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Introduction
The Laplace transform is defined by

Lf(t) =
∫ ∞

0
f(s)e−ts ds

for every function f on (0,∞) for which the integral makes sense, and for every
t ∈ (0,∞). It is well known that L is an important integral operator with plenty
of applications for example in the theory of differential equations, probability
theory, investigation of spectral properties of pseudo-differential operators or the
study of Fredholm integral equations. There exists a vast literature on properties
of the Laplace transform and its applications. Of our particular interest is the
recent paper [1] in which optimality of function spaces on which it acts is studied.

The Laplace transform can be viewed as a particular instance of a fairly more
general class of kernel integral operators

Kf(t) =
∫ ∞

0
f(s)k(s, t) ds,

where k is an appropriate measurable function of two variables (in case of the
Laplace transform one has, of course, k(s, t) = est).

Kernel operators are known to be very important in various branches of ana-
lysis and its applications and they have been widely studied.

In this text we focus on problems concerning action of kernel operators of
special type, namely those defined by

Saf(t) =
∫ ∞

0
f(s)a(st) ds,

that is, operators having kernels of the form k(s, t) = a(st), where a is an ap-
propriate function of one variable. This class of operators, again, contains the
Laplace transform as its particular example. Let us point out that various par-
ticular types of related operators have been studied by many authors. To name
just a few, see, for instance, [2, 3, 4] and the references therein.

We will investigate fine properties of the operators of type Sa on the so-called
rearrangement-invariant (r.i. for short) spaces, which are, roughly speaking, those
function spaces, in which the decisive parameter is the size of a function (see the
more precise definitions below). With a little more precision it can be said that
the norms in r.i. spaces take into account only the measure of level sets of a given
function.

In particular we focus on the question when a given operator is bounded from
one r.i. space into another. Furthermore, given an operator of type Sa and having
fixed a domain r.i. space Y , we shall find (or construct) a candidate for the target
r.i. space, say Z, such that the operator Sa is bounded from Y into Z. Under
some rather mild restrictions we show that the target space is optimal, by which
we mean the smallest possible space within the given pool of competing spaces.

Let us note that the question of optimality of function spaces for various
operators and embeddings has been undergoing a thorough scrutiny during recent
years. It was studied in connection with Sobolev-type embeddings (see [5] and
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the extensive set of references given there) and also in the connection with the
Laplace transform (see for example [6] or [1]).

In this text we focus on the question of optimality of function spaces for the
operators Sa. Since this class of operators is rather general, we have to develop
some new techniques. In particular we have to calculate the Peetre K functional
for certain specific pairs of spaces (this has been known only partially) and we
have to introduce Marcinkiewicz-type function spaces built on the norm of the
dilation operator.

We shall use a combination of techniques from real analysis, functional ana-
lysis and the theory of interpolation, some of which we develop here. Our main
results are new.

The text is structured as follows. In Chapter 1 we fix notation and collect
all the preliminary stuff including all the definitions and basic knowledge about
the function spaces, operators and related topics. In Chapter 2 we present back-
ground results that will be needed in the proofs of our main results. In particular,
we introduce here spaces of endpoint Marcinkiewicz type and study their prop-
erties. We also establish important relations concerning the Peetre K-functional.
Finally, all the main results are collected in Chapter 3.
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1. Preliminaries
In this chapter we recall some definitions and basic properties of rearrangement-
invariant spaces. The standard reference is [7].

We denote by m the Lebesgue measure on (0,∞) and define

M = {f : (0,∞) → [−∞,∞]: f is Lebesgue-measurable in (0,∞)},

and
M+ = {f ∈ M : f ≥ 0}.

The distribution function f∗ : (0,∞) → [0,∞] of a function f ∈ M is defined
as

f∗(λ) = |{x ∈ (0,∞) : |f(x)| > λ}|, λ ∈ (0,∞),
and the non-increasing rearrangement f ∗ : (0,∞) → [0,∞] of a function f ∈ M
is defined as

f ∗(t) = inf{λ ∈ (0,∞) : f∗(λ) ≤ t}, t ∈ (0,∞).

The operation f ↦→ f ∗ is monotone in the sense that |f | ≤ |g| a.e. in (0,∞) im-
plies f ∗ ≤ g∗. We define the elementary maximal function f ∗∗ : (0,∞) → [0,∞]
of a function f ∈ M as

f ∗∗(t) = 1
t

∫ t

0
f ∗(s)ds.

While the operation f ↦→ f ∗∗ is subadditive, that is, for any f, g ∈ M and
t ∈ (0,∞) one has

(f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t), (1.1)
for f ↦→ f ∗ one only has the following property. Let s, t ∈ (0,∞) and f, g ∈ M,
then

(f + g)∗(s+ t) ≤ f ∗(t) + g∗(s). (1.2)
For reference, see [7, Chapter 2]. We recall that for every f ∈ M+ and every
t ∈ (0,∞), one has

|{s ∈ (0,∞) : f(s) > f ∗(t)}| ≤ t, (1.3)

see [7, Chapter 2, Proposition 1.7]. The Hardy-Littlewood inequality asserts that
if f, g ∈ M, then ∫ ∞

0
|f(t)g(t)| dt ≤

∫ ∞

0
f ∗(t)g∗(t)dt. (1.4)

We continue by defining rearrangement-invariant norm. We say that a functional
ρ : M → [0,∞] is a Banach function norm, if for all f , g and {fj}j∈N in M, and
every λ ≥ 0, the following properties hold:

(P1) ρ(f) = 0 if and only if f = 0; ρ(λf) = λρ(f);
ρ(f + g) ≤ ρ(f) + ρ(g);

(P2) f ≤ g a.e. implies ρ(f) ≤ ρ(g);

(P3) fj ↗ f a.e. implies ρ(fj) ↗ ρ(f);
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(P4) ρ(χG) < ∞ for every G ⊂ (0,∞) of finite measure;

(P5) for every G ⊂ (0,∞) of finite measure there is a constant CG such that∫
G f(t) dt ≤ CGρ(f).

If also the property

(P6) ρ(f) = ρ(g) whenever f ∗ = g∗,

holds, we say that ρ is a rearrangement-invariant Banach function norm, or just
a rearrangement-invariant norm. If ρ is a rearrangement-invariant norm, then
the collection

X = X(ρ) = {f ∈ M : ρ(|f |) < ∞}

is called a rearrangement-invariant space. The norm on the space X is given by
∥f∥X = ρ(|f |). Note that ρ(|f |) is defined for every f ∈ M, and

f ∈ X ⇔ ρ(|f |) < ∞.

For a rearrangement-invariant norm ρ we define its associate norm by

ρ′(g) = sup
{∫ ∞

0
f(t)g(t)dt : f ∈ M+, ρ(f) ≤ 1

}
for g ∈ M+

By [7, Chapter 1, Theorem 2.2] ρ′ is also a rearrangement-invariant norm. Fur-
thermore, by [7, Chapter 1, Theorem 2.7] it also holds that ρ′′ = ρ. If X = X(ρ)
is a rearrangement-invariant space and ρ′ is the norm associate to ρ, then X(ρ′)
is the associate space of X and is denoted by X ′.

If X, Y are rearrangement-invariant spaces, we denote by X ↪→ Y the contin-
uous embedding of X into Y and by T : X → Y the boundedness of an operator
T from X to Y . By [7, Chapter 1, Proposition 2.10] we have

X ↪→ Y ⇐⇒ Y ′ ↪→ X ′. (1.5)

We say that the rearrangement-invariant space Y is optimal for the linear operator
T and a given domain rearrangement-invariant space X if T : X → Y and for
every rearrangement-invariant space Z such that T : X → Z it holds that Y ↪→ Z.
An operator which will be used extensively throughout this work is the dilation
operator Et defined for any t ∈ (0,∞) by the formula

Etf(s) = f
(
s

t

)
.

We recall that Et is bounded on every rearrangement-invariant space for any
t ∈ (0,∞) as stated in [7, Chapter 3, Proposition 5.11].

We define the fundamental function, φX , of a given rearrangement-invariant
space X by φX(t) = ∥χ(0,t)∥X , t ∈ (0,∞). We say that a function φ : (0,∞) →
(0,∞) is quasiconcave if it is non-decreasing, φ(t) > 0, ∀t ∈ (0,∞) and t

φ(t) is
non-decreasing. We say that the function φ is satisfies the ∆2 condition, if it
is non-decreasing and there exists a constant C > 0 such that φ(2t) ≤ Cφ(t)
for all t > 0. By [7, Chapter 2, Corollary 5.3], the fundamental function of any
rearrangement-invariant space is quasiconcave. Given a quasiconcave function φ,
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we define the rearrangement-invariant spaces Mφ,Λφ with the rearrangement-
invariant norms given by

∥f∥Mφ = sup
t∈(0,∞)

φ(t)f ∗∗(t), f ∈ M (1.6)

and
∥f∥Λφ =

∫ ∞

0
f ∗(t)dφ(t), f ∈ M. (1.7)

These are indeed rearrangement-invariant norms as proven in [7, Chapter 2, The-
orem 5.13]. It is also clear that both Mφ and Λφ have a common fundamental
function which is equal to φ. For a rearrangement-invariant space X we denote

M(X) = MφX
, Λ(X) = ΛφX

,

where φX is the fundamental function of X. We recall that by [7, Chapter 2,
Theorem 5.13] for a rearrangement invariant space X we have

Λ(X) ↪→ X ↪→ M(X),

with norm of both embeddings equal to 1. In other words, the spaces Mφ,Λφ are
respectively the largest and the smallest rearrangement-invariant space with the
fixed fundamental function equal to φ.

One of the basic examples of rearrangement-invariant spaces are the Lp spaces,
where Lp = X(ρp) with

ρp(f) =

⎧⎨⎩(
∫∞

0 f(t)p dt)
1
p if 0 < p < ∞,

ess supt∈(0,∞) f(t) if p = ∞

Let X0 and X1 be quasi-normed spaces, which are compatible in the sense
that they are embedded in some common Hausdorff topological vector space
(throughout this work we are working with M). By X0 + X1 we denote the set
of all functions f ∈ M for which there exists a decomposition f = g + h such
that g ∈ X0 and h ∈ X1. We equip the space X0 +X1 with the quasinorm

∥f∥X0+X1 = inf
f=g+h

(∥g∥X0 + ∥h∥X1),

where the infimum is taken over all such decompositions. For f ∈ X0 + X1 the
Peetre K-functional is defined by

K(t, f ;X0, X1) := inf
f=g+h

(∥g∥X0 + t∥h∥X1) for t > 0.

The function K as a function of variable t is increasing and concave on (0,∞).
Furthermore, the function t−1K(t, f ;X0, X1) is non-increasing on (0,∞). Observe
that

1
t
K(f, t;X0, X1) = K(f, 1

t
,X1, X0). (1.8)

Recall that ([7, Chapter 2, Theorem 6.2]) in the case when X0 = L1 and X1 = L∞,
an exact formula for the K functional is known, namely,

K(f, t;L1, L∞) =
∫ t

0
f ∗(s) ds for t ∈ (0,∞) and f ∈ (L1 + L∞). (1.9)
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2. Background results
In this chapter, we shall establish some results on rearrangement-invariant spaces
and K functionals, which will be useful later on when we apply them on a class
of linear operators Sa.

Definition 2.1. Let φ : (0,∞) → (0,∞) be an increasing, everywhere positive
function satisfying the ∆2 condition. We define the functional ∥·∥mφ for f ∈ M
by the formula

∥f∥mφ = sup
t∈(0,∞)

φ(t)f ∗(t)

We define the space mφ as the set of all functions for which the functional ∥f∥mφ

is finite.

We shall now show that ∥·∥mφ is a quasinorm and that it is equivalent to
∥·∥Mφ under some additional conditions.

Prosposition 2.2. Let φ be as in Definition 2.1. Then ∥·∥mφ is a quasinorm.

Proof. We need only to show the modified triangle inequality, since the other
properties of a quasinorm are clearly satisfied. Since φ satisfies the ∆2 condition,
there exists a K > 0 such that φ(2t) ≤ Kφ(t) for all t > 0. Let f, g ∈ M+.
Then, using (1.2), we obtain

∥f + g∥mφ = sup
t∈(0,∞)

φ(t)(f + g)∗(t)

= sup
t∈(0,∞)

φ
(

2 · t2

)
(f + g)∗

(
t

2 + t

2

)

≤ sup
t∈(0,∞)

Kφ
(
t

2

)(
f ∗
(
t

2

)
+ g∗

(
t

2

))

≤ K

(
sup

t∈(0,∞)
φ
(
t

2

)
f ∗
(
t

2

)
+ sup

t∈(0,∞)
φ
(
t

2

)
g∗
(
t

2

))
= K(∥f∥mφ + ∥g∥mφ).

Definition 2.3. We say that a set X ⊂ M together with a linear functional
F : X → [0,∞) can be equivalently renormed with a rearrangement-invariant
norm, if there exists a rearrangement invariant norm ρ and constants C1 and C2
such that

C1ρ(|f |) ≤ F (f) ≤ C2ρ(|f |) for f ∈ M
If that is the case, we’ll consider X to be the rearrangement-invariant space with
the norm given by ρ

Theorem 2.4. Let φ be a quasi-concave function. Then mφ can be equivalently
renormed with a rearrangement-invariant norm ∥·∥Mφ if and only if there exists
a constant C > 0 such that∫ t

0

1
φ(s)ds ≤ C

t

φ(t) for every t ∈ (0,∞). (2.1)
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Proof. Take g ∈ M. If ∥g∥mφ = ∞ then obviously ∥g∥Mφ ≤ ∥g∥mφ . Assume
∥g∥mφ = A ∈ R. Then from definition of mφ we have

g∗(t) ≤ A

φ(t) for every t ∈ (0,∞).

Then by definition of Mφ we have

∥g∥Mφ = sup
t∈(0,∞)

φ(t)
t

∫ t

0
g∗(s)ds ≤ sup

t∈(0,∞)

φ(t)
t

∫ t

0

A

φ(s)ds ≤ CA = C∥g∥mφ .

Since g∗ ≤ g∗∗, clearly
∥g∥mφ ≤ ∥g∥Mφ ,

and so mφ can be equivalently renormed with ∥·∥Mφ .
Now assume (2.1) doesn’t hold. Clearly 1

φ
∈ mφ, but 1

φ


Mφ

= sup
t∈(0,∞)

φ(t)
t

∫ t

0

1
φ(s)ds = ∞.

Now we characterize the K-functional for pair mφ and L∞. A similar result
can be found in [8]. The author, however, assumes that φ is quasi-concave and
that the condition (2.1) holds. On the other hand, his result is more general in
a different direction, as he calculated the K-functional for pair mφ and X for
arbitrary rearrangement-invariant space X, so our results overlap somehow.

Theorem 2.5. Let φ : (0,∞) → (0,∞) be an increasing, left continuous function
satisfying the ∆2 condition. Then

∥χ(0,φ−1(t))f
∗∥mφ ≤ K(f, t;mφ, L

∞) ≤ 2∥χ(0,φ−1(t))f
∗∥mφ (2.2)

for every f ∈ M and every t ∈ (0,∞).

Proof. Let f ∈ (mφ + L∞) and t > 0. Both L∞ and mφ norms are defined in
terms of f ∗ so it will suffice to prove the assertion assuming that f ≥ 0. First,
decompose f = f0 + f1, where

f0 =

⎧⎨⎩f − f ∗ (φ−1(t)) if f > f ∗ (φ−1(t))
0 otherwise.

Then since φ is left continuous, we have

sup
0<s<φ−1(t)

f ∗(s)φ(s) ≥ lim
s→φ−1(t)−

f ∗(s)φ(s)

= lim
s→φ−1(t)−

f ∗(s) lim
s→φ−1(t)−

φ(s)

≥ f ∗(φ−1(t))φ(φ−1(t)) = f ∗(φ−1(t))t.

And so from the definition of f0 and the above calculation

t∥f1∥∞ ≤ f ∗(φ−1(t))t ≤ sup
0<s<φ−1(t)

f ∗(s)φ(s) = ∥χ(0,φ−1(t))f
∗∥mφ . (2.3)
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We continue by estimating ∥f0∥mφ . By definition of f0,

∥f0∥mφ = sup
t∈(0,∞)

φ(t)f ∗
0 (t) ≤ sup

0<s<φ−1(t)
f ∗(s)φ(s) = ∥χ(0,φ−1(t))f

∗∥mφ . (2.4)

Combining (2.3) and (2.4) we obtain

K(f, t;mφ, L
∞) ≤ 2∥χ(0,φ−1(t))f

∗∥mφ , (2.5)

establishing the second inequality in (2.2). For the first one, once again, fix
f ∈ (mφ + L∞) nonnegative and let f = g + h, where g ∈ mφ and h ∈ L∞.
Firstly, we shall assert that

f ∗(t) ≤ g∗(t) + ∥h∥∞ for every t ∈ (0,∞). (2.6)

For t ∈ (0,∞), set λ = g∗(t) + ∥h∥∞ and y = |{s ∈ (0,∞), f(s) > λ}|. Then

y = |{s ∈ (0,∞), g(s) + h(s) > λ}|
= |{s ∈ (0,∞), g(s) + h(s) > g∗(t) + ∥h∥∞}|
≤ |{s ∈ (0,∞), g(s) > g∗(t)}| + |{s ∈ (0,∞), h(s) > ∥h∥∞}|
= |{s ∈ (0,∞), g(s) > g∗(t)}|,

since the set {s ∈ (0,∞), h(s) > ∥h∥∞} obviously has zero measure. By (1.3)
we obtain y ≤ t. By definition of the decreasing rearrangement we get (2.6).
Consequently, from subadditivity of supremum and because φ is increasing, we
obtain

sup
0<s<φ−1(t)

f ∗(s)φ(s) ≤ sup
0<s<φ−1(t)

g∗(s)φ(s) + sup
0<s<φ−1(t)

∥h∥∞φ(s)

≤ sup
0<s<∞

g∗(s)φ(s) + ∥h∥∞φ(φ−1(t)) = ∥g∥mφ + t∥h∥∞.
(2.7)

Taking infimum over all such representations f = g + h, we arrive at

∥χ(0,φ−1(t))f
∗∥mφ ≤ K(f, t;mφ, L

∞),

as desired. The assertion now follows from the combination of (2.5) and (2.7).
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3. Target spaces for one special
class of linear operators
Definition 3.1. For a ∈ M+ we define the operator Sa by the formula

Saf(t) =
∫ ∞

0
a(st)f(s)ds

for those f ∈ M for which the integral on the right is defined.

Notice that Sa is a generalization of the Laplace transform, since Sa is the
Laplace transform for a(t) = e−t. In this chapter we will formulate a sufficient
condition under which we can find a certain target space for the operator Sa
when a domain space is fixed. We will also formulate a sufficient condition for
optimality of said target space and then apply the results on Sa with a having
some specific properties.

Definition 3.2. Assume that X is a rearrangement-invariant space. We denote
by E(X) the function given by

E(X)(t) = t

∥Et∥X
for t ∈ (0,∞).

Lemma 3.3. Let X, Y be rearrangement invariant spaces and a ∈ M. Then

Sa : X → Y ⇐⇒ Sa : Y ′ → X ′.

Proof. Thanks to the fact, that X ′′ = X and Y ′′ = Y it will suffice to show
either of the implications. Assume Sa : X → Y and take f ∈ Y ′, then by Fubini’s
theorem, we have

∥Saf∥X′ = sup
∥g∥X≤1

∫ ∞

0
Sa(f)g = sup

∥g∥X≤1

∫ ∞

0
Sa(g)f

≤ sup
∥g∥X≤1

∥Sag∥Y ∥f∥Y ′ = ∥Sa∥X→Y ∥f∥Y ′ .

Theorem 3.4. If X is a rearrangement-invariant space, then mE(X) is well de-
fined. Let a ∈ M+ be non-increasing. If a ∈ X ′ then

Sa : X → mE(X).

If a ̸∈ X ′ then there is no rearrangement invariant space Y such that

Sa : X → Y.

Proof. Since E(X) is clearly a positive function, to show that mE(X) is well
defined, we only need to show that it is non-decreasing and that it satisfies
the ∆2 condition. Fix t ∈ (0,∞) and notice that Et(f ∗) = (Etf)∗. Now by
definition of norm and from the rearrangement invariance of X we have

∥Et∥X = sup
∥f∥X≤1

∥(Etf)∗∥X = sup
∥f∥X≤1

∥Et(f ∗)∥X . (3.1)

10



Since X = X ′′, the Hardy-Littlewood inequality (1.4) gives

∥Et(f ∗)∥X = sup
∥g∥X′ ≤1

∫ ∞

0
f ∗( s

t
)g∗(s)ds, f ∈ M (3.2)

Combining (3.1) with (3.2) and using the change of variables y = s
t

we obtain

∥Et∥X = sup
∥f∥X≤1

sup
∥g∥X′ ≤1

t
∫ ∞

0
f ∗(y)g∗(ty)dy,

from which it is easy to see that E(X) is non-decreasing. Since Et(f ∗) = (Etf)∗,
it is also clear that ∥Et∥X itself is non-decreasing, which immediately gives

∥Et∥X ≤ ∥E2t∥X ,

therefore
E(X)(2t) ≤ 2E(X)(t),

which is the ∆2 condition. We have shown that mE(X) is well defined. Now
assume that a ∈ X ′ is non-increasing. Let f ∈ M+. We first note that since a
is non-increasing, so is Saf . Thus, using the change of variables st = u and the
Hölder inequality, we obtain

∥Saf∥mE(X) = sup
t∈(0,∞)

t

∥Et∥X
Saf(t) = sup

t∈(0,∞)

t

∥Et∥X

∫ ∞

0
a(st)f(s)ds

= sup
t∈(0,∞)

t

∥Et∥X
1
t

∫ ∞

0
a(u)Etf(u)du

≤ sup
t∈(0,∞)

1
∥Et∥X

∥Etf∥X∥a∥X′ ≤ ∥a∥X′∥f∥X .

Now assume a ̸∈ X ′ and that Y is a rearrangement-invariant space such that
Sa : X → Y . By definition of X ′ and since a is non-increasing, the Hardy-
Littlewood inequality (1.4) gives

∞ = sup
{∫ ∞

0
f ∗a, ∥f∥X ≤ 1

}
.

We can find a sequence fn such that∫ ∞

0
f ∗
na ≥ n, ∥fn∥X ≤ 1, n ∈ N.

Then we have for t ∈ [1, 2]

Saf
∗
n(t) = 1

t

∫ ∞

0
Et(f ∗

n)a ≥ 1
t

∫ ∞

0
f ∗
na ≥ n

2 .

Applying (P5) from the definition of rearrangement-invariant norm to the set
[1, 2] we obtain ∥Safn(t)∥Y → ∞ as n tends to infinity. That is in contradiction
with Sa : X → Y .

Thanks to Theorem 2.4 we obtain the following corollary.
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Corollary 3.5. If X is a rearrangement-invariant space such that a ∈ X ′ and
the condition (2.1) holds for φ = E(X), then

Sa : X → ME(X).

Lemma 3.6. Let a be a non-increasing, non-negative function on (0,∞). Then

(Saf)∗ ≤ Sa(f ∗) for all f ∈ M.

Proof. Taking t > 0 and f ∈ M, we obtain, by the Hardy–Littlewood inequality
(recall that a is non-increasing), that

(Saf)∗(t) = (|Saf |)∗(t) ≤ (Sa|f |)∗(t) =
∫ ∞

0
|f(s)|a(st)ds

≤
∫ ∞

0
f ∗(s)a(st)ds = Sa(f ∗)(t).

Definition 3.7. LetX be a rearrangement-invariant space such that φX′ , the fun-
damental function of X ′, is strictly increasing and unbounded. Let φ : (0,∞) →
(0,∞) be quasi-concave, unbounded function with φ(0+) = 0. Then we define
the function ψ with the formula

ψ(t) = φ−1
X′

(
1
φ(t)

)
for t ∈ (0,∞). (3.3)

For f ∈ M and t ∈ (0,∞) we define the functions α(f), β(f) with the formulas

α(f)(t) =
∫ ψ(t)

0
f ∗(s)ds, (3.4)

β(f)(t) = 1
φ(t)∥f ∗χ(ψ(t),∞)∥X , (3.5)

and we set R(f) = α(f) + β(f).

In the rest of this chapter we will be working in a setting described in the
Definition 3.7. This means that, unless stated otherwise, X, φ, ψ, α, β are as in
the definition above.

Theorem 3.8. Let W be a rearrangement-invariant space and set

ρ(f) = ∥Rf∥W , f ∈ M+.

If the condition

min
{

1
φ
, 1
}

∈ W (3.6)

holds, then ρ is a rearrangement-invariant Banach function norm.
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Proof. To prove the triangle inequality, fix f1, f2 ∈ M+ and t ∈ (0,∞). From
the definition of associate norm we have

R(f1 + f2)(t) =
∫ ψ(t)

0
(f1 + f2)∗ + 1

φ(t) sup
{∫ ∞

ψ(t)
(f1 + f2)∗g∗, ∥g∥X′ ≤ 1

}

Take arbitrary g ∈ X ′ with ∥g∥X′ ≤ 1 and set

h(s) =

⎧⎨⎩1, s ∈ (0, ψ(t))
1
φ(t)g

∗(s) s ∈ [ψ(t),∞)
.

We know that X ′ ↪→ M(X ′) with the norm of the embedding equal to 1. There-
fore we have

sup
s∈(0,∞)

g∗(s)φX′(s) ≤ sup
s∈(0,∞)

g∗∗(s)φX′(s) ≤ ∥g∥X′ ≤ 1.

In particular for s = ψ(t) we have

g∗(ψ(t)) ≤ 1
φX′(ψ(t)) = 1

φX′φ−1
X′ ( 1

φ(t))
= φ(t),

thus h is non-increasing. Now thanks to the subadditivity of f ↦→ f ∗∗ we have∫ u

0
(f1 + f2)∗ ≤

∫ u

0
f ∗

1 + f ∗
2 , u ∈ (0,∞).

Using Hardy’s Lemma [7, Chapter 2, Proposition 3.6] we obtain∫ ∞

0
(f1 + f2)∗h ≤

∫ ∞

0
f ∗

1h+ f ∗
2h. (3.7)

From the definition of h it is clear that∫ ψ(t)

0
(f1 + f2)∗ + 1

φ(t)

∫ ∞

ψ(t)
(f1 + f2)∗g∗ =

∫ ∞

0
(f1 + f2)∗h,

which, in combination with (3.7), gives
∫ ψ(t)

0
(f1 + f2)∗ + 1

φ(t)

∫ ∞

ψ(t)
(f1 + f2)∗g∗ ≤∫ ψ(t)

0
f ∗

1 + 1
φ(t)

∫ ∞

ψ(t)
f ∗

1 g
∗ +

∫ ψ(t)

0
f ∗

2 + 1
φ(t)

∫ ∞

ψ(t)
f ∗

2 g
∗.

Since this holds for all g ∈ X ′ with ∥g∥X′ ≤ 1, we have

R(f1 + f2)(t) ≤ R(f1)(t) +R(f2)(t) for t ∈ (0,∞),

which, using the (P2) property of the norm in W , gives the triangle inequality.
The fact that ρ(f) = 0 ⇐⇒ f = 0 holds trivially. Positive homogeneity is

trivial. We’ve shown that (P1) holds. Next, (P6) holds obviously and (P2) and
(P3) are direct consequences of the corresponding properties of f ↦→ f ∗ and of
∥·∥X and ∥·∥W .
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To show (P4) we only need to show that ρ(χ(0,u)) < ∞ for any u ∈ (0,∞),
because ρ is defined in terms of the non-increasing rearrangement and we know,
that for a measurable set E ⊂ (0,∞) it holds that (χE)∗ = χ(0,|E|). Fix u ∈ (0,∞),
by the definition of α and β we have for t ∈ (0,∞)

α(χ(0,u))(t) = min{ψ(t), u} ≤ umin{ψ(t), 1}

and

β(χ(0,u))(t) = 1
φ(t)∥χ(0,u)∩(ψ(t),∞)∥X = 1

φ(t)φX(max{u− ψ(t), 0}) ≤ 1
φ(t)φX(u),

where φX denotes fundamental function of X. Furthermore, since limt→0+ ψ(t) =
∞, there exists ϵ > 0 such that β(χ(0,u))(t) = 0, for t < ϵ, and 1

φ(ϵ) ≥ 1. Since
1
φ

≤ 1
φ(ϵ) on (ϵ,∞) we have

β(χ(0,u)) ≤ φX(u) min
{

1
φ
,

1
φ(ϵ)

}
≤ φX(u) 1

φ(ϵ) min
{

1
φ
, 1
}
.

Thus, according to (3.6), β(χ(0,u)) ∈ W . To show that α(χ(0,u)) ∈ W we need to
only show that there exists a constant C such that min{ψ, 1} ≤ C min{ 1

φ
, 1}, for

which it is sufficient to show that there exists t > 0 and C > 0 such that for all
s > t

1
φ(s)C ≥ ψ(s) = φ−1

X′ (
1

φ(s)),

which is equivalent to φX′(τC) ≥ τ , for τ ≤ 1
φ(t) , which follows from quasi-

concavity of φX′ . Indeed, each quasi-concave function dominates the function
min{1, τ}, τ ∈ (0,∞), up to a multiplicative constant, and so we have

φX′(Cτ) ≥ C1Cτ,

for all C and τ such that Cτ ≤ 1 and for some C1. If we set C = 1
C1

, then we
have

φX′(Cτ) ≥ τ for τ ≤ 1
C

We only need to find t such that 1
φ(t) ≤ 1

C
, which we can do since φ is unbounded.

Now we have t and C as we wanted, therefore we have just proven that min{1, ψ}
is dominated by min{1, 1

φ
} up to a constant. Now since both β(χ(0,u)) ∈ W and

α(χ(0,u)) ∈ W , it obviously holds that ρ(χ(0,u)) < ∞ and thus (P4) holds.
It remains to show (P5). Let E ⊂ (0,∞) be of finite measure and let f ∈ M+.

Then, since ψ is non-increasing, one has

ρ(f) ≥∥α(f)∥W

≥∥χ(0,ψ(|E|))(t)
∫ ψ(t)

0
f ∗(s)ds∥W

≥∥χ(0,ψ(|E|))∥W
∫ |E|

0
f ∗(s)ds

≥∥χ(0,ψ(|E|))∥W
∫
E
f(s)ds,

which establishes (P5).
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In the following theorem we will show that the norm ρ from Theorem 3.8,
under some conditions, implicitly defines a space Z such that Sa acts boundedly
from Y into Z. Note that R is defined only using the space X and the function
φ. If we define φ = E(X) then R is defined only using X. Therefore we can
translate the problem of finding a target space for Sa with domain space Y fixed,
into a problem of finding a space X such that some conditions, specified in the
following theorem, are satisfied.

Theorem 3.9. Let Y ⊂ X+L1 be a rearrangement-invariant space, assume that
φ is strictly increasing and set

ρ(f) = ∥Rf∥Y ′ , f ∈ M+.

Let a be a non-increasing non-negative function on (0,∞) such that if we set
T = Sa, then

T : X → mφ

T : L1 → L∞.
(3.8)

If the condition (3.6) holds for W = Y ′, then ρ is a rearrangement-invariant Ba-
nach function norm. Furthermore, if we set Z to be the rearrangement-invariant
space given by ρ′, the norm associate to ρ, then

T : Y → Z.

Proof. The fact that ρ is a rearrangement-invariant norm was proved in the pre-
ceding theorem, so we only need to show T : Y → Z. To this end, we will need
to calculate the K-functionals of spaces (X,L1) and spaces (mφ, L

∞). By Theo-
rem 2.5 we have

K(f, t;mφ, L
∞) ≈ ∥χ(0,φ−1(t))f

∗∥mφ ,

and, by a simple modification of [8, Theorem 5.1], we have

K(f, t, L1, X) ≈
∫ φ−1

X′ (t)

0
f ∗(s)ds+ t∥f ∗χ(φ−1

X′ (t),∞)∥X .

Fix arbitrary f ∈ L1 + L∞ and t ∈ (0,∞). By (3.8) and the definition of the
K-functional, we have

K(Tf, t, L∞,mφ) ≤ CK(f, t, L1, X)

for some constant C. Combining that with the well known equality

1
t
K(f, t, L∞,mφ) = K(f, 1

t
,mφ, L

∞),

we obtain

sup
0<u<φ−1( 1

t
)
(Tf)∗(u)φ(u) ≤

≤ C

t

(∫ φ−1
X′ (t)

0
f ∗(s)ds+ t∥f ∗χ(φ−1

X′ (t),∞)∥X
)
.
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In particular, since φ is quasiconcave and therefore continuous and (Tf)∗ is non-
increasing, we can take u = φ−1(1

t
) and obtain

1
t
(Tf)∗(φ−1(1

t
)) ≤

≤ C

t

(∫ φ−1
X′ (t)

0
f ∗(s)ds+ t∥f ∗χ(φ−1

X′ (t),∞)∥X
)
.

Now since φ is a one-to-one mapping on (0,∞) and the above holds for every
t ∈ (0,∞), substituting φ−1(1

t
) = u we obtain, for all u ∈ (0,∞),

φ(u)(Tf)∗(u) ≤ Cφ(u)
∫ ψ(u)

0
f ∗(s)ds+ C∥f ∗χ(ψ(u),∞)∥X .

Dividing by φ(u) and changing the variable u to t yields the following result:

(∃C > 0)(∀f ∈ X + L1)(∀t > 0) : (Tf)∗(t) ≤ CRf(t). (3.9)

Now we are ready to show T : Y → Z. Take f ∈ Y . Then, by the definition of
the associate norm and Lemma 3.6, we get

∥Tf∥Z = ∥(Tf)∗∥Z ≤ ∥T (f ∗)∥Z = sup
ρ(g)≤1

∫ ∞

0
T (f ∗)(s)g(s)ds.

Since a ≥ 0 is non-increasing, so is T (f ∗), hence using the Hardy-Littlewood
inequality, we arrive at

∥Tf∥Z ≤ sup
ρ(g)≤1

∫ ∞

0
T (f ∗)(s)g(s)ds ≤ sup

ρ(g)≤1

∫ ∞

0
T (f ∗)(s)g∗(s)ds

= sup
ρ(g)≤1

∫ ∞

0
f ∗(s)T (g∗)(s)ds.

Now (3.9) together with Hölder’s inequality gives

∥Tf∥Z ≤ C sup
ρ(g)≤1

∫ ∞

0
f ∗(s)R(g∗)(s)ds ≤

≤ C sup
ρ(g)≤1

∥f∥Y ∥R(g∗)∥Y ′ = C∥f∥Y .

In conjunction with Theorem 3.4 we can now formulate a corollary of the
preceding theorem, which makes the result more manageable.

Corollary 3.10. Let X be such that, for φ = E(X), φ is a quasi-concave
unbounded strictly increasing function with φ(0+) = 0. Let Y ⊂ X + L1 be
a rearrangement-invariant space and let a ∈ X ′ ∩ L∞ be non-increasing. Set

ρ(f) = ∥Rf∥Y ′ , f ∈ M+

and assume that (3.6) holds for W = Y ′. Then ρ is a rearrangement-invariant
norm. Moreover, if we set Z to be the rearrangement-invariant space determined
by ρ′, then Sa : Y → Z.
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Proof. Since a ∈ L∞ = (L1)′, E(L1) ≡ 1 and m1 = L∞, we have Sa : L1 → L∞,
and since a ∈ X ′ and E(X) = φ, we have Sa : X → mφ thanks to Theorem 3.4.
Now we can apply Theorem 3.9.

The space Z obtained in Theorem 3.9 and Corollary 3.10 is the candidate for
the optimal space for Sa and Y . Lemma 3.11 below gives a sufficient condition
under which Z is indeed optimal. Note again, that R is defined only in terms
of X and therefore the problem of finding the optimal space for Sa and for a
fixed domain space Y can be translated into finding X such that the conditions
specified in Corollary 3.10 and Lemma 3.11 hold.

Lemma 3.11. Let Y and ρ be as in Theorem 3.9. If the condition (3.6) holds
for W = Y ′ and also the following condition holds

(∃C > 0) (∀f ∈ M) : ∥Sa(f ∗)∥Y ′ ≥ C∥R(f ∗)∥Y ′ , (3.10)

then ρ is a rearrangement-invariant norm, Sa : Y → Z and Z is optimal for Sa
and Y .

Proof. All assertions except for the optimality have already been proved in pre-
ceding theorems. To show optimality of Z, assume that there is a rearrangement-
invariant space W such that Sa : Y → W . By (3.10) there is a constant C > 0
such that, for any g ∈ M,

∥g∥Z′ = ∥R(g∗)∥Y ′ ≤ C∥Sa(g∗)∥Y ′ .

Thanks to Lemma 3.3 we also have T : W ′ → Y ′, therefore we have a constant
C1 such that

∥g∥Z′ ≤ C1∥g∥W ′ .

In other words, W ′ ↪→ Z ′. Therefore, by (1.5), also Z ↪→ W , and thus Z is
optimal.

Lemma 3.12. Let a : (0,∞) → (0,∞) be non-increasing and non-zero on at
least some set of non-zero measure. Then there is a constant C such that, for all
non-negative f ∈ M,

Sa(f ∗)(t) ≥ C
∫ 1

t

0
f ∗(s)ds for all t ∈ (0,∞).

Proof. Since a is non-increasing and not zero on at least some set of non-zero
measure, there exists u ∈ (0, 1) such that infs<u a(s) = C1 > 0. Now if f ∈ M is
non-negative and t ∈ (0,∞), then

Sa(f ∗)(t) =
∫ ∞

0
a(st)f ∗(s)ds ≥

∫ u
t

0
a(st)f ∗(s)ds

≥ C1

∫ u
t

0
f ∗(s)ds ≥ C1u

∫ 1
t

0
f ∗(s)ds,

where the last inequality follows from the fact that f ∗∗ is non-increasing.

Lemma 3.13. Let X = L∞ and φ = E(L∞), that is φ(t) = t, t ∈ (0,∞). Then
we have, for all f ∈ L1 + L∞ and t > 0,∫ 1

t

0
f ∗ ≤ Rf(t) ≤ 2

∫ 1
t

0
f ∗.
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Proof. Take f ∈ L1 +L∞ and t > 0. First, we shall observe that φX′(t) = t, since
X ′ = L1, therefore ψ(t) = 1

t
. This means that

α(f)(t) =
∫ 1

t

0
f ∗

and, since β(f) ≥ 0, we can easily obtain the first inequality from the definition
of R. Now, a simple calculation shows that

β(f)(t) = 1
t
∥f ∗χ( 1

t
,∞)∥∞ = 1

t
f ∗
(1
t

)
≤ 1
t
f ∗∗

(1
t

)
= α(f)(t).

Therefore

Rf(t) = α(f)(t) + β(f)(t) ≤ α(f)(t) + α(f)(t) = 2
∫ 1

t

0
f ∗,

which establishes the second inequality.

Now we are ready to generalize the result of E. Buriánková, D. E. Edmunds
and L. Pick in [1, Theorem 3.4], where the optimal target space for the Laplace
transform L is found, to the operators Sa. We will show that, in fact, exactly the
same result holds for any non-trivial, non-increasing and non-negative function
a ∈ L1 ∩ L∞.

Theorem 3.14. Let a ∈ L∞∩L1 be non-trivial, non-negative and non-increasing.
Let Y be a rearrangement-invariant space such that

min
{

1, 1
t

}
∈ Y ′. (3.11)

For f ∈ M and t > 0, set

α(f)(t) =
∫ 1

t

0
f ∗

and
ρ(f) = ∥α(f)∥Y ′ .

Then ρ is a rearrangement-invariant norm such that if we set Z to be the
rearrangement-invariant space given by ρ′, then

Sa : Y → Z,

and Y is optimal for Sa and Y . Furthermore, if the condition (3.11) does not
hold, then there is no rearrangement-invariant space Z such that Sa : Y → Z.

Proof. The proof of the fact that ρ is a rearrangement-invariant norm is almost
identical to that of Theorem 3.9, see also [1, Proposition 3.3]. We thus know from
Corollary 3.10 and Lemma 3.13 that Sa : Y → Z.

The optimality of Z is a direct consequence of Lemma 3.12, Lemma 3.13 and
Lemma 3.11. Indeed, from Lemma 3.12 we have a constant C > 0 such that, for
all f ∈ M and t ∈ (0,∞),

Saf(t) ≥ C
∫ 1

t

0
f ∗(s)ds,
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and thus from Lemma 3.13 we obtain a possibly different constant C1 > 0 such
that

Sa(f ∗)(t) ≥ C1R(f ∗)(t).

Now the (P2) property of the norm in Y ′ implies

∥Sa(f ∗)∥Y ′ ≥ C∥R(f ∗)∥Y ′ ,

whence Lemma 3.11 gives the optimality of Z.
It remains to show that if (3.11) does not hold, then there is no rearrangement-

invariant space Z such that Sa : Y → Z. To show that, assume there exists
such Z. Then, by Lemma 3.3, we have Sa : Z ′ → Y ′, and so there exists a
constant C such that

∥χ(0,1)∥Z′ ≥ C∥Saχ(0,1)∥Y ′ = C∥
∫ 1

0
a(st)ds∥Y ′ .

Since a is integrable, bounded and non-zero on some set of non-zero measure and
non-increasing, changing variables, we get that there is a constant C ′ > 0 such
that ∫ 1

0
a(st)ds = 1

t

∫ t

0
a(s)ds ≥ C ′ min

{
1, 1
t

}
.

Indeed, suppose first that t ≤ 1. Then we find u > 0 such that infs∈(0,u) a(s) =
C1 > 0. If u ≥ 1, then simply

1
t

∫ t

0
a(s)ds ≥ 1

t
tC1 = C1.

If u < 1, then we have

1
t

∫ t

0
a(s)ds ≥ 1

t

∫ min{t,u}

0
a(s)ds ≥ min{1

t
tC1,

1
t
uC1} = uC1.

Now, let t > 1. Then we set C2 =
∫ 1

0 a(s)ds and observe that

1
t

∫ t

0
a(s)ds ≥ 1

t
C2.

Combining these estimates, we arrive at∫ 1

0
a(st)ds ≥ C ′ min

{
1, 1
t

}
,

where C ′ = min{C1, uC1, C2}. Therefore

∥χ(0,1)∥Z′ ≥ CC ′∥min
{

1, 1
t

}
∥Y ′ = ∞.

This is in contradiction with (P4) property of the norm in Z, therefore Z is not
a rearrangement-invariant space.

Now we will find the optimal space for operators Sa with a not integrable.
We will, however, require that a behaves similarly to t−

1
q near infinity, for some

q ∈ (0,∞).

19



Definition 3.15. For p ∈ (0,∞), we define the functions φp and ap by formulas

φp(t) = t
1
p , ap = min{1, 1

φp
} for t ∈ (0,∞).

Prosposition 3.16. Let q ∈ (0,∞) and p be such that 1
p

+ 1
q

= 1. Further, set
X = Λφp and assume that Y ⊂ X+L1 and aq ∈ Y ′. Then E(X) = pφq. Further,
if we set φ = φq and

ρ(f) = ∥Rf∥Y ′ , f ∈ M+

and denote by Z the rearrangement-invariant space determined by ρ′, then Z is
optimal for Saq and Y .

Proof. First, fix q ∈ (0,∞), t ∈ (0,∞), f ∈ M. It is easy to see that (Et(f))∗ =
Et(f ∗), therefore we have

∥Etf∥X =
∫ ∞

0
Et(f ∗)(s)dφp(s)

= 1
p

∫ ∞

0
f ∗
(
s

t

) 1
s

1
q

ds

= t

p

∫ ∞

0
f ∗(u)(tu)− 1

q du

= t
1
p

p
∥f∥X ,

where the last but one equality is obtained using the change of variables s = tu.
This easily implies that E(X) = pφq. Set φ = φq and aq = a. We notice that
a ∈ X ′ which implies a ∈ Mφq = mφq (note that the equality is set-wise, the
norms in the mentioned spaces are, however, equivalent), since (2.1) holds for φq.
Thus, we have, by Theorem 3.4,

Sa : X = Λφp → mE(X) = mφq = Mφq

and
Sa : L1 → L∞.

Now Theorem 3.9 gives Saq : Y → Z. To prove optimality of Z, we only need to
show that Saf ∗ ≥ CRf ∗ for every f ∈ X +L1 and some constant C > 0 and use
Lemma 3.11. To that end, fix f ∈ X +L1 and t ∈ (0,∞). From the definition of
X and φ it is easy to calculate that ψ(t) = 1

t
. Then we have

Rf ∗(t) =
∫ 1

t

0
f ∗(s)ds+ t−

1
q

∫ ∞

1
t

f ∗(s)d(φp(s))

=
∫ 1

t

0
f ∗(s)ds+ t−

1
q
1
p

∫ ∞

1
t

f ∗(s)s− 1
q ds

≥ 1
p

(∫ 1
t

0
f ∗(s)ds+

∫ ∞

1
t

f ∗(s)(st)− 1
q ds

)

= 1
p

(∫ ∞

0
min

{
1, (ts)− 1

q

}
f ∗(s)ds

)
= 1
p
Saf

∗(t),

which gives Saf ∗ ≥ pRf ∗. Consequently, the assertion follows.
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The preceding proposition can be now reformulated in a more accessible way.

Corollary 3.17. Let a : (0,∞) → (0,∞) be non-increasing and bounded and let
q ∈ (0,∞). Assume that Y ⊂ Λφp + L1 is a rearrangement-invariant space such
that aq ∈ Y ′. For f ∈ M, set

ρ(f) = ∥Saq(f ∗)∥Y ′ .

If
0 < lim

t→∞
φq(t)a(t) < ∞,

then ρ is a rearrangement-invariant norm such that the space determined by ρ′ is
optimal for Sa and Y .

Proof. It is easy to show that a is equivalent to aq in the sense that there are
constants C1 > 0 and C2 > 0 such that

C1a(t) ≤ min{1, 1
φq

} ≤ C2a(t), t ∈ (0,∞).

Then we use Proposition 3.16 and realize that we can omit the multiplicative
constant 1

p
from the second term in Rf ∗, with X = Λφp and φ = E(X), without

losing properties of a rearrangement-invariant norm of ρ. Indeed, all the prop-
erties still hold since Saq and R are equivalent in the common sense, except for
perhaps triangle inequality. But since aq is non-increasing, Hardy’s Lemma in
conjunction with subadditivity of f ↦→ f ∗∗ gives the following pointwise estimate
for each f1, f2 ∈ M and t ∈ (0,∞)

Ssq((f1 + f2)∗)(t) ≤ Saq(f ∗
1 )(t) + Saq(f ∗

2 )(t),

whence the (P2) property of the norm in Y ′ gives the desired triangle inequality.

As one can see from Corollary 3.17, if we set a = aq then the optimal space
for Sa and Y is defined using the norm associate to

ρ(f) = ∥Sa(f ∗)∥Y ′ . (3.12)

A natural question arises. Why not define it as such for any a? Since if a is non-
increasing, it is not hard to prove that ρ defined as in (3.12) is a rearrangement
invariant norm under the following condition

Sa(χ(0,1)) = a∗∗ ∈ Y ′. (3.13)

Notice that boundedness of Sa from Y into Z (defined in terms of R) is a conse-
quence of (Saf)∗ ≤ CRf for f ∈ X+L1 and the optimality of Z is a consequence
of ∥Sa(f ∗)∥Y ′ ≥ C∥Rf∥Y ′ for f ∈ M. Both of these inequalities obviously hold
if we replace Rf with Sa(f ∗). Therefore if we defined Z as the rearrangement-
invariant space determined by the norm associate to ρ (defined in terms of Sa as
in (3.12)), we would obtain the optimal space rather easily. This course of action
is much more straightforward and requires a lot less work. However, it defines
the optimal space using the function a, which is very problematic. The princi-
pal difficulty consists in the fact that under such definition it would be next to
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impossible to nail down the optimal range partner space for a given particular
domain space. In this work we have avoided using a in definition of the target
(and sometimes optimal) space and we instead used X, which can be very helpful.
For example, in Theorem 3.14, we defined the optimal space using the function

∫ 1
t

0
f ∗(s)ds = 1

t
f ∗∗(1

t
), f ∈ M.

A great deal of theory is known about the elementary maximal function f ∗∗, not
so much, however, is known about Sa(f ∗).
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