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Abstract: This study provides an introductory insight into the complex field of
graphene and its relativistic-like behaviour. The thesis is opened by an overview
to this topic and draws special attention to interesting non-topological vortex
solutions of the Liouville equation found by P. A. Horvathy and J.-C. Yéra,
which emerge in a context of the Chern-Simons theory [I], [2] and have been put
into context of graphene [3], [4]. We introduce the massless Dirac field theory,
well describing electronic properties of graphene in the low energy limit, and
point to the fact that the action of the massless Dirac field is invariant under
Weyl transformations, which has far-reaching consequences. When the graphene
membrane is suitably deformed, we assume that the correct description is that
of a Dirac field on a curved spacetime. In particular, an important case is that
of conformally flat 241-dimensional spacetimes. These are obtained when the
spatial part of the metric describes a surface of constant intrinsic curvature [3.
In other words, the conformal factor of such spatial metrics has to satisfy the
Liouville equation, an important equation of mathematical physics.

In this work, we have identified the kind of surfaces to which the Horvathy-Yéra
conformal factors, above recalled, correspond, and have provided the geometrical
explanation of the natural number N of such non-topological solutions. We have
done that by identifying the appropriate change, from the isothermal coordinates
to the canonical coordinates for surfaces of revolution. We found here that, for
the generic N, such surfaces are surfaces of positive constant Gaussian curvature
of the Bulge type (barrel shaped surfaces, that present singular boundaries),
and only for N = 1 coincide with the sphere. Finally, we briefly comment on
the corresponding 2+1-dimensional spacetimes, and show the possible connection
with the Bondi-Lemaitre-Tolman spacetime.
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Introduction

Graphene’s story

Theoretical physics has gone a long journey until present days, but becomes too
remote from current experimental physics, which is unable to (in)prove plenty
of often curious theoretical predictions. One concrete example is the black hole
evaporation. For such kind of problems, when we cannot observe phenomena
directly, physicists came up with an interesting concept, following Feynman’s
motto "same equation, same solution”. Speaking about gravity, the idea is to
replace a relativistic system of our interest (e.g. a black hole) by a relativistic-like
system, which shares with the target system some of the relativistic properties,
and can be constructed in a laboratory. This concept is known under a name
gravity analogue. The question is whether such systems exist. For our surprise,
the answer is positive. It was discovered in a laboratory that a carbon layer
(grapheneﬂ) is a example of three-dimensional quantum relativistic-like systemE]7
well described by the Dirac masslessﬂ field theory (DMFT). It naturally leads to
an expectation of an emergence of gravity-like phenomena on the carbon sheet
51, Al

Next it was discovered that the action of the DMFT enjoys so-called local
Weyl symmetry

() = (@) g (), V(2) = @7 H(@)U().

The action, which determinates physics of particular system, of the DMFT is
invariant under local Weyl transformations. Thus, we say it enjoys the local
Weyl symmetry. We emphasize that the Weyl transformation acts on the metric
tensor and not on coordinates (see eg. [0]). After the transformation, we deal
with a different spacetime, g:“, = ®%g,,, usually said “conformal” one another.

With this, if we would like to study a behaviour of a system with spacetime
metric tensor denoted g, in laboratory conditions, we can use the Weyl symmetry
of the Dirac massless action and set up a experiment with a different system,
whose spacetime metric tensor is g,,. Due to the Weyl symmetry, the action is
still same.

But what does it mean that the carbon layer is assigned a space-time? Here,
the problem starts to be very complicated. Firstly, we note that in this thesis we
focus on two-dimensional surfaces instead of layers with complicated structures
as carbon layers have. Therefore we will not use "layer” any more and will speak
about "membrane” since this moment. Secondly, the effective DMFT forces us
to assign a spacetime (in the ordinary sense) to a surface, which represents given
a graphene membrane. It makes good sense to expect that the spatial part of the

L As well as silicon or germanium, but we will talk only about graphene.

2Two dimensions for space, one for time.

3Rest mass m or precisely its energy mc? has a obvious sense for a true relativistic system,
but not in a relativistic-like system. For example, the system might be a carbon layer, where
the Fermi velocity vp replaces the speed of light ¢, but it is not clear what mv% means. The
requirement of "massless” is therefore natural. Of course, not suprising that it is rather a
effective than fundamental theory. We will come back to it later.



spacetime metric tensor should be the metric tensor of the surface. Unfortunately,
"should” is on the right place, because the shape of the metric tensor and the
meaning of its (matrix) elements depend on used coordinate frame. Moreover,
we have not expected anything about the metric tensor of the surface. It is yet
an abstract unspecified object. But this is not the end, what about time or even
mix elements (space-time) of the spacetime metric tensor? There are still many
unanswered questions. Before we introduce the "solution” of these problems, let
us realize something very practical.

The reason why we deal with the Weyl symmetry instead of constructing a
membrane with spacetime g, right away, is the crucial fact that is not clear
how such surface should look like. The spacetime metric tensor is expressed with
respect to some coordinates, but finally, we must find the Cartesian (laboratory)
coordinates x,y, z of the surface and it means to do coordinate transformations
and solve set of non-linear partial differential equations. This can be in general
extremely difficult problem (if not impossible). If we decide to work g, instead
of g,.,, we must deal with same problem, but it can be simpler to solve (find the
surfaces corresponding to g,,) which is the key message.

We make a few simplistic assumptions [3]. The first one is that we assume a
special shape of the metric tensor

1 0
(3 _
9 (0 —9&3) ’

where the part of the metric tensor corresponding to the surface is denoted g((f/;
The sign 'minus’ is given by a standard convention. So we deal with a kind of
spacetimes obtained as a product of flat-time and a metric tensor of a specific
surface.

The shape of the spacetime metric tensor is suddenly more clear, but we
have no information about ggﬁ) Physicists had taken a crack at it and assumed
only conformally flat spacetimes, which are richly represented in GR (in 2 + 1
dimension). What does it mean? Simply, the spacetime is conformal to the
Minkowski spacetime: g,, = ®%1,,. From now, we deal with conformally flat
spacetimes of flat-time part of their metric tensors. Of course, it is a loss of
generality, but now we have a much clear idea how the metric tensor looks like.
Moreover, it is well known that each two-dimensional manifold is conformally
flat, hence the surface metric tensor can be written as ggﬁ) = 6‘75((35), where o is a
function and d,4 is the Kronecker delta. The necessary and sufficient condition for
the conformal flatness in 2+1 dimension is the vanishing of the so-called Cotton-
York) tensor. It can be proved (see later), that this means that the conformal
factor has to satisfy one famous equation of mathematical physics called Liouville
equation

Ao (i,§) = —Ke*@9),

where x and g are so-called isothermal coordz'natesﬂ The constant K is named
the Gaussian curvature. It is an intrinsic quantity, which can have any real value.
In the complex plane z = ¥ +1iy, z = & — iy, the solution of the Liouville equation

4The infinitesimal line element of a surface in these coordinates is dI? = (%, ) (dic2 + d?j2).



for K # 0 is
2 |1'G)

A= KT

where 'plus’ or 'minus’ refers to the positive or negative constant Gaussian cur-
vature, respectively [3], [6], [7].

As we have learned in previous related work [§], [9], if we allow for certain co-
ordinates redefinitions, the only surface of positive constant Gaussian curvature
is the sphere. The sphere is constructable in laboratory conditions and corre-
sponds to the giant fullerene (e.g. [4]). The spacetime related to the sphere will
be discussed later.

On the other hand, the number of surfaces of negative constant Gaussian
curvature is infinite, hence, new surfaces are discovered over the years. In [3]
there are three very well studied surfaces of negative constant Gaussian curvature
and it is introduced to which well known spacetimes are conformal. They are:
the Beltrami, elliptic and hyperbolic pseudospheres and associated spacetimes are
conforma]ﬂ to spacetimes: the Rindler, de Sitter, Banados - Teitelboim - Zanelli
(BTZ) black hole, respectively[4]. We will come back to them later in the thesis.
Surely, this is not the end of the story for these particular pseudospheres, because
it is still a problem to reproduce them in the laboratory.

At this moment, the situation looks opposite than in the beginning. We know
how some particular surfaces (with some required properties) look like, i.e. we
know z,v, z coordinates, and we ask ourselves if we can find some spacetime in
GR, whose spacetime metric tensor is formally same or is conformal to the metric
tensor of the spacetime associated to the surface.

Now, we move a little bit back from the mentioned problem of the reproduc-
tion of membranes in the laboratory to the discussion about shapes of surfaces.
The introduced pseudospheres were vortex-like surfacesﬂ In the work [3] it was
suggested to study in the context of the graphene the non-topological vortex so-
lutions, concrete solutions of Liouville equation, which appears in the context of
Chern-Simons theory |Z| and was introduced P. A. Horvathy and J.-C. Yéra in [1],
see also [2]. Although the Liouville equation allows for both signs of K, they
are interested in constant K > 0 and assume the conformal factor with a radial
symmetric Ansatz f(z) = z~N. In polar coordinates (2, 2) — (7, 8) the conformal
factor is

2N N

VK 14N

where 7 = |z|, 7 € [0,00], § € [0,27] and N is a natural number [I]. The sign
'+ underlines the positivity of the constant Gaussian curvature. The conformal
factor for different N corresponds to different geometries, see Figs and [3|

¢+ (F)

5Tt is a custom to say “conformal”, but more precise is ”Weyl related”.

50f course, there exist exotic surfaces with constant negative K, which do not look like a
vortex, see [4].

"In this thesis, we will not deal with the Chern-Simons theory, which is a name for three-
dimensional topological quantum field theory. What is quite interesting, is the attribute "non-
topological”. Tt has a connection with value of scalar field in the infinity » — 4-00. The vortex
is said to be "topological” if the scalar field [¢)| — 1 for r — 400 and "non-topological” if ¢b — 0
for r — +oo [2].
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Figure 2: Squared conformal factor ¢3 (Z,9) of the vortex solution for K = 4,
7€ [0,4+00],0 €[0,27], N =1

According to our knowledge, the problem of determining spatial coordinates
z,y, z(x,y), corresponding to vortex solutions, has not been resolved yet. How-
ever, everything what we know is the conformal factor ¢, (7) in polar isothermal
coordinates. In general, this is a very difficult problem, as one needs to solve
a system of non-linear partial differential equations, coming from changing of
coordinates, and that can be tricky in practise. There is one hint, which we
mentioned above, coming from the Hilbert theorem, but this will be discussed
in details later. Next question is what we can say about the related spacetime
(with flat-time part). Is the spacetime formally same/conformally related to some
spacetime in GR?

A few words about the thesis

This thesis is divided into four chapters. The first three chapters provide an
overview of the necessary background. The first chapter is dedicated to an ex-



(a) N =2 (b) N =3

Figure 3: Squared conformal factor ¢2 (Z,9) of the vortex solution for K = 4,
0 €10,2n], 7€ [0,+0¢], (a) N=2,(b) N=3

planation of the Dirac field theory and its generalization to curved spacetime.
Special attention is paid to the Weyl symmetry of the Dirac massless action. The
second chapter explains why the conformal factor of any conformally flat surface
(membrane) must satisfy the Liouville equation. The third chapter is focused on
surfaces of revolution (for both signs of K') and we briefly discuss the spacetimes
that are obtained taking the product of flat-time and those two-dimensional sur-
faces (the Rindler spacetime etc.). The fourth chapter is focused on our own
study of presented vortex solutions for K > 0. We also discuss the case K < 0 to
find out whether something new could be given. We identify there surfaces corre-
sponding to vortex solutions (for arbitrary ) and address briefly the spacetimes
obtained by taking the product of flat-time and these surfaces.

Finally, we present two appendices, the first is dedicated to conformal sym-
metry and the second to physics of three particular spacetimes: Rindler, de Sitter
and BTZ black hole.

This work indirectly builds on two previous projects [10], [I1] supported by
two student faculty grants (SFG) on the Faculty of Mathematics and Physics,
Charles University, Prague.

“I always do that, get into something and see how far I can go.”
Richard P. Feynman

“You never fail until you stop trying.”
Albert Finstein



1. Weyl symmetry of the
Dirac field

This chapter is divided into three sections. The first one is focused on the Dirac
field theory in the Minkowski (flat) spacetime and on how it follows from a com-
bination of quantum mechanics and special relativity. We chose an "intuitive
approach”: we start with 3 + 1 dimensions and conclude that it works for arbi-
trary dimension n (minimum n = 1+ 1). In the following section we introduce a
concept of connection, which is necesary for the generalization of the Dirac action
to curved spacetimes. This is done in the last section, where we discuss the Weyl
symmetry of the Dirac massless action.

1.1 Dirac field theory in flat spacetime

The DMFT is a backbone of theoretical study of the graphene membrane in low
energy excitations, because well describes its electronic properties [3].

We will outline the derivation of the Dirac equation, i.e. relativistic general-
ization of the Schrodinger equation. In the end, we will discuss the action of the
Dirac field theory in flat spacetime [12], [13], [14].

Schrodinger, Klein-Gordon and Dirac equations

Here we begin with well known time-depended Schrodinger equation

H ) = ihd, |v) (1.1)

where [1)) is the ket vector, representing the state of the system, H is the hamil-
tonian, and 0, = 9/0t.

In the z-representation (z,t|1)) = 1(x,t), the momentum operator is p =
—1hV and the Schrodinger equation ([1.1) might be rewritten as

h?
—%v% = ihdy). (1.2)

That is evidently non-relativistic, as space and time derivatives are of different
orders.

We would like to find a relativistic form of (1.2)). Therefore we write down
Einstein’s relation for energy F, rest mass m and momentum p

E? = m2ct + p*c? (1.3)

and ask ourselves whether (1.2) and (1.3)) can be combined to one covariant
equation. By applying the so-called correspondence principle: E — ih0; and
p — —ihV, we obtain the so-called Klein-Gordon equation (e.g. [13], [14])

m2c?

h2

(—;af 4 v2> v="""y (1.4)



The positive result is that the Klein-Gordon equation is Lorentz invariant
unlike the Schrodinger equation. Is this the relativistic generalization we were
looking for? The answer seems to be negative for three reasons.

The first is the Klein-Gordon equation allows for given p both signs of energy:
E = +v/m?c* + p?c?. The negative sign is usually interpreted as antiparticle.

The second is that the Klein-Gordon equation is linear partial differential
equation of second order. It means to solve the equation we need to know 9 as
well as 0 /0t for initial state. In comparison with the Schrodinger equation there
is one more degree of freedom in initial conditions.

The third one is the time-depended probability distribution, which allows the
negative value of the probability density. To avoid the negative probability, the
highest time derivative cannot be higher than the first order.

Dirac had the original idea to consider the left side of as a square of one
expression, which contains derivatives of the first order

1 ' 2
(—Qaf + v2> b= (Aaw + BO, + CO, + ZDa,f) o,
c c
where 0, = 0/0x etc. However, this necessarily leads to following conditions

AB=BA=---=0, A= ... =D*=1. (1.5)

These equations make sense if A, B,C, D are matrices. Particularly for 3+1
dimension, we deal with 4 x 4 matrices and ¢ is not one function, but an array
of four complex functions. 1 is usually called spinor. Then

(A(?z + BA, +CO. + ZDat) v="Cu (1.6)

This is called Dirac equation, still with unknown matrices. We must write (1.6
in covariant form, therefore we set A = iy!, B = iv? C =73, D = +°. Then the
Dirac equation is
(—ihy*0, + mc) 1 = 0, (1.7)

where and @ = 0,1, 2,3 are Lorentz indices and 9y = 0,/c.

Of course, from the Dirac equation it must be possible to obtain back the
Klein-Gordon equation. We multiply the left side of the Dirac equation by
(ii‘wbab + mc)

2.2 2.2

mec 1 mec
<7b7“3b3a + h2> w = <C28t2 — V2 + h2 > 1/1

2.2

m-c
(nabaaab+ - )wzo,
(1.8)

which gives the requirementﬂ
{’Ya’}/b} = ’Ya’Yb + ’)/b’)/a — 27lab~ (19)

For instance, for 3+1 dimensional spacetimes, the matrices might have the form
[12]:

I 0 0 o 0 o 0 o
0 __ 2x2 1 _ x 0 _ Y 3 _ z
K _< 0 —12X2>’7 - (—ax o>’7 - (—ay 0)’7 _<—az o)’

(1.10)

f choose the signature of the metric tensor as (+,—, —, —).

8



where 0,,0,,0, are the 2 x 2 Pauli matrices.

For arbitrary dimension n > 2 equations are formally same up to dimension
of matrices and spinors, e.g. for n = 2 y-matrices are 2 x 2 and spinors have two
components.

Action of Dirac (massless) field theory

As we already know the Dirac equation is a equation of motion for a rela-
tivistic quantum free point particle in the Minkowski spacetime with 74,. On the
other hand, there exists an alternative approach how the system can be described.
It is usually to work with a functional called action, which we already mentioned.
Here, the action &7 is a functional depended on 1 and its first order derivative

A (0,0,0) = [ 4L (. 0,0) (1.11)

where n is the dimension of spacetime.
The Euler-Lagrange equations are obtained by extremizing the functional,
047 = 0, with respect to the conjugate spinor . This gives

o = /d”x& (ihcw“@a - ch) . (1.12)

What we introduced is a fundamental theory. The key information for our
work is the experimental fact that the massless theory (effectively) describes the
low energy behaviour of the conductivity electrons of a graphene membrane, so
the spacetime of dimension n = 3. Let us remind us that the Minkowski "space-
time”, which we have in mind here, is not exactly same as we are used to dealing
with in special relativity. The standard three-vector is right now (vgt, 1, xs),
where x1, x5 are some coordinates covering the surface and vr denotes the Fermi
velocity, the analog to the speed of light in special relativity. The speed of light
must be replaced by the Fermi velocity in the whole equation, of course. Mean-
time, we drop the mass term [3]. Now, we postulate that the action related to
the Dirac massless equation in the case of graphene has the form

o = va/d%%“ s (1.13)

The components of the spinor are complex functions, therefore each of them has
real and imaginary part. Complex conjugated ¢* is relate to ¢, therefore we
can choose whether to vary ¢ or ¢. Let us choose to vary v, then we get well
known results

5t = ihop / B 5y O = 0. (1.14)

As explained earlier, we are interested in curved, rather than flat spacetimes.
Therefore, the next section is focused on the geometry of a curved spacetime.
After that we will be able to write the action of Dirac field theory for curved
spacetime.

29* is a column-like array (vector) and 1 is row-like array (vector), but include same com-
ponents, i.e. ¥* =T,



1.2 Geometry of curved spacetime

A fundamental concept in differential geometry is that of differentiable manifold,
with its associated metric tensor. These ideas are n-dimensional generalizations
of the two-dimensional surfaces (the manifolds), with its Euclidean metric, and
various kinds of derivatives and associated differential calculus.

The manifold of our interested is so-called pseudo-Riemannian manifold. It
is a differentiable manifold with non-degenerated metric tensor, whose positive-
definitess is relaxedPl

The next concept is called connection. Simply, some data (vector, ...) are
transported along a concrete curve on the manifold and the connection, that
takes into account how the manifold departs from flat space, dictates the way to
transport such data along the curve. For example, we assume a vector V¢, where
a is a Lorentz index in a local (flat) reference frame on the curved manifold. The
vector is transported in such a way that it keeps its direction in a local reference
frame, i.e. dV*/dp = 0, where p is a parameter of the curve. The equation for
the parallel transport can be written as

dVH dxz°
— I VP = 1.1
V0, (1.15)
where -
p o Ozt 0%

(1.16)

are Christoffel symbols of the second type, £* denotes local coordinates and x*
global coordinates, with Greek letters denoting Einstein indices. For smooth
neighbourhood along the curve, ([1.15)) can be rewritten as
d g
vV, Ve =0, (1.17)
dp

where V,, denotes the covariant derivative, known as the Levi-Civita connection]'}

V, Vi =0,VI 4+ 1 VP, (1.18)

where 0, = 0/0x,.

The role of the Christoffel symbols in is to compensate for the non-
tensorial nature of the standard derivative 0,V*, giving as a result a derivative
that, under general coordinate transformations, indeed is a tensor.

The Christoffel symbols of the first kind can be defined from the Christoffel
symbols of the second kind using the metric tensor

Lo = G %,. (1.19)

The Christoffel symbols of the first kind are related to the metric tensor as

1
Lywp = 2 (OpGuw + G — OuGup) - (1.20)

3Examples of such manifolds are Euclidean or Lorentz manifold.
4A transport of data is similar to the derivative.

10



The Riemann tensor is the tensor that conveys the complete information about

the intrinsic curvature properties of the manifold. It is defined by the following
formulal’l
R, =0\, — 0,17, =17, 1", = T7,,I7,. (1.21)

The tensor can be written with lower indices using the metric tensor
Ruw@)\ = ngRUVH)\- (122)

The Ricci tensor, which is symmetric, is defined as the trace of the Riemann
tensor

R, = R%,, (1.23)
The Ricci scalar (or scalar curvature) is the trace of the Ricci tensor
R =g R,z (1.24)

Because V,V* transforms as a tensor, the metric still may raise or lower indices.
It implies that the metric tensor must be invariant under the covariant derivative

Voguw =0, Vog" =0. (1.25)
For a general tensor (with only Einstein indices) 7",  the generalization is
straightforward
N7 o LV AV v A
VO'TH Ko aU'TM K. + FMU)\T ) +-- 4T U)\TH )
- F)\UHTMMV)\.../) - PAO'pTIJ‘MVﬁ...)\‘ (126>

But how do tensors, with Lorentz flat a, b, ... and Einstein curved pu, v, ... indices,
transform? To find out this, we need to know how to map tensors of flat space-
time, whose metric tensor is denoted by 7),,, to tensors of curved spacetime of
same dimension, whose metric tensor is denoted by g,,. To be able to do it, we
introduce the Cartan formalism and define orthogonal vectors e”,, which map
flat spacetime on curved spacetime ([14], [17])

G = eaﬂebynab. (1.27)

These vectors, in general are called vielbein. For n = 3, these vectors are called
dreibein (or triad), for n = 4 vierbein (or tetrad) etc. We denote the inverse
triad/vielbein/...as £ * and they map the curved spacetime described by g, on
the Minkowski spacetime 7,

Nab = EEY G- (1.28)
At the same time
T g=¢"y. " EL BT (1.29)
as well as
e, B =06, € Ef=3. (1.30)

®The Riemann tensor enjoys several symmetries, see [16]. The tensor has 20 independent
components in 4 dimensions, 6 components in 3 dimensions and 1 component in 2 dimensions.

11



The orthogonal vectors can be understood as the Jacobi matrix, which corre-
sponds to the transformation of inertial local coordinates, corresponding to local
flat frame, to global spacetime coordinates.

Now, we get back to the question how tensors with mixed indices transform.
It is clear that the tensor must transform as a flat spacetime tensor with respect
to its Lorentz indices and as the curved spacetime tensor with respect to its
Einstein indices. The idea now is to introduce a new connection, that plays the
role of the Levi-Civita connection (introduced to covariantize the derivative with
respect to Einstein indices), in the context of the locally Lorentz frame, with
Lorentz indices. Such connection is called Spin connection.

We define the covariant derivative D, of V%, simiraly to the covariant deriva-
tive V,, (see (1.18))

DV =0,V +w,/ Ve, — w5V, (1.31)

where a term including the Christoffel symbol is missing because the tensor V¢,
does not contein Einstein indices.
From the full metricity condition (analogous to (|1.25]))

Dye*, =0, D,E’ =0, (1.32)
it follows (e.g. [3],[14] or [17])

wﬂab - eaVEb)\FV“)\ - Ebkauél)\ (133)

Transformation of the spinor

Now we know how to transform a tensor with mixed indices. But the spinor has
specific transformation features, which are not satisfied by D,. Hence, we need
to define yet another connection I, [I§]

P, =D, +T,. (1.34)

Since Z,4) must transform as a spinor, than the Dirac matrix * must be covari-
antly conserved

D" = 0. (1.35)
To obtain the expression for I',, one considers the effect of the infinitesimal
Lorentz transformation: £ — A%E% ~ £ + ¢4£° where €, = —€q, on ¢ [18]
1
Y — S(A)p ~ o+ ieabmbw, (1.36)

where Q% = 1[y*,~"] are the generators of the transformation.
Since the new connection needs to make covariant the derivative with respect
to local Lorentz transformations, the expression we obtain for I', is dictated by

(1.36]) (see also [14])

1
L= w2 (1.37)

I, 5
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1.3 Action in curved spacetime

We already know how to transform any spinor in curved spacetime, hence we
introduce the Dirac massless action for curved spacetimes [3]

= @hvp/d3 V| det g, [ E, “( + w#bCQbC) W, (1.38)

where we replace d, by D,,. Because the spinor has no Lorentz or Einstein indices,
we can expect only one connection: I';,. Of course, v*E # are gamma-matrices
expressed in curved spacetime. -
Variation of |j with respect to ¢ gives the Dirac equation in curved space-
time ]
iRy B, (a W+ 2%09%) 0. (1.39)
It is now time to show that the Dirac massless action enjoys the Weyl symmetry.

We will indicate the proof specially for a conformally flat spacetime of dimension
n = 3, because this is relevant for us. The spacetime is conformally flat if

Ju = 62277;111 (140)
and so
e, = 62(5%, E}l=e 5, y/|det gu| = e™. (1.41)
It implies
Wbe = 0%, (Macdy” — Napd. ) O, % (1.42)

and it is straightforward to obtain

’}/aQab = Y, (143)

where the right side is a special case of (n — 1)7,/2 for n = 3. With these in
mind, it is a routine business to derive the action

of = ihup [ e IRy <a Lol z) " (1.44)

For v — e~ 2

[31.

¥4 the action reduces to flat form, which is the end of the proof
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2. Weyl symmetry of graphene

In previous chapter, we discussed the Weyl symmetry of the Dirac massless field,
although only in the context of conformal flatness. In this chapter we will discuss
how the general features discussed earlier apply to the case of graphene. In par-
ticular, we will see how the request of conformal flatness for the 2+1-dimensional
metric becomes a request on the type of surface the graphene membrane needs
to reproduce.

2.1 Flat-time Ansatz

Any two-dimensional surface, embedded in R3, can be described through the rela-
tion z = z(x,y). When we add time, we can distinguish two reference frames: the
intrinsic three-dimensional frame o = (¢, z, y) with curved indices p = 0, 1,2 and
metric tensor g/(g,), next the four-dimensional extrinsic frame 5 = (¢, x,y, z(x,y))
with flat indices a = 0,1,2,3 and metric tensor nﬁ). The map from four-
dimensional flat spacetime to three-dimensional curved spacetime is

g — (1) 08 0p°

nv ab Aot 8051/. (21)

Notice that the Minkowski four-dimensional metric tensor nﬁ) needs to be there

for a correct description of the three-dimensional (pseudo-)relativistic spacetime
experienced by the conductivity electrons of the graphene membrane [3].
In these coordinates, the metric tensor (of curved spacetime with flat time)

must be
1 0
(3) — 2.2
iy _yo) (2:2)
where g((f) denotes the spatial part of the metric tensor of the membrane.

A consequence of this Ansatz is that the Ricci curvature for both metric

tensors, gl(f’y) and gfg, are same

R® = R® =R, (2.3)

That means the curvature of spacetime is included only in its spatial part. From

that follows that the corresponding Ricci tensor for gfff,) is

1 0
RB) — 2.4

where ng is the Ricci tensor coming from gfﬁ) We wish g/(f,/) to be conformally
flat gf,’) = <I>%S;). For this reason, we dedicate next section to a brief introduction
to the Cotton tensor and Cotton-York tensor, whose vanishing is necessary and
sufficient condition for conformal flatness in three-dimensions.

14



2.2 Intermezzo: Conformal flatness

This section introduces two topics that will meet together later. The first one
deals with the Weyl tensor, the Cotton tensor and Cotton-York tensor. The other
is focused on the Liouwville equation, which we have already briefly introduced.

Weyl tensor, Cotton tensor and Cotton-York tensor

The Weyl tensor is a trace-free part of the Riemann tensor [19]

Oulm)\ = R,uwe)\ - (R,ngz/A + RvAg;m - R,u)\gyn - chg,u)\) +

n—2
T (n — 1)1(7’L _ 2) R (glmgu)\ - gunguk) (25)

The vanishing of the Weyl tensor is necessary and sufficient condition for the
manifold of dimension n > 4 to be conformally flat [I9]. For n = 3 the Weyl
tensor vanishes identically, hence it cannot be used to check conformal flatness.
Fortunately, there is the conformally invariant tensor, the Cotton tensor, defined
as

1
C,ul/)\ = V,LLRV)\ - VI/R,u)\ - 1 (v,ung)\ - VVRg,u)\) . (26>

The manifold of n = 3 is locally conformally flat if and only if C),,» = 0.
On the other hand, one can also define the Cotton-York tensor C),, [20]

1 RO
Cp = §g§j”;e* Clrov, (2.7)

which vanishes, if and only if the manifold is conformally flat.

Liouville equation

Each two-dimensional Riemann manifold is locally conformally flat. This means
that there exists a set of coordinates, called isothermal coordinates, denoted by
2,7, so that the infinitesimal line element can be expressed as

di? = ¢(z,7) (di® + di?) , (2.8)

where ¢(Z,7) is a smooth function called conformal factor [21].
If we rewrite the conformal factor as ¢(z,§) = e”@9), then the metric can be

expressed as
2 o (%4 2
g(iﬁ) = ¢%( ’y)éég, (2.9)

where a, 8 € {Z,7}. The full information about the curvature is now included in
the Ricci scalar . . .

R=gos ng = g R + gus R%), (2.10)
with «, 5 € {Z,7}, and we used the Einstein convention for the definition of R,
but we do not use it for the explicit expression in terms of components (last
expression).
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From the metric tensor (2.9)) it follows that non-zero components of the Rie-
mann tensor of n = 2 are (see also [6])
T py _
where A = 02 + 85 is the flat Laplace operator.
It means that the non-zero components of the Ricci tensor are: Rz; = R”ng,
Ry = Rg@j and we used again here the Einstein convention. Then the Ricci
scalar is

R= 22 @DAg (%, 7). (2.12)

Assuming the constant R and defining the Gaussian curvature K = R/2, the
equation takes the form

Ao (z,7) = —Ke*@0), (2.13)

Regarded as an equation for o, this is a famous equation of mathematical physics,
Liouville equation. In the complex plane z = & + iy, z = ¥ — iy the Laplace
operator is A = 92 + 05 = 40,0;. The Liouville equation might be rewritten with
¢(2(Z,9), 2(Z,7)) as

Aln¢(z, 2) = —K¢*(2,2). (2.14)
J. Liouville presented the general solution of (2.14)) in his article [7]. The solution
is
_ 2 (=
bs(2,7) = 712) (2.15)

JEITE R

where f is any meromorphic function, which holds: f' = df /dz # 0 for all z in
the domain of function f (except poles) and f(z) has at most simple poles in its
domain of function.

2.3 The key role of the Liouville equation

We know that the three-dimensional manifold is conformally flat if and only if the
Cotton-York tensor vanishes. We also know that there exists a set of coordinates,
called isothermal coordinates, denoted by z, ¢, that the metric gfﬁ) is diagonal,
ie.

10 0
9@ g) =0 —e¥@D 0 (2.16)
0 0 —e20(@9)

and corresponding formula for the Ricci scalar is computed as [3]
1 .
Ao (z,§) = —ER(;%,g)e%(xvy). (2.17)

Now, we want to apply the condition of conformal flatness €, = 0, which
implies

—0;:A0 +2(0;0) Ao =0, — 0;A0+2(050) Ao = 0. (2.18)

The Egs. [2.17) and (2.18)) are compatible if and only if the Ricci scalar is con-

stant. Assuming the Gaussian curvature rather then (constant) Ricci curvature,

it follows from that
Ao = —Ke*, (2.19)
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which is the Liouville equation (2.13). It means, the spacetime related to the
graphene membrane is conformally flat if the surface’s conformal factor satisfies
the Liouville equation.

If K = 0 the Liouville equation reduces to the Laplace equation Ao = 0
and surfaces are flat but in general not simply planar and their conformal factors
are harmonic functions. In Appendix [A] we discuss conformal symmetry, and we
show that in n = 2, this can be naturally done in the complex domain, where
the conditions for conformal symmetry become the Cauchy-Riemann conditions
for holomorphicity. As well known, harmonic functions are the real counterpart
of holomorphic functions. This is not coincidence, as Weyl and conformal sym-
metries are tightly related. We dedicate Appendix [A]to this topic, and introduce
there the algebra that the conformal generators obey in n = 2, that is the Witt
and Virasoro algebras.

This implies two conclusions. Firstly there are infinite ways how to bend the
membrane by keeping it intrinsically flat, secondly this family of surfaces are
closely related to the Witt algebra and the Virasoro algebra.
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3. Surfaces of revolution
of constant K and related
spacetimes

In the previous chapter we have discussed why we are interested in surfaces with
constant Gaussian curvature. In particular, we are interested in surfaces of rev-
olution, To them, and to the spacetimes obtained by considering them as the
spatial part of the metric ([2.2), is dedicated this chapter.

Surfaces of revolution can be defined by this parametrization [§], [23]

z(u,v) = R(u) cosv,y(u,v) = R(u)sinv, z(u) = + /u V1—[R(@)da, (3.1)

where v € [0,27] is the longitude coordinate, u € [Umin, Umax] 18 the latitude
coordinate and R = dR/du. This implies that the infinitesimal line element

di* = da* + dy® + dz* = du® + R*(u)dv® (3.2)
The Gaussian curvature satisfies a simple relation [8], [24]

R (u)

K=" R

(3.3)

At this moment, we must distinguish between constant K > 0 and K < 0.
We will see in next section that up to a redefinition, the sphere is the only
surface of constant K > 0. In other words, surfaces with singularities, which
are a kind of deformations of the sphere, can arise but these singularities are
always removable by a suitable redefinition of coordinates and we obtain the (full,
undeformed) sphere. Nonetheless, as we will see extensively in the last chapter,
these deformations of the sphere are physically distinguishable from the sphere
itself, and play a mayor role in the identification of the surfaces corresponding to
the Horvathy-Yéra vortices.

On the other hand, the number of surfaces with K < 0, called Lobachevsky
(hyperbolic) surfaces, are infinite and the singularities (like edges or cusps) for
K < 0 always arise. In comparison with K > 0, they are the effect of the fact
that only parts of the Lobachevsky plane can be immersed into the Euclidean
space as a result of famous Hilbert’s theorem (see e.g. [9]), which says: "There
exists no analytical complete surface of constant negative Gaussian curvature in
Euclidean space.”

3.1 Positive constant (Gaussian curvature

For constant K = 1/r? > 0, where r is a radius of the surface, by solving the
ordinary differential equation (3.3]) we obtain

R(u) = ccos (;f + b) , (3.4)
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where b, ¢ are integration constants. If we assume: b = 0 (this redefines the zero
of u), then x, y-coordinates are

u u
T = CCOS—COoSV, Y = CCos—sinw (3.5)
r r

and the general formula for the z-coordinate is

2(u) = / V- [R@)] da (3.6)

The formula for the z-coordinate depends on a relation between ¢ and r, hence
we must distinguish three cases

l.c=r

72 r r

()= [ J - lCQ sin? “] di=roin (3.7)

The surface is a sphere of a radius r. Ranges are: v € [0,27], u/r €
[—7/2,7/2]. The plot is in Fig. [3.1]

Figure 3.1: ¢ =1,r=1,v € [0,27], u € [—m, 7]

2. ¢c>r

The z-coordinate can be expressed by the complete elliptic integral of the

second kind as: )

u c
=rE|—, —|. 3.8
=g |45 (5.5)
The ranges are smaller than in previous case:
v € [0,27], u/r € [—arcsin (r/c),arcsin (r/c)]. The plot is in (a). We
call these "Surfaces of the Bulge type”.
3.c<r

For the z-coordinate we have same formula as previously, see (3.8). The
ranges are: v € [0,27], u/r € [—7/2,7/2]. See (b). We call these
"Surfaces of the Spindle type”.

19



(b)e=1/2,r=1

Figure 3.2: In (a) the case ¢ > r, giving surfaces of the Bulge type. In (b) the
case ¢ < r, giving surfaces of the Spindle type.

The singularities, edges in case 2. and cusps in case 3., can be removed by a

simple redefinition
c
VU= v, (3.9)
r

which leads to a formal adjustment of (3.2)

2 _
di2 = du? + R2(u)dv? = du’® + (ZR@)) dv? = du? + R*(uw)de.  (3.10)

From (4.12) we obtain the z-coordinate as

\/ R du—rsm— (3.11)

which obviously gives a sphere.

3.2 Negative constant Gaussian curvature

For constant K = —1/r% < 0, by solving the ordinary differential equation (3.3))

we obtain " "
R(u) = ¢ sinh — + ¢5 cosh —, (3.12)
r r

where ¢, co are integration constants. We distinguish these cases: Beltrami
pseudosphere (¢c; = co = ¢), Hyperbolic pseudosphere (¢; = 0, co = ¢), Elliptic
pseudosphere (¢1 = ¢, co = 0), where ¢ is any positive real constant.

Beltrami pseudosphere

From conditions ¢; = ¢2 = ¢ > 0 in (3.12) we obtain

R(u) = cexp %, (3.13)
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which implies

u c? 2u
z(u):/ \ll—ﬁeXpTdu.

Then the z-coordinate is

c? 2u

2 2
z(u)zm/l—c—exp—u—rarctanh 1— —exp—
72 r 72 r

(3.14)

) . (3.15)

Ranges are: R(u) € [0,7], u € [—oo,rIn(r/c)]. We plot this surface in Fig.
3.3l Therefore the surface is infinite with boundary at R(umax) = r, where

Umax = r1n (r/c). For R > r the surface becomes imaginary.

Figure 3.3: Beltrami: Plot: ¢ =1,r =2, v € [0,27], u € [-5,2log 2]

Elliptical pseudosphere
Conditions ¢; = ¢, ¢ = 0 in (3.12)) gives us

R(u) = ¢sinh g,

r

z(u) = /u J 11— [ch cosh? ﬂ du.

Then the z-coordinate becomes

I

which implies

r'cz—r?

where E(-,-) denotes the elliptic integral of the second kind.
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Figure 3.4: Elliptic pseudosphere:
(a) c=1,r=2,v€0,2n], u € [0,2arccosh 2J;
(b) ¢ =5, r =10, v € [0,27], u € [0, 10 arccosh 2]

Because of ¢ < r, we define 3 as

c=rsinf. (3.19)

Ranges are: R(u) € [0, cos 8], u € [0, arcsinh cot (], where (3 is the angle between
the axis of revolution and tangents to the meridians at R = 0 [23].

The singular boundaries are a cusp at R = 0 (v = 0) and a edge at the
maximal circle of a radius R = rcos 5 (4 = upax). The plots are in Fig. |3.4

Hyperbolic pseudosphere
Finally, conditions ¢; = 0, c2 = ¢ in (3.12)) lead to

R(u) = ccosh g, (3.20)
r

z(u) = /u $ 1— l;z sinh? ﬂ du.

Then the z-coordinate becomes

which implies

2

2(u) = —irE (Z“ - C) |

r r2

where E(-,-) denotes a elliptic integral of the second kind.
Ranges are: u/r € [— arccosh( 1+ (r/c)z) ,arccosh( 1+ (r/c)z)] and R(u) €
[e, V2 +r?).

Therefore the surface is finite with boundaries at R(umin) and at R(umax) that
are two circles. We plot this surface in Figs. and

3.3 Spacetimes associated to spheres
and pseudospheres

Next question is which spacetimes correspond (are conformal) to spacetimes ob-
tained as a product of flat-time and each of the surfaces we discussed above.
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Figure 3.5: Hyperbolic pseudosphere:
(a) c=1,r=1,v € [0,27], u € [~ arccosh /2, arccosh v/2];
(b) c=2,r=1,v €0,27], u € [—arccosh y/5/4, arccosh /5 /4]

z
-5 (] 5
-1.0
, -0.5
—1.Q &8 0.0X
'% 0.5
Y '?.0 1.0

Figure 3.6: Hyperbolic pseudosphere:
c=1/100, r =1, v € [0, 27|, u € [— arccosh v/10001, arccosh v/10001]

We call these spacetimes the Spherical spacetime, Beltrami spacetime, Elliptic
spacetime and Hyperbolic spacetime.

The Spherical spacetime corresponds to a Einstein static universe. Because
this space(time) does not have any singularities, it does not have any horizon
and therefore it is not possible to observe phenomena related to the existence
of an horizon, like the Hawking effect [4]. From this point of view, it is more
interesting to discuss Lobachevsky surfaces. In [4] these results of theoretical
studies are summarized:

1. The Beltrami spacetime is conforma]El to the Rindler spacetime,
2. The Elliptic spacetime is conformal to the de Sitter spacetime,

3. The Hyperbolic spacetime is conformal to the BTZ black hole spacetime.

In next paragraphs, we would like to sketch a proof of each relation 1.-3. A
more detailed description of each spacetime (Rindler, de Sitter, BTZ) is in the
Appendix [B]

Before we begin, we will discuss spacetime horizons related to presented sur-
faces of revolution of constant K < 0. Because a spacetime horizon is a conse-
quence of edge(s) of related Lobachevsky surface, we called it the Hilbert horizon

'We remind, that more precise term is "Weyl related”, but we try to use the same terminology

as in [4].
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(the definition comes from [4]). On the other hand, the conformally related
spacetimes (Rindler etc.) have event horizons. The issue is how the correspond-
ing Hilbert and event horizons (e.g. for Beltami and Rindler) are related . They
are generally different, but we will see that coincide in a limit.

Beltrami spacetime: conformal to Rindler

We start with the spacetime interval corresponding to the Beltrami spacetime

2 2u/r 2
ce [Te%/’" (dt2 — du2> — T'QCZUQ] = ¢*ds7,

2
(3.21)
where ¢ = ¢(u) = c/re*/” and ds% = 2—56*2“/’” (dt? — du?) — r?dv?. If we identify

ds% = dt* — du® — Pe*/"dv? = =

n=tr/c€[—o0,+o0|, (= —ur/c€[—(r*/c)In(r/c),+o0], (3.22)
we can easily show that the spacetime interval dsg is of Rindler type
ds, = e** (dn2 - d(z) — r2dv?, (3.23)

where a = ¢/r? > 0. This corresponds to the right wedge of Minkowski spacetime
(i.e. Rindler spacetime). For the right wedge, the Rindler observer reaches the
event horizon for (g, = —oo. If we define (gy, := —(r?/c)In(r/c), then the Hilbert
horizon of the Beltrami spacetime and the event horizon of the Rindler spacetime
coincide Cyp — Cgp for ¢/r — 0 [4.

Elliptic spacetime: conformal to de Sitter

Let us start with the metric of the de Sitter spacetime (dS) [4], [15], [31]
Vi #\"
dstg == (1 — 7"2> dtQ - (1 — 7"2> d%Q - QQdUQ, (324)

where & is the radial coordinate, v is the angular variable, ¢ is time and r is
related to the cosmological constant A = 1/72 > 0. The event (”cosmological”)
horizon is Zg;, = r.

The counterpart of dS is the Anti de Sitter spacetime (AdS), whose spacetime
interval can be found by r — ir, which implies A — —A. Thus, the metric of
AdS is

R 7\
dshys, = (1 + T2> dt* — (1 + 7“2> d#* — H#*dv* (3.25)
Obviously the AdS has no event horizon (the spacetime is closed). It makes now

more sense to work with dS rather than AdS. But from mathematical point of
view, the AdS is Weyl-equivalent to an Einstein Static Universe [4]. By defining

1 1 1 1 1

= = 2
#*  R?> r?  r2cos®(u/r) r? (3.26)
and shifting the angular variable u — u 4 r7 /2, we obtain
1 :
d8124d83 = W [dt2 — du® —r? sm2(u/7‘)dv2} , (3.27)
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The line element in squared brackets is the line element of the Spherical spacetime.
In our correspondence, it can be obtained by making a giant fullerene. Now we
return to the de Sitter spacetime via r — ir, i.e. —A — A

1

m [dt2 — du?® — (r*sin? B) sinhQ(u/T)dvﬂ : (3.28)

2
dstB =

where we consider the orientation of the Elliptic pseudosphere by [, see (3.16|)
and . The squared brackets in (3.28)) is obviously spacetime interval of the
Elliptical spacetime, i.e. the Elliptical spacetime is Weyl related to AdS.

We will not show calculations done in [4], but after more adjustments, us-
ing R(u) = csinh(u/r) with ¢ = rsin 3, one can obtain a result (for detailed
calculations see [4])

ds* 7 B ds?
Spy = (1 - 7“281T125> 5%, (3.29)
The edge for a hyperbolic pseudosphere appears for Ry, = Ry = rcos 8. It can
be quite easily shown (based on calculations done in [4]) that this corresponds to
Ry, = 3rsin(20).

Because we add more sin § to calculations, the event horizon for the Elliptical
spacetime appears for Zg, = rsinf (the right side is not yet r). Of course
f = arcsin(c/r), hence if ¢/r is very small, the horizons coincide.

Hyperbolic spacetime: conformal to BTZ
The spacetime interval of the BTZ black hole with zero angular moment is [29], [30]

H* R -
dS2BTZ = (CQ - M) dt* — <02 — M) d#? — %°d6*. (3.30)

where —co <t < 00,0 < Z < 00, 0<60 <2, M is amass, Z a radial function
and we assume an Ansatz [3] that ¢ = [ = 1/v/A, where A is the cosmological
constant, see Appendix |B.3|

We rewrite the spacetime interval as

%2
dshr, = <c2 — M) ds?, (3.31)
where . 2 2
ds® = dt* — C—d%2 — 67d92. 3.32
¥ - T w -, (3:32)

Here we recognise the event horizon of the BTZ black hole as Zg;, = cv/ M. Now
our aim is to show ds? = dsl%,yp. If we identify 0 = v as well as
c? R

Eh

o (3.33)

then we obtain
%Ehu

)
C2

H(u) = Xg, coth (3.34)
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which implies

R(%(u)) = R(u) = ccosh %Ehu, (3.35)

2
where r = ¢?/Zg;, = /v M. Therefore the metric tensor of the BTZ black hole
is Weyl related to the Hyperbolic spacetime

dstr, = (‘%2 - M) ds? (3.36)
BTZ — 02 Hyp-* .

It remains to compare the Hilbert horizon with the event horizon. The edge
for the hyperbolic pseudosphere appears for Ry, = Rumax = V72 + ¢2, SO ug), =

Umax = T arccosh /1 + 12 /c? and Z(ugn) = ZEn Coth(arccosh 1+ 7‘2/02).

Assuming specially r = 10™¢, where n is a natural number [4], we obtain

10™

Ryn = Bpp X ———=.
Hh Eh (10271 — 1)1/2

(3.37)

Forn — oo (i.e. ¢/r — 0, M — 0) we get Zyn, — Zgn. In other words, the event
horizon of the BTZ black hole coincide with the Hilbert horizon of the Hyperbolic
spacetime if the mass of the black hole vanishes.
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4. Surfaces corresponding to the
Horvathy-Yéra solutions and
related spacetimes

Up to now we have provided an overview about the relativistic-like behaviour
of graphene and its possible usability in experimental studying of various (con-
formally flat) spacetimes or phenomena taking place in them (like the Hawking
effect on a event horizon of a black hole).

In this chapter we focus on our study of the non-topological vortex solutions
presented by P. A. Horvathy and J.-C. Yéra in [I]. In the beginning of this
chapter, we will write down the coordinate transformations from 7,60 to .y, z
in an effort to find the actual form of the surfaces in point. The coordinate
transformation usually leads to a non-linear set of partial differential equations,
that might be very difficult to solve. Generally, there exists no universal way
how to find the solution, and analytic solutions might as well not exist, then the
numerical methods are in need.

We will conduct a quite general discussion about the infinitesimal line element
corresponding to the vortex solutions, which could (and will) reveal us more about
the solution of the system of equations.

Because the Liouville equation allows both signs as we already know, we will
also discuss the case with a negative sign of K, which no longer corresponds to
original Horvathy-Yéra vortex solutions, but it might be a interesting question
to ask, which surfaces correspond to them, if they exist.

4.1 Preliminary study of the vortex solutions

We recall here the conformal factors of the vortex solutions

QN N1
=2 4.1
¢+ (7“) \/KFQN + 17 ( )
where 7 = |z| = VZZ + 2 € [0,00], f € [0,27] and N is a natural number.

Our main goal is to find what surfaces correspond to ¢, for any given N.
We want to find the spatial coordinates x,y,z as functions of 7, #. For the
infinitesimal line element we can write down

di? = da’® + dy? + d2* = ¢%(2,9)(d7? + di*) = ¢ (7)(di* + 72d0%),  (4.2)

where ¢ does not depend on 0 due to radial symmetry. With respect to isother-
mal polar coordinates 7, # the coordinate transformation gives

di* = da(7,0)* + dy(7,0)? + dz(7,0)* = Ou 2+ % 2+ 0z
- o v = |\ or or o7

(&)« (%) + (5)

di*+

d6* 4 2 [axax Loy | 0z 82] drdf, (4.3)

* 07 00 " orodd 07 00
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which leads to a set of equations, what we would like to solve

8.(7) = (2) + (gy) + @) .

OL(F)P* = (%)2 + <gg>2 + @2)2, (4.5)

g n0n vy 020:
oro0  o0rof  Or o
As we announced, the set of — is highly non-linear and there is not a
straightforward procedure to find solutions.
To start, we write the line element including the ¢_:

(4.6)

2N N
()= ——— 4.
0-() = = (@)
and we make a few adjustments
o i N AN2? F2(N-1) -
A" = 63, §)(d5° + dif) = QL) + PdF) = e s (A7 + ) =
subst. :
1 N? dr 9 R=In#N a® ~5 ~2
a @(Wiﬂf [<T> e = o= Nb N (eéie—é)2 <dR +di ) -
2 L=IK :
oty (dR? 4 d2?)  for K >0, 48)
| s% (dR? + dw?)  for K < 0. ‘

In [4] it was shown, that the first line of , for K > 0, is the one of the sphere.
On the other hand, in [9] it is shown that the line element for K < 0 corresponds
to a pseudosphere.

From a local quantity like dl we cannot say much about global properties. We
cannot decide whether the surfaces of K > 0 are simple spheres or even bulges or
spindles. In the case of K < 0 we do not know what type of the pseudospheres
we deal with. Because we do not know the range for R or # (compare and
(3-2))), it can even happen that no actual surface exists. Next we must ask what
the physical/geometrical meaning of N is. We also realize that for N > 2 the
range of azimuthal angle § is N-multiple of [0, 27], but it is not clear what it means
physically (except of N = 1). For this purpose, it seems that the parametrization
is not the most useful. We will face all these questions. For the beginning,
let us discuss the cases K > 0 and K < 0 separately.
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4.2 Positive constant Gaussian curvature

Sphere with the N-fold rotation

For K > 0, one might define new variables based on isothermal coordinates

- - 2
w:v,R:ln(l—l—mm/Qa)_l), (4.9)

then the squared infinitesimal line element is (see [4])

2
a 52 ~2\ _ 52 2 . 2U . 9
ol B (dR + dw ) = du” + a” cos adv . (4.10)

di* =

This is a line element of a surface of revolution (with constant K = 1/a?) with
R(u) = acos(u / a), see (3.4]). We will check whether the parametrization of sphere

really satisfies (4.4 - .

We made an effort to find z,y, z. For R(7) = R(u(R(F))) we can write

R(u) = acos(u/a) — R(T) = acos (2 arccot( i 1)) (4.11)

r2N +1
For any surface of revolution, the z, y-coordinates can be expressed as ({3.1)

z(u,v) = R(u) cosv, y(u,v) = R(u)sinv. (4.12)

Thus, after the change of coordinates (u,v) — (7,0), x, y-coordinates are

2 N N w2
(7, 0) = TR cos(NG), y(F,0) = VRPN 11

We need to be cautious with the z-coordinate. Let us put (4.13)) into (4.5)) and
(4.6)), respectively

AN? 2N 4 PN _ N 92\ >

K AT S KV T 1)2]\72 [sin®(N6) + cos*(NG)| + (aé) . (4.14)

sin(N6).  (4.13)

' - ~ ) ~ ~ 0z 0z
) [— cos(N@) sm(N@) + Sln(NQ) cos(NH)} + oFop
(4.15)
Both equations are obviously satisfied, if and only if the 2- coordmate depends
only on 7, i.e. z = z(7). If we put z(7,0) , y(7,0) of (4.12) into (4.4)), we obtain

the expression for the z-coordinate

) = [ Vo) (R P = %m (o () P =

0=

AN N
K 72N 4+ 1\ 72NV 41

AN? N2 N FN-1 AN fN-1 2
/ K (72N 41)° (\/K (PN +1) VK (72N + 1)2>
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2 1
==~y (4.16)

where dots represent a calculation done with the help of the Wolfram Mathemat-
ica.

The expression ¢2 (7) — [R(7)']* is always non-negative for 7 € [0, +-00], hence
we can enjoy the utmost range [0, +oc|. If we define new radial and angular
coordinates: n = ¥ and & = N 6 respectively, then the spatial coordinates can
be written as

(1,3) = —=—r 5, YD) = s sin®, 2(n) =~

_= = 1n = —

TR 1 S T e 1 T S T TR T2
(4.17)

where 7 € [0, 4+00] and @ € [0, 27rN]
We do one more substitution

L sin ¢, where ¢ € [0,7]. From that we

2+1 =2
et —lsmzqﬁ f—fcos¢ ie. cosd = — -1 sofcos¢— S S
g (772+1) ’ n?+1’ 2(n%+1)
—% + nQ{H' Finally, assuming 1/v/ K = a, we can rewrite the formulae for spatial

coordinates as

T =asingcos®, y=asingsind, z=—acosd — a, (4.18)

where ¢ € [0,7] and & € [0,27N]. This is a parametrization of a full sphere
obtained for arbitrary N, see Fig. From mathematical point of view, the
set of equations is really solved. On the other hand, the range of @ is [0, 27 N],
but this way the geometrical-physical role of N is too implicit. For instance, if
one should construct these surfaces with graphene in a laboratory, they would all
look just as spheres.

Z-1.0

10 05 0ok

X

-1.0

Figure 4.1: Plot of sphere with K = 1 (looks same for arbitrary natural N)
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Radial symmetric Ansatz

With the above in mind, we will try to solve the system of (4.4)-(4.6) with a
different approach, that is, we will use the assumption that the solution has
radial symmetry

x=F,(F )cos@ y—F+( )sin @, z = 2, (7). (4.19)

This Ansatz is almost same as , but here N does not occur in the argument
of sine or cosine. Thus, the range cannot be wider than [0, 27] and it could remedy
the problem with the N-fold rotation discussed above. We can immediately see

that the Ansatz satisfies (4.6]). From (4.5), we get

2N v
F(F) = Fo,(F) = \/?7;;2]3;_’_1

Obviously F;. = NR (compare with (4.11])). This can be inserted into (4.4)), then
we obtain the z-coordinate

2= [VoR () — [FLOPr = [V () = [(Fow (7)) Td (4.21)

and with the help of the Wolfram Mathematica we obtain the z-coordinate as

(4.20)

f\/N2F2N—2 {(f?N + 1)2 — N2 (2N — 1>2]
(PN +1) NVE

2 (F) = h(7), (4.22)

where the function h(7) is

(4.23)

(4.24)

—2F (z arcsinh (U iv_+]\1ffN) |E% 1 Bi) , (4.25)

where E(-,-), F(-,-) are elliptical integrals.

This parametrization appears quite more complicated than (4.16]). We should
also avoid inserting N = 1 into obtained equations and (4.25)). Of course,
it can be calculated separately and we get, as we already know, the sphere. To
emphasize differences between the two parametrizations, let us denote

zz/daﬂﬁ (4.26)

and compare
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e the N-fold rotation parametrization:

2 N ~ 2 N
x:ﬁmcos(]\f@,

O AN? N2 g T N\
G =% (PN +1)2 K [<f2N+ 1) ] ’

where 6 € [0, 27] and 7 € [0, oc],

e (at most) 1-fold rotation parametrization:
ON N X oIN N
rT = ———7—"— _—

ANZ N2 N2 T
G(F) = -
N =K@+ K Kf?NH)] ’

where @ € [0, 2] and the range of 7 (subset of [0, oc]) is still not specified.

In the following paragraphs, we will show how this coordinate redefinition is
reflected in surfaces’ shapes and ranges of 7 for various V.

Ansatz for N =1
For N =1, the spatial coordinates are quite simple

2 r ~ 2 r ~ 2 1
x:—LCOSQ, y:—LsiHQ, 2= (4.27)

VE 7 +1 VK +1 VK™ +1

where 7 € [0, +00], 6 € [0,27]. As we already know this corresponds to a sphere
of radius a, see (4.17) and Fig. |4.1}

Ansatz for N > 2

The formula for the z-coordinate is complicated when N > 2. Here we focus
on N = 2,3, but we do not show the explicit formula for any N, but is full
determined by (4.22)), [4.23] (4.24) and (4.27).

We plot surfaces for N = 2, N = 3, see Figs. 4.3 squared conformal
factors ¢*(Z, 1) corresponding to surfaces, see Figs. We also plot graph 4.5
for G(7) to clearly illustrate that the range of 7 cannot be [0, +oc] as for a full
sphere, but must be [Fiin, Tmax), Where 0 < 7o < Tmax < 400, to get the real
z-coordinate.

The surfaces for N = 2, 3 look like the surfaces of the Bulge type we already
discussed, compare with Fig. [3.2] (a). We now prove that these surfaces we are
finding, for any arbitrary N, are really surfaces of the Bulge type. E|

I According to our previous discussion, the other option can only be the Spindle type of
surfaces, which clearly we do not see here.
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0.0
X =0.5 -1.0

Figure 4.2: Radial symmetric Ansatz of the vortex solution: N =2, K =4,

7 e [1/v3,v3], 0 €0, 27]

Figure 4.3: Radial symmetric Ansatz of the vortex solution: N = 3,K =4,

7 el1/v2,¥72], 6 €0, 27]

Figure 4.4: Graphs of conformal factors for: K =4, 8 € [0, 2x]:
(a) N =2, 7€ [1/V3,V3];
(b) N =3, 7 € [1/2, 92
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N=3
27 N=2
e 1 1 1 1 i | ! h " | 1 1 L | L L L L ;
7 0.5 1.0 1.5 2.0 2.5 3.0

-2
-4/
-6
_3:

Figure 4.5: Graphs of G(7) for N = 2,3

Physical meaning of N

We look at the infinitesimal line element here again, and we would like to under-
stand the physical meaning of N:

AN? p2N-D) ~ subst. : 4 2k ~
di? = di? 4+ 72d6?) = || . =———— dR?
K (f2N+1)2( Pt dg) R=In#N K (e2l +1)? *
- subst. :
AN?2 2R N N 4a’N?tan’ Z -
+ K ( 2]§+1)2d92: %’EarctaneR :4a2d%2+52<%j11112 2:
c K =1/a? (tan % + 1)
~ bst. : -
= 4a*d#* + a* N? sin*(2%)d0* = SHDS = du® + a®N?sin? 2dd (4.28)
u = 2a% a

where 6 € [0, 2] and the range for u/a cannot exceed [0, 7].
This is the infinitesimal line element with R(u) = aN sin(u/a), but we can
perform a transformation u/a — u/a — m/2, which implies

R(u) = aN cos(u/a), (4.29)

which compared to (3.4) gives
¢=aN. (4.30)

With the result we are in the position to fully appreciate the physical role
of N: it plays the role of radius (multiplied by a).

Now we need to find the range of u/a. We know it is at most [—m/2, 7/2] and
comes from the condition G > 0, i.e.

2 ~2N-2 4 [xN—-1/1 _ .2N\72
AN* 7 AN [r (1—r )] >0 (4.31)

K (P”N4+12 K | (/™ +1)2
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From this inequality, we can obtain 7;, and 7., for particular N

N -1 N+1
~rnin = ~rnax =% —. 4.32
" VN1 VN —1 (4.32)

In previous calculations, we defined u/a = 2 arctan (fN ) — /2, which gives

N -1 N +1
(/@) min = 2 arctan ( N+ 1) — g, (/@) max = 2arctan ( ]\71—1) — g
(4.33)
It can be proved that, for any real positive number p, it holds
. (p—1 T
2 arct = — — 4.34
arctan /p = arcsin <p+1>+2’ ( )

which implies

N -1
(u/a)min = 2arctanq/N7+1 — /2 = —arcsin(1/N), (4.35)

N +1
il . m/2 = +arcsin(1/N). (4.36)

(u/a)max = 2arctan

This is a pleasant result, because the range we obtain from and
precisely coincides with the range of the Bulge type of surfaces, as can be seen:
u/r € [—arcsin (r/c) ,arcsin (r/c)] with r = a, see (3.8]).

This completes our proof that indeed the surfaces corresponding to the vortex

solutions are surfaces of the Bulge type, with a clear meaning for the geometrical
role of N.

4.3 Negative Gaussian curvature

Here, we ask ourselves whether the Horvathy-Yéra Ansatz f(z) = 2= applied to
the Liouville equation with K < 0 gives some interesting solution. We recall, that
in [9] we found that the infinitesimal line element for K < 0 corresponds to
a pseudosphere for any given N. There is also the problem with N-fold rotation,
which we want to avoid. Let us start again with the line element and follow same
steps as for (4.28|)

4N? F2N-1) ~ subst. : 4 2 N
di?> = di? + 72dh*) = || . = (dR?

K| (,:21\/_1)2( P4 77do”) B=1niN K (e2f — 1) +

5 subst. :
4N2 2R ~ - 4 2N2t th% ~
+ C 46 =|| % = arctanh e || = 4a2d? + LT g =
K (2R —1)2 2
|K| = 1/&2 (tanh % 1)

= 4a*d%* + a* N? sinh? (2%)d6* = H u=2a% H = du’®+a?N?sinh? %déQ, (4.37)
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The integration is not simple as before, a problem appears for e = 1, but we
will not deal with this now, because in a moment we will show that the problem
is actually there for all values of R, not just for R = 0.

One can immediately recognise, that this is the line element for the elliptical
pseudosphere. On the other hand, we know that the formula for the radial func-
tion of the elliptical pseudosphere is R(u) = csinh (u/r) and the z-coordinate is
not real, if » > ¢ > 0. To satisfy this, it is necessary to allow the N-fold rotation,
which we denied. This is one reason to believe that no surface of revolution with
constant K < 0 for any given N can exist.

Let us verify it independently. We will again assume the Ansatz

= F_(7)cosl, y = F_(¥)sinf, z = z_(F) (4.38)
and following same steps as before we get
2N N
F ()= ——mc— 4.39
(T) |K| 72N _ 1’ ( )

which determines the z-coordinate

o= / VR (F) — [FL(7)2d7 = / J A“[]\;r (;;N__QW - Tﬁf KT?;N_ 1>/rdﬁ
(4.40)

Again we write z_ = [ /G(F)dr , where the function G(7) is

G(7)

AN2 §F2N-2 ANA fN—l(TQN + 1) 2 _ 4N2(1 B N2) F2N-2
B e e e e T e
(4.41)
G is always non-positive, which does not allow the real z-coordinates. There-
fore, the Horvathy-Yéra solutions cannot be extended, at least in this straight-
forward manner, to the negative curvature case.

4.4 Vortex solutions and associated spacetimes

We would like to focus on the spacetimes obtained by taking the product of
flat time and the surfaces we just discovered to be associated with the vortex
solutions.

Case N =1

For simplicity, we begin with N = 1 and specific value of Gaussian curvature
K =4 to get simple form of the spacetime interval

~9
1 9 T

ds® = dt* — di? — df?. 4.42
i L+m22" ~ 1+ (4.42)
If we define R(F) = 15, then R'(7) = % and the spatial line element can be
modified as
(i) dr R R(F) a7 .
di? = ) g dd = e + R (7)d6”.
[(114:;2)2] (14 72)2 (L+72) 1+2 (_W + (1+f2)2)
(4.43)
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Now, we are in the right position to write the spacetime interval as

LAGn N 15

05 = a? — O g0 oy g2 4.44
’ Tronm® O 4449
where we denote E(F) = —li% + % The function E(7) has one global
minimum on [0, 00|: in = 1 and E(Fmm = 1) = —1/2 (equator of the sphere).

The maximum value is: E(Fyax) = 0 for Fuaxs = 0 Or Fuaxe = 00 (both poles of
the sphere). Up to the point 7, = 1 the condition is always satisfied and the
point T, = 1 behaves like a singularity.

Relation to the Lemaitre-Tolman-Bondi spacetime

Now, we would like to point out on a possible connection with spherical symmet-
rical dust solution of the Einstein field equation, usually called Lemaitre- Tolman-
Bondi spacetime [19]. The spacetime interval is

ds? = dt* — <R,)2d2—R2dQQ 4.45
s° = dt 11 2E r ( )

where dQ? = d#* + sin?0dv?, R = R(t,r) > 0, R = dR/dr, E = E(r) > —1/2
(to avoid singularity). Quantities r, § and v are standard radial distance and
spherical angles, respectively. Moreover, the quantity R holds

. 2M
RP=""419F (4.46)

R
where R = dR/dt and M (t) is an arbitrary function. On the other hand, we deal
with static spacetimes, where R = 0 and M = —FER. More information about

the spacetime can be found e.g. in [19].
For N = 1, we found a match, but we would like to find similar match for
arbitrary N. This is the matter of next paragraph.

Generalization for N > 1

For general values of N, K > 0 we write down the spacetime interval

4N2 fQ(Nfl) 4AN?2 72N 5
ds® = dt* — di® — do>. 4.47
i K (1+@V2% 7K (1+N) (4.47)
We will follow same steps as for (4.44). We introduce a new quantity R(7) =

%, and so R'(7) = N % This leads us to a simple result

4RGP . AN

ds? = dt* — K126 7R%)déz, (4.48)

2;2N

where we denote F(7) = — v 132]\,)2. Finally, let us define w = 2?/\/?,
0 = 2N6/V/K and insert them into (4.48). Then we get

R()* N 3
d2:dt2—[7d 2 — R*(w)dv? 4.4
where E(w) = — 2VE/PR 20VE/ g R(w) = —(OVE/2T  For the

2
1H+(@VE/2)2N 1 (1+(@VEK /2)2N)2 T 1+(wVEK/2)2N
1

variable E(w) it holds E(w) € [—1/2,0] for arbitrary N.
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Conclusions

The general research area, where this thesis moves its steps, is the analogue
gravity scenarios stemming from the relativistic-like behaviour of graphene.

In the beginning we introduced experimentally tested fact that graphene with
lower excited electrons is well described by the massless Dirac field theory (in 2+1
dimensions), where the Fermi velocity replaces the speed of light. Since graphene
is effectively described by a quantum field on curved spacetime, provides a good
testing laboratory for studying quantum phenomena in relativistic environments.

We provided a introduction to the Dirac field theory, from its birth as a merge
of quantum mechanics and special relativity through generalization to curved
spacetimes until the discussion about the Weyl symmetry of the Dirac massless
action (for truly curved spacetime).

Then we move forward and ask ourselves what the Weyl symmetry means
for a graphene membrane. In particular, we assumed conformally flat spacetimes
and spacetime metric tensors with a flat-time part. Then the conformal factors,
associated to two-dimensional surfaces, have to satisfy the Liouville equation,
which includes the constant Gaussian curvature, as follows from the condition
that the Cotton tensor vanishes.

In the following chapter, we discussed well known surfaces of revolution with
constant Gaussian curvature, positive (simple sphere, surfaces of the Bulge or
Spindle type) as well as negative (the Beltrami, elliptic and hyperbolic pseu-
dospheres), and corresponding (flat time) spacetimes. We illustrate that the
Beltrami spacetimes is conformal to the Rindler spacetime, similarly the Elliptic
spacetime is conformal to the de Sitter spacetimes and the Hyperbolic spacetime
is conformal to the BTZ black hole spacetime.

Then we studied the non-topological vortex solutions of the Liouville equation
introduced by Horvathy and Yéra. These are given in terms of conformal fac-
tors, ¢(7), depending on a natural number N. We discovered, which surfaces of
positive constant Gaussian curvature correspond to ¢(7) and we found that such
surfaces are surfaces of revolution. One possible solution is the sphere with the
N —fold rotation around the z-axis. From the mathematical point of view, it is an
expected result because arguments of differential geometry, recalled here, say that
if we identify surfaces that differ by a coordinate redefinition, then there is only
one surface with constant K > 0 and it is the sphere. On the other hand, we have
in mind that such configurations might actually be built with graphene in labo-
ratories, giving possibly rise to a Dirac field theory on non-trivial backgrounds.
We showed that corresponding surfaces are surfaces of constant positive Gaussian
curvature of the Bulge type (barrel or ring shaped surfaces, with boundaries), of
varying radii but fixed value of the curvature (the other type of singular surfaces,
the Spindle type, is not found).

We also explain why pseudospheres are not suitable generalization of the
Horvathy-Yéra vortices, at least in our approach.

Finally, we moved towards spacetimes obtained as a product of flat time and
the surfaces we have found, and show that they are formally same as the Lemaitre-
Tolman-Bondi spacetimes with fixed meridian (the corresponding azimuthal angle
is constant). The correspondence requires that R only depends on 7 , as no time
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is considered here, because we deal with static spacetimes. We did not consider
here the interesting problem of the singularities as it deserves a separate study.
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A. Conformal symmetry

This appendix is dedicated to conformal symmetry. We introduce several fun-
damental concepts: infinitesimal conformal transformations and their generators
till the definition of conformal group and conformal algebra in any dimension. We
then show that in n = 2, the conformal algebra is the Witt algebra and its central
extension the Virasoro algebra. Our goal here is to explain concepts mentioned
above in the most natural way and avoid unnecessary mathematical details. This
appendix is important to gain insight to the main topic of this work, although
the link is only indirect.
A key reference for this appendix is [22], but we also used [26] and [27].

A.1 Infinitesimal conformal transformations

To get an intuitive view of things, the conformal transformation can be de-
scribed as a transformation that does preserve angles between any two oriented
curves going through (arbitrary) same point as well as preserve orientation (non-
intersecting curves do not intersect after mapping etc.). On the other hand,
lengths of lines or sizes and curvature of infinitesimal samples can be changed,

see Fig. [A.1]

Figure A.1: Conformal transformation in n = 2, taken from [22]

To be more precise from a mathematical point of view, let M, M’ be two
flat vector spaces and U € M and V' € M’ open subsets. Then the conformal
transformation is a differentiable map & U — V, that £*¢' = Ag, where g is a
general metric tensor defined on M and ¢’ is its image, the scale factor A is a
function of position x.

Let us denote ' = £(z), then the transformation can be expressed in the
following way

/ ! la 3..1b / ! oz’ ax/b cj.,.d — c j..d
g w(@)dz"da” = ¢, (z )% 9l dxtdz® = ANx)geq(x)dxda”, (A.1)
which implies
o' ax/b
I unlt) S o = M)ga() (4.2)
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For next discussion we confine to one space, i.e. M = M’, which implies g = ¢'.
We consider a flat space(time) with a constant metric tensor g,, = 7. The
transformation can be written as

ax/a ax/b
"lab oz¢ Oz

where we prefere a signature of the metric tensor as

= M@)nea, (A-3)

N = diag(1, —1,...). (A.4)

For next discussion, we also restrict ourselves to infinitesimal coordinate trans-
formations. For now, we assume

7' = 2% + €*(x) + O(e?), (A.5)
where €(x) < 1. Then the left-hand side of (A.3)) takes the form

. . O€ 9 b 87617 ) OJe.  Oeq 9
et <5C i Ox¢ + O )> <5d * Ox? +O(E) | = 1ea + oz + ox* +0(<),
(A.6)

where we used the Einstein sum convention for €, = 1,,¢®. From this assumption
we have got the modified form of (A.3)

Oe. N Oeg

oxd  Ox°
Let us denote 9; = 0/dz", where i is a flat index, and K(z) = A(z) — 1 for
simplicity. Then (A.7)) can be rewritten into new form

= (A(@) = 1) Nea- (A7)

Oa€c + 0c€q = K (T)Neq- (A.8)

We would like to determine the function K(x). This can be done by tracing (A.8))
with n
20%, = K(x)n. (A.9)

Now it is enough to just put it back into (A.8))
2
Ogéc + 0c€g = —(0"€4)Nea- (A.10)
n

This result (A.10) is the conformal Killing equation. The scale factor A(z) can
be simply written as

Az)=1+ i@“ea + O(e?). (A.11)

On the base of previous calculation, it can be derived other useful identities.
To get the one useful for us, we apply 0¢ to (A.10) and sum over indices, which
leads to

8d (8“ea) + 8b8bed = gac(ﬁaea)ncd. (A12>
n

Our aim is to combine this result with the conformal Killing equation (A.10). It
can be proved that this relation holds

20,04 (9"¢2) + 0", (i(aaea)ncd> — iacad(aaea). (A.13)
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Contracting by 7°¢ gives us
(n —1)0°0,(0%,) = 0. (A.14)

This result will be important for us in next section, when we discuss conformal
group and algebra of infinitesimal transformation.

A.2 Conformal group and algebra in n > 3

In previous section [A. 1] we derived the condition for an infinitesimal transforma-
tion to be conformal, see . Now we will introduce how conformal group and
algebra appear in n > 3. Before that we introduce general definitions of these
concepts [22].

The conformal group is the group consisting of globally defined, invertible
and finite conformal transformations from the space to itself.

The conformal algebra is the Lie algebra corresponding to the conformal
group.

To study the conformal group and algebra, we need to have better idea how
€ looks like. Looking at it is natural to assume an Ansatz to second order
of x

€ = Qg + bap® + Caper®a®, (A.15)

where a,, bap, Caps, moreover last constant holds c,pe = Cpae-

Now, when we know how the infinitesimal shifts looks like, we can find the
generators of the conformal transformations. Detailed analysis, which follows
from studying and leads to the generators and finite (and not only in-
finitesimal) conformal transformations, can be found in [22], here we only present
results of this study: the generators and finite conformal transformations (transla-
tion, dilation, Lorentz rotation and special conformal transformation (SCT)), see
Tab. [A.1l The dimension of the algebra is equal to the number of all generators
N=n+1l+nn-1)24+n=(n+1)(n+2)/2.

Now we could find all commutators [P,, D], [P,, La| etc., or we can try to
define only one generator J,. The right way is to define

Ja,b = Lab: Jfl,a =

(Pa_Ka)a J,l’o = D, JO,a = (Pa+Ka)- (A16)

DO | —
DO | —

Then J,,, ; with m,q = —1,0,1,...,n — 1 satisfy

[Jm7Q’ JT,S] = i(nmsjqr + anJmS - an‘Jqs - nqumr)- (Al?)

Detailed analysis can be found in [22]. For instance, for n-dimensional Eu-
clidean space RY" the metric tensor is 7,,, = diag(1, —1,—1,...) and the com-
mutation relation is (A.17), for R*"~2 the tensor is 9, = diag(1,1,—1...).
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Table A.1: Table of infinitesimal conformal transformations and corresponding
generators

’ transformations \ \ generators ‘
translation ' = 2%+ a® P, = —i0,
dilation ' = qx® D = —ix®0,
Lorentz rotation | 2/ = M%z? Loy =i (2,0p — 0,)
SCT ' = 172?;95_)(%??:)[1(3:-1) K,=—i <2xaa:b8b — (x- x)@a)

A.3 Conformal group and algebra in n =2

The conformal symmetries in two dimensions is very special case in compari-
son with higher dimensions n > 3. Already the discussion about infinitesimal
conformal transformations, from commutation relations of generators follow, is
completely different. In this section, we will focus on. We restrict only on the
Euclidean metric in a flat space.

Infinitesimal conformal transformations

The condition following from (A.10)) for two-dimensional space is
8061 = —8160, 8060 = 8161. (A18)

On the first look, it points on the fact that is formally same with
the Cauchy-Riemann conditions. This observation let us use the full power of
complex analysis.

For a holomorphic function denoted f(z) of z = Rez + ilmz, it holds

OImf(z)  ORef(2) ORef(z) _ olmf(z) A19
“ORe:  olms dRe: ~ otms 1Y)

Let us define a complex variable z, a complex ¢ and introduce a complex
derivativd'] 9. :

z=2"+iz', e=+ie', 9., =0,—1i0,

0 1

—iz', =€ —ie', 0: =0y +i0. (A.20)
We define f(z) as an image of the infinitesimal conformal transformation:

f(z) = 2/ = z + €(z), while €(z) is expected to be also holomorphic function
(satisfying (A.19 and we assume continuous partial derivatives).

Z=x

A.3.1 Witt algebra

Let us expand the functionE] €(z) in the Laurent series around z = 0. The in-
finitesimal conformal transformation can be expressed as

fR)=2=z24¢€() =2+ en(—2""), (A.21)

meZ

! Using the complex derivative, an equivalent condition to the Cauchy-Riemann conditions
is 0f(2)/0z = 0.

2The function €(z) is generally meromorphic, i.e. it is holomorphic on some open set D,
which has isolated singularities outside this open set.
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fE) =2 =z2+e(z) =2+ > &n(—2""), (A.22)
meZ
where ¢,,, €,, are constant infinitesimal parameters.
To find the generators corresponding to the transformation we follow this way:
We assume function ¢ depending on z and only non-zero m-th term of Laurent
series for simplicity. Then we can write

400 1 ak
AN m+1\ __ - - m+1\k __ . m+l1
) = 66 = ™) = 32 fr0) e = expen (~27410.) }0(2)
(A.23)
where ¢, is a member of group and [,, = —2™"19, is corresponding generator.

For general infinitesimal transformations, the result (A.23)) is generalized into

400 +00
o) = exp{ Z €m (—zm+18z) }qb(z) = exp{ Z emlm}qﬁ(z). (A.24)
For (A.22)) the derivation is same, therefore the m-th generator of both copies
(assuming the complex conjugated operator ,,,) are

ly = —2"10,, lyy = —2"10;. (A.25)

Since of m € Z the number of independent infinitesimal conformal transforma-
tions is infinite, the related algebra has infinite dimension. This is very important
observation for conformal field theory in n = 2 and it has far-reaching conse-
quences (e.g. [22]). These generators are elements of the Witt algebra, special
case of the Lie algebra, with commutation relations

[ley L] = 25720, (2™710,) — 270, (2F710.) = -+ = (b — m)lkym. (A.26)

Moreover, we can introduce the copy of the Witt algebra complex conjugated
generators

[l_k:a l_m] = (k - m)l_k-i-m (A'27>

and the generators of these copies are independent

[l 1] = 0. (A.28)

It is not too demanding to realize, that not all generators are defined everywhere.
For z = 0, we can avoid the singularities only for generators with m > —1. On
the other hand, for z = oo, respectively w = 1/z — 0 (for more details see e.g.
[22]), generators with m < 1 are well defined. This simple analysis implies that
there are only three globally defined generators {l_y,lo,[;} satisfying following
commutation relations

[lo, lil] = $li1, [l, l,1] = 2[0 (A29)

The generators span a sub-algera, which corresponds to the global confor-
mal group, i.e. infinitesimal conformal transformations, whose generators are
{l_1,lp, 11}, creating a sub-algebra of the Witt algebra.
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A.3.2 Virasoro algebra

In this short section, we focus on so-called Virasoro algebra. We would like to
introduce this new algebra in an intuitive way.
As well as the Witt algebra was determined by commutator relations

[lka lm] - (k - m>lk+ma (A.30)

the Virasoro algebra, whose generators we denote as L,,, is determined by com-
mutators

[Li, Lyn] = (k — m) Lyann + ép(k, m). (A.31)

In this context, ¢ is an operator ¢ = cE, where E is a unit matrix and c is a
complex number. The complex number c¢ is called central charge and its value
depends on physical system (1 for free boson, 1/2 for free fermions etc.). Following
commutation relations are obvious

(L, =0, [6,d =0 V¥m e Z. (A.32)

In [22] it is shown how to determine the function p(k,m). From their study, we
can write the commutators

1
(L L] = (k = m) Ly + ﬁék(kQ — 1)dm+k,0- (A.33)

where the numerical factor 1/12 is given by convention.
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B. Spacetimes of interest

In this appendix we discuss important spacetimes relevant to our study: the
Rindler, de Sitter and Banados - Teitelboim - Zanelli (BTZ) black hole spacetimes.
When we discuss the Rindler spacetime, we will discuss the geometry of the
Schwarzschild black hole in the vicinity of its horizon. We have one important
reason to do this. The geometry of the Schwarzschild black hole tends to the
geometry of the Rindler spacetime as we get closer to the horizon. In fact, the
Rindler spacetime shares the near horizon properties of many spacetimes with
horizons, including the cosmological horizon.

Then we will focus on the de Sitter spacetime. To understand it well we will
introduce how the de Sitter spacetime is related to the de Sitter universe, and we
will show some properties of the de Sitter spacetime for dimension n > 2.

Finally, we will briefly introduce a very interesting and surprising solution of
the Einstein field equations with negative cosmological constant A < 0 in n = 3.

In what follows we set the speed of light is 14, = 1 and the gravitational
constant is G = 1.

B.1 Rindler spacetime

Accelerated observer

In this part we remind the problem of the accelerated observer in the Minkowski
spacetime in n = 2 [16] [25] [28]. Let us consider an inertial system with the
Minkowski frame of reference (T',X). There is an observer of rest mast mg subject
to an external constant force f, hence the observer moves with a constant proper
acceleration a = f/myg. Therefore one can write

FT

\/m%—l—fQT?’

where we chose the constant of integration py = 0. Because of X = % 1+ f;T; ,
0
it holds

d mov
f:—p:constép:fT, ie. 0

¥ia 7_1_U2:fT:>v:

(B.1)

mZ 1
XZ—T2:720;§, (B.2)
where we assume that the initial position of the observer is X(T'=0) = ¢ = i
From it is obvious to see that the worldline of the accelerated observer is a
hyperbola with asymptotes X = £T".
It is interesting to write the equation for X and T with respect to the proper
time 7 of the observer

d
T T M oMo S 0 I (g

ﬁ /m(Q) + f2T2 f mo f mo

Therefore the Minkowski coordinates of the observer moving at constant acceler-
ation « are

1 1
T = o sinh (a1), X = o cosh (at). (B.4)
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Let us define a new coordinate system (7, x) such that
T = xsinh (a7), X = xcosh (ar) (B.5)

The coordinates (7,z) are called Rindler coordinates and the metric in these
coordinates is
ds* = o*x*dr* — da? (B.6)

For the observer, moving a constant acceleration «, holds: x = 1/«, then the
Minkowski coordinates are (B.4)) and the metric is

ds® = dr* — da® (B.7)

Such observer who has constant spatial Rindler coordinates and only 7 varies as
time passes [[is called Rindler observer.

Let us introduce a less intuitive, but very useful coordinate system called Lass
coordinates

1 1
T = —esinh (ar), X = —e* cosh (ar) (B.8)
a a

Comparing them to Rindler coordinates, only one coordinate and one constant
are newl
Because of this identity

201
X2 -T% = 5 (B.9)
we obtain from that the relation between a and « for given 7 is
a=ae . (B.10)
The hyperbolic motion means strictly 7 = const. The result implies
X = T'tanh (ar1). (B.11)
Therefore X and T are constantly proportional for 7 = const.
In Lass coordinates the metric takes the form
ds® = e* (d7'2 — dn2) . (B.12)

Especially this coordinate system is very useful when we focus on its associated
spacetime and its relation to te Beltrami spacetime, see . The generalization
to n > 3 is straightforward: the other dimensions, than two involved, are just
spectators, e.g. in Lass coordinates

ds® = e (d7‘2 — an) —day — - —da? . (B.13)

n—1

I This observer is at rest in Rindler coordinates.

2Since the observer is at rest in Rindler coordinates, e.g. the z-position is constant, his
Minkowski coordinates depend only on 7, see . If we choose a different coordinate system,
let it denote by (7,7), then T' = T(7,n), X = X(7,7n) and the spatial coordinate of Rindler
observer is not constant.
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Figure B.1: The right Rindler wedge is a right quadrant of the Minkowski space
constituted by asymptotes: X = +T', where X € [0, +00].

Rindler horizon

As we mentioned above the worldline of the accelerated observer is the hyperbola
with the asymptotes X = £7. It implies that 7 — d+o00 and n = £+oco. These
asymptotes are the horizon, called Rindler horizon and the quadrant of Minkowski
space, where the observer can move and is described by (7,7), is called Rindler
wedge. The observer’s spacetime is called Rindler spacetime. The accelerated
observer will never reach the asymptotes and observe a light signal sent from
outside of the Rindler wedge.

Schwarzschild black hole: Rindler in a neighbourhood of
the event horizon

The Schwarzschild solution describes the metric of curved spacetime outside of
a spherically symmetrical, electrically neutral, spineless body of mass M. Next
assumption is that the cosmological constant is equal to zero A = 0, i.e. one must
solve the reduced Einstein field equations

G =0, (B.14)

where G, is the Einstein tensor [15].
The metric written in the Schwarzschild coordinates for n = 4 is

2M 2M\ !
ds? — (1 _ ) di — (1 - ) dr? — 12d0?, (B.15)
r r
where 7 is the radial coordinate, t is the time coordinate and dQ? = d6?+sin? §d¢?,
where ¢ is the longitude and @ is the colatitude.
Let us focus on a spacetime patch on the horizon [32]. The interval of proper
distance p is related to dr by p = /g,-dr. Then the total proper distance holds

p= /ZGM Vardr = 22GM (r — 2MG). (B.16)
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If we express the metric in p instead of r and define dimensionless time w =
dt/(4GM), we can rewrite the metric as

ds* = p*dw?® — dp® — r(p)*dQ>. (B.17)

Due to the symmetry, we can set § = /2 and focus only on the case dQ2 = d¢.
If the angle ¢ is small, we can write the spatial coordinates = and y as = =
2G'M cos ¢, y = 2G M sin ¢. We have obtained

ds® = p*dw? — dp* — dx® — dy?. (B.18)

The metric is expressed in cylindrical hyperbolic coordinates. If we define T' =
pcoshw, Z = psinhw, we get the Minkowskian form

ds® = dT?* — dZ* — da* — dy*. (B.19)

This coordinate system is the Rindler coordinate system and covers just one
wedge of the Minkowski spacetime, as explained in the previous paragraphs.

B.2 de Sitter spacetime

To start we will introduce the concept of homogeneous and isotropic universe.
The model is based on assumptions, which are supported by observations: The
universe seems to be homogeneous and isotropic on the huge scales. This is known
as the cosmological principle and its consequence is that no point in the universe
is preferred and any observer, staying in any point of the universe, should observe
same things (e.g. local quantities like pressure and density have to be same in all
locations of size like Mch[). From the condition of homogeneity it follows that the
spatial curvature must be same for all points of the manifold] Therefore there are
only three possibilities: a sphere (surface of positive constant curvature), plane
(flat surface) and hyperboloid (surface of negative constant curvature). On the
base of the cosmological principle one can derive the metric of such universe (ho-
mogeneous and isotropic), called Friedmann—Lemaitre—Robertson—Walker metric
(FLRW metric) [15], [19], [31].

FLRW metric

To study the metric of the curved space with constant curvature, let us obtain

the metric of two-dimensional sphere. The sphere can be embedded into three-

dimensional Euclidean space, where the equation of the sphere is

3
r?=r? (B.20)

=1

(2

where r > 0 is the curvature radius.

3We cannot look at the discrete structure of the universe, e.g. the size of the galaxies or
less.

4Otherwise, we would be able to distinguish between each pair of points and the space would
not be homogeneous.
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The line element in such space is
3
di> =" da3, (B.21)
i=1
where z; is ith-component. From (B.20)) it can be directly obtained
3
> widz; = 0. (B.22)
i=1

At this moment, one can express e.g. drs from and put into the equation
for the line element (B.21). From (B.20) we can obtain 23 and put into (B.21)),
which now depends on z1, x5. Because the sphere is two-dimensional object, two
parameters are enough for its description, so we succeeded.

For curved three-dimensional space of constant curvature the idea is the
same. The equation of three-dimensional sphere/pseudosphere embedded into
four-dimensional Euclidean/Minkowski space is

Ty £ xf =a (B.23)
i=1
its element line o is ,
do® = dai £ da? (B.24)
i=1

and from (B.23)) it follows a useful relation
4
i=1

Here '+’ is for the sphere and ’-’ for the pseudosphere, a plays the role of scale
factor. We emphasize that x4 is only an abstract coordinate, which must be
assumed for working in four-dimensional Euclidean spaces.

If we do a standard coordinate transformation from Cartesian coordinates to
spherical coordinates

x1 =rsinfcos ¢, ro =rsinfsing, rs =rcosd (B.26)

and follow same steps, which were done for two-dimensional sphere, we can obtain
the spatial part of the metric. If we add time coordinate called cosmic time
(proper time of cosmic fluid), we will get the FLRW metric

2 2 dr? 2 102
ds* = dt* — ——— —r=dQ”. (B.27)
1-K%
where Q = df? + sin? 0d¢? and K = 1 for positive constant curvature (sphere),
K = 0 for zero curvature (flat space) and K = —1 for negative constant curvature
(hyperboloid).

Let us do a transformation from radial distance r to radial angular distance
(: r = a(, where ( = sink for K = +1, ( = k for K = 0 and { = sinhk for
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K = —1, where k is called comoving distance and it is independent of time. Then
we can rewrite the metric

ds* = dt* — a®(dk* + (*dQ?). (B.28)

Let us make one generalization: We have defined a as the scale factor, which
has to be independent of spatial coordinates, of course. But generally there is
not any reason why it could not be time-dependent. Therefore we assume a
time-dependence of a:

ds* = dt? — a(t)*(dr?* + C2dQ?). (B.29)

However, how can be the scale factor a(t) which describes the dynamics of the
universe determined? To find the scale factor one must put the FLRW metric
into the Einstein field equations

1
R, — §RgW + Ag = 87T, (B.30)

where R, is the Ricci tensor, R is scalar curvature, g,, is the metric, A is the
cosmological constant and 7}, is the Stress—energy tensor of cosmic fluid. The
(B.28)) solves the Einstein equations if a(t) satisfies the Friedmann equation

N2 k8 A
() +h-

o T@T 3 Ty

: (B.31)

where p is the mass density of matter and radiation [15], [33].

In a universe with no matter, neither ordinary, nor dark matter, the dark en-
ergy dominates. If the cosmological constant is positive and the spatial curvature
is zero, then the universe is called de Sitter universe. In this particular case the
scale factor is

a(t) = Vit = eHt (B.32)

where H is the Hubble constant, which is defined as H = a/a. Now we can
rewrite the metric as

ds® = dt* — 2 (dr? + C2dQ?). (B.33)

We have now all the elements to define the de Sitter spacetime as the maxi-
mally symmetric spacetime of constant positive curvature [31]. To find the metric
we can repeat the process, which we have done for two-dimensional sphere. If
we embed the n-dimensional de Sitter spacetime dS,, into the n + 1-dimensional
Minkowski spacetime, then the equation of the hypersurface of the curvature
a > 0 is (we must be careful with the signature, we chose sign = (1, —1,...))

xy— > = —a’ (B.34)
i=1
and the line element is
ds* = dxj — de : (B.35)

The dimension of our universe is n = 4 (time plus three spatial dimensions).
For such universe, let us assume a transformation from abstract coordinates
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(o, x1, T2, T3, 74) to coordinates called flat slicing (t,ys,¥ys,ys), which describe

dsS, [31]

t 1 t 1
zo = asinh — + —r2et/®, 21 = acosh — — —r2e!®, x5 = e/ yy, x5 = /s,
a 2o ! o
(B.36)
where Y7, y2 = 12,
In coordinates (,ys, Y3, y4) the spacetime interval is [31]
ds? = dt* — 2/ dy?, (B.37)

where dy? = 37, dy?.
From comparison of (B.33) and (B.37)) one can easily obtain « = 1/H =

Let us consider another transformation from (xo, L1, %2, T3, x4) to static coor-
dinates (t,r, zo, 23, 24) [31]

. t t
o= Va2 —r2sinh —, r; = vVa? —r2cosh —, vy =129, T3 =123, T4 =724,
o e

(B.38)
where r is the radial coordinate, z; gives the standard embedding the two-
dimensional sphere in R3. The metric in the static coordinates is

2 r? 2 r? ! 2 2 112
ds*=|1— = |dt"— (1 —— | dr®—r=dQ-. (B.39)

o? o’

Let us return to the result « = 1/H = /3/A. This relation between a and A,
valid for n = 4, can be obtained from the relation for general dimension n (e.g.

[31)

(n—1)(n—2)
A= . B.40
50,2 (B.40)
Valid for n > 2. The line element of space with its dimension n is
2 r? 2 r2\ " 2 2 102
ds = 11— ? dt* — (1 — E dre —r dQn—Q' (B41)

From (B.39) it is easy to see that there is a horizon for 75, = a. This makes
sense, because & = 1/H, so 1 = Hry,.. This is Hubble’s law v = Hr, where v
is the recessional velocity, in this particular case v = 1. If any object lies in a
distance r > rp,,, then the observer, who stands at the origin, can never see the
object.

B.3 BTZ black hole

The BTZ black hole is a solution of the Einstein equations, including the cos-
mological constant A, in (241) dimensions [29], [30]. The BTZ black hole in
”Schwarzschild” coordinates is described by the metric [30]

ds? = [2d? — [~2dR* — F*(N'dt + db)?, (B-42)
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where —oo <t < 00,0 < Z < 00,0 <60 <27 and

R 1/2 , J
f= (—M++> NUB) = —5 . ] < ML (B.43)

where M and J are constants of integration and their physical interpretations are
the mass and the angular momentum, respectively.
It is straightforward to check that this metric satisfies the Einstein equations
in (2+1) dimensions
1 1
R;U/ - §Rguu = ﬁgum (B44>

where A = —1/I? is the cosmological constant. The metric is stationary
and axially symmetric, with Killing vectors 0, and dy and there are no other
symmetries. Generally, in general relativity in (2+1) dimensions there are no
Newtonian limit or propagating degrees of freedom [30].

The line element of BTZ black hole with zero angular momentum is (see also

31) 1
R B B
dspry = (zz - M) dt* — (zz — M) dR* — #*d9*. (B.45)
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