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Abstract: The motion of a test particle in the Schwarzschild background models
the merger of a compact object binary with extremely different masses known in
the literature as Extreme Mass Ratio Inspiral. In the simplest geodesic approxi-
mation, this motion is integrable and there is no chaos. When one takes the spin
of the smaller body into account, integrability is broken and prolonged resonances
along with chaotic orbits appear. By employing the methods of Poincaré surface
of section, rotation number and recurrence analysis we show for the first time
that there is chaos for astrophysically relevant spin values. We propose a univer-
sal method of measuring widths of resonances in perturbations of geodesic motion
in the Schwarzschild spacetime using action-angle-like variables. We apply this
novel method to demonstrate that one of the most prominent resonances is driven
by second order in spin terms by studying its growth, supporting the expectation
that chaos will not play a dominant role in Extreme Mass Ratio Inspirals. Last
but not least, we compute gravitational waveforms in the time-domain and es-
tablish that they carry information on the motion’s dynamics. In particular, we
show that the time series of the gravitational wave strain can be used to discern
regular from chaotic motion of the source.
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Autor: Ondřej Zelenka
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Abstrakt: Pohybem testovaćı částice ve Schwarzschildově prostoročase lze mode-
lovat splynut́ı kompaktńıch objekt̊u s extrémně rozd́ılnými hmotnostmi známé v
literatuře jako Extreme Mass Ratio Inspiral. V nejjednodušš́ı geodetické aprox-
imaci je tento pohyb integrabilńı a nedocháźı k chaotickému chováńı. Pokud
se vezme v úvahu rotace menš́ıho z těles, systém ztráćı integrabilitu a objev́ı se
prodloužené rezonance a chaotické trajektorie. Použit́ım metod Poincarého řezu,
rotačńıho č́ısla a rekurenčńı analýzy poprvé dokazujeme, že existuje chaos pro
astrofyzikálně relevantńı hodnoty momentu hybnosti. Navrhujeme univerzálńı
metodu pro měřeńı š́ı̌rek rezonanćı v perturbaćıch geodetického pohybu ve Schwarz-
schildově prostoročase použit́ım proměnných akce-úhel. Použit́ım této nové metody
ukazujeme, že jedna z nejvýrazněǰśıch rezonanćı vzniká d́ıky člen̊um druhého
řádu v momentu hybnosti, studiem jej́ıho r̊ustu, což je v souladu s očekáváńım,
že chaos nebude hrát dominantńı roli v Extreme Mass Ratio Inspiral. Také
poč́ıtáme gravitačńı vlny v časovém oboru a nacháźıme v nich informace o dy-
namice systému. Předevš́ım dokazujeme, že časovou řadu deformace prostoročasu
zp̊usobené gravitačńımi vlnami lze použ́ıt k rozlǐseńı regulárńıho a chaotického
chováńı zdroje.
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Introduction
The last few years have witnessed the birth of gravitational wave astronomy.
Although the first indirect evidence of gravitational waves has been known since
the early 1980s [1], the first direct detection GW150914 by the LIGO Scientific
Collaboration [2] has been celebrated around the globe and since then, ∼ 10 more
events have been detected [3]. All of them have been calculated to be mergers of
compact binaries of comparable masses between 101M⊙ and 102M⊙.

The Laser Interferometric Space Antenna (LISA) mission, the first dedicated
space-based gravitational wave detector, is expected to launch in 2034 [4]. Unlike
ground-based detectors, the sensitivity of LISA will lie in the range from 10−4 Hz
to 10−2 Hz, allowing for observation of many different types of sources such as
supermassive black hole mergers [5] or stellar mass compact binaries long before
merger [6]. Another exciting prospect is to use these sources as independent
standard sirens that allow us to constrain cosmological models [7]. One of the
primary targets are the inspirals of stellar mass (100M⊙−101M⊙) compact objects
(black holes or neutron stars) into supermassive black holes (105 M⊙ − 1010 M⊙),
which are called Extreme Mass Ratio Inspirals (EMRIs). It is expected that after
the mission has launched, LISA will detect between 1 and 2000 EMRIs per year
[4].

The full description of a compact binary requires solving the full Einstein
equations using numerical relativity simulations and constitutes a computation-
ally expensive task. Indeed, the computational requirements in a crude estimate
rise as the fifth power of the mass ratio. In the case of an EMRI, the computa-
tional cost is prohibitive. Fortunately, the dynamics of an EMRI can be modeled
as the motion of an extended body in a perturbed black hole spacetime. The
gravitational perturbation of the spacetime background is caused by the presence
of the smaller body, and this effect ultimately drives the inspiral. However, the
back-reaction that is induced on the motion of the small body itself accumulates
very slowly, and it is meaningful to ignore it in the orbital dynamics for a certain
period of time. As a result, we may study the effect of the finite size of the
smaller object in a test body approximation. In return, the core of the dynamics
is reduced to a set of ordinary differential equations. Using such a model, one
may generate waveform templates, which are according to contemporary consen-
sus necessary for the analysis of data from the LISA instrument. This makes the
study of this system very important for future gravitational wave observations.

The simplest approximation for this motion is a point particle moving along
a geodesic, neglecting the body’s finite size. In the Kerr spacetime background,
which is assumed to describe a spinning black hole, the geodesic equations of
motion are separable, the system is integrable and one can find no prolonged
resonances or chaotic orbits. One degree of approximation finer, the finite size
effect caused by the body’s rotation (similar to the force an electromagnetic field
exerts on a dipole) is included and a point particle evolving with this effect taken
into account is called a spinning particle. This finite size effect will demonstrate
itself in the orbital phase of the waveform at next-to-leading order in the mass
ratio, making it an indispensable piece of waveform modeling frameworks [8].

An EMRI model that employs a spinning particle as the stellar mass compact
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object is in general non-integrable, displaying chaotic behavior and prolonged
resonances. The equations of motion are, however, approximately separable. It
is unclear whether this means that chaos doesn’t appear at linear order in spin.
This needs to be discovered to determine the role resonances play in EMRIs and
to make accurate predictions for LISA waveforms.

In this thesis we restrict ourselves to a non-spinning supermassive black hole,
described by the Schwarzschild spacetime background, and the corresponding
gravitational wave emission. We consider the spinning particle and demonstrate
the emergence of chaos using the Poincaré section, rotation number and recur-
rence analysis. We also make use of a time-domain Teukolsky code to establish
a link between dynamical features of the spinning particle system and of the
radiated gravitational waveforms.

The organization of the thesis is as follows: in the first chapter, we summarize
some basic theoretical results concerning the equations of motion of spinning
particles, regular and chaotic behavior and the Schwarzschild spacetime. In the
second chapter, we demonstrate how resonances grow with spin, in the third
chapter, we compute gravitational waveforms from the studied system, and in
the fourth chapter, we use recurrence analysis to establish a link between chaos
in the motion and in the waveforms.
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1. Spinning particles in the
Schwarzschild spacetime

1.1 Equations of motion for spinning particles

1.1.1 Mathisson-Papapetrou-Dixon equations
We will use Greek indices µ, ν, ... = t, r, θ, ϕ to denote coordinate components of
tensors and capital latin indices A,B, ... = 0, 1, 2, 3 to denote tetrad components.
The metric signature convention used is (−,+,+,+). As is usual, a dot above
a symbol denotes the absolute derivative with respect to the proper time Ȧµ...

ν... =
DAµ...

ν.../dτ and indices separated by a comma or semicolon denote a partial or
covariant derivative, respectively. The sign convention for the Riemann tensor is
that 2ωρ;[µν] :=ωσR

σ
ρµν for any covector field ω.

We attempt to model an Extreme Mass Ratio Inspiral as the motion of an
extended body in the fixed spacetime background of a static black hole. This
motion can be described by a comprehensive multipole formalism developed by
Dixon [9, 10, 11]. The worldline of a particle xµ(τ) is parameterized by the proper
time defined by

dτ 2 := −gµνdxµdxν . (1.1)
If one concerns oneself with only the gravitational interaction and restricts the
multipole expansion of the extended body to the monopole and dipole terms
by neglecting the quadrupole and higher-order moments, the equations of mo-
tion reduce to the Mathisson-Papapetrou-Dixon (MPD) equations (see [12, 13]).
Neglecting the dipole term in the expansion as well would yield geodesic motion.

The MPD equations read

Ṗ µ = −1
2R

µ
νρσu

νSρσ , (1.2a)

Ṡµν = 2P [µuν] = P µuν − P νuµ , (1.2b)

where Sµν is the spin-tensor, P µ is the four-momentum and uµ = dxµ/dτ is the
four-velocity. If we define the kinematical mass

m := −Pµu
µ (1.3)

and the dynamical mass
µ :=

√
−PµP µ , (1.4)

then
P µ = muµ − uσṠ

µσ . (1.5)
Another useful quantity is the spin magnitude

S :=
√

1
2SµνSµν . (1.6)

For a continuous symmetry of the spacetime background with the corresponding
Killing vector field ξ, this system admits an integral of motion in the form [14]

C(ξ) = Pσξ
σ − 1

2ξρ;σS
ρσ . (1.7)
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1.1.2 Spin supplementary condition
The MPD equations do not fully determine the system’s evolution. Therefore,
it is necessary to specify an additional spin supplementary condition (SSC). It
takes on the form

VµS
µν := 0 , (1.8)

where V is a time-like vector. The meaning of an SSC is related to the multipole
formalism [9]: one describes the extended body using its multipole moments, the
V in Eq. (1.8) determines the frame used to calculate these moments. Several
different SSCs have been proposed (see, e.g., [8, 15]); however, the existence of a
four-vector V such that Eq. (1.8) holds is already a constraint on the system: in
geometrical terms, one may write any 2-form as

S = α ∧ β + γ ∧ δ , (1.9)

where α through δ are covectors; if there were more terms, the respective covectors
would be linearly dependent for any S and it could be again reduced to the
form above. If this were indeed the simplest possible form for the spin-tensor, α
through δ would form a basis of the cotangent space and V · S would be a linear
combination of the elements of this basis, which can never be zero. Thus, the
spin-tensor may be written as S = α ∧ β, this leads to ϵµνρσS

µνSρσ = 0.
In this thesis we use the Tulczyjew-Dixon (TD) SSC

PµS
µν = 0 . (1.10)

Due to this condition, the dynamical mass and the spin magnitude are integrals of
motion. The system as given above together with the SSC leads to the equation
[8]

uµ := dxµ

dτ = m

µ2

(
P µ + 2SµνRνγκλP

γSκλ

4µ2 +RχηωξSχηSωξ

)
. (1.11)

The kinematical mass can be expressed as

m = Aµ2
√

A2µ2 − BS2 , (1.12)

where

A = 4µ2 +RαβγδS
αβSγδ , (1.13a)

B = 4hκηRκιλµP
ιSλµRηνωπP

νSωπ , (1.13b)

hκ
η = 1

S2S
κρSηρ . (1.13c)

Thus, the derivatives ẋµ, Ṗ µ and Ṡµν are uniquely expressed and the system of
ODEs is complete.

1.1.3 Canonical formalism
While the system as discussed so far is a well-defined dynamical system, it is
simply a set of ODEs, whereas the symplectic structure of a Hamiltonian system
would provide us with tools to identify uninteresting degrees of freedom and
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eliminate them from the ODE system. By reducing the degrees of freedom we
can easier study dynamical features of the system. We will use the formalism
described by Witzany [8]. We only provide a very concise summary; for more
detailed information, see the original paper.

We take an orthonormal tetrad eAµ, gµνe
AµeBν = ηAB and define the ”dual”

tetrad as eA
µ := gµνe

Aν . The new phase space coordinates are defined by

xµ , (1.14a)

pµ :=Pµ + 1
2eAν;µeB

νSAB , (1.14b)

SAB := eA
µe

B
νS

µν . (1.14c)

With the Poisson brackets

{xµ, pν} = δµ
ν , (1.15a)

{SAB, SCD} = ηACSBD − ηADSBC + ηBDSAC − ηBCSAD , (1.15b)
{xµ, xν} = {pµ, pν} = {xµ, SAB} = {pµ, S

AB} = 0 , (1.15c)

the Hamiltonian

H = m

2µ2

[(
gµν − 4SνγRµ

γκλS
κλ

4µ2 +RχηωξSχηSωξ

)
PµPν + µ2

]
. (1.16)

generates the system of MPD equations with the TD SSC. There is a further
transformation to obtain canonical variables; again, the interested reader is re-
ferred to [8]. For the purposes of this work, its existence is enough. Adding the
spin with the TD SSC to the geodesic system leads to only one additional degree
of freedom (dof) [8].

1.2 Dynamical systems
This section summarizes the most elementary findings about non-linear dynamical
systems. For a more comprehensive insight into the topic, see [16, 17, 18].

1.2.1 Integrable systems
An important notion is that of an integrable system, which is closely connected
to integrals of motion. Let us consider an autonomous Hamiltonian system with
N degrees of freedom (dof’s), i.e. a 2N -dimensional phase space, with canonical
coordinates qi, pi, i = 1, 2, . . . , N and Hamiltonian H. Let us also assume that
there exists a non-trivial integral of motion I : {I,H} = 0. This way, not only is
the motion restricted to a 2N − 1-dimensional subset of the phase space, but due
to the symplectic structure, this allows for a separation of a full dof, as there exists
a canonical transformation to variables wherein one of the canonical momenta is
the integral I, e.g., p1 = I, and thus the Hamiltonian does not depend on the
corresponding position, i.e. q1. This way, the evolution of qi, pi, i ̸= 1 is not
influenced by the first dof and by setting a value for the integral I, it is possible
to study the system only concerning the variables qi, pi, i ̸= 1 and I becomes a
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parameter of the system qi, pi, i ̸= 1. We call this the reduced system and say
that it evolves on a submanifold of the original phase space.

In the case of n > 1 integrals of motion Ii, i = 1, 2, . . . , n, one can reduce
the phase space by n dof under additional conditions. If the integrals are lin-
early independent (det (Ii,j) ̸= 0) and in involution ({Ii, Ij} = 0 , ∀ i, j), a
canonical transformation exists which equates several momenta with the inte-
grals, e.g. pi = Ii, i = 1, 2, . . . , n, and the Hamiltonian is independent of the
corresponding positions, i.e. qi, i = 1, 2, . . . , n. Then the evolution of variables
qi, pi, i = n + 1, . . . , N is independent of the separated dof and we call it the
reduced system. All the separated dof are also independent of each other.

If one assumes the existence of N independent integrals of motion in involu-
tion, one of which is the Hamiltonian, then one can separate all the dof’s and
they all become independent, simplifying the motion greatly. This is expressed
by the Liouville theorem, which states that there exists a set of variables θi, Ii

such that:

θi (τ) = θi (0) + τωi (Ij) , (1.17a)
Ii (τ) = Ii (0) . (1.17b)

The system is then called integrable and all of the coordinates evolve by a linear
evolution law. In addition, if the motion is bounded, then it lies on a nested
family of N -dimensional tori (see, e.g., [16]). The θi variables are then typically
2π-periodic and the ωi’s are the characteristic frequencies.

As we will see later, the relevant system in this work possesses enough integrals
to be reduced to two degrees of freedom, so from now on, we will restrict ourselves
to systems with N = 2 and bounded motion.

In an integrable system, the ratio of characteristic frequencies is known as
the rotation number ω = ω1/ω2. When ω ∈ Q, the motion is periodic, as there
exists a time after which both τωi’s are integer multiples of 2π; the torus is called
resonant and the corresponding phase space region is called a resonance. On the
other hand, if ω ∈ R \ Q, the orbit densely covers the whole torus (this is called
quasiperiodic motion).

A very powerful phase space visualization tool is the Poincaré section. Orbits
lie on a hypersurface of constant Hamiltonian in the phase space. In it, one can
choose a 2-dimensional surface S, which is transversal to the Hamiltonian flow,
i.e., nowhere on S does the Hamiltonian flow lie in the tangent plane to S. We
call such a hypersurface the surface of section or Poincaré section. By considering
succesive intersections of a trajectory with S, the original 2-dof continuous-time
system is converted to a 1-dof discrete-time system. We call the mapping of one
intersection with S to another the return mapping and denote it as Ω : x⃗n+1 =
Ωx⃗n. The return mapping retains symplecticity: it preserves the symplectic form,
the tensor which generates the Poisson bracket [17].

In the case of an integrable system, all intersections corresponding to a single
non-resonant trajectory will lie on the intersection of an invariant torus and S,
which will appear as a closed curve (usually called an invariant circle). For a
resonant torus with ω = r/s, the intersection will be an invariant circle as well; a
single trajectory, on the other hand, will only form a finite set of s periodic points
in the surface of section. These are often called fixed points, as they are preserved
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by Ωs. This method is widely used for studying non-linear systems which can be
reduced to 2 dof’s (see, e.g., [19, 20]).

We define another key property: a map is said to be a twist map, if there is
a center such that the map rotates points with respect to the center by an angle
which changes monotonically with the distance from the center. The return
mapping in a Hamiltonian system quite often has this property [17], but it is not
always true. Consequently, if the Poincaré section defined by θ2 = 0 mod 2π is
a twist map, then the rotation number changes monotonically in the direction to
the outermost circles. In this case, there is also a practical method to evaluate
the rotation number. One must identify the period-1 fixed point x⃗c in the surface
of section and take angles between successive intersections x⃗i with the surface of
section with respect to x⃗c as

ϑi := ang [(x⃗i+1 − x⃗c) , (x⃗i − x⃗c)] . (1.18)

Then the rotation number, up to an additive integer, can be determined as

νϑ := lim
n→∞

1
2πn

n∑
i=1

ϑi . (1.19)

If the trajectory lies on an invariant torus, then νϑ = ω mod 1 [21]. The error of
the limit for finite n is bounded by 1/n. Intuitively, 2πνϑ is the average angle by
which the return mapping rotates a point of the given trajectory in the surface
of section with respect to the central period-1 fixed point.

1.2.2 Perturbation
The structure as described in the previous subsection fully applies only in the
integrable case. Upon application of a small perturbation, one typically gets
what is called a near-integrable system, which is not integrable anymore, but it
retains a lot of structure from the integrable system.

As described in the previous subsection, the surface of section of an integrable
system is formed by a family of nested invariant circles, with the rotation number
monotonically changing outwards. While the application of a small perturbation
breaks integrability, many of these circles remain in the perturbed system as well.
The ones which survive sufficiently small perturbations are those ”far enough
from resonances”; this is formally expressed through the notion of Diophantine
numbers. We say that a number ω ∈ R is q-Diophantine (q ≥ 1) if

∃C > 0 : ∀ (m,n) ∈ Z2 \ {(0, 0)} : |nω −m| > C

nq
(1.20)

and the property expresses that ω cannot be well approximated by rational
numbers. The Kolmogorov-Arnold-Moser (KAM) theorem states that for j-
times differentiable mapping and perturbation, there are invariant circles with
q-Diophantine rotation numbers for q ∈ (1, (j − 1) /2), if the perturbation is suf-
ficiently small [17]. The set bounded by the outermost invariant circle is then
called the main island of stability.

The KAM theorem does not say anything about what happens to resonances
after the perturbation. The Poincaré-Birkhoff theorem [16] states that for the
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resonance ω = r/s in the integrable system, 2ns of the periodic points remain
even in the perturbed system, where n ∈ N. Properties of these periodic points
can be studied using the notion of linear stability, that is, linearizing the mapping
around the periodic point and studying the matrix of the linearized map and its
eigenvalues λ1 and λ2. Because the map is real, it must hold λ̄1 = λ2 and from
symplecticity it follows that λ1 · λ2 = 1, so there exist three distinct behaviors:

• λ1, λ2 ∈ C \ R : from the conditions above, both eigenvalues lie on the
unit circle. In the vicinity of the point the linearized mapping moves on an
ellipse and an island of stability arises. This kind of fixed point is called
stable or elliptic,

• λ1, λ2 ∈ R : this results in linearized motion on a hyperbola. This kind of
fixed point is called unstable or hyperbolic,

• λ1 = λ2 = ±1 : this point is called indifferently stable.

As stated in the Poincaré-Birkhoff theorem, after the perturbation half of the
surviving periodic points in a given resonance are elliptic and the other half
hyperbolic.

To see what happens near a hyperbolic fixed point x⃗f , we make use of invariant
manifolds. We define:

W s (x⃗f ) :={x⃗ ∈ S : Ωnx⃗
n→∞−→ x⃗f} , (1.21a)

W u (x⃗f ) :={x⃗ ∈ S : Ωnx⃗
n→−∞−→ x⃗f} . (1.21b)

Due to the stable manifold theorem [22], these sets fulfill the definition of a
manifold and we call them the stable and unstable manifold, respectively; these
manifolds cannot intersect themselves. They are called invariant, since

ΩW s (x⃗f ) = W s (x⃗f ) , ΩW u (x⃗f ) = W u (x⃗f ) . (1.22)

In addition, the Hartman-Grobman theorem [23] states that the return mapping
is topologically equivalent to the linearized mapping near an unstable fixed point.

By definition, for two fixed points x⃗f1 ̸= x⃗f2 :

W s (x⃗f1)
⋂
W s (x⃗f2) = ∅ , (1.23a)

W u (x⃗f1)
⋂
W u (x⃗f2) = ∅ . (1.23b)

However, intersections of W s (x⃗f1) and W u (x⃗f2) can exist. They are called
heteroclinic points if x⃗f1 ̸= x⃗f2 and homoclinic points if x⃗f1 = x⃗f2. From their
definition it follows that if one homoclinic point exists (except for the fixed point
itself), countable infinite such points exist and form a homoclinic orbit, which
has a different topology than a KAM curve. The same argument applies for a
heteroclinic point and corresponding heteroclinic orbit; the invariant manifolds
with homoclinic and heteroclinic points are shown in Fig. 1.1. Homoclinic orbits
in a resonance generically exist and form the basis for homoclinic chaos, when
many intersections of an orbit starting near the unstable point densely fill a two-
dimensional subset of S.

If one focuses at a secondary island in the r/s resonance and studies the
behavior of Ωs, all of the previous arguments hold as well, leading to a self-similar

12



Figure 1.1: Typical example of the resonant structure in near-integrable systems.
Figure taken from [16].

structure of the resonance, displaying all the same features such as secondary
resonances and islands of stability with their corresponding hyperbolic points.
In this region, many of both homoclinic and heteroclinic orbits generically exist,
forming the very complicated dynamics in the resonance and being the drivers of
so-called heteroclinic chaos.

This finally leads us to a complete picture of the perturbed phase space: there
remains a central fixed point with many quasi-periodic KAM circles, forming the
main island of stability. In the resonances arise chaotic regions, densely filled
by a single orbit, and islands of stability. These are remarkably similar to the
main island of stability, leading to tertiary islands of stability etc. At every order,
one can find higher-order resonances, elliptic points with islands of stability and
hyperbolic points with heteroclinic and homoclinic orbits. This type of structure
is depicted in Fig. 1.2.

The quantity νϑ defined in the previous section can also be helpful to visualize
the phase space of a near-integrable system. If one chooses a parametrized line
of initial conditions in the surface of section, computes the νϑ for each of them
and plots it as a function of the initial condition, one obtains the rotation curve.
If the initial conditions are chosen so that they only cross invariant circles in
one direction, then the rotation curve of an integrable system is monotonous.
Since the near-integrable system retains most of the invariant circles from the
unperturbed case, the corresponding rotation curve mostly fulfills this as well,
except when passing through a resonance. Initial conditions in the same island
of stability lead to the same νϑ, forming a plateau in the rotation curve. Multiple
initial conditions in a chaotic region, however, lead to unpredictable values and
wildly differ. Thus, one can detect resonances in a near-integrable system by
either a plateau or non-monotonous variations in the rotation curve.

13



Figure 1.2: A schematic picture of a near-integrable system. Top part: in the
middle there is the period-1 fixed point, the center of the main island of stability;
there are KAM circles around it with resonances between them, consisting of
smaller islands of stability and the homoclinic chaotic region. Bottom part: a
close-up of a secondary island of stability, revealing the self-similar structure,
showing tertiary islands of stability and related features. The figure is taken
from [16].
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1.3 In the Schwarzschild spacetime

1.3.1 Schwarzschild spacetime

The Schwarzschild metric, describing a non-spinning black hole of mass M , is in
Schwarzschild coordinates given by the line element

gµνdxµdxν = −f (r) dt2 + 1
f (r)dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (1.24)

where

f (r) = 1 − 2M
r

. (1.25)

The spacetime is stationary and spherically symmetric, i.e. there exist a timelike
Killing vector field and three spacelike Killing vector fields which, with the Lie
bracket, generate the so(3) algebra. They are

ξ(t) = ∂

∂t
, (1.26a)

ξ(x) = − sinϕ ∂
∂θ

− cosϕ cot θ ∂
∂ϕ

, (1.26b)

ξ(y) = cosϕ ∂
∂θ

− sinϕ cot θ ∂
∂ϕ

, (1.26c)

ξ(z) = ∂

∂ϕ
. (1.26d)

1.3.2 Integrals of motion

The formula for integrals of motion in Eq. (1.7) can be expressed for computa-
tional convenience using either the Pµ or the canonical pµ as

C(ξ) = Pσξ
σ − 1

2gραξ
α

,σS
ρσ − 1

2gβρ,σξ
βSρσ =

pσξ
σ − 1

2gραξ
α

,σS
ρσ − 1

2gανξ
µeA

α
,µeB

νSAB .
(1.27)

Together with the tetrad

e0 = 1√
f

∂

∂t
, e1 =

√
f
∂

∂r
, (1.28a)

e2 = 1
r

∂

∂θ
, e3 = 1

r sin θ
∂

∂ϕ
, (1.28b)
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the Killing fields in Eqs. (1.26) give rise to the integrals

E := −C(ξ(t)) = −pt = −Pt − M

r2 S
tr , (1.29a)

Jx := C(ξ(x)) = − sinϕ pθ − cosϕ cot θ pϕ + r2 cosϕ Sθϕ

= − sinϕ Pθ − cosϕ cot θ Pϕ + r2 cosϕ sin2 θ Sθϕ (1.29b)
+ r sinϕ Sθr + r cosϕ sin θ cos θ Sϕr ,

Jy := C(ξ(y)) = cosϕ pθ − sinϕ cot θ pϕ + r2 sinϕ Sθϕ

= cosϕ Pθ − sinϕ cot θ Pϕ + r2 sinϕ sin2 θ Sθϕ (1.29c)
− r cosϕ Sθr + r sinϕ sin θ cos θ Sϕr ,

Jz := C(ξ(z)) = pϕ = Pϕ − r sin2 θ Sϕr − r2 sin θ cos θ Sϕθ . (1.29d)

Using these, we define the measure of the total angular momentum as

J2 = J2
x + J2

y + J2
z , (1.30)

and by taking the Poisson bracket (1.15) we can see that

{E, Jj} = 0 , (1.31a)
{Ji, Jj} = −ϵijkJk , (1.31b)
{J2, Jj} = 0 . (1.31c)

The two previously mentioned integrals (spin magnitude S2 =
√
SµνSµν/2 and

the expression ϵµνρσS
µνSρσ = 0) are preserved as well; however, in the construc-

tion of the canonical formalism, the earlier is a parameter of the transformation
and the latter is assumed as well.

1.3.3 Reduction of system
The system as described so far has 4 spacetime degrees of freedom and 1 spin
degree of freedom [8]. It is possible to use integrals of motion - in this case, E,
Jz and J2 - to reduce the dof to only 2, as described in detail in Subsec. 1.2.1.
We have seen in Eq. (1.31) that they truly are in involution. This amounts to
picking specific values of E, Jz and J2, which then become parameters of the
reduced system.

In fact, we can go further: due to spherical symmetry of the Schwarzschild
spacetime, for every orbit there exists a coordinate system such that the total
angular momentum is aligned with the z-axis (θ = 0) [24]. Thus, every relevant
feature of the system’s dynamics remains covered by making the choice

Jx = Jy = 0 . (1.32)

Due to this, we can write(
0
0

)
=
(
Jx

Jy

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)(
− cot θ pϕ + r2Sθϕ

pθ

)
, (1.33)

and thus
pθ = − cot θ pϕ + r2Sθϕ = 0 . (1.34)
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A useful tool to get an elementary insight into the motion is an effective
potential. We use the effective potential taken from [24], which gives the energy
of a particle with Pr = Pθ = 0 and the given Jz and S in the point r, θ. It has
two branches and reads

Veff (±) = µ

[√
f coshX(±) + M sinhX(±)√

fr coshX(±)
·
(
J sin θ
µr

− sinhX(±)

)]
,

(1.35a)

sinhX(±) = µJr sin θ
D

± 1
D

√
(µJr sin θ)2 −

[
(J2 − S2) f + 2M

r
J2 sin2 θ

]
D , (1.35b)

D = µ2r2 − S2f . (1.35c)

In the limit r → ∞, non-negativity of the square root argument leads to the
requirement

cos θ ≤ S

J
, (1.36)

and for finite r, it seems to be even slightly more restrictive. This means that for
low spin values the particle can only move in a thin disk near the equatorial plane.
In the limiting geodesic case S → 0, the particle is confined to the equatorial plane
(recall that we have imposed the constraint J2 = J2

z !).
For high values of the spin, we cannot make general statements about the

effective potential; however, for S ≪ µM , it will only deviate slightly from its
geodesic counterpart. The typical shapes of Veff(±) are shown in Fig. 1.3, where
we can see the band of r and E values allowed as initial conditions when consid-
ering Pr = 0 with the geodesic effective potential running between them and the
corresponding Poincaré section. One can see that in the outer part of the surface
of section still within the band of admissible initial conditions, there are no points:
the corresponding initial conditions exist but correspond to fast plunging orbits
most of which only intersect the surface of section very few times before plunging
into the central object and therefore do not form structures in the figure.

1.4 Initial conditions
In this section, we describe the choice of initial conditions for numerical inte-
gration of orbits. To gain insight into the phase space dynamics, we reduce the
system to only 2 degrees of freedom as described in the previous section. In par-
ticular, for every orbit, we will choose the values of the energy E, total angular
momentum J =

√
J2 and spin S =

√
S2.

Since the motivation for this work are EMRIs, it is necessary to pick values of
the spin which are astrophysically relevant. The extended body we are modeling
can be either a

• stellar mass black hole, in which case calculations with the Kerr spacetime
show that S ≤ µ2, or

• neutron star, wherein due to the mass shedding limit S ≲ 0.6µ2 (see, e.g.,
[25]).
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Figure 1.3: Top panel: The effective potential in the equatorial plane for Jz =
3.8µM . The black line corresponds to S = 0, red and green lines are Veff(−) and
Veff(+), respectively, for S = 0.2µM . The blue dotted line shows the energy value
E = 0.97µ, the blue full lines show possible initial r with θ = π/2 and Pr = 0.
Bottom panel: The corresponding Poincaré section with 12 initial conditions from
r = 4.327M with spacing 0.256M . The vertical lines connecting both plots show
bounds for possible initial r with Pr = 0 in the Poincaré section.
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The spin in MPD equations in the Schwarzschild spacetime scales as µM and in
either case must be bounded by µ2, thus astrophysically relevant values are

S ≤ µ2 = µ

M
· µM ≲ 10−4 · µM , (1.37)

where the 10−4 is an approximate maximal mass ratio of an EMRI.
As a surface of section S, we choose the equatorial plane θ = π/2 with the

momentum pointing ”down”, i.e. Pθ ≥ 0. As coordinates on S, we choose the
radial coordinate and momentum r, Pr. This is a very usual choice in black hole
spacetimes, employed in previous works (see, e.g., [19, 26] and references therein).

Fig. 1.4 shows the left tip of a Poincaré section and corresponding rotation
curve for spin value S = 10−4 µM . Visible are all the typical features of a
near-integrable system: KAM curves in the right, small islands of stability as
remnants of resonant tori and dispersed points corresponding to chaotic orbits.
Therefore, the MPD equations with the TD SSC exhibit very typical signs of a
chaotic system even for a small enough spin value to correspond to an EMRI with
µ/M

.= 10−4.
In Fig. 1.5 we show the Poincaré section for spin S = 1.4µM , which is much

too high to be relevant for an EMRI. It does, however, show the typical behavior
of a highly perturbed system: we see a fairly small remnant of the main island of
stability and a very large chaotic region. Both figures were computed numerically
using the method described in Attachment A.2.
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2. Action-angle(-like) variables

2.1 Action-angle variables
As mentioned in the previous chapter, in an integrable system, there exist canon-
ical coordinates in the form of Eq. (1.17). Their existence is connected to the
separability of the Hamilton-Jacobi equation into a set of independent ordinary
differential equations by assuming the action

W =
N∑

i=1
Wi

(
qi
)
. (2.1)

If the Hamilton-Jacobi equation is separable in the given variables, the actions
are defined as

Ii =
∮ dWi

dqi
dqi , (2.2)

where the integral is taken over one loop of the corresponding variable. The
angles are then such variables that they fulfill the canonical Poisson bracket

{θi, Ij} = δi
j (2.3)

and are 2π-periodic. The Ii are integrals of motion, i.e.
∂H

∂θi
= 0 . (2.4)

The values of the actions determine on which phase space torus the motion lies
and the angles determine the position on the given torus. This set of coordinates
is then called the action-angle (AA) variables.

2.2 Growth of resonances
In a near-integrable system, AA variables cannot be defined for the whole sys-
tem. Nevertheless, if one defines a set of variables which smoothly reduce to AA
variables for no perturbation, it is possible to study the effect of gradual devi-
ation from the integrable case using perturbation theory and series expansions.
We have written this section along the lines of [18], for more reference, we also
recommend [16], [27].

We assume an integrable Hamiltonian system with 2 degrees of freedom in
action-angle variables θi, Ii, i = 1, 2 with Hamiltonian H = H0 (I1, I2). To focus
on the resonance with rotation number ω = r/s, we define the angle φ1 := sθ1 −
rθ2, which, in the integrable case, would be zero. To describe the deviation
from the unperturbed system, the Hamiltonian to first order in the perturbation
parameter ε can then be written as [18]

H = H0 (I1, I2) + εH1
(
φ1, I1, I2

)
. (2.5)

Also expanding the actions Ii = I0
i + ∆Ii, one gets to second order in ∆I1

H = β

2 (∆I1)2 + εF
(
φ1
)
, (2.6)

23



-3

-2

-1

0

1

2

3

0.0 · π 0.5 · π 1.0 · π 1.5 · π 2.0 · π

∆
I 1

φ1
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where we have omitted the I0
i dependence and the constant term. The last step

is to expand the F in a Fourier series and only keep the main term, arriving,
without loss of generality, at

H = β

2 (∆I1)2 + εα cos
(
nφ1

)
. (2.7)

For n = 1, this is the Hamiltonian of a pendulum, revealing a certain uni-
versality of resonances. The separatrix is the curve of constant Hamiltonian,
separating the phase space regions corresponding to oscillation and libration:
εα = β (∆I1)2 /2+εα cos (nφ1). The minima of cos (nφ1) with ∆I1 = 0 form sta-
ble points and the maxima form unstable points. A straightforward calculation
then shows that the resonance has width

width := max (I1) − min (I1) = 4
√
εα

β
∝

√
ε . (2.8)

This model also allows us to relate the width to the angle at which the separatrix
opens at an unstable point. In a neighborhood of φ1 = 0, one may write for the
separatrix

∆I1 = ±
√
ϵα

β
· nφ1 = ±width · n

4 · φ1 . (2.9)

Now it is only necessary to return to the original variables θi, Ii, i = 1, 2. For a
given value of θ2 - without loss of generality, we can take θ2 = 0:

θ1 = φ1

s
, (2.10)

revealing that in the Poincaré section θ2 = 0, there will be a total of n · s islands
in the given resonance. This way we can see that in the weakly perturbed system
the n in the discussion above corresponds to the n given in the Poincaré-Birkhoff
theorem in Subsec. 1.2.2. This also allows us to finally write the relationship
between the resonance width and the local behavior of the separatrix:

∆I1 = ±width · ns
4 · ∆θ1 . (2.11)

Thus, to determine the width of a resonance in a non-linear system, we can
measure the angle at which the separatrix opens - that is, between the Jacobian’s
eigenvectors at the corresponding unstable periodic point - in AA variables and
make use of Eq. (2.11). We can also employ the non-linear oscillator model to
estimate the rate at which resonances of a spinning particle near a black hole
grow. It has been shown that for MPD equations with the TD SSC to linear
order in spin in the Kerr spacetime (of which Schwarzschild is a special case)
approximate constants of motion exist that allow for an (approximate) separation
of the Hamilton-Jacobi equation (see [28, 29]). It is not clear whether this means
that no resonances appear at linear-in-spin order.

As shown above, for a perturbation linear in the parameter ε, resonances grow
as width ∝

√
ε. If the terms linear-in-spin in the equations of motion cause a given

resonance to appear, then one can expect the resonance to grow as width ∝
√
S.

However, as it is possible that the resonance only appears due to terms which
are second order in spin, then we must equate the parameter ε to S2 and get
width ∝

√
S2 = S.

Hence, there are two cases that may appear: width ∝
√
S or width ∝ S.
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2.3 AA-like variables for the MPD equations
To find a reasonable mapping between our r, Pr surface of section with given E,
Jz, Jx = Jy = 0, S and a set of AA-like variables, we make use of the geodesic
properties: we find a suitable set of fiducial parameters Ef , Jzf and use the
geodesic (r, Pr) ↔ (θr, Ir) mapping with these fiducial parameters to convert our
Poincaré section data to AA-like variables.

Our approach to finding suitable values for the fiducial parameters relies on
the existence of an unstable periodic point (rupo, 0) near the left tip of the surface
of section; our method preserves this unstable point when mapping to the geodesic
system. The fiducial parameters are then given by the geodesic formulae

Ef = rupo − 2M√
rupo (rupo − 3M)

µ, Jzf = rupo√
M (rupo − 3M)

µM . (2.12)

Once the Ef and Jzf are known, we propose to convert the point (r, Pr) in the
Poincaré section to (θr, Ir) as a point on a geodesic with energy Ef , azimuthal
angular momentum Jzf , radial coordinate r and corresponding momentum Pr

passing through the equatorial plane:

Ir = Igeo
r

(
r;E = Ef , Jz = Jzf , C = r2

[
E2

f
− fP 2

r − µ2
]

− J2
z

)
, (2.13a)

θr = θr
geo

(
r;E = Ef , Jz = Jzf , C = r2

[
E2

f
− fP 2

r − µ2
]

− J2
z

)
. (2.13b)

As the choice of fiducial parameters Ef , Jzf is made using the left tip of the
surface of section, the transformation is expected to work well for r ∼ rupo ⇔
θr ∼ 0 and might be unsuitable for r ≫ rupo ⇔ |θr| ∼ π. This is demonstrated in
Fig. 2.2, where the previously shown surface of section in Fig. 1.3 is converted
to AA-like variables and one can see that for high Ir and low |θr| they behave as
expected, i.e. forming approximately horizontal lines for KAM circles.

2.4 Numerical analysis of resonance growth
The aim of this section is to describe the method and results of our numerical
analysis. To study the growth of resonances, one must first design a scheme to
choose the values of other integrals for different spins. A good guide is again the
effective potential. Our goal is that the energy and angular momentum allow
for plunging orbits, as this is suggested by some works (see, e.g., [30]) to make
non-linear behavior more prominent even for a resonance enclosed by an KAM
circle; also, we defined the AA-like variables in such a way that we require the
existence of an unstable point near the left tip of the main island of stability.
To fulfill this criterion for small enough spins (S ≲ 10−1 µM), we simply choose
a value for Jz and take the value of the geodesic effective potential at its local
maximum (corresponding to an unstable circular equatorial geodesic orbit) as
the energy, which we will keep the same for different spin values. Typically, the
effective potentials will then look as in Fig. 2.3. We then use a program (see
A.2) to search for the given resonance along the r = 0 line and after locating the
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separatrix, the angle at which it opens is measured and the resonance width is
calculated.

The growth of the 2/3 resonance with Jz = 3.8µM was investigated by
taking 31 different values of the spin distributed geometrically in the interval
[10−5 µM, 10−2 µM ] and the procedure above was applied to measure the width
of the 2/3 resonance at the left tip of the main island of stability. Eq. (2.11) was
used to estimate the width of the resonance with parameters s = 3, n = 2. The
result is shown in Fig. 2.5, where the blue line corresponds to a fit of the function

log width
µM

= A+ q · log S

µM
, (2.14)

to the measured points except for the leftmost and rightmost ones, which was
performed in logscale without taking errors of separatrix width measurement into
account and returned the values

A = −4.366 ± 0.013 , (2.15a)
q = 0.9974 ± 0.0016 . (2.15b)

This shows that the resonance width grows linearly with spin. Recall that the
resonance grows as the square root of the relevant perturbation (see Sec. 2.2); we
can thus conclude that the growth of the 2/3 resonance is driven by the second-
order in spin terms.
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3. Gravitational waveforms

3.1 Weyl tensor
The Weyl tensor Cµνρσ is the traceless part of the Riemann curvature tensor
Rµνρσ, i.e. terms composed solely of the metric gµν , the Ricci tensor Rµν = Rα

µαν

and the scalar curvature R = Rµ
µ are subtracted from the Riemann tensor so as

to achieve
Cα

µαν = 0 . (3.1)

While in dimension 2 it is identically zero, in higher dimensions this is not the case.
Since the mass-energy tensor Tµν and its trace T directly determine the Ricci ten-
sor and the scalar curvature through the Einstein equations as R = −8πgρσTρσ,
Rµν = 8π (Tµν − gρσTρσgµν/2), the Weyl tensor represents the curvature not di-
rectly connected to matter. The explicit form in spacetime dimension 4 is

Cµνρσ = Rµνρσ + 1
2 (Rµσgνρ −Rµρgνσ +Rνρgµσ −Rνσgµρ)

+ 1
6R (gµρgνσ − gµσgνρ) .

(3.2)

The Weyl tensor inherits the basic symmetries of the Riemann tensor, namely:

Cµνσρ = Cνµρσ = −Cµνρσ , (3.3a)
Cµ[νσρ] = 0 . (3.3b)

The Riemann tensor has 20 independent components, by removing the 10 inde-
pendent components of the Ricci tensor, one gets 10 independent components of
the Weyl tensor.

3.2 Newman-Penrose formalism
The NP formalism is a parametrization of spacetime properties using a null tetrad
and its corresponding components of relevant tensor quantities. We only provide
the most elementary information, for more, see [31]. The basic building block of
the Newman-Penrose formalism is a null tetrad lµ, nµ, mµ, m̄µ, which satisfies
the following conditions:

lµ, nµ ∈ R, mµ ∈ C \ R , (3.4a)
lµl

µ = nµn
µ = mµm

µ = m̄µm̄
µ = 0 , (3.4b)

lµn
µ = −1,mµm̄

µ = 1 , (3.4c)

where m̄µ is the complex conjugate of mµ.
In the NP formalism, 12 spin coefficients (tetrad components of covariant

derivatives of tetrad fields), 7 Ricci-NP scalars and 5 Weyl-NP scalars (tetrad
components of the Ricci and Weyl tensors, respectively) are defined. The Weyl-
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NP scalars read

ψ0 :=Cµνρσl
µmνlρmσ , (3.5a)

ψ1 :=Cµνρσl
µnνlρmσ , (3.5b)

ψ2 :=Cµνρσl
µmνm̄ρnσ , (3.5c)

ψ3 :=Cµνρσn
µlνnρm̄σ , (3.5d)

ψ4 :=Cµνρσn
µm̄νnρm̄σ . (3.5e)

In this formalism, the Einstein equations form a complicated set of partial differ-
ential equations of scalar variables.

A great advantage of this formalism is the simple expression of gravitational
wave strains: simple calculation in the transverse-traceless gauge shows that for
a tetrad which for r → ∞ reads

l = ∂

∂t
+ ∂

∂r
, (3.6a)

n = 1
2

(
∂

∂t
− ∂

∂r

)
, (3.6b)

m = 1√
2r

(
∂

∂θ
+ i

sin θ
∂

∂ϕ

)
, (3.6c)

where the t, r, θ, ϕ asymptotically match a set of spherical-like coordinates (works
in any asymptotically flat spacetime!), we can write ψ4 =

(
ḧ+ − iḧ×

)
/2 (see e.g.

[32]). This means that by considering a suitable tetrad, the gravitational wave
strains can be expressed very easily using the Weyl-NP scalar ψ4. In case one is
also considering incoming gravitational waves, ψ0 serves a similar purpose.

3.3 Teukolsky equation
For the development of this section, it is necessary that the Weyl tensor pos-
sess a certain algebraic quality called Petrov type D, which in the Schwarzschild
spacetime it does. In principle it means that for the unperturbed Schwarzschild
spacetime ψi = 0 ∀i ∈ {0, 1, 3, 4}. For more information we refer the reader to
other literature, e.g. [31].

The Teukolsky equation employs the NP formalism to describe perturbations
of test fields in a Kerr background. For the purposes of this thesis, it will suffice to
restrict ourselves to the Schwarzschild case; for the more general Kerr spacetime,
the interested reader is referred to [33], [34].

The tetrad used to derive the Teukolsky equation is the Kinnersley tetrad,
which in the Schwarzschild spacetime reads

l = 1
f

∂

∂t
+ ∂

∂r
, (3.7a)

n = 1
2

(
∂

∂t
− f

∂

∂r

)
, (3.7b)

m = 1√
2r

(
∂

∂θ
+ i

sin θ
∂

∂ϕ

)
. (3.7c)
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When using this tetrad, the equation for ψ4 attains the form of a ”master equa-
tion”

r2

f

∂2Ψ
∂t2

− 1
sin2 θ

∂2Ψ
∂ϕ2 −

(
1
r2f

)s
∂

∂r

[(
r2f

)s+1 ∂Ψ
∂r

]
− 1

sin θ
∂

∂θ

(
sin θ∂Ψ

∂θ

)

− 2si cos θ
sin2 θ

∂Ψ
∂ϕ

− 2s
(
M

f
− r

)
∂Ψ
∂t

+ s
(
s cot2 θ − 1

)
Ψ = 4πr2T .

(3.8)

The Ψ (master variable), T (source term) and s (spin weight) can have different
values for various types of test fields: it is possible to describe electromagnetic
perturbations using s = ±1 and neutrino perturbations with s = ±1/2. For
gravitational perturbations, however, it is the value s = ±2 that does the trick.

Since we are interested in outgoing gravitational waves, we only want to con-
sider the evolution of the ψ4. The corresponding master variable is Ψ = r−4ψ4
with the spin weight s = −2 and the source term is a complicated linear combina-
tion of the stress-energy tensor components corresponding to the tetrad vectors
n and m̄.

The conventional way to solve this equation is in the frequency domain, in
which it is fully separable (see, e.g, [35]). This approach is highly effective for
a geodesic source, because it is sufficient to work with very few frequencies. In
the case of more complicated dynamics, however, a time-domain approach is
preferable. Due to the spacetime axisymmetry, the ϕ degree of freedom is still
separable.

Since we are interested in the gravitational radiation at distances very large
in comparison to M , the quantity of interest will be the strain h at null infinity
J +. It can be decomposed as

h =
∞∑

ℓ=2

ℓ∑
m=1

hℓm · −2Yℓm (θ, ϕ) (3.9)

where sYℓm (θ, ϕ) are the spin-weighted spherical harmonics with spin-weight s.

3.4 Results: generated waveforms
In this section, waveforms from trajectories depicted in Chapter 1 are computed
using the Teukode (see Attachment A.3 or [34, 36]). The simulations were carried
out on the Virgo cluster at the Astronomical Institute of the Czech Academy of
Sciences and split into multiple processes using MPI; typically, the ρ-direction
was kept as a whole and the division was done into 8, 16 or 32 processes along
the θ-coordinate line.

In the calculations carried out for this thesis, the HH coordinates were used
with Σ = 10. The time step was determined using the Courant-Friedrichs-Lewy
condition with CCF L = 2. For more details on the coordinate system and nu-
merical method, see Attachment A.3. The waveforms shown are evaluated at
null infinity J +, which here corresponds to ρ = Σ = 10, in the equatorial plane
θ = π/2.

Fig. 3.1 shows the m = 1, 2, 3 waveform computed using 2001 × 101 grid
from a trajectory in the chaotic sea in Fig. 1.4. The orbit has eccentricity
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Figure 3.1: Waveform from a trajectory from the chaotic sea in Fig. 1.4 with
initial r = 4.25216M and Pr = 0, modes m = 1, 2, 3.
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Figure 3.2: Waveforms of trajectories from Fig. 1.5, mode m = 2.
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e ≈ (rmax − rmin) / (rmax + rmin) .= 0.776 and gets very close to the unstable
orbit: rmin − rupo

.= 5.3 · 10−5M . The waveform has the shape we expect from an
EMRI (see, e.g., [37]).

Fig. 3.2 shows the m = 2 waveforms computed using a 1201 × 61 grid from
both trajectories shown in Fig. 1.5. We can see that even in this highly perturbed
case, a simple visual inspection is insufficient to distinguish whether the original
orbit was regular or chaotic. We propose and apply a solution in the next chapter.
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4. Recurrence analysis

4.1 Recurrence plots
Recurrence analysis is a method which allows us to analyze dynamics of regular
and chaotic systems. It can be used to estimate dynamical invariants, such as
the second-order Rényi entropy and correlation dimension, to uncover features
such as unstable periodic orbits and sticky orbits, or simply to distinguish linear
and non-linear behavior. For more detailed information on recurrence analysis,
including different metrics to quantify the recurrence plots for a more substantial
analysis of time series, see [38].

All we require is a time series in the full phase space x⃗i. We define the
recurrence matrix as

Rij =
{
θ (ε− ||x⃗i − x⃗j||) i ̸= j
0 i = j

, (4.1)

where θ is the Heaviside step function and ε is a free parameter called the recur-
rence threshold. Intuitively, this simply means: Rij = 1 ⇔ there is a recurrence
at times i and j ⇔ x⃗i and x⃗j are closer than a given (small) threshold. The recur-
rence matrix is by definition symmetric. The main diagonal i = j is excluded for
technical reasons [38]. There is also an implicit ambiguity in the choice of met-
ric. We define the recurrence rate (RR) as the density of ones in the recurrence
matrix, for a time series of length l:

RR = 1
l2

N,N∑
i,j=1

Rij . (4.2)

Often, a specific value of RR (typically RR ∈ [1%, 5%]) is chosen and the thresh-
old ε is then tuned to fit the given RR.

We can visualize this matrix by making a graph with the two axes i and j or,
more practically, the times ti and tj, and plotting points for ones in the recurrence
matrix. This is called a recurrence plot (RP).

Recurrence plots can be inspected visually to see some of the basic dynamical
features, namely to distinguish linear and non-linear behavior. When a time series
is quasiperiodic, there is a delay after which one finds recurrences for a sufficiently
high recurrence threshold; i.e. ∀i Ri,i+∆i = 1. This forms lines parallel to the
main diagonal offset by ∆i either in the horizontal or in the vertical direction.

In contrast, for a chaotic orbit, this regular structure only exhibits itself due to
stickiness, a phenomenon where a chaotic orbit approaches an island of stability
and mimics its regular behavior for a long period of time in interval I. The part
of RP in the region I× I is formed by diagonal-parallel lines and forms a regular-
looking square lying on the main diagonal. Furthermore, if the orbit is in a sticky
regime in the intervals I1 and I2, then the region (I1 × I2)

⋃ (I2 × I1), which shows
correlations between the intervals I1 and I2, can either show a similar structure
again if the orbit moves near the same island during both intervals or be empty
if the two islands are different. This forms the typical square-like structure of
a recurrence plot. Examples are shown in Fig.4.1, where we applied recurrence
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Figure 4.1: Top panel: Two trajectories of the Chirikov standard map for K = 1;
bottom left panel: part of RP of the regular trajectory with initial conditions
θ = π, p = π · 92/99, RR = 0.01; bottom right panel: part of RP of the chaotic
trajectory with initial conditions θ = π, p = π · 68/99, RR = 0.01.
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analysis to two trajectories of the Chirikov standard map [17]

θn+1 = θn + pn+1 , (4.3a)
pn+1 = pn +K sin θn (4.3b)

with the ”kick” K = 1. It is a well-studied system, allowing us to demonstrate
typical features of recurrence plots of regular and chaotic orbits.

4.2 Time delay method
The method as described above is powerful, but full phase space vectors are
required. It can happen that we only have access to limited data (such as a
simple scalar time series in a more complex system) and want to apply recurrence
analysis; it is then necessary to use a phase space reconstruction technique. Here
we describe the time delay method - usually also called embedding.

Let us have a time series x⃗i of dimension n1 and length l1 ≥ i ∈ N in space
X . Let us also choose two free parameters: time delay T ∈ N and embedding
dimension d ∈ N. We then call X d the reconstructed phase space and define the
reconstructed time series as

y⃗i =
(
x⃗i, x⃗i+T , ..., x⃗i+T (d−1)

)
, (4.4)

which has dimension n1 ·d and is reduced in length to l1 −T (d− 1) = l2 ≥ i ∈ N.
The trivial case without reconstruction is d = 1.

This method has been shown by [39] to provide a diffeomorphism between the
original and reconstructed phase space under some conditions. This means that
even using the data from a single suitable (i.e. not constant along the system’s
evolution) scalar function on the phase space we can still study the system’s
dynamics - in fact, this removes some of the ambiguity of the metric choice.

It is also necessary to make a suitable choice of parameters T and d. A
suitable time delay is the first minimum of either the mutual information or the
autocorrelation function. It is typical to then determine a suitable embedding
dimension using the false nearest neighbor (FNN) method. The phase space is
reconstructed using a given time delay T and embedding dimension d and for
every point, the nearest point is found. It is considered a false nearest neighbor
if their distance increases by a factor of at least f (we typically use f = 5 − 10)
when the embedding dimension is changed to d+ 1. A suitable d is such that the
fraction of FNNs is considered small enough.

An example is shown in Fig. 4.2 of RPs of both trajectories of Fig. 4.1;
this time, however, only the θ variable was taken into account and the RPs were
computed both with and without suitable embedding.

4.3 Recurrence plots of MPD orbits
We have applied recurrence analysis to MPD orbits. After several different at-
tempts, we have come to the following method:

1. Sample the trajectory at a given rate in t to get a time series.
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Figure 4.2: RPs of trajectories shown in Fig. 4.1 using only the θ variable,
RR = 0.01; left: regular trajectory, right: chaotic trajectory; top: no embedding
used, bottom: embedding dimension d = 2 with time delay T = 4.

40



0

10

20

30

40

0 10 20 30 40

u
j

[1
03
M

]

ui [103 M ]

Figure 4.3: RP of a trajectory for E = 0.97µ, Jz = 3.8µM , S = 10−4 µM and
initial r = 4.25216M and Pr = 0. The orbit has been sampled at intervals of t of
length 10.4M and the recurrence rate was chosen as RR = 0.01.
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Figure 4.4: Recurrence plots of the trajectories of Fig. 1.5. The orbits have been
sampled at intervals of t of length 8.667M and the recurrence rate was chosen as
RR = 0.01.

2. Extract the data for r, θ, Pr, Pθ, and all four components of the spin vector
Sµ = −ϵµνκλPνSκλ/2µ.

3. Normalize each of these time series to have zero mean and unit variance.

4. Choose a target value of RR.

5. Compute recurrence plot in the 8-dimensional space with the Euclidean
metric; vary ε to reach the target RR.

This method has proven to give fairly clear recurrence plots in the high spin case.
The t and ϕ degrees of freedom are irrelevant and therefore eliminated.

We have used the software rp developed by Norbert Marwan, see [40]. It
computes the recurrence plot of a multivariate time series with or without em-
bedding. It also computes the distribution of diagonal-parallel lines and derives
some of the quantitative metrics.

A recurrence plot of an orbit with S = 10−4 µM in the chaotic sea is shown in
Fig. 4.3. By visual inspection, we see some of the characteristic chaotic features,
but these are not very clear. On the other hand, Fig. 4.4 shows very clear
recurrence plots of the trajectories for the spin value S = 1.4µM depicted in Fig.
1.5.

4.4 Recurrence plots of gravitational waveforms
In this section, recurrence plots of waveforms calculated in the previous section
are computed. These were made using the same software rp [40] as in the previous
section.

In the case with S = 10−4 µM , we computed the recurrence plot using the
information from all the three calculated m-modes. The waveform was sampled at

42



0

10

20

30

40

0 10 20 30 40

u
j

[1
03
M

]

ui [103 M ]

Figure 4.5: Recurrence plots of the waveforms of Fig. 3.1 sampled at intervals of
2.167M and the recurrence rate chosen as RR = 0.01.
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Figure 4.6: Recurrence plots of the waveforms of Fig. 3.2 sampled at intervals of
8.667M and the recurrence rate was chosen as RR = 0.01. Left is for the chaotic
orbit, right is for the regular orbit. Top is without embedding, bottom is with
time delay T = 1 and embedding dimension d = 21.
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intervals of 2.166M and the vectorial time series used for the RP was constructed
as

(h+ 1, h× 1, h+ 2, h× 2, h+ 3, h× 3) . (4.5)

The false nearest neighbor algorithm then suggests that one does not require any
embedding. This is in agreement with the expectation of being very close to the
geodesic case, where the orbit is only described by two parameters. The resultant
plot is shown in Fig. 4.5. In comparison to Fig. 4.3, one can see a little similarity,
but this is very superficial and does not cover any actual dynamical features.

In the case of S = 1.4 µM , only the + polarization of the waveform’s m = 2
mode was used. The waveform was sampled at intervals of 8.667M . Recurrence
plots were computed both without embedding and with embedding with time
delay 8.667M and embedding dimension d = 21 and are shown in Fig. 4.6. In
comparison to Fig. 4.4, we see that the waveforms retain those dynamical features
which are detectable using recurrence plots.

Thus, we can conclude that chaos remains encoded in the gravitational wave-
forms radiated from Extreme Mass Ratio Inspirals. In the weakly chaotic low
spin case, however, it is naturally harder to detect and even low noise can be an
obstacle.
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Conclusion
There are two principal parts of this thesis. The first concerns the core of the
system’s dynamics and the second focuses on the outgoing gravitational waves.

In the first part, we have summarized the basics of near-integrable dynamical
systems, chaos and applications in describing the motion of a spinning particle
in the Schwarzschild spacetime background as a model for an Extreme Mass
Ratio Inspiral (EMRI). We have developed Fortran codes to evolve the orbits of
spinning particles and used them to see that chaos manifests itself even for spin
values relevant to real astrophysical events. We have also designed a method of
studying any resonance for any kind of perturbation of the conventional geodesic
model in the Schwarzschild spacetime.

It is known that the inclusion of spin in the equations of motion causes the
system to lose integrability [25]; however, due to the existence of approximate
constants of motion [28], it is not yet clear whether this means that there are no
prolonged resonances at linear order. This work shows that the 2/3 resonance is
related to the second-order in spin terms and does not manifest itself at linear
order in spin in the Schwarzschild spacetime. Thus, we have provided evidence
that these terms do not cause the emergence of chaos, which in turn has little
effect on the overall dynamics of an EMRI with a non-spinning supermassive
black hole.

This result supports the expectation that spin-induced chaos and resonances
will not play a significant role in EMRIs. Our work provides numerical evidence
for the case of a single resonance. A more thorough sweep of the phase space
should take place in the future. It is of interest to see whether other resonances
display the same behavior and, most importantly, to extend this analysis to the
Kerr spacetime to get a more complete picture of the dynamics of an EMRI.

In the second part of the thesis, we have described the Teukolsky equation,
which corresponds to leading-order perturbations of the black hole spacetime. We
have used the Teukode, a time-domain Teukolsky equation solver, to compute
gravitational waveforms generated by the motion of a spinning particle in the
Schwarzschild background. We have presented the basics of recurrence analysis
and applied it to the waveforms.

Using recurrence plots, we have established a close link between dynamical
features of the particle’s motion and the corresponding gravitational waveforms
with high enough spins. For low spins, however, we have to elaborate to confirm
this connection. For example, one has to eliminate the numerical noise from the
Teukode simulation. It would be of interest to repeat the simulations with a
finer grid so as to see whether the reduced noise would contribute to a closer
link between the orbit’s and waveform’s recurrence plots. Another problem that
could be addressed is the nature of recurrence analysis, which is by design suited
to systems with a finite number of degrees of freedom. Finally, a large challenge is
the fact that the real signal will be heavily distorted by background and detector
noise [26].

Even though recurrence analysis may not be able to detect spin-induced chaos
in EMRIs, it could still be used to detect chaos from other sources. For example,
chaos can occur due to a broken spacetime background symmetry, if the Kerr
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hypothesis is incorrect (see, e.g., [26]) and prolonged resonances can occur due
to the gravitational perturbation by the surrounding astrophysical environment
[41].
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A. Attachments

A.1 Analytic properties of geodesics
When considering geodesic motion in the Schwarzschild spacetime, the transfor-
mation between the coordinates (xµ, Pν) and the AA variables can be explicitly
written using integrals, for full derivation see [42]. We only give the r-action and
angle. They are given using the polynomial

R (r;E, Jz, C) = E2r4

µ2 − r2f
(
r2 + J2

z + C
)

(A.1)

as

Igeo
r (r;E, Jz, C) = 2

∫ r1

r2
R1/2 (r′) dr′ , (A.2a)

θr
geo (r;E, Jz, C) =

⎧⎨⎩ π
∫ r

r2
R−1/2 (r′) dr′/

∫ r1
r2
R−1/2 (r′) dr′ Pr ≥ 0

−π
∫ r

r2
R−1/2 (r′) dr′/

∫ r1
r2
R−1/2 (r′) dr′ Pr < 0

, (A.2b)

where r1 and r2 are turning points; they are the highest and next-to-highest root
of R (r), respectively. The integrals are the energy E, the azimuthal component
of the orbital angular momentum Jz and the Carter constant C = J2

x + J2
y and

their presence in R is implied. This way, the angle coordinate is defined with the
convention θr

geo ∈ [−π, π].
The integrals in θr

geo can also be expressed using special functions, namely the
incomplete elliptic integral of the first kind

F (φ, k) =
∫ φ

0

dϑ√
1 − k2 sin2 ϑ

=
∫ sin φ

0

dy√
(1 − y2) (1 − k2y2)

(A.3)

and the complete integral of the first kind K (k) = F (π/2, k).
It is first necessary to find all the roots of R (r) and rewrite as

R (r) =
(

1 − E2

µ2

)
(r1 − r) (r − r2) (r − r3) r, 0 ≤ r3 ≤ r2 ≤ r1 . (A.4)

Then we can express∫ r

r2
R−1/2 (r′) dr′ = 2

(1 − E2/µ2) (r1 − r3) (r2 − r4)
F (arcsin yr, kr) , (A.5)

where

yr =
√
r1 − r3

r1 − r2

r − r2

r − r3
, (A.6a)

kr =
√
r1 − r2

r1 − r3

r3 − r4

r2 − r4
. (A.6b)

Thus, the angle variable can be expressed as

θr
geo =

⎧⎨⎩ πF (arcsin yr, kr)/K(kr) Pr ≥ 0
−πF (arcsin yr, kr)/K(kr) Pr < 0

. (A.7)
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The action variable, however, employs an integral for which there does not seem
to be a closed form expression even using special functions.

To perform the conversion, we make use of Python 3 and the numpy and
scipy libraries. More specifically, the function scipy.integrate.quad was used
to compute the integral in Eq. (A.2a) and scipy.special.ellipkinc was used
to evaluate the elliptic integral (Eq. (A.3)) in order to compute the angle variable
in Eq. (A.2b).

A.2 Numerical solutions of the MPD equations
For numerical integration of orbits of spinning particles, a Fortran code was writ-
ten named MPD.for. The input are values for initial r, Pr and integrals E, Jz and
S; the code places a spinning particle with these parameters in the equatorial
plane and calculates all the coordinate components of the four-momentum and
the spin tensor using a Newton iteration method so as to satisfy the input values,
Jx = Jy = 0, and the TD SSC. In this part, real variables are represented as
quadruple precision floating point variables due to the ill-conditioned calculation
of expressions such as E + Pt and Jz − Pϕ.

Then it evolves the MPD equations using the Gauss collocation method of
different orders using fixed-point iteration. Here, real variables are represented
as double precision floating point. In this thesis, 4th order was used for all
computations.

The code deals with the system as originally written in Eq. (1.2), i.e. xµ, Pµ

and Sµν ; no reduction is applied for the integration. Thus, the integrals E, Ji,
S2, µ2 and PµS

µν are used to track the integration error. In Fig. A.1, evolution
of the relative error of energy is shown to be very low - on the order of 10−14.

It also automatically writes the intersections with the Poincaré surface of
section S using the evolution method’s collocation polynomial and computes the
rotation number using Eq. (1.19) for each initial condition. For n intersections
(including the initial condition), the rotation number accuracy is

∆νϑ = 1
n
. (A.8)

Slightly different versions of the code were also used to locate the unstable pe-
riodic orbit (MPD_upo.for) and a given resonance (MPD_src.for) by evolving the
equations of motion and using a bisection method to solve an equation employ-
ing a function of the initial r along the Pr = 0 line. In case of the MPD_upo.for
code, the corresponding equation is Pr = 0 at the next intersection with S. The
code MPD_src.for attempts to find an initial r for which to find the desired ro-
tation number. To make sure that the accuracy grows as the code converges,
the number of iterations of the return mapping grows as well: if the two cur-
rent estimates are ω1 > ω2, the next orbit is integrated long enough as to get
2/min (ω1 − ωtarget, ωtarget − ω2) intersections.

To determine the width of a resonance p/q, Python 3 with the numpy and
scipy libraries was used to fit

Ir = I0
r ± width · ns

4 θr (A.9)

56



10−16

10−15

10−14

103 104 105 106

|∆
E

|/
E

t [M ]

Figure A.1: Evolution of the relative error ∆E = |E (τ) − E (0)| /E (0) for the
trajectories of Fig. 1.5. Black points correspond to the regular trajectory, red
points correspond to the chaotic trajectory.

to Poincaré section points (see Eq. (2.11)). Only points with |θr| < 0.01 ·2π/(ns)
were taken into account and as components of the vector of residuals we use

−Ir + I0
r + sign

(
Ir − I0

r

) width · ns
4 θr . (A.10)

This expression together with the function scipy.optimize.least_squares was
used to estimate the values of I0

r and the width.

A.3 Teukode

A.3.1 Horizon-penetrating, hyperboloidal coordinates
The Teukode has been written in Jena as part of an MSc. thesis and the following
dissertation [36]; for a more concise summary, see [34]. It is a time-domain solver
for the master equation (3.8) with a point particle source. Different coordinate
systems are used in the Teukode in order for the equation to be regular at the
horizon and to smoothly reach the future null infinity J +. The system of choice
is the horizon-penetrating, hyperboloidal (HH) coordinate system, see [43]. Here,
its construction is described in the simpler Schwarzschild case.

The first step is to define

t̃ = t+ 2M log |r − 2M | . (A.11)
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Then, one uses the technique of hyperboloidal compactification. The new vari-
ables Υ, ρ are defined by

ρ (r) : r = ρ (r)
Ω (ρ (r)) , (A.12a)

Υ
(
t̃, ρ
)

:= t− h (ρ) , (A.12b)

where the h is called the height function and Ω the conformal factor. The choice
made for them here is

Ω (ρ) := 1 − ρ

Σ , (A.13a)

h (ρ) := ρ

Ω − ρ− 4M log Ω , (A.13b)

where Σ is a free parameter and the location of J + then corresponds to ρ = Σ.
The position of the horizon is then

ρ+ = 2MΣ
2M + Σ . (A.14)

A.3.2 Numerical solutions of the Teukolsky equation
The Teukode uses the HH coordinates to smoothly cover the whole region of
interest from the horizon all the way to the null infinity J +. The equation is
separated into m-modes by taking the Fourier transform in the ϕ-direction

ψ4 (Υ, ρ, θ, ϕ) =
∞∑

m=−∞
Ψme

imϕ , (A.15)

the master equation (3.8) is then of the form

CΥΥ∂ΥΥΨm + CΥρ∂ΥρΨm + Cρρ∂ρρΨm + Cθθ∂θθΨm + CΥ∂ΥΨm

+Cθ∂θΨm + Cρ∂ρΨm + C0Ψm = S−2 .
(A.16)

The Teukode uniformly discretizes the interval [ρ+,Σ]× [0, π] and implements
different finite difference stencils up to 8th order to transform the reformulated
2+1 Teukolsky equation (A.16) into a set of ODEs; we used 6th order finite dif-
ferencing. This is then evolved using a standard 4th order Runge-Kutta method.
The step size is determined using the Courant-Friedrichs-Lewy (CFL) condition
as ∆t = CCF L min{hρ, hθ}, where the hρ and hθ are the spacing in the ρ and θ
direction, respectively, and CCF L ≥ 1. In this work, we use CCF L = 2.

As an initial value problem, solving the Teukolsky equation requires initial
conditions as well. Interference of the radiated waves from the previous ∼ 2
orbits is quite important here, so we have chosen the simplest possible way: to
use ψ4 = 0 ∀ρ, θ and discard the first ∼ 200M . The contrast of this beginning
and later part is shown in Fig. A.2.

The source term is a complicated linear combination of the stress-energy ten-
sor components. For a spinning particle, the stress energy tensor is only non-zero
in a single point of the grid, represented by a δ function and its derivatives up
to 3rd order. This is modeled using a narrow Gaussian approximation. For a
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Figure A.2: Output of the initial 900M of the Teukode simulation corresponding
to Fig. 3.2.

non-spinning particle source, the Teukode is also equipped with n-point delta
approximations.

The Teukode also calculates energy and angular momentum fluxes. In the
eccentric orbits presented here for S = 10−4 µM , the energy losses are Ė

.=
10−3 µ2/M and angular momentum losses J̇z

.= 10−2 µ2. This means that in our
longest Teukode integration t = 8.9 · 104 M , assuming µ/M

.= 10−4, we get a
total relative energy loss ∆E/E .= 1% and total relative angular momentum loss
∆Jz/Jz · 2.3%.

Also, the advanced time v and retarded time u are defined as

u (t, r) := t− r∗ , (A.17a)
v (t, r) := t+ r∗ , (A.17b)

r∗ (r) := r + 2M log
(
r

2M − 1
)
. (A.17c)

Their meaning is that for an outgoing radial null geodesic (i.e. θ̇ = ϕ̇ = 0, ṙ > 0,
ds2 = 0) u is a constant and only v changes along the geodesic - this makes u an
ideal parameter for a waveform extracted at J +.

To check the calculation errors, we have run simulations with different grids
on the same chaotic orbit as shown in Fig. 3.1. The waveform was calculated
with grids 1201 × 61, 1701 × 141, 2401 × 201, 3401 × 281, 4801 × 401, 6801 × 561
and 9601 × 801; of these, the finest 9601 × 801 was taken as reference (closest
to the exact solution, which we cannot get in any other way) and errors of the
calculations with coarser grids were computed with respect to the reference grid.
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Figure A.3: Convergence plot of the Teukode.

We calculated the averaged absolute error
⟨
∆hnx

+ 2

⟩
= 1

50M

∫ 210M

160M

⏐⏐⏐hnx
+ 2 − h9601

+ 2

⏐⏐⏐ du , (A.18)

where hnx
+ 2 is the + polarization of the m = 2 mode of the waveform calculated

using nx points in the ρ direction distributed uniformly from the horizon at
ρ = 5/3 and the null infinity J + at ρ = 10, extracted at J +. The convergence plot
is shown in Fig. A.3 with the grid spacing on the horizontal axis and the vertical
axis showing the relative error with respect to the maximum of the reference
waveform in the given interval.

The blue line corresponds to a fit of the function

log ⟨∆h+ 2⟩
max (h+ 2)

= A+ q · log (∆ρ) , (A.19)

which was performed in logscale and returned the values

A = 4.3 ± 0.6 , (A.20a)
q = 2.32 ± 0.09 . (A.20b)

Since the evolution method used is 4th order, one would expect q = 4. How-
ever, the narrow Gaussian approximation for δ functions and their derivatives up
to 3rd order is another source of error [36].
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