
MASTER THESIS

Jaroslav Hofierka

Convergence of the embedding scheme

Institute of Theoretical Physics

Supervisor of the master thesis: Mgr. Jǐŕı Klimeš, Ph.D.
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approaches are used: tight-binding and ab initio. In the tight-binding method,
the single-particle Green’s function formalism is studied and explicit expressions
for Green’s functions of various one- and two-dimensional models are obtained.
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1. Introduction
Computational modelling of large molecular structures and solids has seen rapid
development in recent years. Various properties of these systems can now be de-
scribed with accuracy that is well sufficient to understand experimental observa-
tions. An example is joint experimental and modelling research of the structure
and dynamics of molecules adsorbed on solid surfaces [1]. To reach this goal,
however, a quantum-mechanical description (“from first principles”) is necessary.
Unfortunately, the Schrödinger equation cannot be solved directly and exactly for
large systems and approximations have to be made to obtain practical approaches.
A popular method of choice, Kohn-Sham density functional theory (DFT) is exact
in principle, but its widely used approximations often lack predictive power when
it comes to systems where weak interactions, such as van der Waals forces, are
important, or systems showing effects of both strong chemical and weak phys-
ical forces. These are exactly the effects important for the correct description
of adsorption phenomena. As a consequence, accurate prediction of the bind-
ing energy between a molecule and a surface remains a challenge. For example,
some molecules have two possible adsorption configurations, a chemisorbed state
where the molecule is bonded in a chemical sense to the surface and a physisorbed
state, where it interacts with the surface via van der Waals interactions. Many
theoretical methods in practical use nowadays have problems with predicting the
stability of either configurations.

To obtain accurate adsorption energies is far from straightforward as the
methods with sufficient accuracy are too computationally expensive to be ap-
plied to the systems of interest. There are two main techniques, wave-function
and electron-density based methods that originate from quantum chemistry and
solid-state physics, respectively. High-level quantum chemical methods are only
applicable to small systems due to steep computational scaling, e.g., the cou-
pled cluster method with singles, doubles, and perturbative triples contributions
(CCSD(T)) scales as O(N7) with N being the number of basis functions, which
depends on the number of electrons in the system. Therefore, adsorption at sur-
faces has been studied so far mainly using cheaper DFT methods. In the next few
paragraphs, let us explain shortly why the many-electron problem is so difficult
to solve and what approximations are typically employed.

1.1 Many-electron problem
The interactions between solids and molecules can be described by the Schrödin-
ger equation. Usually we seek stationary states given by the time-independent
version of Schrödinger equation Ĥ |ψn⟩ = En |ψn⟩ , where Ĥ is the electronic
Hamiltonian. The stationary eigenstates |ψn⟩ depend on positions of electrons of
the system explicitly and on positions of nuclei parametrically. Nuclei are treated
as a static background that causes an effective potential for the electrons, i.e.,
nuclei are “fixed” – this is the adiabatic (Born-Oppenheimer) approximation.

However, straightforward solution of the many-body Schrödinger equation
is difficult due to the dimensionality of the problem: a many-body wavefunc-
tion, being a complex-valued function of 3N variables for N electrons in three
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dimensions, does not factorize because of the electron–electron interaction. In-
evitably, due to the complexity of the many-electron problem, arising from the
instantaneous electron-electron interaction together with the indistinguishability
of electrons as fermions, approximations have to be applied to simplify the prob-
lem. If we neglect the electronic Coulomb interaction completely, we speak of
the independent-electron approximation, and the wavefunction factorizes. To ac-
count for the fermionic nature of electrons, we write the many-body wavefunction
as a Slater determinant.1 Perhaps the most popular approximation so far is the
mean-field theory, which replaces the electron interaction with its average effects.
This averaging means that there is a common potential for all the electrons. The
most widely used mean-field schemes are the Hartree-Fock approach and den-
sity functional theory. A mean-field solution usually provides about 99% of the
total energy, and, if one does not look at the fine details, most of the electron
density. If the mean-field theory is qualitatively correct, quantitative accuracy
can be achieved by introducing perturbative corrections. The corrections reintro-
duce the explicit interactions between electrons and it turns out that they affect
the most the electrons around the Fermi surface. Methods such as the GW ap-
proximation [2] for calculation of electronic quasi-particle energies, random phase
approximation (RPA) [3], and many-body perturbation theory [4] and coupled
clusters (CC) [5] from quantum chemistry, are examples of improving on top of
the mean-field theory. An alternative set of schemes to obtain total energy are
quantum Monte Carlo methods [6]. But even the simplest of them, variational
Monte Carlo, requires a guess of the wavefunction from a mean-field approach.

Recent progress in quantum computing, especially the algorithm development
and experimental realizations of quantum simulation, seems to provide an alter-
native path to overcome the fundamental exponential barrier. However, despite
the decades-long efforts of scientists and engineers there is still much work to be
done [7].

The principle of locality2 allows ignoring some long-range interactions in cal-
culations, and has been applied to reduce the computational cost of many mean-
field based methods (such as the linear-scaling density functional theory [8], local
correlation techniques [9] and many-body expansion), as well as develop non-
perturbative electronic structure methods that do not rely on the mean-field
theory (such as density matrix renormalization group (DMRG) and other tensor
network methods [10]). Lastly, locality puts forward the idea of embedding, one
of central topics of this thesis.

1.2 Embedding
The problem of interest is the adsorption of a single molecule on a solid surface.
One way to approach this is to take a small cluster representing the surface.
The size of the cluster is then gradually increased until convergence of properties

1In the independent-electron approximation, only one determinant is needed. One can work
with wavefunction methods that scale as M3, with M being the size of the basis, or better, as
opposed to the exponential scaling of the interacting many-body problem.

2Although quantum mechanics itself allows entanglement between quantum objects infinitely
far apart, the interactions between electrons decay with distance, and thus for low energy states
the correlation functions eventually vanish at long distance.
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in question is observed. However, increasing the cluster size typically leads to
a drastically increased computer cost and the convergence of properties can be
slow as the effects of the environment are neglected. Embedding theories provide
a natural way to focus computation on a small region of interest within a larger
environment. Specifically, the purpose of the embedding is to provide a compu-
tational recipe for the properties of a finite cluster (e.g., adsorbate with nearest
substrate atoms), taking into account its environment (rest of the substrate),
without the computational cost of treating the full problem. For this idea be-
hind quantum mechanics/molecular mechanics (QM/MM) or quantum mechan-
ics/quantum mechanics (QM/QM) methods, the 2013 Nobel Prize in Chemistry
was awarded to M. Karplus, M. Levitt, and A. Warshel.

There have been several embedding strategies developed over the years. The
two main ones are the subtractive and additive embedding. In both, the region
of interest (I) is treated with a more accurate method, giving energy contribution
Eacc

I . Now in the additive scheme, the total energy is obtained by adding the
energy of the environment (II) obtained with a less accurate method Eapprox

II and
an interaction term EI−II . On the other hand, in the subtractive scheme, these
two terms are substituted by the energy difference Eapprox

I+II − Eapprox
I obtained

with the less accurate (cheaper) method. The benefit of this latter approach is
that there is no interaction term, the drawback is that the cheaper method must
be able to describe the region I at least qualitatively correctly. The subtractive
scheme is applied in Chapter 4 of this thesis.

An example of the additive scheme is the so-called electrostatic embedding
QM/MM method, applicable, e.g., to ionic solids. Here, the cluster itself is
treated quantum mechanically, whereas the environment is treated classically, e.g.
as fixed point charges, involving interatomic electrostatic potentials (force fields)
that are computationally far cheaper than QM calculations. These methods differ
by the extent of mutual polarization included in the force fields [11]. However,
in covalent or metallic crystals, as opposed to ionic solids, it is beneficial to go
beyond electrostatics and account for electron correlation and the fact that the
outermost atoms of the cluster are bonded to the rest of the system.

Further classification of embedding schemes is based on the physical quantity
responsible for information transfer through the interface between the two regions,
in order to include quantum-mechanical electron correlation effects. This quantity
can be either the electron density (as in DFT methods), the single-particle Green’s
function, or the single-particle density matrix [12].

Several embedding schemes based on density functional theory (DFT) have
been proposed, relying on some form of an embedding potential Vemb that medi-
ates the interaction between the cluster and the environment. For example, in the
approach of Carter and co-workers [13], the atomic cluster is placed in an energy-
independent, local embedding potential Vemb(r) chosen so that the ground-state
DFT electron density is the same as the density of the cluster plus the environ-
ment. However, local embedding potentials possess the disadvantage that no set
of mutually orthogonal orbitals of the entire system exists. Consequently, eval-
uation of the total energy becomes challenging: in particular, the kinetic energy
needs to be approximated [14]. More elaborate operator-based approaches, such
as the one of Manby and co-workers [15] introduce a non-local embedding po-
tential Vemb(r, r′), in presence of which the region of interest (cluster) is treated
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using a high-level method. Recently, operator-based embedding techniques were
extended to bulk systems, treating point defects in semiconductors and insulators
[14].

With the aim of modelling strongly correlated molecules and solids, another
class of QM/QM embedding methods was developed using mostly time-dependent
(dynamic) Green’s functions. A popular scheme is the dynamical mean-field the-
ory (DMFT) [16], allowing to study the properties of a large system by simulating
a smaller “impurity” system that is coupled to a bath. In DMFT, the full prob-
lem of interest (commonly a crystal) is divided into fragments containing strongly
correlated orbitals (typically transition metal d and f orbitals) for which a high-
level self-energy approximation in each fragment is computed. These fragments
are embedded in the rest of the system that is treated with more approximate
methods. Most recent developments in the field of quantum embedding theories
for correlated systems include the self-energy embedding theory (SEET) of Zgid
and co-workers [17]. Note that some theories, also aiming at strongly correlated
systems, partition density matrices instead of Green’s functions, e.g., density
matrix embedding theory (DMET) [18], utilizing the Schmidt decomposition of
quantum states.

Green’s function approaches using a local energy-independent embedding po-
tential miss a proper treatment of the cluster wave-functions, so that they match
the wave-functions in the substrate. There are two general approaches in which
the wave-functions are properly embedded, classified by Grimley and Pisani [19]
as perturbed-crystal and perturbed-cluster methods. In perturbed-crystal meth-
ods the solution for the perfect solid is modified to account for the presence of
the defect, i.e., it is assumed that the defect introduces a perturbation relative to
the perfect crystal, localized to the cluster. If the Green’s function of the perfect
crystal is known in any localized basis representation, and the matrix elements
of the perturbation can be constructed, the Green’s function of the perturbed
crystal can be calculated, for example, using the Dyson equation. In case of
perturbed-cluster methods, “the solution for a small region around the defect is
modified to account for the rest of the crystal” [20]. In other words, an embed-
ding potential is added to the cluster Hamiltonian, to account for the rest of
the system (in a localized orbital basis, the embedding potential is usually called
‘self-energy’) [21]. Both of these schemes will be further discussed in this thesis.

Finally, it should be noted that the embedding method has a link with R-
matrix theory, widely used in electron scattering calculations in atomic physics.
The R-matrix is a generalised logarithmic derivative for the scattering electron
wave-function, defined over a sphere containing the atomic electrons. It represents
a many-body embedding potential, as the external electron can excite the atomic
electrons in the process of scattering.

1.3 Low dimensional systems
Real solids usually have “ends” where periodicity is lost, but this is commonly
ignored as a surface effect that has no influence on bulk properties. The finite
size of actual solids normally leads to no observable effects, but as we scale down
the size of structures, the discreteness of energy levels becomes comparable to
the thermal energy kBT leading to experimentally observable effects. This leads
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to “size quantization” effects.
Over the last decades, miniaturization in the industry has fuelled theoretical

and experimental research into low dimensional electron systems meaning that
physical models of one- and two-dimensional electron systems remain of practical
and fundamental interest. Fabrication of electronic devices, such as transistors,
using these novel materials and incorporating new designs can exploit the quan-
tum mechanical phenomena inherent to these materials. The hope is that a
new paradigm could be found circumventing the limitations of the current silicon
technology. This is the area where carbon-based nanomaterials like graphene and
quasi one-dimensional carbon nanotubes (CNTs) show great promise due to their
remarkable electronic properties. The usage of materials as electronic compo-
nents relies on the control of the electronic band gap, which can be affected by
the location and species of chemical dopants.

The understanding of low-dimensional physics was helped experimentally by
the development of molecular beam epitaxy (MBE) that allows materials to be
grown layer by layer. A combination of layers with different properties led to
the production of a layered semiconductor nanostructure, where the electrons
in a solid are trapped in a quantum well, forming a a two dimensional layer
of high carrier concentration and high mobility, called 2-dimensional electron
gas (2DEG). This layer can be further restricted with applied electric field to
form a 1D electron waveguide, or even zero-dimensional structure – a quantum
dot. When studying electronic conduction through small3 conductors, various
quantum phenomena have been observed, such as quantum Hall effect. The
quantum Hall effect was first observed in a 2DEG [22] and led to two Nobel
Prizes in Physics, of Klaus von Klitzing in 1985, and of Robert B. Laughlin,
Horst L. Störmer and Daniel C. Tsui in 1998.

It was long believed that isolated two-dimensional structures such as a sin-
gle graphene layer are unstable. Only in 2004, Geim and Novoselov extracted
graphene monolayers from bulk graphite using sticky tape for the first time [23],
for which they were awarded the 2010 Nobel Prize in Physics. The discovery
of graphene and its tremendous impact on scientific research has initiated the
search for other elemental two-dimensional (2D) honeycomb materials: in 2012,
silicene was first synthesized under ultrahigh vacuum conditions on a silver(111)
single crystal by Si molecular beam epitaxy (MBE) [24]. The synthesis of silicene
further launched an intensive search for other 2D elemental materials synthesized
under ultrahigh vacuum by MBE-like methods. The synthesis of germanene (2D
germanium) was reported in 2014 [25] followed by the synthesis of stanene (2D
tin) in 2015 [26].

However, note that of these 2D materials, only graphene is fully flat, which
results from the pure sp2 hybridization of its constituent carbon atoms. Other
group IV elements energetically prefer hybridization with an additional sp3 char-
acter when forming a 2D honeycomb layer. As a consequence of this mixed
hybridization, the bonds between adjacent atoms of the lattice are buckled, re-
sulting in a layer that is not completely flat. This buckling facilitates control of
the 2D layer properties, for example, via chemical functionalization or external

3A system is considered small, if quantum effects become necessary for its description. This
happens when its size becomes comparable to three characteristics lengths: the electron wave-
length, the electron mean free path and the phase coherence length.
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fields [27]. Another advantage of these new materials is the significant spin–orbit
interaction, which increases with increasing atomic size of the involved elements.
This opens the way to observe a quantum spin Hall effect [28], for example, in
germanene or stanene in an accessible temperature range, possibly even at room
temperature.

Interestingly, many other two-dimensional crystals have been fabricated. Two
dimensional hexagonal boron nitride (2D-hBN) is an isomorph of graphene with a
very similar layered structure. Although it is by itself an insulator, it can well be
tuned by several strategies including doping, substitution, functionalization and
hybridization [29]. 2D-hBN is considered as one of the most promising materials
that can be integrated with other 2D materials, such as graphene and transition
metal dichalcogenides, e.g., MoS2, for the next generation microelectronic and
other technologies.

1.4 Motivation and aims of this work
It is of utmost interest to understand the role of impurities in periodic structures
modelling real solids. To this end, several one- and two-dimensional models are
studied in this work with the aim of elucidating the response of electron systems to
an adsorbed impurity, i.e., localized perturbation. It is assumed that the studied
effects are local in the sense that the impurity (adsorbate) perturbs the system
in some limited region, whose size, however, is not known a priori. In order
to study the extent of this perturbed region and understand resulting electronic
structure effects, various theoretical approaches and models can be employed.
In particular, to study theoretically the local density of states and adsorption
energies, which are properties of interest obtainable from experiments, formalism
of Green’s functions is appropriate. Indeed, Green’s functions are widely used in
many areas of physics to study, e.g., electron propagation in a system.

This thesis is organized as follows: in Chapter 2, single-particle, time-indepen-
dent, zero-temperature Green’s functions of tight-binding Hamiltonians are stud-
ied. First, we explain the motivation behind addressing the electronic structure
problem with the Green’s functions instead of traditional wave functions. Then,
Green’s function formalism for studying impurities is discussed.

In Chapter 3, one- and two-dimensional systems are studied using Green’s
functions. Namely, the local density of states on the impurity (adatom) and
adsorption energies are calculated. To this end, we employ the tight-binding
approximation, which is, in fact, the simplest possible model of a solid with
the usual characteristic features such as energy band gaps [30]. It is a widely
used scheme within independent-electron approximation. The perturbed-crystal
embedding method and the Dyson equation are applied. Subsequently, we make
use of the perturbed-cluster embedding method in LCAO formalism that restricts
the calculation to a limited region of space and introduces the effect of the semi-
infinite solid through a non-local energy dependent term in the Hamiltonian.

In Chapter 4, state-of-the-art ab initio methods are employed to study ad-
sorption energies and convergence of the subtractive embedding scheme. Poly-
acetylene molecules of various lengths are considered as quasi-1D models. The
effect of chain length on the interaction of the chain with an “adsorbate” is stud-
ied. Also, convergence of adsorption energies of small closed-shell systems on
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two-dimensional graphene and hBN structures is studied. Due to the compu-
tational complexity of ab initio methods, we rely on the subtractive embedding
method, applying the computationally demanding scheme only for the area (clus-
ter) around the adsorption site and using a simpler approach for the rest of the
system (environment). Here, simpler methods include Hartree-Fock, EXX, PBE
functional within DFT and DFT-D3 dispersion correction. Higher-level methods
include MP2 and RPA.
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2. Formalism
To simulate many-electron problems, the precise form of a wavefunction is not
always needed. Very early after the development of quantum mechanics, it was
clear that the problem of dimensionality is very difficult to overcome and alternate
methods to compute measurable properties of electronic systems without precise
knowledge of the many-body wavefunctions must be developed. In this chap-
ter one of these methods is discussed, namely, single-electron time-independent
Green’s functions. These are introduced along with the concepts of the linear
combination of atomic orbitals (LCAO), the (local) density of states (DOS) and
other quantities relevant for studying electronic states in materials.

2.1 LCAO approach and the tight-binding ap-
proximation

In periodic crystals, one-electron wavefunctions take the form of Bloch states,
exploiting the discrete translational invariance of the system. In particular, if
the system is described by a periodic mean-field Hamiltonian, i.e., Hamiltonian
invariant under a translation by any lattice vector, the stationary states are the
Bloch [31] states of the form ψnk(r) = eik·runk(r), where the function unk(r)
has the same periodicity in r as the lattice potential. The quantum number k
determines how much the phase changes when we propagate by a lattice vector
R, i.e., ψnk(r+R) = eik·Rψnk(r). Here, n indexes different single-electron states.

In practical calculations the functions unk(r) need to be represented, either
on a grid or using some basis functions. For solids, plane waves seem to be
the natural basis, since the expansion of the electronic wave functions in plane
waves is computationally very efficient. This is true because the plane waves
are eigenfunctions of the momentum operator and the kinetic energy operator is
diagonal in momentum (reciprocal, or k) space. Hence the kinetic energy can
be easily computed in momentum space whereas the potential energy is more
easily evaluated in real space. The switching between real and momentum space
is done by Fast-Fourier-Transformation (FFT) techniques. However, in order to
use plane waves for description of impurities and surface science problems, the
surface has to be cast into a three-dimensional periodicity. This is achieved in
the so-called supercell approach, in which a slab of finite width, containing the
interface, is considered and periodic boundary conditions are applied. Clearly, the
electronic structure of the surfaces of the slab is altered by quantum confinement
along the normal of the surface and the vacuum layer between the slabs has to
be sufficiently thick to avoid any interaction between the slab and its periodic
images. This means that the accuracy of the slab approach to modeling a semi-
infinite surface may critically depend on several parameters such as the slab and
vacuum layer thickness. For example, convergence of adsorption energies can be
slow with the number of bulk layers considered [32].

In order to model local phenomena, it is more useful to employ a localized
basis set, e.g. the LCAO method (linear combination of atomic orbitals) by
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writing the wavefunction as a sum of localized atomic orbital basis functions

ψn(r) =
∑︂
α,rj

cn,αrj
φα(r − rj), (2.1)

with φα(r − rj) being atomic-like orbitals1. Here, j is a site index numbering
atomic sites and α indicates the type of orbital, e.g., 3s, 3pz, etc. In the following,
we will restrict ourselves to the case of a single orbital per atom, i.e., we neglect
α.

The LCAO expansion can be applied to the single-particle Schrödinger equa-
tion to give the matrix equation

Hcn,j = SEncn,j, (2.2)

with H and S being the Hamiltonian and overlap matrices, respectively, and cn,j

column vectors with index j accounting for both rj and α. The calculation of
the Hamiltonian matrix elements involves at least one- and two-center integrals.
The tight-binding method consists of parametrizing these integrals with orbital
energies ϵ and (off-diagonal) hopping terms τ . The discussion of these parameters
is postponed to the next chapter. Note that tight-binding is very similar to the
Hückel method used in quantum chemistry. In solid-state theory, the LCAO tight-
binding method is particularly appropriate when the overlap between neighboring
atoms is relatively small, e.g., for describing the p bands of alkali halides and d
bands of transition metals [33].

In general, orbitals on different sites are not mutually orthogonal, that is,
⟨φi|φj⟩ = Sij ̸= 0, although we assume the orbitals to be normalized to 1. If S is
orthogonal, calculations are simpler, if not, Löwdin orthogonalization is applied
by transforming orbitals with the matrix S−1/2, leading to H̃ = S−1/2HS1/2 with
the same eigenvalues as H. Note, however, that each of the new orbitals is now
more spread out, thereby increasing the number of non-zero matrix elements in
H̃.

As we apply the LCAO expansion to solids, we restrict ourselves to the sim-
plest possible case by considering only one atom per primitive crystal cell and
only one atomic orbital per atom. In this case, due to the Bloch theorem,2 the
coefficients crj

are equal to 1√
N

exp(ik · rj) with rj being atom positions and N
number of unit cells in the solid. This was originally proposed by Bloch in 1928
[31] and further developed by Slater and Koster [34]. The quantum number k is
restricted to a finite region in k-space, called the first Brillouin zone (BZ). The
eigenenergies En(k) are continuous functions of k within each band n.

Bloch states are extremely useful as they allow to reduce the size of the simu-
lation cell to the unit cell only. Moreover, the overlap and Hamiltonian matrices
factorize in k allowing for reduced computational cost. However, Bloch states
are delocalized across the whole system, and therefore they are unsuitable for
description of local phenomena such as defects or adsorption. For example, at a
surface, new electronic states arise, exhibiting very limited propagation into the

1These are functions of 3-dimensional vector r and they can be given numerically or ana-
lytically, but typically decaying exponentially as e−ζr for r radial distance measured from the
center of the given orbital.

2It is easy to see that the Bloch condition ψn(r+R) = eik·Rψn(r) leads to crj+R = eik·Rcrj
,

or, equivalently, crj
= eik·rj c0, and we can choose c0 = 1/

√
N to satisfy orthonormality.
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bulk. To study effects of impurities, therefore, real space description is preferred.
Hence, in the following sections, we will explore the real space representations of
relevant physical quantities, such as Green’s functions.

2.2 Density of states
There are many properties of interest that can be calculated and at the same time
compared to experiments. For example, the density of states (DOS) is accessible
from photoelectron spectroscopy (PES). However, it should be noted that PES
is hard to be reproduced due to the difficulty in obtaining the DOS of correlated
electrons (quasi-particles). In simple one-electron methods, once we know the
eigenvalues En and eigenfunctions ψn of the Hamiltonian Ĥ, we can evaluate the
local density of states (LDOS) in the following way:

n(E, r) =
∑︂

n

|ψn(r)|2δ(E − En). (2.3)

Using the LCAO expansion coefficients cn,j we can rewrite the definition above
as

nj(E) =
∑︂

n

|cn,j|2δ(E − En), (2.4)

which measures the probability of finding an electron with energy E at j-th atom.
The global density of states (DOS) can be calculated as a sum of local densities

and tells how many states are in a given energy interval at E
n(E) =

∑︂
j

nj(E) =
∑︂

n

δ(E − En), (2.5)

since we assume the wavefunction to be normalized.
For large systems, the density of states does not depend much on the bound-

ary conditions. In general, the local density of states depends on the boundary
conditions only a few electron wavelengths away from the boundaries. The com-
parison of the LDOS in the neighbourhood of a surface (or any defect) with the
perfect bulk density of states enables us to study the range of the perturbation
due to the surface. In any case, the effects of boundary conditions tend to cancel
when one integrates n(E, r) (or nj(E)) with respect to E. At the same time,
even though a small perturbation may change individual ψn by a large amount,
it can often leave the sum ∑︁

n |cn,j|2 invariant. Thus the LDOS does not have
such extreme sensitivity to small perturbations that wavefunctions have [33].

If we had to evaluate the LDOS from the |ψn(r)|2, or |cn,j(r)|2 respectively,
then nothing would have been gained because we would first have had to cal-
culate the eigenstates ψn and eigenvalues En. The states ψn are very sensitive
to perturbations, therefore it is more feasible to work with DOS, and Green’s
functions. In fact, n(E, r) can be obtained even without the knowledge of ψn,
since it is related to the imaginary part of the Green’s function g(r, r′, E) by the
equation:

n(E, r) = − 1
π

Im g(r, r, E), (2.6)

and the Green’s function has many marvellous mathematical properties so that it
can be solved for directly without ever involving oneself with the wavefunctions
ψn(r). This is the standard way done nowadays when quasi-particle states are
obtained within the GW approximation for the self-energy [35].
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2.3 Green’s functions
Green’s functions are used to find solutions to differential equations and are en-
countered in many parts of physics. Green’s functions represent the impulse
response of a system to a singular input, and specifically in condensed matter
physics, they are used as an efficient method to investigate the behaviour of
many-body systems. They contain a lot of information about a system, for ex-
ample the density of states and transport properties representing the propagation
of an electron through the system.

In general, a Green’s function g(r, r′; z) for a time-independent, hermitian,
linear differential operator L(r) with a complete set of eigenfunctions φn(r) is
defined as the solution to an inhomogeneous differential equation

[z − L(r)]g(r, r′; z) = δ(r − r′), (2.7)

where vectors r, r′ belong to domain Ω and boundary conditions for r, r′ lying
on the surface S must be the same for g(r, r′; z) as well as φn(r).

Introducing a Hilbert space, and using the Dirac bra-ket notation as

φn(r) = ⟨r|φn⟩ (2.8)
δ(r − r′) = ⟨r|r′⟩ (2.9)

δ(r − r′)L(r) = ⟨r|L|r′⟩ (2.10)
g(r, r′; z) = ⟨r|g(z)|r′⟩ , (2.11)

we can rewrite Eq. 2.7 in the following way:

(z − L)g(z) = 1. (2.12)

If the complex variable z = λ + iη does not coincide with λn, i.e., if z ̸= λn,
then we can write formally

g(z) = 1
z − L

. (2.13)

Then multiplying with the unitary operator ∑︁n |φn⟩ ⟨φn| we obtain

g(z) =
∑︂

n

|φn⟩ ⟨φn|
z − λn

, z ̸= λn. (2.14)

In this representation of g(z) we can note that it is meromorphic with a finite
number of poles, which correspond to the discrete eigenvalues of L. If we want to
define g(z) at z = λn, we have to do it by a limiting procedure. In the usual case,
where the eigenstates associated with the continuous spectrum are propagating
or extended, the side limits limη→0+ g(λ ± iη) exist3 but are different from each
other [36]. Thus, this type of continuous spectrum produces a branch cut in g(z)
along certain parts of the real axis.

3For unusual spectra associated with localized eigenstates in disordered systems there is the
possibility of the non-existing side limits, but this is not of interest here. The line of singularity
corresponding to such a spectrum is not a branch cut but what is called a natural boundary
[36].
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For the Hamiltonian operator L = H with a complete set of eigenvectors
φn = ψn with eigenvalues En, Eq. 2.14 gives the eigenvalue representation

ĝ(z) =
∑︂

n

|ψn⟩ ⟨ψn|
z − En

, (2.15)

Here, the choice of the sign of ±iη in the imaginary part of the argument of g(z)
determines the causality and the direction of electron propagation. The result-
ing functions are called the retarded and advanced Green functions respectively
and correspond to perturbations acting forward (causal) or backwards in time.
The retarded Green functions are chosen here, in accordance with convention
when time-reversal symmetry exists for a problem – their use reflects the natural
intuition.

In the basis of atomic orbitals φi, the matrix element of ĝ(z) from Eq. 2.15 is
given by

ĝj,l(z) =
∑︂

n

⟨φj|ψn⟩ ⟨ψn|φl⟩
z − En

. (2.16)

Now we recall from the discussion above that the eigenstates of a periodic
(tight-binding) Hamiltonian have the form

|ψnk⟩ = 1√
N

∑︂
rj

eik·rj |φj⟩ , (2.17)

considering only one atom per primitive crystal cell and only one atomic orbital
per atom. Thanks to the orthogonality of the atomic orbitals we obtain

ĝj,l(z) = 1
N

∑︂
k

eik(rj−rl)

z − E(k) . (2.18)

The most important feature of Green’s functions, for us, is that the imaginary
part of the onsite4 Green’s function gjj gives the local density of states (LDOS):

nj(E) = − 1
π

Im gjj(E), (2.19)

where j is any site index. This fact was already mentioned in Eq. 2.6, however
now we can understand where it comes from. First, note that the (retarded)
Green’s function of the Hamiltonian operator can be written using Eq. 2.15
formally as

ĝ(E) = lim
η→0+

((E + iη) − Ĥ)−1. (2.20)

Using the well-known identity

lim
η→0+

1
x± iη

= p.v.1
x

∓ iπδ(x), (2.21)

one can easily obtain Eq. 2.19. Also, it follows that the global density of states
(DOS) (Eq. 2.5) is the trace of imaginary part of Green’s function, i.e., it is given
by a sum over all atomic orbitals

n(E) = − 1
π

Im Tr gjj(E). (2.22)

4This is the diagonal element in the matrix representation.
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While the form of g in Eq. 2.20 readily allows calculation via matrix inversion
for small systems (taking z = E + iη, η small), for large systems, this method
becomes impractical5. Alternatively, if we are interested in only a few elements
of the matrix g, such as the diagonal ones giving the local density of states, we
can apply methods of linear algebra to obtain these elements without the need
to invert the whole matrix, as we will show later in this thesis.

Assuming an infinite periodic system, we can replace the sum with an integral
in Eq. 2.15 by considering a finite domain Ω and taking the limit as Ω becomes
infinite ∑︂

k

−−−→
Ω→∞

Ω
∫︂ dk

(2π)d
. (2.23)

Then we can rewrite Eq. 2.16 as

ĝj,l(z, r) = Ω
N

∫︂
BZ

dk

(2π)d

eik(rj−rl)

z − E(k) , (2.24)

i.e., the matrix elements of Green’s function are now expressed as a d-dimensional
integral over the Brillouin zone.

For infinite systems an exact solution can be found by exploiting the peri-
odicity and homogeneity of the system6. While one-dimensional tight-binding
systems can be quite easily treated by hand (see Chap. 3), Green’s functions for
two-dimensional tight-binding lattices can be expressed in terms of the complete
elliptic integrals of the first kind. For three-dimensional lattices, one can similarly
obtain a product of an algebraic expression and two elliptic integrals of the first
kind, with moduli that are algebraic functions of the expansion parameter z [37].

For large systems the Green’s function can be calculated recursively by piece-
wise connection of small regions of the entire system using either the continued
fraction technique or the Dyson equation.

2.3.1 Continued Fraction
From the spectral decomposition of the diagonal Green function, Eq. 2.16 above,
we see that the residue of each eigenvalue in g(E) is positive. This forces the
imaginary part of g to be negative for E in the upper half of the complex plane.

5As the n × n matrix H increases in size the computational complexity of calculating g
directly through matrix inversion scales typically as O(n3). Theoretically one could achieve
O(n2.37) (Coppersmith–Winograd algorithm), but this is not used in practice.

6In cases of infinite periodic systems (lattices), we speak of the lattice Green’s functions
(LGFs) in tight-binding formalism, which are used in many areas of condensed matter physics.

The lattice Green’s function gi,j(z) can be written as an inverse power series about z = ∞ ,
where the coefficient of the z−n−1 term is related to the number of paths of length n from site
i to site j. This series is useful for numerically evaluating the Green’s function outside the unit
disk (|z| > 1), and sometimes to evaluate the quantities g(±1), which are known as Watson
integrals [37].

To obtain the real-space representation of the Green’s function ‘on the cut’ (i.e., on either
side of the branch cut), more sophisticated methods must be employed, since the power series
diverges. The recursion method and the continued-fraction method can be used, or, alter-
natively, recently it was shown (see Ref. [38]) that Green’s functions can be evaluated by
converting their power series into Chebyshev series. This amounts to analytic continuation
from the region |z| > 1 to the region |z| < 1.
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By hermiticity, the imaginary part of g(E) is positive for E in the lower half-
plane. Thus the poles of g(E), which occur at eigenvalues of H, are real and
the zeros of g(E) are also real and separate the poles along the real E axis. A
function with the above properties can be written as a continued fraction [39].

Using methods of linear algebra, we can easily write down a continued fraction
expression for a diagonal element of the matrix g00(E) = ⟨0|(E + iη −H)−1|0⟩,
where H is a tridiagonal symmetric matrix (representing tight-binding Hamilto-
nian) of the form

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b1 0 ... 0
b1 a1 b2 0 ...
0 b2 a2 b3 0 ...

...
... ... 0 ... ... bN

0 ... 0 bN aN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us denote A0 = E −H, and similarly let An be a square matrix with the
first n rows and columns removed. The first element of the inverse matrix A−1

0 is
given as the cofactor divided by determinant:

g00 = detA1

detA0
.

We can expand the determinant as

detA0 = (E − a0) detA1 − b2
1 detA2,

leading to
g00 = 1

(E − a0) − b2
1

det A2
det A1

,

therefore, the first diagonal element of the Green function is given by a continued
fraction

g00(E) = 1
E − a0 − b2

1

E−a1−
b2
2

E−a2−...

. (2.25)

This is the continued-fraction representation and it can be used to compute the
local density of states by, in the finite case, introducing a small imaginary part to
E (the effect is to broaden each delta function into a Lorentzian), or in the infinite
case, replacing an infinite part of the fraction by an analytic approximation.
This continued fraction truncated to level N can be written as a sum of rational
functions and then the LDOS is given as a sum of delta functions. There are
several ways to turn this into a smooth continuous function [39].

Since any matrix can be transformed into a tridiagonal matrix7, any tight-
binding model can be transformed into this pseudo-one-dimensional chain model
[39]. Since any quantum system can be transformed into a chain model, we
need only investigate such chain models in order to see the varieties of quantum
phenomena that are possible. To understand a particular physical system, we
only need to find a suitable chain model.

7The fact that any square matrix can be tridiagonalized follows from the theorem on the
Jordan canonical form: any matrix with eigenvalues λi is similar to a matrix with these eigen-
values in the principal diagonal, with zeros and one along the first superdiagonal, and zeros
elsewhere.
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2.3.2 Dyson equation
In some cases we know the Green’s function of a subsystem and we want to use
it to find the full system’s Green’s function. This partitioning can occur not only
in spatial sense, as in the treatment of defects, but also in a Hilbert space, as in
the perturbation theory.

In later chapters, we will aim to model localized disorder in periodic systems.
The Dyson equation is a useful way of formalizing the treatment of a localised
perturbation applied to a regular crystal lattice. Writing the Hamiltonian of
the perturbed system as Ĥ = H0ˆ + V̂ , we denote the Green’s function of the
unperturbed Hamiltonian as ĝ = 1

z−H0̂
and similarly let Ĝ be a Green’s function

of Ĥ. Then we can rewrite Eq. 2.20 as

Ĝ(z) = (z − Ĥ)−1

=
[︄
(z −H0ˆ )

(︄
1 − 1

z −H0ˆ V̂

)︄]︄−1

= ĝ
[︂
1 − ĝV̂

]︂−1

= ĝ
[︂
1 + ĝV̂ + (gV )2 + ...

]︂
= ĝ + ĝV̂ Ĝ.

It is useful to define
T̂ = V̂

1 − ĝV̂
, (2.26)

so that we can also write for the full Green’s function

Ĝ = ĝ + ĝT̂ ĝ =⇒ ∆Ĝ = ĝT̂ ĝ. (2.27)

The quantity T̂ represents the (renormalized) perturbation modified by the effect
of perturbation itself. If V̂ is Coulomb interaction, T̂ would be the screened
interaction, usually denoted Ŵ .

Let us now consider the construction of the inverse operator 1/(1 − gV ) for
potentials V of finite range in a specific matrix representation. From linear al-
gebra, we know that the inverse of a matrix A is equal to the transpose of the
cofactor matrix times the reciprocal of the determinant of A. A necessary and
sufficient condition for the existence of an inverse is that the determinant must
be non-zero. The determinant will vanish only for some specific values of the
energy, which are the energies of the localized states. Consequently, in order to
find the energy of a localized state, we look for a root of det(1 − gV ).

We arrange the matrix V (corresponding to a finite-range potential) in block
form, so that the portion of V containing nonzero elements forms a submatrix
in the upper left. Then, g is arranged in a corresponding manner. Namely, we
denote

V =
(︄
Vaa 0
0 0

)︄
, g =

(︄
gaa gab

gba gbb

)︄
. (2.28)

Then we obtain
1 − gV =

(︄
1 − gaaVaa 0
−gbaVaa 1

)︄
, (2.29)
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where 1 represents a unit matrix.
By expanding according to minors, beginning at the lower right, we can easily

verify that the determinant of the entire matrix is just the determinant of the
upper-left part,

det(1 − gV ) = det(1 − gaaVaa). (2.30)
For example, if we have a single impurity with only a single nonzero matrix

element Vaa of the impurity potential, we can immediately write that the energy
of a localized (bound) state Eb is given implicitly by:

Re gaa(Eb) = 1
Vaa

. (2.31)

Further, if we construct the inverse of the upper left matrix 1 − gaaVaa, the
inverse of the full matrix can be found immediately:8

(1 − gV )−1 =
(︄

(1 − gaaVaa)−1 0
gbaVaa(1 − gaaVaa)−1 1

)︄
. (2.32)

To construct T , we multiply this by V to get:

T =
(︄
Vaa(1 − gaaVaa)−1 0

0 0

)︄
, (2.33)

i.e., the nonzero part of T has the same dimensionality as the nonzero block of
the potential.

2.3.3 Change in the density of states due to a perturba-
tion

Let us now consider the local density of states nj(E), which is given by the imag-
inary part of the onsite Green’s function, as shown in Eq. 2.19. By integrating
nj(E) up to the maximally occupied level EF , we obtain the electron occupation9

of the j-th lattice orbital denoted as Nj:

Nj = − 1
π

Im
∫︂ EF

−∞
gjj(E)dE, (2.34)

where the zero-temperature limit of the Fermi-Dirac distribution fFD(E) −−−→
T →0

Θ(EF − E) is assumed.
8Namely, we utilize the fact that, given a matrix partitioned in the block form(︃

A 0
C 1

)︃
,

its inverse is given by (︃
A−1 0

−CA−1 1

)︃
.

9This quantity corresponds to the electronic charge density ρ(r) in density functional theory
calculations.
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For example, let us consider an isolated electron occupying an orbital with
an arbitrarily chosen energy level ϵa. The corresponding Green’s function is
according to Eq. 2.15 given by

gaa(E) = lim
η→0+

1
E + iη − ϵa

. (2.35)

Then from Eq. 2.34 we obtain for the occupancy of the level

Na = − 1
π

Im
∫︂ EF

−∞
gaa(E)dE = η

π

∫︂ EF

−∞

1
(E − ϵa)2 + η2dE =

π + 2 arctan
(︂

EF −ϵa

η

)︂
2π .

(2.36)
Clearly, since η > 0, the result is Na = 1 if EF > ϵa, i.e., the level is occupied, or
Na = 0 if EF < ϵa, i.e., the level is not occupied.

Here it may be useful to note that in this chapter the existence of spin de-
generacy is ignored, since it has been assumed that only one electron can occupy
one energy level.

In general, to calculate the change in the density of states of a perturbed
Hamiltonian H = H0 + V , where H and H0 have eigenvalues Ej and ϵj respec-
tively, one can write, as in [40], with the help of Eq. 2.21, that10

∆n(E) =
∑︂

j

(δ(E − Ej) − δ(E − ϵj)) =

= − 1
π

Im
∑︂

j

(︄
1

E − Ej + iη
− 1
E − ϵj + iη

)︄
=

= − 1
π

Im ∂

∂E
log det

(︄
E −H + iη

E −H0 + iη

)︄
=

= − 1
π

Im ∂

∂E
log det(1 − gV ). (2.38)

In a similar way, see, e.g., discussion in [40], we can derive for the density of
states

n(E) = −π−1 Im d

dE
log det g(E + iη), (2.39)

while for the integrated desity of states (number of electrons with energy below
E):

N(E) = −π−1 Im[log det g(E + iη)]E−∞. (2.40)
Since Im log z = arg z, the above equation for the number of electrons in

the system may be interpreted as follows. Near an energy eigenvalue, g(E) is
dominated by the pole at the eigenvalue, and the argument (phase) of g(E + iη)
changes by π as one goes halfway around the pole along a path just above the
real axis. Therefore, a single pole contributes with 1.

10Here, we choose the principal branch of the complex logarithm. Also, determinants are
invariant under change of basis and it is most convenient to use the orthonormal bases of
eigenvectors so that

det
(︃
E −H + iη

E −H0 + iη

)︃
=
∏︂

j

E − Ej + iη

E − ϵj + iη
(2.37)
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For any finite cluster of atoms, the energy levels form a discrete spectrum of
eigenvalues En instead of a continuous band, and local DOS is given by a corre-
sponding set of delta functions and is, strictly speaking, either zero or infinite,
and it can easily change from one to the other if, by enlarging the cluster and
changing the E we move onto or off one of the delta functions. In that math-
ematical sense, n(E) does not converge as the size of the cluster is increased.
In reality, the number of delta functions increases with the cluster size and the
weight of one eigenfunction on a given atom decreases correspondingly. However,
N(E), its primitive function, must be convergent, since we require it to represent
the total number of electrons in the system [33].

2.3.4 Lloyd equations
The Lloyd equations [41] are a set of equations that express the changes in the to-
tal number of electrons (∆N) and total energy (∆E) through a local perturbation
V applied to the system. From the equations above, and using the fundamental
theorem of calculus, we can write:

∆N(E) = − 1
π

Im log det(1 − gV ), (2.41)

In the case of adsorption, for example, ∆N = 0 is required because the per-
turbation acts only to connect the adatom and the host system. This act of
connection cannot increase or decrease the number of electrons in the whole sys-
tem, hence the total change must be zero. This quantity can thus be used as a
self-consistent check condition. The total electronic energy change is expressed
as

∆E = Eafter − Ebefore, (2.42)
where the total electronic energy of a system is given by

Etotal =
∫︂ EF

−∞
En(E)dE. (2.43)

Problems in calculating ∆E directly in this manner arise as for large or infi-
nite systems the numerical values of Eafter and Ebefore are very large, but ∆E is
typically several orders of magnitude smaller. This presents an obvious challenge
for numerical calculation and doing this reliably is extremely difficult.

Obviously, due to linearity of the integral we can write

∆E =
∫︂ EF

−∞
E∆n(E)dE, (2.44)

where ∆n(E) is a change of the density of states.
Next, substituting the definition of ∆n(E) from Eq. 2.38, we obtain an alter-

native expression for ∆E with only knowledge of the local perturbation V [40]:

∆E = − 1
π

Im
∫︂ EF

−∞
E

d

dE
log det(1 − gV )dE. (2.45)

In this thesis, the adsorption energy is by definition the difference in total
electronic energies of the perturbed (with the adsorbate) and unperturbed (bare)
systems. The electronic energy of the isolated adsorbate must be equal to Cϵa,
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where C is the number of electrons occupying the orbital. Since the perturbation
V connects the impurity to the host system, it must be required that ∆N = 0. An
additional subtlety is that the disconnected impurity has an energy level which
may or may not be occupied by electrons, but must be nevertheless considered
in the calculations.

Using the result from Eq. 2.45, and integrating by parts, we obtain

Eads = (2θ(EF − ϵa) − C)ϵa + 2
π

Im
∫︂ EF

−∞
log det(1 − g(E)V )dE, (2.46)

where the factor 2 accounts for spin degeneracy.

2.4 LCAO Embedding
In the LCAO method, the wave-function for the whole system ψ(r) is expanded
in terms of local orbitals, which are typically atomic-like wave-functions. The
Schrödinger equation becomes the matrix eigenvalue equation.

In the embedding problem, we split the orbitals into those in region I and
those in region II. The orbitals in region I have coefficients in the wave-function
expansion which we shall represent by the vector φ, and those in region II by ψ.
The matrix Schrödinger equation for the whole system can then be written in
block matrix form as [21](︄

H11 H12
H21 H22

)︄(︄
φ
ψ

)︄
= E

(︄
O11 O12
O21 O22

)︄(︄
φ
ψ

)︄
. (2.47)

The only non-zero elements of H12 and O12 are those which couple the orbitals
across the boundary between the regions. This system of equations for φ and ψ
can be rewritten using the Green function g22 = (EO22 − H22)−1 for region II
decoupled from I as

Hembφ = [H11 + Σ11(E)]φ = EO11φ, (2.48)
where the self-energy (embedding) matrix is given by

Σ11(E) = (H12 − EO12)g22(H21 − EO21). (2.49)
The presence of the energy-dependent embedding potential Σ(E), also called

the self-energy, in Eq. 2.48 prevents the eigenvalues and eigenvectors from being
obtained from a single matrix diagonalization. Nevertheless, this formulation is
still very useful, and is used, e.g., for calculations of electron transport in LCAO
formalism [42].

The embedded Green’s function

The Green’s function of region I is defined as
(EO11 −Hemb)G11(E) = [EO11 − (H11 + Σ11(E))]G11(E) = I, (2.50)

where I is a unit matrix. This equation defines the embedding potential Σ(E) and
shows that it is calculable from the properties of the unperturbed system alone.
Moreover, Σ(E) is a boundary-localised potential, in that it is small unless both
its row orbital and its column orbitals have substantial overlap with orbitals in the
embedding region [43]. Let us finally note that, one can derive this result directly,
without invoking the eigenvalue equation, using Dyson’s equation of section 2.3.
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3. Tight-binding calculations
In this chapter, tight-binding models are studied using the formalism developed
in the previous chapter. After a short introduction on tight-binding in position
representation, Green’s functions for various one- and two-dimensional lattices
are computed. Then, a localized impurity (adatom) is introduced and the re-
sulting changes in the electronic structure of the composite systems are studied.
The main properties of interest are the adatom density of states (DOS) and the
adsorption energy.

3.1 Introduction
In this section, we seek to place the tight-binding approximation on a quantitative
footing. To this end, consider a periodic crystal lattice of N unit cells, with a
single atom per cell (simple cubic lattice), such that an electron in an isolated
atom located at rj is described by the atomic orbital φ(r − rj). This atomic
orbital is assumed to be the only solution to the equation

(−∇2 + U(r))φ(r) = εφ(r), (3.1)

where U(r) is the potential energy of an electron moving in the field of an isolated
atom.

If we expand the one-electron wave function of the whole crystal as a sum
of these orbitals centered on different lattice sites (LCAO expansion), the Bloch
theorem requires that the wave function has the form

ψk(r) =
∑︂

j

cjkφ(r − rj) = 1√
N

∑︂
j

exp(ik · rj)φ(r − rj), (3.2)

and satisfies
Hψ(r) = (−∇2 + V (r))ψ(r) = Eψ(r), (3.3)

where V (r) ̸= ∑︁
j U(r − rj), i.e., the potential is, in general, not equal to the

sum of atomic potentials.1
Using Eq. 3.2 in 3.3, multiplying from the left by φ∗(r − ri) and integrating

over whole space leads to [44]
∑︂

j

cjk

[︄∫︂
φ∗(r − ri)Hφ(r − rj)dr

−E
∫︂
φ∗(r − ri)φ(r − rj)dr

]︄
= 0. (3.4)

This can be rewritten using Eqs. 3.1 to 3.3 as
∑︂

j

exp(ik · rj)
[︄∫︂

φ∗(r − ri)
(︂
V (r) − U(r)

)︂
φ(r − rj)dr

+(ε− E)
∫︂
φ∗(r − ri)φ(r − rj)dr

]︄
= 0. (3.5)

1Combining two hydrogen atoms, two Coulomb potentials would give us V (r) for H+
2 , not

for H2.
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The tight-binding approximation introduces the following parametrization:

∫︂
φ∗(r − ri)

(︂
V (r) − U(r)

)︂
φ(r − rj)dr =

⎧⎪⎪⎨⎪⎪⎩
ϵ0 if i = j

τ if i, j n.n.
0 otherwise,

(3.6)

where n.n. means nearest neighbors. Here, we assume that all nearest neighbor
contributions are the same, as is the case, e.g., if the orbitals are spherically
symmetric. The Coulomb integral, parametrized by ϵ0, is always negative, since
V (r) − U(r) < 0 to satisfy the minimum energy requirement. The sign of the
hopping integral, parametrized by τ , depends on the signs of the overlapping parts
of the involved orbitals. If they have the same sign, as in the case of s orbitals,
τ < 0. This is what we will usually assume throughout this work. The hopping
integrals τ are responsible for the broadening of the discrete atomic levels into
an energy band. They are functions of the direction cosines of ri − rj and of
a limited number of parameters (Slater-Koster parameters [34]) which decrease
rapidly with the interatomic distance (at least as r−2).

If we assume that the orbitals do not overlap considerably, i.e., the electrons
are tightly bound to the atoms, we can write∫︂

φ∗(r − ri)φ(r − rj)dr = δij, (3.7)

which allows us to simplify Eq. 3.5 with the help of Eq. 3.6 to obtain the
dispersion relation

E(k) = ϵ0 + τ
∑︂
δi

exp(ik · δi), (3.8)

where vectors δi connect the atom at the origin with its nearest neighbours.
Note that we can rewrite Eq. 3.5 as follows:∫︂

φ∗Hφdr −
∫︂
φ∗(V − U)φdr = ε, (3.9)

meaning that if we set the atomic energy level to zero, ε = 0, we can replace
V −U by H in Eq. 3.6. This justifies speaking of the parametrization of Eq. 3.6
as parametrization of Hamiltonian’s H matrix elements.

3.2 One-dimensional systems
In this section, we will study Green’s functions of one-dimensional tight-binding
chains. We derive explicit formulae and discuss different boundary conditions.
First, we present results for infinite chains, since the derivation is more straight-
forward. The discussion of finite chains will follow afterwards.

Let us first consider a linear chain of atoms with spacing a, such that each atom
possesses a single electron orbital. These orbitals are assumed to be identical and
mutually orthogonal. Then, using Eqs. 3.4 and 3.6 we obtain the set of equations

(E − ϵ0)cjk − τ(c(j+1)k + c(j−1)k) = 0, j = 2, 3, . . . , N − 1, (3.10)
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with the last two equations for j = 1, N fixed by boundary conditions. To solve
this equation, we use the ansatz

cjk = Aeijka +Be−ijka, (3.11)

where a is the atomic spacing and A,B are constants. Alternatively, we can
put cjk = ˜︁A cos(jka) + ˜︁B sin(jka). In the following sections we apply different
boundary conditions to the chain.

3.2.1 A chain with periodic boundary conditions
If we apply periodic boundary conditions, i.e., write cnk = c(n+N)k, then the
quantum number k is quantized according to the condition eiNka = 1, i.e., we
obtain k = 2π

Na
m, m = −N

2 + 1, ..., N
2 . The Hamiltonian matrix representation

has the form of a tridiagonal matrix with added τs in the corners⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ0 τ 0 · · · τ

τ ϵ0 τ 0 ...
0 . . . . . . . . . 0 ...
... · · · 0 τ ϵ0 τ
τ · · · 0 0 τ ϵ0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

This is a circulant matrix and therefore diagonalizable in a Fourier basis. As
discussed previously, the eigenvectors can be found by exploiting the periodicity,
i.e., we obtain the Bloch states

cjk = 1√
N
eijka, (3.13)

or
|ψk⟩ = 1√

N

∑︂
j

eijka |φj⟩ . (3.14)

Note that all of these solutions are equally represented on each atom of the chain.
They constitute a basis in which the Hamiltonian is diagonal and, from Eq. 3.8,
its eigenspectrum (dispersion relation) has the form

E(k) = ϵ0 + 2τ cos(ka), k = 2π
Na

m , m = N

2 + 1, . . . , N2 , (3.15)

or, equivalently:

E(k) = ϵ0 + 2τ cos
(︄

2kπ
N

)︄
, k = 1, 2, . . . , N. (3.16)

Once we know the eigenvectors and the dispersion relation, we can calculate
Green’s functions. From Eqs. 2.16 and 3.14, we can write the real space matrix
element of the Green’s function ĝ for an infinite chain as a sum over “quasimo-
menta” k:

ĝj,l(E) =
∑︂

k

⟨ψj|ψk⟩ ⟨ψk|ψl⟩
E − E(k) = 1

N

∑︂
k

eika(j−l)

E − E(k) . (3.17)
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Figure 3.1: Real and imaginary parts of the Green’s function of an infinite chain
gjj(x) as a function of the reduced energy parameter x = E−ϵ0

2|τ | .

Transforming the sum into an integral in the limit N → ∞, we obtain

ĝj,l(E) = a

2π

∫︂ π/a

−π/a
dk

eika(j−l)

E − ϵ0 − 2τ cos(ka) . (3.18)

The evaluation of this integral using the methods of complex analysis is presented
in Appendix A. The result, which is valid for the scaled energy parameter x =
E−ϵ0
2|τ | ∈ (−1, 1) defining the only continuous part of the spectrum (band) is given

by
ĝj,l(x) = −i

2|τ |
√

1 − x2

(︂
x− i

√
1 − x2

)︂|j−l|
. (3.19)

The real and imaginary parts of the diagonal matrix element (j = l) are
plotted in Fig. 3.1. Note that the function is purely imaginary within the band,
and outside the band it is real. Both real and imaginary parts have square
root singularities at the band edges, which is typical of a 1D system [36]. These
asymmetric spikes are a hallmark of low-dimensional systems (known as van Hove
singularities), and indicate the presence of a flat region of the dispersion curve
(i.e., zero derivative) with large accumulation of states.

Finally, the local density of states is

nj(x) = −1
π

Im ĝj,j(E) = 1
2π|τ |

√
1 − x2

, with x = E − ϵ0

2|τ | ∈ (−1, 1). (3.20)

Note that
∫︁ 1

−1 nj(x)dx = 1/(2|τ |), so the total number of states per atom is one,
as required.

3.2.2 A chain with fixed ends
Consider the condition c0k = c(N+1)k = 0, i.e. we have standing waves as solutions,
namely,

cn = sin(kna). (3.21)
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From the condition sin((N + 1)ka) = 0 we have that k = πm
(N+1)a for m = 1, . . . , N .

Since we broke the invariance to lattice translations, the sites at the ends are
no longer equivalent with the other sites in the system. The allowed momentum
values cover only the positive half of the Brillouin zone (the negative k give the
same eigenfunctions) but are twice as dense as those that we found with periodic
boundary conditions. The eigenvectors and eigenvalues for this case are derived
in Appendix B.

A Green’s function for the semi-infinite chain can be derived analogously to
the infinite chain discussed above. Namely, from Eqs. 2.16, 3.14, and 3.21, the
matrix element of ĝ is given by

ĝj,l(E) =
∑︂

k

⟨ψj|ψk⟩ ⟨ψk|ψl⟩
E − E(k) = 1

N

∑︂
k

sin(jka) sin(lka)
E − E(k) . (3.22)

Transforming the sum into an integral we obtain

ĝj,l(E) = a

2π

∫︂ π/a

−π/a
dk

sin(jka) sin(lka)
E − ϵ0 − 2τ cos(ka) . (3.23)

The evaluation of the integral for j = l = 1 is presented in Appendix A. The
resulting Green’s function ĝ1,1(E) is

ĝ1,1(E) = 1
|τ |

⎧⎨⎩
(︂
x− i

√
1 − x2

)︂
if |x| ≤ 1,(︂

x− sgnx
√
x2 − 1

)︂
if |x| > 1,

(3.24)

where the sgnx assures that lim|τ |→0+ g1,1(E) = 1
E−ϵ0

.2
Then, the local density of states has a characteristic semi-circular shape (as

shown in Fig. 3.2)

n(E) = 1
π|τ |

√
1 − x2, with x = E − ϵ0

2|τ | ∈ [−1, 1]. (3.25)

Let us briefly mention the case of a diatomic chain with alternating orbital
energies of ϵ0 ± ∆. In this case, one can derive (see, e.g., [45]) the following
generalization of the above Green’s function expression (with δ = ∆/2|τ |):

ĝ1,1(E) = 1
|τ |

⎧⎨⎩x+ δ − i
√︂

x+δ
x−δ

− (x+ δ)2, if |δ| < |x| ≤
√

1 + δ2

x+ δ − sgn(x+ δ)
√︂

(x+ δ)2 − x+δ
x−δ

, if |x| >
√

1 + δ2 or |x| ≤ |δ|.
(3.26)

The plot of this function is shown in Fig. 3.3. Interestingly, there is a gap in the
local DOS of width δ dividing the energy band into two. Also, at δ, there is a
van Hove singularity.

3.2.3 Green’s functions for finite chains
In case of finite tight-binding chains of length N , the real space representation
of the Green’s function for small N can be most easily computed numerically

2To obtain the limit, we use the Taylor expansion for the square root:
√
x2 − 1 =

±x
√︁

1 − 1/x2 ≈ ±x(1 − 1/2x2) for x large, i.e., τ small.
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Figure 3.2: Real and imaginary parts of gjj(x) for a semi-infinite chain as a
function of the reduced energy parameter x = E−ϵ0

2|τ | .
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Figure 3.3: Real and imaginary parts of g11(x) for a diatomic semi-infinite chain
with δ = ∆/2|τ | = 0.2 as a function of the reduced energy parameter x = E−ϵ0

2|τ | .
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by matrix inversion (E − H)−1. Alternatively, if we are interested in a diagonal
element of g(E), we can employ the continued fraction technique introduced in
the previous chapter.

General expressions for Green’s functions can also be derived as a simple
closed expression in terms of Chebyshev polynomials for a wide range of different
boundary conditions [46]. Here, we will follow the derivation of Bass, even though
different approaches have since appeared in the literature (for example, Ref. [47]).

The crucial step is to notice that the equation for the Green’s function3

zGn,m − τ(Gn−1,m +Gn+1,m) = δnm, (3.27)

is for n ̸= m and τ = 1/2 the recurrence relation for Chebyshev polynomials.
Chebyshev polynomials of the first kind can be defined as the unique polynomials
satisfying

Tn(cos θ) = cosnθ, (3.28)
for n = 0, 1, 2, 3, ... while polynomials of the second kind satisfy

Un(cos θ) = sin(nθ + θ)
sin θ . (3.29)

Since U−1(z) = 0, it is easy to see that −U|n−m|−1(z)/2τ is a particular solution
to Eq. 3.27.

Due to the symmetry Gn,m(z) = Gm,n(z), the Green’s function can be written
in a general form [46]

Gn,m(z) = a(z)Tn−m(z) + b(z)Tn+m(z) + c(z)Un+m−1(z) − U|n−m|−1(z), (3.30)

where a(z), b(z), c(z) are determined by boundary conditions.

Periodic boundary conditions

With periodic boundary conditions (PBC), we expect that Gn,m depends only on
the difference n−m, therefore:

Gn,m(z) = a(z)Tn−m(z) − U|n−m|−1(z), (PBC). (3.31)

Obviously, since T0(z) = 1 and U−1(z) = 0, we must have Gn,n = a(z), and
the PBC GN,0 = G0,0 means that

Gn,n(z) = UN−1(z)
TN(z) − 1 = sinNθ

2|τ |(cos(Nθ) − 1) sin θ , with θ = arccos z

2|τ | . (3.32)

In Fig. 3.4, the plot of − ImGn,n(z), representing the local DOS on any of the
N atoms, is shown for z = (E+ iη)/2|τ |, with η small but large enough to smear
out peaks. It can be seen that for N large, the shape of the plot is becoming
increasingly similar to the one in Fig. 3.1 derived for an infinite chain. However,
divergences at the band edges are only present for N = 2, not for N large.

3This corresponds to the N -atom lattice model with the equation of motion 2zun − un+1 −
un−1 = 0, where un is the displacement of the nth particle from its equilibrium position and
z = 1 − ω2 with ω dimensionless frequency. Also, note that in this section, we set the atomic
level ϵ0 = 0.
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Figure 3.4: The plot of − ImGn,n(z) as a function of scaled energy z = (E +
iη)/2|τ |, representing the local DOS on any atom of N -atom long tight-binding
chains of atoms with periodic boundary conditions. Note that η = 0.1 to smear
out peaks.

Fixed ends

In this case, the condition reads G0,m = 0 = GN+1,m for all m ≥ 0. The first
condition applied to the general expansion in Eq. 3.30 results in

G0,m = 0 = (a(z) + b(z))Tm(z) + (c(z) − 1)Um−1(z), (3.33)

meaning that b(z) = −a(z) and c(z) = 1. The second condition gives

GN+1,m = 0 = a(z)(TN+1−m(z) − TN+1+m(z)) + UN+m(z) − UN−m(z), (3.34)

which can be rewritten using well-known identities [48]

Tn+m(z) − Tn−m(z) = 2(z2 − 1)Un−1Um−1 (3.35)
Un+m−1(z) + Un−m−1(z) = 2Un−1Tm (3.36)

to obtain

GN+1,m = 0 = [−2a(z)(z2 − 1)UN(z) + TN+1(z)]Um−1(z),

so that
a(z) = TN+1(z)

2(z2 − 1)UN(z)
and the Green’s function has the form [46]

Gn,m(z) = (Tn−m(z) − Tn+m(z)) TN+1(z)
2(z2 − 1)UN(z) + Un+m−1(z) − U|n−m|−1(z).

(3.37)
The onsite (diagonal) element is

Gn,n(z) = (1 − T2n(z)) TN+1(z)
2(z2 − 1)UN(z) + U2n−1(z). (3.38)
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Figure 3.5: The plot of − ImG1,1(z) as a function of scaled energy z = (E +
iη)/2|τ |, representing the local DOS on the first atom of N -atom long tight-
binding chains of atoms with fixed ends according to Eq. 3.39. Here, η = 0.1.

If we fix n = 1 corresponding to the “surface” atom, and recall that z =
2|τ | cos θ, we obtain:4

G1,1(z) = (1−2z2 +1) cos(N + 1)θ sin θ
2|τ |(z2 − 1) sin(N + 1)θ +z/|τ | = sinNθ

|τ | sin(N + 1)θ . (3.39)

In Fig. 3.5, we show − ImG1,1(z) (the local DOS on the first (“surface”)
atom) for various N (total number of atoms). Note that we set η = 0.1 to smear
out the peaks. We can observe convergence towards the semi-infinite chain limit
(compare with Fig. 3.2).

3.3 Two-dimensional systems
In this section, electronic properties of square and hexagonal two-dimensional lat-
tices are discussed. Namely, we present analytical methods for obtaining Green’s
functions and derived quantities such as local density of states.

3.3.1 Square lattice
Consider a simple uniform square lattice with the lattice parameter a. A calcu-
lation of tight-binding Green’s function is directly analogous to the calculation
in the case of one-dimensional infinite chain (see Eqs. 3.17 and 3.18). However,
instead of “quasimomenta” k in 1D case, here we speak of (2D) reciprocal lattice
vectors k.

From Eq. 3.8, considering four nearest neighbours, a dispersion relation can
be obtained in the form

E(k) = ϵ0 + 2τ(cos(kxa) + cos(kya)). (3.40)
4Here, we use the definition of Chebyshev polynomials (Eqs. 3.28 and 3.29) together with

the identity sin(a+ b) = sin a cos b+ cos a sin b.
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Let us denote a reciprocal lattice vector k = kxx̂ + kyŷ, similarly for direct
lattice vectors j, l. The first Brillouin zone (BZ) is defined by −π

a
≤ kx, ky <

π
a
.

Then a direct space matrix element of the Green’s function reads

gj,l(E) = a2

4π2

∫︂ π/a

−π/a
dkx

∫︂ π/a

−π/a
dky

eik·(j−l)a

E − ϵ0 + iη − 2τ(cos(kxa) + cos(kya)) (3.41)

Let us now introduce a substitution φx = kxa, φy = kya and notation m =
(jx − lx), n = (jy − ly) for m,n integers. To find the solution, we start by keeping
only the even terms in the integral, since the domain is symmetric

gj,l(E) = 1
π2

∫︂ π

0
dφx

∫︂ π

0
dφy

cos(mφx) cos(nφy)
E − ϵ0 + iη − 2τ(cos(φx) + cos(φy)) (3.42)

To simplify the integral, it is useful to make a transformation5 due to Morita
[49], namely: m′ = m + n, n′ = m − n and φ′

x = φx+φy

2 , φ′
y = φx−φy

2 . Then using
the identity turning a sum into a product of cosines, we obtain

gj,l(E) = 1
π2

∫︂ π

0
dφx

∫︂ π

0
dφy

cos((m+ n)φx) cos((m− n)φy)
E − ϵ0 + iη − 4τ(cos(φx) cos(φy)) (3.43)

An arbitrary matrix element gj,l(E) can be determined through recurrence
relations in terms of the diagonal elements, gj,j(E) [50].

Along the diagonal (m = n = 0, corresponding to j = l) the numerator in
the above equation is 1 and we can write

gj,j(z) = 1
π2

∫︂ π

0
dφx

∫︂ π

0
dφy

1
z − ϵ0 − 4τ(cos(φx) cos(φy))

= 1
π

∫︂ π

0
dφx

1√︂
(z − ϵ0)2 − 4τ 2 cos2(φx)

.

This can be expressed in terms of the elliptic integral of the first kind defined as
K(λ) =

∫︁ π
0

dφ√
1−λ2 cos2 φ

, i.e.,

gj,j(E) = 2
π(E − ϵ0)

K
(︄

4|τ |
E − ϵ0

)︄
, |E − ϵ0| > 4|τ |. (3.44)

This expression holds for energies outside the band, where gj,j(E) is real. But
for E within the band, the analytic continuation of K(λ) must be used [48]:

K(1/k) = k
(︂
K(k) + iK(

√
1 − k2)

)︂
.

The density of states is then given by [36]

n(E) = − 1
π

Im gj,j(E) = 1
2|τ |π2 K

⎛⎝
⌜⃓⃓⎷1 − (E − ϵ0)2

(4τ)2

⎞⎠ . (3.45)

Note that the DOS exhibits at both band edges a discontinuity that produces
the logarithmic singularities of the Re g at the band edges (see Fig. 3.6). This
behavior is characteristic of the two-dimensionality of the system. Note also the
singularity at the interior of the band (at E = ϵ0); the Re g is discontinuous there
and Im g has a logarithmic singularity. The singularities of g within the band are
associated with saddle points in the function E(k). A minimum number of such
saddle points exists and depends on the number of independent variables [36].

5This corresponds to rotating the coordinate axes in the square lattice by π/4.
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Figure 3.6: Real and imaginary parts of the diagonal Green’s function g00(x) for
the square lattice with the reduced energy parameter x = E−ϵ0

4|τ | .

3.3.2 Hexagonal (honeycomb) lattice
The triangular lattice is the two-dimensional close-packed lattice. The honeycomb
lattice contains two atoms per elementary cell and is composed of two triangular
sublattices denoted A and B, each atom from sublattice A being surrounded by
three atoms from sublattice B (see Fig. 3.7).

Let us choose lattice vectors conveniently as

a1 = a

(︄√
3

2
3
2

)︄
, a2 = a

(︄
−

√
3

2
3
2

)︄
,

where a is the nearest neighbor distance6 and the corresponding reciprocal lattice
vectors are then:

b1 = 2π√
3a

(︄
1
1√
3

)︄
, b2 = 2π√

3a

(︄
−1

1√
3

)︄
.

The unit cell area is 3
√

3a2

2 and the first Brillouin zone (BZ) of the reciprocal
lattice, defined by the planes bisecting the vectors to the nearest reciprocal lattice
points, has the area of VBZ = 8π2

3
√

3a2 . It is clear that the six points at the corners
of the BZ fall into two groups of three, so one needs to consider only two corners
that we label K and K ′ as in the right hand side of Fig. 3.7. The BZ has a
hexagonal shape which makes the integration over it inelegant. By exploiting the
periodicity and symmetry of reciprocal space it is possible to choose instead a
rectangular area that is fully equivalent to the hexagonal BZ (see Fig. 3.7), thus
vastly simplifying the calculation of subsequent integrals.

Further, it is convenient to express the positions of neighboring atoms (see
Fig. 3.7) as follows:

δ1 = a

(︄√
3

2
1
2

)︄
, δ2 = a

(︄
−

√
3

2
1
2

)︄
, δ3 = a

(︄
0

−1

)︄
.

6The distance between nearest neighbours of the same sublattice is
√

3a
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Figure 3.7: Hexagonal (honeycomb) lattice in the real space (left) and reciprocal
space (right).

The choice of the tight-binding basis is not unique: two bases are widely used
in the literature, differing by relative phase factors between their components
[51]. The eigenfunctions of the tight-binding Hamiltonian and expectation values
of operators describing physical quantities are of course independent of the choice
of a basis. We write down the eigenstates of the lattice Hamiltonian as linear
combinations of two Bloch functions corresponding respectively to the A and B
atoms, but with a different phase factor attached to each atom [51]

ψk(r) = 1√
N

∑︂
j

[︂
eik·rA

j cA
kφ(r − rA

j ) + eik·rB
j cB

k φ(r − rB
j )
]︂
, (3.46)

φ represent orbitals (e.g. pz) for two atoms A, B, in a unit cell, j runs through the
N unit cells in the sheet. The tight-binding Hamiltonian in this basis is described
by the 2×2 matrix

Ĥ0(k) =
(︄

ϵA tS(k)
tS∗(k) ϵB

)︄
(3.47)

where S(k) = ∑︁
δi
eik·δi = 2 exp(ikya/2) cos

(︂
kxa

√
3/2

)︂
+ exp(−ikya) is a geomet-

ric factor. In the nearest-neighbour approximation, there are no hopping pro-
cesses within the sublattices; hopping occurs only between them. The hopping
parameter t corresponds to τ from previous sections.

Let us now discuss the case of ϵA = ϵB = 0, representing a uniform hexagonal
structure such as graphene. The symmetry group of the honeycomb lattice con-
tains swapping the two sublattices. Hence, for each value of the quasimomentum
k within the Brillouin zone, two states exist with energies ±ϵ(k). Explicitly, the
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two eigenvalues of the Hamiltonian matrix Ĥ0(k) are given by

ϵ±(k) = ±t
√︂
S∗(k)S(k) = ±t|1 + e−ik·a1 + e−ik·a2 | = (3.48)

= ±t
√︄

1 + 4 cos 3
2kya cos

√
3

2 kxa+ 4 cos2

√
3

2 kxa. (3.49)

At the corners of the Brillouin zone, for example at K = ( 4π
3
√

3a
, 0) and K ′ =

(− 4π
3
√

3a
, 0), as shown in Fig. 3.7, the two bands touch, i.e. ϵ+ = ϵ− = 0. This is

the well-known Dirac cone of graphene.
The eigenstates of the lattice Hamiltonian can be found using Eq. 3.46 in the

form [51]

ψk±(r) = 1√
2N

∑︂
j

[︂
eik·rA

j φ(r − rA
j ) ± eiθeik·rB

j φ(r − rB
j )
]︂
, (3.50)

where θ(k) = argS(k) is a geometric factor.
As usual, the Green’s function in the k-representation is found by inverting

the matrix EÎ − Ĥ0, namely

g(E,k) = lim
η→0+

1
(E + iη)2 − |ϵ(k)|2

(︄
E + iη tS(k)
tS∗(k) E + iη

)︄
. (3.51)

We will focus on the first element, which reads

gAA(E,k) = lim
η→0+

E

(E + iη)2 − |ϵ(k)|2 . (3.52)

The Green’s function in the Hamiltonian eigenbasis is written formally as

g(E) =
∑︂

k

(︄
|k+⟩ ⟨k+|
E − ϵ+(k) + |k−⟩ ⟨k−|

E − ϵ−(k)

)︄
. (3.53)

Fourier transforming to the real space, i.e., projecting onto two different states
|φj, A⟩, |φl, A⟩, using Eq. 3.50:

⟨φj, A|ĝ(E)|φl, A⟩ = 1
2N

∑︂
k

(︄
eik·(rj−rl)

E − ϵ+(k) + eik·(rj−rl)

E − ϵ−(k)

)︄
. (3.54)

Note that for every k, ϵ+ = −ϵ− and also, transforming ∑︁k = N
VBZ

∫︁
k∈B.Z., we

obtain

gA,A
j,l (E) = ⟨φi, A|ĝ(E)|φj, A⟩ = 1

VBZ

∫︂
k∈B.Z.

(︄
Eeik·(rj−rl)

E2 − ϵ2
+(k)

)︄
. (3.55)

Since the shape of the first Brillouin zone can be transformed from a hexagon to
a rectangle with the area of VBZ (see Fig. 3.7), we can write

gA,A
j,l (E) = 3

√
3a2

8π2

∫︂ π/
√

3a

−π/
√

3a
dkx

∫︂ 2π/3a

−2π/3a
dky

(︄
Eeik·(rj−rl)

E2 − ϵ2
+(k) + iη

)︄
. (3.56)

We can perform the ky integral analytically by means of contour integration
[52]. The integration contour is extended from a straight line on the real axis
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to the boundaries of a semi-infinite rectangle in the upper half of the complex
plane. Since the integrand vanishes in the limit Im[ky] → ∞ and because the
parts of the contour that are parallel to the imaginary axis cancel each other
out, the ky integral can be evaluated by simply identifying a simple pole of the
integrand lying inside the integration contour (due to the small imaginary η in
the denominator) and finding their respective residues to obtain

gA,A
j,l (E) = ia

4πt2
∫︂ π/

√
3a

−π/
√

3a
dkx

Eeikx∆xeiq(kx)∆y

sin(q(kx, E)) cos
(︂√

3kxa/2
)︂ , (3.57)

where ∆x = (rj − rl)x, ∆y = (rj − rl)y and q is given by:

q(kx, E) = ± arccos E
2/t2 − 1 − 4 cos2(

√
3kxa/2)

4 cos
(︂√

3kxa/2
)︂ , (3.58)

with its sign selected by imposing that q must necessarily lie within the integration
contour of the ky integral.

The single integral above can be easily evaluated numerically. Of special
interest is the case of or j = l = 0, denoted as g00(z), with its imaginary part
corresponding to the (negative of) local DOS. The plot of g00(z) is presented in
Fig. 3.8.

Several authors ([50], [53], [54]) found exact closed expressions for hexagonal
lattice Green’s functions in terms of the complete elliptic integrals of the first
and second kind, defined recursively for higher values of j, l. Their results are
presented in Appendix C.
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Figure 3.8: The plot of the diagonal Green’s function g00(z) for the uniform
hexagonal lattice (e.g., graphene) as a function of reduced energy x = E−ϵ0

t
.

Here, we set t = 1.

As we will later study adsorption on two-dimensional hexagonal boron nitride
(hBN) structure, we derive here its Green’s function. In essence, we return to the
Hamiltonian in the tight-binding basis (see Eq. 3.47) with the condition ϵA ̸= ϵB.
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This asymmetry in the Hamiltonian between the A and B sublattices is liable to
lift the degeneracy at the Dirac points K and K ′. This could also correspond to
so-called gapped, or hydrogenated, graphene, in addition to the hBN structure.
The Hamiltonian then reads

ĤAB(k) =
(︄

ϵA tS(k)
tS∗(k) ϵB

)︄
(3.59)

where again S(k) = ∑︁
δ e

ik·δ = 2 exp(ikya/2) cos
(︂
kxa

√
3/2

)︂
+ exp(−ikya).

If we set 0 = ϵA+ϵB

2 and ∆ = ϵA−ϵB

2 , the Hamiltonian becomes

ĤAB(k) =
(︄

−∆ tS(k)
tS∗(k) ∆

)︄
, (3.60)

with the eigenvalues
ϵ±(k) = ±

√︂
∆2 + t2|S(k)|2. (3.61)

The Green’s function in the k-representation is found by inverting the matrix
EÎ − ĤAB, namely

g(E,k) = lim
η→0+

1
(E + iη)2 − |ϵ(k)|2

(︄
E + iη + ∆ tS(k)
tS∗(k) E + iη − ∆

)︄
, (3.62)

where now |ϵ(k)|2 is given by Eq. 3.61. Similarly to the procedure above, the
real space matrix elements of the Green’s function connecting two A sites with
positions rj and rl are

gA,A
j,l (E) = 1

VBZ

∫︂
k∈BZ

d2k
(E + iη + ∆)eik·(rj−rl)

E2 − ϵ2(k) + iη
. (3.63)

One of the two integrals can be computed analytically using the residue theo-
rem as discussed in the case of graphene. The resulting integral for the diagonal
element of the Green’s function j = l = 0 has the form

gA,A
00 (E) = ia

4πt2
∫︂ π/

√
3a

−π/
√

3a
dkx

E + ∆
sin(q(kx, E)) cos

(︂√
3kxa/2

)︂ , (3.64)

where q(q(kx, E) is given as

q(kx, E) = ± arccos (E2 − ∆2)/t2 − 1 − 4 cos2(
√

3kxa/2)
4 cos

(︂√
3kxa/2

)︂ , (3.65)

with its sign selected by imposing that q must necessarily lie within the integration
contour of the ky integral.

The numerical evaluation of gA,A
00 (E) showing the effect of various values of

∆ is shown in Fig. 3.9. Notably, there is an energy gap of 2∆ corresponding to
the energy gap in the band structure at the corners of the Brillouin zone, where
S(k) = 0. Furthermore, we can see that the nonzero ∆ breaks the symmetry of
the local DOS, meaning that with increasing ∆, more states are localized at one
site (here A for ∆ < 0) compared to the other lattice site within the unit cell.
In the hBN structure, of course, nitrogen attracts more states than boron, since
ϵN < ϵB. Our results qualitatively agree with published results obtained by DFT
[55].
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Figure 3.9: The local DOS plot (i.e. negative imaginary part of the diagonal
Green’s function g00) for the asymetrical hexagonal lattice (e.g. hBN) evaluated
numerically according to the Eq. 3.64 with various values of ∆ in units of t.

3.4 Systems with a single impurity
In this section, we study the effects of an impurity introduced into a tight-binding
system. In particular, we compute the relevant Green’s functions and local densi-
ties of states to see how the electronic structure changes due to the presence of the
impurity. Since the impurity is attached to a single site of one- or two-dimensional
systems, we call the impurity an adsorbate.

Consider the simplest adsorbed impurity (e.g., hydrogen) represented by a
single orbital with energy level ϵa containing a single electron that is connected7

to a single substrate atom by the perturbation:

V = t |a⟩ ⟨0| + c.c.

In matrix representation, the perturbing potential is

V =

⎛⎜⎜⎜⎜⎜⎝
0 t 0 · · ·
t∗ 0 0 · · ·
0 0 . . . · · ·
... ... ... 0

⎞⎟⎟⎟⎟⎟⎠ , (3.66)

7Alternatively, for 2D systems, one can consider more than a single coupling, corresponding
to different adatom positions. For example, there is a double coupling or the “bridge” position
V = t(|a⟩ ⟨0| + |a⟩ ⟨1|) + c.c.
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and the Green’s function of the unperturbed Hamiltonian

⎛⎜⎜⎝
ϵa 0 · · ·
0 H11 · · ·
... ... . . .

⎞⎟⎟⎠ is

g =

⎛⎜⎜⎜⎜⎝
gaa 0 0 · · ·
0 g00 g10 · · ·
0 g01 g11 · · ·
... ... ... . . .

⎞⎟⎟⎟⎟⎠ , (3.67)

where the Green’s function of the isolated adatom gaa is8 given by Eq. 2.35 as

gaa(E) = 1
E − ϵa + iη

.

Certainly for the potential V above it holds that det(1 − gV ) = 1 − |t|2gaag00.
Consequently one can show by matrix multiplication that Eq. 2.26 gives

T = V
1

1 − gV
= 1

1 − gaag00|t|2

⎛⎜⎜⎜⎜⎝
−g00|t|2 t 0 · · ·

t∗ −gaa|t|2 0 · · ·
0 0 0 · · ·
... ... ... . . .

⎞⎟⎟⎟⎟⎠ .

We now seek to obtain the Green’s function for the whole system, especially
its matrix elements for the adatom Gaa and the substrate atoms Gii. Utilizing the
simple form of the matrix g in Eq. 3.67, a straightforward matrix multiplication
∆G = gTg gives

∆Gaa = g2
aag00|t|2

1 − gaag00|t|2
(3.68)

and for i = 0, 1, 2, ... we obtain

∆Gii = g2
i0gaa|t|2

1 − gaag00|t|2
. (3.69)

In the following, we will apply these expressions to the one- and two-dimensio-
nal systems discussed in previous sections.

3.4.1 Linear tight-binding chains of identical atoms
A tight-binding Hamiltonian describing a system of a single atom coupled to a
linear chain with nearest neighbor coupling (hopping parameter) τ and chain
energy levels ϵ0 has the form of a tridiagonal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϵa t 0 · · · 0
t ϵ0 τ 0 ...
0 τ ϵ0 τ 0
... · · · τ

. . . τ
0 · · · 0 τ ϵ0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
(︄
ϵa H1a

Ha1 H11

)︄
. (3.70)

8In what follows, the limit of η → 0+ is implicitly assumed, and sometimes even iη itself
will not be written.
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From Chapter 2, we know that the full (retarded) Green’s function for the
adatom Gaa is given by simply adding the self-energy to the isolated adatom’s
Green’s function, namely

Gaa(E) = 1
E + iη − ϵa − Σ(E) = 1

E + iη − ϵa −H1ag11H1a

, (3.71)

with Σ(E) being the self-energy and g11 the Green’s function of the first atom of
the chain. Also, we have H1a = H†

a1.
Analytical expressions for g11 were found in Eq. 3.24 for a semi-infinite chain,

and in Eq. 3.39 for a finite chain. By plugging in these expressions into Eq. 3.71,
we obtain

Gaa(E) = 1
E + iη − ϵa − t2

|τ |

(︂
x(E) − i

√︂
1 − x(E)2

)︂ , (3.72)

for a semi-infinite chain and

Gaa(E) = 1
E + iη − ϵa − t2

|τ |

(︂
sin(N arccos x(E))

sin((N+1) arccos x(E))

)︂ , (3.73)

for a finite chain. In our notation, x = E+iη−ϵ0
2|τ | .

Now the (local) DOS for the adatom within the band x ∈ (−1, 1) is

na(E) = − 1
π

ImGaa(E) =

√︂
1 − x(E)2

(E − ϵa − t2

|τ |x(E))2 + 1 − x(E)2
, (3.74)

where the Green’s function for a semi-infinite chain was used for illustration
purposes. The adatom DOS curves are plotted also for energies outside the band
using a proper continuation of Green’s functions and an imaginary parameter η
for different parameters (see Figs. 3.10 and 3.11), which are discussed in detail
below.

Depending on the strength of the adatom coupling t, the adatom DOS can
take various forms. In Fig. 3.10, where we set ϵa = ϵ0, we can first observe
the semi-elliptical shape for the case of t = τ = −1. This is the limit of a
one-dimensional semi-infinite chain of identical atoms discussed in the preceding
chapter. That is, it corresponds to a situation where we have extended the chain
by one atom, leading to identical density of states.

Next, if |t| < |τ |, so the adatom coupling is weaker than the substrate hopping,
adatom DOS takes the shape of a high narrow Lorentzian peak centered at ϵa.
In the limit of adatom coupling t → 0, this corresponds to an isolated atomic
level ϵa. Note that the broadening is due to the inclusion of a small imaginary
η = 10−4. For η → 0 and t → 0, this peak tends to a “delta function”.

Furthermore, with increasing |t| > |τ |, the adatom DOS decreases in the
middle of the energy band and increases at the edges of the band. Note that the
changing shape of the DOS curves proceeds in such a way that the area under
the curve is preserved, i.e.,

∫︁ 1
−1 na(x)dx = const.

Note the occurrence of localized (split-off) energy levels outside the band for
certain values of t or ϵa in both figures. In fact, in our model, at most two
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Figure 3.10: A plot of the adatom LDOS for a semi-infinite chain as a function of
reduced energy x for various adatom couplings t. We used ϵa = ϵ0 = 0, τ = −1,
η = 10−4.
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Figure 3.11: A plot of the adatom LDOS for a semi-infinite chain as a function of
reduced energy x for various adatom energy levels ϵa. Also, ϵ0 = 0, t = τ = −1,
η = 10−4.
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localized states can appear: one above the band and one below.9 These are given
by zeros in the denominator of the Green’s function in Eq. 3.72. If we denote by
xl the position of a localized state (its reduced energy), we write the condition

2τxl − (ϵa − ϵ0) − t2 Re g11(xl) = 0, (3.75)

giving the position of the localized (split-off) state outside the band (|xl| > 1)
in general. From the properties of Green’s functions we know that | Re g11(x)|
is monotonically decreasing outside the band as |x| increases. In fact, the whole
left hand side of Eq. 3.75 is a continuous and monotonic function of x for |x| > 1
(outside the band). Therefore, there can be at most one localized state, whose
presence can be expected for large t. In fact, if we consider the Green’s function
in the asymptotic region Re g11(x) ≈ 1/x (as x → ∞), we can rewrite the above
equation as

x2
l − za

2 xl − t2

2|τ | = 0, (3.76)

where we denoted ϵa−ϵ0
|τ | = za. This quadratic equation has solutions

xl = za

4 ±
⌜⃓⃓⎷z2

a

4 + 2t2
|τ | , (3.77)

meaning that for t ≫ za, xl ∝ t, i.e., the position of the localized state changes
linearly with t.

We will now discuss the occurrence of localized states in the case of a semi-
infinite chain. Inserting the Green’s function for a semi-infinite chain into Eq. 3.75
gives

2|τ |xl − (ϵa − ϵ0) − t2

|τ |
(︃
xl − sgnxl

√︂
x2

l − 1
)︃

= 0. (3.78)

In Fig. 3.10, the adatom DOS is presented for ϵa = ϵ0 = 0. In this case
localized states can occur once 2|τ |xl− t2

|τ |

(︂
xl − sgnxl

√︂
x2

l − 1
)︂

= 0, which reduces
to x2

l = (t/τ)4

4((t/τ)2−1) . This function satisfies x2
l ≥ 1 for |t| > |τ |, which means we

should see the localized states for |t| > |τ |. And this is indeed observed.
Consider the case of t = τ = −1 as in Fig. 3.11. Again we see that for ϵa = ϵ0

we recover the LDOS of the semi-infinite chain. As ϵa increases from ϵ0 − 2 to
ϵ0+1.5, the location of the maximum of the LDOS traverses the reduced spectrum
from left to right (i.e., below to above the band). In case of ϵa = ϵ0 − 0.5, no
localized state exists and the area under the DOS curve attains its largest value
within the band.

For t = τ , the condition of Eq. 3.78 gives

xl = za

2 + 1
2za

, (3.79)

so for xl > 1 (a state localized above the band) we must have necessarily za > 1.
Similarly, if xl < −1, then za < −1 must hold. This means that the energy

9These are also called surface states, due to their exponential localization on the surface
atom (adatom), and also sometimes called bonding and antibonding due to similarities with
chemical molecular orbital theory [44].
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difference has to be larger than the coupling in the chain. For further discussion
of these states, and how the values of the interaction parameters determine their
occurrence and the character of the surface bond (metallic, ionic, etc.), see [56]
and [57].
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Figure 3.12: A plot of the adatom LDOS as a function of reduced energy x for
linear chains of different lengths N . The peaks are broadened with the imaginary
η = 10−2. Other parameters are ϵa = −1.5, ϵ0 = 0, τ = t = −1.

Considering now finite chains of length N , i.e., Eq. 3.73, the shape of the
LDOS converges towards the shape of the semi-infinite chain, however, this is
only visible once η is large enough, see Fig. 3.12. For example, the LDOS for the
N = 100 chain appears to be very similar to the case of a semi-infinite limit, but
this is only due to the artificial broadening. Note that since ϵa = −1.5 < 0 = ϵ0,
a localized state appears below the band not only just for the semi-infinite chain
but also for all finite chains shown in the figure. This state moves further from
the band with increasing |t|.

As in the discussion above, the occurrence of localized states is given by poles
of the Green’s function. Analogously to the semi-infinite case, the finite chain
of length N has N delocalized states in the energy band for ϵa − ϵ0 = 0. As
the parameter za increases above zero, the energies of the band states slightly
increase until at za = 1 a surface state separates out of the band, leaving N − 1
states in the band. This exponentially localized state becomes more concentrated
on the adatom as za further increases. A more detailed discussion of these states
can be found in [44].

3.4.2 Embedding a finite linear chain
In the preceding section, we discussed the case of a single adatom coupled to a
linear chain. This can be viewed as embedding a single atom in a linear chain, as
we will now show. Subsequently, we will embed a finite chain with an adatom in
another (in)finite chain and study the changes of adatom DOS as we add more
“environment” atoms, in which our linear chain is embedded.
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In general, we consider the following partitioning of the full system into part
I and part II. The Hamiltonian matrix reads(︄

E −H11 −H12
−H21 E −H22

)︄
=
(︄
g−1

1 −H12
−H21 g−1

2

)︄
=
(︄
G11 G12
G21 G22

)︄−1

, (3.80)

leading to the Green’s function of part I

G11(E) = [g−1
1 −H12g2H21]−1 = [g−1

1 − Σ(E)]−1, (3.81)

where we define the self-energy matrix (representing the effect of part II on part
I) as

Σ(E) = H12g2H21. (3.82)
Previously, we discussed a single adatom ϵa coupled to the substrate by a

coupling t, meaning that H11 = ϵa, H12 = HT
21 = (t, 0, ...). The Green’s function

for the adatom (Gaa = G11) was shown to have the following form:10

G11(E) = 1
E − ϵa − t2g

(11)
2

, (3.83)

i.e., in this case, Σ is a number (not a matrix), and g
(11)
2 is the first element of

the Green’s function of part II.
Further, let us consider a two-level system of ϵa (adatom) and ϵ0 (substrate

atom) coupled together with t as the region I. Then H11 =
(︄
ϵa t
t ϵ0

)︄
. If only

the second atom is coupled to region II with parameter τ , then H12 = HT
21 =(︄

0 0 ...
τ 0 ...

)︄
, and for the self-energy we obtain

Σ(E) =
(︄

0 0
0 τ 2g

(11)
2

)︄
. (3.84)

Then from Eq. 3.81 we obtain that the Green’s function of the region I reads

G11 =
(︄
E − ϵa −t

−t E − ϵ0 − Σ(22)(E)

)︄−1

=

= 1
(E − ϵa)(E − ϵ0 − Σ(22)(E)) − t2

(︄
E − ϵ0 − Σ(22)(E) t

t E − ϵa

)︄
.

Therefore, Green’s function of the adatom is Gaa = 1
E−ϵa−t2(E−ϵ0−Σ(22)(E))−1 . This

amounts to terminating the continued fraction expansion of a Green’s function
(see Eq. 2.25) by the self-energy.

In general, we consider part I consisting of N atoms, one of which is the
adatom. If we use the Green’s function of the semi-infinite chain given in Eq.
3.24, we obtain for the only non-zero self-energy matrix element11

Σ∞(E) = |τ |
(︂
x− i

√
1 − x2

)︂
. (3.85)

10Here, superscripts refer to particular elements of matrices.
11From now on we denote by Σ(E) the only non-zero element of self-energy matrix to simplify

the notation.
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While this is the exact expression and it is useful, we would also like to have a sim-
plified, energy independent approximation of the self-energy to use in Schrödin-
ger’s equation. This can be done in several ways. First, using the definition of
reduced energy x|τ | = (E − ϵ0)/2, we can try to approximate Σ(E) to remove its
dependency on energy E as

Στ = −i|τ |, (3.86)
which becomes equal to Σ∞(E) if x = 0, if we also assume ϵ0 ̸= 0, we can write

Σapprox. = −ϵ0

2 − i

(︄
|τ | − ϵ2

0
8|τ |

)︄
. (3.87)

This expression is exact for E = 0 and should be less accurate for energies farther
from zero.

We now calculate the LDOS for the adatom in a finite chain embedded in a
semi-infinite chain. We account for the semi-infinite chain using the exact self-
energy and the two approximations. Note that the adatom DOS curves are given
(up to π) by the negative imaginary part of the first matrix element Gaa of the
embedded Green’s function

Gemb(E) = (E + iη −Hemb)−1, (3.88)

where

Hemb =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϵa t 0 · · · 0
t ϵ0 τ 0 ...
0 τ ϵ0 τ 0
... · · · τ

. . . τ
0 · · · 0 τ ϵ0 + Σ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3.89)

Fig. 3.13 shows results for the embedding of a chain of length N (with the
first atom being the adatom) in a semi-infinite chain. We show the negative
imaginary parts of Green’s functions regularized with imaginary η. Clearly, the
approximations are only valid for certain energies. The real part of the self-
energy Re Σapprox. = − ϵ0

2 shifts the states in the continuum band to the left (since
in our example ϵ0 > 0) and this shift is greater for energies in the positive part
of the reduced energy spectrum. The approximation of Στ = −i|τ | works well
for x ≈ 0 whereas Σapprox. curve lies close to the infinite limit in the vicinity of
x = −ϵ0/2|τ | = −0.5. In either case, the embedding gives the correct shape of
the DOS, however, the broadening parameter η must be large enough to observe
this. We note that for η large enough, all the curves coalesce. Nevertheless, the
size of the peaks at a given η gives us some estimate how far the LDOS curve is
from the semi-infinite limit.

Embedding a finite chain of N1 atoms into another finite chain of length N2
gives precisely the same adatom DOS as if we take the long chain of N1 + N2
atoms, as shown in Fig. 3.14 (compare curves denoted as Σ10 and N = 17). This
eliminates the need to invert large matrices for the cost of adding an energy-
dependent embedding potential (see Eq. 3.39)

ΣN(E) = H12g2H21 = |τ |
(︄

sin(N arccosx(E))
sin((N + 1) arccosx(E))

)︄
, (3.90)
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Figure 3.13: Adatom DoS for a chain of N = 7 atoms (first one of which is the
adatom with energy ϵa = 0.5 corresponding to the reduced energy of −0.25).
Also, results for three embedding potentials Σ are shown. The substrate atoms
have energy levels equal to ϵ0 = 1. Also, the broadening η = 0.1 and the coupling
is the same throughout the whole chain t = τ .
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Figure 3.14: Adatom DoS for a chain of N = 7 atoms (first of which has energy
ϵa = 0.5) embedded in another chain of N = 10 atoms with levels ϵ0 = 1. Adatom
DoS for a chain of N = 17 atoms is also shown for comparison. Σ∞ is the semi-
infinite chain limit. Here, ϵ0 = 1, η = 0.1 and the coupling is the same throughout
the whole chain t = τ .
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with x = (E + iη − ϵ0)/(2|τ |). Even though in our example here we do not save
any computational effort, this approach can sometimes be advantageous for large
systems, e.g., if we only seek the Green’s function or LDOS in some finite energy
interval.

3.4.3 Diatomic tight-binding chains with realistic param-
eters

In this section, we proceed to a few more “realistic” cases of 1D tight-binding
chains. We will discuss diatomic chains, as opposed to the chain of identical
atoms in the preceding sections. The systems studied consist of a single adatom
coupled to the substrate consisting of either boron and nitrogen atoms (BN) or
magnesium and oxygen (MgO) atoms. The choice of these systems is motivated
by their expected physical properties such as the presence of an energy gap in BN,
and the ionic character of MgO bonds. We wish to elucidate the role of relative
energy levels of neighbouring atoms in tight-binding systems with an emphasis
on the adatom density of states (DOS).

As in the previous sections, we study finite systems in the LCAO tight-binding
approximation, i.e., we work with one valence orbital for every atom of the 1D
“solid” and parametrize the Hamiltonian with orbital energies on the diagonal and
interatomic matrix elements (off-diagonal) between nearest-neighbor orbitals. In
order to have a realistic estimate of the tight-binding parameters, we employ the
model of Harrison [58]. He assumed that nearest neighbor hopping integrals are
proportional to the inverse square of the bond length: Hmn = ηmn

h2

4π2med2 , where
the numerical factor η depends in general on the angular type of the atomic
orbitals and the direction cosines of the vector that starts from the atom of the
orbital m and ends at the atom of the orbital n. Namely, we use Harrison’s values
of η for hopping between s and p atomic orbitals: for σ bonds as ηs,s = −1.32 ,
ηs,p = 1.42, ηp,p = 2.22, and for π bonds ηp,p,π = −0.63.

As we will later on study carbon structures as well, we discuss here both car-
bon and boron nitride models. We will assume a single pz orbital per atom, form-
ing a π band determining relevant electronic properties. Distances between the
atoms are picked according to the nearest neighbor distances of two-dimensional
analogs of graphene and hBN, namely 1.42 Å and 1.45 Å. For the carbon chains,
we write Hmn = ηp,p,π

h2

4π2med2 ≈ −2.38 eV, which is close to the usual value
−2.7 eV, often found in literature [59]. For the boron nitride chain we get −2.28 eV
when considering the Harrison’s value of ηp,p,π. The orbital energies and hopping
elements are in Tab. 3.1.

Table 3.1: Tight-binding parameters: Hartree-Fock orbital energies ϵ and nearest
neighbor hopping values τ . All data are in eV and taken from Harrison [58].

graphene hBN MgO
C B N Mg O

ϵs –17.52 –12.54 –23.04 –6.86 –29.14
ϵp –8.97 –6.64 –11.47 –2.99 –14.13
τ –2.38 (p-p,π) –2.28 (p-p,π) ±2.43 (s-p,σ)
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Our ionic MgO chain model consists of a diatomic chain of s and p orbitals
connected by sigma bonds with a hopping parameter ±τ :

o o ∞ o ∞ · · ·
ϵad t ϵs τ ϵp − τ ϵs τ ϵp − τ · · ·

In this case, we obtain for the hopping parameter from Harrison’s model:
Hmn = ηs,p,σ

h2

4π2med2 ≈ 2.43 eV, which corresponds to the ionic bond length of
2.11 Å. Note, however, due to sp2 hybridization, this is a poor estimate, and the
value of 1.1 eV can be found in the literature [60].
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Figure 3.15: Ground state LCAO coefficients (squared) on specific atoms in the
tight-binding chain of boron and nitrogen atoms of total length N . The adatom
orbital energy is chosen to be ϵN − 0.1 eV and two values of adatom coupling t
are considered: weak t = τ and strong t = 3τ .

In the preceding section concerning monatomic chains, we concluded that the
localized states occur whenever the adatom level ϵa is sufficiently far from the
center of the band and the adatom coupling t is large enough (see Eq. 3.75 and
the succeeding discussion of some special cases). In case of the diatomic chains,
the presence of a gap tends to decrease the total width of the continuum in DOS,
as we know from Equation 3.26 and Fig. 3.3. Thus, more localized states can be
expected in general as we will see in the following.

In Figs. 3.16 and 3.17, we observe a maximum of three localized states. This
is because the gap opens space for the third localized state in addition to the
two split-off states studied earlier (arising from the single adatom coupled to a
single substrate atom). Interestingly, localized states are more likely to form if
the adatom level is close to the energy level of the first atom of the chain, to
which it is coupled. In other words, the difference between ϵa and the energy of
the first substrate atom ϵ1 plays a big role in the occurrence of the localized state.

We now start the discussion of the dependence of the LDOS on the different
parameters of the model. We first present the results for the BN chain. We set-up
the model so that the chain ends with a B atom and the adatom is attached to
it. Fig. 3.15 presents squared LCAO coefficients |ci|2 on each atom of the BN
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Figure 3.16: Adatom DOS for a BN chain of N = 11 atoms including a single
adatom. The adatom orbital energy is chosen to be either ϵB + 0.1 eV (left) or
ϵN − 0.1 eV (right) and two values of adatom coupling t are considered: weak
t = τ and strong t = 3τ . Lines represent infinite limits computed analytically for
band energies. Here, η = 10−3.
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Figure 3.17: Adatom DOS for an MgO chain of N = 11 atoms including a single
adatom. The adatom orbital energy is chosen to be either ϵMg + 0.1 eV (left) or
ϵO − 0.1 eV (right) and two values of adatom coupling t are considered: weak
t = τ and strong t = 3τ . Here, η = 10−3.

chain, starting with 0 as the adatom and 1 as a B atom, for the state with the
largest value of the adatom LCAO coefficient |ca|2. We set the energy of the
adatom to ϵa = ϵN − 0.1. This means that for t = τ the chain behaves almost as
unperturbed. In this case, clearly, there is a partial localization due to the small
offset of ϵa from ϵN and the c0 coefficient decreases with increasing length of the
chain. On the other hand, for stronger coupling t = 3τ , there is a localized state
characterized by the exponential decay, which is not affected by the length of the
chain. This feature was already seen in adatom DOS of Fig. 3.12 where we saw
that the position of a localized state is the same for finite N and for the infinite
limit, whereas energies of delocalized states change within the band.

We now turn to the dependence of the adatom LDOS on the coupling. For BN
we consider two cases. First, the energy of the adatom close to to boron energy
(ϵa = ϵB + 0.1) and second, the adatom energy close to the nitrogen energy level
(ϵa = ϵN −0.1). In each case, the chain starts with a boron atom. The results are
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shown in Fig. 3.16 (left for the first case and right for the second one). We can
see that the N case with weak coupling does not produce any localized states (this
is also visible in Fig. 3.15) and the LDOS follows the shape of the infinite limit
computed analytically for band energies. With strong coupling, two localized
states emerge. However, in the B case there are two localized states even with
the weak coupling, and with strong coupling, there are already three of them.
For the adatom energy close to the B atom energy, there is a strong interaction
between the adatom and the first atom and the split-off states appear already
for weak coupling. Finally, we note that the LDOS is similar to the infinite limit
already for N = 11.

In case of the MgO chain, starting with the Mg atom, we observe similar
behavior as for the BN system (see Fig. 3.17). There is a small difference in the
behavior for the stronger coupling: when the adatom energy is close to the Mg
level, the lowest-lying localized state is weaker (i.e., has a smaller |ca|2 coefficient)
compared to the BN case and the localized state in the energy gap is accordingly
stronger (compared to the BN system). Apart from this minute difference, the
LDOS are very similar in both cases of diatomic tight-binding chains.

3.4.4 2D finite tight-binding models
In this section, we study tight-binding models with a single atom coupled to one
(or more) atom(s) of a two-dimensional substrate. As in the previous section, we
use realistic tight-binding parameters (orbital energies and hopping elements),
as summarized in Tab. 3.1, with only nearest-neighbour coupling. We restrict
ourselves to the case of a hexagonal lattice. For example, in the so-called top
adatom position, we couple the adatom to a single substrate atom, which is then
coupled to its three nearest neighbours. These are then coupled each to their two
nearest neighbours, etc. Clearly, compared to the 1D finite chain case, now the
(orbital) matrix representation of the tight-binding Hamiltonian does not have
a simple tridiagonal form. We want to understand new features in the adatom
DOS, compared to the 1D model, as we add more atoms into our system. We
only study systems with up to N = 38 atoms.

Adatom DOS for 2D finite model of graphene with an adatom in the top
position is shown in Figs. 3.18 and 3.19 for the weak and strong coupling, re-
spectively. We show the data for models of different size as well as the infinite
limit. Clearly, we can observe that the finite models’ results tend to follow the
LDOS shape of the infinite graphene sheet limit calculated calculated analytically
according to Eq. C.5. However, we cannot say that there is clear convergence
towards the infinite limit with increasing size of the finite model N , since even
for the largest N = 38, there is still a considerable amount of the datapoints
sitting far from the N = ∞ curve. These differences are most probably due to
the atoms at the edges of our tight-binding models, which are only coupled to one
or two neighbouring atoms within our model. The fraction of these “edge” atoms
is decreasing very slowly. The position and strength of two localized states (one
below and one above the band) for t = 3τ seems to converge quickly with system
size, although slower compared to the 1D chain. In particular, the position of the
state below the band agrees with the infinite limit to within 10−1 reduced energy
units (E − ϵC)/|τ | for N = 5, and to within 3 · 10−3 for N = 20, and lastly to
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Figure 3.18: Adatom DOS for 2D models of graphene with an adatom with
reduced energy of −1 in the top position. The adatom-substrate coupling is
equal to t = τ . The limit of N = ∞ is calculated analytically. N is the total
number of atoms in the system.
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Figure 3.19: Adatom DOS for 2D models of graphene with an adatom with
reduced energy of −1 in the top position. The adatom-substrate coupling is
equal to t = 3τ . The limit of N = ∞ is calculated analytically. N is the total
number of atoms in the system.
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within 3 · 10−4 for N = 38.
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Figure 3.20: Adatom DOS for 2D finite models of hBN with the adatom in the
top position. The adatom’s reduced energy is −1. The total number of atoms is
N = 38.

If we compare to the case of the hBN substrate in Fig. 3.20, we immediately
notice the presence of the energy gap, which facilitates the formation of another
localized state within the gap, thus preventing further interaction with continuum
(band) states. However, notice that in the case of strong coupling t = 3τ , the
LDOS of both graphene and hBN are very similar in our model, including the
positions and strengths of the localized states below and above the band. We
note that no analytical result is available for the hBN case.
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Figure 3.21: Adatom DOS for 2D finite models of graphene with different adatom
positions. The adatom’s reduced energy is −1. The adatom-substrate coupling
is indicated in the figure. The total number of atoms is N = 38.
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In Fig. 3.21, the adatom LDOS is plotted for graphene models with an adatom
in bridge (coupling with two substrate atoms), and center (coupling with 6 sub-
strate atoms) positions again for two strengths of coupling. Clearly the more
substrate atoms to couple with, the further away from the band a localized state
is formed. Moreover, we note that in the case of the center position there is a
localized state already for weaker coupling t = τ . Comparing with the LDOS
for the top position (Fig. 3.18) the adatom seems to interact more with the con-
tinuum states, i.e., there are more states with nonzero ca coefficients within the
band when the adatom is coupled to more substrate atoms.

3.4.5 Adsorption energies and electron occupancies
In this section, we calculate “integral”12 properties of one- and two-dimensional
substrates with adatoms. Namely, we compute the electron occupancy of the
adsorbed atom, and the adsorption energy, i.e., the difference of total energies of
a coupled substrate and adsorbate system and the uncoupled system (i.e. with
zero adatom hopping parameter t). Even though in reality this quantity is defined
thermodynamically and includes various contributions, we consider here only the
electronic energy contribution.

The adatom occupancy Na is given as an integral over the adatom density of
states up to the maximally occupied energy level EF (see Eq. 2.34). To express
the change in occupancy of the adatom ∆Na, we use Eq. 3.68 and write

∆Na = − 2
π

Im
∫︂ EF

−∞
dE∆Gaa = − 2

π
Im

∫︂ EF

−∞
dE

g2
aag00|t|2

1 − gaag00|t|2
. (3.91)

We note that we assume that a level can be doubly occupied. Also, gaa and
g00 are Green’s functions of the isolated adatom and the first substrate atom,
respectively. Upon adsorption, the Green’s function of the adatom changes by
∆Gaa = Gaa − gaa. From Eq. 2.46 we obtain for the adsorption energy

Eads = (2θ(EF − ϵa) − 1)ϵa + 2
π

Im
∫︂ EF

−∞
log
(︂
1 − g00gaat

2
)︂
dE. (3.92)

We found that these integrals are not well suited for numerical calculations and
it is necessary to undertake further steps to transform them into more numerically
stable forms. The integrals are manipulated by methods of contour integration
in the complex plane (see Appendix D for the derivation) to obtain the following
forms suitable for numerical calculations

Na = 1 + 2
π

Re
∫︂ 1

0
ds

1 + η

s2 Gaa

(︃
EF + i

1 + η − s

s

)︃
, (3.93)

for the electron occupancy on the adatom, and

Eads = −|ϵa| − 2
π

Re
∫︂ 1

0
ds

1 + η

s2 log
(︂
1 − g00(z(s))gaa(z(s))t2

)︂
, (3.94)

for the adsorption energy. Here, z(s) = EF + i1+η−s
s

.
In this section, we assume that before the adsorption, the adatom level ϵa is

singly occupied, and after the adsorption, it is doubly occupied if EF = 0 > ϵa and
12Meaning that they are given as integrals of Green’s functions.
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Figure 3.22: Adatom occupancy Na for finite 1D chains as a function of the
coupling parameter t for ϵa = −1 computed numerically according to Eq. 3.93.
Note the semi-infinite chain limit (dashed line). Also, |τ | = 1, ϵ0 = EF = 0, and
η = 10−6.

not occupied otherwise. Furthermore, we will mostly consider the case of half-
filled energy band (EF = 0) since this choice maximizes the adsorption energy
in our model, as we show later on. There is no adsorption energy (difference in
energy from the unperturbed case) for EF → ∞, even though individual levels
may shift.13 This follows from the fact that the perturbing potential V is purely
off diagonal in the site representation, i.e., we have TrH = TrH0.

In Fig. 3.22, the electron occupancy Na of a single adatom connected to var-
ious finite and semi-infinite chains is shown as a function of the adatom coupling
t. The adatom energy level is lower than the maximally occupied level of the sub-
strate, ϵa = −1 < EF , therefore the physical intuition dictates to expect higher
electron occupancy. Indeed, in the limit of the adatom coupling |t| → 0, the
occupancy Na → 2, corresponding to an isolated orbital that can accommodate
a maximum of two electrons. On the other hand, in the limit of t → ∞, Na → 1
with the convergence being faster with increasing length of the chain N . In other
words, the adatom occupancy decreases with increasing length for fixed t.

13For EF sufficiently large, the interaction energy between the adatom and the substrate
vanishes (compare with Fig. 3.26). To show this, we manipulate the integral above using
per-partes:

Eads = −2
π

[E Im ln
(︁
1 − t2gaag00

)︁
]EF
−∞−

− 2
π

Im
∫︂ EF

−∞
E
(︁
t2g00(E)g2

aa(E) + t2gaa(E)g2
00(E)

)︁ dE

(1 − t2gaag00) .

In this expression, the surface term vanishes since for any energy outside the band, the
argument of Log is real, the second term can be transformed into a contour integral that
can be closed in the lower half-plane of the energy plane, where no poles are present. Since
the integrand approaches 1/E2 asymptotically (because g(E) ∼ 1/E), the semicircular path
vanishes and the integral is zero [40].
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Figure 3.23: Adatom occupancy Na on a 1D semi-infinite chain as a function of
the coupling parameter t for ϵa = ±1 computed numerically according to Eq.
3.93. Also, τ = −1, EF = 0, and η = 10−6.

Let us now compare with the case of the adatom level above the filled part of
the band, i.e., ϵa = 1 > EF , as shown in Fig. 3.23 for the half-filled semi-infinite
chain of atoms with orbital levels ϵ0 = 0. Clearly, the two cases of ϵa = ±1 are
symmetric, i.e., the occupancy Na decreases with |t| and eventually goes to 0 for
|t| → 0 if ϵa > ϵ0. Furthermore, note that for |t| → ∞, Na goes to 1 for both
ϵa = ±1. In fact, this is the case for any ϵa since, with increasing t, the imaginary
part of the adatom’s Green’s function goes to zero for energies within the band
and the only contribution to its integral Na is given by a localized state below
the band, which appears regardless of the value of ϵa for t sufficiently large.

In Fig. 3.24, we plot the adatom occupancy Na as a function of both the
adatom coupling t and the adatom energy level ϵa for a half-filled semi-infinite
chain. Besides the already discussed increase (decrease) in the occupation of the
adatom site if the adatom level ϵa is below (above) the substrate Fermi level
EF = 0, there is no change in the adatom occupancy for varying t if the adatom
and substrate orbital levels coincide, i.e., ϵa = ϵ0, in accordance with physical
intuition.

The adsorption energies of a single atom connected to a linear chain are linear
with respect to the adatom coupling t for large |t| > |τ | (compare Fig. 3.25). This
can be understood from the behavior of the integrand in Eq. 3.92 by noting that
Im log z = arg z = arctan Re z

Im z
. In our case, z = 1 − g00gaat

2 and it is easy to
show that for t large, the arctangent approaches a constant with respect to t.
However, as we integrate from −∞, clearly, for the integral to be convergent, the
constant must be zero for sufficiently negative energies. However, we must take
into account the effect of a possible localized state lying below the band, which
is expected to appear, as we have shown earlier, for large t. In fact, between the
localized state and the bottom of the band, the integrand is a non-zero constant
[40]. Therefore, since the localized state is linear in t, as we showed in Eq. 3.77,
also the Eads ∝ t for large t.

Similarly, for t small, the integrand behaves as arctan t2 ≈ t2, i.e., the adsorp-
tion energy is quadratic in t. This behaviour is also visible in Fig. 3.25. Also, one
can notice that there is not much variation with respect to the length of the chain
N . This gives us hope that we can expect quite fast convergence with respect to
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Figure 3.24: Contour plot of the adatom occupancy Na in the parameter space of
ϵa and the coupling parameter t for a 1D semi-infinite chain computed numerically
according to Eq. 3.93. Here, we set τ = −1, EF = 0, η = 10−6.

the size of the system also in the case of more realistic models.
It is interesting to calculate Eads as a function of EF , i.e., filling of the band

of the chain. In Fig. 3.26, we can see the convergence of the “step” plots for in-
creasing N towards an inverted triangle structure with the triangle vertex located
at EF = ϵa. In essence, |Eads| is maximum when EF = ϵa. In this case, upon
switching the interaction the maximum number of electrons have their energies
lowered and only a few electrons having their energies raised. In other words,
the adatom level is broadened by the interaction with the substrate. When it
is half-filled, electrons take most advantage of this broadening. The adsorption
energy then decreases linearly until it vanishes at the top of the band. This is
tentatively similar to the d-band model predicting trends in adsorption energies
of small adsorbates on transition metal surfaces based on the d-band filling [61].

A contour plot of the adsorption energy is plotted in the ϵa, t parameter space
in Fig. 3.27) for the case of semi-infinite linear substrate. We can observe that the
Eads is even with respect to ϵa due to the fact that the Green’s function g00(z)
is purely imaginary for imaginary z. Also, Eads is always negative due to the
presence of the term −|ϵa| in Eq. 3.94, and it decreases with increasing coupling
strength |t|.

Let us now proceed to the case of a two-dimensional substrate. To evaluate
adatom occupancies and adsorption energies for the case of the 2D hexagonal
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Figure 3.25: Adsorption energy Eads as a function of the coupling parameter t
for various linear chain substrates computed according to Eq. 3.94. Here, we set
τ = −1, ϵa = 0 = ϵ0 = EF , η = 10−6.
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Figure 3.26: Adsorption energy Eads as a function of EF for the coupling param-
eter t = −1.5 for a various linear chain substrates computed according to Eq.
3.94. Here, we set τ = −1, ϵa = −0.1, η = 10−6.
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Figure 3.27: Contour plot of the adsorption energy Eads as a function of ϵa and
the coupling parameter t for a 1D semi-infinite chain computed according to Eq.
3.94. Here, substrate coupling τ = −1, EF = 0, η = 10−6.

(graphene) substrate, we use the diagonal Green’s function expressed in terms of
complete elliptic integrals of the first kind as described in Appendix C. However,
various numerical problems arise when computing integrals above, due to the
discontinuities in the Green’s functions which survive even after the analytic
continuation into the complex plane.

The adatom occupancy as a function of the adatom energy level ϵa and the
coupling t is shown in Fig. 3.28. The adatom is in the atop (t) position, coupling
only to the nearest substrate atom. Compared to the 1D semi-infinite chain, the
occupancy changes more abruptly nearby ϵa = 0 = EF for a given coupling t.
These jumps in the occupancy can be seen in the plot as zigzag lines. On the
other hand, we can also observe that as we fix ϵa ̸= 0 and increase t towards ∞,
Na converges towards 1 slower than in the case of the 1D chain.

The plot of adsorption energy shows some differences compared to the case
of the linear chain (see Fig. 3.29 for the case of ϵa = 0 = EF ). In particular,
note that the linear regime starts earlier (i.e., for a smaller coupling t) in the
case of the 1D chain. In fact, Eads of an adatom on graphene starts to move
away from 0 only once the adatom coupling is similar to the substrate coupling
t ≈ τ . The adsorption energy of an atom on graphene as a function of both the
adatom energy level ϵa and the coupling t is shown in Fig. 3.30. Clearly, for
t = 0, the Eads is symmetric with respect to ϵa, as it should be. With increasing
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Figure 3.28: Adatom occupancy Na as a function of ϵa and the coupling parameter
t for a hexagonal sheet of graphene. Here, the substrate coupling τ = −1, EF = 0,
η = 10−5.

coupling strength |t|, an asymmetry with respect to ϵa develops. In particular,
Eads decreases with decreasing adatom energy ϵa. This can be partly attributed
to the specific form of the LDOS, which includes discontinuities and a singularity
(see Fig. 3.19). Note that the constant term in our prescription for Eads (see Eq.
3.94), for ϵa > 0, causes Eads to first increase with t and then decrease.
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Figure 3.29: Adsorption energy Eads as a function of the adatom coupling param-
eter t for 1D chain and a hexagonal sheet of graphene. The other parameters are
ϵa = 0, τ = −1, EF = 0, η = 10−6.
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Figure 3.30: Adsorption energy Eads as a function of ϵa and the coupling param-
eter t for a hexagonal sheet of graphene. Here, the substrate is 2D honeycomb
lattice with coupling τ = −1, EF = 0, η = 10−6.
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4. Ab initio calculations
In this chapter, we study the convergence of the adsorption energy of small closed-
shell atoms and molecules on different substrates and their models of increasing
size. Furthermore we analyze how the convergence is affected by the subtractive
embedding scheme.

The adsorption energy is the interaction energy of the substrate and the ad-
sorbate

∆E = Etotal − Esubstrate − Eadsorbate, (4.1)
where the energies refer to internal electronic energies. We set the temperature
to zero and do not consider quantum nuclear effects.

There are two main approaches how to treat adsorption on solid surfaces using
the methods of quantum chemistry. First, periodic boundary conditions can be
applied so that the system is treated as effectively infinite. This is beneficial
if adsorption of a molecular overlayer is studied but less efficient when one is
interested in an adsorption of a single molecule. The second approach takes a
finite cluster from the surface and treats the surface as a big molecule. This is
guided by the idea that bonding on surfaces is a local process.1 The critical issue
in this case is the convergence of adsorption energy with the cluster size.

In this chapter, we consider adsorption of neon and hydrogen fluoride on
graphene and hexagonal boron nitride surfaces. Apart from treating the surfaces
using periodic boundary conditions, we adsorb the molecules on finite cluster
models of the surface. This allows us to understand how the adsorption energy
converges with the cluster size.

The two basic approaches for treating adsorption can be combined using em-
bedding schemes. Assuming that the adsorbate perturbs the system in some lim-
ited region, we treat this active region as accurately as possible and use a simpler
scheme to describe the effect of the environment. In this subtractive embedding
approach, the region of interest (I) is treated with a more accurate method, giv-
ing energy contribution Eacc

I . The effect of the environment is accounted for by
the energy difference Eapprox

I+II − Eapprox
I obtained with the less accurate (cheaper)

method:
Eacc

I+II = Eacc
I + Eapprox

I+II − Eapprox
I . (4.2)

The benefit of this approach is that there is no interaction term, the drawback
is that the cheaper method must be able to describe the region I at least qual-
itatively correctly. We use accurate methods (e.g., MP2) for the active region
(cluster) whereas the presence of the environment is accounted for using low-level
methods. These include various mean-field theories, e.g., Hartree-Fock (HF), or
the approximations of density functional theory (DFT). In this part we seek to
find how large the active region should be in order to capture the essential part of
the interaction. Moreover, we were able to obtain the adsorption energy with the
high-level method for several systems using periodic boundary conditions and we
are thus able to directly assess how efficient the embedding is.

1The validity of this picture thus depends on the localization of the electronic orbitals, which
can be estimated to be inversely proportional to the width of the band gap. Hence the cluster
approach is most appropriate for wide-gap insulators (see, e.g., Refs. [62],[63]), but it has also
been used for metal surfaces [64].
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4.1 Computational details
We now summarize the set-up used to obtain accurate estimates of adsorption
energies. The finite cluster calculations are performed with the accurate and low-
level methods and the set-up is discussed next. Subsequently, we summarize the
settings of the methods used for the treatment of the periodic environment.

As the accurate scheme, we use the second order perturbation theory (MP2)
on top of a mean-field Hartree-Fock calculation (i.e., HF orbitals are used as
reference). Calculations of interaction energies of finite clusters are performed
within the Molpro package [65]. The program uses Gaussian orbitals, and the
Dunning’s correlation-consistent aug-cc-VTZ (AVTZ) basis set is employed for
all calculations together with F12-correction to speed up the convergence and
account for the electron cusp. The advantage of this combination of F12 and
AVTZ basis set is that it leads to MP2 results effectively very close to the complete
basis set (CBS) limit [66], thus eliminating the need for extrapolation procedures.
Density fitting is also used to speed up more demanding calculations. In order
to avoid the basis set superposition error (BSSE) in interaction energies, the
counter-poise correction is also employed, i.e. dummy centers (ghost orbitals) are
used in all calculations of monomers.

The adsorption energies of adsorbates on two dimensional materials were ob-
tained using the VASP package [67] employing periodic boundary conditions.
VASP uses plane wave basis set together with projector-augmented wave (PAW)
potentials [68], which reduce the computational effort by approximating the effect
of the core electrons. The calculations were performed in a 4×4 supercell to re-
duce the interaction between periodic images of adsorbed molecules together with
the vacuum layer of 20−25 Å. A 2×2×1 k-point set and a plane-wave basis-set
cut-off of 600 eV were used.

We use the Hartree-Fock as the cheap low-level method. However, this scheme
does not account for weak dispersion interactions (i.e., long-range electron corre-
lations) which are important for the correct description of processes at surfaces.
To account for these, we employ a so-called dispersion correction DFT scheme,
in which two-body additive dispersion corrections are added to the DFT energy.
The atom-centered dispersion correction scheme is based on the leading order in-
teraction C6/r

6, where C6 depends on the polarizability of atoms α. In this work,
we use the zero damping DFT-D3 method of Grimme [69], which also includes
the C8/r

8 term, as implemented in the VASP package [67] with parameters for
Perdew-Burke-Ernzerhof (PBE) [70] DFT exchange-correlation functional.

The MP2 scheme is known to give satisfying results for interaction energies
of systems with localized electrons. However, when the electrons are delocalized,
higher-order perturbation theory terms leading to a so-called screening of the
interaction become important. This screening was discussed in the context of
the Dyson equation, see Eq. 2.26. The random phase approximation (RPA) is
a scheme which includes screening and is thus a promising method for the treat-
ment of extended systems. It describes various types of bonding with consistent
accuracy. In adsorption systems, underbinding of 10−20% was observed [71], but
this can be alleviated by employing the singles corrections [72]. The RPA adsorp-
tion energies on two dimensional materials were also obtained using VASP. We
note that the application of RPA is not straightforward, especially if one wants
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Figure 4.1: Geometries of C8H10 with neon (left) and HF (right).

to converge the results with good precision, since the energies strongly depend
on the basis set size, the volume of the supercell, and the k-point set. The RPA
interaction energies of the finite clusters were calculated using a code written by
Marcin Modrzejewski [73], employing atomic-like localized basis sets and the PBE
functional for obtaining Kohn-Sham orbitals. The code computes RPA correla-
tion energies and singles corrections using a highly sophisticated scheme capable
of using very large basis sets such as Dunning’s augmented correlation-consistent
polarized valence quadruple zeta (aug-cc-PVQZ) basis set. All RPA interaction
energies of finite clusters were extrapolated towards the complete basis set limit
(CBS) according to Ref. [74].

4.2 Polyacetylene
To model adsorption at the end of a one-dimensional chain, we study trans-
polyacetylenes of various lengths interacting with small atoms or molecules. Poly-
acetylenes are hydrocarbons characterized by a chain of conjugated single and
double carbon–carbon bonds. The calculations were performed for chains of four
different lengths. Two closed-shell adsorbates are studied: neon, which is ex-
pected to interact through van der Waals (dispersion) interaction and hydrogen
fluoride (HF molecule), where we expect more electrostatic contributions within
mean-field approximation. In Fig. 4.1, geometries of C8H10 interacting with both
neon and HF molecule are shown.

In Figs. 4.2 and 4.4, we plot binding curves of systems consisting of a CnHn+2
(n = 2, 4, 6, 8) molecule and a neon or HF molecule. Obviously, the binding
energy is one order of magnitude greater for the HF molecule. The binding
curves change less in both cases as we add more atoms at the end of the chain,
i.e., increase n towards the maximum of n = 8. Note that the convergence of
the adsorption energy with the chain length is monotonous for neon but not for
hydrogen fluoride.

However, the main point of this section is to assess the convergence of the
subtractive embedding scheme. We therefore use the MP2 interaction energies as
the “accurate” ones and check the applicability of Hartree-Fock with dispersion
correction as the low-level or approximate methods. Specifically, we seek to obtain
the MP2 interaction energy on the C8H10 molecule, the shorter molecules are
then the “active sites” and the correction term is between the MP2 scheme and
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Figure 4.2: Binding curves of a neon atom with four different CnHn+2 molecules.
Ab initio MP2 results were obtained with Molpro package.
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Figure 4.3: Binding curves of a neon atom with four different CnHn+2 molecules
with dispersion corrections (left) and Hartree-Fock+dispersion corrections (right)
with respect to the reference of C8H10.

low-level method:

EMP2
int (C8H10) = EMP2

int (CnHn+2) + E
(HF)D
int (C8H10) − E

(HF)D
int (CnHn+2), n = 2, 4, 6,

(4.3)
where (HF)D means that either both Hartree-Fock (HF) and dispersion (D) cor-
rections are used, or only dispersion.

From the results (in Figs. 4.3 and 4.5), one can see that the convergence of
the combined HFD embedding scheme is very fast, with relative error of less than
3% from the reference already from the smallest chain with n = 2. Clearly, the
convergence of the dispersion-only scheme is slower for the adsorption of the HF
molecule, however, the results for the Ne atom show that a very good agreement of
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Figure 4.4: Binding curves of an HF molecule with four different CnHn+2
molecules. Ab initio MP2 results were obtained with Molpro package.
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Figure 4.5: Binding curves of an HF molecule with four different CnHn+2
molecules with dispersion corrections (left) and Hartree-Fock+dispersion correc-
tions (right) with respect to the reference of C8H10.

1% is obtained already with n = 4. The binding curves show that the interactions
with neon are well described by dispersion corrections, and the HF molecule, due
to its high dipole moment, interacts more through the electrostatics captured
with Hartree-Fock.

4.3 Two-dimensional systems
In this section, we calculate adsorption energies of small closed-shell systems on
two-dimensional clusters of aromatic systems (benzene, naphthalene, etc.) and
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Figure 4.6: Geometries of a four-ring cluster with neon (left), anthracene with a
HF molecule (right top) and naphthalene with CO (right bottom). All adsorbates
are in top (t) position.

their BN analogs, and study the convergence of adsorption energies towards the
infinite 2D sheet limit. The molecules that we use are neon, hydrogen fluoride,
and carbon monoxide.

In Tab. 4.1, adsorption (interaction) energies of small atoms and molecules
(see Fig. 4.6) on top of carbon atoms of various aromatic systems are presented.
The adsorbates are placed 3 Å from the surface, which is close to the energy
minimum but not exactly in it. We can observe that the Hartree-Fock results
converge faster than MP2 correlation energies for Ne. Therefore, long-range cor-
relations are important for adsorption on graphene. In fact, due to the vanishing
gap in graphene, also higher-order correlation effects are important, as we will see
later. For the HF molecule and partly also the CO molecule, the Hartree-Fock
convergence is similar to MP2. As for polyacetylene, long-range electrostatics is
expected to slow down the convergence with respect to the cluster size.

Table 4.1: Adsorption energies for various adsorbates on aromatic π systems,
placed at 3 Å distance. The molecules were placed on top of carbon atom and neon
either at the top position or above center of the ring. Total adsorption energies
are here decomposed into Hartree-Fock (HF) and MP2 correlation contributions.
All data are in mHa, computed with the AVTZ basis set (except for coronene,
where VTZ basis set is used for carbon atoms).

benzene naphthalene anthracene coronene
HF MP2 HF MP2 HF MP2 HF MP2

Ne (t) 2.1 −2.1 1.9 −2.5 1.9 −2.6 1.8 −2.8
Ne (c) 1.8 −2.3 1.7 −2.4 1.6 −2.6 1.5 −2.8
HF (t) −3.1 −0.8 −2.8 −1.3 −2.6 −1.4 −2.0 −1.9
CO (t) 7.0 −7.8 6.2 −10.0 6.2 −10.3 6.7 −11.3

In the case of boron nitride structures, we distinguish the cases when the
adsorbates are either on top of B or N atom (see Tab. 4.2). The HF molecule
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Table 4.2: Adsorption energies for various adsorbates on top of either B or N
atom of aromatic BN π systems, placed at 3 Å distance. For neon also the
structure in the middle of the ring was considered. Total adsorption energies are
here decomposed into Hartree-Fock (HF) and MP2 correlation contributions. All
data are in mHa, computed with the AVTZ basis set.

borazine B5N5H8 B7N7H10 B12N12H12
HF MP2 HF MP2 HF MP2 HF MP2

Ne (t) B 1.3 −1.3 1.4 −1.7 1.4 −1.7 1.3 −1.9
Ne (t) N 1.7 −1.4 1.7 −1.8 1.7 −1.8 1.7 −2.1
Ne (c) 1.4 −1.6 1.3 −1.7 1.3 −1.9 1.2 −2.0

HF (t) B −0.7 −1.3 −0.7 −1.5 −0.7 −1.5 −0.0 −1.9
HF (t) N −1.6 −1.1 −0.8 −1.6 −0.8 −1.6 −0.6 −1.8
CO (t) B 6.8 −6.1 6.6 −7.7 6.6 −7.9 6.8 −9.0
CO (t) N 5.6 −5.3 6.2 −7.4 6.3 −7.5 5.9 −8.5

points perpendicular to the plane of aromatic molecules with H below F. The
CO molecule is flat, with the C atom either on top of B or N. Note that the
adsorption energies tend to be smaller compared to the carbon substrate, and
the convergence behaviour with system size appears to be very similar, with only
minor changes. The differences between two variants of adsorbates being on top
of either B or N atoms are rather small. There is mostly cca 10−20% relative
change, with Hartree-Fock results differing more than MP2 correlations. The
highest relative change is 35% in the case of the HF molecule on top of borazine.
The convergence with the system size does not seem to be affected with the choice
of the B/N top position. Note that absolute values of the individual Hartree-
Fock and MP2 adsorption energies are higher for the CO molecule compared to
hydrogen fluoride. However, they are of opposite sign and mostly cancel each
other out when added together.

Next, the subtractive embedding method is employed, similarly to the previ-
ous case of the polyacetylene chains, i.e., we study the convergence of the scheme

EMP2
int (sheet) ≈ EMP2

int (cluster) + EHFD
int (sheet) − EHFD

int (cluster), (4.4)
where HFD means that both Hartree-Fock (HF) and dispersion (D) corrections
are used.

In Fig. 4.7, we present binding curves for the Ne adsorbate on top of four
clusters representing graphene and hBN with applied correction according to the
embedding scheme above. At the first glance, it appears that the convergence of
the embedding method is faster in the case of boron nitride clusters because the
curves lie closer together. This feature is probably due to lower polarizability of
BN rings compared to carbon rings. However, note that the curves corresponding
to two largest clusters C14H10 and C16H10 are closer to each other compared to
their BN counterparts. This is apparent especially in the region to the right of
the minimum of the curves.

In the case of the HF molecule on top of a carbon or boron atom,2 we can see
in Fig. 4.8 that the adsorption energy is approximately three to four times larger

2Note that in the following, we only consider the adsorbate in the top position, i.e., either
on a carbon atom, or a boron atom, in case of hBN structures.
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Figure 4.7: Binding curves of a Ne atom on top of graphene (left) and hBN (right)
within the subtractive embedding scheme assuming Hartree-Fock+dispersion cor-
rections with respect to the sheet reference.

than in the case of Ne. Furthermore, convergence of the embedding method is
clearly slower than in the Ne case, as can be seen from the y-axis range of the
respective figures. This is probably due to the high dipole moment of HF interact-
ing electrostatically with the substrate, which is a longer-range effect compared
to the van der Waals dispersion dominating in the interaction of Ne. Therefore,
we conclude that the embedding scheme works better for the neon atom than for
the HF molecule, placed on top of either graphene, or hBN substrates.
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Å
]︂

En
er

gy
[m

H
a]

C6H6+HFDcor
C10H8+HFDcor
C14H10+HFDcor
C16H10+HFDcor

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Distance
[︂
Å
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Figure 4.8: Binding curves of an HF molecule on top of graphene (left)
and hBN (right) within the subtractive embedding scheme assuming Hartree-
Fock+dispersion corrections with respect to the sheet reference.

To assess the accuracy of our embedding scheme, we seek to calculate the
correlation energies for the infinite sheet. In case of graphene, due to its semi-
metallic character, the perturbative evaluation of correlation energies within MP2
breaks down. A natural way to proceed is to use a treatment involving higher-
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order terms of the perturbation theory, such as the random phase approximation
(RPA). RPA takes screening into account by summing a certain class of Feynman
diagrams to infinite order in the Coulomb interaction. It is expected to give good
description of dispersion bonded systems, although it is well known that it does
not describe covalent bonds very well [75].

For RPA calculations, we set-up the subtractive embedding scheme as follows:

ERPA
int (sheet) ≈ ERPA

int (cluster) + EEXXD
int (sheet) − EEXXD

int (cluster), (4.5)
where EXXD means that both exact-exchange energy, i.e., the non-self-consistent
Hartree-Fock exchange energy with PBE orbitals (EXX), and dispersion (D) cor-
rections with respect to the sheet reference are used. We note that exact-exchange
energy is the Hartree-Fock exchange energy analog using Kohn-Sham orbitals.
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Figure 4.9: Convergence of RPA and MP2 adsorption energies for Ne on top of
hBN in 3.2 Å distance towards the infinite sheet limit compared with the RPA
and MP2 embedding schemes defined in Eqs. 4.4 and 4.5.

Let us now compare the performance of MP2 and RPA for the adsorption
energies of Ne on hBN or graphene. In Figs. 4.9 and 4.10, we plot MP2 and RPA
adsorption energies for a Ne atom on top of boron nitride or carbon aromatic
structures. We observe that the convergence with the cluster size towards the
infinite sheet limit is monotonic and fast. A slow-down in convergence is only
seen between the two- and three-ring structure (naphthalene and anthracene),
which is due to the fact that the additional ring is farther from the adatom. In
the case of hBN, the MP2 energy curve lies close to the RPA curve, however, in
the case of carbon rings the MP2 energies seem to diverge with increasing cluster
size. This is clearly the case because of the diminishing electronic gap. For RPA,
the vanishing gap does not pose a problem and the convergence is similar to the
hBN case.

The performance of both MP2 and RPA embedding schemes is fast in the
sense that already with the smallest cluster (one ring) the results are within 20%
of the infinite limit. However, with the increasing cluster size, the convergence
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Figure 4.10: Convergence of RPA and MP2 adsorption energies for Ne on top
of graphene in 3.2 Å distance towards the infinite sheet limit compared with the
RPA and MP2 embedding schemes defined in Eqs. 4.4 and 4.5.

is not entirely satisfactory. When the dispersion corrections are added within
the embedding scheme, the dependence of adsorption energies on the cluster size
becomes flatter, meaning that the two-body dispersion describes the correlation
part of the interactions between Ne and hydrogenated carbon and BN rings rea-
sonably well. Also, note that the vertical error bars in the periodic results mean
that the calculations are not completely converged. To obtain more converged
results, a higher number of k-points, larger basis set and better PAW potentials
need to be used.

In Fig. 4.11, we plot MP2 and RPA adsorption energies for the HF molecule on
top of boron nitride structures and observe that the convergence with the cluster
size is not monotonic as in the case of BN clusters. In particular, note that this
is due to mean-field Hartree-Fock and EXX adsorption energies. Convergence of
correlation energies is indeed monotonic. With the corrections of the embedding
schemes of Eqs. 4.4 and 4.5, the convergence is smoother but slower. This might
be due to the poor performance of the two-body D3 dispersion correction method
for the system under study. Also, we note that due to the high dipole moment of
the HF molecule, the periodic result can contain an additional error coming from
the interaction of periodic images, since the dimensions of the supercell might
not be sufficient to make this interaction negligible.

69



1 2 3 4 sheet
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Cluster size [# rings]

En
er

gy
[m

H
a]

RPA MP2
RPA emb. MP2 emb.

Figure 4.11: Convergence of RPA and MP2 adsorption energies for the HF
molecule on top of hBN clusters in 2.5 Å distance towards the infinite sheet
limit compared with the RPA and MP2 embedding schemes defined in Eqs. 4.4
and 4.5.
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Conclusion
In this thesis, we studied adsorption by means of embedding methods. In par-
ticular, two different approaches were investigated: tight-binding and ab initio
approach. In the tight-binding approach, we employed the Green’s function for-
malism to obtain local densities of states and adsorption energies, which are
quantities of interest in many theoretical and experimental studies. It was found
that so-called localized states play a significant role in convergence of adsorption
energies with respect to various parameters of studied systems. Their occurrence
was discussed based on different tight-binding parameters. It was shown that
the properties of these localized states converge very quickly with the system
size. Moreover, the energy of these states was found to be dependent on the
number of substrate atoms coupled to the adatom. Our results show that while
the tight-binding model is not expected to provide reliable results comparable to
experiments, it provides physical insight into the essential quantum mechanical
phenomena at play. For example, we found a qualitative relation between the
adsorption energy and the filling of the substrate energy band.

Within tight-binding approximation, we studied the perturbed-cluster em-
bedding method in LCAO formalism in order to incorporate the effect of the
“environment” atoms on a small active site encompassing the adatom and its
neighboring atoms. We found explicit formulae for self-energies of finite and infi-
nite chains, allowing us to restrict the Hamiltonian matrix dimension and speed
up the calculation of properties of interest. We assessed the applicability of several
approximations to self-energy, which is a non-local energy-dependent term in the
Hamiltonian, in the simple one-dimensional chain model. The non-homogeneity
of the substrate and the presence of an energy gap were found to have a profound
effect on the adatom density of states.

We also applied the perturbed-crystal embedding method with the Dyson
equation to study theoretically adsorption energies and adatom electron occu-
pancies for a single atom adsorbed to a semi-infinite chain and two-dimensional
hexagonal graphene sheet. Explicit results for the hexagonal sheet of graphene
were obtained by means of numerical integration of Green’s functions, and com-
pared with the case of the one-dimensional chain of atoms.

In the last part of this thesis, state-of-the-art ab initio methods were em-
ployed to study adsorption energies and convergence of the subtractive embed-
ding scheme. First, polyacetylene molecules of various lengths were considered as
quasi-1D models. The effect of chain length on the interaction of the chain with
small adsorbates was assessed. The convergence of the combined Hartree-Fock
with dispersion (HF+D) subtractive embedding scheme was found to be very fast,
with relative error of less than 3% from the reference already from the smallest
chain with n = 2. Clearly, the convergence of the dispersion-only scheme was
slower for the adsorption of the HF molecule, compared to the Ne atom. The
binding curves show that the interactions with neon are well described by disper-
sion corrections, and the HF molecule, due to its high dipole moment, interacts
more through the electrostatics captured with Hartree-Fock.

Finally, convergence of adsorption energies of small adsorbates on top of two-
dimensional carbon and boron nitride aromatic structures with increasing cluster
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size was studied. We found that whereas for Ne adatom the convergence is mono-
tonic and fast, for the hydrogen fluoride molecule, this is not the case. To obtain
the adsorption energy for the infinite hexagonal sheet, we relied on the subtrac-
tive embedding method, applying the computationally demanding scheme only
for the area (cluster) around the adsorption site and using a simpler mean-field ap-
proaches for the rest of the system (environment). In particular, we assessed the
self-consistent Hartree-Fock scheme, the non-self-consistent Hartree-Fock with
PBE orbitals, also called exact-exchange (EXX), and the DFT-D3 dispersion
method. Our higher-level methods for electronic correlation included MP2 and
RPA. We found that the convergence of the embedding method towards the in-
finite sheet limit is slower in the case of the HF molecule compared to the Ne
atom. This is probably due to the high dipole moment of HF interacting electro-
statically with the substrate, which is a longer-range effect compared to the van
der Waals dispersion dominating in the interaction of Ne.

Moreover, we were able to obtain the adsorption energy with the RPA method
within periodic boundary conditions for the neon atom on hexagonal BN and
graphene surfaces, and for the HF molecule on the hBN surface. The performance
of the combined EXX+dispersion embedding scheme was found to be satisfactory.
We saw that in the case of graphene, where it is impossible to obtain the MP2
energy for the infinite sheet, the embedding method proved to be a useful tool
for obtaining an estimate of the adsorption energy of a small atom or molecule
with a surface.

To conclude, in this work, some aspects of the embedding method were dis-
cussed along with the effects of a local perturbation on single-electron states of
extended systems. Theoretical results from the tight-binding model, including
explicit expressions for Green’s functions of one- and two-dimensional lattices
were obtained and analyzed. The efficiency and applicability of subtractive em-
bedding scheme were also assessed for several systems by using various ab initio
methods available in super-computing environments. We found that the studied
subtractive embedding scheme is sensitive to the cluster electronic structure con-
vergence. In particular, changes in mean-field adsorption energies of hydrogen
fluoride were not reflected by the two-body dispersion scheme. This issue could
be alleviated by using a many-body dispersion method instead of the two-body
dispersion. Alternatively, one could go even further and use more sophisticated
methods as both high- and low-level schemes, e.g., the combination of CCSD(T)
and RPA methods. However, we note that the coupled CCSD(T) has a high com-
putational scaling of O(N7) with the system size, compared to O(N3) of RPA.
Also, as a further extension of this work, various other embedding schemes could
be studied, e.g. electrostatic embedding, or projector-based embedding of Manby
et al. [15].

Finally, we note that the embedding schemes for adsorption may be useful
for studying precision of electronic structure methods. In our calculations, we
used different implementations of these methods, and compared results of the
order of mHa, obtained by subtracting large numbers of the order of tens of Ha.
Thus, embedding schemes for adsorption are sensitive to precision of the used
methods leading to opportunities for validation and assessment of precision of
different implementations. This ultimately leads to the question of reproducibility
of results, which is currently a hot topic for developers [76].
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A. Calculation of Green’s
functions using complex analysis

A.1 Infinite chain
We want to solve the following integral:

ĝj,l(E) = a

2π

∫︂ π/a

−π/a
dk

eika(j−l)

E + iη − ϵ0 − 2τ cos(ka) = a

4πτ

∫︂ π/a

−π/a
dk

eika(j−l)

cos(ka) + E+iη−ϵ0
2|τ |

,

(A.1)
where we assumed that τ < 0. We proceed by introducing the complex variable
w = eika, so that 2 cos(ka) = w + w−1 and rewriting the integral as a contour
integral along the unit circle

ĝj,l(z) = 1
2πiτ

∮︂
|w|=1

dw
w|j−l|

w2 + 2xw + 1 , (A.2)

with the notation x = z−ϵ0
2|τ | and z = E + iη.

The integrand has two poles:

w± = −x±
√
x2 − 1, (A.3)

which satisfy w+w− = 1, meaning that only one of them lies inside the unit circle.
We have to keep a small imaginary η = Im{x}, since for x ∈ R&x ∈ (−1, 1)
both roots lie on the unit circle, and the integral above is not well defined.

We note that if x is real (i.e., in the limit η → 0+)

|w±|2 − 1 = 2
√
x2 − 1

(︂√
x2 − 1 ∓ x

)︂
< 2

√
x2 − 1 (|x| ∓ x) for |x| > 1, (A.4)

meaning that w+ is inside the unit circle for Re{x} > 1 and w− lies inside the
unit circle Re{x} < −1.

Then, for Re{x} ∈ (−1, 1), w+ is inside the unit circle provided that η is a
positive infinitesimal (this is easy to show because if Re{x} = 0 then w+ = i(1−η)
since η2 = 0).

Therefore, we obtain by the method of residues

ĝj,l(z) = 1
2πi|τ |2πiResw+

w|j−l|

(w − w+)(w − w−) = w
|j−l|
+

τ(w+ − w−) (A.5)

The resulting (retarded) Green’s function, which is obtained by a limiting
procedure, is valid for the scaled energy parameter x = E−ϵ0

2|τ | ∈ [−1, 1], defining
the only continuous part of the spectrum (band) has the form

ĝj,l(E) = −i
2|τ |

√
1 − x2

(−x+ i
√

1 − x2)|j−l|, (A.6)

where the minus sign in the numerator is fixed by the requirement that the local
density of states

n(E) = − 1
π

Im gjj(E) (A.7)

is positive within the continuum band.
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A.2 Semi-infinite chain
We evaluate the integral

ĝj,l(E) = a

2π

∫︂ π/a

−π/a
dk

sin(jka) sin(lka)
E + iη − ϵ0 − 2τ cos(ka) . (A.8)

for j = l = 1. Here we denote x = z−ϵ0
2|τ | with z = E + iη. Substituting w = eika

as above, we obtain

ĝ1,1(z) = i

4π|τ |
∮︂

|w|=1
dw

(w2 − 1)2

w2(w2 + 2xw + 1) . (A.9)

The integrand has three poles:

w0 = 0 (A.10)
w± = −x±

√
x2 − 1, (A.11)

which satisfy w+w− = 1, meaning that only one of the pair w± lies inside the
integration contour (unit circle). As discussed in detail in the preceding section,
provided that x includes a positive infinitesimal η, w+ lies inside for Re{x} > −1
and w− lies inside otherwise. The residues of the integrand at the poles are given
by

Resw0

(w2 − 1)2

w2(w2 + 2xw + 1) = −2x (A.12)

Resw±

(w2 − 1)2

w2(w2 + 2xw + 1) = ±2
√
x2 − 1. (A.13)

By the residue theorem, we can write:

ĝ1,1(z) = i

4π|τ |2πi
(︄

Resw0

(w2 − 1)2

w2(w2 + 2xw + 1) + Resw±

(w2 − 1)2

w2(w2 + 2xw + 1)

)︄
.

(A.14)
Therefore, the result is

ĝ1,1(z) = 1
|τ |

⎧⎨⎩(x− i
√

1 − x2) if |x| ≤ 1
(x− sgnx

√
x2 − 1) if |x| > 1.

(A.15)
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B. Eigenvalues and eigenvectors
of a tridiagonal Toeplitz matrix
We wish to calculate the eigenvalues of a symmetric tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

U τ 0 · · · 0
τ U τ 0 ...
0 τ

. . . · · · ...
... · · · τ U τ
0 · · · 0 τ U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

of order N with U, τ real or complex constants. The eigenvalue equation Av =
λv transforms into a difference equation for the components v1, v2, ..., vN of the
eigenvector v:

τ(vi−1 + vi+1) + (U − λ)vi = 0, i = 1, . . . , N, (B.1)
where we defined that v0 = vN+1 = 0. The solution of this linear equation with
constant coefficient can be easily found by writing:

vi = ami
1 + bmi

2, (B.2)
with a, b are constants and m1,m2 are given by roots of the quadratic equation:

τ(m2 + 1) + (U − λ)m = 0. (B.3)
First, since v0 = vN+1 = 0, we must have m1 ̸= m2 (otherwise if m1 = m2 then
necessarily a = b = 0 and v = 0) and:

a+ b = 0
amN+1

1 + bmN+1
2 = 0

with solutions:
m1

m2
= e

2ikπ
N+1 , k = 1...N,

which together with m1m2 = 1 leads to

m1 = e
ikπ

N+1

m2 = e
−ikπ
N+1 .

Then, since we know that
m1 +m2 = λ− U

τ
,

we can write the general form of the eigenvalues of a symmetric tridiagonal
Toeplitz matrix:

λk = U + 2τ cos
(︄

kπ

N + 1

)︄
, k = 1, 2, 3..., N, (B.4)

interestingly, these are roots of the Chebyshev polynomials of second kind of
degree n. The eigenvector corresponding to λk is then given by [77]

vk(N) = A

{︄
sin
(︄

kπ

N + 1

)︄
, sin

(︄
2kπ
N + 1

)︄
, ..., sin

(︄
Nkπ

N + 1

)︄}︄
, (B.5)

where the normalization factor can be found in, e.g. Appendix of [77].
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C. Analytic expressions for the
Green’s function of hexagonal
lattices
Horiguchi and Morita ([53], [50]) expressed Green’s functions recursively for the
triangular and honeycomb lattices in terms of the complete elliptic integrals of
the first and second kind.

Their expression for the onsite (diagonal) Green’s function of a triangular
lattice reads

g00(z) = 1
4πg(z)

˜︁K[k(z)], (C.1)

where g(z) = 8√
(
√

2z+3−1)3(
√

2z+3+3)
, and k(z) = 1

2g(z)
4
√

2z + 3.

Concerning the honeycomb lattice, Horiguchi used a substitution z′ = z2−3
2 to

obtain the onsite Green’s function

g00(z) = z

4πg(z
′) ˜︁K[k(z′)]. (C.2)

Also, the analytic continuation of the complete elliptic integrals of the first
kind K needs to be used in order to capture the behavior of the real part of the
Green’s function inside the band, namely:

˜︁K[k(z′)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K[k(z′)] for Im k · Im z′ < 0
K[k(z′)] + 2iK[

√︂
1 − k2(z′)] for Im k > 0 , Im z′ > 0

K[k(z′)] − 2iK[
√︂

1 − k2(z′)] for Im k > 0 , Im z′ < 0
(C.3)

The DOS exhibits the characteristic discontinuity at the band edges and
Re{g} has a logarithmic singularity. There are singular points within the band
where the Re{g} exhibits a discontinuity and the DOS has a logarithmic singu-
larity [36].

Alternatively, Pedersen [54] obtained the following expressions equivalent to
those above for t = 1:

g00(z) = sgn(z) Re[3G(|z|) + G(−|z|)] + i Im[G(|z|) − G(−|z|)], (C.4)

with
G(z) =

√
z

2πit3/2 K
[︄

(3t− z)(t+ z)3

16zt3

]︄
. (C.5)

In Fig. 3.8, the numerical evaluation of the above expression in Mathematica
program is presented. The plot corresponds to the one obtained from numerical
integration as discussed in the main text.
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D. Contour integration of
Green’s functions
We seek to calculate the integral

I = − 2
π

Im
∫︂ EF

−∞
Gii(E + iη)dE. (D.1)

First, we recall that the retarded Green’s functions Gii(E + iη) are by their
definition analytic in the upper-half of the complex energy plane defined by y > 0
for z = x + iy. The current integral lies a small distance iη from the real axis.
The choice of the path used in a numerical calculation has to be a compromise
between an optimally smooth integrand, calling for a path far away from the real
axis, and between an optimally short path [78]. We take a straight line from EF to
infinity complemented by a quarter-circle which has to be calculated analytically,
see Fig. D.1. In many applications the infinite quarter-circle will give a vanishing
contribution.

Re

Im

EF

R

I

I1

I2

Figure D.1: The complex energy plane with the dashed line representing the
integration contour. Note that the section along the real line is shifted upwards by
η. The integral is taken counter-clockwise. The contour encloses no singularities
and has an arc of radius R → ∞.

From Cauchy’s theorem it follows that I = −I1 −I2. The integral I2 along the
arc can be solved by switching the Green function to polar coordinates z = Reiθ.
Following from the definition G = (E −H)−1 clearly Gii(z) ≈ 1/z, therefore

I2 ≈
∫︂ π

π/2
dθ
iReiθ

Reiθ
= i

π

2 . (D.2)

If the integrand has the form log det
(︂
Î − ĝV̂

)︂
= Tr log

(︂
Î − ĝV̂

)︂
, as in the

case of adsorption energy calculations, the asymptotic behaviour leads to I2 =
−iπ

2 Tr V̂ = 0, since V is a traceless matrix.
Let us note that if the integrand is a product of two or more Green’s functions,

the integral I2 vanishes as the integrand behaves as 1/R2 or faster.
The integral over the imaginary axis I1 has the form

I1 = i
∫︂ ∞

η
Gii(EF + iy)dy, (D.3)
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which leads to

I = − 2
π

Im
(︃

−i
∫︂ ∞

η
Gii(EF + iy)dy − i

π

2

)︃
= 1+ 2

π
Re

∫︂ ∞

η
Gii(EF +iy)dy. (D.4)

It is useful to perform an additional change of variables in order to change
the integration limits to a finite range to facilitate numerical evaluation (see Refs.
[78] and [79])

y = 1 + η − s

s
, dy = −1 + η

s2 ds, (D.5)

which leads to

I = 1 + 2
π

Re
∫︂ 1

0
ds

1 + η

s2 Gii

(︃
EF + i

1 + η − s

s

)︃
. (D.6)
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