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Introduction
Almost all theories in physics contain constants. Most of these constants cannot
be determined from the theory itself, meaning that the theory is somewhat more
general than the laws of nature it describes. The theory may place some restric-
tions on these constants, but their exact value cannot usually be found from it.
Thanks to experiments, we can try to extract these values. The situation gets
more difficult, when the relation to experimental observables is non-trivial. In
such case, one may view these constants as parameters of the theory.

Thankfully, it is still possible to extract limitations of the parameters by using
statistical methods. We may not know the exact values, but we may know which
part of that multidimensional parameter space can be excluded.

The frequentistic approach is based on the idea of using infinite number of
measurements and finding the limit of its relative frequency to calculate the ’real’
value of an unknown quantity. The most common method used is finding the
minimum of χ2 distribution (fitting procedure). But this method does have a
downside, because it is harder to incorporate assumptions for parameters into
those calculations. Often the frequentistic approach uses assumptions such as
uniform distributions of unknown variables, but that may not always be the best
approximation.

On the other hand, Bayesian approach allows us to use a priori assumptions
and derive our results from them. One of the advantages of Bayesian approach
over frequentistic one is that it is easier to incorporate assumptions for parame-
ters. Bayesian approach can also be used to assign probabilities to limited occu-
rance cases, something the frequentistic approach struggles with.

Effective field theories have the form of an expansion at low energies. Chi-
ral perturbation theory is an effective field theory of quantum chromodynamics,
which has relatively slow convergence in the case when three light quark flavors
are considered. One way of dealing with the higher order remainders, which
will be used in this work, is to resum them and use the Bayesian approach to
implement a statistical estimate of their influence.

In the first chapter I will discuss the basics of probability theory and show
how naturally we can obtain the Bayes’ theorem. Therein I will also discuss the
prior, its importance and different ways to think about it.

In the second chapter, as a simple demonstration, I will use a few examples
of use of the Bayes’ theorem.

In the third chapter I will introduce the theory behind the calculations in
the fourth chapter. I will discuss some of the properties of strong interactions
mostly from a group theory point of view, explain the basics of effective chiral
perturbation theory and introduce the decay constants of the light pseudoscalar
meson octet.

Then in the fourth chapter I will use the Bayesian approach and apply it on a
sector of decay constants Fπ,FK ,Fη. I will use two different values of Fη extracted
from experiments and obtain restrictions on the parameters of the theory. These
restrictions will then be compared.
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1. Probability theory
1.1 Introduction to Bayesian approach
Let’s formulate the basics of the Bayesian approach (for more information see
D’Agostini [1999]). First, we can start by postulating the three axioms of prob-
ability.

• The probability of an event is a real number between 0 and 1.

P (E) ∈< 0,1 > , ∀E ∈ F, (1.1)
where E is an event in F event space of all possible events.

• The probability of the event space is 1.

P (F ) = 1 (1.2)

• For E1, E2,... a countable sequence of disjoint sets

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei) (1.3)

We are searching for a formula that would let us calculate the probability of A
under the assumption of B (written as P (A|B)). The probability of intersection
of two sets can be written as P (A ∪ B) = P (A|B)P (B), where P (A|B) is the
probability of "if B, then A". Let A,B be subsets of Ω event space. Then

P (A|B)P (B) = P (A ∩ B) = P (B|A)P (A). (1.4)

By dividing the whole equation by P(B) we get the Bayes’ theorem

P (A|B) = P (B|A)P (A)
P (B) , (1.5)

where P(A) is called prior. P (A|B) is sometimes referred to as posterior proba-
bility. Here we can use a partition of one - separating a set into finite number of
subsets that are all disjoint with each other. This can be written in the form of

P (A) =
N∑

n=1
P (A|Bn)P (Bn). (1.6)

Using this on Bayes’ theorem, one can calculate P(B), which is often very hard
to do. With the partition of one used on (1.5) we get

P (A|B) = P (B|A)P (A)∑N
n=1 P (B|An)P (An)

. (1.7)

Now we are capable of calculating a probability for a single assumption. Should
we continue adding assumptions, we’d get the formula for a probability of A under
the assumptions of Bn

P (A|B1 ∧ B2... ∧ Bn) = P (A)
n∏

i=1

P (Bi|A)
P (Bi)

. (1.8)
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The Bayes’ formula (1.7) can also be generalized into an integral form for
continuous sets

P (x|y) = P (y|x)P (x)∫
Ω P (y|x)P (x)dx

. (1.9)

1.2 More on the prior
As mentioned earlier, the Bayesian approach uses a priori assumptions, also called
priors. It is essentially our initial prediction.

For example, consider a measurement of an observable. One can then wonder
if the data prove their theory or if they are incompatible. Therefore one wants
to know the probability of the theory being true given measured data. They use
an initial prediction, often total uncertainty and look at posterior probability,
mainly to see how it changed from their prior. If it gets bigger, it means that
their data somewhat fit the theory, hence the rise in probability. If on the other
hand the posterior probability is lower than their prior probability, it means the
data do not fit the theory well.

This prior is very commonly thought of as a function depending only on the
theory, but an interesting aspect of the Bayesian approach is that one can also
change their prior (meaning they change their hypothesis) and they might see
different results. This way one can explore the consequences of various assump-
tions.

It might be tempting to think of the prior as something "subjective" and
therefore "not scientific enough", but this can also be its forte. If all people had
the same knowledge of the system and the same assumptions, they’d inevitably
get the same results. The subjective part is the fact that different people have
different levels of knowledge of the problem and can have different assumptions.

1.3 About conditional probability
From (1.5) one can easily see that P (A|B) = P (B|A) only if P (A) = P (B).
However, what is obvious from an equation might be easier to overlook in real
life. For example, consider an experiment of n measurements with the result

µ = x ± σ√
n

, (1.10)

µ being the real value, x being the arithmetic average and σ the experimental
uncertainty. Some people might interpret this as

P (x − σ√
n

≤ µ ≤ x + σ√
n

) = 68%. (1.11)

But conventional statistics only says

P (µ − σ√
n

≤ X ≤ µ + σ√
n

) = 68%. (1.12)

The capital letters serve to distinguish between those two cases - capital letter
variables are random variables of which the small letters are a realization. In the
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first case, µ is treated as a variable with x and σ being "constant". Which isn’t
true, only the measurements are supposed to carry an error, not the object of our
measurement itself.

This fact is commonly overlooked, because we often encounter cases, where
such an inversion is in fact possible. However, it might be due to our implicit
assumptions, such as all unknown variables being uniformly distributed.

1.4 Bayesian approach in physics
As seen in previous section, we may often need to "invert" our probability. As
results of experiments in physics are often formulated in terms of normal distri-
butions, in the case of k independent experiments 1.12 can be written as

P (data|true) =
∏
k

1
σk

√
2π

exp
[
−(Oexp

k − Otrue
k )2

2σ2
k

]
, (1.13)

where observables Otrue
k are the true values of observables with experimental

uncertainties σk. If we have a theory, which we assume can reconstruct our true
values using some true values of parameters, we may rewrite this equation into

P (data|Xi) =
∏
k

1
σk

√
2π

exp
[
−(Oexp

k − Otheory
k (Xi))2

2σ2
k

]
. (1.14)

P (data|Xi) is the probability density of obtaining observed values of the observ-
ables Oexp

k with Xi as the true values of the parameters.
And finally, now we can use the Bayes’ theorem (1.8) to invert the probability

to obtain P (Xi|data) - the probability of particular values of parameters Xi being
true given the experimental data.
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2. Simple examples of use

2.1 Drug test

Suppose there is a drug test that yields positive results if a drug user is tested
with 99% efficiency ((P (+|user) = 0.99)) and that there is a 99% probability that
it yields negative test results for non-drug users (P (−|non − user) = 0.99). Now
assuming that there is a drug user in every one hundred people (P (user) = 0.01),
the possibility of being a drug user if the test is positive is

P (user|+) = P (+|user)P (user)
P (+)

= P (+|user)P (user)
P (+|user)P (user) + P (+|non − user)P (non − user)

= 0.99 ∗ 0.01
0.99 ∗ 0.01 + 0.01 ∗ 0.99

= 0.5 (2.1)

How interesting! This example actually shows us that the test isn’t that much
efficient. The reason for this is that the probability of being a drug user is too
low when compared to the number of non-users and the sensitivity of the test
is nowhere near enough. But still, we didn’t know anything about that person,
before he took the test. We assumed there was a 1% chance that he was a drug
user and now we know that with 50% certainty. If we changed those numbers
a bit, i.e. changed P (user) = P (non − user) = 0.5, the probability of being a
drug user if the test comes positive would actually change to 99%. This shows
how big of an influence the a priori information has. It also shows us what the
probability would be if we tested him a second time.

2.2 Weather wizard

Say a man comes to a village claiming that he can control the weather and
summon rain for a price. The village lies in an arid area and it rains only ten
days a year (with each day having the same chance of being a rainy day). The
village is split in half with half being skeptic, who give the weather wizard 1%
that he is the real deal (Pskeptic(wizard) = 0.01), and the other half being unsure
what to believe (Punsure = 0.5). Obviously, both groups consider him capable of
summoning up the storm if he truly was a wizard (P (rain|wizard) = 1). The
next day rains. The probabilities these two groups give the weather wizard that
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he can do, what he advertised, are

Pskeptics(wizard|rain) = P (rain|wizard)P (wizard)
P (rain|wizard)P (wizard) + P (rain|con)P (con)

= 1 ∗ 0.01
1 ∗ 0.01 + 10

365 ∗ 0.99
.= 0.2694

Punsure(wizard|rain) = 1 ∗ 0.5
1 ∗ 0.5 + 10

365 ∗ 0.5
.= 0.9733 (2.2)

If he promises to summon a storm again and he once again delivers, the proba-
bilities raise to

Pskeptics(wizard|1 ∧ 2) = P (2|wizard)P (wizard|1)
P (2|wizard)P (wizard|1) + P (2|con)P (con|1)

= 1 ∗ 0.2694
1 ∗ 0.2694 + 10

365 ∗ 0.7306
.= 0.9308

Punsure(wizard|1 ∧ 2) = 1 ∗ 0.9733
1 ∗ 0.9733 + 10

365 ∗ 0.0267
.= 0.9992 (2.3)

As you can see all it takes to become a shaman in an arid area is to predict the
weather correctly 2 times in a row. But this shows us an interesting phenomenon
- if we measure something many times, our a priori prediction doesn’t matter.
Both probabilities converge to the same number.
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3. Physics theory

3.1 Quantum chromodynamics and its symme-
tries

Quantum chromodynamics (QCD) is a theory of strong interactions - interactions
between quarks and gluons (for more information see Donoghue et al. [1992],
structure inspired by Kolesár [2008]). An important fact about this theory is
that it is based on local gauge invariance (meaning it remains invariant after
transformations of a local Lie group). The existence of such invariant transfor-
mation means that there exists a time invariant. In this case it’s called color.
This symmetry was the basis upon which the theory was built. The symmetry
of QCD is SU(3), which stands for special unitary 3 × 3 matrices, meaning the
theory has a group of matrices with determinant equal to 1 "hidden" in it. The
full Langrangian density, which honors the aforementioned restriction, can be
written as

LQCD = −1
4Ga

µνGaµν + q (iγµDµ − M) q, (3.1)

where γµ are Dirac matrices, Gµν is the antisymmetric gluon field tensor

Gµν = ∂µGν − ∂νGµ + ig[Gµ,Gν ]Gµ = 1
2λaGa

µ. (3.2)

Ga
µ are the gluon fields, a their color index, λa are the Gell-Mann matrices and q

is the quark vector

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
d
s
c
b
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

M is the quark mass matrix and Dµ is the covariant derivative

Dµ = ∂µ + igGµ, (3.4)

with g being the strong interaction coupling constant.
The coupling constant g has a very interesting property - it decreases with

scale. This unique effect known as asymptotic freedom has grave effect on pertur-
bation theory, since on low scales the expansion fails. On the other hand, in the
high energy region the quarks can essentially be thought of as free particles inside
the hadrons. To have a look at the low energy region, one has to examine more
closely the symmetries of this theory. In (3.1) there is one additional symmetry -
U(1) for the quark vector. This means that if we transform q → eiφq, the form of
the Langrangian remains the same. Emma Noether’s theorem published in 1918
is one of the most important mathematical theorems applicable for physics. It
can be applied every time the system exhibits some sort of continuous symmetry.
It states(Thompson [1994]):
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If a system has a continuous symmetry property, then there are corresponding
quantities whose values are conserved in time.
From the U(1) symmetry we get the baryon number conservation.

It is interesting to notice that different quarks differ only in their masses.
Thus one could, if the differences between their masses were small, construct
an additional approximate symmetry SU(Nf ), with Nf denoting the different
number of quarks we "consider of the same mass". Suppose we consider the first
three quarks in mass (u, d and s) to be such. From this one gets an additional
SU(3) approximate symmetry and (3.1) can be rewritten as

LQCD = L0 + Lsym.br. (3.5)

L0 = −1
4Ga

µνGaµν + iqγmuDµq − 1
3qMu+d+sq + Lheavyquarks (3.6)

Lsym.br. = −1
3(mu − md)(uu − dd) − 1

3(mu − ms)(uu − ss) −

−1
3(md − ms)(dd − ss), (3.7)

with q now denoting only the light mass quarks and Mu+d+s being an identity
matrix multiplied by the sum of light quark masses. Now it is obvious that
the Langrangian L′ is invariant under unitary transformation of the light quark
vector. The symmetry breaking part would vanish if the masses of these 3 quarks
were identical.

The mass of d quarks is roughly 4.7 MeV, u’s is roughly 2.2 MeV and the
mass of s being roughly 95 MeV, taken from Tanabashi et al. [2018]. As one can
see, the mass difference between u and d quarks is very small and s’s mass is only
ten times bigger, which is still relatively small compared to typical scale of strong
interactions (usually some GeVs, the energies of hadrons). Therefore it is natural
to extend the symmetry to all three of these quarks. Using this approach, we get
the isospin symmetry due to u and d being of similar mass and the eightfold way
once we include s.

Now, were not only the differences but the masses themselves small too when
compared to the scale of the theory, the "left" and "right" components of the quark
fields may emerge - two independent SU(3) symmetries with their own generators.
The resulting symmetry would be SU(Nf )L × SU(Nf )R × U(1)L × U(1)R and
Lagrangian density could be written as

LQCD = L0 + Lsym.br. (3.8)

L0 = −1
4Ga

µνGaµ + iqLγmuDµqL + iqRγmuDµqR + Lheavyquarks (3.9)

Lsym.br. = −qRMqL + h.c., (3.10)

where qL,R = 1
2 (1 ∓ γ5q).

Since our groups are Lie groups, they can be parametrized by using unitary
transformations

U = e−i va

2 λa

, (3.11)
where va are real parameters and λa are Pauli matrices for SU(2) or Gell-Mann
matrices for SU(3) (see Georgi [1999] for more information). These generators
obey the commutation relations

[λa,λb] =
∑

c

ifabcλc. (3.12)
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With the SU(Nf )L × SU(Nf )R symmetry, we can parametrize them as

UL×R = e−iva
LLa−iva

RRa

. (3.13)

Now we may choose a different parametrization, with one group of generators
being symmetrical under L-R exchange and one being antisymmetrical

Sa = La + Ra (3.14)
Aa = Ra − La, (3.15)

the commutation relations change accordingly[
Sa,Sb

]
=
∑

c

ifabcSc (3.16)[
Aa,Ab

]
=
∑

c

ifabcAc (3.17)[
Sa,Ab

]
=
∑

c

ifabcAc. (3.18)

If we take a closer look at the first relation, we may notice that the symmetrical
part forms a subalgebra. We once again get the eightfold way symmetry for SU(3)
or isospin symmetry for SU(2).

3.2 Spontaneous symmetry breaking
Let Qa be a generator of symmetry that commutes with Hamiltonian. Now let’s
see what that can tell us about the spectrum of Hamiltonian:

H|n > = En|n > , Qa|n >= |n′ > (3.19)
En′ |n′ > = H|n′ > = HQa|n > = QaH|n > = En|n > . (3.20)

This means that we would see a degenerate multiplet of energy eigenstates. Usu-
ally in quantum field theory the lowest state, called vacuum, is unique. Which
means that our generators should annihilate it. But if there were such generators
that Qa|0 ≯= 0, these states should have energy equal to the physical ground
state. Therefore the ground state would not be symmetrical under the whole
symmetry group and the corresponding states in the excited multiplets obtained
by the perturbative expansion around vacuum would be missing. The Goldstone
theorem (Goldstone et al. [1962]) states that for every symmetry breaking genera-
tor there exists one independent state of zero energy. These states are observable
as massless particles with spin 0 called Goldstone bosons.

This symmetry breaking shows us the pattern of hadron multiplets. For SU(3)
symmetry, we may observe 8 pseudoscalar Goldstone bosons - octet of pions,
kaons and eta with small masses.

So, we started from

SU(Nf )L × SU(Nf )R × U(1)L × U(1)R, (3.21)

transformed it into

SU(Nf )S × SU(Nf )A × U(1)S × U(1)A (3.22)
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and found out that there is spontaneous symmetry breaking due to subgroup
SU(Nf )A. We also lose the U(1)A, because it fails to be a symmetry on quantum
level due to the Abelian anomaly. Therefore our symmetry group is reduced to

G = SU(3)S × U(1)S (3.23)

As the Goldstone theorem states, for each generator Qa for which exists an
operator Oa such that

< 0|[Qa,Oa]|0 ≯= 0, (3.24)

there must be one independent massless state |GB > which

< 0|Ja,A
0 (0)|GB >< GB|Oa|0 ≯= 0, (3.25)

where Ja,A
µ (0) = 1

2qγµγ5λ
aq is the time invariant vector current of Lagrangian.

For chiral symmetry, we get

< 0|Ja,A
µ (x)|GBb(p) >= ipµNpFGBe−ipxδab (3.26)

as a consequence of Lorentz invariance and linear realization of SU(3). Now if
we identify those Goldstone bosons with our octet of pseudoscalar mesons, our
FGB become the decay constants. As is well known, decay constants are the form
factors, which occur in weak decays of these particles.

3.3 Effective Lagrangian
Very interesting (and also very important) is the idea of an effective La-

grangian formulated by Weinberg [1979]. It is based on the principle of finding
the dynamical degrees of freedom that respect certain symmetries and then con-
structing the Lagrangian from them. The word dynamical was used to show that
some degrees of freedom can change with scale. This means that such Lagrangian
only works on some scales, below a certain boundary. While it is ineffective above
that boundary, below it we can use certain benefits, which can make the theory
much easier to work with.

To ensure that the expansion coefficients, called the low energy coupling con-
stants, aren’t energy dependent, it is necessary to construct the effective La-
grangian as a low energy expansion. In the case of QCD, one needs to make a
parallel expansion in quark masses as well. Such a low energy representation of
QCD is called chiral perturbation theory.

An important thing is that Lorentz invariance permits only even numbered
derivatives of the expansion. Written in the form of equation

Leff = L(2) + L(4) + L(6) + ... (3.27)

For my calculations, assuming SU(3) symmetry, I will use the standard three
flavor effective Lagrangian from Gasser and Leutwyler [1985]

L(2) = F 2
0

4 Tr[DµUDµU+ +
(
U+χ + χ+U

)
] (3.28)

L(4) = L(4)(L1,..,L10) + L(4)
W Z (3.29)
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and for curiosity
L(6) = L(6)(C1,..,C90) + L(6)

W Z(CW
1 ,..,CW

23 ), (3.30)
where U(x) and χ are for the purpose of this work

U(x) = e
i

F0
φa(x)λa

(3.31)
χ = 2B0M. (3.32)

Dµ are covariant derivatives, which could possibly allow us to incorporate EM or
weak interactions. The non-anomalous part of L(4) is

L(4)(L1,..,L10) = L1Tr[DµU+DµU ]2 + L2Tr[DµU+DνU ]Tr[DµU+DνU ]+
+L3Tr[DµU+DµUDνU+DνU ]+
+L4Tr[DµU+DµU ]Tr[χ+U + χU+]+
+L5Tr[DµU+DµU(χ+U + U+χ)] + L6Tr[χ+U + χU+]2+
+L7Tr[χ+U − χU+]2 + L8Tr[χ+Uχ+U + χU+χU+]−
−iL9Tr[F µν

R DµUDνU+ + F µν
L DµU+DνU ]+

+L10Tr[U+F µν
R UF L

µν ], (3.33)
with

F µν
R,L = ∂µ(vν ± aν) − ∂ν(vµ ± aµ) − i [vµ ± aµ,vν ± aν ] (3.34)

vµ = 1
2va

µλa, aµ = 1
2aa

µλa, (3.35)

vµ and aµ taken from (3.13),(3.14) and (3.15).
As one can see, if one tries to perform calculations using this effective La-

grangian, the next-to-leading order gives us 10 coupling constants and the next-
to-next-to leading order 90! Therefore to be able to use this effective Lagrangian,
a method to estimate of that many coefficients is needed, because the series
doesn’t converge fast enough and even the NNLO considerably contributes.

3.4 Resummed approach
The idea of resummed approach comes from Descotes-Genon et al. [2004].

When dealing with a perturbative expansion, very often one takes the first few
series members and says that the rest are too small to contribute in a meaningful
way. But what if they are not?

For example, let’s assume we have a function of 3 variables whose partial
derivations aren’t in general interchangeable. That means the zeroth term is a
constant, the first one has 3 members, the second has 9, the third 27. Not only
does the number of coefficients in the expansion grow rapidly, it may also prove
more and more difficult to calculate the coefficients of higher orders.

The resummed approach’s idea is to resum the remaining members of the
series and not neglect it, but calculate with them from then on as one variable
called the higher order remainder. And then one has to calculate with that
remainder algebraically, without reordering the expansion.

The resummed approach thus yields on calculating the higher orders directly,
but assumes the sum of those higher orders is equal to the observable itself times
an unknown variable. This remainder should of course amount to the difference
between the physical value and those few first expansion members. One can then
place restrictions on this remainder, when calculating the original observable.
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3.5 Decay constant expansions
The decay constants were introduced in (3.26). Now I will show their expan-

sions using the resummed approach (taken from Kolesar and Novotny [2008]).

F 2
π = F 2

0 (1 − 4µπ − 2µK) + 16B0m̂(L4(r + 2) + L5) + ∆(4)
Fπ

(3.36)

F 2
K = F 2

0 (1 − 3
2µπ − 3µK − 3

2µη)+

+16B0m̂(L4(r + 2) + 1
2L5(r + 2)) + ∆(4)

FK
(3.37)

F 2
η = F 2

0 (1 − 6µK) + 16B0m̂(L4(r + 2) + 1
3L5(2r + 1)) + ∆(4)

Fη
(3.38)

In these equations, ∆(4)
FGB

is the higher order remainder of the observable F 2
GB,

m̂ = (mu + md)
2 (3.39)

µi = m2
i

32π2F 2
0

log
(

m2
i

µ2

)
(3.40)

with regularization scale µ and leading order masses
m2

π = 2B0m̂ (3.41)
m2

K = B0m̂(1 + r) (3.42)

m2
η = 2

3B0m̂(1 + 2r). (3.43)

Then
r = ms

m̂
(3.44)

is the mass ratio of the strange to light quarks, and

L4 = − 1
128π2 log

(
µ

mρ

)
+ Lr

4 (3.45)

L5 = − 3
128π2 log

(
µ

mρ

)
+ Lr

5. (3.46)

mρ sets the scale for Lr
i .

F 2
0 , B0, Lr

4, Lr
5 are the low energy coupling constants of the theory. It is also

reasonable to define
Y = 2m̂B0

M2
π

, (3.47)

which is the ratio of the squared pion mass at the leading order to its squared
physical value. The latest values from Bijnens and Ecker [2014] obtained by
standard CHPT at NNLO (with renormalization scale mρ = 0.77GeV ) are in the
following table

variable BE14 free fit
F0 71 MeV 64 MeV

Lr
4 × 103 ≡ 0.3 0.76(18)

Lr
5 × 103 1.01(06) 0.50(07)

Y 1.055 0.937

Table 3.1: Values of low energy constants (Bijnens and Ecker [2014])
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The fit BE14 preferred by the authors fixes Lr
4 by hand, because low values of

this constant are in accordance with large Nc. By fixing it, the authors explicitly
implemented their assumptions, which in Bayesian approach could be more nat-
urally achieved by using a prior. As we can see the difference in Lr

5 that stems
from these two different assumptions is much larger than the error from the fit
would suggest.

I will use two values of Fη extracted from experiments. The first being

Fη = (1.18 ± 0.02)Fπ = (108.8 ± 1.8) MeV (3.48)

(taken from Escribano et al. [2016]) and the other one

Fη = (1.38 ± 0.05)Fπ = (127.3 ± 4.6) MeV (3.49)

(taken from Escribano and Frere [2005]). I identify the value of Fη with F 8
η

similarly to Kolesar and Novotny [2008].
These two values of Fη’s are obviously incompatible and thus it could be

interesting to see how they compare with my theoretical prediction and whether
they will give different results for the extraction of the theory’s parameters. It
should also be noted that both of these results come from Escribano et al. with
a ten year gap, it may therefore be reasonable to assume that the lower value is
more accurate. The value from year 2016 received new data from BESIII and
the authors themselves say that "Moreover, they allowed us to report the most
up-to-date results for slope, curvature, and third derivative of the η′TFF, and to
update the η-η′ mixing parameters in a mixing scheme compatible with the most
general large-Nc ChPT scenario at NLO, thus superseding the values obtained in
our previous works..." (Escribano et al. [2016]).

Kolesar and Novotny [2008] also dealt with Fη decay constant in resummed
chiral perturbation theory. Their result for Fη obtained by neglecting the depen-
dence on Y and only adding the uncertainties in ∆(4)

Fi
in squares to calculate the

error gave them the result

Fη = (1.3 ± 0.1)Fπ = (120 ± 10)MeV. (3.50)

The authors suggest that "Lr
5 < 1 × 10−3 and r ∼ 25 implies Y > 1.2,

∆(4)
Fη

− ∆(4)
Fπ

> 0.2F 2
η " using (3.49), so it may be interesting to see how it will

compare with my results improved by the Bayesian statistical approach.

3.6 Parameter restrictions (priors)
I placed a restriction on Y - it can only range from 0 to 2.5. This restriction

comes from Descotes-Genon et al. [2004] and all of Y ’s components being positive.
This restriction’s top boundary depends on the remainders. I will consider Y to
be uniformly distributed on this interval.

In our calculations, I will consider the remainders ∆(4)
Fi

to be equal to normal
distributions with FWHM equal to 0.1F 2

i (estimation inspired by Descotes-Genon
et al. [2004]).

I will consider Lr
5 to be uniformly distributed in the interval of < 0,2×10−3 >.

As the largest value in Bijnens and Ecker [2014] was one half of the top boundary,
it doesn’t seem that unreasonably large. This interval also includes older values
of Lr

5.
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4. Results
4.1 One equation

First, I combined (3.36),(3.37) and (3.38) by algebraically substituting for L4
and L5 from the first two equations, giving us the equation from Kolesar and
Novotny [2008]

F 2
η = 1

3[4F 2
K − F 2

π + M2
πY

16π2 (log m2
π

m2
K

+ (2r + 1) log
m2

η

m2
K

)+

+3∆(4)
Fη

− 4∆(4)
FK

+ ∆(4)
Fπ

] (4.1)

I used Monte Carlo to calculate Fη by randomly generating 100000 theoretical
predictions of Fη’s. I used the following values for the parameters - the value of
r is from Aoki et al. [2017] and Mπ, FK , Fπ are from Tanabashi et al. [2018].

variable value σ
r 27.43 0.31

Mπ 139.57061 MeV 0.00024 MeV
FK 110.03 MeV 0.28 MeV
Fπ 92.21 MeV 0.15 MeV

∆(4)
FK

0 0.1F 2
K

∆(4)
Fπ

0 0.1F 2
π

Table 4.1: Parameter values

Using these values, I got the probability distribution for Fη shown in Fig.4.1.
The following mean and standard deviation for Fη were obtained

µ = 118.3 MeV, (4.2)
σ = 9.4 MeV. (4.3)

Comparing that with our experimental data, (108.81 ± 1.84) MeV (3.48) and
(127.26 ± 4.61) MeV (3.49), one may notice that it is in between - both values
are safely within two sigma confidence level. Also, generating Fη statistically
allowed me to improve the precision of the result of Kolesar and Novotny [2008]
120 ± 10MeV.

Then I calculated Fη as a function of the parameter Y, comparing it with
experimental values of Fη’s in Fig.4.2. It is obvious from Fig.4.2 that there isn’t
much we can tell about which range of Y ’s does not fit well with our predictions.
This means that our prediction is compatible with experimental values in the
whole range of Y . This can be better seen by calculating the probability depen-
dence on Y. Using (1.9) and (1.14), I got the Bayesian probability function of Y
for how Fη from Monte Carlo fits the experimental data shown in Fig.4.3. As
one can see, larger values of Y ’s are slightly more compatible for Fη = 1.38Fπ

and smaller ones are slightly more compatible for Fη = 1.18Fπ. But we cannot
put any limitations on Y, because the variation in the probability distribution for
different values of Y is rather small.
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Figure 4.1: Theoretical predictions for Fη generated by Monte Carlo with Gaus-
sian fit, normalized on 0.1 bins

Figure 4.2: Comparison of experimental F exp
η ’s (blue and red lines) with the

theoretical prediction of Fη (black lines) with dashed lines being one σ confidence
levels
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Figure 4.3: Probability of our predictions fitting the experimental data, normal-
ized on bins of 0.005

As a test to see how well we can reconstruct these two experimental values, I
calculated the minimum of χ2 as a function of Y :

χ2(Y ) =
(F th

η (Y ) − F exp
η (Y ))2

σ2 . (4.4)

The graph Fig.4.4 should essentially show us how close we can get with fitting by
Monte Carlo in the case of F (1.38)

η . As can be seen in Fig.4.4, we have no problem
to fit our function on the whole scale of Y , so all of our calculations have solid
foundations and those performed calculations are valid.
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Figure 4.4: Minimum χ2 for Fη = (1.38 ± 0.05)Fπ

4.2 Two equations
Once again, I started from (3.36),(3.37) and (3.38), but this time I alge-

braically expressed F0 from (3.36) and substituted it into (3.37) and (3.38). I
also used relation (3.46). This way I got these two following equations for FK

and Fη

F 2
K =

F 2
π (1 − δFπ) + 5

2µπ − µK − 3
2µη + 4Y M2

π( 3
128π2 log µ

Mρ
+ Lr

5)(r − 1)
1 − δFK

(4.5)

F 2
η =

F 2
π (1 − δFπ) + 4µπ − 4µK + 8

3Y M2
π( 3

128π2 log µ
Mρ

+ Lr
5)(2r − 2)

1 − δFη

(4.6)

with the δ’s being normal distributions with FWHM equal to 0.1 and
∆(4)

Fi
= F 2

i δFi
. I set the scale to Mρ = 770MeV . Then I generated FK and Fη

using Monte Carlo with 50Y × 40Lr
5 bins with 10000 generated values for each. I

plotted 3D graphs for their dependency on Y and Lr
5 As we can see, the range of

our predictions does include the experimental values of FK and Fη, but we may
receive some limitations for parameters.

Now I used formulas (1.9) and (1.14) to get the probabilities of FK and Fη

in the Bayesian approach. Thus I got Fig.4.7, Fig.4.8 and Fig.4.9. And from
Fig.4.7, Fig.4.8 and Fig.4.9 I got the combined probability graphs Fig.4.10 and
Fig.4.11. For easier reference, I also plotted σ confidence level graphs. As one
can see, these graphs give us certain limitations for parameters, but they differ.
I included the FK-only graph, because there is much smaller uncertainty in value
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Figure 4.5: F th
K as a function of Y ,Lr

5

Figure 4.6: F th
η as a function of Y ,Lr

5
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Figure 4.7: P (Y,Lr
5|F exp

η ) as a function of Y ,Lr
5 for FK

Figure 4.8: P (Y,Lr
5|F exp

η ) as a function of Y ,Lr
5 for Fη = (1.38 ± 0.05)Fπ
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Figure 4.9: P (Y,Lr
5|F exp

η ) as a function of Y ,Lr
5 for Fη = (1.18 ± 0.02)Fπ

Figure 4.10: P (Y,Lr
5|F exp

η ) as a function of Y ,Lr
5 for Fη = (1.38 ± 0.05)Fπ
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Figure 4.11: P (Y,Lr
5|F exp

η ) as a function of Y ,Lr
5 for Fη = (1.18 ± 0.02)Fπ

Figure 4.12: Confidence level graph of variables Y ,Lr
5 for FK only
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Figure 4.13: Confidence level graph of variables Y ,Lr
5 for F exp

η = (1.38 ± 0.05)Fπ

Figure 4.14: Confidence level graph of variables Y ,Lr
5 for F exp

η = (1.18 ± 0.02)Fπ
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of FK . Notice the significant difference in graphs Fig.4.13 and Fig.4.14. This is
natural, because they are based on different input data.

Looking at Fig.4.12, we see that region of Lr
5 < 0.5 × 10−3 and Y > 1.5 is out

of two sigma confidence level (most of it out of three sigma CL).
As for Fig.4.13, an area of Lr

5 < 0.75 × 10−3 for all Y ’s is out of 2 sigma CL,
also an area of Y < 0.25 for all Lr

5 is out of two sigma CL. Summing the graph
for all Y actually shows us that we can place the restriction of Lr

5 < 0.9 × 10−3

with 2 sigma CL.
Fig.4.14 also shows that region of Lr

5 < 0.5 × 10−3 and Y > 1.5 is out of two
sigma CL and a new region springs up at that region of Lr

5 > 1.5 × 10−3 and
Y > 1.

Looking at all these results together, one may notice an overlay
Lr

5103 < 0.5 and Y > 1.5. All the results put this region out of 2 sigma CL,
therefore this may be a reasonable restriction on our parameters of the theory.

Comparing the confidence level graphs with data from Bijnens and Ecker
[2014] in Table 3.1, we can see that their values sit well with my confidence level
graphs, except for the free fit compared to Fig.4.13. Their value of Y = 0.937 and
Lr

5 × 103 = 0.50 ± 0.07 is in the 3 sigma CL area, therefore not very compatible
with F exp

η = (1.38 ± 0.05)Fπ.
Using Y ’s from Bijnens and Ecker [2014] on Fig.4.14, we get the restriction

0.1 × 10−3 < Lr
5 < 1.6 × 10−3 with 2 sigma confidence level.

Comparing the confidence level graphs with Kolesar and Novotny [2008],
where they say that "Lr

5 < 1 × 10−3 and r ∼ 25 implies Y > 1.2,∆(4)
Fη

− ∆(4)
Fπ

>

0.2F 2
η ", we can see that it is too restrictive and such limitations do not follow

from my confidence level graph for F exp
η = (1.38 ± 0.05)Fπ. In Fig.4.13 (which

has the same input of F exp
η ), for Lr

5 = 0.001, Y has to be greater than 0.6 to be
in the 2 sigma significance region.
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Summary
I introduced the reader to the Bayes’ theorem and I have shown how different
assumptions can lead to different results. I broached the subject of strong inter-
actions at low energies, which I tried to explain using group theory. I introduced
the idea of effective Lagrangians and used the not so common resummed ap-
proach to chiral perturbation theory. Then I applied all of this on Fπ, FK and Fη

decay constant expansions using two different experimental values for Fη. Then
I tried to extract limitations on the parameters of the theory using the Bayesian
statistical approach.

I tried two methods, the first one was combining all equations into one for Fη.
I used Monte Carlo to generate theoretical predictions of Fη, giving me results
for the Fη of

Fη = (118.3 ± 9.4) MeV.

The distribution turned out to be an almost perfectly Gaussian. This result
wasn’t in conflict with either of the two experimental values. Then I used the
Bayesian approach to calculate the probability of my theoretical predictions de-
scribing the experimental data as a function of parameter Y. Unfortunately, I
didn’t get any clear restrictions for Y as the dependence turned out to be weak.
To confirm that it was indeed correct to use these methods, I calculated the mini-
mum χ2 to show how well I am able to fit experimental values with my theoretical
predictions.

The second approach was to use two equations for FK and Fη, now with two
free parameters Y and Lr

5, the low energy coupling constants. I generated a
2D graph for FK and Fη and created graphs that would show us the parameter
probabilities. Then I converted these 2D graphs into significance graphs and
found out that a certain area of that two-dimensional space was out of 2 sigma
confidence level for all three constructed sigma CL graphs. The results were
compatible with latest results in literature, except for the older and larger value
of Fη = (1.38 ± 0.05)Fπ which seems to be incompatible with Lr

5 < 0.9 × 10−3.
Using Y = 1 in conjunction with the latest results in literature and the newer

experimental value Fη = (1.18 ± 0.02)Fπ, I received a limitation

0.1 < 103Lr
5(Mρ) < 1.6 at 2 σ confidence level.
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