have great potential
with both lyrics and audio based methods so further research into this and other
dimensionality reduction methods seems to be a good idea.

When it comes to neural networks, networks with the ”GRU” layers seem
to perform better than ”LSTM” layers. Also many different layer combinations
and architectures can be tested. Using RNNs without returning whole sequences
also seems as a reasonable thing to do because it appears that the fact that the
sequence-to-sequence RNN autoencoders only reduce the number of features and
not the number of timestamps is limiting for these networks. The PCA which
reduced the features and the timestamps might have benefited mainly from that.
Also other types of neural network layers can be used to build the autoencoders
which then can be tested and possibly implemented.

Moreover, besides making changes in the methods that encode songs into
vectors, research could be also done on the aggregation of vectors by some sim-
ilarity measure. We used only cosine similarity throughout the thesis but apart
from other simple distance metrics such as the Euclidean distance or Manhat-

73

tan distance more advanced aggregation methods can be tested for example the
GRU4rec [33] method might be a suitable metric especially if we had data about
songs that were played most recently and would like to introduce session-based
recommendation.

Web application
The web application can be further extended in multiple ways. One thing would
be creating a system, where the users could rate the recommendations so we
would have feedback about method performance not only from the evaluation we
did in this thesis but also from real time users.

Also, more advanced recommendation metrics could be applied in the web
application. We could keep track of the users lastly played songs or take into
account how many times he played a song and then use this in the final similarity
calculation. For example have something like The most similar songs to the last
10 songs you played or The most similar songs to your 10 most played songs etc.

There is obviously also the possibility of including more similarity methods
into the application. However, this now involves a non-trivial amount of changes
to the source code. A simplification and a better design for the logic of the
application could be a step to take in the future.

Then there are some application features that could be implemented which
follow the functionalities of traditional music-applications. This includes playing
whole playlists or creating an endless playlists from the recommendations as well
as adding videos and tags to songs, allowing searching based on genres etc.

74

Bibliography
[1] Ayush Singhal, Pradeep Sinha, and Rakesh Pant. Use of deep learning

in modern recommendation system: A summary of recent works. CoRR,
abs/1712.07525, 2017.

[2] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep
content-based music recommendation. In Advances in neural information
processing systems, pages 2643–2651, 2013.

[3] Alexandros Tsaptsinos. Lyrics-based music genre classification using a hier-
archical attention network. CoRR, abs/1707.04678, 2017.

[4] Derek Gossi and Mehmet Hadi Gunes. Lyric-based music recommendation.
In CompleNet, 2016.

[5] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul
Lamere. The million song dataset. In Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR 2011), 2011.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space. CoRR, abs/1301.3781, 2013.

[7] Erion Çano. Text-based Sentiment Analysis and Music Emotion Recognition.
PhD thesis, 06 2018.

[8] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents. CoRR, abs/1405.4053, 2014.

[9] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43(1):59–69, Jan 1982.

[10] Teuvo Kohonen. The self organizing map som. http://www.cis.hut.fi/
research/reports/quinquennial/ch1.ps. Accessed: 2019-03-16.

[11] Braja Patra, Dipankar Das, and Sivaji Bandyopadhyay. Retrieving similar
lyrics for music recommendation system. 12 2017.

[12] Jan Schlüter. Deep Learning for Event Detection, Sequence Labelling and
Similarity Estimation in Music Signals. PhD thesis, Johannes Kepler Uni-
versity Linz, 2017.

[13] S. S. Stevens. A Scale for the Measurement of the Psychological Magnitude
Pitch. Acoustical Society of America Journal, 8:185, 1937.

[14] S Umesh, Leon Cohen, and Douglas Nelson. Fitting the mel scale. volume 1,
pages 217 – 220 vol.1, 04 1999.

[15] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572, 1901.

75

http://www.cis.hut.fi/research/reports/quinquennial/ch1.ps
http://www.cis.hut.fi/research/reports/quinquennial/ch1.ps

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

[17] Cs231n: Convolutional neural networks for visual recognition. http://
cs231n.stanford.edu. Accessed: 2019-04-26.

[18] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[19] Paul Smolensky. Information processing in dynamical systems: Foundations
of harmony theory ; cu-cs-321-86. 1986.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[21] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[22] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural net-
works. IEEE Trans. Signal Processing, 45:2673–2681, 1997.

[23] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech
recognition with deep recurrent neural networks. CoRR, abs/1303.5778,
2013.

[24] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long
short term memory networks for anomaly detection in time series. 04 2015.

[25] S. Dieleman and B. Schrauwen. End-to-end learning for music audio. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6964–6968, May 2014.

[26] Xinxi Wang and Ye Wang. Improving content-based and hybrid music rec-
ommendation using deep learning. In Proceedings of the 22nd ACM inter-
national conference on Multimedia, pages 627–636. ACM, 2014.

[27] Prasanna Ramakrishnan. song 2 vec : Determining song similarity using
deep unsupervised learning. 2017.

[28] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng. Unsupervised
feature learning for audio classification using convolutional deep belief net-
works. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22,
pages 1096–1104. Curran Associates, Inc., 2009.

76

http://cs231n.stanford.edu
http://cs231n.stanford.edu

[29] Shahin Amiriparian, Michael Freitag, Nicholas Cummins, and Björn
Schuller. Sequence to sequence autoencoders for unsupervised representa-
tion learning from audio. 11 2017.

[30] G. Vettigli. Minisom. https://github.com/JustGlowing/minisom, 2019.

[31] Brian McFee, Matt McVicar, Stefan Balke, Vincent Lostanlen, Carl Thomé,
Colin Raffel, Dana Lee, Kyungyun Lee, Oriol Nieto, Frank Zalkow, Dan
Ellis, Eric Battenberg, Ryuichi Yamamoto, Josh Moore, Ziyao Wei, Rachel
Bittner, Keunwoo Choi, nullmightybofo, Pius Friesch, Fabian-Robert Stöter,
Thassilo, Matt Vollrath, Siddhartha Kumar Golu, nehz, Simon Waloschek,
Seth, Rimvydas Naktinis, Douglas Repetto, Curtis ”Fjord” Hawthorne, and
CJ Carr. librosa/librosa: 0.6.3, February 2019.

[32] François Chollet et al. Keras. https://keras.io, 2015.

[33] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos
Tikk. Session-based recommendations with recurrent neural networks. 11
2015.

77

https://github.com/JustGlowing/minisom
https://keras.io

78

List of Figures

1.1 First two entries of the 55000+ Lyrics Dataset 9
1.2 Playlists’ lengths histogram . 11
1.3 The histogram of playlist counts per individual songs 11

2.1 The CBOW and Skip-gram Word2Vec architectures from [7] . . . 14
2.2 The Doc2Vec DM and DBOW architecture taken from [8] 15
2.3 A visualization of the training used for SOM networks 16

3.1 A diagram displaying the steps taken in audio extraction and fea-
ture learning. ML stands for machine learning and DL for deep
learning. 19

3.2 Spectrogram of the song ’Someone Like You’ by ’Adele’. The in-
tensity of different frequencies over time is converted to decibels. . 20

3.3 Mel-spectrogram of the song ’Someone Like You’ by ’Adele’. The
intensity of different frequencies over time is converted to decibels. 21

3.4 MFCCs of the song ’Someone Like You’ by ’Adele’. The intensity
of different frequencies over time is converted to decibels. 22

4.1 The steps in feature learning from [29] where we also got this di-
agram from. We added the red rectangle which represents the
portion of their procedure that was also (with adjustments) per-
formed by us. 34

4.2 The general architecture of GRU neural networks 35
4.3 The general architecture of LSTM neural networks 35
4.5 The comparison of absolute max, average and min values for the

evaluation measures for recommendation with and without threshold 42
4.6 RDG of the TF-idf method . 43
4.7 RDG of the PCA Tf-idf method 43
4.8 Distribution of ranks of songs from the test set the w2v method

assigned them. 44
4.9 The location of different songs from 20 randomly selected playlists

on the map created by SOM. Each playlist has its own colour. . . 45
4.10 RDG of the SOM W2V method 46
4.11 RDG of the SOM Tf-idf method 46
4.12 RDG of raw Mel-spectrograms. 47
4.13 RDG of raw MFCCs. 48
4.14 RDG of the PCA spec 1106 method. 49
4.15 RDG of the PCA spec 320 method 49
4.16 RDG of the PCA mel 5712 . 50
4.17 RDG of the PCA mel 320 method 50
4.18 RDG of the GRU spec 20400 method 51
4.19 RDG of the GRU spec 5712 method 51
4.20 RDG of the LSTM spec 20400 method 51
4.21 RDG of the LSTM spec 5712 method 51
4.22 RDG of the GRU mel method . 52
4.23 RDG of the LSTM mel method 52

79

4.24 RDG of the GRU MFCC method 53
4.25 RDG of the LSMT MFCC method 53
4.26 Method performance comparison heat map without threshold applied 57
4.27 Method performance comparison heat map with threshold applied 58
4.28 Method comparison to random suggestions heat map 59
4.29 Training loss and performance correlation graph 60
4.30 0.03%-threshold value and performance correlation graph 61

5.1 Diagram of the applications database 65

80

List of Tables

4.1 Table containing the value of the similarity threshold we used. The
threshold for a particular method is always below the method’s name. 41

4.2 Table summarizing average Tf-idf and Tf-idf with PCA evalua-
tion measure values averaged over the 5 cross validation that were
performed. 42

4.3 Table summarizing average W2V evaluation values averaged over
the 5 cross validation that were performed 43

4.4 Table summarizing average SOM evaluation values averaged over
the 5 cross validations . 44

4.5 Table summarizing average evaluation values for all methods with
mel-spectrogram input averaged over the 5 cross validations. . . . 47

4.6 Table summarizing average evaluation values for all methods with
MFCC input averaged over 5 cross validations with threshold. . . 48

4.7 Table summarizing average evaluation values for methods with
spectrogram input averaged over 5 cross validations 49

4.8 Table containing the value of the diversity index that was also
calculated for the UD we have. 54

5.1 The vector length and model size for different methods 69

81

82

A. Attachments

A.1 First Attachment
The zipped attachment has the following contents:

• A folder called songRecommender project containing the source code of the
project. It includes a README.md file that describes the project’s directories
and modules.

• User documentation in pdf format under the name srUserDocs.pdf also
included in the songRecommender project directory

83

84

	Introduction
	Data
	Datasets
	Lyrics dataset
	User-information dataset

	Final dataset statistics

	Lyrics-based methods
	Text embedding methods
	Bag of Words
	Tf-idf
	Word2Vec
	Doc2Vec
	Self organizing maps

	Related work
	Text representation choices

	Audio-based methods
	Basic audio representation methods
	Raw waveform
	Spectrograms
	Mel Spectrograms
	Mel Frequency Ceptral Coefficients

	Simple audio representation methods
	PCA

	Deep audio representation methods
	Convolutional neural networks
	Deep belief networks
	Recurrent neural networks
	Autoencoders

	Related work
	Audio implementation choices
	Basic audio representation choices
	Deep Audio representation choices

	Experiments
	Expectations
	Experimentation protocol
	Text method experiments
	Tf-idf experiments
	PCA on Tf-idf
	Word2Vec experiments
	SOM experiments

	Simple audio method experiments
	Audio preparation
	Raw Mel-spectrograms
	Raw MFCCs
	PCA with spectrograms
	PCA with mel-spectrograms

	Deep audio experiments
	Architecture
	Inputs and outputs
	GRU network with spectrogram input
	LSTM network with spectrogram input
	GRU and LSTM networks with Mel-spectrogram input
	GRU and LSTM networks with MFCC input

	Similarity metrics
	Evaluation
	Desired recommender-system features
	Evaluation measures

	Text method results
	Tf-idf results
	PCA_Tf-idf results
	W2V results
	SOM results

	Simple audio representation results
	Raw mel-spectrogram results
	Raw MFCCs results
	PCA on spectrograms
	PCA on Mel-spectrograms

	Deep audio representation results
	GRU network with spectrogram input
	LSTM network with spectrogram input
	GRU and LSTM networks with Mel-spectrogram input
	GRU and LSTM networks with MFCC input

	Discussion
	Expectations vs. reality
	Relative results
	Result interpretation
	Additional findings

	Web Application
	Analysis
	Implementation
	Technologies
	Design
	Similarity measure implementation
	Base data import

	Configuration options
	Similarity method configurations
	Email
	Server

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	First Attachment

