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ABSTRACT (EN) 

 Proteinogenic amino acids are key components of living organisms. Thus, the 

latest metabolomics research has focused on developing fast and sensitive methods for 

the determination of amino acids. In this context, this thesis contains two studies 

describing development of high-performance separation techniques for the 

quantification of amino acids. 

 In the first study, a capillary electrophoresis method was developed for the 

determination of free amino acids in tobacco plants, particularly focusing on optimizing 

the extraction of amino acids from solid plant materials. The extraction procedure was 

optimized using design of experiments (DoE) to obtain the highest possible extraction 

yield of amino acids. Factors such as volume and concentration of the extraction solvent 

(hydrochloric acid) were assessed as the most significant. Subsequently, the optimal 

values of these factors were determined using response surface methodology (RSM). 

Lastly, proteinogenic amino acids were quantified using capillary electrophoresis with 

contactless conductivity detection and calibration with internal standard, which 

improved the precision of the method. 

 The second study aimed at developing a supercritical fluid chromatography 

method for the determination of free proteinogenic amino acids in human plasma. The 

most important part of this study was to improve the solubility of proteinogenic amino 

acids in a CO2-rich mobile phase. Firstly, the polarity of mobile phase was increased by 

adding water and ammonium formate to the CO2/methanol mixture. Secondly, the 

polarity of amino acids was decreased by derivatization with 1-chlorobutane. The 

derivatization step greatly enhanced the solubility of amino acids in the mobile phase, 

thus substantially improving the shapes of the amino acid peaks. Proteinogenic amino 

acids were quantified using tandem mass spectrometry detection and a calibration curve 

with deuterated internal standards, which provided an acceptable method precision. 

 In this thesis, both methods were compared, focusing on separation efficiency, 

limits of quantification, and acquisition and operating costs. This comparison showed 

that the separation efficiency was better in capillary electrophoresis method than in 

supercritical fluid chromatography. On one hand, the latter was faster than the former 

and enabled the quantification of concentrations up to five orders of magnitude lower. 
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On the other hand, operation of a supercritical fluid chromatography with tandem mass 

spectrometry not only requires more qualified operators but also more stable laboratory 

conditions and higher acquisition and operating costs.  



6 
 

ABSTRAKT (CZ) 

 Proteinogenní aminokyseliny patří mezi základní stavební jednotky živých 

organismů. Proto byl v poslední době výzkum v metabolomice zaměřen na vývoj 

rychlých a citlivých analytických metod pro stanovení aminokyselin. Tato práce 

obsahuje dvě studie popisující vývoj vysoce účinných separačních metod pro 

kvantifikaci aminokyselin. 

 V první studii byla vyvinuta metoda kapilární elektroforézy pro stanovení 

aminokyselin v rostlinách tabáku. Nedílnou součástí této studie byla optimalizace 

extrakce aminokyselin z rostlinného materiálu. Extrakce byla optimalizována postupem 

“design of experiments” (DoE), pomocí kterého byly vyhodnoceny faktory ovlivňující 

výtěžek extrakce aminokyselin. Nejdůležitějšími faktory byly objem a koncentrace 

extrakčního činidla (kyselina chlorovodíková), jejichž optimální hodnoty byly určeny 

pomocí “response surface methodology” (RSM). Poté byly aminokyseliny separovány 

pomocí kapilární elektroforézy s bezkontaktní vodivostní detekcí a stanoveny za použití 

kalibrace s vnitřním standardem, což přispělo ke zlepšení přesnosti metody. 

 Druhá studie byla zaměřena na vývoj metody pro stanovení aminokyselin v 

lidské plasmě pomocí superkritické fluidní chromatografie. Jedním z cílů této studie 

bylo zvýšit rozpustnost aminokyselin v mobilní fázi bohaté na CO2. Nejdříve byla 

zvýšena polarita mobilní faze (CO2/methanol) přídavkem vody a mravenčanu 

amonného. Polarita aminokyselin byla zároveň snížena derivatizací 1-chlorbutanem. 

Derivatizace zvýšila rozpustnost aminokyselin v mobilní fázi, proto se zlepšily tvary 

píků aminokyselin. Aminokyseliny byly separovány pomocí superkritické fluidní 

chromatografie s tandemovou hmotnostní detekcí. Stanovení aminokyselin v lidské 

plasmě bylo provedeno pomocí kalibrace s deuterovanými standardy aminokyselin. 

 V této práci byly obě metody porovnány z hlediska jejich separační účinnosti, 

mezí stanovitelnosti a provozních nákladů. Použití kapilární elektroforézy pro stanovení 

aminokyselin zajistilo lepší separační účinnost. Avšak použití superkritické fluidní 

chromatografie umožnilo stanovení až o pět řádů nižších koncentrací aminokyselin, 

navíc byla tato metoda podstatně rychlejší. Využití superkritické fluidní chromatografie 

s tandemovou hmotnostní detekcí ovšem klade vyšší nároky nejen na zkušenosti 
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operátora, ale i na stabilní laboratorní prostředí. Superkritická fluidní chromatografie 

také vyžaduje vyšší pořizovací a provozní náklady než kapilární elektroforéza. 

  



8 
 

Keywords: amino acids, capillary electrophoresis, conductivity detection, mass 

spectrometry, supercritical fluid chromatography 

Klíčová slova: aminokyseliny, hmotnostní spektrometrie, kapilární elektroforéza, 

superkritická fluidní chromatografie, vodivostní detekce  

 

  



9 
 

CONTENTS 

ABSTRACT (EN) ............................................................................................................ 4 

ABSTRAKT (CZ) ............................................................................................................ 6 

CONTENTS ..................................................................................................................... 9 

LIST OF ABBREVIATIONS AND SYMBOLS ........................................................... 11 

1 INTRODUCTION ................................................................................................... 14 

2 AIMS OF THE THESIS ......................................................................................... 17 

3 PROTEINOGENIC AMINO ACIDS ..................................................................... 18 

3.1 Amino acid structure and properties ................................................................ 18 

3.2 Amino acids in plants and humans .................................................................. 21 

3.3 Analysis of amino acids-containing samples ................................................... 23 

4 CAPILLARY ELECTROPHORESIS IN THE DETERMINATION OF 
PROTEINOGENIC AMINO ACIDS ............................................................................. 27 

4.1 Extraction of amino acids from solid materials ............................................... 27 

4.2 Capillary electrophoresis with suppressed electroosmotic flow ...................... 29 

4.3 Contactless conductivity detection in capillary electrophoresis ...................... 32 

4.4 Method validation in capillary electrophoresis ................................................ 34 

STUDY I - Design of experiments for amino acid extraction from tobacco leaves and 
their subsequent determination by capillary electrophoresis .......................................... 36 

5 AMINO ACID SEPARATION BY SUPERCRITICAL FLUID 
CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION ................. 46 

5.1 Supercritical fluid chromatography ................................................................. 46 

5.2 Amino acid derivatization ................................................................................ 48 

5.3 Mass spectrometry ........................................................................................... 52 

5.3.1 Electrospray ionization ............................................................................. 53 

5.3.2 Triple quadrupole analyzer ....................................................................... 56 

5.3.3 Detector .................................................................................................... 57 

STUDY II - A novel sensitive supercritical fluid chromatography-tandem mass 
spectrometry method for analysis of proteinogenic amino acids ................................... 58 

6 COMPARISON OF CAPILLARY ELECTROPHORESIS AND 
SUPERCRITICAL FLUID CHROMATOGRAPHY IN DETERMINATION OF 
AMINO ACIDS .............................................................................................................. 80 

6.1 Separation efficiency ....................................................................................... 80 



10 
 

6.2 Limit of quantification ..................................................................................... 81 

6.3 Operating costs ................................................................................................ 83 

7 CONCLUSIONS ..................................................................................................... 85 

LIST OF PUBLICATIONS ............................................................................................ 94 

LIST OF CONFERENCE CONTRIBUTIONS ............................................................. 96 

DECLARATION OF CO-AUTHORS ........................................................................... 97 

ACKNOWLEDGEMENT .............................................................................................. 98 

 

 

  



11 
 

LIST OF ABBREVIATIONS AND SYMBOLS 

Ala alanine 
AOT bis(2-ethylhexyl)sulfosuccinate 
APCI atmospheric-pressure chemical ionization 
API atmospheric-pressure ionization 
APPI atmospheric-pressure photoionization 
Arg arginine 
Asn asparagine 
Asp aspartic acid 
BBB brain-blood barrier 
BEH ethylene bridged hybrid 
BGE background electrolyte 
C4D capacitively coupled contactless conductivity detection 
CCD contactless conductivity detection 
CE capillary electrophoresis 
CEM chain ejection model 
CID collision-induced dissociation 
CITP capillary isotachophoresis 
ClogP decadic logarithm of calculated partition coefficient 
CNS central nervous system 
CRM charged residue model 
cSFC capillary supercritical fluid chromatography 
Cys cysteine 
dansyl dimethylaminonaphthalenesulfonyl chloride 
DNFB 2,4-dinitrofluorobenzene 
DoE Design of Experiments 
EAAs essential amino acids 
EI electron ionization 
EOF electroosmotic flow 
ESI electrospray ionization 
FID flame ionization detector 
FMOC 9-fluorenylmethyl chloroformate 
FS full scan 
GABA γ-aminobutyric acid 
GC gas chromatography 
Gln glutamine 
Glu glutamic acid 



12 
 

Gly glycine 
HEC hydroxyethyl cellulose 
His histidine 
IEC ion-exchange chromatography 
IEM ion evaporation model 
Ile isoleucine 
LC liquid chromatography 
Leu leucine 
LIF laser-induced fluorescence 
LOD limit of detection 
LOQ limit of quantification 
Lys lysine 
Met methionine 
MRM multiple reaction monitoring 
MS mass spectrometry 
MS/MS tandem mass spectrometry 
NPLC normal-phase liquid chromatography 
OPA O-phthalaldehyde 
PEG polyethylene glycol 
Phe phenylalanine 
PITC phenyl isothiocyanate 
Pro proline 
PTH phenylthiohydantion 
PVA polyvinyl alcohol 
QQQ triple quadrupole mass analyzer 
RSD relative standard deviation 
RPLC reversed-phase liquid chromatography 
Ser serine 
SFC supercritical fluid chromatography 
SIM selected ion monitoring 
SPE solid-phase extraction 
Thr threonine 
Trp tryptophan 
TSP thermospray ionization 
Tyr tyrosine 
UPLC ultra-performance liquid chromatography 
UPSFC ultra-performance supercritical fluid chromatography 
UV-VIS ultraviolet-visible electromagnetic radiation 
Val valine 



13 
 

 

e elementary charge 
γ surface tension 
ε dielectric constant 
ε0 permitivity of vacuum 
H height equivalent to a theoretical plate 
L column length 
m/z mass-to-charge ratio 
N number of theoretical plates 
η dynamic viscosity 
η0 viscosity at capillary surface 
μEOF mobility of electroosmotic flow 
ψ electrokinetic potential 
R droplet radius 
R2 coefficient of determination 
tmig migration time 
tR retention time 
w peak width 
ζ zeta potential 
zR charge number 
 

  



14 
 

1 INTRODUCTION 

Proteinogenic amino acids are essential components of living organisms 

biosynthetically incorporated into peptides and proteins. In addition, these amino acids 

participate in the synthesis of key endogenous compounds, including hormones and 

nucleotides. Accordingly, changes in the concentrations of free amino acids in human 

plasma may indicate the presence of inborn aminoacidopathy. Similarly, liver disease 

can be predicted using the Fischer ratio, i.e., the ratio of branched chain amino acids to 

aromatic amino acids [1,2]. In plants, amino acids are involved in total nitrogen supply 

and in the biosynthesis of secondary plant metabolites, such as phenolic compounds and 

glucosinolates [3]. Therefore, analytical methods for the determination of amino acids 

have been extensively used in plant and human metabolomics.  

Capillary electrophoresis (CE) is a suitable separation technique not only for 

proteins and peptides but also for small molecules thanks to its high separation 

efficiency in the range of hundreds of thousands of theoretical plates per meter. Thus, 

CE can be applied in metabolomics even when using conventional detectors with low 

selectivity, e.g., spectrophotometric (UV-VIS) or capacitively coupled contactless 

conductivity (C4D) detectors. These detectors have low concentration sensitivity due to 

the low sample volume that can be introduced into a capillary and/or to their short 

absorption path (UV-VIS detectors, for example) [4-6]. Despite their low sensitivity, 

C4D and UV/VIS detectors suffice for separations of abundant analytes such as amino 

acids. However, only few proteinogenic amino acids (tryptophan, phenylalanine, 

tyrosine) absorb UV/VIS radiation above 190 nm. Thus, C4D is the detection technique 

of choice for amino acids, especially those that do not absorb in UV-VIS range above 

190 nm [7,8]. 

Even before the widespread use of capillary electrophoresis in amino acid 

separation, chromatography-based methods had long been applied for the separation of 

proteinogenic amino acids. Actually, one of the first chromatography methods used for 

the separation of amino acids was gas chromatography (GC). However, GC separations 

require the derivatization of amino acids to increase their volatility. Considering this 

drawback, soon after its introduction, liquid chromatography (LC) quickly became a 

popular method for the separation of amino acids because LC is faster than GC and 
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requires no derivatization before separation on column. Subsequently, a new separation 

technique emerged combining GC with LC – supercritical fluid chromatography (SFC). 

Although the SFC technique initially used GC-like instrumentation and separation 

principles, later improvements in the former, particularly in the last two decades, caused 

a gradual shift from GC- to LC-like instrumental setups. SFC replaced normal-phase 

mode of liquid chromatography (NPLC) because of similar polarity of mobile and 

stationary phase of NPLC to the polarity of mobile and stationary phase used in SFC. 

Moreover, SFC is more environmentally friendly than NPLC because it uses CO2 and 

an organic co-solvent or even water as a mobile phase and its polarity can be changed 

using co-solvents, thereby enabling the separation of a wide spectrum of compounds 

ranging from vitamin D and its metabolites [9] to nucleotides and lipids [10]. 

The analysis of complex biological samples requires a high degree of detection 

selectivity. Unsurprisingly, mass spectrometry (MS) in connection with separation 

techniques has recently become one of the most commonly used detection methods for 

such purpose. Currently, MS is the prevailing detection technique in GC separation. 

After separation by GC, analyte molecules are mostly ionized by electron ionization 

(EI), which promotes in-source ion fragmentation; thus, successive fragmentation in a 

collision cell is seldom required in GC-MS. Conversely, the combination of “weak” 

ionization techniques, e.g., electrospray ionization (ESI) with a liquid-phase separation 

technique, such as CE and LC, demands further fragmentation of molecular ions in a 

collision cell and scanning for product ions to improve detection selectivity. This 

combination method is referred to as tandem mass spectrometry (MS/MS).  

Based on the above, this thesis was divided into two parts. The first study 

described the determination of proteinogenic amino acids by CE-C4D focusing on 

amino acid extraction. The extraction process was optimized using Design of 

Experiments (DoE) to achieve the highest amino acid yield possible. The second study 

aimed to determine amino acids in human plasma by SFC-MS/MS, which provided 

shorter run times than the CE-C4D method. However, the total analysis time of SFC-

MS/MS was prolonged due to the necessary derivatization of amino acids. Overall, this 

thesis describes the determination of proteinogenic amino acids by both aforementioned 

techniques, using parameters such as total analysis time, separation efficiency and 

detection selectivity to compare the suitability of both techniques for various 
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applications. This thesis also compares acquisition and operating costs of both 

techniques. 
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2 AIMS OF THE THESIS 

The overall aim of the thesis was to compare two separation techniques – 

capillary electrophoresis and supercritical fluid chromatography – in the determination 

of proteinogenic amino acids. The studies included in this thesis focused on the 

following goals: 

Study I (i) To optimize the extraction process of proteinogenic amino acids from 

tobacco plants using design of experiments, including fractional factorial 

design and the response surface method, and (ii) to validate a method for 

the determination of amino acids in plant extracts using capillary 

electrophoresis with contactless conductivity detection.  

Study II (iii) To develop an ultra-performance supercritical fluid chromatography-

tandem mass spectrometry method for the determination of proteinogenic 

amino acids in human plasma; (iv) to find a suitable derivatization 

process to decrease amino acid polarity and (v) to optimize mobile phase 

composition and gradient to reach the shortest analysis time possible and 

to improve peak shape. 
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3 PROTEINOGENIC AMINO ACIDS 

3.1 Amino acid structure and properties 

Table 1 lists the proteinogenic amino acids, including their structures, and one-

letter codes as well as three-letter codes used throughout this thesis. All amino acids 

contain a basic amino group and an acidic carboxyl functional group (Table 1), which 

accounts for their zwitterionic character, and all proteinogenic amino acids are L 

enantiomers with an amino group bonded to an α-carbon. However, some proteinogenic 

amino acids, e.g., Lys and Arg, contain multiple amino groups, thus increasing their 

basicity, whereas others, such as Asp and Glu, contain more than one carboxyl group. 

Therefore, when separating amino acids by capillary electrophoresis, one must consider 

the overall charge of an amino acid at a specific pH.  

The overall charge is characterized by the isoelectric point (pI), which is the 

mean pKa of all acid-base functional groups. Thus, separation selectivity can be 

optimized by slightly changing the pH of the background electrolyte [11]. In 

supercritical fluid chromatography, one must consider not only the ionizable functional 

groups but also the amino acid side chains (Table 1), which control amino acid polarity. 

Amino acid polarity can be calculated, using the ChemDraw software 

(PerkinElmer, USA), as the decadic logarithm of the calculated partition coefficient 

(ClogP) by comparing the solubility of an amino acid in 1-octanol with its solubility in 

water. Then, the feasibility of an SFC analysis can be predicted, to some extent, based 

on the ClogP values, which range from –3.73 for L-His, the most polar amino acid, 

to –1.56 for L-Phe, the least polar amino acid (Table 1) [10]. 
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Table 1 List of proteinogenic L-amino acids and respective abbreviations, structures, 

ClogP and pI values, sorting the amino acids in increasing order of polarity 

L-amino acid Three-
letter code 

One-letter 
code Structure ClogP pI [12] 

phenylalanine Phe F 

 

–1.56 5.76 

tryptophan Trp W 

 

–1.57 5.88 

leucine Leu L 

 

–1.67 6.04 

methionine Met M 

 

–1.73 5.71 

isoleucine Ile I 

 

–1.76 6.04 

tyrosine Tyr Y 

 

–2.23 5.63 

valine Val V 

 

–2.29 6.02 

cysteine Cys C 
 

–2.35 5.15 

aspartic acid Asp D 

 

–2.41 2.98 

proline Pro P 

 

–2.41 6.30 
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threonine Thr T 

 

–2.50 5.60 

glutamic acid Glu Z 

 

–2.69 3.08 

serine Ser S 

 

–2.81 5.70 

alanine Ala A 
 

–3.12 6.11 

glycine Gly G 
 

–3.21 6.06 

glutamine Gln Q 

 

–3.38 5.65 

lysine Lys K 

 

–3.42 9.47 

arginine Arg R 

 

–3.52 10.76 

asparagine Asn N 

 

–3.54 5.43 

histidine His H 

 

–3.73 7.64 
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3.2   Amino acids in plants and humans 

In addition to their structural functions as basic building blocks of peptides and 

proteins, some proteinogenic amino acids play key roles in stabilizing the structure of 

large protein units through hydrogen bonds between individual amino acid residues and 

through disulfide bridges between two Cys molecules [13]. Moreover, abiotically 

formed amino acids have been implicated in the RNA-based life hypothesis of 

evolution, according to which early RNA structures might have benefited from the 

presence of free amino acids, especially positively charged Lys and Arg. These amino 

acids help to stabilize the secondary structure of nucleic acids because they alter hairpin 

folding dynamics through electrostatic interactions [14]. 

In plants, amino acids are synthesized from inorganic compounds. The nitrogen 

used for biosynthesis derives from various sources, such as nitrate and ammonium salts, 

which are absorbed through the plant root system. Following this nitrogen uptake, 

nitrates are reduced to ammonium, which, together with ammonium absorbed from the 

soil, serves as a building block for the synthesis of organic compounds containing 

nitrogen. Our first study included experiments with Nicotiana tabacum L. cv. Petit 

Havana SR1, which belongs to a group of C3 plants. In C3 plants, the main metabolic 

pathway of nitrogen assimilation is ammonium incorporation into Gln, resulting in the 

presence of amide group. Then, Gln is transformed to Glu via an enzyme-catalyzed (Gln 

synthetase and Glu synthase) reaction with 2-oxoglutarate. Eventually, other 

proteinogenic amino acids are formed by transamination, deamination or 

transmethylation reactions [15]. Once the amino acids are synthesized, they participate 

in the plant metabolism as chelating agents or phytohormone precursors. Amino acids 

can also chelate micronutrient metals such as Fe, Zn, Mn and Cu, and they help plants 

to assimilate metal ions from the soil and to transport them throughout the organism 

[16,17]. In addition, Trp and Met serve as phytohormone precursors for indole-3-acetic 

acid and ethylene, respectively [18,19], and other amino acids, such as Met and Phe, are 

precursors of glucosinolates involved in the plant defense system. When the plant is 

exposed to biotic stress, glucosinolates are enzymatically degraded into isothiocyanates, 

which act as natural deterrents against grazing by ruminants [20]. 
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In contrast to plants, the human organism is unable to synthesize some 

proteinogenic amino acids, termed essential amino acids (EAAs), namely Leu, Ile, Lys, 

Met, Phe, Thr, Trp and Val. Therefore, the human diet must contain EAAs from meat 

and/or plant sources [21]. Although all proteinogenic amino acids are equally important 

when it comes to protein synthesis, some of them also participate in other major 

biochemical pathways, including hormone production from aromatic amino acids. For 

instance, Trp acts as a precursor of serotonin, which is subsequently transformed into 

melatonin in an enzymatic reaction (Fig. 1).  

 
Fig. 1 Enzymatic transformation of tryptophan into serotonin and melatonin 

Moreover, serotonin is synthesized in serotonergic neurons located in the central 

nervous system (CNS), inside the blood-brain barrier (BBB). In turn, melatonin is 

produced in the pineal gland located outside the BBB; thus, the blood tryptophan 

concentration easily decreases during short photoperiods. Accordingly, under those 

conditions, the amount of tryptophan transported through the BBB to serotonergic 

neurons declines, which may cause seasonal affective disorders, for example, winter 

depression [22]. Similarly, Phe serves as precursor of Tyr, which is subsequently 

converted into thyroid hormones – triiodothyronine and thyroxine – which in turn 

stimulate mitochondrial activity and are thus regulators of human energy [23]. Another 

amino acid associated with the nervous system is Gln, which provides the basic 
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structure for the biosynthesis of Glu – an excitatory neurotransmitter. In addition, Glu 

decarboxylation results in the non-proteinogenic amino acid γ-aminobutyric acid 

(GABA), which acts as an inhibitory neurotransmitter in human cerebral cortex [24,25]. 

Considering the above, free amino acids have been increasingly screened in 

plant and human tissues to assess the overall status of organisms and their development. 

For example, some human diseases can be predicted based on the concentrations of 

specific amino acids in the blood stream, which are therefore used as biomarkers. Using 

the Fischer ratio, which is correlated with some liver diseases such as hepatic fibrosis or 

hepatocellular carcinoma, the quantification of proteinogenic amino acids can be a 

powerful tool in clinical practice [26]. In Study I of this thesis, we used the CE-C4D 

method to determine the concentration of proteinogenic amino acids in leaves of 

Nicotiana tabacum plants grown under various conditions. The findings helped us 

assess the effects of abiotic stress and of different nitrogen sources on the distribution of 

free amino acids. In Study II, we developed an ultra-performance supercritical fluid 

chromatography-tandem mass spectrometry (UPSFC-MS/MS) method for the 

separation of 19 proteinogenic amino acids in a 6-minute run. The sensitivity of this 

method enables us to quantify amino acids at low concentrations, thereby allowing the 

use of very low volumes of human plasma or the analysis of samples with low amino 

acid concentrations. The UPSFC-MS/MS method could become widely used in clinical 

practice considering its speed and high sample throughput. 

3.3   Analysis of amino acids-containing samples 

Historically, amino acids were first detected in 1910, when Siegfried Ruhemann 

developed a selective reaction for amino acids. This reaction was based on the 

combination of primary amines with ninhydrin, forming a blue dye termed Ruhemann’s 

purple [27]. Since then, the ninhydrin reaction has been extensively used in the 

identification and quantification of amino acids using the ninhydrin reaction as a post-

column derivatization step and thus improving the sensitivity of photometric detection 

[28,29]. Subsequently, other techniques emerged and were applied to enhance the 

detection sensitivity, particularly the separation of amino acids as their copper 

complexes by ion-exchange chromatography (IEC), which not only enabled their 
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photometric detection but also changed the selectivity of the separation process [30]. 

Gradually, IEC was replaced by reversed-phase high-performance liquid 

chromatography (RP-HPLC) in the separation of amino acids because RP-HPLC has 

shorter analysis times and higher sensitivity. Various derivatization reagents for pre-

column derivatization of amino acids in HPLC were studied, e. g., O-phthalaldehyde 

(OPA), dimethylaminonaphthalenesulfonyl chloride (dansyl) or phenyl isothiocyanate 

(PITC) [31]. From commonly used derivatization reagents for amino acids, the PITC 

reaction (Fig. 2) provides more stable phenylthiohydantoin (PTH) derivatives at faster 

reaction rates than other derivatization techniques [32]. 

 

Fig. 2 Derivatization of an amino acid with phenyl isothiocyanate at basic pH yielding 

the phenylthiohydantoin of the corresponding amino acid (R – amino acid side chain) 

Before the rise of mass spectrometric detectors in separation science, GC 

methods had also been used for the separation of amino acids presumably because the 

separation efficiency of GC is higher than that of HPLC, even efficiently separating D 

and L enantiomers when using a chiral stationary phase [33]. However, similarly to 

HPLC-UV, the separation of amino acids by GC requires pre-column derivatization to 

increase the volatility of amino acids. Hence, various derivatization reactions have been 

established for GC analysis predominantly using esterification mechanisms. More 

specifically, amino acids have been analyzed as N-heptafluorobutyryl isobutyl esters 

using either flame ionization (FID) [34,35] or nitrogen-selective detectors [36]. 

Meanwhile, capillary electrophoresis was introduced as a new separation 

technique based on different separation principles. Unsurprisingly, CE rapidly became a 

widely used method for the separation of ionogenic analytes, i.e., amino acids, thanks to 

its simple setup, undemanding instrumentation and low operating costs. However, 

amino acid detection in CE is not an easy task. Similarly to other separation techniques, 
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direct UV-VIS detection is only sensitive to amino acids containing a suitable 

chromophore in their structure.  

Some amino acids can be identified even by direct UV-VIS detection but only 

after complexation and preconcentration with Cu2+ ions [37] or derivatization with 

chromophore-containing reagent, e.g., 9-fluorenylmethyl chloroformate (FMOC) 

binding to the amino functional group [38]. This laborious derivatization step can be 

avoided by indirect UV-VIS detection of amino acids using an indirect probe added to a 

background electrolyte (BGE). An indirect probe is an amino acid co-ion that 

significantly absorbs UV-VIS radiation above 190 nm. Generally, the selection of a 

specific indirect probe depends on the pH of the background electrolyte. BGEs with 

basic pH values are frequently used for amino acid separation; accordingly, amino acids 

carry the negative charge of the dissociated carboxyl group. Under these conditions, 

aromatic carboxylic acids such as salicylic acid, benzoic acid or trimellitic acid act as 

indirect probes for amino acids at pH above 10 [39,40].  

More recently, laser-induced fluorescence (LIF) detection has been applied to 

CE in the separation of amino acids, thus substantially increasing the detection 

sensitivity. Similarly to UV-VIS detection, LIF detection has been used in both direct 

and indirect modes of operation. Direct LIF detection requires derivatization of amino 

acids with a fluorophore-containing reagent, such as fluorescein isothiocyanate [41] or 

3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde [42]. Indirect LIF detection requires 

no derivatization of amino acids, but a fluorophore of the same charge as that of the 

amino acid must be added to BGE. Subsequently, the fluorescent co-ion is displaced by 

a nonfluorescent amino acid ion, thereby decreasing the signal. Indirect LIF detection 

has been applied in the separation of amino acids using methylene blue at acidic pH 

[43] and fluorescein at basic pH [44] as probes. 

Amino acids are electrochemically active compounds and, therefore, can be 

detected by electrooxidation using copper electrodes in a wall-jet configuration. Under 

such conditions, referred to as amperometric detection, amino acids were oxidized at a 

constant electrode potential, measuring the induced electric current [45]. In contrast to 

amperometric detection methods, capacitively coupled contactless conductivity 

detection (C4D) uses an electrochemical-based detector that requires no direct contact 
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with the BGE. Hence, C4D is an easy-to-use detection technique that measures electric 

conductivity inside the separation capillary (see section 4.3 for details) [46]. 

The emergence of mass spectrometry as a detection technique has considerably 

changed the field of separation science. MS detection, especially its multiple reaction-

monitoring (MRM) mode, has significantly improved the selectivity and sensitivity of 

detection. However, in GC-MS, amino acids require derivatization due to separation by 

GC. In GC-MS, derivatization by silylation reagents has become popular because they 

bind to both amino and carboxyl functional groups. Accordingly, silylation not only 

increases the volatility needed for GC separation but also provides EI-MS spectra rich 

in characteristic fragments [47]. Moreover, in contrast to GC, no derivatization is 

necessary in liquid phase separation techniques such as HPLC or CE. In HPLC-MS, 

amino acids have been mainly analyzed in reversed phase separation mode using 

methanol/water or acetonitrile/water mixtures and a volatile salt (ammonium formate) 

with a volatile acid (formic acid) as the mobile phase [48,49]. Alternatively, because 

they are highly polar/ionogenic compounds, amino acids can also be separated in HILIC 

mode using a high percentage of acetonitrile in the mobile phase and silica particles 

with cross-linked diol groups on their surface as the stationary phase [50]. 

When using MS detection with CE, one must consider the composition of the 

BGE. Most buffers commonly used in CE, such as phosphate or TRIS buffers, cannot 

be used for amino acid detection by MS because the high content of nonvolatile salts in 

the BGE subsequently leads to their precipitation in the CE-MS interface. For the same 

reason, BGE additives often used to tune separation processes, such as surfactants 

(CTAB, SDS) and chiral selectors (cyclodextrins), cannot be used in such experimental 

setups. Therefore, in CE-MS, BGE usually consists of a volatile buffer, i.e., ammonium 

formate [51]. Nevertheless, no baseline separation of amino acids in CE-MS is 

necessary when using the MRM mode, except for Ile and Leu because these isomeric 

amino acids provide identical MRM transitions. Thus, the buffer concentration must be 

optimized for their baseline separation [52]. 
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4 CAPILLARY ELECTROPHORESIS IN THE 

DETERMINATION OF PROTEINOGENIC AMINO 

ACIDS 

4.1 Extraction of amino acids from solid materials 

Generally, every step of the sampling procedure and sample preparation should 

be thoroughly considered in the amino acid analysis of any solid material. Inappropriate 

sample handling or sample preparation might distort the final concentration distribution 

of individual free amino acids. Particularly when analyzing samples from living 

organisms, the sampling procedure should ensure that all metabolic transformations are 

halted after collecting the sample. For such purposes, deep-freezing in liquid nitrogen is 

the most commonly used technique, and deep-freezing with subsequent lyophilization 

(vacuum drying) has become a well-established method for the preparation of samples 

from plant materials in which all water content sublimates from solid material during 

vacuum drying, thereby avoiding an undesired freeze-thaw cycle [53].  

According to the well-known rule of thumb “similia similibus solvuntur”, amino 

acid extraction requires using an appropriate extraction reagent to disintegrate the 

material and to transfer amino acids to a liquid phase. Historically, a Soxhlet extractor 

has been applied for large-scale extractions of plant materials using aqueous ethanol as 

an extraction solvent [54]. However, in such extraction procedures, the evaporation of 

the extraction solvent required to preconcentrate the amino acids usually takes several 

hours, thus significantly prolonging the analysis. Hence, extractions with different 

solutions, or their mixtures, have also been studied over time to enhance the extraction 

efficiency.  

In amino acid extraction, an extraction mixture consisting of methanol, 

chloroform and water (2:1:0.8) has been shown to be more efficient than traditionally 

used 80% ethanol [55]. Amino acid extraction using organic solvents has also been 

tested in water-in-oil microemulsions of bis(2-ethylhexyl) sulfosuccinate (AOT) in n-

heptane. Based on the results, the authors of this study suggested that hydrophilic amino 

acids dissolve only in the polar cavities of AOT globules, whereas less polar amino 
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acids, i.e., Trp and Phe also dissolve in the organic phase, albeit less than in water, and 

that Trp incorporates in the interfacial layer of a globule by hydrophobic interactions 

[56].  

The pH of the medium determines the ionic nature of amino acids, which in turn 

determines their solubility in acidified aqueous solutions. Thus, amino acid extraction 

using mixtures of organic solvents with water and hydrochloric acid (HCl) has been 

tested, and the results showed that acidified acetonitrile had the lowest extraction 

efficiency for amino acids, followed by aqueous, acidic ethanol. As expected, deionized 

water with HCl had the highest yield of amino acid extraction from lyophilized yeast 

[57].  

When adding an extraction solvent to a dried sample, it is necessary to ensure 

total sample wetting. The wetting process and the transfer of amino acids from the 

material to the bulk solution can be enhanced by ultrasound- [58] or microwave-assisted 

extraction [59]. However, the drawback of using aqueous solutions lies in the 

complicated preconcentration of amino acids by evaporation, requiring multiple 

extraction steps, which makes this approach impractical. When the use of an aqueous 

extraction solution is inevitable and the concentration of the amino acids analyzed is 

low, solid-phase extraction (SPE) becomes a powerful tool for amino acid 

preconcentration. In SPE, amino acid extracts are introduced in a conditioned SPE 

column containing silica-based particles with a C18 stationary phase. Eventually, amino 

acids are eluted from the SPE cartridge with 10% ethanol [60,61]. 

In Study I, we used an aqueous solution of HCl for the extraction of 

proteinogenic amino acids from Nicotiana tabacum L. cv. Petit Havana SR1 leaves. The 

leaf samples were deep frozen immediately after the collection, and then the samples 

were lyophilized. To increase the extraction yield, several factors affecting the 

extraction process were optimized using Design of Experiments 

(DoE). In total, 4 factors were assessed: HCl volume, HCl concentration, shaking and 

sonication time. The most important factors were the extraction solvent volume and 

concentration. The optimal extraction solution volume-to-mass ratio was 14, i.e., 14 μ1 

of HCl solution per 1 mg of dried sample. When possible, the mass of all tobacco 

samples was kept at 50 mg, and the samples were extracted with 700 μL of 8.2 mM 

hydrochloric acid. Subsequently, shaking and sonication, the two factors with the 
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weakest effect on amino acid extraction yield, enhanced the extraction. Eventually, an 

extract was filtered through a 0.45-μm filter and immediately analyzed because protein 

precipitation in the extract could alter the CE analysis or even clog the separation 

capillary. 

4.2 Capillary electrophoresis with suppressed electroosmotic flow 

Electroosmotic flow (EOF) is a key factor of CE. In the most frequently used 

fused silica capillaries, siloxane groups on the inner surface of the capillary are 

hydrolyzed to silanol groups. Silanol groups covering the capillary surface dissociate 

when they come into contact with an aqueous solution. The silanol group dissociation 

increases when the pH of the solution is sufficiently high. The silica surface contains 

two types of silanol groups of variable ratio, (I) isolated silanol groups with pKa ~ 4.9 

and (II) vicinal silanol groups of pKa ~ 8.5, with a total silanol group surface area 

density of approx.  4.9 × 1014 cm–2 [62]. Therefore, the overall pI of all silanol groups 

should be experimentally determined when needed. Helmholtz derived the Equation 1 

that describes EOF mobility: 

μEOF =  
𝜀 𝜁

4 𝜋 𝜂
    (1), 

where μEOF is the electroosmotic flow mobility, ε stands for dielectric constant, ζ is the 

zeta potential at the slipping plane and η is the bulk dynamic viscosity. However, the 

ratio between the electroosmotic flow mobility and the electrophoretic mobility of a 

solute is independent of the bulk viscosity. Therefore, electroosmotic and 

electrophoretic mobility decrease at the same rate when increasing bulk viscosity. 

However, an increase in viscosity within the double layer of the capillary wall can slow 

down EOF according to the more general Equation 2 for electroosmotic mobility: 

μEOF =  
𝜀

4 𝜋
 ∫ 1

η0
ⅆ𝜓

𝜁

0

(𝑥)    (2), 
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where ψ(x) is electrokinetic potential at a distance x from the capillary wall [63]. 

Consequently, EOF mobility is inversely proportional to capillary surface viscosity (η0).  

Some CE applications require eliminating the electroosmotic flow to increase 

the separation efficiency, especially in protein analysis. There are 3 main procedures for 

EOF elimination: pH-assisted EOF suppression, permanent coating of the capillary 

surface with a polymer, and dynamic coating of the capillary surface with hydrophilic 

polymers. Because EOF mobility depends on the pH value of BGE, the electroosmotic 

flow can be substantially slowed down using acidic buffers. However, pH-assisted EOF 

suppression does not entirely eliminate solute adsorption to the capillary surface with a 

residual negative charge. Hence, the pH-suppressed EOF method found its place in the 

separation of anions that do not interact with the capillary surface [64]. In contrast to 

pH-suppressed EOF, polymer coatings not only suppress EOF but also eliminate 

unwanted interactions between positively charged solutes and the negatively charged 

capillary surface. Permanently coated capillaries have been previously prepared using 

two types of procedures (I) covalent bonding to silanol groups and (II) in situ 

polymerization of monomer units. In procedure (I), at first, a bifunctional silane, e.g., 3-

(trimethoxysilyl)propyl methacrylate, reacts with silanol groups, forming siloxane 

bonds. Then, monomers (e.g., acrylamide) are introduced in the capillary and 

polymerize with the second functional group of the sublayer (Fig. 3). 
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Fig. 3 Permanent polymer coating using 3-(trimethoxysilyl)propyl methacrylate as a 

sublayer for polymerization with acrylamide monomer units 

In procedure (II), polymers such as poly(acrylamide) or polyvinyl alcohol (PVA) 

can be directly polymerized in situ from monomer units with subsequent thermal 

immobilization, without the sublayer. However, the permanent polymer coating of a 

capillary wall tends to be a time-consuming technique with low reproducibility [65]. 

Thus, to achieve coatings with higher reproducibility and stability, dynamic coating 

procedures have been applied in various CE methods. In those methods, hydrophilic 

polymers such as PVA [66], polyethylene glycol (PEG), hydroxyethyl cellulose (HEC) 

or their mixture have been used [67]. In particular, PEG [68] and HEC [8,69] coatings 

have been shown to effectively improve the separation efficiency by EOF suppression 

and by elimination of solute adsorption on the capillary wall in amino acid analyses. 
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Based on the above, we directly added 0.1% HEC (w/v) to a BGE (1.8 M acetic 

acid) of low pH (~ 2.2) in Study I. The HEC dynamic coating substantially improved the 

peak resolution (Fig. 4) because EOF was significantly slowed down. 

 
Fig. 4 Electropherograms of 240 μM standard mixture of amino acids. Separation 

conducted in (A) 1.8 M acetic acid and (B) 1.8 M acetic acid with 0.1% HEC (w/v). 

Peak identification: 1 – Lys, 2 – Arg, 3 – His, 4 – Gly, 5 – Ala, 6 – Val, 7 – Ile, 8 – Leu, 

9 – Ser, 10 – Thr, 11 – Asn, 12 – Met, 13 – Trp, 14 – Gln, 15 – Glu, 16 – Phe, 17 – Tyr, 

18 – Pro, 19 – Asp. Capillary dimensions: ltot 80 cm; ldet 66.5 cm; ID 50 μm; OD 363 

μm. Voltage 30 kV, electric current 12 μA 

4.3 Contactless conductivity detection in capillary electrophoresis 

Most inorganic ions and many organic compounds, e.g., some saccharides, 

carboxylic acids and amino acids insufficiently absorb UV radiation above 190 nm. 

Thus, considerable research efforts have focused on the development of new detection 
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techniques for UV non-absorbing analytes in recent decades. Conductivity detection has 

become the most significant detection technique supplementary to conventional 

UV/VIS detection. Initially, conductivity detection was used in capillary 

isotachophoresis (CITP) to measure the resistance of an electrolyte between two 

electrodes [70,71]. However, the electrodes were in direct contact with the electrolyte 

inside a capillary, which caused changes in the electrode surface through redox 

reactions, thereby decreasing the reproducibility of detection. This obstacle was 

overcome with the development of the contactless conductivity detector (CCD), which 

eliminates the direct contact between electrodes and electrolyte [72]. This detector 

consists of a generator that transmits a high-frequency signal through emitting 

electrodes and through a capacitive cell (separation capillary). Subsequently, the signal 

is collected by receiving electrodes and amplified, and the final distribution of the 

electromagnetic field depends on the permittivity, permeability and conductivity of the 

electrolyte inside the capillary. Because permittivity and permeability change 

insignificantly in diluted aqueous solutions, in practice, the final signal only depends on 

the molar ionic conductivity of ions passing through the detector. In CE, separated 

zones are then detected based on differences in the molar ionic conductivity of analyte 

ions and of their co-ions in the BGE. 

The CCD arrangement was later improved by capacitive coupling of AC 

voltage. This new arrangement was referred to as capacitively coupled contactless 

conductivity detector (C4D). In contrast to the CCD arrangement used in CITP, in CE, 

the C4D consisted of two tubular electrodes – two capacitors placed around the capillary 

with a gap between each other, where the changes in conductivity were measured [73]. 

Since then, the C4D technique has been extensively used in CE of amino acids 

[7,8,68,69,74-76]. 

In our first study (Study I), amino acids were separated by CE and amino acid 

zones were detected using C4D. In this study, 1.8 M acetic acid was used as a BGE; 

hence, we measured differences in the molar ionic conductivity of amino acid cations 

and hydronium ions. Because the molar ionic conductivity of amino acids is 

significantly lower than that of hydronium ions, amino acid zones were displayed as 

negative peaks (Fig. 4, section 4.2). 
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4.4 Method validation in capillary electrophoresis 

In every analytical method, validation is an essential step before applying any 

method to the analysis of real samples. Several basic validation parameters are 

considered: selectivity, sensitivity, linear dynamic range, accuracy and precision. 

Selectivity assessment includes the reliable assignment of an analyte to a peak in 

an electropherogram, i.e., identification. Identification is easier when UV/VIS detection 

is used in CE and spectra acquired from the separation of standard mixtures are 

compared with spectra from the separation of real samples. Moreover, inspecting peak 

purity in the real sample helps to detect any possible interference of an unknown 

compound with an analyte of interest [77]. However, in CE-C4D, no peak purity 

assessment or spectra comparison is possible. Therefore, in Study I, we assessed 

selectivity based on the standard addition to the extract of a tobacco leaf. To identify 

highly abundant amino acids, such as L-Arg, L-His and L-Gln, we diluted the sample 

and added the corresponding standards to reliably identify the amino acids. 

Sensitivity, in general, is assessed as the slope of calibration curve. Sensitivity is 

often described by the limit of detection (LOD) and by the limit of quantification (LOQ) 

of the method. Generally, LOD and LOQ values represent the concentrations that 

correspond to signal-to-noise ratios of 3 and 10, respectively [78]. In Study I, we used 

the standard deviation of noise to calculate the LOD and LOQ values from calibration 

curves of the variation of concentration as a function of peak height. Then, we 

determined the LOD and LOQ using the calibration curve, extrapolating the 

concentrations corresponding to 3-fold and 10-fold standard deviations of noise values, 

respectively. Eventually, we assessed sensitivity as the slope of a calibration curve, 

which helped us compare the sensitivity of the method for particular amino acids more 

efficiently than the LOD and LOQ values that were very close to each other for 

individual amino acids. 

The linear dynamic range of a method is determined using a calibration curve. 

The coefficient of determination (R2) of a calibration curve is often the first indicator of 

acceptable linearity. In addition, the linear dynamic range corresponds to concentrations 

that can be determined with acceptable accuracy and precision. In Study I, the 

calibration curves of amino acids were linear across more than two orders of magnitude. 
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Accuracy determines how close the concentration calculated from calibration is 

to the true concentration. In our first study, no reference material or blank matrix was 

available. Therefore, accuracy could not be evaluated, either through analysis of a 

reference material or through addition of a known amino acid amount to a blank matrix. 

Hence, the accuracy of the method was expressed as the percentage difference of the 

slopes of two calibration curves: the calibration curve constructed using standard 

solutions and the calibration curve measured in a real extract. In real-extract calibration, 

known amounts of standards were added to a real extract, and a calibration curve was 

constructed based on the standard addition method.  

Precision was determined as the relative standard deviation (RSD) of peak areas 

within 6 repeated measurements. We found that precision substantially improved when 

amino acid peak areas were corrected to the peak area of an internal standard (aniline). 
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Abstract In this study, we optimized a method for the deter-
mination of free amino acids in Nicotiana tabacum leaves.
Capillary electrophoresis with contactless conductivity detec-
tor was used for the separation of 20 proteinogenic amino
acids in acidic background electrolyte. Subsequently, the con-
ditions of extraction with HCl were optimized for the highest
extraction yield of the amino acids because sample treatment
of plant materials brings some specific challenges. Central
composite face-centered design with fractional factorial de-
sign was used in order to evaluate the significance of selected
factors (HCl volume, HCl concentration, sonication, shaking)
on the extraction process. In addition, the composite design
helped us to find the optimal values for each factor using the
response surface method. The limits of detection and limits of
quantification for the 20 proteinogenic amino acids were
found to be in the order of 10−5 and 10−4 mol l−1, respectively.
Addition of acetonitrile to the sample was tested as a method
commonly used to decrease limits of detection. Ambiguous
results of this experiment pointed out some features of plant
extract samples, which often required specific approaches.
Suitability of the method for metabolomic studies was tested
by analysis of a real sample, in which all amino acids, except
for L-methionine and L-cysteine, were successfully detected.

The optimized extraction process together with the capillary
electrophoresis method can be used for the determination of
proteinogenic amino acids in plant materials. The resulting
inexpensive, simple, and robust method is well suited for var-
ious metabolomic studies in plants. As such, the method rep-
resents a valuable tool for research and practical application in
the fields of biology, biochemistry, and agriculture.

Keywords Amino acids . Capillary electrophoresis . Central
composite design . Factorial design . Response surface
method . Tobacco

Introduction

The proper nitrogen supply is very important for sustainable
agriculture. It was well documented that low nitrogen supply
leads to reduced growth, reduced biomass, and nitrate concen-
tration in plants [1]; however, it was found that in Arabidopsis
thaliana, under these conditions, protein content was unal-
tered and total free amino acids and many individual amino
acids were increased [2]. From this and other results [3], it
follows that the determination of amino acid concentration is
very important for evaluation of physiological situation of
plants under various nutrition conditions or stress treatment.

Efficient separation methods are needed for fast screening
and determination of proteinogenic amino acids in order to
clarify the abovementioned processes. The suitability of cap-
illary zone electrophoresis (CZE) [4–9] and high-performance
liquid chromatography (HPLC) [10–13] has already been
proven by several studies.

Although CZE with mass spectrometry detection provides
high selectivity [14], it is convenient to utilize CZE in con-
nection with UV/VIS detection in order to reduce initial and
operating costs of the instrumentation. However, non-
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aromatic amino acids such as alanine, arginine, aspartic acid,
and threonine are characterized by low molar absorptivities at
wavelengths above 210 nm. Derivatization of amino acids
contributes to more sensitive UV/VIS detection [15]; never-
theless, time consumption and reproducibility of the derivati-
zation procedure are the factors that should be taken into con-
sideration. On the other hand, CZE with capacitively coupled
contactless conductivity detector (C4D) offers sensitive detec-
tion of all amino acids without any need for derivatization and
has been applied to separation of selected amino acids [6, 9].
CZE-C4D method providing baseline separation of all 20
proteinogenic amino acids was reported in the literature [7].
Amino acids were separated as cations within 35 min in an
acidic background electrolyte with 0.1% hydroxyethyl cellu-
lose (HEC) as an EOF suppressing agent. It is important to
note that the study was focused on qualitative analysis; no
quantitation of the analytes was performed.

Extraction of analytes belongs among crucial steps of biolog-
ical sample analysis. An optimization of this step should be
conducted to maximize the extraction yield. The full factorial
design, so-called OFAT (one-factor-at-a-time), followed by the
response surface method (RSM) has commonly been used for
various applications [16–18]. Nevertheless, the fractional facto-
rial design requires fewer experiments for an evaluation of sta-
tistically significant factors, thus reduces time and material con-
sumption [19]. In addition, there are different options how to
conduct RSM such as central composite design [20–22] and
Box-Behnken design [23]. In contrast with Box-Behnken de-
sign, central composite design includes factorial design, hence is
used more often in analytical chemistry [24].

Solvent extractions of free amino acids from a wide range
of biological samples have been reported [5, 25–29]. Aqueous
mixtures with ethanol [5, 25–27] or with pure water [28, 29]
have been used among others, but acidic solutions such as
diluted hydrochloric acid of approximate pH 2 [10] are more
suitable for amino acid extraction since they are positively
charged; thus, they are readily dissolved in aqueous solution.

In this work, we propose an optimized procedure for ex-
traction of free amino acids from Nicotiana tabacum leaves.
The most suitable extraction conditions were investigated
using the fractional factorial design followed by the central
composite face-centered design (CCFD) and RSM. Diluted
hydrochloric acid was applied as an extraction agent [10]
and the determination of the amino acids was conducted by
CZE-C4D [7] with aniline as an internal standard.

Materials and methods

Chemicals and reagents

L-amino acids, namely, glycine (99%), alanine (98%), arginine
(98%), asparagine (98%), aspartic acid (98%), cysteine (98%),

glutamine (99%), glutamic acid (99%), histidine (98%), isoleu-
cine (98%), leucine (98%), lysine (98%), methionine (98%),
phenylalanine (98%), proline (99%), serine (99%), threonine
(98%), tryptophan (98%), tyrosine (98%), and valine (98%),
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Aniline, used as an internal standard, was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Hydrochloric acid p.a.
(35%) and acetic acid p.a. (99%) were purchased from Lach-
Ner (Neratovice, Czech Republic). Hydroxyethyl cellulose was
purchased from Ashland (Convington, KY, USA). Sodium hy-
droxide p.a. was purchased from Penta (Prague,
Czech Republic). Solutions were prepared using deionized water
supplied by a Milli-Q water purification system from Millipore
(Bedford, MA, USA). All amino acid standard solutions
(5 mmol l−1) were prepared in 10 mmol l−1 hydrochloric acid.

Instrumentation

All electrophoretic experiments were conducted in a fused-silica
capillary (Polymicro Technologies, Phoenix, USA) using a
G7100A Capillary Electrophoresis Instrument (Agilent
Technologies, Waldbronn, Germany) with a contactless conduc-
tivity detector. The detector consisted of two cylindrical elec-
trodes, 4 mm long with 1-mm insulation gap. Inner diameter of
the electrodes was 400 μm. The detector was operated at a fre-
quency of 1.84 MHz with an amplitude of 44 V. Background
noise in the 1.8 mol l−1 acetic acid with 0.1% w/w hydroxyethyl
cellulose background electrolyte was 25 μV. A freeze-dryer
(Finn-Aqua Santasalo-Sohlberg, Hürth, Germany) was used for
lyophilization of the samples. An Elmasonic S 15 ultrasonic
cleaner (Elma, Singen, Germany), a Vibramax 100 vibration
platform shaker (Heidolph Instruments, Schwabach, Germany),
and a Force 7 microcentrifuge (Denver Instrument, Bohemia,
NY, USA) were used for sample pretreatment.

Sample preparation

The leaves of N. tabacum L. cv. Petit Havana SR1 were col-
lected and frozen within 5 s in liquid nitrogen to stop meta-
bolic transformations. Afterwards, the samples were stored in
a freezer at −80 °C. Prior to an analysis, the samples were
dried by lyophilization (20 h) and ground with a mortar and
pestle.

Sample extraction

A solution of hydrochloric acid was used as an extraction
solvent for free amino acids. Hydrochloric acid was added to
50mg of a ground sample, after that, the sample was sonicated
and shaken. The sample was centrifuged for 5 min at
7000 rpm. Following this, the supernatant was removed and
filtered through a 0.45-μm PVDF syringeless filter.
Eventually, 10 μl of aniline (5 mmol l−1) and 90 μl of the
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filtered extract were mixed, so that the final concentration of
aniline was 0.5 mmol l−1.

Electrophoretic conditions

The dimensions of the fused-silica capillary were as follows:
50 μm ID, 363 μm OD, 80.0 cm of total length, and 66.5 cm
to detector. The separation capillary was washed with
1 mol l−1 NaOH (10 min) followed by deionized water
(10 min) before every set of measurements. The capillary
was washed with the background electrolyte (BGE) between
individual measurements for 2 min. Afterwards, a voltage of
30 kV was applied (2 min) and then the samples were intro-
duced hydrodynamically by a pressure of 5 kPa (5 s). All
electrophoretic experiments were conducted at 30 kV induc-
ing an electric current of 12 μA in 1.8 mol l−1 acetic acid with
0.1% w/w hydroxyethyl cellulose as a BGE.

Design of experiments

MiniTab 16 software (State College, PA, USA) was used for the
fractional factorial design as well as for the central composite
face-centered design with response surface method [19]. At first,
four factors were selected for factorial design: HCl concentration,
HCl volume, sonication time, and shaking time. Afterwards, two
levels of each factor were established. Concentration of HCl
varied from 1 mmol l−1 (pH 3.0) to 15 mmol l−1 (pH 1.9); the
higher level was limited by the risk of acidic protein hydrolysis.
The lower level of HCl volume was 0.64 ml considering suffi-
cient hydration of the sample, while the higher level was 1.50 ml
limited by dilution of the amino acids. Sonication time was set to
0 and 10 min as the lower and higher level, respectively. This
enabled an evaluation of sonication effect. Finally, shaking time
varied between 5 and 20 min. The set of experiments for the
fractional factorial design is presented in Table S1 (see
Electronic Supplementary Material, ESM). Moreover, the
CCFD with RSM was conducted; thus, axial points and the
central point were added to the experimental matrix. The re-
sponse as a function of individual factors and their interactions
was estimated based on CCFD results. General form of the mod-
el can be seen in Eq. 1.

Y ¼ b0 þ b1Aþ b2Bþ b3C þ b4Dþ b21BAþ b23BC

þ b24BDþ b11A2 þ b22B2 þ b44D2 ð1Þ

Where, Y is the response (the area of an amino acid peak
divided by the area of aniline peak), b0 refers to model coef-
ficient, b1, b2, b3, and b4 are the coeffients of the factors. A is
HCl volume, B is HCl concentration,C is shaking time, andD
is sonication time.

Results and discussion

Capillary electrophoresis method

As the 2.3 mol l−1 concentration of acetic acid in BGE report-
ed in [7] did not provide baseline separation of all 20 amino
acids under our experimental conditions, a suitable concentra-
tion of BGE was investigated within the range from 1.7 to
2.4 mol l−1 with optimum at 1.8 mol l−1 providing the best
resolution of the peaks. Figure 1a shows an electropherogram
obtained under standard separation conditions. There is a very
large system peak, after which the detector signal only slowly
returns back to the baseline, thus evaluation of the peaks of
fast migrating analytes was problematic. However, we found
out that the system can be equilibrated and the system peak
can dramatically be reduced by application of voltage (30 kV)
for 2 min before every analysis (Fig. 1b). Separation and
quantification of all 20 amino acids could be performed under
the adjusted conditions.

Method parameters

Calibration curves for all 20 amino acids were measured with-
in a concentration range dependent on particular amino acid.
The calibration curves for L-Cys and L-Gln had to be mea-
sured immediately after standard solution preparation. During
several days, L-Cys started oxidizing to cystine as well as L-
Gln was successively transformed to L-Glu. All calibration
data are shown in Table 1.

The sensitivity of the method varied between 1829 for L-
Gly and 3799 mV s mol−1 l for L-Trp with the coefficients of
determination above 0.99 with the exceptions of L-Met and L-
Asp. Limits of detection (LOD) and quantification (LOQ)
were calculated as 3- and 10-fold the standard deviation of
the noise. The detection of all amino acids is feasible in order
of 10−5 mol l−1 excluding L-Asp as the amino acid with the
highest LOD. LOQs of most amino acids were shown to be at
the lower values of 10−4 mol l−1. It is apparent from Table 1
that, in the extract sample, concentrations of 17 amino acids
were found to be above their LOQs with the highest abun-
dance of L-Pro, L-Glu, and L-Asp.

In several studies [9, 30–32], LOD and separation efficien-
cy were significantly improved by addition of organic solvent,
such as acetonitrile, to sample, which has led to decreased
sample conductivity and thus field amplification and sample
stacking. Compared with these studies, amino acid LODs of
our method are about one order of magnitude higher. In our
case, samples were dissolved in 0.01 M HCl and their con-
ductivity was relatively high. Addition of acetonitrile should
thus improve LOD and separation efficiency. Presence of 50
or 75% v/v acetonitrile in standard mixture of amino acids in
0.01 M HCl significantly increased amino acid responses
when electrokinetic injection was applied. However,
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separation efficiency did not increase enough to maintain
baseline resolution of Arg/His, Val/Ile, and Trp/Gln peak
pairs. Comparison of separation efficiency is rather delicate
matter as it depends on peak size. To assess the effect of
acetonitrile addition on separation efficiency, mixtures of
0.25 mM amino acid standards in 0.01 M HCl with water or
acetonitrile 1:1 v/v were injected hydrodynamically using a
pressure of 5 kPa for 5 s. Resulting separation efficiencies
for Lys as the fastest migrating amino acid were 455,000
and 524,000 plates m−1 for sample diluted with water and
acetonitrile, respectively. For Asp, as the slowest migrating
amino ac id , the e ff i c ienc ies were 132 ,000 and

266,000 plates m−1 for sample diluted with water and aceto-
nitrile, respectively. Therefore, increase of efficiency can be
seen in samples diluted with acetonitrile; however, it should
be noted that peak areas were roughly 30% lower, which ap-
parently increased their calculated efficiency values. When
acetonitrile was added to tobacco extract sample and electro-
kinetic injection was used, no signal increase was observed
and signals of slowlymigrating amino acids decreased or even
were not detected. The behavior described above may be as-
cribed to two factors. First, pH of samples and BGE are not
equal and lie in the area of pKA values of amino acid carbox-
ylic groups. Therefore, effective charge of amino acids is

Fig. 1 System peak (marked
with asteriks) in the
electropherogram—original (a)
and decreased by the application
of voltage (30 kV, 2 min) before
the analysis (b). Background
electrolyte 1.8 M acetic acid (pH
2.25) with 0.1% w/w HEC.
Voltage 30 kV, electric current
12 μA
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higher in sample zone than in BGE and sample stacking al-
ready occurs to certain extent. Second, addition of acetonitrile
influences pKA values and complicates the overall situation.
This combined with specific composition of tobacco extract
samples probably limits benefits usually arising from addition
of acetonitrile into sample. Here, addition of acetonitrile can
be beneficial to some extent while working with standard
samples, however, does not bring any improvement for anal-
ysis of tobacco extract samples.

CCFD and RSM models

In order to optimize the extraction procedure specifically for
plant samples and metabolomic studies, the fractional factorial
design was used to assess the effect of each factor on the
response (peak area of an individual amino acid) resulting in
a Pareto chart for each amino acid. The examples of Pareto
charts for L-His, L-Thr, and L-Leu as representative amino
acids are presented in Fig. 2. If the value of standardized effect
exceeds the determined border, the factor is found to be sta-
tistically significant based on t statistics characterized by P
values. The P values were calculated by dividing each linear
coefficient by its standard error. The volume of hydrochloric
acid was evaluated as a statistically significant factor for all
amino acids. The CCFD was conducted, whereby the signif-
icance of HCl volume was confirmed by analysis of variance
(ANOVA) comprised in CCFD. The ANOVA divided the
total variance among the individual factors and the residual
error. Accordingly, the highest portion of variance was
assigned to HCl volume and CCFD allowed realization of

RSM and determination of optimal values for each factor
(Fig. 2).

The CCFD estimated the coefficients of quadratic regres-
sion model (for general form, see Eq. 1) for each amino acid.
The examples of such models for L-His, L-Thr, and L-Leu are
given below.

AHis

AIS
¼ 0:105−0:023Aþ 0:005B−0:003C−0:001Dþ 0:001BA

þ 0:003BD−0:012A2−0:024B2−0:020D2

ð2Þ
AThr

AIS
¼ 0:880−0:207Aþ 0:027B−0:013C þ 0:012D

þ 0:003BA−0:025BC

þ 0:025BD−0:095A2−0:241B2 þ 0:012D2 ð3Þ
ALeu

AIS
¼ 0:466−0:126A−0:010B−0:004C

þ 0:019D−0:001BA−0:027BC

þ 0:021BD−0:066A2−0:143B2−0:085D2 ð4Þ

Equation 2 corresponds to L-His, Eq. 3 to L-Thr, and Eq. 4
to L-Leu. The model coefficient describes the response at the
maximum in RSM plots seen in Fig. 2. The variables A, B, C,
and D are the factors as described in Eq. 1. Each coefficient
estimates the change in the response of the variable if the other
predictors are held constant. As an illustration, if HCl volume
(A) in Eq. 3 increases by 1 ml and the other factors remain the
same, the response decreases approximately by 0.207. In order

Table 1 Calibration parameters
with limits of detection (LOD)
and quantification (LOQ) and
concentrations found in an extract
from Nicotiana tabacum. Amino
acids are ordered according to
increasing sensitivity of detection

Amino acid Slope

[mV s mol−1 l]

Intercept

[mV s]

R2 LOD

[.10−4 M]

LOQ

[.10−4 M]

Extract concentrationa

[.10−4 M]

Gly 1829 0.043 0.9993 0.3 1.0 8.3 ± 0.4
Cys 2182 0.008 0.9910 0.5 2.2 <LOD
Pro 2468 −0.058 0.9956 0.6 1.8 4.0 ± 0.3
Ala 2525 0.006 0.9978 0.3 1.0 3.6 ± 0.2
Ser 2604 −0.037 0.9990 0.4 1.3 11.7 ± 0.7
Gln 2772 0.001 0.9998 0.5 1.5 36.3 ± 2.0
Met 2817 −0.013 0.9839 0.5 1.5 <LOD
Asp 2889 −0.062 0.9864 1.1 2.3 6.4 ± 0.6
His 2897 0.005 0.9966 0.2 0.6 2.3 ± 0.3
Asn 2904 −0.010 0.9995 0.4 1.2 14.8 ± 1.0
Lys 2984 0.013 0.9999 0.2 0.6 1.1 ± 0.1
Thr 3063 −0.047 0.9980 0.5 1.5 4.0 ± 0.4
Val 3098 −0.036 0.9951 0.4 1.2 1.8 ± 0.1
Ile 3234 −0.003 0.9992 0.3 0.8 1.5 ± 0.1
Arg 3288 −0.032 0.9965 0.2 0.7 1.7 ± 0.2
Phe 3383 0.008 0.9968 0.4 1.1 2.2 ± 0.1
Leu 3414 −0.038 0.9976 0.2 0.9 1.7 ± 0.2
Glu 3445 −0.027 0.9994 0.3 1.1 6.6 ± 0.4
Tyr 3658 −0.019 0.9986 0.3 1.0 1.1 ± 0.1
Trp 3799 −0.013 0.9978 0.3 0.9 <LOQ

aMedian of three repeated measurements with confidence interval α = 0.95, under optimized conditions
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to obtain the equations describing the plots in Fig. 2, the fac-
tors C and D had to be held at their optimal values. Therefore,
the quadratic members comprising C and D were excluded
from the equations. The CCFD determined the optimal factor
values for each amino acid; therefore, an average value of each
factor was considered as the optimal one. These optimized
values are summarized in Table 2.

After that, a real sample of tobacco leave extract was proc-
essed under the optimized conditions (average values in
Table 2) and measured by CZE-C4D. The result of such anal-
ysis can be seen in Fig. 3. Two amino acids, namely, L-Cys
and L-Met, were not found in the electropherogram because
their concentration levels were below the LODs. The amount
of the other amino acids corresponds to the data given in
Table 1. As seen in Fig. 3b, the excessive abundance of L-
Arg and L-His caused overlapping of their peaks with other
peaks in electropherogram. The sample had to be 10-fold di-
luted for better quantification.

Table 2 Optimized values for the investigated factors

Amino acid HCl volume
[ml]

HCl concentration
[mmol l−1]

Shaking
[min]

Sonication
[min]

Lys 0.64 5.4 20 6
Arg 0.64 5.7 20 7
His 0.64 8.6 5 5
Gly 0.90 7.1 5 5
Ala 0.64 7.1 20 6
Val 0.70 8.8 5 6
Ile 0.64 10.5 5 6
Leu 0.64 8.5 5 6
Ser 0.66 9.2 5 6
Thr 0.64 8.8 5 5
Asn 0.80 8.8 5 5
Trp 0.80 8.9 5 5
Gln 0.64 1.0 5 0
Glu 1.0 13.0 5 5
Phe 0.64 8.9 5 6
Tyr 0.74 9.0 5 5
Pro 0.64 8.9 5 5
Asp 0.64 9.6 5 6
Average values 0.70 8.2 8 5

Fig. 2 Pareto charts for the tested
factors and RSM plots for
selected amino acids. aHis. b Thr.
c Leu
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Method validation

Relative standard deviations (RSD) of six repeated measure-
ments of the amino acid standards varied from 5.7% (L-Ile) to
9.8% (L-Gln), for peak area, except L-Met which had RSD
30.9%. Therefore, aniline was used as an internal standard and
the areas of all amino acid peaks were corrected to the peak
area of aniline. Using the internal standard, RSDs decreased
significantly as seen in Fig. 4. Aniline was a suitable internal
standard since its peak did not interfere with the other peaks in
the electropherogram (Fig. 3).

The results, as shown in Fig. 4, indicate that correc-
tion to aniline contributed to decrease of RSDs of all
amino acids excluding L-Asn in the standard sample.
The RSDs of most amino acids fluctuated between 2
and 5% after correction to aniline. Furthermore, accura-
cy of the method was tested by standard addition of
amino acid standards to real matrix (Table 3). It is ap-
parent from Table 3 that the differences between the
slopes of the calibration curves measured with standards
in 0.01 M HCl and the slopes obtained with sample
matrix are for most amino acids below 10%. The results

Fig. 3 Electropherogram of a
tobacco leaf extract measured
under optimized conditions. All
detected peaks (a) and detail of
the 8.5 to 12.0 min time range (b).
Peak identification: 1 aniline, 2
Lys, 3 Arg, 4 His, 5 Gly, 6 Ala, 7
Val, 8 Ile, 9 Leu, 10 Ser, 11 Thr,
12 Asn, 13 Trp, 14 Gln, 15 Glu,
16 Phe, 17 Tyr, 18 Pro, 19 Asp.
Separation was conducted in
1.8 M acetic acid (pH 2.25) with
0.1% w/w HEC. Voltage 30 kV,
electric current 12 μA
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show that when aniline is used as an internal standard
precision and accuracy of the optimized method are suf-
ficient and the method is suitable for determination of
amino acid profiles in plant materials.

Conclusion

The optimization of extraction process of free amino
acids from tobacco leave extracts employing central
composite face-centered design coupled with response

surface method has been conducted. This design of
experiments helped us to evaluate the most significant
factors affecting the extraction yield as well as it
helped us to find the most convenient values for each
factor.

Capillary electrophoresis with contactless conductivity de-
tection has been utilized for separation and detection of 20
proteinogenic amino acids in 1.8 mol l−1 acetic acid as a
background electrolyte within 34 min. We found out that
application of 30 kV voltage for 2 min before every analysis
can successfully reduce a system peak occuring in the elec-
tropherograms. We also managed to increase repeatability of
quantification by using aniline as an internal standard.
Following this, the calibration curves of the amino acids were
measured and their limits of detection and quantification were
determined. An attempt to decrease limits of detection by
addition of acetonitrile to sample brought only partially pos-
itive results in case of standard mixture and failed in case of
tobacco extract sample. This underlines specific features of
plant samples and necessity of careful sample treatment meth-
od development and validation. Viability of the method have
been tested on an extract from tobacco leaves. Using the
optimized method, 17 amino acids were successfully quanti-
fied, L-Trp was detected but could not be reliably quantified,
and concentrations of L-Met and L-Cys were below the limit
of detection. Eventually, possible matrix effect was investi-
gated by comparison of calibration slopes measured with
standard samples and those measured in the extract. The re-
sults show that the complete optimized method provides good
precision and accuracy for determination of amino acids in
plant materials.
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5 AMINO ACID SEPARATION BY SUPERCRITICAL 

FLUID CHROMATOGRAPHY WITH MASS 

SPECTROMETRY DETECTION 

5.1 Supercritical fluid chromatography 

The first experiments with supercritical fluids were conducted in the 1960s, 

specifically on the solubility of porphyrins. Porphyrins decompose at high temperature, 

which precludes their separation by GC. To solve this problem, porphyrin solubility in 

gases such as trifluoromethane and chlorodifluoromethane was tested. For this purpose, 

the gases were heated and pressurized beyond their critical points, resulting in 

supercritical fluids of density and solvating power similar to those of liquids whilst their 

diffusivity and viscosity remained similar to those of gases. In contrast to conventional 

GC separation, porphyrins dissolved in supercritical fluids at significantly lower 

temperatures without being degraded and were eluted through the capillary column [79]. 

In addition to chlorofluorocarbons, light hydrocarbons and N2O have also been used as 

mobile phases in SFC.  

All aforementioned gases have been considered hazardous to environment and 

unsuitable for separation of thermolabile compounds. As a result, CO2 has become a 

widely used mobile phase in SFC, as a safer and more environmentally friendly 

alternative to previously used gases. Moreover, reaching the critical point of CO2 requires 

mild conditions (31°C and 7.4 MPa) achievable using conventional chromatographic 

instrumentation. Initially, SFC separations were conducted in capillary columns using GC 

instrumentation, resulting in capillary supercritical fluid chromatography (cSFC) [80]. 

This cSFC method used long GC capillaries and a typical GC detection technique – FID. 

Moreover, placing a splitter at the end of the column enabled dual detection 

simultaneously using FID and UV/VIS [81]. 

The development of HPLC instrumentation brought up an idea to use packed 

columns not only for HPLC but also for SFC separations, which led to the establishment 

of modern SFC [82]. Subsequently, sub-2 μm stationary phase particles were applied for 
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separations in LC and in SFC, which resulted in more efficient techniques – ultra-

performance liquid chromatography (UPLC) and ultra-performance supercritical fluid 

chromatography (UPSFC), respectively. UPSFC provides a shorter analysis time and 

higher separation efficiency than UPLC thanks to the high diffusivity and low viscosity 

of its mobile phase. Therefore, SFC gradually replaced NPLC in the separation of low-

polarity analytes because the use of toxic solvents (n-heptane) is avoided [83]. During the 

last two decades, SFC has also been applied to separations of more polar compounds, thus 

replacing reversed-phase liquid chromatography (RPLC), to some extent. In order to 

separate polar compounds by SFC, the compounds must be soluble in mobile phase, 

which requires modifying the mobile phase by adding organic co-solvents to CO2. On 

one hand, a co-solvent increases the mobile phase elution strength and density. On the 

other hand, after co-solvent addition, the SFC measurement is shifted to subcritical 

conditions. Notwithstanding, the high diffusivity and low viscosity of the mobile phase 

remains unchanged after co-solvent addition [84].  

Various organic co-solvents have been tested over time. Alcohol co-solvents, 

especially methanol, ethanol and isopropanol, up to 40% in the mobile phase, became 

popular in SFC because they improve peak shape of hydrogen bond donor species [85]. 

Similarly to LC separations, additives to mobile phase in SFC help to improve peak shape 

by modifying the stationary phase surface, by increasing the polarity of the mobile phase 

and by changing the pH of the mobile phase. Again, similarly to LC, common additives 

are used in SFC, e.g., formic acid, acetic acid, ammonium formate, ammonium acetate, 

water. Organic acids (formic and acetic acid) are usually added in amounts ranging from 

0.1% to 1%, and they decrease the pH and help to improve peak shape and ionization 

efficiency when using MS detection. Salts (ammonium formate, ammonium acetate) 

increase the mobile phase polarity and improve peak shape and are typically added in 

concentrations up to 20 mM. Water (up to 5%) increases the solvating power of the 

mobile phase and brings a HILIC-like separation mode to SFC [86]. 

In Study II of this thesis, we developed and optimized a UPSFC-MS/MS method 

for the determination of proteinogenic amino acids in human plasma. In our method, we 

used a Viridis BEH column and CO2 with a methanol/water mixture and formic acid and 

ammonium formate as mobile phase. Peak shape and separation efficiency substantially 

improved when water and ammonium formate were added to the mobile phase. For 
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example, Figure 5 compares the L-proline butyl ester peak obtained in the mobile phase 

composed of (A) CO2/methanol with 0.1% formic acid vs (B) CO2/methanol/water with 

0.1% formic acid and 20 mM ammonium formate. 

 
Fig 5 Peak shape comparison of L-Pro butyl ester eluted in (A) CO2/methanol with 0.1% 

formic acid and in (B) CO2/methanol/water with 0.1% formic acid and 20 mM ammonium 

formate. BEH column, slower gradient than in the final method. 

5.2 Amino acid derivatization 

As described above (section 3.3), most amino acids require incorporating a suitable 

chromophore into their structures for UV/VIS detection. Derivatization can be conducted 

in either pre- or post-column arrangements. Post-column derivatization has been 

previously performed in online setups using a copper solid-state reactor, which improved 

the sensitivity of UV/VIS detection of amino acids complexed with Cu2+ ions [87]. In 

post-column derivatization using conventional derivatization reagents, matrix effects are 

suppressed, thus improving the detection selectivity [88]. Accordingly, in pre-column 

derivatization in LC with UV/VIS detection, amino acids have been mostly derivatized 

by FMOC [89], by OPA [90], by dansyl chloride [91], and by 2,4-dinitrofluorobenzene 

(DNFB) [92]. All these derivatization reagents selectively react with amines (Fig. 6). 
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Fig. 6 Derivatization of the amino group of amino acids with conventional reagents 

yielding (A) FMOC-amino acid, (B) OPA-amino acid, (C) dansyl-amino acid and (D) 

DNP-amino acid, performing all reactions under basic pH conditions 

Such reagents bind to amino groups, thereby preventing the amino acids from 

carrying a positive charge, whereas the carboxyl groups remain underivatized. In 

addition, low-polarity groups are incorporated into the amino acid structure, which helps 

to improve the retention of amino acids on the RPLC column. In LC-UV/VIS, such 

derivatizations enable the detection of proteinogenic amino acids. 

 In LC-MS, underivatized amino acids have been successfully separated and 

detected in IEC [93], in RPLC [48] and in HILIC [94] modes followed by ESI in positive 

mode. Under these conditions, the loss of formic acid, water, ammonia or CO2 is 

monitored in MRM mode. However, the selectivity and sensitivity of these methods are 

often low because the molecular masses of most amino acids lie in the range of unspecific 

signals derived from a sample matrix or from mobile phase constituents. Moreover, the 

small size of amino acids limits the selection of specific and suitable MRM transitions. 
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Therefore, derivatization of amino acids with bulky derivatization reagents improves the 

selectivity and the signal-to-noise ratio. 

  Commonly used derivatization reagents such as FMOC have also been applied to 

the separation of amino acids by LC-MS/MS. Because FMOC binds to the amine group 

of an amino acid and the carboxylic group dissociates, the amino acid carries a negative 

charge and must therefore be ionized in negative ESI. After collision-induced dissociation 

(CID) of derivatized species in a collision cell, the most intense ion is predominantly 

created by cleavage of the bond between an amino acid and a derivatized group, i.e., 

FMOC (Fig. 7) [95]. 

 
Fig. 7 Main fragmentation pathway of FMOC-amino acid in collision-induced 

dissociation 

  Sometimes, the amino group-modified amino acids are analyzed by LC-MS/MS. 

Consequently, the amino groups are not available for derivatization. When increasing the 

sensitivity and selectivity through derivatization of such modified amino acids, the 

carboxyl groups of amino acids remain the only site for potential derivatization. Thus, 

new derivatization approaches have been developed using 1-bromobutane [96] and 1-

chlorobutane [97], which derivatize the amino and carboxyl groups of amino acids. 

However, when using 1-chlorobutane, monobutylated amino acids are the most abundant 

species (Fig. 8). In contrast to the aforementioned derivatizations, esterification with 1-

chlorobutane requires only the derivatization reagent and no other additive, such as salts 

or buffers; moreover, the derivatization process is faster (7.5 min at 60°C) than other 

conventional derivatizations. 
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Fig. 8 An amino acid combines with 1-chlorobutane to form the butyl ester of the 

corresponding amino acid 

In SFC-MS, similarly to LC-MS, amino acids have been separated in both 

underivatized and derivatized forms. However, in SFC-MS, amino acid polarity is a 

limiting factor not only in the separation process but also in ionization by ESI. 

Surprisingly, SFC-MS/MS has already been used to separate underivatized amino acids 

using methanol as a co-solvent and adding water and ammonium formate to increase the 

solubility of amino acids in a CO2-rich mobile phase [98]. However, such a method had 

low sensitivity, especially to Gly and L-Ser; moreover, amino acids showed asymmetric 

peaks. Therefore, they were derivatized for SFC-MS using conventional derivatization 

reagents such as FMOC [86,99] and PITC [100] but only in connection with UV/VIS 

detectors. 

In Study II, we developed an UPSFC-MS/MS method for the quantification of 

proteinogenic amino acids in human plasma. To decrease amino acid polarity, amino 

acids were derivatized with 1-chlorobutane, as shown in Fig 8, predominantly producing 

monobutyl esters of amino acids. Accordingly, the ClogP value of L-His, the most polar 

amino acid, increased from –3.73 to 0.16, whilst the ClogP value of L-Phe increased from 

-1.56 to 2.57. Derivatization significantly improved the separation efficiency and 

sensitivity for all 19 proteinogenic amino acids. Notwithstanding, the experiments with 

both underivatized and derivatized cysteine were highly unrepeatable, most likely due to 

sample preparation and derivatization, during which two cysteine molecules easily 

oxidize, forming cystine. 
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5.3 Mass spectrometry 

 J. J. Thomson laid the foundations of mass spectrometry in the early 20th century 

while studying cathode rays. Later, together with F. Aston, he constructed the first mass 

spectrometer to study ionic charge in gas phase. Ions were generated by gas discharge 

tubes and passed through electric and magnetic fields, which deflected their trajectories 

into parabolic shapes, detecting these ions on a photographic plate. From the 1940s, after 

improving the resolving power, MS was extensively used in industry to control 

production processes once the instrumentation became commercially available [101]. 

During the 1950s, MS was first coupled with gas chromatography using an EI source 

[102]. Since the MS source and analyzer had to be kept under very low pressures, an 

interface between GC and MS could be easily constructed for such setups.  

In GC, the effluent is already in gas phase; thus, no evaporation is required, and 

the vacuum remains unchanged in MS. However, in LC-MS, the high volumes of liquid 

entering the MS source would cause loss of vacuum. Unsurprisingly, MS was coupled 

with liquid chromatography using the ionization technique applied in GC, i.e., EI, only 

two decades later. 

Initially, the LC-MS interface using EI was constructed using two approaches: 

either splitting the column effluent and introducing low volumes of mobile phase 

(<1 μL/min) directly into the MS source or using an offline technique termed moving belt 

in which the solvent was evaporated from the collected LC effluent fractions outside the 

MS and then transported to an MS ion source from which the dry sample was desorbed. 

Subsequently, in the presence of volatile buffers in mobile phase, ions were generated 

without additional ionization. Unsurprisingly, the use of EI in LC-MS was discontinued 

once higher flowrates (1-2 mL/min) were achieved in MS, which led to the development 

of a thermospray (TSP) ionization source.  

The TSP source consists of a heated capillary that helps the LC effluent to 

evaporate at very fast rates, thereby creating aerosols in the desolvation chamber. As a 

result, ions are formed through droplet fragmentation, ion evaporation, and ion 

desolvation and then enter the MS analyzer through a sampling cone. In addition, 

advances in TSP ionization instrumentation have led to the introduction of atmospheric 

pressure ionization (API) techniques such as chemical ionization at atmospheric pressure 
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(APCI), photoionization at atmospheric pressure (APPI) and electrospray ionization (ESI) 

in connection with liquid phase separation methods [103,104]. 

5.3.1 Electrospray ionization 

The earliest electrospray experiments date back to 1914 when J. Zeleny studied 

discharges between the end of a capillary and a grounded electrode placed against the 

capillary tip. After applying a potential difference of several thousand volts between the 

capillary tip and the electrode, the liquid “sprayed” from the capillary tip [105]. Although 

the electrospray process had long been known, the first advanced electrospray 

experiments were performed by M. Dole in the 1960s to characterize high-molecular-

mass synthetic polymers. For such purpose, he applied electrospray to generate gas-phase 

polystyrene ions, which were then collected with a Faraday cage detector [106]. After 

nearly two decades, electrospray was finally coupled with MS, which resulted in a soft 

ionization technique – ESI. Since then, such technique has been used for ionization of 

intact biopolymers, i.e., proteins, because it enables multiple charging and avoids in-

source fragmentation [107]. 

 Over the years, the robustness of ESI-MS in connection with liquid phase 

separation techniques prompted its wide spread use in the determination of small organic 

molecules [108]. In LC-ESI-MS, for instance, analyte molecules are carried in the mobile 

phase through a heated capillary with a metal tip, which is held at an electrical potential 

of several kV. Then, the mobile phase at the end of capillary is shaped into a Taylor cone, 

which emits a mist of solution droplets (Fig. 9). Moreover, the stability of the spray and 

the evaporation of the solution are assisted by a nebulizer gas (nitrogen) flowing coaxially 

around the capillary.  
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Fig. 9 Electrospray ionization in positive ion mode 

In the positive ion mode, where the capillary potential is positive vs ground, the 

droplets have an excessive positive charge. The positive charge of droplets is mainly 

caused by protons generated at the surface of the metal capillary by oxidation of water, 

according to Equation 3. The ESI source acts as an electrochemical cell in which the 

electric current is mediated by ions in the spray and by electrons that flow from the 

capillary tip (anode) through the wiring to the mass spectrometer (cathode).  

2H2O           4H+ + O2 + 4e–   (3) 

As shown in Fig. 9, the solvent from the Taylor cone is readily evaporated. Most 

liquid-phase separation methods use mixtures of water and an organic solvent, but the 

organic solvent evaporates faster than water; thus, the water content of the droplets 

gradually increases. As the droplet size decreases due to evaporation, the droplet charge 

density increases until the surface tension is offset by Coulombic repulsion. Such balance 

was termed a Rayleigh limit, as defined in Equation 4. 

𝑧𝑅 =
8𝜋

ⅇ
√𝜀0𝛾𝑅3   (4), 

where zR represents the charge number of elementary charges ⅇ, ε0 is the permittivity of 

vacuum, γ is the surface tension and R is the radius of a droplet.  



55 
 

The droplet size decreases until the Rayleigh limit, producing smaller droplets of 

a few nanometers. From this point, gaseous ions are formed from highly charged 

nanodroplets. Three different models have been proposed for this process: the charged 

residue model (CRM), the chain ejection model (CEM), and the ion evaporation model 

(IEM).  

On one hand, CRM and CEM describe the ionization of proteins in either globular 

(CRM) or unfolded (CEM) states. According to CRM, globular proteins remain in 

nanodroplets until the solvent is evaporated together with smaller ions. Conversely, CEM 

can be applicable in LC-MS separations of proteins because the mostly acidic mobile 

phase of LC causes protein unfolding. Consequently, hydrophobic chains of unfolded 

proteins migrate to the droplet surface and eject from Raleigh-charged nanodroplets.  

On the other hand, IEM is applicable to small molecules/ions that enter ESI 

already in a charged state, usually due to analyte protonation. The IEM theory suggests 

that sufficiently high electric field of Rayleigh-charged nanodroplets causes the ejection 

of small solvated ions from the nanodroplet surface [109]. After the formation of gaseous 

ions, some of them pass through the orifice and then through the heated capillary until 

reaching the MS analyzer [110]. 

 The ESI requires a constant flow of liquid, which helps to maintain the stability 

of the spray. In LC-ESI-MS, the spray is stabilized by the flow of the liquid mobile phase. 

However, in SFC-ESI-MS, the mobile phase predominantly consists of CO2, which 

evaporates after passing through the back-pressure regulator. Thus, precipitation can 

occur when using a low percentage of co-solvent (<5 %); moreover, gradient co-solvent 

addition does not provide a constant flow of liquid through the ESI probe, thus requiring 

the addition of a post-column make-up solvent [111]. In Study II, we applied a T-junction 

for mixing the column effluent with 0.1% formic acid in methanol using an isocratic 

solvent manager. The flowrate of the solvent was kept at 0.2 mL/min, which ensured 

sufficient electrospray stability and method sensitivity. 

5.3.2 Triple quadrupole analyzer 

Generally, mass analyzers serve as ion filters that transmit only ions of selected 

m/z. In electrospray ionization, gaseous ions produced in the ion source are then 
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transported via ion optics to the coupled mass analyzer. In this research, we used a 

quadruple analyzer; thus, we will specifically focus on this type of mass analyzers.  

The first quadrupole analyzer was described in the 1950s. Although some changes 

have been introduced since then, the main principles of the functioning of these setups 

have remained unchanged over time. Such quadruple analyzers consist of four parallel 

electrical rods; in this setup, a DC potential is applied to two of the rods whilst the other 

two rods are linked to an alternating radio-frequency potential. Under these conditions, 

potential, polarity and frequency change at fast rates. When ions are guided into a 

quadrupole analyzer, some ions gain unstable trajectories and collide with one of the rods. 

However, ions of selected m/z follow stable trajectories and pass through the analyzer 

until reaching the detector [112].   

In a single quadrupole analyzer, ions within a m/z range can be filtered using a full 

scan (FS) mode. Alternatively, only ions of a specific m/z value can be analyzed using 

selected ion monitoring (SIM). Nevertheless, tandem mass spectrometry (MS/MS) should 

be used when detection selectivity and sensitivity are low. MS/MS combines several 

serially connected mass analyzers. For example, combining three quadrupoles in a series 

improves the sensitivity and selectivity of the method primarily by enabling a new mode 

of operation – multiple reaction monitoring (MRM). In MRM, first, the quadrupole filters 

the selected ion (precursor); then, the precursor is fragmented in the second quadrupole, 

and the product ions are filtered through the third quadrupole. Importantly, the 

fragmentation process is controlled by collision-induced dissociation (CID) in the second, 

RF-only quadrupole. During CID, the precursors gain an excess of internal energy, which 

leads to their fragmentation, through collision with neutral molecules (N2 or Ar) in the 

second quadrupole, which serves as a collision cell [113]. 

 In Study II, we used a Waters Xevo TQ-S mass spectrometer with a triple 

quadrupole analyzer (QQQ). When ions are sampled into a mass analyzer from an 

atmospheric pressure ion source, a significant amount of gas containing neutral molecules 

also enters the vacuum system. However, the Waters Xevo TQ-S mass spectrometer uses 

off-axis StepWave technology to filter ions from neutrals before they enter the first 

quadrupole, which helps to focus the ions and improves the signal-to-noise ratio of the 

scanned ions. After the ions are scanned through the first quadrupole, they enter the RF-

only quadrupole – collision cell – where ions are fragmented and transported to the third 
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quadrupole using traveling wave ion guides that help to maintain sensitivity even at 

shorter dwell times. Lastly, product ions are scanned in the third quadrupole, which is 

constructed similarly to the first quadrupole. 

5.3.3 Detector 

Historically, the first MS instruments used photographic plates as ion detectors. 

Once the ions pass through the MS analyzer, they impact on the photographic plate. All 

ions of the same m/z impact on the same spot of a photographic plate, which causes the 

spot to darken, and the intensity of a specific m/z is proportional to the darkness of the 

spot. 

Currently, 3 types of detectors are commonly used in MS instruments: Faraday 

cup, electron multiplier and photomultiplier. The Faraday cup detector consists of a 

hollow electrode on which ions strike, thus inducing an electric current that is amplified 

and measured. Faraday cup detectors are used when measuring high ion currents. 

However, electron multiplier and photomultiplier detectors are used to detect lower ion 

currents. Electron multiplier detectors contain either a known number of serially 

connected dynodes or a continuous dynode. In principle, ions from an MS analyzer hit 

the dynode surface, which causes secondary electron emission from the dynode surface. 

The electrons multiply by repeated impacts on the dynode surface until they reach the 

output electrode [114]. 

In Study II, a photomultiplier detector was used. This detector follows principles 

similar to those of electron multiplier detection. The ions pass through an MS analyzer 

and hit a dynode, which emits electrons. Subsequently, the electrons are deflected onto a 

phosphorous screen that emits photons, which are then multiplied in a photomultiplier 

tube. In contrast to an electron multiplier, the photomultiplier tube can remain sealed 

under vacuum, which prevents detector contamination and extends its lifetime [115]. 
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Abstract 

Ultra-performance supercritical fluid chromatography-tandem mass spectrometry 

(UPSFC–MS/MS) is an alternative method for proteinogenic amino acid (AA) analysis. 

Moreover, AA profiling is a powerful bioanalytical technique in biomedical research.  In 

the present study, we developed an analytical method for AA analysis in 6 min. The 

carboxyl group of AA was derivatized with 1-chlorobutane to AA butyl ester, which 

increased AA hydrophobicity and basicity. Derivatized AAs were analyzed by UPSFC 

coupled with electrospray ionization tandem mass spectrometry (ESI+-MS/MS). The 

method was robust, selective and adequately sensitive after derivatization of AAs to butyl 

esters in 10 µL human plasma/blood. Under optimized conditions, the AAs were 

determined by multiple reaction monitoring (MRM). The linearity of the method was 

acceptable, with correlation coefficients (R2) ranging from 0.9954 to 1.0000 and with 

calibration ranging from 5 to 7,000 nmol/L. The precision of the method, expressed as 

coefficient of variation (CV), was lower than 15 % for all amino acids. Analyte recovery 

was higher than 80 %. The novel method was successfully applied for the determination 

of AAs within 6 minutes. Therefore, this method can be used for both research and routine 

healthcare practices. 

Keywords: Amino acids, derivatization, mass spectrometry, supercritical fluid 

chromatography 

Introduction 

Amino acids (AAs) play an irreplaceable role as the main building blocks in 

proteins and peptides as well as in purine and pyrimidine synthesis. While only 20 AAs 

are found in proteins, more than 100 AAs occur in body fluids [1].  In fact, some hormones 

are also derived from AAs such as tyrosine is converted to epinephrine, and 

tryptophan acts as a precursor to the neurotransmitter serotonin, the 

hormone melatonin and vitamin B3 [2]. Recent studies have shown the positive 

association between increased circulating branched chain AAs (valine, leucine, and 

isoleucine) and insulin resistance providing prognosis for the onset and progress of type 
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2 diabetes [3]. Moreover, sulphur-containing amino acids such as cysteine help to 

maintain the redox potential in the cellular environment and also participate in stabilizing 

the tertiary structure of the protein molecule by forming disulphide bridges [4]. AAs have 

been implicated in a number of diseases such as neurodegenerative, metabolic and 

endocrine diseases and implicated in many physiological effects. Therefore, there has 

been a considerable importance to develop analytical methods for identification and 

quantification of AAs in the clinical environment.  

AAs have been previously separated by capillary electrophoresis (CE), gas 

chromatography (GC) and liquid chromatography (LC) [5-11]. The separation techniques 

are well established without or with derivatization of AAs [12]. In fact, several chemical 

derivatization methods have been developed to improve the sensitivity of the MS 

detection response. Uutela et al. have reported that after comparing three different 

derivatization methods of AAs by LC–MS/MS, the butyl and propyl chloroformate AA 

derivatization methods were the best among them, even at lower concentrations in nM 

levels, and provided detection limits of more than 2 to 10-fold lower than underivatized 

AAs [13]. 

Supercritical fluid chromatography (SFC) with packed columns has been used 

even in the early 90’s as an alternative separation technique to LC or GC analysis. In 

recent past, supercritical CO2 (scCO2: CO2 above its critical temperature and pressure) is 

used as the nonpolar mobile phase A, where the second mobile phase (B) needs to be a 

polar organic solvent such as methanol with polar additives (acid and/or base) to obtain a 

better resolution for polar AAs. The major benefits of scCO2 are low viscosity and high 

diffusivity, that facilitate advanced throughput and higher resolution across a wide 

polarity range with faster elution. Thus, resistance to mass transfer and generated back 

pressure are substantially lower in SFC than in LC separations. Therefore, the same 

separation efficiency can be expected in SFC at higher flow rates than in LC [14].  

Analysis of rather polar or even ionic analytes such as AAs by SFC requires a polar 

mobile phase and a polar stationary phase for obtaining the best separation efficiency and 

selectivity. Addition of water to a co-solvent up to 5% (v/v) enhances the overall solvating 

power of the mobile phase and its hydrogen-bonding capacity, which improves peak 

symmetry [15]. Water as an additive proved to be suitable for separation of polar 

nucleobases and amino acids because water enhances solubility of polar or ionic analytes 
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in the mobile phase [16,17]. Moreover, addition of water improves peak shape of such 

compounds – hydrogen bond acceptors. Although, supercritical fluid chromatography 

with tandem mass spectrometry (SFC–MS/MS) was already used for separation of 

underivatized amino acids [18]; validation parameters such as linear dynamic range, limit 

of detection (LOD) and limit of quantification (LOQ) have not been studied. 

The goal of this study was to find a fast screening method to analyze free L-AAs 

which are incorporated in human protein synthesis. Therefore, we have developed an SFC 

and positive electrospray ionisation tandem mass spectrometry (ESI+-MS/MS) method 

for the analysis of AAs after their derivatization into butyl esters (Figure 1). Derivatized 

AAs were quantified using a suitable derivatized isotopically labeled internal standard 

mixture of AAs. 

 

Fig. 1 Derivatization of L-amino acid with 1-chlorobutane to coreresponding AA butyl 

ester 

Materials and methods 

Reagents and chemicals 

L-Alanine (L-Ala), L-Arginine (L-Arg), L-Asparagine (L-Asn), L-Aspartic acid 

(L-Asp), L-Glutamic acid (L-Glu), L-Glutamine (L-Gln), L-Histidine (L-His), L-

Isoleucine (L-Ile), L-Phenylalanine (L-Phe), L-Proline (L-Pro), L-Serine (L-Ser), L-

Threonine (L-Thr), L-Tryptophan (L-Trp), L-Tyrosine (L-Tyr) and L-Valine (L-Val), L-

Cysteine (L-Cys), L-Homocysteine (L-Homocys), Glycine (Gly), L-Leucine (L-Leu), L-

Lysine (L-Lys), L-Methionine (L-Met), 3 M HCl in n-butanol and ammonium formate 

(LC–MS grade) were obtained from Sigma-Aldrich (Stockholm, Sweden). L-Met-D3, L-

Ala-D4 and L-Gln-D5 were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA, USA). All solvents and reagents were of LC–MS grade and purchased 
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from Fisher Scientific (Gothenburg, Sweden) unless otherwise stated. Deionized water 

was supplied by a Milli-Q purification system (Millipore, Bedford, MA, USA). Phosphate 

buffered saline (PBS), which consisted of 12 mM phosphate buffer, 2.7 mM potassium 

chloride and 137 sodium chloride of pH 7.4, was purchased from VWR (Stockholm, 

Sweden). Carbon dioxide (99.99%) was supplied by AGA, industrial gasses (Lindingö, 

Sweden) 

The human plasma sample from a healthy blood donor (healthy control plasma) 

was obtained from the Academic Hospital (“blodcentralen UAS”), Uppsala, Sweden. 

Blood was collected from each participant by venepuncture into EDTA vacutainer tubes 

and centrifuged at 3,500g for 15 min. The study was conducted in accordance with the 

Declaration of Helsinki. Human plasma samples were included in this study, which was 

approved by the Regional Ethical Review Board of Uppsala, Sweden, and undertaken 

with the written consent of the individual donors.  

Preparation of stock solutions 

All L-amino acid standards were dissolved in 1 mM hydrochloric acid to obtain 5 

mM solutions. Moreover, the L-Cys solution contained 3 mM L-ascorbic acid to prevent 

its auto-oxidation. All stock solutions were stored at −80°C until further use. 

Sample preparation 

The human plasma (10 µL) samples were mixed with 200 µL MeOH and 50 µL 

of deuterated IS mixture (100 ng mL−1 in MeOH). It was then gently vortexed for 5 min 

and allowed to stand for 10 min at room temperature. The samples were centrifuged at 

12,000g for 3 min at 4 °C. The MeOH extracts were dried under nitrogen and 

reconstituted in 50 µL of MeOH. 
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Derivatization of AAs 

The extracted AAs were derivatized to amino acid butyl esters [19]. In brief, 

100 μL of 3 M HCl in n-butanol was added to the dried sample and incubated at 60 °C 

for 7.5 minutes. Eventually, the incubated mixture was dried under nitrogen and 

redissolved in 50 μL of MeOH prior to the SFC–MS/MS analysis. 

Separation of AAs by supercritical fluid chromatography (SFC) 

This study was conducted using an Acquity supercritical fluid chromatography system 

(UPC2) (Waters, Milford, MA, USA), equipped with a binary solvent delivery pump, an 

autosampler, and a column oven. SFC was connected with the mass spectrometer by the 

commercial interface kit (Waters) composed of two T-pieces enabling the back pressure 

control and post column infusion of a make-up solvent. 

The preliminary column screening was performed using fixed initial 

chromatographic conditions, where CO2 (99.99%) was the mobile phase A and MeOH 

with 10 mM ammonium acetate was the mobile phase B. Gradient elution was started at 

5% B with a flow rate of 1.5 mL min−1 (except for the DIOL and 1-AA columns where 

the flow rate was set at 1.2 mL min−1). Mobile phase B was increased linearly to 30% 

over 0.2–7.5 min before returning to the initial conditions in 8 min. The column oven, 

back-pressure, and make-up flow were set at 40 °C, 1,500 psi (10.3 MPa), and 

0.2 mL min−1 respectively. 

We studied six different column materials to find the best stationary phase for the 

separation of AAs: HSS C18 SB column (3 mm × 100 mm, 1.8 µm), BEH column (3 mm 

× 150 mm, 1.7 µm), DIOL column (3 mm × 150 mm, 1.7 µm), 2-PIC column (3 mm × 

150 mm, 1.7 µm), FP column (2.1 mm × 100 mm, 1.7 µm) and 1-AA column (2.1 mm × 

100 mm, 1.7 µm). All columns were purchased from Waters (Milford, MA, USA). 

The optimized quantitative analysis was performed using a BEH column at 40 °C. 

The mobile phase consisted of (A) carbon dioxide and (B) 20 mM ammonium formate in 

methanol:water (95:5, v/v). The separation process was conducted at a flow rate of 1.2 

mL min−1 with the following gradient: 0–3 min, 15–40% B; 3–5 min 40% B; 5–6 min 

40–15% B. The back pressure was kept constant at 1,600 psi (11 MPa). The make-up 
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solvent consisted of 0.1% (v/v) formic acid in methanol and was mixed with column 

eluate at 0.2 mL min−1 and held for 1.0 min for equilibration before the next injection. 

Identification and quantification of AAs by tandem mass spectrometry (XEVO® 

TQ-S) 

Derivatized AAs were identified by using a Waters Xevo® TQ-S mass 

spectrometer (Milford, MA, USA). The data acquisition was in the positive electrospray 

ionisation (ESI+) mode with unit mass resolution. The desolvation gas was nitrogen, and 

the collision gas was argon (0.17 mL min−1). The data acquisition range was m/z 50–500. 

The capillary voltage was 2.3 kV and the source offset was 30 V. The source temperature 

was 150 °C and the desolvation temperature was 400 °C with the desolvation gas flow 

rate of 800 L h−1. The collision energy and cone voltage values were optimized for each 

compound to generate the most abundant product ions to construct the multiple reaction 

monitoring (MRM) method (Table 1). The cone gas flow rate was 150.0 L h−1. The 

nebulizer gas flow pressure was maintained at 7.0 bar. Data were acquired and analyzed 

with Waters MassLynx™ 4.1 software (Waters, Milford, MA, USA). 
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Table 1 Retention times (tR), collision energy (CE, in eV) values in brackets, and cone 

voltage (CV) for derivatized amino acids 

Amino 
acid tR [min] Precursor Quantifier 

(CE) 
Qualifier 

(CE) CV [V] 

L-Gly 1.5 132 76 (13) - 25 
L-Ala 1.4 146 44 (8) 57 (10) 30 
L-Arg 4.7 231 70 (15) 214 (15) 25 
L-Asn 2.4 189 144 (10) 87 (10) 20 
L-Asp 3.5 190 88 (10) 144 (10) 40 
L-Cys 1.3 178 82 (15) 132 (10) 20 
L-Glu 5.1 204.4 84 (15) 130 (5) 40 
L-Gln 2.6 203 130 (10) 84 (10) 25 
L-His 3.9 212 110 (15) 156 (10) 40 
L-Ile 1.0 188 86 (10) - 30 
L-Leu 1.0 188 86 (10) - 30 
L-Lys 2.6 203 84 (10) 186 (10) 25 
L-Met 1.1 206 104 (10) 56 (10) 25 
L-Phe 1.1 222 120 (5) 166 (10) 25 
L-Pro 1.3 172 70 (15) 57 (15) 25 
L-Ser 1.9 162 60 (10) 106 (10) 25 
L-Thr 1.6 176 74 (10) 102 (10) 25 
L-Trp 2.0 261 244 (10) 159 (15) 25 
L-Tyr 1.9 238 136 (10) 221 (10) 25 
L-Val 1.0 174 72 (10) - 25 

L-Ala-D4 1.4 150 48 (8) 57 (10) 30 
L-Met-D3 1.1 209 107 (10) 56 (10) 25 
L-Gln-D5 2.6 208 135 (10) 89 (10) 25 

Method validation 

The method was evaluated for limit of quantification (LOQ), selectivity, 

sensitivity, precision, linearity and recovery. Slightly modified guidelines of the EU 

Commission Decision/657/EEC were implemented during method validation. Phosphate 

buffered saline (PBS) was used as matrix for calibration and quality control (QC) samples 

owing to the unavailability of AA free plasma. A total of seven calibrators were prepared 

in PBS with AA concentrations ranging from 5–7,000 nM. The concentration of internal 

standards after sample dilution was as follows: 15 nM for L-Met-D3, 100 nM for L-Ala-

D4 and 30 nM for L-Gln-D5. Blank and double blank (blank without IS) were also 
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included while preparing the calibrators. The linearity was evaluated using calibration 

curve. Linear regression with 1/x2 weights and precision were evaluated by running a 

batch of QC samples. Precision and recovery of the method were evaluated at three 

concentration levels – low, medium and high, which corresponded to concentration at 

LOQ, at 50% of the calibrated concentration range and at 80% of the upper calibration 

curve range, respectively. The precision was expressed as coefficient of variation (CV %) 

of measurement, which should be within ± 15%. Recovery experiments were performed 

by comparing the analytical results for extracted samples from PBS at three 

concentrations with unextracted standards that represent 100% recovery.  

Results and discussion 

Derivatization of AAs 

AAs were derivatized into their butyl esters to increase the detection sensitivity [19]. The 

butyl esters of AAs are required to force a cationic character upon the amino acids in 

order to obtain similar ionization efficiencies for all the AAs whether they are acidic, 

neutral or basic. The optimized conditions for derivatization are listed in the Materials 

and methods section. The carboxyl functional groups of amino acids were derivatized 

with 1-chlorobutane prior to analysis in order to decrease the polarity of AAs (Figure 1). 

As a result, the separation efficiency and method sensitivity improved for all 

studied AAs by giving the greatest response to any amino acid that shows hydrophobicity. 

The butylation of the acidic group attached to AA allows for an initial formation of the 

86+ product ions. The MS/MS fragmentation of underivatized amino acids usually forms 

smaller ions, which cannot be used to differentiate between the amino acids. However, 

the derivatization reagent, which was mixed with the sample directly, provides more 

abundant characteristic ions. 
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SFC–MS/MS method development for derivatized AAs  

The initial effort was to develop an SFC–MS/MS method to determine AAs. The most 

important parameter affecting the retention of the analytes was the chemistry of the 

stationary phase and organic co-solvent. Different SFC columns, with known chemistry 

of the stationary phases, were available for selecting the best column for the present study. 

The overall chromatographic resolution and separation efficiency of the derivatized L-

AAs provided a basis for the selection of column. In this study, the tested columns were: 

HSS C18 SB, BEH, DIOL, 2-PIC, FP and 1-AA column.  The chemistry of the selected 

stationary phases is shown in Figure 2. 

 

 

 

 

 

 

 

Fig. 2 The different stationary phases tested on supercritical fluid chromatography (SFC) 

After stationary phase screening for derivatized L-AAs, the best overall separation 

efficiencies were obtained with the BEH column, providing substantial retention for all 

AAs and following HILIC-like mode. Leu and Ile were co-eluting and weak sensitivity 

was observed for His. The other tested columns produced a similar elution order to the 

selected BEH. The lowest retention of AAs was observed on the HSS C18 SB column 

which indicates the need of electrostatic attraction between carboxylic/amine groups of 

AAs and the functional group of the stationary phase for the retention. Nevertheless, all 

tested columns (except for the DIOL, FP and BEH) could provide suitable separation of 
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Leu and Ile. However, the highest separation efficiency for all amino acids and the 

shortest analytical time were achieved by using the BEH column.  

When using the BEH column, the separation of derivatized AAs is governed by 

their polarity, i.e., retention times are higher for more polar AAs. By definition, amino 

acids contain an amino group and a carboxyl group, and often contain another functional 

group (e.g., sulfhydryl, hydroxyl, or secondary amino or carboxyl group). In fact, the 

polarity of those AAs changes based on additional functional group. Separation 

selectivity of AAs is given by the nature of used mobile phase starting from normal-

phase-like conditions of nonpolar carbon dioxide with very low concentration of the polar 

modifier at the beginning of the gradient (15%) changing up to HILIC-like conditions 

with high concentration of the modifier (40%) containing 5% of water and 20 mM 

ammonium formate. 

The retention pattern of AAs is also affected by a charge of the AA polar group 

demonstrated by poor separation efficiency of AA containing a very polar group, which 

is retained well on the SFC column. The retention order of the AA was as follows: 

Ile+Leu, Val, Phe, Met, Pro, Ala, Gly, Thr, Ser, Tyr, Trp, Asn, Gln, Lys, Asp, His, Arg, 

Glu. The basic amino acids (Lys and Arg) were the two positively charged amino acids 

in the AA mixture when separated in CO2/MeOH/H2O with addition of 0.1% formic 

acid and 20 mM ammonium formate. Between these two compounds, the high pKa 

(13.8) of Arg results from delocalization of the positive charge within the π-bond of 

the side chain; the Arg side chain remains protonated and eluted with a split peak. This 

contrasts with Lys, where the charge is largely focused on the terminal aliphatic amino 

group and the side chain is readily deprotonated and resulted in a symmetric peak. 

Aromatic amino acids are amino acids that include an aromatic ring. Trp, Phe and Tyr 

were eluted between 1-2 min and have slightly better separation efficiency because they 

contain an aromatic ring of low polarity that can be easily protonated in the ESI mode 

compared to the aliphatic AAs, thus sensitivity is also higher in contrast to aliphatic AAs. 

The concentrations of additives (acids or bases) in the co-solvent increase the solubility 

of analytes and provide coverage of the active sites on the stationary phase, resulting in a 

beneficial effect on the peak shape as well as mass spectrometric sensitivity. 

Therefore, we tested different gradient programs and additives (0.1%, 0.2% and 

0.5% formic acid, 5% H2O as well as 10 mM and 20 mM ammonium formate) to improve 
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the on-column separation and peak shape of the analytes. We observed that 5% H2O 

together with 20 mM ammonium formate as modifier in MeOH enhanced the 

chromatographic separation (Figure 3). Moreover, derivatization of individual amino 

acids increased their hydrophobicity, thus enhancing retention on a BEH column. 

Analysis of derivatized AAs resulted in chromatograms with a stable baseline, sufficient 

peak resolution, and excellent peak symmetry for all AAs except for those eluting last 

(Figure 3). The optimized method has been described in more detail in the Materials and 

methods section. 
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Fig. 3 Chromatograms of L-amino acid butyl esters extracted from human plasma. 

Separation conducted using a BEH column under optimized conditions. Mobile phase: 

CO2 + MeOH:H2O (50/50 v/v) with 0.1% formc acid and 20 mM ammonium formate 
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All the AAs contain a carboxylic group, where derivatization occurs. Then, 

abundant protonated ions [M + H]+ are formed during the positive electrospray ionization 

(ESI+) step. The ions enter the analyzer and once inside the analyzer, each amino acid’s 

molecular ions are selected with the first mass analyser (Q1), fragmented in the Q2 region 

and the product (fragment) ions are analyzed by the final mass analyser (Q3). During 

fragmentation the charge generally resides on the moiety with the highest proton affinity; 

therefore, the free amino group(s) will retain the charge and fragmentation will proceed 

losing stable neutrals. Most amino acids, and certainly all neutral and acidic ones, 

fragment losing butyl formate, representing a “neutral loss” of 102 Da. The major 

fragmentation pathways involve the loss of fragments from the butyl ester end of the 

molecular ion. The MRM approach is the most commonly used mode in the quantification 

of targeted derivatized AAs. To select a proper transition for the MS/MS detection of an 

analyte, two factors should be considered: first, the transition should be specific to this 

compound; second, the product ion should be abundant enough for sensitive detection. In 

order to enhance the selectivity of the target analyte, product ions were chosen with the 

most abundant product ion selected as the quantifier and the other ion as the qualifier by 

direct infusion of each of the AA analytes and by investigation of the product mass spectra 

of the 20 AAs under positive ion mode. 

Method validation 

Method validation results are listed in Table 2. The optimized method was 

validated for different parameters. The linearity, LOQ, precision and recovery of the 

method were determined. The calibration curve comprised of seven points prepared in 

triplicates. The linearity was determined by linear regression analysis. The correlation 

coefficients (R2) of the calibration curves were >0.9940. The back calculated 

concentration of the calibration samples was within ±12% of the nominal value.  
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Table 2 Validation parameters for derivatized AAs 

Amino 

acid 

LOQ 

[nM] 

Linear 

range [nM] 

Recovery 

[%] 

Precision [CV %] 

low medium high 

L-Gly 10.0 70-7000 87.3 
 10.0 4.7 8.0 

L-Ala 4.0 70-7000 92.4 5.0 3.6 1.3 

L-Arg 70.0 70-7000 82.6 7.1 5.4 5.4 

L-Asn 1.5 5-900 92.1 5.8 8.3 9.3 

L-Asp 15.0 70-7000 80.2 9.2 10.9 14.1 

L-Glu 12.0 70-7000 83.7 2.9 14.5 8.8 

L-Gln 1.5 5-900 80.1 8.8 6.4 12.6 

L-His 12.0 70-7000 90.6 3.3 6.2 4.3 

L-Ile + L-

Leu 
1.0 5-1000 - 4.0 10.1 8.1 

L-Lys 1.8 5-900 85.8 3.3 12.8 2.9 

L-Met 1.0 5-1000 88.4 12.0 5.0 1.3 

L-Phe 0.8 70-7000 90.4 6.7 4.8 3.6 

L-Pro 1.0 5-900 93.4 4.3 6.6 4.7 

L-Ser 3.5 70-7000 92.3 5.1 5.6 3.6 

L-Thr 1.0 70-7000 83.5 5.4 11.4 2.8 

L-Trp 1.0 5-1000 92.4 9.6 1.7 3.0 

L-Tyr 1.0 5-1000 88.1 7.4 3.7 9.8 

L-Val 2.5 70-7000 90.4 2.6 9.7 0.9 

The linearity range obtained from this study was comparable to already published LC-

MS results. LOQs ranged from 5 to 70 nM for all derivatized AAs, which are comparable 

or better as compared to already existing LC-MS/MS methods for similar analytes (Table 

S1). Precision was assessed by replicate analysis (n = 4) of spiked plasma samples at three 

different concentrations and data are presented in Table 2. The precisions were between 

0.9% and 14.5% for all the AAs. The recovery was determined based on comparison of 

extracted vs unextracted AAs from spiked PBS solution, where unextracted AAs were 

considered as 100 % recovery. The recovery of all AAs ranged from 80.1 to 93.4%. 
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Conclusions 

We have developed a novel, simple, rapid, and sensitive UPSFC–MS/MS method 

for profiling of intracellular and extracellular free L-amino acids (AAs). To the best of 

our knowledge, there are no previously published SFC–MS/MS data for comparison to 

our method. AAs are amphoteric in nature and their ionization efficiencies by ESI are 

relatively low. The analytical method applied in this study provided satisfactory results 

for simultaneous determination of free AAs in smaller or scarce amounts of plasma after 

derivatizing the AAs into butyl esters. This method provided better sensitivity and 

comparably shorter analytical time (6 min). Currently, the only known negative 

characteristic of this technique is the inability to obtain an adequate resolution for Leu 

and Ile when compared with published method [20]. The problem with the methodology 

is the fact that isomeric amino acids, such as leucine and isoleucine, often fragment very 

similarly, thus determination of Leu and Ile requires their chromatographic separation. 

Moreover, determination of L-Cys provided poor repeatability and recovery because of 

its oxidation during sample extraction and derivatization.   

Nevertheless, the separation capacity of UPSFC is much higher than other 

chromatographic techniques due to the high diffusivity of the supercritical CO2. 

According to the Van Deemter curve, supercritical CO2 maintains a low height equivalent 

to a theoretical plate (HETP) at a relatively high flow rate; therefore, the analysis time 

can be shortened. Thus, the addition of an organic solvent as a modifier (e.g., methanol) 

expands the selection ability for elution. 

Amino acids were successfully derivatized by reaction with 1-chlorobutane, 

which formed butylated amino acids with the butyl group bonded to the carboxylic groups 

of the amino acids. Then, optimal separation peak shapes and sensitivities for all amino 

acids were achieved using the Viridis BEH as a stationary phase and methanol:water 95/5 

(v/v) with 20 mM ammonium formate as a co-solvent. Subsequently, co-solvent gradient 

was optimized to shorten the analysis time, resulting in a 6-minute run. Lastly, method 

validation parameters, namely, LOQ, linearity, precision and recovery were determined 

using the developed method. 

Results from method validation demonstrate that this method is sensitive enough 

to perform comprehensive analysis of AAs in large sample sets in clinical studies with 

limited sample volumes. Future work will be focused on using the method on a larger 
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human cohort and also on expansion of the method to analyze L and D-amino acids in 

biological samples at once. 
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Table S1 Comparison of LOQ [µM] of the deveoped SFC method to conventional LC-MS methods 

technique New SFC 
method 

LC-MS/MS  
[19] 

LC-MS/MS  
[21] 

LC-MS/MS 
[22] 

LC-MS/MS  
[23] 

LC-MS/MS 
[24] 

LC-MS/MS 
[25] 

Amino acid derivatized derivatized derivatized derivatized underivatized underivatized underivatized 
L-Ala 0.004 

> 1 µM 

0.51 7.55 33.7 

0.001-0.36 

0.03 
L-Arg 0.07 2.13 2.06 - 0.15 
L-Asn 0.0015 0.69 0.84 - 0.67 
L-Asp 0.015 0.33 - 22.6 0.26 
L-Glu 0.012 1.52 1.49 20.4 0.35 
L-Gln 0.0015 2.97 4.56 - 0.20 
L-Gly 0.01 1.12 0.84 40.0 0.15 
L-His 0.012 0.33 6.2 - 0.28 
L-Ile + 
L-Leu 0.001 0.17 0.39 - 0.05 

0.16 1.67 22.9 0.05 
L-Lys 0.0018 0.39 5.14 - 0.09 
L-Met 0.001 0.11 0.46 20.1 0.08 
L-Phe 0.0008 0.21 1.73 - 0.05 
L-Pro 0.001 0.77 2.44 - 0.11 
L-Ser 0.0035 0.94 4.59 28.6 0.17 
L-Thr 0.001 0.92 2.12 - 0.12 
L-Trp 0.001 0.17 1.48 14.7 0.07 
L-Tyr 0.001 0.14 3.39 16.6 0.09 
L-Val 0.0025 0.09 3.26 - 0.07 

Stationary phase BEH C8 C18 C18 Amino HILIC BEH amide BEH C18 
Run time (min) 6 16 9 8 4 18 12 
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6 COMPARISON OF CAPILLARY ELECTROPHORESIS 

AND SUPERCRITICAL FLUID CHROMATOGRAPHY 

IN DETERMINATION OF AMINO ACIDS 

 In this thesis, we compared capillary electrophoresis with supercritical fluid 

chromatography in the determination of proteinogenic amino acids. For this purpose, we 

used method performance characteristics such as separation efficiency and limits of 

quantification. We also compared the methods from economic point of view, i.e., the 

acquisition and operating costs, amount of time and work required. 

6.1 Separation efficiency 

The separation efficiency of the two methods was compared using height 

equivalent to a theoretical plate (H) as a parameter of separation efficiency. Initially, the 

number of theoretical plates (N) was calculated according to Equation 5. 

𝑁 = 16
𝑡𝑅
2

𝑤2   (5), 

where tR is the retention or migration time of an analyte and w is baseline peak width. 

Following this, H was calculated using Equation 6. 

         𝐻 =
𝐿

𝑁
   (6), 

where L refers to the column or capillary length. H was calculated for the first and last 

separated L-amino acids at concentrations corresponding to approx. 35% of the highest 

calibration point. In CE-C4D separation, L-Lys was the fastest amino acid, whereas L-

Asp migrated last. In UPSFC-MS/MS separation, the first amino acid to elute was L-Val, 

whereas the last amino acid to elute was L-Glu, which was strongly retained on the 
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stationary phase. Retention/migration times, together with w, N and H values, are listed 

in Table 2. 

Table 2 Separation efficiency parameters of CE-C4D and UPSFC-MS/MS 

Technique L [cm] 
L-amino 

acid 

tR 

[min] 
w [min] N 

H 

[µm] 

CE-C4D 66.5 
Lys 9.87 0.139 80,535 8.3 

Asp 33.99 0.436 97,240 6.8 

UPSFC-MS/MS 10.0 
Val 1.00 0.042 9,070 11.0 

Glu 5.10 0.500 1,665 60.0 

 Table 2 shows that the CE method provides a higher number of theoretical plates 

due to the higher retention-time-to-peak-width ratio of the amino acid. However, when 

considering column length and calculating H, the separation efficiency of SFC becomes 

similar to that of CE for the first amino acid to elute. As the last amino acid to elute in 

SFC, the separation efficiency of L-Glu is compromised by exceptionally wide peak.  

Unlike UPSFC-MS/MS, the CE-C4D method enables baseline separation of all 

proteinogenic amino acids using simple instrumental setup but the analysis time reaches 

40 minutes. However, in SFC, the separation efficiency does not play such a key role 

because MRM enables the detection of co-eluting analytes. Moreover, the UPSFC-

MS/MS method is approx. 7× faster than the CE-C4D method. 

6.2 Limit of quantification 

 The LOQ values for amino acids achieved by CE-C4D and UPSFC-MS/MS are 

compared in Table 3. 
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Table 3 Limits of quantification (LOQ) with respective migration, retention times and 

RSD of the migration/retention times of amino acids. LOQ values are listed in μmol/L 

for CE-C4D and in nmol/L for UPSFC-MS/MS 

 CE-C4D UPSFC-MS/MS 
L-amino 

acid tmig [min] 
RSD 
[%] 

LOQ 
[µmol/L] tR [min] RSD 

[%] 
LOQ 

[nmol/L] 
L-Ala 17.2 0.60 100 1.4 0.20 4.0 

L-Arg 10.4 0.34 70 4.7 0.13 70.0 

L-Asn 25.0 0.86 120 2.4 1.12 1.5 

L-Asp 34.0 1.04 230 3.5 1.69 15.0 

L-Glu 26.8 0.91 110 5.1 1.53 12.0 

L-Gln 26.0 0.88 150 2.6 0.80 1.5 

L-Gly 15.1 0.53 100 1.5 0.91 10.0 

L-His 10.6 0.35 60 3.9 1.07 12.0 

L-Ile 21.3 0.76 80 1.0 0.78 1.0 

L-Leu 21.9 0.78 90 1.0 0.78 1.0 

L-Lys 9.9 0.31 60 2.6 0.98 1.8 

L-Met 25.4 0.90 150 1.1 0.19 1.0 

L-Phe 27.4 0.91 110 1.1 1.06 0.8 

L-Pro 29.2 0.96 180 1.3 1.01 1.0 

L-Ser 22.3 0.80 130 1.9 0.33 3.5 

L-Thr 24.6 0.87 150 1.6 0.43 1.0 

L-Trp 25.7 0.89 90 2.0 0.14 1.0 

L-Tyr 28.5 0.95 100 1.9 0.30 1.0 

L-Val 21.1 0.75 120 1.0 0.23 2.5 

The UPSFC-MS/MS method enables the determination of amino acids in the 

nmol/L range. L-Phe and L-Arg represent the amino acids with the lowest and the highest 

LOQ values, respectively. In CE-C4D, the LOQ values range from tens to hundreds of 

µmol/L. L-His and L-Lys represent the amino acids with the lowest LOQ values; on the 

contrary, L-Asp has the highest LOQ value. 

 The UPSFC-MS/MS method allows the determination of amino acids in 

concentrations four or five orders of magnitude lower than CE-C4D. 
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6.3 Operating costs 

All chemicals used for mobile phase preparation in UPSFC-MS/MS were of LC-

MS grade, whilst those for CE-C4D were of analytical grade. Prices of all chemicals such 

as acetic acid, HEC, methanol, ammonium formate and formic acid were provided by 

Sigma-Aldrich (St. Louis, MO, USA). Price of CO2 of supercritical fluid grade was 

provided by Linde Gas a.s. (Prague, Czech Republic). Prices together with consumed 

amount of respective items are listed in Table 4.  

Table 4 Chemicals with respective prices per unit used for BGE and mobile phase 

preparation. Amount consumed was calculated for 3,000 runs. Prices in CZK excluding 

VAT 

Technique Item Price per unit Amount consumed 

CE-C4D 

acetic acid 1,380 per 1 L 125 mL 

hydroxyethyl 

cellulose 
2,180 per 500 g 120 g 

UPSFC-MS/MS 

methanol 574 per L 7.1 L 

CO2 8,200 per 40 L 14.8 L 

ammonium formate 2,380 per 25 g 8.6 g 

formic acid 3,000 per 50 mL 4.9 mL 

Acquisition and operating costs are compared in Table 5. The operating costs were 

calculated as consumption of BGE, mobile phase constituents and gases needed for 

analysis of 1,000 samples, assuming that each sample was measured three times. 

Therefore, total number of runs considered was 3,000. 

Nitrogen generator was included in the acquisition costs of UPSFC-MS/MS 

because of high nitrogen consumption in MS/MS. Using gas cylinders would be approx. 

twice as expensive than using nitrogen generator. Electricity and water consumption were 

not included in the calculations of operating costs. 
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Table 5 Acquisition and operating costs of CE-C4D and UPSFC-MS/MS. The operating 

costs for 3,000 runs were calculated. Prices are listed in CZK excluding VAT 

Costs CE-C4D UPSFC-MS/MS 

acquisition costs 
including 
software 

2,040,000 9,000,000 

capillary/column 3,520 (fused silica, 50 µm ID)* 20,700 (Viridis BEH) 

Nitrogen 
generator - 387,000 

total acquisition 
costs 2,043,520 9,407,700 

operating costs BGE Mobile phase 

 HEC 520 methanol 4,070 

 Acetic acid 170 CO2 3,000 

 
 

 ammonium 
formate 800 

 
 

 formic acid 300 

Total operating 
costs 690 8,170 

* one fused silica capillary of 80 cm was considered to last for 300 runs, therefore the price of 8 m capillary 

was calculated at a price of 440 CZK per m 

Concluded from Table 5, initial costs of CE-C4D are 88% lower than those of 

UPSFC-MS/MS. Similarly, CE-C4D operates at significantly lower costs than UPSFC-

MS/MS. Besides being economically less demanding, CE-C4D can be operated by a less 

skilled operator. However, CE-C4D requires 2,000 hours of instrumental time compared 

to 300 hours needed for measurement of 3,000 runs at UPSFC/MS/MS. 

Unlike CE-C4D, the UPSFC-MS/MS produces large amount of heated gas, thus 

operating this technique requires air conditioning of the laboratory environment. 
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7 CONCLUSIONS 

This thesis describes method development of two different separation techniques and 

compares their separation efficiency, LOQ values and operating costs in determination of 

proteinogenic amino acids. The first study has been previously published in Analytical 

and Bioanalytical Chemistry. The second study was inserted in this thesis as a manuscript 

and it will be soon submitted. 

The first study focuses on optimization of extraction step using DoE to increase 

extraction yield of amino acids prior to their determination by CE-C4D in tobacco plants. 

The amino acids were separated using 0.1% HEC in 1.8 M acetic acid as BGE. The 

addition of HEC suppresses EOF and eliminates adsorption of analytes to capillary wall, 

therefore, it improves the separation resolution of amino acids. Thus, this method enables 

baseline separation of all proteinogenic amino acids within a 40-minute run. Moreover, 

the method enables determination of free amino acids in the plant extract in 

concentrations approx. above 10–4 mol/L. Because free proteinogenic amino acids belong 

among highly abundant metabolites, relatively high LOQ values of the method suffice for 

their determination. 

The second study aims at development of a UPSFC-MS/MS method for 

determination of free proteinogenic amino acids in human plasma. Because the amino 

acids are highly polar/ionic metabolites, their derivatization is required prior to analysis 

by SFC in order to decrease their polarity thus increasing their solubility in CO2-rich 

mobile phase. The amino acids were derivatized by 1-chlorobutane, which binds to their 

carboxyl groups. Therefore, the derivatization not only decreases their polarity but also 

eliminates negative charge of the amino acids. Subsequently, the amino acids from human 

plasma were separated using a mixture of CO2 with methanol/water (95/5) and 20 mM 

ammonium formate. Then, the amino acids were determined using tandem mass 

spectrometry within a 6-minute run. Such conditions enabled determination of free 

proteinogenic amino acids in concentrations approx. above 10–9 mol/L. 

 The UPSFC-MS/MS method enables faster and more sensitive determination of 

amino acids than CE-C4D, even with the derivatization step. However, CE-C4D consists 

of less expensive and easy-to-use setup compared to UPSFC-MS/MS; moreover, CE-C4D 

provides substantially higher separation efficiency than UPSFC-MS/MS. Therefore, in 
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analyses of materials rich in free proteinogenic amino acids, CE-C4D becomes an 

analytical method of choice. On the contrary, UPSFC-MS/MS can be used in cases when 

determination of low concentrations (> 10–9 mol/L) of amino acids is required. 
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