
BACHELOR THESIS

Jan Dubský

Optical analysis of pellet car damages

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. Elena Šikudová, Ph.D.
Study programme: Computer Science

Study branch: IPSS

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

First of all, I’d like to thank my thesis supervisor, Ms. RNDr. Elena Šikudová,
Ph.D., who had willingly helped me to write this thesis.
I’d also like to thank PaulWurth, which assigned this work and allowed me to
present it as my bachelor thesis.

ii

Title: Optical analysis of pellet car damages

Author: Jan Dubský

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Elena Šikudová, Ph.D., Department of Software and Com-
puter Science Education

Abstract: During iron processing, pelletizing is one of the necessary steps. Iron
ore pellets are burned on pellet burning line, which consists of individual pellet
cars. Due to constant temperature changes, pellet cars get damaged.

This thesis focuses on an optical analysis of pellet car damages. The algorithm
presented can find individual ribs of pellet car and perform analysis of their
shape, position and look. Such analysis can provide basic information for damage
evaluation, same as the material for further research of pellet car damage causes.

Keywords: Image processing, Damage, Steelmaking, Pellet car

iii

Contents

1 Introduction 3
1.1 Iron processing and steelmaking 3
1.2 Problem description . 4
1.3 Proposed solution . 5
1.4 Aim of the thesis . 5
1.5 Test data . 6

2 Image processing algorithms 7
2.1 Thresholding . 7

2.1.1 Otsu thresholding . 7
2.2 Filtering algorithms . 8

2.2.1 Gaussian blur . 8
2.2.2 Bilateral filtering . 8

2.3 Contrast enhancement algorithms 9
2.3.1 Histogram equalization . 9
2.3.2 Adaptive histogram equalization 10
2.3.3 Clip limited adaptive histogram equalization 11

2.4 Distance transform . 11
2.5 Connected components . 11
2.6 Edge detection algorithm . 11

2.6.1 Sobel operator . 12
2.6.2 Laplace operator . 12
2.6.3 Canny edge detection . 12

2.7 Hough line transform . 13

3 Description of an algorithm 15
3.1 Expected input image parameters 15
3.2 Subroutines . 15

3.2.1 Extract objects . 16
3.2.2 Remove holes in mask . 16
3.2.3 Rib angle . 16
3.2.4 Line matched filter1 . 17

3.3 Algorithm description . 17
3.3.1 Input preprocessing . 18
3.3.2 Thresholding . 18
3.3.3 Finding of the area covered by ribs 19
3.3.4 Removing cracks in threshold image 20
3.3.5 Removing vertical rib cracks in threshold image 20

1

3.3.6 Disconnecting pellets from ribs 21
3.3.7 Inverting image . 21
3.3.8 Removing disconnected pellets 21
3.3.9 Removing rest of pellets 21
3.3.10 Reconstructing ribs . 22
3.3.11 Improving rib masks . 22
3.3.12 Postprocessing, further analysis 23

4 Evaluation 25
4.1 Basic features . 25
4.2 Damaged ribs detection . 25

4.2.1 Degraded ribs finding . 25
4.2.2 Pushed down ribs . 26
4.2.3 Rib cracks . 27

4.3 Unexpected situations . 27
4.3.1 Holes in ribs . 27
4.3.2 Different rib vertical position 28
4.3.3 Broken apart rib . 29

4.4 Incorrect detections . 30
4.4.1 Insufficient illumination 30
4.4.2 Rib at the edge of an image 30

5 Implementation 32
5.1 Before coding . 32
5.2 Implementation . 33
5.3 Possible parallelization . 33
5.4 Performance . 34

6 Conclusion 35

2

Chapter 1

Introduction

1.1 Iron processing and steelmaking
A modern world without steel and iron is almost unimaginable. Both steel and
iron are widely used in many industry branches including engineering, building
industry, automotive etc. Nowadays about 98% of world mined iron ore is used
to produce steel[1].

Naturally, iron exists in the form of iron ores – for example magnetite, he-
matite, goethite, limonite, and siderite[1]. First of all, we have to extract raw
iron from mined ores. Those processes are generally called beneficiation and
include techniques like grinding, gravity separating or froth floating[1]. At the
end of beneficiation, we get so-called fines, which is fine iron dust, containing
significantly fewer impurities.

Now, we would like to put our fines to blast furnace, but we have to deal
with one more problem. Namely, we need to ensure enough oxygen all over the
blast furnace, to achieve the desired chemical reaction. In this part, there are two
major solutions. Firstly, iron fines are mixed with various additional materials
and water and formed into pellets1[2]. When formed, pellets are burned on a
pellet burning line, to create hard spheres. Putting pellets into a blast furnace,
they touch each other only by very small part of its surface, producing enough
space for air. Secondly, iron fines are mixed with coke and limestone and burned
on a sinter burning line[3]. Due to burning, blend solidify into a porous material,
which is then crushed into irregularly shaped ”stones”. Irregularity in stone shapes
again produces enough space for air. Both pellets and sinter are then cooled and
transported to blast furnace.

We have pellets or sinter, so we can put them to the top blast furnace[4]. As
material slowly falls down the blast furnace, the desired chemical reaction takes
place. To supply oxygen for chemical reaction, air (sometimes oxygen enriched)
is blown to bottom of the blast furnace. Products of our reaction are pig iron
(crude iron) and so-called slag, which are taken from the bottom of the blast
furnace[5]. Slag is a waste product of iron processing, which is further used as
cement ingredient, to improve its durability[6]. Our desired product, pig iron is
either formed into so-called pig ingots and transported, or directly poured into
steelmaking ladle or furnace and processed into steel.

Here, we finally get to steelmaking description. The main difference between
1Iron pellets are small balls, typically with diameter from 6–16 mm.

3

pig iron and steel is the amount of carbon in an alloy. Pig iron is quite carbon-
rich – about 4%[5]. In the case of steel, we need to lower carbon content be-
low 1.5%[7]. The most widely used method is called Basic oxygen steelmaking.
About 70% of world steel production is produced using this method[7]. In ba-
sic oxygen steelmaking, molten pig iron is poured to so-called ladle. Oxygen is
blown through molten pig iron, lowering carbon content of alloy and producing
low-carbon steel[8]. Steel can be further enhanced by techniques as hardening
and tempering or by alloying with different metals, to reach required mechanical
properties[7]. There is also a different method of steelmaking, called Electric arc
steelmaking, but this method is mostly used to produce steel from iron scrap, so
I decided not to describe it in this thesis.

1.2 Problem description
The topic of this thesis will be linked with iron pelletizing and sintering. In the
previous section, I spoke about forming and processing of pellets or sinter. But
what I haven’t described broadly is the construction of pellet/sinter burning line.

Both pellets and sinter are burned on pellet burning line and sinter burning
line respectively. Those lines look very similar, so I will further refer only pellet
burning line and pellet car. Everything I will describe later also applies to sinter
cars.

Pellet burning line is, in fact, a traveling grate, passing through a kiln. This
traveling grate consists of multiple pellet cars, slowly moving along a railway as
a conveyor belt. Typically, each pellet car has from 2 to 4 transverse lines or
longitudinal cast ribs (see Figure 1.1). On those ribs, pellets or sinter lie, while
passing through a kiln.

Figure 1.1: Pellet car or Sinter car respectively[9].

Although temperatures inside kiln aren’t as high as in blast furnace, they still
reach hundreds of degrees Celsius. Such temperatures, together with continual

4

warming and cooling of pellet cars cause various damage of cast iron ribs. Com-
mon damage are including rib cracks, misplaced ribs, holes in rib and missing
ribs, which broke and fell off pellet car. Those pellet car damage leads to iron
material losses, reducing the overall productivity of pellet burning line. So pel-
let cars have to be regularly controlled and replaced in case, they are seriously
damaged.

In the current setup, all of that damage is observed and evaluated by human.
If a supervisor considers overall damage of traveling grate serious enough, the
whole iron production line is stopped and damaged pellet cars are replaced by
new ones. During this process, all pellet cars have to be visually controlled by a
repairman, which takes time and does not provide objective damage evaluation.
Moreover, it is not possible to track damage of pellet car over time, producing
data for research on pellet car damage causes. Overall, the current way of pellet
burning line monitoring is not satisfactory at all.

1.3 Proposed solution
As current setup is far not ideal, automatic optical monitoring of pellet car dam-
age can be used as a better alternative. A monitoring system should be able to
trace the state of pellet car over time, supplying data to evaluate current burning
line damage. Further, it should produce data, which can be stored and later used
for a research on pellet car damage causes.

An automatic monitoring system will, of course, require a few modifications
of a pellet burning line. First of all, optical cameras will be installed above the
pellet burning line in place, before pellets are poured to pellet cars2. Maybe you
noticed I wrote cameras. That is, because pellet car is as wide, that one camera
would not be able to capture it whole and stay reasonably close to pellet burning
line at once. Secondly, to provide sufficient light level to optical cameras, led
flash belt will be installed above the burning line. Last but not least, cameras
have to be able to capture each pellet burning line, so they need to know, when
is pellet car below them. Customer stated, that his pellet burning line control
software knows those data and can trigger cameras to capture each pellet car.

All those modifications are expected to be implemented by the customer.
Each pellet car photo will be passed to the detection algorithm, which will find
individual ribs in an image. More precisely, because pellet car is quite long, not
each pellet car, but each line of ribs in a pellet car will be captured and passed
to an algorithm separately.

1.4 Aim of the thesis
Expecting setup as described in the previous subsection, my task was to invent
an algorithm, which will analyze images of pellet burning line. In each rib line, all
ribs present should be found, providing basic information, like rib shape, count
and distances between them. Moreover, the algorithm should be able to identify
basic rib damages listed in Subsection 1.2. The whole analysis should execute in

2This is the only place, where pellet car ribs are visible because pellet burning line construc-
tion does not allow access bottom part of the conveyor belt.

5

real time, with a reasonable amount of resources - we have preliminarily spoken
about 4 CPU cores dedicated to pellet car analysis. Given burning line speed,
an image of one rib line will be produced each 4 seconds approximately. Having
4 CPU cores and 4 cameras, whole algorithm execution should fit 4 seconds on a
FullHD image (1920x1080px).

1.5 Test data
At the time of writing this thesis, pellet burning line modifications are not com-
plete yet. So for testing purposes, I received two short (about 1.5 min) videos of
pellet burning line. From those videos, I extracted 27 test images, which I used
for algorithm testing. But because those two videos were taken on unmodified
pellet burning line, extracted test images have much lower quality, than final
setup should produce. For example, a pellet car is not uniformly illuminated (see
Figure 1.2). On the other hand, having imperfect test images will force me to
develop a robust algorithm, which will be able to work correctly even with such
input.

Figure 1.2: Example of a test image.

6

Chapter 2

Image processing algorithms

First of all, let’s introduce some image processing basics - algorithm, which would
be presented in an introductory course of image processing. All of those algo-
rithms are widely implemented in many image processing libraries.

2.1 Thresholding
Thresholding[10, 11] is one of the most common segmentation algorithms used
in image processing. The basic idea of thresholding is applying inequality com-
parison of a threshold value (given by a user) and value of each pixel followed by
changing of pixel value depending on the comparison result.

Thresholding is very often applied only on greyscale image. There are variants
of color image thresholding, but they are still based on thresholding of each color
separately (i.e. greyscale thresholding). Common usage of thresholding is an
identification of foreground and background areas of an image based on different
illumination of objects in foreground and background.

In this thesis, only binary, grayscale thresholding will be used. A product of
binary thresholding, as its name would suggest, is a binary image, with nonzero
pixels where the value was higher than threshold value and zeros where it was
less or equal than threshold value.

2.1.1 Otsu thresholding
The biggest problem of thresholding is the requirement to set a threshold value.
Very often, we need to analyze scenes, the threshold value of which depends on
light conditions, an image was taken under. For example, we have to process
outdoor photos of the object taken in different daytimes. Taking such photo at
noon, there will be much more light, than taking the same photo at nightfall.
For such set of photos, we can’t say universal threshold value, because it simply
doesn’t exist. Here comes Otsu thresholding[10, 12, 13].

Otsu thresholding expects, there is foreground (lighter part) and background
(darker part) in the image. This type of image is in literature referred as bimodal
image and its histogram will have two significant peaks (one for foreground and
second for background color). Otsu threshold calculates a histogram of the image
and finds such threshold value, that sum of weighted1variance of foreground and

7

background class is minimal. After that, thresholding is applied to input image
with the found threshold value.

Compared to thresholding, Otsu thresholding executes a bit slower due to
histogram calculation and threshold value finding. On the other hand, there is
no need to set threshold value and foreground objects in an image are found
automatically and more or less independently on light conditions in the image2.

2.2 Filtering algorithms
Whenever we take a photo, there inevitably appears inaccuracies in it, altogether
called image noise. Image noise is a general term for the presence of pixels with
completely random values. Noise has a wide range of causes from digital chip
inaccuracies or damage to discrete (quantum) nature of light and electric charge.
Though noise can be reduced by upgrading of image capture technology, it can
never be removed at all. Meaning we have to expect noise in the image and deal
with it because many image processing algorithms are very sensitive to noise. For
this purpose, filtering algorithms[10, 14, 15, 16] have been invented.

2.2.1 Gaussian blur
Gaussian blur[14] is an arbitrary sized convolutional kernel, which calculates pixel
value as the average of its neighborhood weighted by Gaussian function of dis-
tance. Because noise is made of outlier values of individual pixels, they have
only negligible effect on the average result. The resulting image is noticeably
smoother, than the original one (see Figure 2.1).

Unfortunately, as Gaussian blur removes noise, it removes edges in the image
too. Edge is an area with bright pixels on one side and dark pixels on another
one. Simple averaging cause them to blend together, resulting in a smooth color
transition instead of sudden color jump (see Figure 2.1).

Figure 2.1: Example of Gaussian blurred image of stained glass. [17]

2.2.2 Bilateral filtering
Bilateral filter[14] algorithm is a very effective modification of Gaussian filter for
noise removal while keeping edges sharp. Gaussian filter calculates the average of

1The variance of each class is weighted by the number of pixels it contains.
2 More or less, because there are many factors affecting the Otsu threshold result. For

example, having a glossy object, there exists the limit light level, when Otsu starts identifying
light reflection as foreground and rest of object as background.

8

nearby pixels weighted by Gaussian function of distance. Bilateral filter weights
pixels in the same way as Gaussian filter, but adds additional weight criterion,
namely similarity to the center pixel (pixel, which value is calculated).

So in Bilateral filter, only nearby pixels with similar values are averaged re-
sulting in removing noise and preserving sharp edges. The disadvantage of this
algorithm is, it’s higher computational difficulty and therefore a bit slower exe-
cution compared to other filtering algorithms.

Take a look at Figure 2.2 and compare it with Gaussian blur in Figure 2.1.
As you can see, Bilateral filter is much better in edge preserving.

Figure 2.2: Example of Bilateral filtered image of stained glass [17]

2.3 Contrast enhancement algorithms
Very often, when taking an image, there are colors (understand shades of gray),
which are in an image a lot and then colors, which almost aren’t present there.
In histogram point of view: histogram has significant peaks.

In normal photography, we want this behavior, because we take photography
to capture reality as precisely as possible. But having those histogram peaks in
image processing makes us problems for many reasons.

First of all, we naturally expect that having pixel value range [0-255] means,
that approximately 25% of pixels are below 64, half of them below 128, etc., so
those peaks confuse our intuition. But even if we deal with our intuition, another
image processing algorithms does not expect such color distribution and would
not work properly with such image. For example, we have already seen Otsu
thresholding, which looks for two significant histogram peaks and those peaks
are not expected to be next to each other. In such a case, their in-class variance
would be low and Otsu would not try to split those two peaks by threshold value.

To deal with ununiform value distribution, we can use histogram equalization
algorithms.

2.3.1 Histogram equalization
Histogram equalization[18], as its name suggests equalizes image histogram. First
of all, the histogram of an input image is calculated. Then colors are remapped,
producing an approximately rectangular histogram. To reach such effect, several
values with only a few pixels are mapped to one color and on the other hand,
neighbor values with many pixels are spread to an interval of values.

After histogram equalization, the cumulative function of histogram should
be much closer to the linear function, than before and contrast of image should

9

be much better (see histogram (2.3d) and compare it to the original histogram
in (2.3b)). So it should be (approximately) true, that the half of pixels have their
value below half of the available pixel value range. Overall, the output image is
much more suitable for future image processing (see Figure 2.3).

(a) Original image[19] (b) Original image histogram[20]

(c) Equalized image[21] (d) Equalized image histogram[22]

Figure 2.3: Exhibition of histogram equalization

2.3.2 Adaptive histogram equalization
As we have seen before, histogram equalization helps us to spread image values
over a whole possible value range. But histogram equalization will not work
well for all kinds of images. For example, having an indoor photo of a person
in front of a window. In such case, the majority of pixels will be extremely
light, so histogram equalization will try to spread their values. After histogram
equalization, our person (darker pixels) will be even worse to recognize then he
or she was before equalization, as his or her pixels will be remapped to a smaller
range of values.

Adaptive histogram equalization[23] is a modification of histogram equaliza-
tion suitable for images with different light levels in different parts of the image.
Instead of equalizing the whole image at once, the input image is divided into
small blocks (8x8 pixels for example) and each block is equalized independently.
In other words, local area histogram is calculated for each block and used to
equalize that block instead of equalizing the whole image at once. Consequently,
only a small area of the image is equalized at once and is not affected by the
presence of big light or dark area on the other side of the image as it would be in
case of histogram equalization. This way, contrast of the image can be enhanced
all over the image and not only in a dominant part of it.

10

The main disadvantage of this algorithm is its tendency to amplify image
noise, especially in flat (monochromatic) areas of an image. Noise, an outlier
value, will not have sufficient weight to influence global histogram but will have
significant weight in a local histogram. To reduce this effect, an image filtering
algorithm should be applied before adaptive histogram equalization.

2.3.3 Clip limited adaptive histogram equalization
Clip limited adaptive histogram equalization[23] (CLAHE) is based on adaptive
histogram equalization and additionally deals with a problem of amplifying image
noise. Compared to adaptive histogram equalization, CLAHE takes one more
parameter called contrast limit. This method also splits image to small blocks
but is there is a pixel in a block, which exceeds contrast limit, it’s clipped and
uniformly distributed over the whole histogram. Contrast limit ensures that
noise in a block will not affect a local histogram. This way, CLAHE avoids noise
amplification and keeps advantages of adaptive histogram equalization when the
contrast limit is set correctly.

2.4 Distance transform
The distance transform[24, 25] is a binary image processing algorithm, setting
value of each nonzero pixel in an original image to its distance from the closest
zero pixel. Typical usage of distance transform is finding of thresholded object
center, but it’s as well used as a stage of more complex algorithms. For example,
Stroke Width Transform algorithm for text detection in image uses the distance
transform.

2.5 Connected components
Very often, we have a binary image, obtained for example by thresholding, and
we need to find all objects in it. To do so, we can use the connected components
algorithm[10, 26]. Connected components is a clusterization algorithm for binary
images.

White (=nonzero) areas of an input image are considered as objects and black
(=zero) pixels as background. Using 4-fold of 8-fold connectivity, this algorithm
finds all independent objects and marks them with unique numbers (usually in
range {1..n}). Resulting clusters can be easily separated by applying the equality
operator for each ID3.

2.6 Edge detection algorithm
Edge detection[10, 27] is one of fundamental feature analysis used in image pro-
cessing. In general, an edge is considered to be each place in an image, where

3 Very often there is an extension of connected components algorithm returning a bounding
rectangle. This does not seem to be important, but can be used for speeding up your algorithm,
because you can limit your view just to this bounding rectangle and work with much smaller
image consequently.

11

the color changes significantly. To find such places, we can use several attitudes,
which are described below.

2.6.1 Sobel operator
Sobel operator[28] is convolutional kernel used for calculating of image first deriva-
tive in X or Y direction. As we all know, the derivative has high absolute value in
areas, where function value changes significantly. Those are edges we are looking
for.

The basic idea of Sobel is comparing of a small neighborhood around each
pixel and using it to approximate derivative by the difference. Specifically, Sobel
uses 3x3 neighborhood centered on the pixel, the value of which is calculated and
calculates the difference of pixels on its opposite sides.

Approximating of the derivative by the difference in local neighborhood can
produce noticeable inaccuracies, especially in noisy images. Further processing
of Sobel image is usually necessary, to eliminate those false edges.

2.6.2 Laplace operator
Laplace operator[29, 30] is another 3x3 convolutional kernel, used for local ap-
proximation of the second derivative. Laplace operator is defined as Lap(f) =
d2f
dx2 + d2f

dy2 . As you can see from its definition, unlike Sobel, which have individ-
ual operators for X and Y direction, there is only one version Laplace operator
approximating X and Y direction at once.

Now, we should take a look at the behavior of the second derivative at edges.
An edge is a place, where the first derivative has its local maximum, implying
zero value second derivative in that place. So edges in an image can be found by
comparing a Laplacian image to zero.

Unfortunately, it’s true, that edge pixels will have zero value in Laplacian
image, but it isn’t true, that all zero values in Laplacian image are edges. For
example, having a smooth surface, its Laplacian value will be zero too. Conse-
quently, the Laplacian image used for edge detection has to be filtered in purpose
of removing false positives.

2.6.3 Canny edge detection
Canny edge detection[10, 31] is a more sophisticated algorithm for detecting edges
in an image.

In the first step of the algorithm, image noise is removed using Gaussian blur.
When most of the noise is removed, Sobel operators in X and Y direction are
used and their results are used to calculate gradient direction and magnitude.
In the image, we have only horizontal, vertical and two diagonal directions, so
the algorithm can round gradient direction to 45◦ because higher precision of
gradient direction couldn’t be used anyway. Please note, that gradient is the
direction of function value growth, implying edge should be perpendicular to
gradient direction.

In a real image, the edge can be more than one pixel thin. If we want to find
thin edges, we need to filter out pixels with lower gradient magnitude, that their

12

neighbors. To do so, the algorithm looks in the direction of gradient and if the
current pixel gradient magnitude is not local maximum, it is suppressed to zero.
This removal technique ensures, we always take only edge pixel with the highest
magnitude, producing thin edges.

To decide, which potential edge is really edge and which is just noise, the
algorithm takes two more values as its input - minVal and maxVal respectively.
Pixels with gradient magnitude higher than maxVal are sure to be edges. Analo-
gously, algorithm discards all potential edge pixels having magnitude below min-
Val. Pixels in the range [minV al, maxV al] will be accepted as an edge if they
are connected by an edge to a pixel with magnitude above maxVal (remember
connected components in 2.5). Consequently, only significant edges in the image
are found.

Canny edge detection is a common algorithm used for finding of real edges
(see Figure 2.4), unlike Sobel and Laplace operator, which are more often used as
a stage of more complex algorithm. The only disadvantage of Canny detection is,
edges found are not continuous, so Canny edge detector can’t be used for image
segmentation. However, there is no basic edge detection algorithm producing
closed edges.

Figure 2.4: Example of Canny edge detection [32]

2.7 Hough line transform
Hough lines transform[10, 33, 34] as its name advice is an algorithm for finding
lines in a binary image.

First of all, we need to think about a line description. A line can be mathe-
matically described in many forms, including parametric equation y = k ∗ x + q.
The small disadvantage of the parametric equation is, it can’t describe the vertical
line, because such line has all values of y for one value of x and, thus such line can’t
be described as a function from X to Y . To be able to describe all lines, including
vertical lines, we can choose a different form of description. Such form is called
line polar coordinates and describes line by equation ρ = x ∗ cos(θ) + y ∗ sin(θ),
where ρ is the distance of the line from origin and θ is the angle of X-axis and
distance perpendicular line (line perpendicular to line described and containing
point [0, 0]). This form is used to describe the line in the Hough line transform
algorithm.

13

At the beginning of the algorithm, the 2D accumulator of ρ and θ values is
allocated. Precisions of the accumulator in both dimensions are input parameters
of the Hough line transform given by a user. The algorithm is based on point
voting for all lines it can lie on. Every white (=nonzero) point of an image is
taken, all possible lines this point can lie on are found and belonging accumulator
field (ρ, θ) is incremented. When all points vote for their lines, all pairs of ρ and
θ with more votes than threshold value are returned as lines found. See the result
of Hough line transform result in Figure 2.5.

Figure 2.5: Example of Hough lines result[34]

After a short analysis of the algorithm, we can conclude, that accumulator
size affects algorithm duration the same as quality of the result in a significant
way. When a user sets a low resolution of the accumulator, algorithms execution
will be fast, but with inaccurate result. On the other hand, too high resolution
means higher memory requirements same as much more possible lines, found for
each point, resulting in significantly longer execution time.

Generally, the Hough line transform is a robust algorithm for line finding
with very good results. A small disadvantage is, that it’s quite time and memory
consuming if higher result precision is required.

14

Chapter 3

Description of an algorithm

Now, when all basic image processing algorithms were introduced, we can describe
the rib finding algorithm itself.

3.1 Expected input image parameters
First of all, I will list properties of an input image, algorithm expects and counts
on. All of those expectations are based on the dealings with the customer and
are very easy to ensure by camera installation above pellet car belt as described
in 1.3.
Those parameters are:

1. The image is taken from upwards of pellet car.

2. Exactly one rib grid must be present in the image.

3. Ribs must be in upside down direction.

4. Ribs can’t be cropped in a vertical direction.

5. Ribs are expected all over the width of the image.

6. The image can contain pellet car (i.e. not ribs) at top or bottom.

7. The image must be uniformly illuminated.

8. There are expected no shadows in the image, except those cast by ribs.

For a better idea of a typical input image, take a look at Figure 3.1.

3.2 Subroutines
The algorithm itself frequently uses several subroutines. Because it would be
quite complicated and confusing, to explain those subroutines during algorithm
description itself, I will rather explain them now and just reference them in the
description section. Maybe their purpose will not be clear now, but I believe ideas
behind them are going to clarify later in the course of algorithm description.

15

Figure 3.1: Typical input image of the algorithm.

3.2.1 Extract objects
This function takes a binary image and minimal size of the object in pixels as
its parameters. Using connected components function, all components are ex-
tracted from the input image, but only those bigger than minimal object size are
taken and returned as a list of binary masks. Smaller components are discarded.
Purpose of this function is clearing a binary image from small objects. In an
algorithm, we will often use this function to remove pellet thresholds from the
binary image.

3.2.2 Remove holes in mask
Another function based on connected components but using them in another way.
Parameters of this function are input binary image and a number called maximal
hole size. The function finds all holes in a binary image (using connected com-
ponents on inverted image) and removes those, which are smaller than maximal
hole size. The return value of this function is the binary image without holes.
We will use this function to make rib thresholds continuous.

3.2.3 Rib angle
Detecting of rib angle is an important part of this algorithm. The function accepts
a binary mask of one rib and using Hough lines calculates its angle.

First of all, Laplace filter is applied to rib mask to get just borders of rib mask.
Without this step, Hough lines would see lines everywhere, because every point
of rib mask would be considered as a point of a line. This step ensures only rib
edge pixels will be used for rib angle detection. Laplacian could be substituted
by distance transform and condition ≥1.5 for each pixel, but this would cost 3x3
kernel convolution and extra condition for each pixel. Laplace operator costs just
3x3 kernel convolution and gives the same result.

When having just edge pixels of rib, Hough lines can be used. We get plenty
of lines found, but each line was voted by different number of edge points. Real
rib angle should be correctly calculated as the average of lines angles weighted by
the number of votes for a line. Unfortunately, here comes a small problem with
the implementation of Hough lines I use as part of OpenCV library - it discards

16

all votes when Hough lines function returns. To simulate weighted average, this
function takes most voted 10 lines (returned lines are ordered by the number of
votes) and calculate the arithmetic average1. The average angle of those 10 lines
is then returned and considered as rib angle.

3.2.4 Line matched filter2

Having a threshold image of ribs, there are very often inaccuracies. For example
darker parts of rib, which have been removed by thresholding, or rib cracks which
were detected as background. We need to remove such inaccuracies of a threshold
to determine ribs and spaces in an image. The typical solution to this problem
would be using morphological closing. But it is not possible here, because this
operation would connect all ribs into one and discard spaces between them. In-
stead of closing, we will use scan line in direction of rib, which will go along the
whole mask, to reconstruct rib, but keep ribs separate.

This function takes three parameters: binary image, a binary mask of rib
fragment and coefficient from (0,1) interval. Moreover, rib fragment is expected
to be present in the binary image too. So typically, 1st argument is a threshold
image of pellet car and 2nd argument is one connected component, extracted from
that threshold image (i.e. a fragment of a rib).

First of all, the rib fragment angle is calculated using the Rib angle function
described above in section 3.2.3. Line with the same angle as detected fragment
direction in drawn and shifted through the whole width of rib fragment pixel by
pixel. In each position, all binary image (1st parameter) pixels covered by line are
taken and compared to the total number of line pixels. If this ratio is sufficient
(bigger than given coefficient parameter), the whole line is added to result.

For a better understanding of this algorithm, take a look at Figure 3.2a, where
you can see Line matched filter applied on one rib fragment. Red object is the
binary mask of rib fragment (2nd argument of this function), black and white is the
original image (1st argument of function), which includes rib fragment (red area)
too. Green area is added by the matched filter - these are lines, which covered
a sufficient amount of binary image pixels. The result of the Line matched filter
for this rib is then shown in Figure 3.2b. This way, discontinuous rib masks are
line by line connected, without blending together with the neighboring rib.

3.3 Algorithm description
Now, when we have explained all algorithms and subroutines used, we can fi-
nally start the description of the algorithm itself. Our algorithm will take two
arguments - a greyscale input image and set of its parameters (about 20 values).
Those are values like expected count of ribs in the image, a number of pixels per
millimeter (scale of the image), minimal size of rib and many other.

1Line vertical deviation threshold (10◦) is used to ensure only vertical lines affect angle
average.

2 Name matched filter is often used in the signal analysis. In image processing, this is not
casual algorithm.

17

(a) Color visualization (b) Output

Figure 3.2: Illustration of Line matched filter

3.3.1 Input preprocessing
First of all, an input image is bilateral filtered to remove noise, but keep edges
sharp. Keeping edges sharp in important for postprocessing part of the algorithm,
where edge detection will be used. To use whole grayscale color range and improve
light conditions among a whole image, the bilateral filter is followed by clip limited
histogram equalization (CLAHE).

3.3.2 Thresholding
Now, we can use the Otsu threshold to extract ribs and remove the majority of
background (see Figure 3.3). Of course, some parts of ribs will be thresholded
too, causing ribs to split to several fragments. On the other hand, many pellets
and background areas will be visible in the threshold image. We will deal with
all of those inaccuracies of threshold image in a few following steps.

Figure 3.3: Result of thresholding of output image.

18

3.3.3 Finding of the area covered by ribs
An original input image can contain pellet car (area without ribs) in upper and
bottom part3. Those parts are not interesting for us. They are present only
because the camera installed above the pellet car belt captures a higher image,
than ribs are. So in this part, we will cut off those areas, to achieve the image,
where only ribs are present.

When we take a look at the thresholded image (see Figure 3.3), ribs are
very well visible for human, because they are split by vertical spaces. Even in
a situation, where we have a lot of noise and pellets in threshold image, those
spaces are still very clear to see for us. So our algorithm could look for image
rows, where spaces are well visible. Equally, it could look for rows, where ribs are
well visible. Ribs are exactly as clear as spaces, but they have two advantages
over spaces – they are wider and we know, how wide should they approximately
be. So, the algorithm will take a look at each image row and look for abscissa,
which is not thresholded and is sufficiently long (let’s say 50% of undamaged
rib width). This way, the algorithm can go line by line and look for a sufficient
amount of ribs (let’s say 65% of expected rib count in the image).

Sure there will be rows without ribs, where our condition will be satisfied
too, but there are not too much of such rows and their occurrences are random.
Typically, there will be an unthresholded part of pellet car with small thresh-
olded areas inside (take a look at top of Figure 3.3). To prevent such row to
be understood as rib area, we can require fulfilling rib count condition in several
consecutive rows (let’s say 10 rows), before we say, that there are ribs in a row.
This condition will be already sufficient for correct finding of rows containing ribs.

So the final algorithm stage will scan line by line from upside down until it
finds rib area begin and then do the same algorithm from the bottom line of an
image. This way, we will cut out top and bottom of an image (see Figure 3.4),
where no ribs are and rest of the analysis will be performed on the image, which
contains only ribs.

Figure 3.4: Vertically cropped image

3Just to remind: The whole width of an image is expected to be covered by ribs, but ribs
do not have to fill whole image in the vertical direction.

19

3.3.4 Removing cracks in threshold image
Processing vertically cropped image, we know, there are only 3 types of objects
in the image: ribs, pellets, and spaces. Spaces are thresholded, pellets are not
and parts of ribs can be thresholded, thought the majority of their area is un-
thresholded.

First of all, we will find all fragments of ribs. Fragments of ribs are unthresh-
olded areas, which were ribs in the cropped image. The reason, why I use term
fragments of ribs instead of ribs is, that rib can be split into more fragments by
thresholding. To make this clear, in the majority of cases rib stays connected
and forms one fragment in threshold image, but there are exceptions, like the rib,
which is cracked in middle (for more information see 4.3.3).

To find fragments of ribs, we will use function Extract objects (see 3.2.1) with
minimal size parameter about 25% of undamaged rib area. So only big connected
parts of threshold image will be taken, ignoring all individual pellets. A very
common case in this phase of the algorithm is, that one fragment is formed by
multiple ribs. This is caused by pellets between ribs, which connect neighboring
rib into one connected component. For now, this is not important and we will
deal with this fact later.

Our extracted components are connected, though they aren’t continuous.
Typically, there are deep cracks in ribs, forming something like gulfs or lakes
in threshold image (see green areas in Figure 3.5). Because thresholded cracks
interfere deep into a rib, but takes just small area of it, Line matched filter func-
tion (see 3.2.4) applied on each fragment will remove them, resulting in continuous
rib fragments (see Figure 3.5).

Figure 3.5: Rib masks reconstructed by the Line matched filter.

As stated above, in this step, we use the Line matched filter for multiple
fragments (multiple ribs) at once, since they are connected into one component.
Rib angles of each rib in a component can be slightly different, resulting in de-
tected angle as the average of all ribs forming one component. Therefore, quite a
high Line matched filter coefficient must be used (about 0.9), not to connect rib
fragments together, due to angle detection inaccuracies.

3.3.5 Removing vertical rib cracks in threshold image
Thresholded cracks have been removed, but there can be vertically oriented cracks
in the middle of rib, which were not removed by matched filter due to insufficient
match. Those thresholded cracks are now just small, bounded holes in rib, much

20

smaller than spaces in between ribs. Applying of function Remove holes in mask
(see 3.2.2) with sufficient small maximal hole area parameter will remove rest of
cracks in ribs without removing spaces in between ribs.

3.3.6 Disconnecting pellets from ribs
We still have a bunch of rib fragments connected by pellets into one component or
pellets, which are connected to fragment and therefore not removed. To get rid of
at least some of them, we can use the distance transform followed by thresholding
with a small threshold value.

This operation will remove just a small percentage of continuous rib mask
compared to pellets, where significant percentage of area is removed. Majority of
pellets connected to ribs will be disconnected by this operation.

3.3.7 Inverting image
For following two steps, we will use the inverted binary image, so ribs and spaces
will have inverted values in a binary image. Consequently, each algorithm or
function applied to the inverted image will understand spaces and ribs and vice
versa.

3.3.8 Removing disconnected pellets
From an inverted point of view, pellets disconnected from ribs are now just small
holes inside rib (space in the cropped image). To remove them, we will use
function Remove holes in mask (see 3.2.2) applied on this inverted image.

3.3.9 Removing rest of pellets
In the previous step, we have removed most of the pellets, but not all of them.
Residual pellets are still random spread in spaces in the image and connected to
ribs.

We have already been in a similar situation before. Then, we have had straight
ribs with random cracks thresholded out from it. When you think about it, spaces
are more or less straight and in the inverted image, they look exactly the same,
as ribs did before. So using of Line matched filter (see 3.2.4) function on the
inverted image should solve our problem and remove rest of pellets in the image
(see Figure 3.6).

Maybe, you could ask why have we not used Line matched filter already
instead distance transform, thresholding and removing holes. Problem is, our
ribs are not complete yet. We have continuous rib fragment without holes, but
still, big parts of ribs are thresholded out because of shadows, or because they are
just dirty and therefore darker (see 3rd rib in Figure 3.6). So we need to use Line
matched filter with quite a big coefficient (about 0.8) not to remove parts of ribs,
but to remove just pellets. For this reason, we need an image with a minimum
of pellets, otherwise matched filter would not be able to match space and remove
pellets in it. That is why we had to use the distance transform before.

21

Figure 3.6: All pellets removed by Line matched filter.

3.3.10 Reconstructing ribs
We finally have the image only with spaces and ribs. Our ribs are incomplete,
but what is important, pellets are completely removed from the image. So we
will invert previously inverted image back and finally find all of the ribs in the
image.

Function Extract objects (see 3.2.1) will again find us all rib fragments. This
time, we already know, that each rib fragment belongs exactly to one rib. That is
because there are no pellets, which could connect multiple ribs into one fragment.
On the other hand, one rib can be still represented as multiple fragments with
holes between them. To connect fragments into ribs, we will again use Line
matched filter (see 3.2.4) function. Because pellets are already out, we can finally
afford to use much lower coefficient (let’s say 0.4), therefore repairing parts of
ribs, we were not able to repair before (see Figure 3.7).

Figure 3.7: Reconstructed rib masks

3.3.11 Improving rib masks
The whole rib is sure to be inside our mask, but due to Line matched filter, our
masks have straight edges and are more or less rectangular. But we would like
to have much better rib shape descriptions than this.

To achieve this, we use Otsu thresholding again but with a small modification.
We will Otsu threshold only our ribs (their shapes from the previous step), with
rest of the image set to zero. Because the majority of the thresholded image is
black, only truly dark parts (i.e. spaces round rib) will be removed, but the whole
rib will be kept unthresholded.

22

On the other hand, there can still be small, dirty areas of ribs, which will be
thresholded even by this thresholding. To produce a continuous mask, we will use
function Remove holes in mask (see 3.2.2) to repair those threshold inaccuracies.
Now we finally have masks which describe real rib shape.

3.3.12 Postprocessing, further analysis
Now, when we have rib masks, we have ended rib finding itself. Our output is a
list of rib masks, each representing one rib in the original image.

However customer required further outcomes of the algorithm, than only rib
binary masks. For example, one of the requirements was the ability to store
data about each pellet car and the possibility to track it over time. As we all
can see, binary masks are not the most saving data format to store, same as
comparing binary masks is not the most effective way how to track pellet car
changes over time. For this reason, the rib finding part is followed by several
statistical algorithms, producing compact and intuitive representation.
List of those statistical algorithm follows:

• First of all, principal component analysis (PCA) is performed on each rib
mask, producing values as rib width, height, area, the center of mass, etc.

• Using rib width and center of mass, the width of spaces between ribs is
calculated as the horizontal distance of centers of mass minus half of width
of each rib.

• Rib angle is calculated for each rib, using Rib angle (see 3.2.3) function.

• Even though the average width of each rib had been found by PCA, mini-
mum width of each rib is found too. The reason is that rib falling down off
pellet car will be shaded by neighboring ribs, resulting in narrowing of rib
mask in the area, where it is cracked.

• Last of all, cracks in ribs are found as another measure of rib damage.
Canny edge filter on masked rib image is used and the amount of crack
pixels found is compared to rib total area, producing rib damage index.

Results of all operations described above are returned as the output of this
algorithm. To make all those data (including rib masks) more user readable, I
have created an overview image (see Figure 3.8).

23

Figure 3.8: Overview image of algorithm result.

24

Chapter 4

Evaluation

4.1 Basic features
Some algorithm outputs are obvious and were mostly already described during
the algorithm description.
Here comes the list of those features:

• Rib shape, described by binary masks.

• Rib count, as the count of rib masks, returned (except for situation de-
scribed in 4.3.3).

• PCA results: area, the center of mass, width, height, etc.

• Widths of spaces between ribs, calculated using rib width and center of
mass from PCA.

• Rib angles, which is calculated several times, all over algorithm execution.

4.2 Damaged ribs detection
Until now, we have spoken only about the finding of ribs in an image. But the
original purpose of this algorithm was pellet car damage evaluation. So in this
section, we will discuss, which damage is this algorithm able to detect and how.

4.2.1 Degraded ribs finding
First casual rib damage is degraded rib. Degraded rib lost its original shape by
gradual rounding (see Figure 4.1). Degrading of ribs leads to higher iron material
losses, as spaces are larger, than they should be and an iron material falls off the
conveyor belt.

Let’s take a look, how our algorithm behaves in case of pellet car with degraded
ribs. Do you remember Otsu thresholding at the beginning of the algorithm?
Otsu thresholding finds ideal threshold value to split foreground and background
intensity levels. And because light goes to pellet car from upwards, the intensity
of light at rib sides is much lower, than the intensity of rib tops and a pellet car
frame. For the same reason, the intensity of degraded rib sides is much lower,

25

Figure 4.1: Pellet car with rounded (degraded) ribs.
.

causing Otsu threshold to remove its degraded sides too. Overall, degraded ribs
are detected as ribs, which are significantly narrower, than non-degraded rib
should be.

4.2.2 Pushed down ribs
Another common kind of pellet car damage is pushed down rib, meaning rib,
which is located below the level of other ribs in pellet car. Such ribs are typically
either cracked in the middle or bent by iron ore weight. Pushed down ribs are
about to fall off pellet car soon, so they have to be detected and such pellet car
must be replaced during the next service stop. Example of pushed down rib can
be seen in Figure 4.2, where pushed down rib is marked by red arrow1. But how

Figure 4.2: Pushed down rib.

to detect those ribs?
Same as last time, the answer is again Otsu thresholding. Pushed down rib

is located below other ribs, so it is shaded by other ribs and consequently less
illuminated. After Otsu thresholding, at least center part of pushed down rib
does not appear in thresholded image and the rest of the rib is cleaned away as
noise (pellets etc.) in further steps of the algorithm.

1 Generally, it is quite complicated for a human to find pushed down ribs in an image. This
is caused by human eye adaptability to different light levels in different areas of an image.

26

Therefore, pushed down ribs appear in algorithm output as the missing rib.
Such behavior might sound incorrect at the beginning, but after a deeper con-
sideration, we can conclude, that pushed down ribs, which are about to fall off,
shouldn’t be detected as normal ribs. So in the end, this algorithm behavior is
exactly what we want.

Moreover, the algorithm is much better in finding such ribs, than human. You
can see this fact in Figure 4.2, where human can barely recognize pushed down
rib, but the algorithm has no problem to find it.

4.2.3 Rib cracks
Less serious, but still important rib damage are cracks in rib surface (see Fig-
ure 4.3). Those cracks are caused by thermal expansion of rib due to continual
warming and cooling of pellet car. Because there could be a connection between
cracks in rib surface and cracking of ribs into pieces, our algorithm should watch
those damage too.

As described in 3.3.12, Canny edge detector is used and the number of edge
pixels found is compared to the rib area. Resultant rib cracks index then indicates
how much is rib surface covered with cracks, where higher index means more
cracks.

Figure 4.3: Rib cracks.

4.3 Unexpected situations
During testing of the algorithm, several surprising pellet car states appeared.
Those states have never been mentioned before, so the algorithm hasn’t been
designed to deal with them. Very often, it isn’t even obvious, how exactly should
algorithm behave in case of such pellet car states.

4.3.1 Holes in ribs
In one test image, I have noticed a hole in rib. The hole makes no problem to rib
detection itself, as the current algorithm removes all holes in masks after last Otsu
thresholding. This step is on the one hand necessary to produce a continuous rib

27

mask. But on the other hand, possible rib hole is unfortunately removed in this
step too.

Because hole detection was never required as algorithm output, this behavior
should not be problematic. If hole detection was missing some time in the future,
there could be (in my opinion) implemented by another thresholding with a fixed
threshold value. Such altitude would probably work because hole (the one I have
seen) looks significantly darker than messy parts of ribs (it is almost black).

4.3.2 Different rib vertical position
Another state of pellet car, which can be seen in test images, but was not de-
scribed by the customer is a different vertical position of ribs. Of course, pellet
car ribs can’t significantly move in the vertical direction due to pellet car con-
struction. Even though, when you take a look at Figure 4.4, you can see, vertical
displacement can be at least noticeable.

Figure 4.4: Vertically displaced ribs.

As described in section 3.3.3, all ribs are vertically cropped at the same height.
Consequently, in case of vertically displaced ribs, the rib is cut on one side.
Analogously, part of pellet car on the other side of the rib may be detected as a
rib, despite last thresholding, which is designed to differ rib from space, not to
differ pellet car from a rib.

If vertical displacement of detected masks appears to be a problem, the solu-
tion would be a bit more complicated, than in case of the previous problem. I
would suggest an additional step of the algorithm located before last Otsu thresh-
olding when the algorithm has rectangular masks of ribs. Those masks could be
used to original Otsu thresholded image, where rib and spaces are well visible
thus can be used to correct vertical detection. The principal of this step would
be vertical cropping based just on local neighborhood followed by shifting rib
mask in its direction.

In the current algorithm, vertical displacement of ribs is ignored and the ne-
cessity of vertical crop modifications will be discussed with the customer. Vertical
misdetection can cause slightly incorrect rib length and area measurement, re-
sulting for example in lower rib cracks index.

28

4.3.3 Broken apart rib
The most surprising pellet car state was rib cracked into two pieces, which hadn’t
fallen off pellet car yet (see Figure 4.5). Until testing phase, where algorithm
detected only the half of rib, I have expected, that broken rib immediately falls
out of pellet car. More surprisingly, despite this assumption, the algorithm was
able to correctly identify cracked rib (understand to produce a correct mask of
each rib piece). On the other hand, other parts of the algorithm weren’t designed
for cracked ribs and had to be slightly modified to produce correct results.

Figure 4.5: Pellet car with a broken rib.

There are two possible behaviors of the algorithm, in case of a broken rib.
The first option is to find two half-sized masks, which will be returned as two
independent ribs. The second option is to look for broken ribs and connect
masks of parts into one rib mask, producing single discontinuous rib mask. From
those two options, I have chosen the first one. It is more correct as rib pieces
are independent ribs despite the fact, they used to be one rib in the past. In
addition, this solution is easier to implement and less time-consuming.

The first and most important modification was necessary for the last Otsu
thresholding. In this stage, rectangular masked ribs are again thresholded to
correctly identify rib, which is never ideally rectangular. But after thresholding,
there is typically one continuous rib and many tiny components. Originally, the
algorithm found the biggest component and throw all other. It worked correctly
for non-broken ribs, but in case of broken rib always discarded smaller of two
parts. For this reason, not only the biggest component must be accepted as the
rib. Instead, all components bigger than minimal area, which is set as input of
algorithm, are taken as ribs. After this modification, all parts of cracked rib were
detected correctly.

Another problem came with space detection. Spaces are measured as hori-
zontal distance of rib centers of mass, minus half of the sum of neighboring rib
widths. In case of broken ribs, which horizontal distance of centers of mass is
almost zero, space width was suddenly negative. Simple ignoring of all spaces
with negative width was sufficient modification. The only disadvantage of this
solution is, that the number of spaces does not equal to number of ribs minus
one.

29

4.4 Incorrect detections
Even though most test images were analyzed correctly, there were a few images,
which result was not 100% correct.

4.4.1 Insufficient illumination
In some test images, not all of the ribs which should be detected were actually
detected. After an examination of those images, I concluded, that all of them
were insufficiently illuminated. Whereas those differences in illumination were
not slightly different light level over the image, but real shadows over a big part
of pellet car (see Figure 4.6).

Figure 4.6: Insufficiently illuminated test image

In the final setup, there should be led belt flashlight to ensure sufficient and
uniform illumination all over the image. Because the algorithm worked well on
all uniformly illuminated test images, it should work in the final setup too. For
this reason, there is probably no need to modify the algorithm for this reason.

4.4.2 Rib at the edge of an image
Another problem, or misdetection, which will have to be discussed with the cus-
tomer is behavior of the algorithm at image vertical edges. In many test images,
edge ribs are not captured whole, but there is just part of rib captured in an
image.

Because the algorithm uses rib area for removing of pellets, if only narrow
part of a rib is captured, it is removed as a pellet. Much bigger problems are
ribs, which are sufficiently big to pass thresholding mentioned. Those ribs are
correctly detected, but their masks are for example narrower, resulting in smaller
rib area measured by the algorithm. Overall, behavior of the algorithm at the
edge of the image is more or less unpredictable and incorrect in case, the edge
goes through a rib.

There basically three simple solutions to this behavior. First, the algorithm
can ignore all ribs at image edges. Let’s say, that all ribs, which have the center
of mass closer to the edge, than some threshold value are discarded. Another
solution would be setting cameras in the factory to such position, that edge of

30

the image will be always in space between ribs. Due to the construction of pellet
cars, ribs should be more or less at the same position in all pellet cars. Yet, this
solution is probably the worst of those three, as we have already seen pellet car,
with shifted ribs. Last of those three solutions is based on an intention to watch
whole width of pellet car. For this purpose, about 4 cameras are expected to be
installed above pellet car next to each other. Because the position of cameras
above pellet car belt will be known as well as their distance, those 4 images can
be composed into one. This one, very wide image will then contain all ribs and
its edge will be at the edge of pellet car, which is at a fixed horizontal position.
In my personal opinion, the third solution is the easiest one and unlike other
solutions ensures, that each rib will be measured exactly once.

31

Chapter 5

Implementation

In this section, I would like to shortly discuss possible algorithm implementation
and present my reference implementation, which was used to evaluate test image
results.

5.1 Before coding
First of all, we should choose libraries, we will use and programming language.
I decided to for OpenCV library. OpenCV is an open source image processing
library[35], which is free for academic same as commercial usage. It supports mul-
tiple platforms: PC, Android, iOS, CUDA, and OpenCL. Several programming
languages are supported by OpenCV including C++, Python, Matlab, Java, C#
and many others[36].

When I had my image processing library chosen, I had to decide, which pro-
gramming language to use. Because I was at the beginning of my research and I
expected a lot of testing, I took Python. Honestly, it was a great choice. Later, I
tried OpenCV for Java and C++ as well and none of them was as easy to use as
Python version. In Java, I even had a problem to find current documentation of
some of the basic functions. Overall, I was very satisfied with Python OpenCV,
which cooperates with numpy and together make a very powerful, comfortable
and easy-to-use setup.

As a development environment, I used Jupyter Notebook. For those, who do
not know it, Jupyter is an open source web application[37], which allows you to
mix code and markdown text, so it’s quite easy to take your project, including
images and graphs, add some description and generate nice pdf progress report.
But the biggest advantage of Jupyter Notebook over another IDE was its ability
to keep Python program global state. In Jupyter, you have cells of code. Dividing
of code into cells is fully up to you and you can run each cell individually. But
when execution of cell modifies Python program global state (define a function,
modify global variable, etc.), this state is kept for all other cells, which run after
it. For me, this was a great advantage, which allowed me, for example, to load
test images only once at the beginning of my workday. This feature saved me
plenty of time, as I didn’t have to run the whole program every time, I wanted
to modify a single constant or single line of code. Moreover, I was not forced
to write efficient research code and could focus only on the purpose of the code.
Honestly, I can recommend Jupyter Notebook a perfect research tool.

32

5.2 Implementation
As you could see in Chapter 3 Description of an algorithm, the algorithm has a
pipeline structure and is relatively short (about 10 stages). So I implemented the
algorithm as a single function, which contains the whole pipeline and just calls
subroutines and library functions.

The algorithm takes an image and about 20 constants as its parameters. Un-
like image, which is easy to pass to function, you don’t want to pass 20 values as
function parameters separately. So I used Python namedtuple collection to pass
all constants as a single argument. In C++ or Java, I would have to write some
struct/class to store those values, as in those languages, it is not possible to keep
them in single collection, due to different data types.

Additionally, my algorithm implementation takes the third parameter. This
algorithm is boolean, indicating whether the algorithm should produce data vi-
sualization images (those are images, you can see all over this thesis). Because
drawing of images takes a lot of time, and they are quite big, in final setup, this
boolean will be probably always false.

My algorithm has a single output, which is a Python dictionary collection.
Again in C++ or Java, it would be class, or maybe only interface in case of Java
to allow some advanced tricks, as lazy evaluation of data visualization images,
etc.

5.3 Possible parallelization
Nowadays, even the worst PC has multiple CPU cores and what is probably more
important, single thread performance of CPUs does not grow significantly over
time. Consequently, parallelization is very often the best way how to speed up
program execution. So in case of real-time pellet car analysis, we should consider
possible ways of algorithm parallelization.

First of all, we could take a look at the algorithm and parallelize individual
parts. One such part could be the usage of line matched filter, which is executed
for each rib separately, so we can parallelly process multiple ribs. On the other
hand, there is still a significant part of an algorithm, which can’t be parallelized.
Mostly, because of pipeline stages, which are not implemented as a parallel algo-
rithm in OpenCV. So this way we will barely reach remarkable speed up.

Another possibility is the parallel pipeline design pattern. In this pattern,
each stage of the pipeline is executed in a separate thread and those stages pass
data to each other using thread-safe queues or similar data structures. Designing
parallel pipeline, programmer focus on dividing an algorithm into a few stages,
which all should take approximately the same time not to create a bottleneck.

To cut a long story short, using the parallel pipeline pattern for this algorithm
would not be the best choice. First of all, it would be quite hard to split the algo-
rithm into several parts, which would take all roughly the same time. Secondly,
parallel pipeline usually fits use cases, where we need fast stream processing.
Typical usage is TV signal decoding when TV has just a few milliseconds to de-
code video and it has to decode frame-by-frame in a given order (i.e. stream).
In case of pellet car processing, we don’t really care about latency, but only of

33

throughput. For those reasons, the parallel pipeline is too complicated way of
parallelization and therefore not suitable for this kind of algorithm.

In my opinion, the best way of parallelization is a concurrent analysis of mul-
tiple pellet cars. First of all, unlike the parallel pipeline, we don’ have to modify
an algorithm and find its parts with similar execution time. Instead, we have
each algorithm as one part, producing an equal load of all CPU cores. Secondly,
there is no synchronization overhead, because there is no synchronization needed.
Each thread takes one image and set of parameters as it’s input and produces set
on output data and images. There are no shared data between threads. At least
during algorithm execution. Sure there has to be some synchronization while
writing results to database or file, but this kind of synchronization is actually
trivial to implement.

In my reference implementation, I used the third method mentioned and paral-
lelization was really trivial. I exactly only took the serial algorithm and wrapped
it by for loop, which executes each the serial algorithm in one thread1. Because
the only requirement for algorithm speed says, that it has to be able to analyze
as fast, as pellet car belt moves, this solution can be used in the final setup as
well.

5.4 Performance
My implementation in Python executes on a single FullHD image (1920x1080px)
about 4.5s without drawing output images. Algorithm together with drawing of
output images, takes about 16s. Those tests were performed in a single thread
and my CPU is Intel i7-4702MQ (Haswell) with 16GB of RAM (which is far not
an issue). I expect, that execution time in final setup (with better hardware)
could be about 3s, which meet the requirements of the customer for real-time
execution.

1Processes actually, as Python currently does not allow parallel thread execution due to
interpreter global lock.

34

Chapter 6

Conclusion

At the beginning of this thesis, we had briefly introduced the modern iron produc-
tion process with focus on pellet/sinter burning. We’d stated, that current way
of monitoring pallet car damages is very obsolete considering nowadays computer
possibilities and upcoming industry 4.0 revolution. One of possible solutions is
using computer vision algorithms to analyze pellet car damage from its image.
This thesis focused on inventing of such algorithm.
With given assumptions on the input image (described in 3.1 Expected input
image parameters), the algorithm itself starts with threshold image and its main
steps are:

1. To find the area covered by rib in the vertical direction.

2. To join rib threshold pieces, which were disconnected by thresholding.

3. To find individual ribs by removing pellets from the threshold image.

4. To produce damage indices and shape description from rib masks.

Algorithm final output consists of rib masks and damage indices, which are pro-
duced from rib masks and should somehow correspond to real rib damage.

When we had our algorithm described, we had to discuss, how it works, as
its main purpose was not to find ribs in an image, but to evaluate the damage
of pellet cars. As we stated in 4.2 Damaged ribs detection, all common rib
damages like degraded ribs, pushed down ribs, and rib cracks are detected by
this algorithm. Further, we discussed several situations, which were not expected
during algorithm design and were never described by the customer. For each
of them, we specified necessary changes in the algorithm and outlined possible
solutions of those them. Overall, we concluded, that algorithm works and that is
can be used to evaluate the damage of pellet cars.

In the last part of this thesis, I briefly introduced my reference implementation
with focus on the programming language, libraries, and developer tools I used.
Moreover, I discussed the advantages and disadvantages of possible paralleliza-
tion methods of the algorithm. And last, but not least, we discussed algorithm
performance.

35

List of Figures

1.1 Pellet car or Sinter car respectively[9]. 4
1.2 Example of a test image. 6

2.1 Example of Gaussian blurred image of stained glass. [17] 8
2.2 Example of Bilateral filtered image of stained glass [17] 9
2.3 Exhibition of histogram equalization 10
2.4 Example of Canny edge detection [32] 13
2.5 Example of Hough lines result[34] 14

3.1 Typical input image of the algorithm. 16
3.2 Illustration of Line matched filter 18
3.3 Result of thresholding of output image. 18
3.4 Vertically cropped image . 19
3.5 Rib masks reconstructed by the Line matched filter. 20
3.6 All pellets removed by Line matched filter. 22
3.7 Reconstructed rib masks . 22
3.8 Overview image of algorithm result. 24

4.1 Pellet car with rounded (degraded) ribs. 26
4.2 Pushed down rib. 26
4.3 Rib cracks. 27
4.4 Vertically displaced ribs. 28
4.5 Pellet car with a broken rib. 29
4.6 Insufficiently illuminated test image 30

36

Bibliography

[1] “Iron ore - wikipedia.” https://en.wikipedia.org/wiki/Iron_ore. (Ac-
cessed on 03/03/2019).

[2] “Pelletizing - wikipedia.” https://en.wikipedia.org/wiki/Pelletizing.
(Accessed on 03/03/2019).

[3] “Sinter plant - wikipedia.” https://en.wikipedia.org/wiki/Sinter_
plant. (Accessed on 03/03/2019).

[4] “Blast furnace - wikipedia.” https://en.wikipedia.org/wiki/Blast_
furnace. (Accessed on 03/06/2019).

[5] “Pig iron - wikipedia.” https://en.wikipedia.org/wiki/Pig_iron. (Ac-
cessed on 03/03/2019).

[6] “Slag - wikipedia.” https://en.wikipedia.org/wiki/Slag. (Accessed on
03/06/2019).

[7] “Výroba oceli – wikipedie.” https://cs.wikipedia.org/wiki/V%C3%
BDroba_oceli. (Accessed on 03/03/2019).

[8] “Basic oxygen steelmaking - wikipedia.” https://en.wikipedia.org/wiki/
Basic_oxygen_steelmaking. (Accessed on 03/07/2019).

[9] J. Muni, “Pellet car — 3d cad model library — grabcad.” https://grabcad.
com/library/pellet-car-1, 7 2013. (Accessed on 03/03/2019).

[10] E. R. Davies, Computer and Machine Vision: Theory, Algorithms, Practi-
calities. Academic Press, 4th ed., 2012.

[11] “Basic thresholding operations — opencv 2.4.13.7 documentation.”
https://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/
threshold.html. (Accessed on 09/18/2018).

[12] “Opencv: Image thresholding.” https://docs.opencv.org/3.4.1/d7/d4d/
tutorial_py_thresholding.html. (Accessed on 09/18/2018).

[13] “Otsu’s method - wikipedia.” https://en.wikipedia.org/wiki/Otsu’s_
method, 2018. (Accessed on 09/18/2018).

[14] “Opencv: Smoothing images.” https://docs.opencv.org/3.1.0/d4/d13/
tutorial_py_filtering.html. (Accessed on 09/18/2018).

37

https://en.wikipedia.org/wiki/Iron_ore
https://en.wikipedia.org/wiki/Pelletizing
https://en.wikipedia.org/wiki/Sinter_plant
https://en.wikipedia.org/wiki/Sinter_plant
https://en.wikipedia.org/wiki/Blast_furnace
https://en.wikipedia.org/wiki/Blast_furnace
https://en.wikipedia.org/wiki/Pig_iron
https://en.wikipedia.org/wiki/Slag
https://cs.wikipedia.org/wiki/V%C3%BDroba_oceli
https://cs.wikipedia.org/wiki/V%C3%BDroba_oceli
https://en.wikipedia.org/wiki/Basic_oxygen_steelmaking
https://en.wikipedia.org/wiki/Basic_oxygen_steelmaking
https://grabcad.com/library/pellet-car-1
https://grabcad.com/library/pellet-car-1
https://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
https://docs.opencv.org/3.4.1/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4.1/d7/d4d/tutorial_py_thresholding.html
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Otsu's_method
https://docs.opencv.org/3.1.0/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/3.1.0/d4/d13/tutorial_py_filtering.html

[15] “Image noise - wikipedia.” https://en.wikipedia.org/wiki/Image_
noise. (Accessed on 09/18/2018).

[16] “Shot noise - wikipedia.” https://en.wikipedia.org/wiki/Shot_noise.
(Accessed on 09/18/2018).

[17] IkamusumeFan, “Cappadocia gaussian blur.svg - wikipedia.” https:
//upload.wikimedia.org/wikipedia/commons/6/62/Cappadocia_
Gaussian_Blur.svg, 7 2015. (Accessed on 01/11/2019).

[18] “Histogram equalization — opencv 2.4.13.7 documentation.”
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/
histogram_equalization/histogram_equalization.html. (Accessed on
12/14/2018).

[19] Konstable, “Unequalized hawkes bay nz.jpg - wikipedia.” https://
en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg, 6 2006.
original Phillip Capper, modified by User:Konstable (Accessed on
01/11/2019).

[20] Jarekt, “Unequalized histogram.svg - wikipedia.” https://en.wikipedia.
org/wiki/File:Unequalized_Histogram.svg, 5 2008. (Accessed on
01/11/2019).

[21] Konstable, “Equalized hawkes bay nz.jpg - wikipedia.” https://en.
wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg, 6 2006. orig-
inal Phillip Capper, modified by User:Konstable (Accessed on 01/11/2019).

[22] Jarekt, “Equalized histogram.svg - wikipedia.” https://en.wikipedia.
org/wiki/File:Equalized_Histogram.svg, 5 2008. (Accessed on
01/11/2019).

[23] “Opencv: Histograms - 2: Histogram equalization.” https://docs.opencv.
org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html. (Ac-
cessed on 12/14/2018).

[24] “Opencv distance transformation.” https://www.tutorialspoint.
com/opencv/opencv_distance_transformation.htm. (Accessed on
12/14/2018).

[25] “Opencv: Image segmentation with distance transform and wa-
tershed algorithm.” https://docs.opencv.org/3.1.0/d2/dbd/tutorial_
distance_transform.html. (Accessed on 12/14/2018).

[26] “Structural analysis and shape descriptors — opencv 3.0.0-dev docu-
mentation.” https://docs.opencv.org/3.0-beta/modules/imgproc/
doc/structural_analysis_and_shape_descriptors.html?highlight=
connectedcomponents. (Accessed on 12/14/2018).

[27] “Opencv 3 image edge detection : Sobel and laplacian - 2018.” https:
//www.bogotobogo.com/python/OpenCV_Python/python_opencv3_
Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php.
(Accessed on 12/14/2018).

38

https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Shot_noise
https://upload.wikimedia.org/wikipedia/commons/6/62/Cappadocia_Gaussian_Blur.svg
https://upload.wikimedia.org/wikipedia/commons/6/62/Cappadocia_Gaussian_Blur.svg
https://upload.wikimedia.org/wikipedia/commons/6/62/Cappadocia_Gaussian_Blur.svg
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html
https://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Unequalized_Histogram.svg
https://en.wikipedia.org/wiki/File:Unequalized_Histogram.svg
https://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Equalized_Histogram.svg
https://en.wikipedia.org/wiki/File:Equalized_Histogram.svg
https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
https://www.tutorialspoint.com/opencv/opencv_distance_transformation.htm
https://www.tutorialspoint.com/opencv/opencv_distance_transformation.htm
https://docs.opencv.org/3.1.0/d2/dbd/tutorial_distance_transform.html
https://docs.opencv.org/3.1.0/d2/dbd/tutorial_distance_transform.html
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=connectedcomponents
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=connectedcomponents
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=connectedcomponents
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php

[28] “Opencv: Sobel derivatives.” https://docs.opencv.org/3.2.0/d2/d2c/
tutorial_sobel_derivatives.html. (Accessed on 12/14/2018).

[29] “Laplace operator — opencv 2.4.13.7 documentation.” https:
//docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_
operator/laplace_operator.html. (Accessed on 12/14/2018).

[30] “Spatial filters - laplacian/laplacian of gaussian.” https://homepages.inf.
ed.ac.uk/rbf/HIPR2/log.htm. (Accessed on 12/14/2018).

[31] “Opencv: Canny edge detection.” https://docs.opencv.org/3.4/da/d22/
tutorial_py_canny.html. (Accessed on 12/14/2018).

[32] JonMcLoone, “Ääretuvastuse näide.png - wikimedia commons.” https:
//commons.wikimedia.org/wiki/File:%C3%84%C3%A4retuvastuse_n%
C3%A4ide.png, 6 2010. (Accessed on 01/11/2019).

[33] “Opencv: Hough line transform.” https://docs.opencv.org/3.3.1/d3/
de6/tutorial_js_houghlines.html. (Accessed on 12/14/2018).

[34] “Hough line transform — opencv 3.0.0-dev documentation.” https:
//docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_
houghlines/py_houghlines.html. (Accessed on 12/14/2018).

[35] “Opencv library.” https://opencv.org/. (Accessed on 02/27/2019).

[36] “Opencv - wikipedia.” https://en.wikipedia.org/wiki/OpenCV. (Ac-
cessed on 02/27/2019).

[37] “Project jupyter — home.” https://jupyter.org/. (Accessed on
02/27/2019).

39

https://docs.opencv.org/3.2.0/d2/d2c/tutorial_sobel_derivatives.html
https://docs.opencv.org/3.2.0/d2/d2c/tutorial_sobel_derivatives.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_operator.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_operator.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_operator.html
https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://commons.wikimedia.org/wiki/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png
https://commons.wikimedia.org/wiki/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png
https://commons.wikimedia.org/wiki/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png
https://docs.opencv.org/3.3.1/d3/de6/tutorial_js_houghlines.html
https://docs.opencv.org/3.3.1/d3/de6/tutorial_js_houghlines.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
https://opencv.org/
https://en.wikipedia.org/wiki/OpenCV
https://jupyter.org/

	Introduction
	Iron processing and steelmaking
	Problem description
	Proposed solution
	Aim of the thesis
	Test data

	Image processing algorithms
	Thresholding
	Otsu thresholding

	Filtering algorithms
	Gaussian blur
	Bilateral filtering

	Contrast enhancement algorithms
	Histogram equalization
	Adaptive histogram equalization
	Clip limited adaptive histogram equalization

	Distance transform
	Connected components
	Edge detection algorithm
	Sobel operator
	Laplace operator
	Canny edge detection

	Hough line transform

	Description of an algorithm
	Expected input image parameters
	Subroutines
	Extract objects
	Remove holes in mask
	Rib angle
	Line matched filter

	Algorithm description
	Input preprocessing
	Thresholding
	Finding of the area covered by ribs
	Removing cracks in threshold image
	Removing vertical rib cracks in threshold image
	Disconnecting pellets from ribs
	Inverting image
	Removing disconnected pellets
	Removing rest of pellets
	Reconstructing ribs
	Improving rib masks
	Postprocessing, further analysis

	Evaluation
	Basic features
	Damaged ribs detection
	Degraded ribs finding
	Pushed down ribs
	Rib cracks

	Unexpected situations
	Holes in ribs
	Different rib vertical position
	Broken apart rib

	Incorrect detections
	Insufficient illumination
	Rib at the edge of an image

	Implementation
	Before coding
	Implementation
	Possible parallelization
	Performance

	Conclusion

