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Introduction
In 1781 a French mathematician Gaspard Monge observed a fundamental, but
very strong property. He worked on a problem to efficiently tranport soil from
one place to another. To transport unit quantities from two points S1 and S2
to two points E1 and E2 the total distance travelled is always smaller when the
route from S1 do not intersect with the route from S2. A mathematical formu-
lation of this property laid a foundation of matrices with Monge property. It
was shown in the past century that the presence of this property simplifies many
optimization problems. The famous NP-complete travelling salesman problem
becomes solvable by a linear algorithm. Other optimization problems such as
assignment problem, transportation problem or lot-sizing problem can be solved
significantly faster using algorithms based on Monge property. Since the property
speaks about distances, also many problems from geometry concerning distances
of points or areas of polygons become easier to solve. There are also further
results in mathematical statistics, linguistics, bioinformatics, graph theory or dy-
namic programming.
Interval analysis was introduced as an answer for dealing with uncertainty or in-
accuracy in data. In almost every area of expertise people encounter a situation
where they are limited by the precision of their data. Sometimes the equipment
used for measurement is not sophisticated enough, sometimes the data cannot be
predicted without a certain error. Sometimes the problem is not in the precision
of data but in the machines that manipulate with them. For example real data
must be discretized in modern computers. The problem becomes more severe
when we use computers to compute abstract problems as part of mathematical
proofs. In these problems we cannot allow to neglect errors. In interval analysis
we envelope our data into intervals and then perform calculations on these inter-
vals instead of the data itself. The methods of interval analysis ensure that the
result is included in the resulting interval. In other typical problem for interval
analysis we receive an interval of possible inputs and we want to find the range
of all solutions.
In this thesis we interconnected both ideas through an optimization problem -
transportation problem. Transportation problem is a subproblem of linear pro-
gramming. For Monge matrices being cost functions the optimal solution of
transportation problem can be found by a greedy algorithm. When studying a
family of interval linear programming, it is in general NP-hard to find the "worst
case" optimal value. For some subproblems it was shown that the problem is
easier to solve, for some problems like interval transportation problem it is still
an open question. It appeared that the presence of Monge property could offer a
polynomial solution for this problem.
In this thesis we want to formulate the Monge property for interval matrices. We
approach this task from two directions. We define a matrix with interval strong
Monge property - for which all the realizations of the matrix satisfy the Monge
property. This class of matrices proves itself to be easy to work with. The second
class of matrices introduced in this thesis are matrices with interval weak Monge
property where at least one realization posseses the Monge property. Although
harder to work with, these matrices are interesting to study. For example when
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approaching an NP-hard problem from interval analysis, being able to compute
one instance of the problem efficiently might be a good start to formulate an
approximation algorithm. We investigate properties of both these classes, ways
to recognize them and reconstruct them from almost-Monge matrices and ex-
plore their applications in transportation problem and other optimization and
geometrical problems.
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1. Preliminaries
Before we start with introduction to Monge matrices, we have to fix a notation
and introduce basics of interval analysis and interval arithmetics. For further
information about interval analysis beyond the basics stated in this text see [1].
Section 1.1 fixes basic notation, Section 1.2 defines interval objects and operations
on them and Section 1.3 lists used symbols.

1.1 Notation
By R we denote the set of real numbers. For intervals of real values we define IR
as the set of all intervals over R. By Tm×n we denote the matrix of dimension
m× n where the entries of the matrix are from T. Symbol Tn represents a set of
vectors of dimension n with entries from T, T+ the set of all positive values and
T+

0 the set of all nonnegative values.
For two real matrices A, B ∈ Rm×n we say that A ≤ B if for all indices i, j it
holds that aij ≤ bij.

1.2 Intervals and interval arithmetics
Definition 1. An interval matrix A ∈ IRm×n is defined as

A =
[
A, A

]
=
{
A ∈ Rm×n : A ≤ A ≤ A

}
where A, A are lower resp. upper bound matrices of A.
We can further denote center of A by AC = 1

2(A + A) and a radius of A by
A∆ = 1

2(A− A). Using the center and the radius we can rewrite interval matrix
as

A =
{
A ∈ Rm×n : AC − A∆ ≤ A ≤ AC + A∆

}
.

Definition 2. An interval vector v ∈ IRm is defined as

v = [v, v] = {v ∈ Rm : v ≤ v ≤ v} .

Definition 3. Let M , N ∈ IRm×n. Then an interval matrix intersection of
matrices M , N denoted by M ∩N is defined as

(M ∩N)ij =
⎧⎨⎩[l, u] if l ≤ u,

∅ if l > u,

where l = max
{
mij, nij

}
and u = min {mij, nij}.

Definition 4. Let M , N ∈ IRm×n. Then an interval matrix union denoted by
M ∪N is defined as

M ∪N =
{
X ∈ Rm×n : X ∈M or X ∈ N

}
.

A union of two interval matrices is not always an interval matrix, therefore
we define also an envelope of an interval matrix union.
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Definition 5. Let M , N ∈ IRm×n. Then an envelope of interval matrix union
denoted by (M ∪N) is defined as

(M ∪N) =
{
X ∈ Rm×n : min {M, N} ≤ X ≤ max

{
M, N

}}
.

For a binary arithmetic operation ◦ ∈ {+,−, ·, /} defined on R, we can intro-
duce the corresponding interval operation as follows:

a ◦ b = {a ◦ b : a ∈ a, b ∈ b} .

We can rewrite the definition into an explicit formula:

• a + b =
[
a + b, a + b

]
,

• a− b =
[
a− b, a− b

]
,

• a · b =
[
min

{
a · b, a · b, a · b, a · b

}
, max

{
a · b, a · b, a · b, a · b

}]
,

• a/b =
[
min

{
a
b
, a

b
, a

b
, a

b

}
, max

{
a
b
, a

b
, a

b
, a

b

}]
if 0 /∈ b.

Let us note that for interval division there is a known generalization where 0 ∈ b.

1.3 List of symbols
R . . . A set of real numbers.
R+ . . . A set of positive real numbers.
R+

0 . . . A set of nonnegative real numbers.
IR . . . A set of all closed interval subsets of R.
IR+ . . . A set of all positive closed interval subsets of R.
IR+

0 . . . A set of all nonnegative closed interval subsets of R.
IRm×n . . . A set of all interval matrices of dimension m× n.
IRm . . . A set of all interval m dimension vectors.
ISM . . . A set of all interval strong Monge matrices.
ISM+ . . . A set of all positive interval strong Monge matrices.
ISM+

0 . . . A set of all nonnegative interval strong Monge matrices.
ISMm×n . . . A set of all interval strong Monge matrices of dimension m× n.
IWM . . . A set of all interval weak Monge matrices.
IWM+ . . . A set of all positive interval weak Monge matrices.
IWM+

0 . . . A set of all nonnegative interval weak Monge matrices.
IWMm×n . . . A set of all interval weak Monge matrices of dimension m× n.
A ∈ IRm×n . . . An interval matrix of dimension m× n.
v ∈ IRm . . . An interval vector of dimension m.
M ∩N . . . An interval matrix intersection of matrices M , N.
M ∪N . . . An interval matrix union of matrices M , N.

(M ∪N) . . . An envelope of an interval matrix union of matrices M , N.
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2. Real Monge matrices
In this chapter we introduce real Monge matrices and some fundamental results
connected with them that we will further use in the text. In study of Monge
matrices we followed mostly paper by Burkard, Klinz and Rüdiger [2] which sum-
merizes most of the known results concerning Monge property in optimization. In
Section 2.1 we introduce the definition and several different characterizations. In
Section 2.2 we deal with closure properties of Monge matrices. In Section 2.3 we
present other fundamental properties especially the connection between Monge
and totally monotone matrices.

2.1 Definition and characterizations
Let us start with the definition.

Definition 6. Let M ∈ Rm×n. Then M is a Monge matrix iff for all i, j, k, ℓ :
1 ≤ i < k ≤ m, 1 ≤ j < ℓ ≤ n it holds mij + mkℓ ≤ miℓ + mkj.

Since Hoffman rediscovered the Monge property in 1961, several equivalent
characterizations have been found. We merge some of the characterizations into
a following theorem but first, we define a notion of submodular functions.

Definition 7. Let Λ = (I,∧,∨) be a distributive lattice where I = {1, ..., m} ×
{1, ..., n} and join (∧) and meet (∨) operations are defined as follows:

• (x1, x2) ∧ (y1, y2) = (min {x1, y1} , min {x2, y2}) for all x, y ∈ I,

• (x1, x2) ∨ (y1, y2) = (max {x1, y1} , max {x2, y2}) for all x, y ∈ I.

Function f : I → R is said to be submodular on Λ if

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y).

Theorem 1. Let M ∈ Rm×n, then the following are equivalent:

1. M is a Monge matrix,

2. mij + mkℓ ≤ miℓ + mkj for all 1 ≤ i < k ≤ m, 1 ≤ j < ℓ ≤ n,

3. mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j for all 1 ≤ i < m, 1 ≤ j < n,

4. Let Λ = (I,∧,∨) be a distributive lattice where I = {1, ..., m} × {1, ..., n}.
Then a function f : I → R defined by f(i, j) = mij is submodular on Λ.

Proof. The equivalence between 1. and 2. is by the definition. The equivalence
between 2. and 3. is straightforward by mathematical induction. For the equiva-
lence between 1. and 4. see [3].

We present one more characterization of Monge matrices. It connects together
the Monge matrices and so called distribution matrices.
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Definition 8. Let C ∈ Rm×n be a nonnegative matrix. Then a distribution matrix
D generated by a density matrix C is a matrix such that

dij =
m∑

k=i

j∑
ℓ=1

ckℓ.

Lemma 2. Let M ∈ Rm×n, then M is a Monge matrix if and only if there exists
a distribution matrix D ∈ Rm×n and two vectors u ∈ Rm and v ∈ Rn such that

mij = dij + ui + vj.

Proof. See [4].

Let us point out that the set of distribution matrices forms an interesting sub-
class of Monge matrices studied in connection with problems from mathematical
statistics [4].

2.2 Closure properties
We present a list of operations under which the Monge matrices are closed.

Lemma 3. Let M, N ∈ Rm×n be Monge. Then the following holds:

1. MT is Monge,

2. αM is Monge for α ≥ 0,

3. M + N is Monge,

4. a matrix C such that cij = mij + ui + vj is Monge for any u ∈ Rm, v ∈ Rn.

Proof. 1. - 4. are easy to derive from the standard definition of Monge matrices.

We further generalized the statement 3. to fully characterize the circumstances
under which for a Monge matrix M and a matrix N a sum of M + N remains
Monge. For the characterization we need a so called residual matrix.

Definition 9. Let M ∈ Rm×n. Then for m > 1, n > 1 a residual matrix MR ∈
R(m−1)×(n−1) of matrix M is defined as

mR
ij = mi+1,j + mi,j+1 −mi+1,j+1 −mij.

Lemma 4. Let M ∈ Rm×n be a Monge matrix and N ∈ Rm×n. Then M + N is
a Monge matrix iff MR + NR is a nonnegative matrix.

Proof. Let M + N be a Monge matrix. For any i, j we get by 3. in Theorem 1
that

mij + mi+1,j+1 + nij + ni+1,j+1 ≤ mi+1,j + mi,j+1 + ni+1,j + ni,j+1.
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Rearranging the inequality by putting everything to the right side we get

0 ≤ mi+1,j + mi,j+1 −mi+1,j+1 −mij + ni+1,j + ni,j+1 − ni+1,j+1 − nij = mR
ij + nR

ij.

Let us now suppose that MR + NR is a nonnegative matrix. By definition of
residual matrices it means that for all i, j

0 ≤ mR
ij + nR

ij = mi+1,j + mi,j+1 −mi+1,j+1 −mij + ni+1,j + ni,j+1 − ni+1,j+1 − nij,

which can be rearranged as

mij + nij + mi+1,j+1 + ni+1,j+1 ≤ mi+1,j + ni+1,j + mi,j+1 + ni,j+1.

Since this inequality holds for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1, it also holds
that M + N is Monge.

Lemma 3.2 and Lemma 3.3 imply that the set of nonnegative Monge matrices
forms a convex polyhedral cone. A study of this cone revealed 4 types of 0-1
matrices generating rays of the convex cone. Let H i denote a 0-1 matrix whose
ith row contains all ones while the other entries are zeros and V j a 0-1 matrix
with jth columns set to ones and the rest to zeros. Further, let Lrs be a 0-1
matrix where for lrs

ij = 1 for i = r, . . . , m and j = 1, . . . , s. Otherwise lrs
ij = 0.

Similarly let Rpq be a 0-1 matrix with rpq
ij = 1 for i = 1, . . . , p and j = q, . . . , n,

otherwise rpq
ij = 0. The following theorem states that a linear combinations of

matrices H i, V j, Lrs and Rpq characterizes Monge matrices once again. Although
it is possible to characterize all Monge matrices, we focus only on nonnegative
matrices since in further chapters we will work with them.

Theorem 5. Let M ∈ Rm×n be a Monge matrix, then there exist nonnegative
numbers κi, λj, µrs and νpq such that

M =
m∑

i=1
κiH

i +
n∑

j=1
λjV

j +
m∑

r=2

n−1∑
s=1

µrsL
rs +

m−1∑
p=1

n∑
q=2

νpqR
pq.

The matrices Hp with p = 1, . . . , m, V q with q = 1, . . . , n, Lrs with r = 2, . . . , m,
s = 1, . . . , n − 1 and Rpq with p = 1, . . . , m − 1, q = 2, . . . , n generate extreme
rays of the cone of nonnegative Monge matrices.

Proof. See [5].

Theorem 5 was used to simplify optimality proofs for combinatorial optimization
problems concerning Monge matrices [5].

2.3 Other fundamental properties
The following statement lets us set Monge matrices into a larger frame of so
called totally monotone matrices. The properties of totally monotone matrices
are fundamental for many applications of Monge matrices. We will show the
proof here instead of giving a reference.
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Definition 10. Let A ∈ Rm×n and let j(i) be the index of the column which
contains the leftmost minimum of row i. Then we say that A is monotone if

j(1) ≤ j(2) ≤ · · · ≤ j(n).

Further, A is totally monotone if such a property holds for all its submatrices.

Lemma 6. Monge matrices are totally monotone matrices.

Proof. Let M ∈ Rm×n be a matrix that is not totally monotone. Then there exist
row indices i < k and column indices j < ℓ such that

mij > miℓ and mkℓ ≥ mkj.

But these two inequalities imply that

mij + mkℓ > miℓ + mkj,

therefore the matrix M is not Monge.
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3. Interval Strong Monge
matrices
In this chapter we introduce the Interval Strong Monge (ISM) matrices. Sec-
tion 3.1 shows a definition and equivalent characterizations of ISM. In Section 3.2
we discuss closure properties of ISM. In Section 3.3 we deal with interval envelopes
of ISM.

3.1 Definition and equivalent characterizations
Definition 11. An interval matrix M ∈ IRm×n is interval strong Monge (ISM)
if ∀M ∈ M it holds that M is Monge. We denote by ISM the set of interval
strong Monge matrices.

To check whether an interval matrix M is Monge using the definition means
to check the Monge property for infinitely many real matrices. The following
lemma characterizes ISM matrices via finitely many conditions.

Lemma 7. Let M ∈ IRm×n. Then M ∈ ISM iff for all i, j, k, ℓ such that
1 ≤ i < k ≤ m, 1 ≤ j < ℓ ≤ n it holds that mij + mkℓ ≤ miℓ + mkj.

Proof. Let us suppose that M ∈ ISM. For arbitrary indices i, j, k, ℓ let us suppose
a matrix M ∈M with entries mij = mij, mkℓ = mkℓ, miℓ = miℓ, mkj = mkj. M
is Monge since M ∈ ISM, therefore the inequality

mij + mkℓ = mij + mkℓ ≤ miℓ + mkj = miℓ + mkℓ

holds.
Now for the other implication let M be an arbitrary matrix in M . The following
chain of inequalities holds for all i, j, k, ℓ :

mij + mkℓ ≤ mij + mkℓ ≤ miℓ + mkj ≤ miℓ + mkj,

therefore M is Monge.

Lemma 7 gives us O(m2n2) conditions to be verified. It can be shown that
many of the conditions are redundant and we can limit the problem to O(mn)
conditions of neighbouring quadraples.

Lemma 8. Let M ∈ IRm×n. Then M ∈ ISM iff for all indices i, j such that
1 ≤ i < m, 1 ≤ j < n it holds mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j.

Proof. Let M ∈ ISM. For arbitrary indices i, j let us consider a matrix M ∈M
with entries mij = mij, mi+1,j+1 = mi+1,j+1, mi,j+1 = mi,j+1 and mi+1,j = mi+1,j.
Matrix M is Monge since M ∈ ISM, therefore the inequality

mij + mi+1,j+1 = mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j = mi,j+1 + mi+1,j+1

11



holds.
Now for the other implication and for an arbitrary matrix M ∈M the following
chain of inequalities holds for all indices i, j:

mij + mi+1,j+1 ≤ mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j ≤ mi,j+1 + mi+1,j.

Therefore by Theorem 1.3 M is Monge.

Any ISM matrix can be also defined by a pair of so called chess matrices.

Definition 12. Let M ∈ IRm×n. Let us denote white resp. black chess matrix
as a Monge matrix MW resp. MB where

MW
ij =

⎧⎨⎩mij, if i + j is even,

mij, if i + j odd.

MB
ij =

⎧⎨⎩mij, if i + j is even,

mij, if i + j odd.

Lemma 9. Let M ∈ IRm×n. Then M ∈ ISM iff MW and MB are Monge.

Proof. Let M ∈ ISM. Then also MW and MB are Monge since both matrices
are realizations of M .
Let us now suppose that MW and MB are Monge. Then for i+ j even the entries
of MW satisfy mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j and for i + j odd the entries of
MB give the same inequality. In other words all the conditions from Lemma 8
are satistfied, hence M ∈ ISM.

One of the results in real case connects Monge matrices with submodular
functions on lattices (see Theorem 1.3). The transition between these two worlds
can be also defined for ISM. For this purpose, we define a generalized submodular
function f : I → IR.

Definition 13. Let Λ = (I,∧,∨) be a distributive lattice where I = {1, ..., m} ×
{1, ..., n} with join (∧) and meet (∨) operations. The operations are defined as
follows:

(x1, x2) ∧ (y1, y2) = (min {x1, y1} , min {x2, y2}) for all x, y ∈ I

and
(x1, x2) ∨ (y1, y2) = (max {x1, y1} , max {x2, y2}) for all x, y ∈ I.

A function f : I → IR is submodular on a lattice I if f(x ∨ y) + f(x ∧ y) ≤
f(x) + f(y) for all x, y ∈ I.

Lemma 10. Let M ∈ IRm×n and Λ = (I,∧,∨) be a distributive lattice with join
(∧) and meet (∨) operations where I = {1, ..., m} × {1, ..., n}. Let f : I → IR be
defined by f(i, j) = mij. Then M ∈ ISM iff f is submodular.
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Proof. Let M ∈ ISM and let x = (i, ℓ) ∈ I and y = (k, j) ∈ I. W.l.o.g let us
suppose that i < k and j < ℓ. Then

f(x ∧ y) = f((i, ℓ) ∨ (k, j)) = f((i, j)) = mij

and
f(x ∨ y) = f((i, ℓ) ∨ (k, j)) = f((k, ℓ)) = mkℓ.

Therefore

f(x ∨ y) + f(x ∧ y) = mkℓ + mij ≤ miℓ + mkj = f(x) + f(y)

and the inequality holds because M ∈ ISM.
Let us now consider that the function f is submodular on the lattice I. Then the
condition

mij + mi+1,j+1 ≤ mi+1,j + mi,j+1

corresponds with

f((i + 1, j) ∧ (i, j + 1)) + f((i + 1, j) ∨ (i, j + 1)) ≤ f((i + 1, j)) + f((i, j + 1)).

Since f is submodular the second inequality really holds, therefore M ∈ ISM.

Theorem 11. Let M ∈ IRm×n. Then the following are equivalent:

1. M ∈ ISM,

2. mij + mkℓ ≤ miℓ + mkj for all 1 ≤ i < k ≤ m, 1 ≤ j < ℓ ≤ n,

3. mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j for all 1 ≤ i < m, 1 ≤ j < n,

4. Chess matrices MW and MB are Monge,

5. Let M ∈ IRm×n and Λ = (I,∧,∨) be a distributive lattice with join (∧)
and meet (∨) operations where I = {1, ..., m} × {1, ..., n}. Let f : I → IR
be defined by f(i, j) = mij. Then M ∈ ISM iff f is submodular.

Proof. See Lemmata 7, 8, 9, 10.

3.2 Closure properties
The set of nonnegative real Monge matrices forms a convex cone meaning the
matrices are closed under linear combinations with nonnegative coeficients. The
fact that ISM matrices are convex subsets of the set of real Monge matrices
promises similar results for ISM.

Theorem 12. Let M , N ∈ ISM and let α ∈ R+
0 . Then also αM ∈ ISM and

M + N ∈ ISM.

13



Proof. Let M ∈ ISM and let α ∈ R+
0 . Then αM ∈ ISM because for any pair of

indices i, j it holds
mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j

since M ∈ ISM. It also holds that

αmij + αmi+1,j+1 ≤ αmi,j+1 + αmi+1,j

for α ≥ 0. Therefore, αM ∈ ISM.
Further, let us consider matrices M , N ∈ ISM. For any pair of indices i, j we
have

mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j and nij + ni+1,j+1 ≤ ni,j+1 + ni+1,j

because both matrices are from ISM. Adding these inequalities together and
rearranging the elements we get

mij + nij + mi+1,j+1 + ni+1,j+1 ≤ mi,j+1 + ni,j+1 + mi+1,j + ni+1,j

which is a condition of M + N . Therefore matrix M + N ∈ ISM.

When it comes to multiplication by interval α ∈ IR+
0 , ISM matrices are closed

only under certain restriction dependent on the lower bound of α and its radius.

Theorem 13. Let M ∈ ISM+
0 and let α ∈ IR+

0 . Then αM ∈ ISM+
0 iff

α∆

αC
≤ ϕ where ϕ = min

i,j

(
mi,j+1 + mi+1,j −mij −mi+1,j+1

mi,j+1 + mi+1,j + mij + mi+1,j+1

)
.

Proof. For all indices i, j it must hold that

αmij + αmi+1,j+1 ≤ αmi,j+1 + αmi+1,j.

It holds for all α ∈ α that

αmij +αmi+1,j+1 ≤ α mij +α mi+1,j+1 ≤ α mi,j+1+α mi+1,j ≤ αmi,j+1+αmi+1,j.

It is clear that the the difference between the sides of inequality is the smallest
for

α mij + α mi+1,j+1 ≤ α mi,j+1 + α mi+1,j.

Adjusting the inequality, we get

α ≤ α

(
mi,j+1 + mi+1,j

mij + mi+1,j+1

)
.

Substituting α for αC + α∆, α for αC −α∆ and adjusting again the inequality we
get the formula

α∆

αC
≤
(

mi,j+1 + mi+1,j −mij −mi+1,j+1

mi,j+1 + mi+1,j + mij + mi+1,j+1

)
. (3.1)

It is now clear that the inequality 3.1 holds for all i, j iff it holds for minimum
over all indices.

Finally, we state two observations. The first one is about matrix transposition
and the second one about matrix products.

14



Observation 14. For a matrix M ∈ ISM the transposition MT ∈ ISM.

Proof. Straightforward from the definition of ISM.

Observation 15. Let us consider matrices

A =
(

0.5 0.5
0.01 0.01

)
B =

(
1, 1 0.6
0.01 0.5

)
.

The matrix A⊙B /∈ ISM for ⊙ representing Standard, Hadamard and Kronecker
(tenzor) matrix product.

Proof. It can be easily checked by the definition of all three matrix products that
the observation is correct.

The closure properties under operations combining ISM and IWM (interval weak
Monge) matrices are discussed in Section 4.3.2 after we properly introduce the
class of IWM.

3.3 Interval envelopes of ISM matrices
In the previous section we showed that many results for real Monge matrices can
be easily transformed for ISM. There are two characteristics that failed to be
generalized for ISM matrices. One of them is the decomposition of nonnegative
Monge matrices into the extreme rays of convex cone (see Theorem 5). The other
one is the characterization by distribution matrices (see Theorem 1).

3.3.1 Envelope of decomposition by extreme rays
Any nonnegative real Monge matrix M can be expressed as a nonnegative com-
bination of special matrices

M =
m∑

i=1
κiH

i +
n∑

j=1
λjV

j +
m∑

r=2

n−1∑
s=1

µrsL
rs +

m−1∑
p=1

n∑
q=2

νpqR
pq.

Matrices H i, V j, Lrs, Rpq form extreme rays of convex cone generated by nonneg-
ative Monge matrices. They are properly defined in Section 2.2.
We proved that the set ISM+

0 is closed under sum of two matrices and a nonneg-
ative scalar multiplication, therefore it is natural to ask whether there exists a
similar decomposition.

Definition 14. Let M ∈ Rm×n be a Monge matrix. Then define C(M) a decom-
position of M by extreme rays.

Definition 15. Let M ∈ ISMm×n and for every M ∈M fix one decomposition
C(M). Then define the envelope of convex decomposition of M as

C(M ) =
m∑

i=1
κiH

i +
n∑

j=1
λjV j +

m∑
r=2

n−1∑
s=1

µrsL
rs +

m−1∑
p=1

n∑
q=2

νpqRpq

15



where
κi =

{
κi ∈ R+

0 |∃M ∈M : κiH
i is in C(M)

}
λj =

{
λi ∈ R+

0 |∃M ∈M : λjV
i is in C(M)

}
µpq =

{
µrs ∈ R+

0 |∃M ∈M : µrsL
rs is in C(M)

}
νpq :=

{
νpq ∈ R+

0 |∃M ∈M : νpqR
pq is in C(M)

}
Definition 15 states that for every M ∈M we take one convex decomposition

and make a union of these decompositions (more precisely, an envelope of this
union).
For any real matrix M it holds that C(M) = M . For ISM matrix

M =
(

0 [0, 5]
[0, 5] 0

)
, C(M) = [0, 5]

(
0 0
1 0

)
+ [0, 5]

(
0 1
0 0

)

we see that C(M ) = M and the decomposition is unique. To see that in general
C(M ) ̸= M let us consider matrix

M =
(

[0, 5] 5
[0, 8] 0

)
.

If C(M ) = M then it is not hard to show that C(M ) must be

C(M) = [0, 3]
(

0 0
1 0

)
+ [0, 5]

(
1 0
1 0

)
+ 5

(
0 1
0 0

)
.

But for matrix
M =

(
1 5
6 0

)
there is no decomposition in C(M ), although M ∈ M . Therefore it must hold
that M ⊂ C(M ).
The problem to find a tight envelope for a specific matrix M seems to be hard
since for a real Monge matrix the decomposition is not unique.
We offer a trivial envelope.

Theorem 16. Let M ∈ IRm×n such that M ∈ ISM+
0 . Then for an envelope

C′(M) =
m∑

i=1
[0, hi]H i +

n∑
j=1

[0, vj]V j +
m∑

r=2

n−1∑
s=1

[0, lrs]Lrs +
m−1∑
p=1

n∑
q=2

[0, rpq]Rpq

where

• hi = max
j

mij,

• vj = max
i

mij,

• lrs = max
ij

mij such that r ≤ i and j ≥ s,

• rpq = max
i,j

mij such that i ≤ p and q ≤ j

16



it holds that M ⊂ C′(M).

Proof. For every matrix M ∈M the entry mij is the sum of some coeficients. Let
M ∈M . For any entry mij the coefficient of corresponding matrices H i,V j,Lrs

and Rpq cannot be in sum larger than mij which is smaller than mij which is
again smaller than the definition of each coefficient.

There might be a place for improvement since we envelope all possible decompo-
sitions of all matrices M ∈ M . It remains an open question how to fix decom-
positions close to each other in coefficients.

3.3.2 Envelope of distribution matrix characterization
By Lemma 2 any real Monge matrix M can be expressed as

mij = dij + ui + vj

where D ∈ Rm×n is a distribution matrix and u ∈ Rm, v ∈ Rn are real vectors.
We would want to generalize this property for interval Monge matrices as well.
To have the decomposition in a form mij = dij +ui +vj where M ∈ IRm×n, D ∈
IRm×n, u ∈ IRm, v ∈ IRn we would have to define the interval distribution matrix
which as we show does not seem to be a good approach.

Definition 16. Let C ∈ IRm×n be a nonnegative interval matrix. Then an
interval distribution matrix D ∈ IRm×n generated by an interval density matrix
C is a matrix such that

dij =
⎡⎣ m∑

k=i

j∑
ℓ=1

ckℓ,
m∑

k=i

j∑
ℓ=1

ckℓ

⎤⎦ .

We show that D /∈ ISM.

Lemma 17. There exists D ∈ IRm×n an interval distribution matrix such that
D /∈ ISM.

Proof. Let us define C ∈ IR2×2 as

C =
(

[6, 8] [0, 8]
[2, 3] [5, 8]

)
.

The distribution matrix D generated by C is therefore

D =
(

[8, 11] [13, 27]
[2, 3] [7, 11]

)
.

Since 11 + 11 > 2 + 13, D /∈ ISM.

Since it is not possible to find a decomposition where D is an interval matrix we
suggest fixing a real distribution matrix and setting interval vectors u and v in
a way to have a close interval envelope of matrix M . Such an envelope might be
polynomially computable using linear programming.
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4. Interval Weak Monge matrices
In this chapter we introduce interval weak Monge (IWM) matrices. Section 4.1
shows a definition and a polynomial recognizability. In Section 4.2 a necessary
conditions and sufficient conditions are discussed and in Section 4.3 closure prop-
erties of IWM matrices and closure properties interconnecting ISM and IWM
matrices are presented.

4.1 Definition and characterization
Definition 17. An interval matrix M ∈ IRm×n is interval weak Monge (IWM)
iff ∃M ∈ M such that M is Monge. We denote by IWM the set of all interval
weak Monge matrices.

We start by showing that IWM matrices are polynomially recognizable by a
special linear program.

Lemma 18. Let M ∈ IRm×n and let LP (M ) be a linear program defined as

minimize const.
subject to mij + mi+1,j+1 −mi,j+1 −mi+1,j ≤ 0, (1)

mkℓ ≤ mkℓ, (2)
−mkℓ ≤ −mkℓ, (3)

where 1 ≤ i < m, 1 ≤ j < n,
1 ≤ k ≤ m, 1 ≤ ℓ ≤ n.

Then the matrix M ∈ IWM iff LP (M) has a feasible solution.

Proof. Since the cost function is constant LP (M) outputs a feasible solution.
The solution matrix M satisfies Monge property by (1) and by (2) and (3) every
entry mij ≤ mij ≤ mij, meaning M ∈ M . We see that LP (M ) has feasible
solution iff M ∈ IWM.

Lemma 18 is important because we know that the recognition problem of IWM
matrices is polynomial. For IWM we did not find any other polynomial charac-
terization. Let us note that all of the characterizations of real Monge matrices
can be applied for IWM, although none of them can be used without any further
modification to construct a recognition algorithm.

4.2 Necessary and sufficient conditions
Although we know the recognition problem of IWM is polynomial, the only char-
acterization we found was by linear programming which is categorized as one of
the hardest problems in the hierarchy of polynomial algorithms (see [6]). There-
fore we investigated necessary and sufficient conditions of IWM.
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4.2.1 Necessary conditions
The first necessary condition employs residual matrices defined in Definition 9
and their interval generalization.

Definition 18. Let M ∈ IRm×n. Then an interval residual matrix MR ∈
IR(m−1)×(n−1) is defined as

mR
ij =

[
mi+1,j + mi,j+1 −mij −mi+1,j+1, mi+1,j + mi,j+1 −mij −mi+1,j+1

]
Lemma 19. Let M ∈ IWM and MR be its residual matrix. Then there exists
MR ∈MR such that MR is nonnegative.

Proof. If M ∈ IWM it means that there exists M ∈M such that M is Monge.
By Definition 9 the residual matrix MR of M is nonnegative.

Lemma 20. Let M ∈ IWMm×n. Then there exists M ∈ M such that M is
Monge and the number of entries mij = mij is at least max {m, n}.

Proof. Let M ∈M be a Monge matrix. By Theorem 5 we can rewrite M as

M =
m∑

i=1
κiH

i +
n∑

j=1
λjV

j +
m∑

r=2

n−1∑
s=1

µrsL
rs +

m−1∑
p=1

n∑
q=2

Rpq.

Let us take M such that the number of entries mij = mij in M is the highest
possible and still lower than max {m, n}. Let us suppose that m > n. It means
that there is a row k in M where mkj ̸= mkj for every column j. We take
µ = min

j
{mkj −mkj} and add µH i to M . The matrix M + µH i is also Monge

and the number of upper bounds of intervals in M + µH i is higher than in M .
For n > m we employ the matrices of type V j and the rest of the argument is
similar.

To show that the bound in Lemma 20 can be achieved we give the following
example.
Example. Let M ∈ IR4×4 :

M =

⎛⎜⎜⎜⎝
[3, 1000] [10, 120] [17, 20] [0, 24]
[2, 20] [7, 9] [0, 12] [17, 85]
[2, 5] [0, 6] [10, 14] [14, 100]
[0, 1] [3, 6] [5, 21] [7, 1000]

⎞⎟⎟⎟⎠ .

Matrix M ∈M :

M =
:3 10 17 24
:2 7 12 17
:2 6 10 14
:1 3 5 7

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
is Monge, therefore M ∈ IWM. Moreover, the blue circles mark 4 values of M
that are upper bounds of M. It is easy to check that for any N ∈ M that is
Monge, no other entry of N can be an upper bound of M since it would violate
at least one of neighbouring conditions of Monge property.
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4.2.2 Sufficient conditions
The first two sufficient conditions use the decomposition into extreme rays of
convex cone (see Theorem 5).

Lemma 21. Let M ∈ IRm×n. If it holds for every row i that ⋂
j

[mij] ̸= ∅ or for

every column j that ⋂
i

[mij] ̸= ∅, then M ∈ IWM.

Proof. Let us suppose that for every row i it holds that ⋂
j

[mij] = [αi, αi]. Then
a matrix

M = α1H
1 + α2H

2 + · · ·+ αnHn

where αi ∈ [αi, αi] is a Monge matrix by Theorem 5. Since M ∈M , we conclude
that M ∈ IWM. For nonempty intersections of columns the argument is simi-
lar.

Lemma 22. Let M ∈ IRm×n. If it holds for all indices i, j that m∆
ij

|mC
ij | ≥ 1 then

M ∈ IWM.

Proof. Let it hold for all indices i, j that m∆
ij

|mC
ij | ≥ 1. Since m∆

ij ≥ |mC
ij|, the matrix

of zeros 0m×n ∈M . Since 0m×n is Monge, M ∈ IWM.

Lemma 22 cares only for the origin of the coordinate plane. Therefore, it is
a question how tight the inequality m∆

ij

|mC
ij | ≥ 1 actually is and whether there exists

an ε such that m∆
ij

|mC
ij | ≥ ε > 1.

Another class of sufficient conditions of IWM matrices is based on an idea
that in a space of matrices we start with MC and use an easy procedure to move
in steps from MC until we reach a Monge matrix. Depending on the direction
and distance of each step we can compute how far we have to move from MC in
each interval entry to achieve a Monge matrix. By this, we can get a sufficient
condition dependent on the width of intervals. To determine the necessary width
of intervals we employ residual matrices.

Lemma 23. Let M ∈ IRm×n and let MR ∈ R(m−1)×(n−1) be the residual matrix of
MC. If for all indices i, j of M it holds that m∆

ij ≥ |
m−1∑
k=i

n−1∑
ℓ=j

mR
kℓ| then M ∈ IWM.

Proof. Let MC ∈ Rm×n and let MR ∈ R(m−1)×(n−1) be its residual matrix. In
general, the residual matrix MR will not be nonnegative. Our goal is to eliminate
the residues in MR one by one using a specific elimination order. We see that by
subtracting ε from mC

ij the value of mR
ij increases by ε. By this operation, entries

mR
i−1,j−1, mR

i−1,j and mR
i,j−1 are affected as well (see Figure 4.1). We start from

the bottom-right corner of MR and add the value of mR
m−1,n−1 to mC

m−1,n−1. This
eliminates the residuum mR

m−1,n−1 and propagates it into the three neighbouring
entries. In next step, we eliminate the residuum of the element mR

m−1,n−2 and
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mC
11 . . . mC

1n

• • •
... • mij − ε • ...

• • •

mC
m1 . . . mC

mn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mC
ij−εMC =

mR
i−1,j−1+ε mR

i−1,j−ε

mR
ij+εmR

i,j−1−ε

Figure 4.1: Subtracting ε from mC
ij and its effect on entries of MR.

• . . . •

... ...

• . . . • • • •
• . . . • • • •
• . . . •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
MC =

Figure 4.2: The order of changing values in MC to eliminate the residues of MR.

continue in the decreasing order of columns until we arrive at the beginning of
the row, then proceed with the row above in the same manner (see Figure 4.2). By
each step we eliminate one residuum and more importantly, no residuum already
eliminated is affected further in the process (see Figure 4.3).

Not only this elimination order yields 0(m−1)×(n−1) residual matrix (therefore

• . . . •
... ...
• . . . • • • . . . •
• . . . • • • . . . •
• . . . • • . . . •
• . . . •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 4.3: Once mC

ij is altered, no further operation changes the value of mR
ij.

a corresponding Monge matrix) but it is also easy to describe the propagation
of residual values in MR. Eliminating the value α from residuum mR

ij adds α
to mR

i−1,j and mR
i,j−1 and subtracts it from mR

i−1,j−1 (see Figure 4.4). Now if
the intervals of M are large enough we can move from the center far enough
to eliminate the residues. It is now easy to compute by induction the necessary
condition for each interval of M . For the base step, from the way of propagation
(ilustrated by Figure 4.4) it is clear that it must hold that

• m∆
m−1,n−1 ≥ |mR

m−1,n−1|
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• . . . •
... ...

• . . . • •

• . . . • •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
αβ

γδ

+α + β + γ + δ

+α

+α−α+α + β

+α + γ

Figure 4.4: The residual propagation in MR.

• m∆
m−1,n−2 ≥ |mR

m−1,n−1 + mR
m−1,n−2|,

• m∆
m−2,n−1 ≥ |mR

m−1,n−1 + mR
m−2,n−1|,

• m∆
m−2,n−2 ≥ |mR

m−2,n−1 + mR
m−1,n−2 + 2mR

m−1,n−1 −mR
m−1,n−1|, therefore

m∆
m−2,n−2 ≥ |mR

m−2,n−1 + mR
m−1,n−2 + mR

m−1,n−1|.

For inductional step let us suppose the residuum in mR
ij. It must hold that

m∆
ij ≥ |mR

ij + mR
i+1,j + mR

i,j+1 −mR
i+1,j+1|.

By induction we know that the residues are equal to

m∆
ij ≥ |mR

ij +
m−1∑

k=i+1

n−1∑
ℓ=j

mR
kℓ +

m−1∑
k=i

n−1∑
ℓ=j+1

mR
kℓ −

m−1∑
k=i+1

n−1∑
ℓ=j+1

mR
kℓ|

which is equal to the form stated in the lemma.

Let us note that the condition we just showed can be checked in O(mn) time
using dynamic programming.
What we showed in the previous lemma is one of many modifications of the
same condition depending on the order we choose to zero the values in MR. The
advantage of this one-diagonal order is that it is easy to compute the width of
intervals. We present one more condition from this class. The previous condition
works well when the sum |

m−1∑
k=i

n−1∑
l=j

mR
ij| ∼ 0 or is at least small for every i, j. If the

errors are of the same sign, however, the sum has tendency to grow a lot. This is
because we propagate the error only in one direction.
We can choose a point in the matrix and propagate the error in four different
(diagonal) directions.

Lemma 24. Let M ∈ IRm×n and let MR ∈ R(m−1)×(n−1) be the residual matrix
of MC. If there exist indices i, j of M such that

• m∆
rs ≥ |

i−1∑
k=r

j−1∑
ℓ=s

mR
kℓ| for every (r < i) ∧ (s < j),

• m∆
rs ≥ |

i−1∑
k=r

s−1∑
ℓ=j

mR
kℓ| for every (r < i) ∧ (s > j),
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• m∆
rs ≥ |

r∑
k=i

j−1∑
ℓ=s

mR
kℓ| for every (r > i) ∧ (s < j),

• m∆
rs ≥ |

r∑
k=i

s∑
ℓ=j

mR
kℓ| for every (r > i) ∧ (s > j),

then M ∈ IWM.

Proof. Let i, j be indices of MC . Then we can take mR
i−1,j−1, mR

i−1,j+1, mR
i+1,j−1

and mR
i+1,j+1 as starting points for residual elimination described in Lemma 23.

We can see in Figure 4.5 that the residues are not propagated between the blocks
of MR. The conditions follow from Lemma 23.

• • • • •
...

... • ...
• • • • •

• . . . • • • • • • • . . . •
• . . . • • • • • • • . . . •
• . . . • • • • • • • . . . •

• • • • •
... • • • ...

• • ...
• • •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Block A Block B

Block CBlock D

MC =

j

i

Figure 4.5: The residual propagation does not interfere between the blocks.

Let us now state the list of sufficient conditions in one theorem.

Theorem 25. Let M ∈ IRm×n and MR ∈ R(m−1)×(n−1) the residual matrix of
MC. If one of the conditions below is true, then M ∈ IWM.

1. For all rows i it holds that ⋂
j

[mij] ̸= ∅.

2. For all columns j it holds that ⋂
i

[mij] ̸= ∅.

3. For all indices i, j of M it holds that m∆
ij

|mC
ij | ≥ 1.

4. For all indices i, j of MR it holds that m∆
ij ≥ |

∑m−1
k=i

∑n−1
ℓ=j mR

kℓ|.

5. If there exist indices i, j of M such that

• m∆
rs ≥

i−1∑
k=r
|
j−1∑
ℓ=s

mR
kℓ| for every (r < i) ∧ (s < j)

• m∆
rs ≥

i−1∑
k=r
|
s−1∑
ℓ=j

mR
kℓ| for every (r < i) ∧ (s > j)
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• m∆
rs ≥ |

r−1∑
k=i

j−1∑
ℓ=s

mR
kℓ| for every (r > i) ∧ (s < j),

• m∆
rs ≥ |

r−1∑
k=i

s−1∑
ℓ=j

mR
kℓ| for every (r > i) ∧ (s > j).

Proof. See Lemmata 21, 22, 23, 24.

4.3 Closure properties
We investigated closure properties of several operations on IWM. Most of the
results are easy to prove, therefore we state them in one theorem.

4.3.1 Closure properties of IWM
Theorem 26. Let P ∈ IRm×n, M , N ∈ IWMm×n, α ∈ R+

0 and α ∈ IR+
0 . Then

the following holds.

1. M + N ∈ IWM,

2. M + P ∈ IWM iff MR + P R ≥ 0,

3. (M ∪ P ) ∈ IWM,

4. αM ∈ IWM,

5. αM ∈ IWM.

Proof. All the results are easy to prove from the definition of IWM.

4.3.2 Closure properties interconnecting IWM and ISM
Theorem 27. Let M ∈ ISMm×n, N ∈ IWMm×n, α ∈ R+

0 and α ∈ IR+
0 . Then

the following holds.

1. M + N ∈ IWM,

2. ∀i, j it holds that mij ∩ nij ̸= ∅ →M ∩N ∈ IWM,

3. (M ∪N ) ∈ IWM.

Proof. All the results are easy to prove from the definition of IWM and ISM.
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5. Reconstruction algorithms
If the recognition algorithms reveal that an interval matrix does not satisfy the
Monge property, we might still consider affecting the entries of the matrix in order
to reconstruct the property. In this chapter we present a way to reconstruct M ′ ∈
IWMm×n from M ∈ IRm×n and from N ∈ IWMm×n a matrix N′ ∈ ISMm×n.
Both methods are based on mathematical programming that gives us the option
to encode demands into a cost function. We might prefer to let some entries
untouched or change the entries uniformly.
In Section 5.1 we present an Inflation algorithm that for a given interval matrix
inflate its entries in order to obtain IWM matrix. To get ISM from IWM we do
the opposite - prune the intervals of the interval matrix. The Pruning algorithm
is presented in Section 5.2.

5.1 Inflation algorithm
To formulate the Inflation problem we need to employ further definitions.

Definition 19. Let U, L ∈ Rm×n be nonnegative matrices. Then for an interval
matrix M ∈ IRm×n define an inflation of M as a matrix

MUL ∈ IRm×n such that mUL
ij =

[
mij − lij, mij + uij

]
.

Call U,L upper resp. lower inflation matrix of matrix M .

The problem can be now defined as follows.
Problem (Inflation). Let ∥ • ∥ be a matrix norm and M be an interval matrix.
Then the Inflation problem is to find a matrix MUL such that MUL ∈ IWM and
∥U∥+ ∥L∥ is minimal.

Theorem 28. For some matrix norms there exists a polynomial time algorithm
that solves the Inflation problem.

Proof. Let M and ∥ • ∥ be defined. Then derive the following program:

minimize ∥U∥+ ∥L∥
subject to mij + mi+1,j+1 −mi,j+1 −mi+1,j ≤ 0, (1)

mkℓ − ukℓ ≤ mkℓ, (2)
−mkℓ + lkl ≤ −mkℓ, (3)

where 1 ≤ i < m, 1 ≤ j < n,
1 ≤ k ≤ m, 1 ≤ ℓ ≤ n.

Conditions of type (1) enforce that any feasible solution forms a matrix that
is Monge. The conditions of type (2) and (3) ensure that for the values ukℓ

resp. lkℓ it holds that mkℓ ≤ mkℓ + ukℓ and mkℓ − lkℓ ≤ mkℓ meaning that
mij ∈ [mkℓ − lkℓ, mkℓ + ukℓ] for all indices i, j. Hence, setting U and L as upper
resp. lower inflation matrix of M satisfies that MUL ∈ IWM. The minimality of
∥U∥+ ∥L∥ is guaranteed by the cost function. Notice that the conditions are of
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form Ax ≤ b. Hence, depending on the norm this program yields special classes of
mathematical optimization problems (e.g. for a linear norm linear programming)
which are polynomially solvable (for polynomiality of linear programming see [6]).

5.2 Pruning algorithm
For the pruning problem we will employ a definition similar to Definition 19.

Definition 20. Let T, B ∈ Rm×n be nonnegative matrices. Then for an interval
matrix M ∈ IRm×n define a pruning of M as a matrix

MT B ∈ IRm×n such that mT B
ij =

[
mij + bij, mij − tij

]
.

Call T, B upper resp. lower pruning matrix of matrix M .

Problem (Pruning). Let ∥ • ∥ be a matrix norm and M ∈ IWM. Then the
Pruning problem is to find a matrix MT B such that MT B ∈ ISM and ∥T∥+∥B∥
is minimal.

Theorem 29. For special matrix norms there exists a polynomial time algorithm
that solves the Pruning problem.

Proof. Let M and ∥ • ∥ be defined. Then derive the following program:

minimize ∥T∥+ ∥B∥
subject to −tij − ti+1,j+1 − bi+1j − bij+1 ≤ mi+1,j + mi,j+1 −mij −mi+1,j+1,

tij + bij ≤ mij −mij,

where 1 ≤ i < m, 1 ≤ j < n.

Conditions of type tij + bij ≤ mij −mij ensure that the intervals[
mij + bij, mij − tij

]
are well defined. By Lemma 8 the first type of conditions of

the program satisfies that MT B is ISM since inequalities can be rearranged in a
form

mij − tij + mi+1,j+1 − ti+1,j+1 ≤ mi+1,j + bi+1,j + mi,j+1 + bi,j+1.

The minimality of ∥T∥ + ∥B∥ is ensured by the cost function of the program.
Notice that the conditions are of form Ax ≤ b. Hence, similarly to solving the
Inflation problem, depending on the norm this program yields special classes
of mathematical optimization problems (e.g. for a linear norm linear program-
ming) which are polynomially solvable (for polynomiality of linear programming
see [6]).
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6. Permutation algorithm
In many optimization problems (e.g. travelling salesman problem, transportation
problem,. . . ) the optimal solution of the problem is invariant to a row and a
column permutation of the cost matrix. Therefore a question whether there exist
such permutations is natural. We introduce a generalization of a permutation
algorithm by Deineko and Filonenko [7] running in O(n2) for ISM square matrices.
For matrices from IWM the algorithm does not seem to have a straightforward
generalized and it remains an open problem. In Section 6.1 we present an idea of
the algorithm. In Section 6.2 we introduce and prove auxiliary lemmata that we
will use in Section 6.3 where the algorithm is derived.

6.1 The idea of the algorithm
The algorithm performs 3 permutations and then checks if the resulting matrix
is from ISM. The first one permutes columns upon a necessary condition of two
rows. This gives us a prepermutation that divides the columns into so called
ambiguity sets. Although for two columns from different sets the order is clear,
inside the sets it is not. The second permutation is performed on rows. Columns
from the first ambiguity set and the last ambiguity set are candidates for the
first resp. the last column. A combination of these candidates is used in order
to obtain a rule for the second permutation. The necessary conditions from this
rule are strong enough to determine the resulting order of rows. Finally, a third
permutation permutes columns again by the same necessary condition as was
used in the first permutation, although this time it is applied on the first and
the last row. By this we deal with those columns inside one ambiguity set, that
still need to be switched. After this procedure it remains to check if the resulting
matrix is from ISM. If it is not, then there is no way to permute the matrix in
order to obtain Monge property. Further in the text we describe the process in
detail relying on lemmata that we prove in the next section.

6.2 Lemmata for the derivation of the algorithm
In this section we prove lemmata that are necessary for a derivation of the al-
gorithm. We denote by M(σ, π) a matrix M permuted by a row permuta-
tion σ and a column permutation π. If there exist permutations σ, π such that
M(σ, π) ∈ ISM we say that M is Monge permutable.
The first lemma states that ISM is closed under flipping the matrix upside down
and left to right.

Lemma 30. Let M ∈ ISMm×n. Define σ(i) = m− i + 1 and π(j) = n− j + 1.
Then M (σ, π) ∈ ISM.

Proof. For every pair of indices i, j we have that

mσ(i),π(j) + mσ(i+1),π(i+1) = mm−i+1,n−j+1 + mm−i,n−j.
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From the Monge property we have

mm−i+1,n−j+1 + mm−i,n−j ≤ mm−i,n−j+1 + mm−i+1,n−j,

but the righthand side of the inequality is equal to

mm−i,n−j+1 + mm−i+1,n−j = mσ(i),π(j+1) + mσ(i+1),π(j).

By Lemma 8 we conclude that M (σ, π) ∈ ISM.

The following lemma is rather technical. It states for two rows i, k and two
columns j, ℓ if certain conditions with upper and lower bounds of intervals hold,
than all entries involved in the conditions and all between are real values and we
can conclude equality between sums of pairs of these entries.

Lemma 31. Let M ∈ ISM and let row indices i < k and column indices j < ℓ.
If it holds that

mij −mkj ≤ miℓ −mkℓ and miℓ −mkℓ ≤ mij −mkj

then for all rows o such that i < o ≤ k it holds

1. mij, moj, miℓ, moℓ ∈ R,

2. mij −moj = miℓ −moℓ.

Proof. The following sequence of inequalities

mij −mkj ≤ miℓ −mkℓ ≤ miℓ −mkℓ ≤ mij −mkj ≤ mij −mkj

turns into a sequence of equalities since the first and last members are the same.
This means that also

miℓ −mkℓ = miℓ −mkℓ.

Rearranging the equation we have

−2 ·m∆
kℓ = mkℓ −mkℓ = miℓ −miℓ = 2 ·m∆

iℓ ,

from which
−m∆

kℓ = m∆
iℓ .

But this means that
miℓ, mkℓ ∈ R.

For mij and mkj the argument is similar.
Now the inequalities

mij −mkj ≤miℓ −mkℓ and miℓ −mkℓ ≤mij −mkj

combined together imply

miℓ + mkj = mij + mkℓ.

Let us now consider o such that i < o ≤ k. Since M ∈ ISM it must hold

mij −miℓ ≤ moj −moℓ and moj −moℓ ≤mkj −mkℓ.
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Connecting both inequalities using the fact that moj − moℓ ≤ moj − moℓ we
conclude that

moj −moℓ = moj −moℓ.

This means that moj, moℓ ∈ R and since

mij −miℓ ≤moj −moℓ ≤mkj −mkℓ = mij −miℓ

we conclude that mij −miℓ = moj −moℓ.

Lemma 32 deals with a combination of conditions of form

mij −miℓ ≤ mkj −mkℓ where i < k, j < ℓ.

These conditions are necessary for a matrix to be in ISM. For the combination
below first b and last B columns are picked for the combination.

Lemma 32. Let M ∈ IRm×n. If M ∈ ISM then for every pair of rows i and k
such that i < k it holds

B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠
where 1 ≤ b < n−B + 1 ≤ n.

Proof. For i < k, it holds for every j such that 1 ≤ j ≤ b and every ℓ such that
n−B + 1 ≤ ℓ ≤ n that

mij −miℓ ≤ mkj −mkℓ.

By picking such an inequality for every pair (j, ℓ) where j ∈ {1, . . . , b} and ℓ ∈
{n−B + 1, . . . , n} and adding all these inequalities together we get the formula
above.

The following lemma gives an algorithm to compute the permutations of rows
and columns.

Lemma 33. Let u, v ∈ IRn. Let σ be a permutation of {1, . . . , n} such that
whenever

σ(i) < σ(j) then ui − vi ≤ uj − vj.

Then in O(n2) we can compute σ or answer that there is no such permutation.

Proof. We construct a directed graph G = (n, E) where (i, j) ∈ E if ui − vi ≤
uj − vj. If there is a pair of vertices i, j ∈ G without an edge between them, it
means that

ui − vi > uj − vj and uj − vj > ui − vi.

and by the definition of σ no mutual order of these indices yields the permutation
so we stop. From now on, let us suppose that there is at least one edge between
all pairs of vertices in graph G.
Now let c1, . . . , ck be strongly connected components of G such that t(c1) < · · · <
t(ck), where t is some topological ordering of strongly connected components of
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G.
Now define σ as follows. While σ is not defined for all indices i ∈ {1, . . . , n}, pick
between indices with unspecified σ(i) the one for which the topological number
of the strongly connected component containing the vertex i is minimal. Set σ(i)
as the smallest number from {1, . . . , n} not assigned yet.
To prove that the construction is correct let i, j be indices such that σ(i) < σ(j).
Then either vertices i, j are from the same component or i is from a component
with a smaller topological number than the component containing j. If i and j
are from the same component of G, it means by the contruction of G that there
are edges (i, j) and (j, i) therefore it holds that ui − vi ≤ uj − vj. If i is in a
component with smaller topological number than j it means that there is an edge
(i, j). But the edge (i, j) corresponds to the inequality ui − vi ≤ uj − vj.
There exists an algorithm for finding a topological ordering of strongly connected
components of a directed graph running in O(n+m) where n equals the number of
vertices and m equals the number of edges (see [8]). Since the number of edges m
is in the worst case approximately m ≈ n2, the algorithm runs in O(n2). Defining
σ from the topological ordering t takes O(n), therefore the whole construction
takes O(n2).

Finally, we prove a lemma about the first step of our algorithm. In this step
a pair of rows is determined. The first permutation ρ is based on conditions
between these two rows. We demand at least two columns to be strictly ordered
otherwise the permutation ρ will have no effect (we want it to prepermute the
matrix). A strict order of two columns corresponds to two different ambiguity
sets. According to logical structure of this chapter we state the lemma in this
subsection, however, the notion of ambiguity sets necessary in the lemma becomes
clear in Subsection 6.3.1. We recommend to the reader to first go through the
derivation of the algorithm and the mentioned subsection.

Lemma 34. Let M ∈ IRn×n. Then a problem to decide if there is a row r such
that there are two ambiguity sets of columns for rows 1 and r can be computed
in O(n2). If for every row r there is only one ambiguity set of columns, then the
matrix is from ISM.

Proof. For every row k and for all neighbouring pairs of columns (i.e. j, j + 1 for
1 ≤ j ≤ n− 1) we check if it holds that

m1j −mkj < m1,j+1 −mk,j+1 or m1,j+1 −mk,j+1 < m1j −mkj. (6.1)

Only one of these inequlities can hold at the same time because otherwise

m1j −mkj < m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 < m1j −mkj ≤ m1j −mkj

which leads to a contradiction m1j −mkj < m1j −mkj. If one of the inequalities
holds and the other is =, then w.l.o.g. consider

m1j −mkj < m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 = m1j −mkj.

From these two inequalities we can derive that

m1j −mkj < m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 = m1j −mkj
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and therefore m1j −mkj < m1j −mkj which is again a contradiction.
This means that if one inequality holds with < the other must hold with >,
therefore the order of the columns is strict and they cannot be switched. A strict
order of two columns means that these columns cannot be in one ambiguity set,
therefore we return row k.
It might happen that for every pair j, j+1 and for row k neither of the inequalities
from 6.1 is strict. It means that

m1j −mkj ≥ m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 ≥ m1j −mkj. (6.2)

If both of the inequalities are strict for at least one pair j, j + 1, it means that no
order of columns j, j + 1 satisfy the Monge property and in that case we stop.
If both of the inequalities hold with equality = for all pairs of columns j, j + 1 in
the row k it means that

m1j −mkj = m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 = m1j −mkj ≤ m1j −mkj,

therefore m1jmkj and also mk,j+1m1,j+1 are real values and therefore m1j −
mkj = m1,j+1−mk,j+1. If this happens for all rows k then the matrix is already
Monge because every condition holds with equality.
The last case which remains is when one of the inequalities from 6.2 is strict >
and the second one is equal = for at least one row r. Then the order is strict
again, because there is only one way to permute these two columns in order to
satisfy Monge property. Therefore we return row r.

Applying this procedure to each of n − 1 rows the number of conditions to
check is at most 2(n − 1) for each row. We conclude that the problem can be
computed in O(n2).

6.3 Derivation of the algorithm
With all the lemmata we are prepared to derive the algorithm.

6.3.1 Prepermutation ρ

The first permutation ρ is based upon a property that if M(σ, π) ∈ ISMm×n then
for any two rows σ(i) < σ(k) it holds from the definition of ISM that

mσ(i),π(j) −mσ(k),π(j) ≤ mσ(i),π(ℓ) −mσ(k),π(ℓ)

for all columns π(j) < π(ℓ).
We can choose any two rows i, k from M and permute the matrix by this rule.
Notice that such a permutation is not necessarily unique. It might hold for two
columns ℓ1 and ℓ2 that

mi,ℓ1 −mk,ℓ1 ≤ mi,ℓ2 −mk,ℓ2 and mi,ℓ2 −mk,ℓ2 ≤ mi,ℓ1 −mk,ℓ1

at the same time. By Lemma 31 we know that

mi,ℓ1 −mk,ℓ1 = mi,ℓ2 −mk,ℓ2
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therefore as far as rows i, k are concerned the mutual position of ℓ1 and ℓ2 does
not matter. If we choose i, k such that in the permuted matrix M (σ, π) it holds
σ(i) < σ(k) we get a prepermutation of columns. By prepermutation we mean
that the permutation divides the columns into sets. The order of these sets is
given, although, it might still happen that columns inside one set might need to
be switched because for a different pair of columns the conditions are different.
Therefore, we call them ambiguity sets (see Figure 6.1) as we cannot determine
their inner structure using conditions for rows i, k.

The only problem that remains to be determined is how to find rows i, k for

a11 a12 a1k a1j a1n a1n

a11 a12 a1k a1j a1n a1n

a11 a12 a1k a1j a1n a1n

a11 a12 a1k a1j a1n a1n

a11 a12 a1k a1j a1n a1n

a11 a12 a1k a1j a1n a1n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A1 A2 A3 A4

≤ ≤ ≤ ≤

< < <

Figure 6.1: Columns cannot be switched between ambiguity sets Ai.

which it holds in M (σ, π) ∈ ISM that σ(i) < σ(k). Thanks to Lemma 30 we
can choose any two rows from matrix M because there are always permutations
σ, π where σ(i) < σ(k). For ρ to have some effect and further in the algorithm it
is important for rows i, k to have at least two ambiguity sets of columns. If we
have only one ambiguity set for all pairs of rows, the matrix is Monge because all
conditions hold with equality =. A way to efficiently find such a pair is discribed
in Lemma 34.

6.3.2 Row permutation σ

If we knew which columns were the first and the last, we could apply similar rule
for the permutation of rows as we did for columns in ρ. In general, however, the
first column and the last column are part of the first resp. the last ambiguity
sets. We could choose one column randomly from each set but instead we choose
a combination of all b columns from the first ambiguity set and all B columns
from the last one. Lemma 32 gives us a way to establish a rule from a necessary
condition induced by this combination. Permutation σ based on this rule looks
as follows. For every pair of rows i, k if σ(i) < σ(k) then

B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ . (6.3)

After applying σ it might still happen that for two rows i, k the permutation is
ambiguous.
In fact, this is not a problem because all entries in these rows are real values and
for all columns j, ℓ it holds that

mij + mkℓ = miℓ + mkj.
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Let us note that the argument for this is similar to the one in Lemma 31.
From the ambiguity of i, k it holds that

B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ (6.4)

and also

B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ . (6.5)

The righthand side of Inequality 6.4 is less or equal to the lefthand side of In-
equality 6.5, therefore combining the inequalities together we get

B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ .

Similarly, we can derive that

B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ .

It is now obvious that all the values mij, miℓmkj, mkℓ are real. From this and
the pair of inequalities 6.4, 6.5 we deduce that Inequality 6.3 becomes equality.
Now since every column 1 ≤ j ≤ b is a candidate for the first column and every
column n − B + 1 ≤ ℓ ≤ n is a candidate for the last column it must hold
that mij −miℓ ≤ mkj −mkℓ for every such j, ℓ if we suppose w.l.o.g. that
i < k in the permuted matrix M (σ, π). If there was a pair of columns where
mij −miℓ < mkj −mkℓ we would have

B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ < B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠
which is a contradiction with what we proved so far. Therefore

mij −miℓ = mkj −mkℓ.

Lemma 31 tells us that for any row o that is squeezed between two rows i, k
for which Monge condition holds with an equal sign it must hold that condition
between this row o and each of i, k holds with equal sign as well. Applying
similar result on columns instead of rows we get for the rest of columns squeezed
between the sets of candidates equal signs in conditions with candidates, and by
this equation between each other as well.
This all means that whenever σ becomes ambiguous for two rows, their order in
respect to each other does not matter. We determine the last permutation π in
a way that does not interfere with σ, therefore the order of rows is determined
with no further need to change it.
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6.3.3 Column permutation π

Let us recall that using the necessary conditions, permutation ρ divided the set
of columns into ambiguity sets but it might still happen that inside the sets there
are columns that need to be permuted. In order to fix this we define column
permutation π similarly as we did define permutation ρ only this time on rows
σ(1) and σ(m). For any two columns j, ℓ it should hold that

mσ(1),π(j) −mσ(m),π(j) ≤ mσ(1),π(ℓ) −mσ(m),π(ℓ).

Notice that any ambiguity set Aπ from π is a subset of ambiguity set Aρ from ρ
otherwise M is not Monge permutable. This also means that π do not interfere
with σ because the sums from Inequality 6.3 do not change (only the order of
sum members might change). Moreover, by Lemma 31 it holds that whenever π
is determined ambiguously for two columns j, ℓ, the condition

mij −miℓ = mkj −mkℓ.

holds for all rows i, k, therefore the order of these columns does not matter.

6.3.4 Pseudocode of the algorithm
We summerize the algorithm into a pseudocode.

Algorithm 1. ISM permutation algorithm
Input: M ∈ IRnxn

Output: ”YES” if M is Monge permutable together with
M (σ, π) ∈ ISM , ”NO” otherwise

1 Find a row r such that there are at least two column ambiguity sets for
rows 1, r. If every row has one ambiguity set with row 1 output ”YES”
with σ = id and π = id. If there is a pair of columns j, j + 1 which
cannot be permuted output ”NO”.

2 Determine permutation ρ such that

ρ(k) < ρ(ℓ) implies that m1k −mjk ≤ m1ℓ −mjℓ.

If no such permutation exists, output ”NO”.
3 Determine b, B ∈ {1, ..n} such that b equals to the size of the first

ambiguity set of ρ and B equals to the size of the last ambiguity set of ρ.
4 Determine row permutation σ such that σ(i) < σ(k) implies that

B ·

⎛⎝ b∑
j=1

mij

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

miℓ

⎞⎠ ≤ B ·

⎛⎝ b∑
j=1

mkj

⎞⎠− b ·

⎛⎝ n∑
ℓ=n−B+1

mkℓ

⎞⎠ .

If no such permutation exists, output ”NO”.
5 Determine column permutation π such that

π(k) < π(ℓ) implies that mσ(1),k −mσ(n),k ≤ mσ(1),ℓ −mσ(n),ℓ.

If no such permutation exists, output ”NO”.
6 Check if M (σ, π) ∈ ISMm×n. Output ”YES” with σ, π if it does and

”NO” otherwise.
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6.3.5 Correctness and complexity of the algorithm
Theorem 35. Algorithm 1 is correct and for M ∈ IRn×n it runs in O(n2).

Proof. The correctness of Algorithm 1 follows from sections 6.3.1 - 6.3.3. If matrix
M is Monge permutable, Algorithm 1 yields one of possible permutations of rows
and columns such that the resulting matrix is from ISM. If the procedure fails
it means that there is a quadraple of entries that are not ordered correctly. But
their correct order violates some condition elsewhere in the matrix.
Step 1 takes O(n2) by Lemma 34. Steps 2,4 and 5 take O(n2) by Lemma 33.
Step 3 takes O(n) time because we can easily derive b and B from ρ by checking
mostly 2n conditions. Finally, by Lemma 8 Step 6 takes O(n2). Altogether, the
time complexity of Algorithm 1 is O(n2).

We proved the second part of Theorem 35 for matrices of dimension n×n in order
to simplify the proof of time complexity. Let us note that it can be easily modified
to show that for rectangular matrices M ∈ IRm×n it runs in O(m2 + mn + n2).
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7. Generating IM matrices
In this chapter we deal with generating random IWM and ISM matrices which
might be useful for testing hypothesis and understanding the structure of matri-
ces. In Section 7.1 we deal with IWM generating. In Section 7.2 we present a
general method with many possible variations. We demonstrate one specific vari-
ation and briefly mention others. In Section 7.3 we present a memory friendly
method for generating real Monge matrices with O(m + n) memory requirement
for storing Rm×n matrices and in Section 7.4 we present its interval generalization.

7.1 Generating IWM
Generating IWM matrices is an easier task than generating ISM matrices. Since
only one realization of the interval matrix has to be Monge, we can use an ap-
proach to generate a random real Monge matrix and then randomly inflate the
entries into intervals. Therefore, we do not deal with IWM directly, although
both methods presented in this chapter can be easily modified for IWM matrices.

7.2 The general method for ISM
The general method can be devided into two steps. First, we generate a random
real Monge matrix which will be taken as a special realization of the matrix being
generated. This special matrix might be e.g. upper or lower bound matrix or
Chess matrix. In the second step, the matrix is inflated into ISM matrix. The en-
tries are inflated one after the other and the order of inflation is either random or
arranged according to some key (e.g. rows, columns, . . . ). We will demonstrate
the method using a lower bound matrix. The method to generate the special
matrix will be built on a characterization of Monge matrices via distribution ma-
trices. We will use a random inflation order.

Algorithm 2. A variation of the general method for ISM
1 Generate a nonnegative matrix N ∈ Rm×n

2 Generate random vectors u ∈ Rm, v ∈ Rn

3 Set a distribution matrix D such that dij =
m∑

k=i

j∑
ℓ=1

nkℓ

4 Set mij = dij + ui + vj

5 Set mij = mij

6 while ∃ {i, j} such that mij has not been chosen in this loop yet do
7 Pick the pair of indices {i, j}
8 εA := mi,j−1 + mi−1,j −mi−1,j−1 −mij

9 εB := mi,j+1 + mi+1,j −mi+1,j+1 −mij

10 Set mij ∈
[
mij, mij + min

{
εA, εB

}]
11 end

Output: M ∈ ISMm×n
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Theorem 36. Algorithm 2 is correct.

Proof. According to Lemma 2 lines 1-4 generate a real Monge matrix. The ma-
trix is then set as a lower bound matrix of M . To inflate the matrix we must
ensure that the upper bounds of entries are not too large to violate the condi-
tions of Monge property. We start by setting them to values of corresponding
lower bounds and we will increase them one by one. Thanks to Theorem 1.3 it
suffices for every mij to meet conditions of neighbouring quadraples. Out of four
quadraples only upper left quadraple and lower right quadraple put conditions
on mij (see Figure 7.1).

m11 . . . m1n

mi−1,j−1 mi−1,j mi−1,j+1
... mij−1 mij mi,j+1

...
mi+1,j−1 mi+1,j mi+1,j+1

mm1 . . . mmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

B

Figure 7.1: The two quadraples A and B that put conditions on mij.

For mij the upper left quadraple (labeled A in Figure 7.1) sets condition

mi−1,j−1 + mij ≤ mi−1,j + mi,j−1

and the lower right quadraple (labeled B in Figure 7.1) sets condition

mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j.

When defining mij we can express the tightness of the conditions by εA, εB such
that

mi−1,j−1 + mij + εA = mi−1,j + mi,j−1

and
mi+1,j+1 + mij + εB = mi,j+1 + mi+1,j.

From this it is obvious we have to choose mij from
[
mij, mij + min

{
εA, εB

}]
as

described on lines 6-11.

7.3 Bost’s method
Bost’s method in its original form (see [9]) generates matrices with inverse Monge
property. Only a little modification is needed to obtain Monge matrices, therefore
we keep referring to the method as Bost’s even though we are working with Monge
matrices. The method is based on taking the values of the matrix along lines with
a slope that decreases with an index of a row (see Figure 7.2).
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Figure 7.2: Bost’s method for generating Monge matrices.

From this idea, M ∈ Rm×n is defined as

mij = j · si − i.

It is easy to prove that such matrices satisfy the Monge property iff {si}m
i=1 is a

nonincreasing ordered sequence (∀i : si ≥ si+1). To avoid regularity of entries in
rows given by the generated lines, Bost defines also nij = i · rj − j where {rj}n

j=1
is nonincreasing. Since Monge matrices are closed under transposition, N is also
Monge and sum of two Monge matrices is also Monge. Finally, to have a good
distribution of slopes, Bost picks an angle α from the range

[
−π
2 , π

2

]
and sets the

slope of line to tan(α). To summerize, Bost’s method generates two nonincreasing
ordered sequences {αi}m

i=1, {βj}n
j=1 of elements picked uniformly at random from

range
[

−π
2 , π

2

]
and sets mij to

mij = j · tan(αi)− i + i · tan(βj)− j.

The advantage of this approach is coding m · n entries of the matrix into two
vectors of length m and n.

7.4 Generalization of Bost’s method
Our generalization is based on a simple idea. Instead of binding one row with
slope of one line, we bind an interval of slopes with the row (see Figure 7.3).

Of course, a restriction on intervals has to be made in order to preserve strong
Monge property. Our goal is to generate a matrix M of form

mij = j · si − i + i · rj − j

where si and rj are intervals for all indices i, j of M . We present an algorithm
followed by an analysis.
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Figure 7.3: Generalized Bost’s method for generating ISM matrices.

Algorithm 3. Bost’s generalized method
1 Generate two nonincreasing sequences {si}

m
i=1,

{
rj

}n

j=1

2 Set s1 such that s1 ∈
[
s1, s1 + s1−s2

m

]
3 Set si for i = 2, . . . , m such that si ∈

[
si, si−1 + m

m+1 (si − si−1)
]

4 Set r1 such that r1 ∈
[
r1, r1 + r1−r2

n

]
5 Set ri for i = 2, . . . , n such that ri ∈

[
ri, ri−1 + n

n+1 (ri − ri−1)
]

6 Set M such that mij = j · si − i + i · rj − j.

Theorem 37. Algorithm 3 outputs M ∈ ISM.

Proof. Step 1 generates two nonincreasing sequences as in the real case. We set
these sequences as lower bounds of intervals and all that remains is to set the
upper bounds. We derive upper bounds from a characterization of ISM:

mij + mi+1,j+1 ≤ mi,j+1 + mi+1,j.

Since we want mij = j · si − i, we rewrite the inequality above in the terms of
sequence {si}m

i=1 as

j · si − i + (j + 1)si+1 − (i + 1) ≤ j · si+1 − (i + 1) + (j + 1) · si − i.

Terms i nad (i + 1) are redundant on both sides therefore we eliminate them:

j · si + (j + 1)si+1 ≤ j · si+1 + (j + 1) · si.

We can further rearrange the inequality into form:

j(si − si + si+1 − si+1) ≤ si − si+1.

This inequality must hold for all j ∈ {2, . . . n}. Since (si − si + si+1 − si+1) is
nonnegative, the inequality holds for all j iff it holds for j = m. Considering
the case where j = m we can rewrite the inequality in order to get a recurrent
formula for determining members of {si}m

i=2:

si+1 ≤ si + m

m + 1 (si+1 − si) .
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All that is left to determine is s1 because the formula does not work for i = 0.
We know that s1 ≥ s1 but is there an upper bound for the expression? We take
the derived formula and set i = 1:

s2 ≤ s1 + m

m + 1 (s2 − s1) = s1 −
m

m + 1 (s1 − s2) .

We can observe that the larger we set the value of s1 the stricter we bound the
value of s2. We can bound s2 as s2 ≤ s2 + ϵ and the bound becomes tight when
s2 = s2, therefore s1 can be as big as in the equality

s2 = s1 −
m

m + 1(s1 − s2).

Deriving now s1 from the equality we get

s1 = s2 + m + 1
m

(s1 − s2) = s1 + s1 − s2

m
.

This gives us an upper bound for choosing the value of s1. It is now clear what
Step 2 and Step 3 do. For the sequence {rj}n

j=1 the argument is similar. There-
fore Steps 4 and 5 are correct. Both sequences generate a matrix from ISM.
Adding them together yields a matrix from ISM by Theorem 12 meaning Step 6
is correct.
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8. Applications of ISM
In this chapter we present results about applications of ISM namely in Section ??
an interval row-minimization problem, in Section ?? an interval version of trans-
portation problem and in Section ?? an interval travelling salesman problem.
For each application we briefly introduce the real version of the problem and the
well-known solution considering Monge matrices. After that we present results
of our investigation in the interval version of the problem.

8.1 Row-minimization problem
In this section we consider so called Row-minimization problem - a problem of
computing the minimum entry of all rows of a matrix. One way to define the
interval generalization is as follows. For an interval matrix M ∈ IRm×n find a
matrix with unspecified entries S ∈ IRm×n such that for every pair of indices
i, j and every realization sij ∈ sij there exists a matrix M ∈ M with mij =
sij being the minimum value of row i. Matrices with unspecified entries are
employed because not all interval entries contain a minumum. Monge matrices
with unspecified entries are mentioned in work of Deineko et al. [10]. In this text
we will not further deal with them.
Example. Let M ∈ ISM3×3 such that

M =

⎛⎜⎝ [4, 5] [4, 5] [2, 8]
[20, 22] [10, 12] [4, 6]
[20, 25] [14, 18] [0, 6]

⎞⎟⎠ .

In the first row, the minimum is from the range [2, 5] because the minimum in M
is 2 and the minimum of M is 5. Therefore we leave the first two entries intact
and set the last entry [2, 5].
For the second row no matter what entries we choose from the intervals, the
minimum is always in the last column, therefore we set the first and the second
entry as unspecified (denoted by ?) and leave the last entry intact. For the third
row it is similar as for the second row.
The output matrix S then looks like this:

S =

⎛⎜⎝[4, 5] [4, 5] [2, 5]
? ? [4, 6]
? ? [0, 6]

⎞⎟⎠ .

8.1.1 The real version and SMAWK algorithm
For solving the row-minima problem in totally monotone matrices (including
Monge matrices) SMAWK algorithm was introduced by P. Shor, S. Moran, A.
Aggarwal, R. Wilber and M. Klawe (see [11]). For m× n matrices the algorithm
returns in O(1(n+log(m

n
)) a vector s where si corresponds to the value of minimal

entry in row i. The algorithm is fundamental for many other applications e.g.
geometrical problems or selecting and sorting problems (see [12]).
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8.1.2 The interval version
Having the method for the real version, the interval version is easy to solve using
a simple observation. Let us take row minima (m1, m2, . . . , mn) of the upper
bound matrix M (where mi is the minimum of row i). For any matrix realization
M ∈M the row minima will be less or equal to (m1, m2, . . . , mn). Furthermore,
for all values mik ∈ mik less or equal to minimum of row i a matrix realization
can be chosen in order to represent this value as the minimum of row i.
Let mij be the minimum of row i in the upper bound matrix M and let mik ≤ mij

for some 1 ≤ k ≤ n. Then choose matrix M ik such that (M ik)rs = (M)rs for
all r ̸= i or s ̸= k and (M ik)ik = mik. The entry mik is obviously the row
minimum of the row i in the matrix M ik since for all ℓ such that ℓ ̸= k it holds
that mik ≤ mi ≤ miℓ.We can therefore derive an algorithm as follows.

Algorithm 4. Interval Row Minima algorithm
Input: An interval matrix M ∈ ISMm×n

1 (m1, m2, . . . , mn) ← Run SMAWK algorithm on the upper bound matrix
M

2 For every row i:
3 For every entry j:
4 if mij ≤ mi < mij then
5 set Sij :=

[
mij, mi

]
6 end
7 else if mij ≤ mi then
8 set Sij := M ij

9 end
10 else if mi < mij then
11 set Sij :=?
12 end

Output: An interval matrix S of dimension m× n with unspecified
entries

In the first phase the algorithm computes the row minima of the upper bound
matrix and in the second phase it uses them as tresholds for row prunning.
The asymptotical time complexity is O(mn) since step 1 takes O(1(n + log(m

n
))

(see[12]) and steps 2− 12 take O(mn).

8.2 Transportation problem (TP)
In 1961 Hoffman presented a greedy algorithm for solving Hitchcock transporta-
tion problem where the cost function was a Monge matrix (actually, a more
general matrix with a Monge sequence). The algorithm employed the famous
NWC rule for finding an initial feasible solution of a linear program. This meant
a significant improvement over general LP algorithm.

8.2.1 The real version of TP
In transporation problem we have m producers and n consumers with information
about the amount of commodity that they produce resp. require. In addition
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a value cij represents the cost of transporting one unit of a commodity from
a producer i to a consumer j. We add a condition that the amount of the
produced commodity over all producers equals the amount of the commodity that
is desired by all costumers. The goal is to transport the commodity between the
producers and the costumers with a minimal transporting cost. Mathematically,
the problem has the following form.
Problem (Transportation).

minimize
m∑

i=1

n∑
j=1

cijxij

subject to ∑
j

xij = ai for 1 ≤ i ≤ m,∑
i

xij = bj for 1 ≤ j ≤ n,∑
i

ai = ∑
j

bj,

xij ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The last condition ∑
i

ai = ∑
j

bj is crucial for Theorem ??. We call this condi-
tion a balance condition.

Theorem 38. The north-west corner rule produces an optimal solution of the
transportation problem if the cost matrix C is a Monge matrix.

Proof. See [13].

To explain how the algorithm works we define properly the north-west corner
rule.

North-west corner rule (NWC rule)
The north-west corner rule is a method to obtain an initial feasible solution of
a linear program. In a table where first m rows represent producers and first
n columns represent consumers the cell at position (i, j) represents the cost of
transporting one unit of commodity from producer i to consumer j. We add
another row of total demands of each consumer and another column of total
supply of each producer (see Figure ??). We start assigning the commodity
greedily from the upper-left corner and continue either right if the demand of
the current producer is satisfied, down if the supply is exhausted or diagonally if
both (see Figure ??). It is obvious that this procedure yields a feasible solution.

8.2.2 The optimal value range of ITP
We can generalize the transportation problem as a family of linear programs
where we call a specific realization of interval values a scenario.
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Figure 8.1: The table of NWC rule.
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Figure 8.2: The application of NWC rule in progress.

Definition 21. Let C ∈ IRm×n, a ∈ IRm and b ∈ IRn be given. Then the
interval transportation problem (ITP) is a family of linear programs

minimize
m∑

i=1

n∑
j=1

cijxij

subject to ∑
j

xij = ai for 1 ≤ i ≤ m,∑
i

xij = bj for 1 ≤ j ≤ n,∑
i

ai = ∑
j bj,

xij ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

denoted by (a, b, C), where cij ∈ Cij, ai ∈ ai and bj ∈ bj.

For further usage let us properly define a scenario.

Definition 22. A scenario is an ordered triplet (a, b, C) where a ∈ a, b ∈ b are
vectors of producers resp. consumers and C ∈ C is a cost matrix of some ITP.

In this thesis we study the optimal value range of ITP.
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Definition 23. Let f(a, b, C) be the optimal value of scenario (a, b, C). Then an
optimal value range of ITP is f =

[
f, f

]
where

f = min
(a,b,C)

{f(a, b, C)} ,

f = max
(a,b,C)

{f(a, b, C)} .

The optimal value range problem might be solved by an interval linear pro-
gramming (ILP). Although it is easy to compute the lower bound f , it is known
that for the upper bound f the general ILP is NP-hard (see [14]). For the in-
terval transportation problem, the complexity is still an open problem. We will
therefore focus on computing the upper bound f .

8.2.3 NWC rule based algorithm
We present an algorithm which solves the optimal value range problem of ITP
by exponentional number of linear programs of reduced size. The algorithm is
not polynomial, however, it is easy to parallelize which can make the algorithm
faster than the methods known for solving ITP.
The algorithm is based on the NWC rule. For a specific scenario, the NWC rule
defines a route in the cost matrix. The route is defined for every scenario. It
consists of positions in the cost matrix for which the corresponding variable of
the optimal solution vector is non-zero.

Definition 24. Let x be the optimal solution of a scenario (a, b, C) of an ITP.
Then a route R of a scenario (a, b, C) is a lexicographically ordered sequence of
pairs (i, j) such that xij ̸= 0.

Definition 25. Let R = (r1, r2, . . . , rn) be a route of some scenario (a, b, C).
Then a subroute S of R is an ordered subsequence of R such that there exist
k ≤ ℓ such that S = (rk, rk+1, . . . , rℓ). We denote the subsequence S of route R
by S ⊆ R and (i, j) ∈ R if a sequence ((i, j)) ⊆ R.

From the NWC rule we see that for a Monge matrix C any route R contains
(1, 1) and for every (i, j) in R it either contains (i+1, j), (i, j +1) or (i+1, j +1).
We can merge together scenarios that have the same NWC route. For every
route in the cost matrix we generate a linear program (see Lemma ??). Each
linear program corresponds to a route in a way that every feasible solution of
this program corresponds to a scenario with optimal solution on this route. The
maximum of this LP corresponds to maximal optimal value over all scenarios
with this NWC-route. Therefore, the maximum over all LPs is the upper bound
f of the optimal value range problem.
This devides the problem into polynomially solvable subproblems, however, the
number of subproblems is still exponential.
To prove all this we start with few lemmata to further use in a proof of a main
theorem.

45



Lemma 39. Let C ∈ IRm×n be a nonnegative matrix and let f =
[
f, f

]
be the

optimal value range of an ITP (a, b, C). Then

f := min
(a,b,C)

{f(a, b, C)} ,

f := max
(a,b,C)

{
f(a, b, C)

}
.

Proof. Let us suppose that there exists a scenario (a′, b′, C) of ITP such that
C ̸= C and f(a′, b′, C) > max

(a,b,C)

{
f(a, b, C)

}
. Since C ∈ C ≥ 0 it holds

f(a′, b′, C) =
m∑

i=1

n∑
j=1

cijxij ≤
m∑

i=1

n∑
j=1

cijxij = f(a′, b′, C) ≤ max
(a,b,C)

{
f(a, b, C)

}
.

For f the argument is similar.

From the previous lemma, when looking for f the only condition that is necessary
for our algorithm is that C is Monge. However, when dealing with the set of all
optimal routes it is still necessary to consider C ∈ ISM.

Lemma 40. The number of routes in the cost matrix is at least 3min{m−1,n−1}

where m and n are the numbers of producers resp. consumers.

Proof. We can construct a ternary tree representing all the routes in the cost ma-
trix. The root of the tree has label (1, 1) and for every node with label (i, j) the
corresponding children are (i + 1, j), (i, j + 1) and (i + 1, j + 1) for 1 ≤ i ≤ m− 1
and 1 ≤ j ≤ n − 1. We see that up to the level min {m− 1, n− 1} the tree is
full, therefore the number of leaves which represents the number of routes in the
cost matrix is at least 3min{m−1,n−1}.
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Lemma 41. For every route R of ITP (a, b, C) a linear program

maximize ∑
(i,j)∈R

cijxij

subject to
∀(i, j) ∈ R :∑
k≤i

ak <
∑
ℓ≤j

bℓ if ((i, j)(i + 1, j)) ⊆ R, (1)∑
k≤i

ak >
∑
ℓ≤j

bℓ if ((i, j), (i, j + 1)) ⊆ R, (2)∑
k≤i

ak = ∑
ℓ≤j

bℓ if ((i, j), (i + 1, j + 1)) ⊆ R, (3)

xij = bj if ((i, j − 1), (i, j), (i, j + 1)) ⊆ R, (4)
xij = bj if ((i, j − 1), (i, j), (i + 1, j + 1)) ⊆ R, (5)
xij = bj if ((i− 1, j − 1), (i, j), (i, j + 1)) ⊆ R, (6)
xij = bj if ((i− 1, j − 1), (i, j), (i + 1, j + 1)) ⊆ R, (7)
xij = ai if ((i− 1, j − 1), (i, j), (i + 1, j)) ⊆ R, (8)
xij = ai if ((i− 1, j), (i, j), (i + 1, j + 1)) ⊆ R, (9)
xij = ai if ((i− 1, j), (i, j)(i + 1, j)) ⊆ R, (10)
xij = ai −

∑
ℓ̸=j

xiℓ if ((i, j − 1), (i, j), (i + 1, j) ⊆ R, (11)

xij = bj −
∑
k ̸=i

xkj if ((i− 1, j), (i, j), (i, j + 1)) ⊆ R, (12)

x11 = b1 if ((1, 1), (1, 2)) ⊆ R, (13)
x11 = b1 if ((1, 1), (2, 2)) ⊆ R, (14)
x11 = a1 if ((1, 1), (2, 1)) ⊆ R, (15)
with variables xij, ai, bj :
ai ≤ ai ≤ ai for all i, (16)
bj ≤ bj ≤ ai for all j, (17)
xij ≥ 0 for all i, j, (18)

finds the maximal optimal value over the route R.

Proof. Conditions (1) - (3) set constraints on vectors a and b to ensure the route
R. We prove this by an induction on elements of R ordered by the lexicographical
ordering.
The pair (1, 1) is in every route R. For (1, 1) let us suppose that (2, 1) ∈ R is
the next element. But by the NWC rule it must hold that a1 < b1 because going
south means that the producer 1 was not fully exhausted. For cases (1, 2) ∈ R
and (2, 2) ∈ R the argument is similar.
Now let us suppose that for (i, j) ∈ R the sub-route from (1, 1) to (i, j) is ensured
through the conditions by induction hypothesis and let us suppose that (i, j + 1)
is the next in the route R. Then no matter what the actual structure of the route
is, ∑

k≤i
ak <

∑
ℓ≤j

bℓ because consumer j was not completely satisfied. For cases

where (i + 1, j) and (i + 1, j + 1) are next in R the argument is similar.
Conditions (4) - (12) encode the amount of comodity transported from producer
i to consumer j into variable xij. Every condition should be obvious from the
picture (see Figure ??). Conditions (13) - (15) have to be specifically written
because x11 does not have any predecessor on the route R.
Conditions (16) and (17) ensure that variables ai and bj are from the intervals
ai,bj and finally condition (18) for the nonnegativity of xij is obvious.
By Lemma ?? and the fact that every feasible solution of the LP is an optimal
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Figure 8.3: A depiction of conditions (4) - (12).

solution of corresponding scenario of ITP (a, b, C) the optimal solution of the LP
is the highest optimal solution over all scenarios of route R.

Finally, we can describe the algorithm in pseudocode.

Algorithm 5. The NWC-based algorithm for optimal value range of ITP
Input: An instance (a, b, C) of ITP

1 For every route Ri in C:
2 ri ← Solve a linear program for Ri described in Lemma ??
3 f = max

i
ri

Output: The upper bound optimal value range f

Theorem 42. The NWC-based algorithm for optimal value range of ITP is cor-
rect and computes exponentially many subroutines of polynomial time complexity.

Proof. Let Smax = (a, b, C) be a scenario such that the optimal value of Smax is f .
By Lemma ?? Smax exists. Because C ∈ ISM, the optimal values of the scenario
forms a route Rmax. By Lemma ?? f can be computed by a linear program of
Rmax. Since the algorithm picks maximum over all routes’ maxima, it is easy to
see that it is correct.
A linear program is solvable in polynomial time and since the number of LPs
correspond to the number of routes, by Lemma ?? the number of LPs is expo-
nential.

48



8.2.4 Reducing the number of routes
The main downside of our algorithm is the exponential number of possible routes
that we have to investigate. It would be convenient to reduce the number of
routes or at least specify conditions under which we can omit most of them.
We cannot employ Monge property for restricting the number of possible routes
since it strictly depends on vectors a, b. Unless further restricting a, b we can find
an instance of ITP where all possible routes are covered by at least one scenario.
Example. Let (a, b, C) be an instance of ITP such that

• a ∈ IR2 and for all i it holds that ai = [1, 3],

• b ∈ IR3 and for all j it holds that bj = [1, 3],

• C ∈ ISM2×3.

The following scenarios

1. S1 = ((3, 1), (1, 1, 2), C),

2. S2 = ((2, 1), (1, 1, 1), C),

3. S3 = ((2, 2), (1, 2, 1), C),

4. S4 = ((1, 2), (1, 1, 1), C),

5. S5 = ((1, 3), (2, 1, 1), C),

cover all the possible routes of (a, b, C) (see Figure ??).

15 17 23 [1,3]

9 10 15 [1,3]

[1,3] [1,3] [1,3]Co
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Figure 8.4: A visualisation of an instance of ITP with all 5 possible routes.

Let us note that it is possible to construct a class of infinitely many instances
with all possible routes covered. We omit this construction here. Although all
routes are possible in general, we can easily specify condition under which there
is only one possible route in the ITP.

Lemma 43. Let (a, b, C) be an instance of ITP and let R be a route of (a, b, C)
such that∑

k≤i
ak <

∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i + 1, j)) ⊆ R,∑
k≤i

ak >
∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i, j + 1)) ⊆ R,∑
k≤i

ak = ∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i + 1, j + 1)) ⊆ R,
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If it holds that∑
k≤i

ak <
∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i + 1, j)) ⊆ R,∑
k≤i

ak >
∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i, j + 1)) ⊆ R,∑
k≤i

ak = ∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i + 1, j + 1)) ⊆ R,∑
k≤i

ak = ∑
ℓ≤j

bℓ for all i, j such that ((i, j), (i + 1, j + 1)) ⊆ R,

then R is the only possible route of (a, b, C).
Proof. No matter what realization of a ∈ a, b ∈ b is chosen, the conditions still
hold in the form that describes the route R. Therefore R is the only possible
route.

From Lemma ?? we can deduce a straightforward corrolary.
Corollary 44. Let (a, b, C) be an instance of ITP. If there is only one possible
route R with a condition ∑

k≤i
ak = ∑

ℓ≤j
bℓ for some i, j, then the values a1, . . . ai and

b1, . . . bj are real.
Proof. Let R be the only possible tour of (a, b, C). For i, j by Lemma ?? the
condition ∑

k≤i
ak = ∑

ℓ≤j
bℓ implies that

∑
k≤i

ak =
∑
ℓ≤j

bℓ and
∑
k≤i

ak =
∑
ℓ≤j

bℓ.

But since ∑
k≤i

ak ≤
∑
k≤i

ak =
∑
ℓ≤j

bℓ ≤
∑
ℓ≤j

bℓ =
∑
k≤i

ak,

it follows that ∑
k≤i

ak =
∑
k≤i

ak

and by a similar conclusion ∑
ℓ≤j

bℓ =
∑
ℓ≤j

bℓ.

But this means that a1, . . . ai and b1, . . . bj are real values.

8.3 Travelling salesman problem (TSP)
The travelling salesman problem is probably one of the most famous problems in
combinatorial optimization. An instance of TSP consists of n cities with distances
dij denoting the distance from city i to city j. The goal is to find the shortest
closed tour through all n cities. Although NP-hard in general, for a distance
matrix satisfying the Monge property (actually the matrix has to be Monge and
symmetric) the problem becomes easily solvable by a so called pyramidal tour.
We study the interval version of the problem. More precisely we are interested
in the optimal value range of all possible scenarios of TSP within an interval
distance matrix. We show that for a subset of ISM we achieve a well-solvable
case of the problem.
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8.3.1 The real version of TSP
We start with a mathematical definition of the problem.

Definition 26. Let D ∈ Rn×n be a symmetric matrix. Then the Travelling
Salesman problem (TSP) is to find a permutation Φ of elements {1, 2, . . . , n}
that minimizes (

n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1).

The person to prove the following theorem was Fred Supnick, therefore a
symmetric Monge matrix is called a Supnick matrix.

Theorem 45. Let D ∈ Rn×n be a Supnick matrix. Then the shortest TSP tour
is given by permutation σmin where

σmin = ⟨1, 3, 5, . . . , n− 3, n− 1, n, n− 2, n− 2, . . . , 6, 4, 2⟩ for n even,

σmin = ⟨1, 3, 5, . . . , n− 4, n− 2, n, n− 1, n− 3, . . . , 6, 4, 2⟩ for n odd
and the longest TSP tour is given by the permutation

σmax = ⟨n, 2, n− 2, 4, n− 4, 6, . . . , n− 5, 5, n− 3, 3, n− 1, 1⟩

where a permutation is defined as Φ = ⟨Φ(1), Φ(2), . . . , Φ(n)⟩.

Proof. See[15].

An interesting fact is that σmin and σmax are the same for all instances of
TSP with Supnick distance matrix. We will use this fact in the interval version
of TSP.

8.3.2 The interval TSP
Much of the work on TSP is not motivated by real-world applications but rather
on fact that it is a decent platform for study of general methods that can be
applied elsewhere. In real-world applications the distance matrix might represent
not only distances between the cities but also time spent on the road which differs
depending on the traffic or the fuel spent while travelling etc. It is therefore
convenient to employ interval matrices.

Definition 27. Let D ∈ IRn×n. Then the interval travelling salesman problem
(ITSP) is a family of problems

min
Φ

{(
n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1)

}

where D ∈ D.
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Matrix D is called a scenario of the ITSP. We are interested in a problem
where the goal is to compute the optimal value range of ITSP which means we
want to find a lower and an upper bound

f(D) = min
D∈D

{
min

Φ

{(
n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1)

}}

and
f(D) = max

D∈D

{
min

Φ

{(
n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1)

}}
.

We will show a way to compute the optimal value range of ITSP by two instances
of D.

Lemma 46. Let D ∈ IRn×n be a nonnegative interval matrix and let

f = min
Φ

{(
n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1)

}

and
f = min

Φ

{(
n−1∑
i=1

dΦ(i),Φ(i+1)

)
+ dΦ(n),Φ(1)

}
.

Then the optimal value range of the ITSP is f =
[
f, f

]
.

Proof. Let Φ and Φ be the optimal tours of scenarios D, resp. D. Then for any
D ∈ D and its optimal tour Φ
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1) ≤
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1) ≤
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1)

and conversely
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1) ≤
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1) ≤
n−1∑
i=1

dΦ(i),Φ(i+1) + dΦ(n),Φ(1)

thanks to the nonnegativity of D.

The result of Lemma ?? simply states that the optimal value range problem
is solvable for nonnegative matrices by solving the scenarios of D and D. By
Theorem ?? it is easy to see that if D and D are both symmetric Monge matrices,
then the problem is solvable in O(n) time. We show that the tour σmin is optimal
for slightly larger class of Monge matrices than Supnick matrices.

Lemma 47. Let M ∈ Rn×n be a Monge matrix such that

M = S +
m∑

i=1
κiH

i +
n∑

j=1
λjV

j +
∑
r,s

µrsL
rs +

∑
p,q

νpqR
pq

where S is a Supnick matrix, κi, λj, µrs, νpq ≥ 0,

(r − s)
⎧⎨⎩≥ 3, if r is even,

≥ 2, if r odd,
and (q − p)

⎧⎨⎩≥ 3, if q is odd,

≥ 2, if q even.

Then the optimal tour of M is σmin.
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Proof. For any S the optimal tour is σmin by Theorem ??. Adding κiH
i to S

means to add κi to every column in a row i. From the point of view of the optimal
tour the entry dij represents the distance from city i to city j. Since every tour
has to leave city i at some point, the length of every tour in S +κiH

i is the length
of the tour in S plus the value κi, therefore the tour σmin remains optimal.
For matrices of type λjV

j the line of reasoning is analogous. Every tour has to
enter city j at some point and the distance dkj will increase by λj for every k.
Finally, observe that for matrices Lrs and Rpq the restrictions on r, s, p, q select
only those matrices which do not interfere with the optimal tour σmin. It means
that the entries of the tour σmin in S +∑

r,s
µrsL

r,s +∑
p,q

νpqR
pq are the same as the

entries of σmin in S and other entries in S +∑
r,s

µrsL
r,s +∑

p,q
νpqR

pq are only greater
or equal to entries in S, respectively.

For matrices Lrs, Rpq which violate the condition on r, s, p, q we can observe that
the optimal tour might be different from σmin.

Observation 48. Let

D =

⎛⎜⎜⎜⎝
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎟⎠ and µL22 = µ

⎛⎜⎜⎜⎝
0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0

⎞⎟⎟⎟⎠ .

We see that (r − s) = 2 − 2 = 0 violates the condition (r − s) ≥ 3. The sum
of distances of a tour Φ = ⟨1, 2, 3, 4⟩ in D + µL22 is 4 + µ, however, the sum of
distances in σmin is 4 + 2µ. For µ > 0 permutation Φ yields a better solution.

We note that for some more general Monge matrices than stated in Lemma ??
it might be still possible to characterize the optimal tour, however, the optimal
tour of the matrix might not be σmin. We did not study this problem, therefore
we state it as an open question.
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Conclusion
The main task of this thesis was to examine interval Monge matrices - to find
different characterizations or at least necessary and sufficient conditions, analyze
algorithmic aspects of these conditions, investigate closure properties of oper-
ations applied on the matrices and finally, investigate applications of interval
Monge matrices in optimization.

Results of this thesis
We introduced two classes of interval Monge matrices - ISM and IWM. For ISM
following mostly results of real Monge matrices we generalized several character-
izations and in Sections 3.3.1 and 3.3.2 we showed that some characterizations of
real Monge matrices lead to inflation of interval Monge matrices.
For IWM we showed several necessary and sufficient conditions. For the con-
dition from Lemma 23 we indicated that the condition is from a larger class of
conditions that might be interesting to further investigate.
We presented lists of closure properties under operations on ISM and IWM and
under operations combining both classes of matrices.
We investigated applications in two interval optimization problems - ITP and
ITSP. For ITP we studied the optimal value range problem. We divided the
problem into possibly exponential number of polynomially solvable subproblems
and showed a sufficient condition under which only one subproblem is needed to
solve the problem. For ITSP we studied the optimal value range problem and
showed that the problem is solvable by solving two realizations of the interval cost
matrix. Then we extended a result by Supnick by characterizing which interval
matrices are solvable by Supnick’s greedy algorithm.
We also generalized a famous SMAWK algorithm for row minima searching in
Monge matrices. The algorithm is fundamental for some geometrical applications
of real Monge matrices. For these applications a generalized version was not in-
vestigated in this thesis.
In addition we introduced three algorithms for reconstruction of Monge matrices.
Two based on interval modification and one on rows and columns permutation.
We also generalized Bost’s method for generating real Monge matrices and pre-
sented own method for more general generating of interval matrices where we can
control the specifics of generating.

Future work
The study of IWM offers a lot of open questions that still remains to be answered.
In near future author wants to deeper comprehend these matrices. For ISM
there is still plenty of work in applications, namely in geometrical applications
of SMAWK algorithm. In ITP polynomiality of computing the upper bound of
optimal value range remains unanswered.
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