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Introduction
Particle physics studies the elementary particles and forces that constitute the
world around us, their properties and interactions. Current theory describing
elementary particles and fundamental forces - the Standard Model - has predicted
various properties and relations that have been confirmed, but it still leaves many
observed phenomena unexplained.
One of the currently studied problems is finding the fundamental symmetry, that
is, what kind of transformation applied to our universe would preserve all of its
observable properties. The Standard Model introduces three possible natural
symmetries - charge conjugation symmetry, parity symmetry and time reversal
symmetry - none of which holds alone in our present universe. The search for the
true symmetry continued by studying CP symmetry, that is, the combination
of charge conjuration and parity symmetries. This combined symmetry was also
shown to be broken by the discovery of CP violations in K and B meson decays.
The symmetry that is still believed to hold is the CPT symmetry.
CP violation is an important discovery that promises more than just surpassing
a wrong description of nature. Our universe exhibits great asymetry in abun-
dance of matter and anti-matter and CP violation has been believed to provide
at least some insight into this phenomenon. Understanding CP asymetry will
also contribute to our knowledge about weak interactions responsible for particle
decays.
High energy physicists study particle interactions predominantly in particle ac-
celerator experiments. Accelerated particles collide at high energies and produce
new particles that can exhibit rare decays, including those that break CP sym-
metry.
Several particle physics experiments were designed to study CP violation. Belle
II is one of such experiments, developed at High Energy Accelerator Research
Organisation (KEK) in Tsukuba, Japan. Its predecessor experiment, Belle, con-
tributed important discoveries, completing its success by confirmation of the CP
asymmetries predicted in B meson decays. The Belle II upgrade is expected to
reveal more properties of particle decays and CP violation.
Particles are observed via large systems of detectors. Different types of detectors
are required to track or capture different particles and their different properties.
Silicon detectors are a widely used type of particle detectors, Belle II uses pixel
and strip silicon vertex detectors as components of its tracking and vertexing
system.
For precise reconstruction of physical processes, all tracking data must be mea-
sured with high accuracy. The accuracy depends on detector resolution and is
adversely affected by electronic noise and beam background radiation.
Both accelerators and detectors consume large amount of energy spent on their
operation and cooling. Detectors are also being damaged due to extreme radiation
and need to be replaced every few years. Therefore, high energy experiments
are very expensive, each component has to be precisely designed and carefully
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tested, and prior to the start of the experiment, the measurements are simulated
to obtain expectations of detector performance and to generate data with which
physics reconstruction can be validated.
The simulations have to reflect every aspect of the real experiment including
adverse effects like beam background and noise signals. By identifying unwanted
signals, their rates and magnitudes, we are able to extract physics data and
estimate their accuracy.
Computer simulations of this kind are huge computations that require large com-
puting resources and take a lot of time. It is therefore essential to have efficient
simulation methods that provide high accuracy with reasonable computing re-
sources.
The subject of this bachelor thesis is the simulation of electronic noise in strips
of the Belle II vertex detector. Electronic noise signals appear in strips of the
SVD at different times and with different amplitudes. To simulate the noise, we
have to be able to generate signals with rates and amplitudes governed by proper
probability distributions. Our approach to this problem is to develop an artificial
neural network with uniform random inputs to generate noise signal samples.
The review part of the thesis contains an overview of the Belle II experiment and
its detector system and a description of semiconductor detectors with a focus on
electronic noise origins and properties. It also describes simulation methods of the
noise probability and introduces the concepts and properties of neural networks.
The central part describes the training data we used, the optimization of the
neural network noise generator and also introduces some alternatives to neural
network.
The attachments contain plots and tables illustrating the training process that
did not fit well into the text flow of individual chapters.
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1. The Belle II Experiment
Belle II is a particle physics experiment designed to study the properties of B
mesons, heavy particles containing a bottom quark. On April 25, 2018 Belle II
observed its first collisions at SuperKEKB, an e+e− asymmetric energy collider at
the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan.
Belle II is an upgrade of the previous programme at KEK - the Belle experiment.
This chapter briefly overviews the Belle II experiment and its detector systems.
The last section of this chapter describes the beam background at SuperKEKB.

1.1 The Belle Experiment

The Belle experiment ran at the KEKB (KEK B-factory) accelerator between
1999 and 2010. Belle was designed for observation of CP violation in the B
system by precisely measuring the differences between particles and antiparticles
in certain decay channels of B mesons. Belle was able to collect 1000 fb−1 of data
at various Υ resonances, setting a world record in integrated luminosity. Most
of the luminosity was recorded near the Υ(4S) resonance, which is the optimal
center of mass (CM) energy for the production of BB̄ pairs used in B physics
analysis.
CP asymmetries in B decays were predicted by the theoretical proposal of Koba-
yashi and Masakawa, who were awarded the Nobel Prize in Physics in 2008. Apart
from CP violation measurements, Belle contributed several important discover-
ies in charm physics, tau lepton physics, hadron spectroscopy, and two-photon
physics. [1]

1.2 Belle II: the Belle upgrade

CP violation is believed to be one of the reasons of the dominance of matter
over anti-mater in our universe. However, Belle measurements were not sufficient
to explain the observed asymmetry quantitatively. To reach a deeper under-
standing of this phenomenon, the 3 km long KEKB accelerator was upgraded to
SuperKEKB, and provided with a new, Belle II, detector.
SuperKEKB is expected to reach a 40 times higher instantaneous luminosity of
8 × 1035cm−2s−1 and total integrated luminosity of 50ab−1 in 2020’s. The explo-
rations of the new B-factory into the New Physics beyond the Standard Model
will complement the Large Hadron Collider (LHC) experiments at CERN. While
the LHC provides TeV mass scale, Belle II will focus on high-precision measure-
ments of rare decays and CP violations at even higher mass scales through the
effects of new particles in higher order processes.
Reaching higher luminosity requires both increasing the beam current and better
focusing of the beams at the collision point. The energies of the electron and
positron beams were changed to 7 and 4 GeV, respectively, the beam sizes at the
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point of interaction were squeezed down to nanometer level.
The main concept of the new detector remains the same as in the Belle experi-
ment. The detector is cylindrical with asymmetry respecting the forward direc-
tion of the interaction products (direction of the electron beam). Belle’s silicon
strip vertex detector is replaced by two layers of DEPFET pixel sensors and 4
layers of strip sensors to provide better tracking resolution. The new vertex de-
tector of Belle II will cover a larger solid angle than in Belle. A completely new
particle identification devices in the barrel and endcap regions are equipped with
very fast read-out electronics, offering excellent separations of pions and kaons.
The new data-acquisition system was designed to cope with considerably higher
event rates. The electronics of the electromagnetic calorimeter will reduce the
noise pile up, which is important for missing energy studies. [2] [3] [4]

1.3 Belle II Detector

SuperKEKB collides electrons with positrons, where positrons circulate in the
Low Energy Ring (LER) of the accelerator at the energy of 4 GeV and electrons
travel the opposite direction in the High Energy Ring (HER) at 7 GeV. When
two bunches collide, the centre of mass moves in the direction of the electron
beam. Therefore, most of the interaction products are detected in the forward
direction and thus the layout of the detector is asymetric. 3D model of the Belle
II detector is shown in Fig. 1.1.

Figure 1.1: 3D model of the Belle II detector. The figure shows major Belle II
subdetectors. The tracking system comprises the PXD, SVD, and CDC; TOP
and ARICH are responsible for particle identification. Crystals of ECL detect
neutral particles and measure the energy of electromagnetic particles. The KLM
surrounds the whole system and detects muons and kaons. The forward side of
Belle II is to the right in the picture. [5]
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The innermost sensitive part of the Belle II detector is placed 14 mm from the
interaction point, which allows detection of low transverse momentum particles
(from pT as low as 6 MeV). Because of the extreme luminosity, large beam back-
ground is expected, therefore, high-granularity Pixel Detectors (PXD) are re-
quired in the innermost layers. The PXD sensors, based on the DEPleted Field
Effect Transistor (DEPFET) technology, surround the beam pipe at 14 and 22
mm radii.
Four layers of the Strip Vertex Detectors (SVD) are placed between 38 and 140
mm from the beampipe. The SVD is built from double-sided silicon strip sensors.
The barrel part consists of rectangular sensors in a windmill structure, the forward
region is covered by trapezoidal-shaped sensors slated to form a lantern-shaped
cap.
The Central Drift Chamber (CDC) is the largest tracking detector. The CDC
occupies the volume between 160 and 1130 mm from the beampipe and its length
is 2.4 m. It provides high precision track and momentum measurements that,
combined with the data from the PXD and SVD detectors, allows precise recon-
struction of charged particle tracks. CDC is also able to measure particles’ energy
losses and therefore contributes to particle identification. The CDC consists of
sense and field wires parallel to the beam direction. The sense wires are made of
tungsten and collect the signal from passing particles. The field wires made of
aluminium surround the sense wires and create an accelerating electric field. The
whole chamber is filled with He-H2C6 gas.
The Particle identification (PID) subsystem comprises the Time Of Propagation
counters (TOP) in the barrel part and Aerogel Ring-Imaging Cherenkov detector
counters (ARICH) covering the endcap. Cherenkov photons are created in aerogel
inside the TOP by incoming charged particle and are guided into the quartz radia-
tor and subsequently detected by photomultipliers at the end of crystal bars. Two
spacial coordinates and very precise timing allow to reconstruct the Cherenkov
ring image with required resolution. The ARICH counter is formed by aerogel
layer, where the Cherenkov photons are created, an expansion volume to allow
photons to form rings on the detector surface, and an array of position-sensitive
photon detectors. These two particle identification detectors are designed to dis-
tinguish between kaons and pions and low energy pions, muons and electrons.
The Electromagnetic Calorimeter (ECL) is used to precisely measure the energy
of electromagnetic particles, detect neutral particles and measure the luminosity.
It consists of a 3 m long barrel section and annular endcaps, formed by CsI(Tl)
crystals. Energy deposited by incoming particles is converted into photons and
collected by photodiodes at the end of each crystal. The ECL also plays an
important role in the triggering system.
The outermost detector is the KL and muon detector (KLM), consisting of alter-
nating layers of iron plates and sensitive detector elements and is located outside
the superconducting solenoid. Charged particles are detected in the KLM by
glass electrode Resistive Plate Chambers (RPC), which are interleaved between
iron plates. RPCs collect the products of particle showers created in iron by
muons and kaons.
Because of the large data flows required for the exceptionally high precision mea-
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surements, fast readout electronics from every part of the Belle II detector is
necessary. With the extreme luminosity, the trigger system needs to distinguish
interesting physics events from among a huge number of other physical processes.
The requirements for the trigger is high efficiency for hadronic events, maximum
average rate of 30 kHz, timing precision better than 10 ns, and minimum two-
event separation of 200 ns. Outputs from five sub-trigger systems are sent to the
Global Decision Logic (GDL) system, where the final decision is made. There are
several new information paths that were not present in the previous Belle trigger
system. Data from the Data Acquisition Systems of subdetectors are merged,
formatted to ROOT files and dispatched to server farms all over the world. [5]

1.4 Beam Background at SuperKEKB

The high design luminosity of the SuperKEKB result in challenging levels of
beam-induced backgrounds around the interaction area. Proper study of these
backgrounds is critical to the success of the Belle II experiment.
Five main beam background sources are present at SuperKEKB.

– The Touschek effect is a scattering process inside the bunch where, due to
Coulomb scattering, energies of individual particles depart from the nominal
energy of the bunch. This effect is enhanced because of the high compression
of bunches in the nano-beam scheme.

– Beam-gas scattering is the scattering of beam particles on residual gas
molecules in the beam pipe. It can occur either via Coulomb scattering
changing the direction of the beam particle, or via bremsstrahlung scatter-
ing, which reduces its energy. The rate of beam-gas scattering is propor-
tional to the beam current, which is nearly two times higher than at KEKB,
and to vacuum pressure, which is the same.

– Synchrotron radiation (SR), emitted from the beam. SR power is propor-
tional to beam energy squared and magnetic field strength squared; there-
fore, most of this background originates in the HER.

– Radiative Bhabha scattering decreases both electron and positron energies.
The radiative Bhabha process produces photons which interact with the
iron of the accelerator magnets and create gamma rays and neutrons. The
number of these neutrons is proportional to luminosity. Neutrons create
the main background of KLM measurements, low energy gamma rays are a
significant source of background in the CDC.

– Low momentum e−e+ pairs produced via the two-photon process e−e+ →
e−e−e+e+ are an important luminosity-related background radiation. These
pairs can spiral around the magnetic field lines and leave multiple hits in the
inner (vertex) detectors. In addition, the primary particles that lose large
amount of energy or scatter at large angles can be lost inside the detector.
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Injection background appears when a charge is injected to the accelerator ring:
circulating bunches get perturbed and a higher background rate is observed for
a few milliseconds. A trigger veto is applied after each injection to avoid PXD
readout saturation.
Background measurements at SuperKEKB are performed by dedicated beam
background detectors, collectively known as the BEAST II subsystem. It consists
of eight detector systems of different types and unique purposes, totalling in 116
sensors. Detailed description of the beam background measurement can be found
in [6].
Beam background is generally detrimental to physics reconstruction - background
signals compete for detection channels with signals from the physics processes
we wish to study. The third player in the game is electronic noise - signals
from the environment or from within the detection systems that are erroneously
interpreted as particle signals. Both beam background and electronic noise limit
the precision of physics measurements, and have to be studied thoroughly so
that we can quantify, understand, and possibly eliminate their effect on physics
studies.[7]
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2. Strip Vertex Detector
Our work relates to the Belle II Strip Vertex Detector (SVD).
Strip detectors are semiconductor detectors with a finely spaced linear electrode
structures - strips - that enables them to precisely sense positions of particle track
intersections with the detector plane. We want to measure track points as close
to the beam pipe as possible, because rare particles decay close to the interac-
tion point and we need to detect the time and position of particle decays very
accurately to be able to track decay products, which are detected and identified
in further layers of the detector system, back to this point called the interaction
vertex. Knowing what particles originated at a vertex, we can identify the type
of interaction and subsequently the decaying particle (or particles).
The following sections describe basic principles of semiconductor detectors, focus
on electronic noise of the measurements and add more details about the Belle II
SVD.

2.1 Semiconductor Detectors

2.1.1 Sensor structure

Semiconductor detectors are basically solid-state ionization chambers. The sim-
plest configuration consists of a volume of ionizable medium between a pair of elec-
trodes with applied voltage, Fig. 2.1 (a). A passing particle ionizes the medium,
creates charge pairs, which move under the influence of the applied field and
induce an electrical current pulse in an external circuit.
To create position sensitivity, the electrodes of the sensor have to be segmented.
Angled tracks will deposit charge on several strips and we can use the signals to get
a more precise position estimate by interpolation. Subdividing both electrodes
into strips to form an orthogonal lattice provides two-dimensional imaging, as
shown in Fig. 2.1 (b). However, it is difficult to match strip signals to x− and
y−coordinates if several particles have passed the detector. To eliminate ghost
hits, additional information is required. In some situations, strips subtending a
small angle are used instead of perpendicular strips◦. [8]

2.1.2 Sensor physics

Average signal charge produced by a particle passing through a detector is

Qs = E

Ei

e, (2.1)

where E is the absorbed energy, Ei is the energy required to form a charge pair,
and e is the electron charge. The absorbed energy must exceed the bandgap of
the solid material. In Si the gap energy is 1.12 eV, so photons with wavelengths
greater than 1.1 µm can not be detected. Ei for Si is 3.6 eV. A charged particle
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Figure 2.1: Semiconductor detector principle. A semiconductor detector is an
ionization chamber with semiconductor as its absorber (a). A charged particle
passing through the detector creates charge carriers, which move to the electrodes
and induce electric current. Electrodes can be segmented into strips (b). Dividing
electrodes on opposite sides of the detector into perpendicular strips provides two
coordinates to determine the track position. [8]

traversing the sensor forms charge pairs along its track, the energy loss E increases
with the sensor thickness. The velocity v(x) of the charge carriers depends only
on the local electric field E(x)

v⃗(x) = µE⃗(x), (2.2)
where µ is the mobility of charge carriers. In Si the mobility is approximately
1350 V/cm·s2 for electrons and 450 V/cm·s2 for holes.
Most of detector volume is occupied by a depleted region around a pn-junction of
differently doped Si crystals. The volume is reverse-biased so that the electrons
in the n-type region and the holes in the p-type region are drawn away from
the junction, creating a depleted area which behaves as an insulator in a linear
electric field.
Fig. 2.2 shows the cross-section of a typical detector diode. The detector pn-
junction is in the middle, similarly doped regions are to the left and right, forming
a guard ring, which insulates the diode from the edge of the wafer. The guard
ring captures edge currents and forms a well-defined electrical boundary for the
diode. Electrical contact is provided by metallization layers, typically aluminium.
The intermediate Si surface is protected by a layer of SiO2.
Reverse bias voltage Vb yields a depleted region of width

wd =
√

2ε(Vb + Vbi)
Ne

, (2.3)

where Vbi is the built-in junction potential (typically 0.5 V), ε is the dielectric
constant (11.9ε0 for Si) and N is the dopant concentration in the bulk. The
depleted junction forms a capacitor, for Vb >> Vbi

C ∝ 1√
Vb

. (2.4)
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Figure 2.2: A semiconductor detector diode. The diode consists of a pn-junction
between the electrodes. The guard ring around the diode captures edge currents
and create a well-defined electrical boundary. The Si surface is protected by a
layer of SiO2. [8]

For a 100 µm Si diode it is about 1 pF/mm2. In strip detectors, the fringing
capacitance between neighbouring electrodes usually dominates, typical value is
about 1 pF/cm.
The collection time is the time required for a carrier to traverse the full detector
thickness. It can be estimated by using the average field Ē = V/d (V is the
volume of the detector, d is the distance between electrodes)

tc ≈ d

v
= d2

µV
. (2.5)

The minimum signal which can be detected and the precision of the amplitude
measurement are limited by fluctuations.
The relative resolution of the absorbed energy equals the relative resolution of
the average number of signal quanta

∆E

E
= ∆N

N
=

√
FN

N
=

√
FEi

E
, (2.6)

where Ei is the excitation energy and F is the Fano factor, which reflects the
reduction of the error relative to a Poissonian error thanks to collective excitation
mechanisms.
The position resolution is determined, to the first order, by the electrode geome-
try. Strips are usually 8 − 12µm wide, placed on a pitch of 25 − 50µm, and 6 − 12
cm long. The root mean square (rms) resolution is proportional to the strip pitch
p

σ2 = p2

12 . (2.7)

A better approximation counts in the thermal diffusion. Using the average field
Ē, the rms dispersion due to thermal diffusion is

σy ≈
√

2kT

e

d2

Vb

, (2.8)
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and is the same for both electrons and holes. For d = 300µm, T = 300 K and
Vb = 100 V it is approximately 7 µm.[8]

2.1.3 Electronic noise

Electronic noise imposes a lower bound on the detectable signal and determines
the precision of signal level measurement. Noise signals are detected as random
oscillations when no signal is present. Fig 2.3 (a) shows an example of noise sig-
nals. When an experimental signal arrives, it is added to the noise and we measure
their superposition. Fig 2.3 (b) shows a noiseless signal profile, whereas (c) shows
the same signal distorted by noise (pure signal is superimposed for comparison).
Signals of this amplitude are invisible against this high noise background.

Figure 2.3: Noise example. (a) shows an example of electronic noise, (b) repre-
sents a noiseless signal profile, (c) shows the same signal distorted with noise, the
noiseless signal is superimposed for comparison. [8]

In an optimized system, the time scale of the fluctuations is comparable to the
signal peak time. This holds for signals with sufficiently large amplitude, more
precisely, with sufficiently high signal-to-noise S/N ratio. Fig. 2.4 displays four
measurements of the same signal taken at four different times with noise back-
ground at S/N = 20. Again, the noiseless signal is superimposed. We can recog-
nize the signal peak; it is however clear that the noise affects both the observed
arrival time and peak amplitude of the signal.
The current i induced by n carriers with charge e and velocity v moving through
a sample of length l, is

i = nev

l
, (2.9)

at the ends of the sample. Fluctuation of this current is given by the total
differential

⟨di⟩2 =
(

ne

l
⟨dv⟩

)2
+

(
ev

l
⟨dn⟩

)2
, (2.10)

where the two terms are statistically uncorrelated. Two mechanisms contribute to
the total noise: velocity fluctuations (e.g. thermal noise) and number fluctuations
(e.g. shot noise). Both of these mechanisms are ”white” noise sources, which
means that power is constant with respect to spectral density, dPnoise

df
= const.

The noise voltage originates mainly in the amplifier. The noise current flows
through the detector’s capacitance and forms noise voltage that increases with
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Figure 2.4: Noise effects on measurement. This figure shows four pictures of the
same signal profile taken at different times. By comparison with the noiseless
signal, we see that the noise changes both arrival time and peak amplitude of the
original signal. [8]

decreasing frequency. The peak amplifier signal is inversely proportional to the
total capacitance C at the input.
In general, optimum S/N is independent of what kind of signal is detected (volt-
age, current, or charge), but practical considerations can favour one configuration
over the others. More details can be found in [8].

2.2 Belle II SVD

The main purpose of the Belle II SVD (Fig 2.5), together with the PXD and
CDC is to measure the two B decay vertices. It also measures vertex information
in other decay channels involving D and τ decays. The Belle II SVD provides
data to extrapolate the tracks reconstructed in the CDC to the PXD with high
efficiency. Together with PXD, it is able to reconstruct tracks with low transversal
momentum which do not leave any hits in the CDC.
It is composed of four layer and the polar angular acceptance ranges from 17◦ to
150◦, which is almost double that of the SVD in Belle.
The Bell II SVD operates efficiently and with low dead-time in the high beam
background trigger rate environment of SuperKEKB. The background rate may
be 30 times higher than in KEKB, and the expected maximum average trigger
rate is 30 kHz.
To suppress beam background, a fast readout chip is indispensable. For this
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Figure 2.5: The Belle II SVD. The Belle II SVD design consists of four double-
sided silicon strip layers (above the two inner layers of PXD) with slanted sensors
in the forward region. All dimensions are in mm. [4]

purpose, the APV25 chip, originally developed for the CMS silicon tracker, was
chosen. The APV25 consists of 128 channels of low-noise preamplifiers followed
by a shaper stage. Each channel has a 192-cell deep analogue pipeline with FIFO
index that can label up to 32 cells pending for subsequent readout, an analogue
pulse-shaper processor and an analogue multiplex for the output. For more details
we refer to [4].
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3. Neural Networks
To reproduce strip noise signals in detector simulations, we need to be able to
generate noise at the same rates and with the same time and amplitude distri-
bution in the same way they occur in real data. For the production of random
noise signals, arriving at certain times with certain amplitude, we decided to use
the 2D distribution function inversion described at the end of the previous chap-
ter and a neural network. Reasons for this approach and its alternatives will be
discussed in the next chapter. The following sections give an introduction to the
basic concepts of neural networks.

3.1 Network Structure

An artificial neural network is a computing structure which can be trained to
learn complex functional relationships by analyzing a large number of examples
without being given any task-specific algorithms or rules. The training examples
are basically pairs of network inputs and correct outputs it is expected to provide.
The network needs to identify the characteristic aspects of the input data with
same output and develop the right connections in order to be able to predict
the output for an input it has never seen before. Thanks to these newly devel-
oped connections and independence of any specific guidelines, artificial neural
networks can resemble biological neural networks in animal brains, which create
connections between neurons during learning.

Figure 3.1: A MLP neural network. A Multi-Layer Perceptron neural network
consists of an input layer, output layer, and several hidden layers in between.
Neurons in each layer are connected with neurons in the next layer and are re-
sponsible for activation of the next layer. Activation in the input layer determines
the activation in the output layer, the hidden layers help to recognize patterns in
inputs and allow the network to learn more complex tasks. [9] (edited)
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The basic structure of a neural network is the Multi-Layer Perceptron (MLP)
layout (Fig. 3.1). Input signal can be represented as a layer of nodes, in analogy
to neural system cells called neurons. The input layer usually consists of a large
number of neurons, for example in image recognition, the neural network can
be given one neuron for each pixel of the picture. The neurons are given an
input quantity, for example some measure of pixel brightness. Similar set of
quantities will characterize every input the neural network can be given. The
layer representing outputs is usually smaller, sometimes only binary output is
required (for example in classification problems).
Apart from these two layers, a neural network contains at least one hidden layer.
These extra neurons allow the system to develop more complexity of interconnec-
tion between inputs and outputs. Every neuron in the input layer is connected
with each of the neurons in the first hidden layer, these hidden neurons are
connected to the following layer neurons and so on. The activation in the first
layer determines the activation in the next layer via the developed connections.
The hidden layers can encode features or structure identified during the learning
process. Input parameters are analyzed and the information about recognized
patterns is then put into the next layer neurons where they are analyzed again
and processed further. For example, we can imagine it as recognizing lines and
shapes in a picture, however, what the network really considers a characteristic
structure in the data can be much more complex features. [9] [10]

3.2 Activation

A neural network receives some encoded data on its input neurons. Processing
of the data consists of alternating computing and message-passing steps:

– In a computing step, each neuron receives its input, transforms it using its
activation function, and outputs the result. For the network to be able to
learn complex relationships, neuron activation has to be non-linear. Fig. 3.2
shows commonly used activation functions.

– In a message-passing step, output of each neuron in a layer, ai−1
j , is redis-

tributed to neurons in the following layer according to a matrix of weights
W i−1,i

j,k . Put simply, inputs of the next layer neurons are calculated from
outputs of previous layer neurons by multiplication with a weight matrix.

With topology (number of layers, their sizes and activations) of a MLP deter-
mined, the network is parameterized by weight matrices between successive lay-
ers. Additionally, each layer has an adjustable bias bi that adjusts the zero of
neuron activation - it is added to the sum of inputs to the activation function.
The whole formula of the k-th neuron activation is

a
(i)
k = f(bi +

∑
l

W i−1,i
lk a

(i−1)
l ). (3.1)

or, in matrix form,
ai = f(Wi−1,iai−1 + bi), (3.2)

18



Figure 3.2: Activation function examples. Different applications require different
activations. Simple functions as identity or ReLU take less time to compute and
learn easier. When a restricted interval of values or less sensitivity to high input
values is preferred, functions as logistic or tanh are used. Graphs were plotted in
[11].

The whole neural network can be treated as a very complicated function receiv-
ing a number of input values, parameterized by typically hundreds of thousands
weights and biases and giving the desired output. [9]

3.3 Training the neural network

Training is the process whereby the neural network determines its weights and
parameters from training data by optimizing some measure of agreement between
network outputs and known correct responses for given training inputs. At the
beginning of a training, the weights and biases are usually chosen randomly. This
untrained network analyzes the first dataset and produces predictions that are
then compared to the correct outputs. The performance of the network can be
evaluated by a loss function, measuring how far away network output is from
the correct responses. This is usually the sum of squared errors for regression
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problems and cross-entropy for classification. To train a better network we want
to minimize this function by properly adjusting network weights and layer biases.
From a random initial state, the network can move towards the minimal error
state via computing the gradient of the cost function with respect to weights and
biases. The gradient components adjust all the weights and biases towards the
local minimum. After the next training step, the performance is better and when
it reaches the optimum, the network in not able to improve any more.
The process of training is usually carried out using the backpropagation scheme.
Comparing the results with the correct solution assigns the output neurons a
correction proportional to the cost function gradient. The activation of the output
neurons can not be changed directly, only via the biases and the weights that
connect them with the previous layer. These changes then determine how the
previous layer should perform in terms of activation and the process with gradient
is applied recursively to the previous layer, from the output layer towards the
input layer.
It takes a long time to calculate the gradient and we want to avoid ending in a
local minimum. Therefore, stochastic gradient methods are typically used. This
method divides the training data into smaller groups (batches) and computes the
gradient just from this one batch. These steps are not precise but quicker and
the network can perform effectively in certain cases. [12] [13]
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4. Noise Simulation
We have a theoretical model of strip noise, and - at least in theory - we can use
theoretical probability distribution(s) to generate random noise samples for strip
detector simulation. However, practical considerations make the problem more
challenging and impose further requirements on the desired noise generator.
In this chapter, we first describe the theoretical background of the SVD noise
simulation methods and introduce the theoretical model. The following sections
contain the description of noise generator implementations and their properties.
For a noise generator usable in production - that is, in real detector simulation -
we need a sufficiently efficient implementation of the strip noise generator, that
is, an implementation with reasonable memory and computing time footprint.
We also need to take into account the specific parameterization of the generator.
Importantly, the target implementation has to allow experimental data to be used
for training or calibration of the noise generator.
We therefore start with the description of the exact implementation of the noise
generator based on splines. We than explain why this is not suitable as a pro-
duction noise generator and proceed to more efficient implementations based on
machine learning methods. We explain pros and cons of individual methods, and
explain the considerations that lead us in the search of the final implementation.
The Python code written for noise simulations is available at https://github.
com/zugru/SVDNoise.

4.1 Noise in Belle II SVD

Noise in the SVD are the unwanted electronic signals that are indistinguishable
from signals left by particles and pass the zero-suppression threshold. APV25
chips read out strip signals every 31.44 ns and store it in the pipeline. When the
chip receives a trigger signal, it takes one sample recorded before trigger time and
5 samples after the trigger time and passes them further to the readout system.
Strip signals are passed for data processing only if its amplitude exceeds the
zero-suppression threshold, that is, when at least one of the six APV25 samples
exceeds a fixed multiple (called zero-suppression threshold) of RMS strip noise,
see Fig. 4.1.
To simulate strip noise, we need to know the probability that a noise signal passes
the zero-suppression threshold. The probability depends on arrival time of the
signal (t), signal amplitude (A), the zero-suppression threshold (T), the signal
measurement noise (σ) and the shape of the pulse. For sufficiently high zero-
suppression thresholds, we can model the generating noise signal as independent
and identically distributed (iid) gaussian signals arriving at very small constant
rate, so that the autocorrelation structure of the generating noise is not important.
The gaussians are centered at zero and standard deviation is equal to RMS strip
noise, which is regularly measured for each SVD strip. The noise expected in the
measurement of APV samples is presumed to be gaussian and is a small fraction
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Figure 4.1: Strip signal. The strip signal passes the zero-suppression threshold
whenever at least one of its APV25 samples is above threshold. [7]

of strip noise.
When a noise signal passes the zero-suppression threshold, it is passed on for
processing. The mean number of noise signals collected during readout is called
strip occupancy and it can be expressed as

n =
∫ ∞

−∞
dt

∫ ∞

0
dAn(A, t) =

∫ ∞

−∞
dt

∫ ∞

0
dAλ0P (A)P (si > T |A, t), (4.1)

where λ0 is the noise base rate, P (A) is the gaussian distribution of the noise signal
amplitude A and P (si > T |A, t) is the probability that a signal with amplitude
A arriving at time t will pass the threshold T with at least one APV25 sample
si. For the simulation, we need to be able to generate random samples from the
n(A, t) 2D distribution.
We can calculate the probability of at least one sample passing the threshold T for
a waveform with a given A and width w arriving at time t. From the strip noise
distribution, we also know the probability of a noise signal with amplitude A. In
simulation, we normalize the noise distribution to 1 and do a two-step sampling,
first from the alternative (norm, 1-norm) distribution to decide if there is noise
signal on the strip, and then from the normalized 2D distribution to generate the
signal’s amplitude and arrival time.

n(A, t) = λ0λA,tΠ(si > T |A, t), (4.2)

where λ0λA,t together represent the ∼ e−CT 2 dependence of occupancy observed
in the data [14]; the Π distribution reproduces the signal and time features of the
noise.
To draw samples from a bivariate distribution, we need to know the correlation
structure between A and t. Two samples from U(0,1) u, v are used to calculate
t, A by inversion of the distribution function as follows:

t = F −1
t (u), (4.3)
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v′ = F −1(v|u), A = F −1
A (v′), (4.4)

where Ft(t), FA(A) are marginal distribution functions and the conditional distri-
bution function F (v|u) - the ”partial copula” - contains the correlation structure
of A and t. [7]

4.2 Exact Generator

Using the noise probability distribution given by our theoretical model, we can di-
rectly construct a noise generator using numerical inversion of the 2D distribution
function. The inversion is done using inverse interpolation of spline approxima-
tions to the distribution function, using the Python NumPy library [15]. The im-
plementation is wrapped in the NoiseGenerator Python class. NoiseGenerator
is initialized with (t0, amplitude) grid. Calling its generate pdf method, provid-
ing values of threshold, sigma and width, creates structures needed for generation
of random values:

– the method calculates the probability of a signal exceeding threshold on a
user-defined grid of (t, A) values, then calculates the norm and normalizes
the distribution, producing a probability density (pdf).

– integrates the pdf to get the cumulative distribution function (cdf),

– fits the cdf with a 2D spline,

– fits its margins with 1D splines,

– inverse-interpolates the t and A margins to invert their distribution func-
tions,

– uses these to calculate the copula (uniform-margin cumulative distribution
function),

– converts the copula to what we call ”partial copula”, a distribution which is
pdf in the u (t quantile) direction and cdf in the v (A quantile) direction -
that is the conditional distribution function used in random sampling from
the distribution.

The inverted margin pdfs and the half-copula are then used to generate ran-
dom samples from the original pdf using a call to the NoiseGenerator class’s
random transform method. The method takes a vector of quantiles (that is,
values between 0 and 1) u and v, and returns corresponding (t, A) pairs. The
random generator functionality is easily achieved by providing vectors of uni-
formly distributed random values for u and v.
The NoiseGenerator class also provides some diagnostic plots - it plots the 2D
probability density and marginal distributions (Fig. 4.2), 2D and marginal distri-
butions of random samples (Fig. 4.3), and the half-copula distribution (Fig. 4.4)
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used to calculate v′ from u and v (see Eqn. (4.4)). The following figures were gen-
erated for (T, σ, w) = (5.0, 0.1, 250), more examples can be found in Attachment
1.
NoiseGenerator is very precise and easy to use, and is a valuable tool to study
the noise distribution and its parametric dependencies.
Nevertheless, it is unsuitable as a production noise sampler. The problem is that
it has to calculate the complete pdf and do a complete 2D cdf inversion for each
new (T, σ, w) triplet, which takes a few seconds. While the threshold T stays
constant in most runs, σ and w are strip properties and vary over wide ranges of
values. So, while we will usually be generating a few dozes random SVD signals
per event, we will have to generate a complete pdf and do the cdf inversion for
each of them separately.
It is also impractical to try to store the cdf inversions for a grid of (T, σ, w)
triplets, since the structure would be quite large.
We therefore decided to find a better representation of the noise-generating struc-
ture using a machine-learning algorithm, and use the exact generator to produce
enough training data.

Figure 4.2: 2D probability density generated by NoiseGenerator. The central
plot shows the 2D probability density, amplitude margin is on the left, time
margin is on top.
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Figure 4.3: 2D probability density with random samples generated by
NoiseGenerator. The central plot shows the 2D probability density, ampli-
tude margin is on the left side, time margin is on top. Orange bars in margin
plots and yellow dots in the 2D plot are 10000 random samples.

Figure 4.4: Half-copula generated by NoiseGenerator. This function is used to
calculate v′ from u and v.
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4.3 Production Noise Generator

There are basically two possible routes to create a practical sampler:

– We can make a structure that learns the cdf inversions, (u, v|T, σ, w) →
(t, A), such as a neural network or a boosted regression tree,

– or learn the probability distributions in a form that would make it easy to
sample from, such as a gaussian mixture.

Along with signal sampling, we also have to calculate norms for each (T, σ, w)
triplet. Here we have the same problem - we can easily calculate the norms, but
it is the same computationally slow process used to generate the ”exact” pdfs, so
we have to learn the norms, too. This is easily done using standard (polynomial)
linear regression.

4.3.1 Training data

Training data for signal sampling were generated using the NoiseGenerator
Python class. For a typical training, we used 2 million samples with the fol-
lowing structure:

Input fields:

– T (threshold) random from a list [3, 4, ... 7]

– σ (signal measurement noise) random uniform from interval 0.1 to 1.0

– w (waveform width) random uniform from interval 200 to 360

(2000 triplets)

– u (time quantile) random uniform from interval 0 to 1

– v (amplitude quantile) random uniform from interval 0 to 1

(1000 pairs for each triplet)

Output fields, calculated for each set of input parameters:

– v′ (corrected amplitude quantile)

– t (signal arrival time)

– A (amplitude)

Calculating the 2 million (t, A) pairs takes somewhat more than 8 minutes, which
is fine for generating training data, but not for production use.
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4.3.2 Training scheme

It took some time to design the training procedure so that it takes proper account
of the additional (T, σ, w) parameterization. We decided to split the estimators
only by threshold, and leave the (σ, w) parameterization inside. The reason is that
in practical use, threshold is never changed within a run, and most runs are taken
at the same threshold of 5.0. On the other hand, measurement noise and waveform
width are strip properties varying over wide ranges and - for performance reasons
- we want to sample random signals for them without switching estimators within
an event.
This design eliminated an otherwise viable alternative approach of using estima-
tors on a (T, σ, w) grid. With this method, we can train different networks for
each desired threshold simultaneously.

4.3.3 Neural network sampler

We can train a neural network to generate samples from the right distribution.
To create such network we used scikit-learn class MLPRegressor (scikit-learn is
an open source Python tools package, available from [16]). The final code fits
the neural network weights and biases to training data and returns the trained
model which is then able to generate new random samples.
We trained separate networks to calculate signal arrival time t from (T, σ, w, u),
and amplitude A from (T, σ, w, u, v). The reason for splitting the estimator into
time and amplitude networks lies in different complexity of t and A: Even when
properly scaled, t steals precision from A in a combined estimator. We split the 2
million training samples into 5 parts by discrete threshold values (3, 4, ..., 7) and
set apart 10% of the samples as test set.
We carried out the training of the 10 estimators in parallel and at first tried to
determine the proper network topology and activation. By trial and error, and
later by grid-searching the hyperparameter space, we arrived at the following
settings:

time networks: 3 × 100 × 100 × 1 nodes, tanh activation

amplitude networks: 4 × 250 × 250 × 1 nodes, ReLU activation

Input nodes for time network represent (σ, w, u), for amplitude network it is
(σ, w, u, v), T is a fixed parameter for each of the ten networks. Hidden layers
enable the network to learn non-linear models but deeper networks are charac-
teristic by non-convex loss functions with multiple local minima. Therefore, the
resulting accuracy is sensitive to the random weight initialization and the net-
work training can be non-reproducible. Time networks were difficult to train to
enough accuracy. tanh activation makes the training longer, but in the end allows
to reach the desired accuracy of below 0.15 ns. Amplitude networks train well
with sufficiently large layers and the default ReLU activation, optimal accuracy
is below 0.01.
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Next we optimized hyperparameters of the training procedure using grid search
to obtain highest network precision at reasonable training time. The grid searches
were made using a single estimator. The results are shown in Tab 4.1.

Table 4.1: Parameters of the final time and amplitude networks
Optimized value Optimized value

Parameter Description Default value for t-network for A-network
alpha regularizes the solution by

penalizing weights with
large magnitudes

1.0e-4 1.0e-7 1.0e-7

tol defined convergence
criterion of the loss
function

1.0e-4 1.0e-8 1.0e-8

batch size determines the size of
training data chunks for
stochastic gradient method

200 500 500

learning rate init controls the steps of
adjusting weights in
backpropagation

1.0e-3 1.0e-4 3.0e-5

max iter determines how many
times each data point will
be used

200 1000 1000

The model is optimized by a stochastic gradient descent (”adam” optimizer)
which is adequate for large datasets. In general, we switched off regularization
(alpha) and slowed down the training by decreasing the initial learning rate,
so that the networks have more time to organize itself before converging to a
minimum. Other MLPRegressor parameters (not mentioned in the table) were
left at their default values.
The following table shows χ2 of the final networks. Attachment 2 contains some
of the partial results recorded during optimization as well as some more detailed
notes describing the process of optimization.

Table 4.2: χ2 of the final set of networks
threshold time χ2 amplitude χ2

3 0.058861 0.004075
4 0.062929 0.006370
5 0.078453 0.006543
6 0.081001 0.008162
7 0.081783 0.008672

Fig. 4.5 shows model 2D probability density and marginal distributions with
random samples generated by the network, Fig. 4.6 shows contour lines of the
half-copula and provides a sensitive comparison of probability distributions of
the training data and samples generated by networks. We chose (T, σ, w) =
(5.0, 0.25, 250) as an example, plots for other parameter combinations can be
found in Attachment 3.

28



Figure 4.5: 2D probability density with random samples generated by neural net-
works. The central plot shows 2D probability density, amplitude margin is on the
left side, time margin is on the top. Orange bars in margin plots and yellow dots
in the 2D plot are 10000 random samples, blue contours are the exact model.
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Figure 4.6: Half-copula generated by neural network. Blue lines are plotted from
the training data, red lines shows the fit. This comparison is very sensitive and
in fact we only look for general agreement between the patterns.
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4.4 Normalization

The norm of the 2D probability distribution is proportional to strip noise rate,
that is, to noise occupancy. At sufficiently high zero-suppression thresholds, noise
rates are low and the norms are small. Our generators operate with distributions
normalised to 1, and to create the production generator suitable for simulations,
we need to know the actual noise rate.
The exact model calculates norms for given (T, σ, w), its predictions for some
combinations are shown in Fig. 4.7, where the y-axis is the logarithm of the
norm. We fitted a linear model to norms calculated by the exact model. The
model comprised normalized polynomial components, generated from (T, σ, w)
triplets up to 5th order. Fig. 4.8 shows the residuals - the agreement is very
good. For small values of σ, the peaks of the probability distribution are very
narrow and numerical errors of integration are larger.

Figure 4.7: Predicted normalizations. Plots shows the logarithm of the norm as
a function of threshold, sigma, and width.
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Figure 4.8: Norm residuals. Norms of network fits are in good agreement with
linear model predictions.
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4.4.1 Random forest sampler

Apart from neural network, we tried to fit boosted decision tree regressors to the
data. Boosted trees provide a piecewise-constant approximation to the target
functions. They learn much faster than neural networks, but generate more
data to store. Performance of a decision tree depends on maximum allowed
depth of a single tree and number of trees in a forest. Although we were able to
train individual u → t and (u, v) → A estimators for (T, σ, w) triplets, once we
included (σ, w) into the estimator, we were not able to obtain sufficiently precise
estimators. The following table shows scores of a few random trees, especially
amplitude scores are poor. A table showing the training process is in Attachment
4.

Table 4.3: Random trees score
T σ w time score amplitude score
4.0 0.25 200 0.99999988 0.99975581
5.0 0.50 300 0.99999971 0.99993959
4.0 0.50 200 0.99999978 0.99991203
4.0 0.25 300 0.99999654 0.99968532
4.0 0.05 300 0.99999979 0.99972972

For more details about decision trees and their implementation in Python, please
refer to [17].

4.4.2 Gaussian mixture sampler

Another approach is to use a gaussian mixture model to directly fit the probability
distribution. The idea is to represent the pdf by a linear combination of bivariate
gaussians, and do the sampling by first selecting one of the gaussians and then
taking a random sample from the gaussian. It is also more economical to store
data about few tens of gaussians than parameters of the neural network. This
method is implemented in Python as BayesianGaussianMixture class (see [18])
and works actually very well for two-parameter pdfs, that is, for pdfs calculated
on a (T, σ, w) grid. The following pictures show an example of gaussian mix-
ture fit, (T, σ, w) = (5.0, 0.1, 300). Fig. 4.9 shows model 2D probability density
and marginal distributions with random samples generated by gaussian mixture.
Gaussian mixture components (including random samples) are shown in Fig. 4.10
and the total probability density produced by this mixture is plotted in Fig. 4.11.
The plot in Fig 4.12 shows the distribution of mixture weights. More examples
can be found in Attachment 5.
However, unlike in the cdf inversion approach, we have no easy way to make
precise interpolation on this grid, the best we can do is sample from the nearest
grid point.
An even more important problem is that the grid estimator is difficult to train
on real data - we would have to discretize the data in σ and w to get enough
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training data for each grid point. This is not a particularly elegant, but workable
solution, which we, however, didn’t pursue.
Instead, we tried a different approach using 4-parameter gaussian mixtures, para-
metrized by (σ, w, t, A). If we were able to fit the 4-parameter pdf with sufficient
precision, we could extract the (t, A) distribution simply by conditioning on the
given (σ, w) values, which is easily done for a combination of gaussians. However,
by the time of writing this thesis, we had no working fitting procedure for the
4-parameter mixture - the training ends with very poor fits.
As the method has the merit of being directly usable with real data, it is worth
putting some more effort into it.

Figure 4.9: 2D probability density with random samples generated by gaussian
mixture. The central plot shows 2D probability density, amplitude margin is on
the left side, time margin is on the top. Orange bars in margin plots and yellow
dots in the 2D plot are 10000 random samples.
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Figure 4.10: Gaussian mixture components. Coloured areas represent 2D gaus-
sians, dots are random samples which share its colour with the appropriate gaus-
sian.

Figure 4.11: Gaussian mixture total probability density. The plot shows contour
lines of 2D probability density composed from 2D gaussians.

35



Figure 4.12: Gaussian mixture component weights. The mixture consist of 30
gaussians which are ordered according to their relative weights in the mixture.

4.5 Real Data Approach

To add noise to event simulations, experimental data from noise runs can be
used. Noise runs are recorded before collisions to study background of the future
measurements (e. g. determine the strip noise ranges). From this dataset we
can chose random samples and add them to simulated event signals. This can
be easily performed in basf2, Belle II software framework. The disadvantage of
this method is the requirement of sufficiently large dataset to create independent
random noise signals for large simulations.

4.6 Hybrid Approach

Noise run data are used to validate the performance of NoiseGenerator. In-
stead of building a generator it could be easier to use directly the experimentally
measured noise as training data.
Neural network takes (T, σ, w) together with (u, v) and uses these inputs to com-
pute the inverse distribution function and determine (t, A). Experimental data
would have to be processed before passing it to the network which would be very
complicated.
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This approach may be possible with gaussian mixtures as this method only needs
(t, A) pairs as inputs. As discussed above, the promising development of the
gaussian mixture method is to operate with 4D distribution and using (σ, w) as
parameters. If we manage to successfully train this kind of samplers, switching
from generated data to experimental data would be a straightforward step.
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Conclusion
The goal of this thesis was to develop a strip noise generator that would be applied
in the production of simulations for the Belle II experiment.
We described the Belle II experiment and its detectors. A separate section is
dedicated to the beam background sources to introduce the background signals
competing for detector channels with signals from the studied physics processes.
The next part focuses on the SVD. We described semiconductor detectors, their
structure and resolution, and characterized the electronic noise in silicon detector
strips, which is another source of competitive signals. We also added more details
about the Belle II SVD and its readout system.
We introduced the concept of artificial neural network and described its training
process.
In the experimental part, we summarized our development process and results.
First we described the theoretical background of the strip noise simulation. We
introduced the theoretical model of the strip noise probability distribution and
created an exact noise generator based on numerical inversion of the 2D distri-
bution function. This generator was found unusable for production but we used
it to generate training data for our machine-learning algorithms.
We constructed a system of neural networks that generates random noise samples
for different threshold values. This design was enabled by the fact that threshold
is never changed within a run and we could train multiple networks simultane-
ously. We managed to optimize the network parameters and training regimes
and reached high accuracy of the sampler. We discussed the normalization of our
models and showed that a linear model provides reasonable prediction of noise
rates.
We also explored alternative approaches to creating a production generator. We
tried to fit boosted decision tree regressors to the training data but the results
have not reached the required accuracy. Another option we examined was a
gaussian mixture. We managed to approximate the 2D probability distribution
by a combination of 2D gaussians and generate samples from the mixture pdf.
This generator worked well and would be easily trained on experimental data but
we were not able to incorporate all necessary parametrizations with sufficiently
accurate results.
The Appendix contains supplementary material - plots and tables illustrating
the training process and showing results of different sampling methods and their
parametrizations.
The Python code written for noise simulations is available at https://github.
com/zugru/SVDNoise.
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A. Attachments

A.1 Exact generator

The following figures shows more examples of probability densities, marginal dis-
tributions, and half-copulas plotted by NoiseGenerator.

Figure A.1: Training data example 1 (probability density). This is a plot for
(T, σ, w) = (3.0, 0.1, 200). The central plot shows the 2D probability density,
amplitude margin is on the left side, time margin is on top.
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Figure A.2: Training data example 1 (samples). This is a plot for (T, σ, w) =
(3.0, 0.1, 200). The central plot shows the 2D probability density, amplitude mar-
gin is on the left side, time margin is on top. Orange bars in margin plots and
yellow dots in the 2D plot are 10000 random samples, blue contours are the exact
model.

Figure A.3: Training data example 1 (half-copula). This is a plot for (T, σ, w) =
(3.0, 0.1, 200). Half-copula is used to calculate v′ from u and v.
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Figure A.4: Training data example 2 (probability density). This is a plot for
(T, σ, w) = (7.0, 0.5, 250). The central plot shows the 2D probability density,
amplitude margin is on the left side, time margin is on top.
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Figure A.5: Training data example 2 (samples). This is a plot for (T, σ, w) =
(7.0, 0.5, 250). The central plot shows the 2D probability density, amplitude mar-
gin is on the left side, time margin is on top. Orange bars in margin plots and
yellow dots in the 2D plot are 10000 random samples, blue contours are the exact
model.

Figure A.6: Training data example 2 (half-copula). This is a plot for (T, σ, w) =
(7.0, 0.5, 250). Half-copula is used to calculate v′ from u and v.
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A.2 Neural network training

Attached tables shows some of the partial results and optimalization progress.

Table A.1: Neural network training process. The table contains optimalization
for time and amplitude network with T = 0.5. Cyan colour marks changed
parameter, green and red colour mark improvement or deterioration, respectively.

45



Table A.2: Influence of layers. The table shows the influence of layers’ sizes on
the resultant accuracy. We focused on T = 5.0 but the accuracy of other networks
is also important factor to track. Green and red colour mark whether the value
is below, or above our desired precision.
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A.3 Neural network generator

The following plots show our final neural network generator fits for different
(T, σ, w) combinations.

Figure A.7: Network fit example 1 (samples). This is a fit for (T, σ, w) =
(3.0, 0.25, 250). The central plot shows the 2D probability density, amplitude
margin is on the left side, time margin is on top. Orange bars in margin plots
and yellow dots in the 2D plot are 10000 random samples, blue contours are the
exact model.
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Figure A.8: Network fit example 1 (half-copula). Blue lines are plotted from the
training data, red lines shows the fit. This comparison is very sensitive and in
fact we only look for general agreement between the patterns.
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Figure A.9: Network fit example 2 (samples). This is a fit for (T, σ, w) =
(7.0, 0.25, 250). The central plot shows the 2D probability density, amplitude
margin is on the left side, time margin is on top. Orange bars in margin plots
and yellow dots in the 2D plot are 10000 random samples, blue contours are the
exact model.
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Figure A.10: Network fit example 2 (half-copula). Blue lines are plotted from the
training data, red lines shows the fit. This comparison is very sensitive and in
fact we only look for general agreement between the patterns.
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A.4 Random forest generator

The following table shows an example of random tree training.

Table A.3: Random forest training process. The table contains optimalization for
one (T, σ, w) gridpoint. Cyan colour marks parameter change compared to the
previous row.
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A.5 Gaussian mixture generator

Attached plots show more examples of gaussian mixture fits.

Figure A.11: Gaussian mixture fit example 1 (samples). This is a fit for
(T, σ, w) = (3.0, 0.1, 250). The central plot shows the 2D probability density,
amplitude margin is on the left side, time margin is on top. Orange bars in
margin plots and yellow dots in the 2D plot are 10000 random samples.
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Figure A.12: Gaussian mixture fit example 1 (components). This is a fit for
(T, σ, w) = (3.0, 0.1, 250). Coloured areas represent 2D gaussians, dots are ran-
dom samples which share its colour with the appropriate gaussian.

Figure A.13: Gaussian mixture fit example 1 (total probability density). This is a
fit for (T, σ, w) = (3.0, 0.1, 250). The plot shows contour lines of 2D probability
density composed from 2D gaussians.
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Figure A.14: Gaussian mixture fit example 1 (weights). This is a fit for (T, σ, w) =
(3.0, 0.1, 250). The mixture consist of 30 gaussians which are ordered according
to their relative weights in the mixture.
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Figure A.15: Gaussian mixture fit example 2 (samples). This is a fit for
(T, σ, w) = (7.0, 0.5, 250). The central plot shows the 2D probability density,
amplitude margin is on the left side, time margin is on top. Orange bars in
margin plots and yellow dots in the 2D plot are 10000 random samples.
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Figure A.16: Gaussian mixture fit example 2 (components). This is a fit for
(T, σ, w) = (7.0, 0.5, 250). Coloured areas represent 2D gaussians, dots are ran-
dom samples which share its colour with the appropriate gaussian.

Figure A.17: Gaussian mixture fit example 2 (total probability density). This is a
fit for (T, σ, w) = (7.0, 0.5, 250). The plot shows contour lines of 2D probability
density composed from 2D gaussians.
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Figure A.18: Gaussian mixture fit example 2 (weights). This is a fit for (T, σ, w) =
(7.0, 0.5, 250). The mixture consist of 30 gaussians which are ordered according
to their relative weights in the mixture.
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