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Introduction

Modeling of electrochemical systems is a broad scientific field encompassing many
different theories with aims to describe miscellaneous phenomena on diverse
length and times scales. This thesis is mainly focused on the formulation and
application of continuum-type non-equilibrium thermodynamic models for solid
oxide electrochemical cells (SOEC, SOFC).

The first chapter incorporates a formulation of coupling between the fluid
mechanics and electrodynamics using their Hamiltonian structure. On top of
this, geometrical methods are used to account for the interaction of the fields of
polarization and magnetization with the charged fluid. Eventually, dissipation
is introduced and employed to reduce some of the fields recovering constitutive
equations on less detailed levels of description. For instance, the generalized
Poisson-Nernst-Planck equations or Landau-Lifshitz magnetization models are
found again. The main results of this chapter contained in [3]. The results are
not limited to the description of electrochemical reactors but may be used also to
describe the dynamics of the polarization, e.g., waves stemming from the dipole-
dipole interaction.

In the second chapter, a detailed model of a double layer of a solid oxide
interface is derived. The derivation is done on the basis of bulk-surface non-
equilibrium electrothermodynamics [5]. Models of free energy density, capturing
the main features of (crystalline) yttria-stabilized zirconia bulk and surface, are
introduced into generalized Poisson-Nernst-Planck system. The resulting system
of evolution equations is solved for using the finite volume method and cyclic
voltamograms of YSZ—air—metal cell are obtained and discussed in detail. The
results of the chapter are content of |4].

The last, third, chapter is a clear-cut demonstration of Exergy Analysis [6]
validity. The limits of the theory are demonstrated on an analytically tractable
model of solid oxide hydrogen fuel cell. It is shown that the optimization predic-
tions of Exergy Analysis, i.e., the minimization of the entropy production, do not
coincide with the power maximization for SOEC with non-isothermal boundary.
The underlying principles, on which this chapter is based, are contained in [1],
the results itself were published in [2]

The problems in the first chapter are considered on a very abstract level. The
model equations employed in the second chapter may be seen as a consequence
of the general results of the first chapter. Finally, the device model optimized
in the third chapter is, in fact, a non-isothermal electroneutral model from the
second section. Hence, the order of the presentation respects the decreasing
level of abstractness, although, the chapters were actually created in the exactly
opposite orderl}

Let us now focus on the links between the first and second chapter. First,
the description of electrodiffusion, see Section [1.4.8] obtained by the Dynamic
Maximum Entropy Principle in the first chapter is principally equivalent to the
diffusion flux of oxide ions derived in the second chapter, see Section
and , although with a different choice of the diffusion coefficient. Second,
the mass action law chemical kinetics, see Appendix is equivalent to the con-

L As it often happens in real life.



stitutive relation for the chemical reaction employed in the second chapter.
Third, the novel formulation of adsorption between bulk and surface using mixed
bulk-surface dissipation potential, see Appendix [L.5] results in an adsorption flux
equivalent to the flux of oxide ions, cf. . Therefore, the YSZ interface model
developed in the second chapter within Classical Irreversible Thermodynamics
can be alternatively formulated in the GENERIC framework.

The thermodynamic model of a non-isothermal solid oxide electrochemical
cell, worked out in the third chapter, may be regarded as the oxide ion transport
formulated in the second chapter considered in electroneutral limit.

At the time of submission of this thesis, the three chapters are either pub-
lished [1, 2] or submitted to peer-reviewed journals [3, 4]. The publications are
alternatively denoted as [P1-P4] in the List of Publications.



1. Multiscale electrodynamics of
charged mixtures

Fluid mechanics and electrodynamics are two theories of Hamiltonian nature,
which are coupled through the Lorentz force. Besides the fields of electric dis-
placement and magnetic field, there are also the fields of polarization and mag-
netization, which are interacting with both matter and electromagnetic field.
We propose a geometrical construction of reversible evolution equations of all
the mentioned fields in mutual coupling. Afterwards, dissipation is imposed to
particular fields, which are then reduced to the respective constitutive relations
playing a role on less detailed levels of description. In summary, we propose mul-
tiscale thermodynamics of mixtures of fluids, electrodynamics, polarization and
magnetization in mutual interaction.

1.1 Introduction

Theoretical electrochemistry aims to describe and predict behavior of chemically
reacting systems of charged substances. The modeling methods vary according
to the characteristic times and lengths of the observed electrochemical systems.
This paper aims to develop a hierarchy of continuum models on different levels
of description using the framework of the General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) [7, 8, 9, 10].

Let us thus briefly recall GENERIC. Consider an isolated system described by
state variables x. The state variables can be for instance position and momentum
of a particle, field of probability density on phase space, fields of density and
momentum density, electromagnetic fields, etc. Evolution of functionals F'(x) of
the state variables is then expressed as

F ={F E} 4 (Fy, Ex

X*=5y ) (1.1)

where the former term on the right hand side stands for a Poisson bracket of
the functional and energy while the latter for scalar product of gradient of F'
and gradient of a dissipation potential. Conjugate variables (derivatives of en-
tropy in the entropic representation) are denoted by x*. The Poisson bracket is
antisymmetric, which leads to automatic energy conservation, and satisfies Ja-
cobi identity, which expresses intrinsic compatibility of the reversible evolution.
The irreversible term yields a generalized gradient flow driven by gradient of en-
tropy and ensures the second law of thermodynamics. Many successful models
in non-equilibrium thermodynamics have been cast in the GENERIC structure
(L.1), and many new thermodynamically consistent models have been obtained
by seeking that structure.

Our strategy in this paper will be to couple the Poisson bracket of fluid me-
chanics and Poisson bracket of electrodynamics in vacuum by semidirect product.
In other words, we let the electrodynamics be advected by fluid mechanics as in
[10]. To go beyond, we add also the field of polarization density and a canonically
coupled momentum of polarization. This is important to express the behavior
of dipole moment of molecules in interaction with electromagnetic field and the



overall motion. Moreover, we add magnetization (the famous Landau & Lifschitz
model) advected by fluid mechanics. This way we build a hierarchy of levels of
description with appropriate Poisson brackets expressing kinematics on the levels.
Subsequently, we introduce dissipation on the most detailed levels of descrip-
tion, which leads to reduction to less detailed (lower) levels, finishing on the level
of mechanical equilibrium, where the evolution is governed by the generalized
Poisson-Nernst-Planck equations. We believe that such a complete and geomet-
ric picture of continuum thermodynamics of matter coupled with electrodynamics
(including polarization and magnetization) was missing in the literature.

Remark on x' and x* notation. Equation contains derivatives of energy
and entropy with respect to the state variables.

The reversible evolution is generated by derivates of energy in the Poisson
bracket. Moreover, the form of Poisson bracket is usually conveniently expressed
in the energetic representation, i.e. when entropy density is amongst the state
variables. To this end, the energetic representation is employed throughout the
first section, where the reversible evolution is developed. The energy-conjugate
to variable x, i.e. functional derivative of energy g—i will be briefly denoted by x'
or Fy.

On the other hand, the irreversible evolution is conveniently expressed in terms
of the derivatives of a dissipation potential w.r.t. conjugate variables, which are
later on indentified as the derivatives of entropy. Therefore, it is of advantage
to express the irreversible using entropic variables, i.e. containing energy density,

5

and in terms of entropy derivatives g will be briefly denoted by x* or Sy.

1.2 Hamiltonian evolution

Firstly, the Hamiltonian evolution in terms of continuum mechanics will be briefly
introduced, see |10, Chapter 3].

Let © be an open subset of RY. Let I C R denote a time interval. Let X be
a set of smooth functions on (I x 2)°. Let x € X be a set of variables, i.e. the
assumed level of description. Let X* be space of differentiable functionals on X.
Poisson bracket {-, -} : X* x X* — X* is a map that for all F,G, H, R € X* and
a, 3,7,0 € R satisfies the following properties:

1. bilinearity:

{aF + H,vG + 0R} (x) =ay{F,G}(x) + ad{F, R}(x)
+0y{H, G}(x) + Bo{H, R}(x) ,  (L.2)

2. anticommutativity:
{F.G}(x) = G F}(x) (1.3)
3. the Leibniz rule:
{FG, H}(x) = FOO{G, H}(x) + {F, H}(x)G(x) , (1.4)

6



4. the Jacobi identity:
{FAG H}}(x) +{H {F G}}(x) +{G.{H, F}}(x) = 0. (1.5)

The first and second property imply the Poisson bracket being also antisymmetric,
ie. {F.F}=—{F,F}=0.

Let E € X* be energy of the system. The Hamiltonian evolution of a func-
tional A € X* is then given as

.0
A= aA+{A, E} . (1.6)

Note, that the partial time derivative is zero if A does not depend on time ex-
plicitly. This will be tacitly assumed in the remainder of the chapter.

1.3 Hierarchy of Poisson brackets

1.3.1 Fluid mechanics of mixtures

Let us start with fluid mechanics, where state variables are fields of density,
momentum density and entropy density, x = (p,u,s). The Poisson bracket ex-
pressing kinematics of fluid mechanics has been long known |11, |12, |13} |14, |15].
The Poisson bracket can be easily extended to mixtures with multiple densities,
momenta and entropies (i.e. temperatures), see e.g. [16].

Classical fluid mechanics

The Poisson bracket generating one-component compressible fluid mechanics (hy-
drodynamic Poisson bracket) is

(F,GYFM (p u, s) = / drp (8;F,Gu, — 8:G,F)
+ [ dewi (9F,Gu, - 0,GuF)
v / drs (9 FuCly, — iGF), (1.7)

where p, u and s are density, momentum density and volume entropy density,
respectively, see the references above.
Once energy, usually

E= /dr (‘21; +elp, s)> , (1.8)

is provided, reversible evolution of an arbitrary functional F' of the state variables
reads

F ={F,E}"™)
= [drF, (-0,(pE.)
+ /drFul (—p&Ep — uj&Euj — s@iES — 8]- (quu]))

n / drF, (—8i(sEy.)) | (1.9)



where integration by parts was used several times. Boundary terms disappear as
we assume isolated (e.g. periodic) system.
By comparing with the chain rule

F= /dr (F,0ip + Fo,0u; + Fs0,5) (1.10)
we can read the evolution equations for fluid mechanics,
Owp = — 0i(pEy;) (1.11a)
8tui = — pazEp — UjaiEuj — Sal'Es — @(ulEuj) (111b)
Ors = — 0;(sEy,), (1.11c)

the compressible non-isothermal Euler equations for ideal fluids.

Fluid mechanics of mixtures

Consider now a mixture of n species (denoted by Greek indexes from set 2), each
of which is described by its own density, momentum density and entropy density.
The Poisson bracket expressing kinematics of state variables x = (po,u®, s,),
a €, is

{F7 G}(pﬁ7 u,87 35) = Z{Fv G}(FM)Q (paa u?, Sa) (112)
a=1

This Poisson bracket can be derived for instance by projection from the Liouville
equation [16]. It consists of sum of n Poisson brackets (1.7)), each expressed in
terms of variables of mixture component a.

Poisson bracket depends on n momenta and entropies, each for one
component of the mixture, which is a rather detailed description allowing for
independent motion of the constituents and for different temperatures of them
(as in cold plasma, where electrons have different temperature than ions). We
are, however, often interested in less detailed description, keeping only densities
of the species, the total momentum and total entropy,

u=>» u® and S= Sa. (1.13)
a=1 a=1

By letting the arbitrary functional depend only on state variables x = (pq, u, s),

bracket becomes
(F,GYOm = 3° / drpa (9,F,, G, — 0,G,, Fu.)
a=1
+ [ drw (0,7, G, = G, Foy)
+ / drs (8 FuCly, — :GF.), (1.14)

referred to as the classical mixture hydrodynamic bracket and generating the
reversible part of Classical Irreversible Thermodynamics (CIT) [17].

The descriptions of the fluid and fluid mixture dynamic considered in the
remainder of the paper will be based mainly on the brackets and ,
respectively.



1.3.2 Electrodynamics in vacuum

The reversible evolution of electromagnetic fields is generated by the canonical
Poisson bracket, see [10],
[F,G}™0A(A,Y) = [ dr (Fa,Gy, = G Fy) = [ dr (Fp,Ga, — G, Fa),
(1.15)

where A stands for the vector potential and Y = —D denotes negative of elec-
tric displacement field (either in variables (A,Y) or (A,D)). Let us define the
magnetic field as

In order to express the bracket (1.15) in terms of magnetic field, the assumed
functionals to be dependent only on the curl of A. Bracket (|1.15]), transformed
in terms of (D, B), see 18], reads as

{F, G}(EM)(D,B) = /drFDisl-jkE)jGBk - GDisijk(‘?jFBk. (]_]_7)

This is the Poisson bracket expressing kinematics of electromagnetic fields D and
B.
Let us suppose the following energy of the electromagnetic field in vacuum:

1 /D2 B
E:/dr— i 1.18
2(60 uo> (118)

here ¢y and po stand for vacuum permittivity and vacuum permeability, re-
spectively. The evolution equations of the electromagnetic field given by (1.17))

and (|1.16]) read
(9tDi = ajkajEBk (1.19&)
@Bi = — 5ijk8jEDk, (119]3)

where the conjugate fields are actually electric and magnetic intensities, Fp = E
and Ep = H. Using energy (1.16]), the evolution equations can be rewritten as

1
t Eollo jkYj Pk ( )

atBi = — €ijkajEk (120b)

where egE = D denotes the electric field as well.
Applying divergence to (1.20)) gives the following evolution equations:

at divB =0 and 8t divE =0 (121)

Hence, the usual constraints—Gaufl’s law for electric and magnetic charge [19]—
hold true if satisfied by the initial condition, see [20].

1.3.3 Electromagnetic field advected by charged fluids

The purpose of this section is to formulate coupled kinematics of fluids and elec-
tromagnetic fields. We employ the theory of semidirect product to find such
coupling, and then we perform a transformation unveiling the usual form Lorentz
force.



Semidirect product

We have already recalled the Hamiltonian nature of fluid mechanics. There is,
however, a finer structure behind, the Lie-Poisson dynamics, where the Poisson
bracket is the Lie-Poisson bracket on a Lie algebra dual. Another examples
of Lie-Poisson dynamics are rigid body rotation or kinetic theory. In [21] it is
explained how to construct new Hamiltonian dynamics by letting one Hamiltonian
dynamics be advected by another. Having a Lie algebra dual [* (for instance fluid
mechanics), an another Lie algebra dual or cotangent bundle is advected by [* by
the construction of semidirect product.

One can even think of mutual action of the two Hamiltonian dynamics, which
leads to the structure of matched pairs [18], [22]. Here, however, we restrict the
discussion only to one-sided action of one Hamiltonian system to another, i.e. to
the semidirect product. A general formula for the Poisson bracket of semidirect
product of a Lie algebra dual I* and cotangent bundle T*M =V x V* reads,

{F’ G}([* xT* M) — {F, G}([*) _|_ {F’ G}(T*M)
+<FA,Gm > A> — <GA,Fm > A>
+(Y, Fm > Gy) —(Y,Gm > Fy) (1.22)
where A € V is a covector field, A = A;dz’ and Y € V* is a vector field Y =
—D'9;, {F, G}") is the Lie-Poisson bracket on the Lie algebra dual, { F, G}7"M) is
the canonical Poisson bracket on the cotangent bundle, (e, e) is a scalar product
(usually L?, i.e. integration over the domain, or duality in distributions D’),
m € [* is the momentum density (element of the Lie algebra dual) and > is the
action of [* on T* M, minus the Lie derivative —L, see Appendix [1.3]
Instead of single-component fluids, we can take bracket (1.14)), and after the
transformation from (A,Y) to (D, B), as in Sec. |1.3.2, we obtain Poisson bracket
[F,GY™™ ) (5, m, 5, D.B) = {F, G}y + {[F,GYE0 (1.23)
+ [ D (0Fp,Gun, ~ G, o)
[F,GYOD,m) [ dxd;D;(FGp, = G, F,)
+/erj(Fmi8jGDi - szajFDz)
+/dI'BZ (ajFBiij — ajGBiFm])

{Fa G}(SP)(B’ m) +/draij(FmiGBi - sz‘FBi)

+ / drB;(Fp,0,Gp, — G0 Fp.),
where m denotes total momentum density (of matter and electromagnetic field),
m=u+DxB. (1.24)
Note that the notation introduced in allows to write briefly
{F.GY"M) (po, m,5,D.B) = {F, G} "Dy + {1, G}

+{F,G}"(D,m) + {F, G}V (B,m) (1.25)

10



Bracket ((1.23)) expresses kinematics of a CIT mixture and electromagnetic field,
with state variables x = (p,, m,s,D,B), and was found (for the single species
case) in [23, 24, [25].

Transformation to mass momentum

Let us suppose that each mixture component carries charge eg2* proportional to
mixture density. The free charge density is defined as

n

2
pr=Y "2p,. (1.26)

a=1 «a

Poisson bracket ([1.23)) can be now transformed by means of relation (1.24) to
the mass momentum u instead of the total momentum m. The calculation was
carried out in [18] and [10] and leads to Poisson bracket

{F,G}"MID) () w5, D, B) = {F, G} 4 {F, G}

+ /dI‘ Z eozapa (FMGDZ — GUZFDZ)
a=1

«

n
+ / ar Y 0~ Bieiju o, Gl (1.27)
a=1 (62
which is the Poisson bracket expressing evolution of a CIT mixture coupled with
electromagnetic field (using the mass momentum u).

The relation between formulation and (1.23) can be also viewed in
terms of surface balances of the electric induction flux and magnetic induction
flux for static and co-moving surfaces as it is shown in [26]

For a mixture described by means of not only multiple densities, but also
multiple momentum and entropy densities, see bracket , the Poisson bracket
coupling it with electromagnetic field is

{Fa G}(EMHD) (pﬁv u67 S8, Da B) = Z{F7 G}(FM)a + {Fa G}(EM)

a=1

+ /dr Zn: €o “ala (Fua,iGDi - Gua,iFDi>
a=1

«

" ZaPa
+/drz:1€07naBigiij“a,jGua,k' (128)

This bracket indeed leads back to Poisson bracket ((1.27)) by projection ([1.13)),
but can be also derived by projection from the Liouville equation [10], which
constitutes an alternative way of the derivation.

Gauf}’s law for electric and magnetic charges

Equations ([1.20]) represent the Gauf}’s law for the electric and magnetic charges in
vacuum. Let us now consider the dynamics of coupled matter and electromagnetic
field generated by brackets ([1.27]) and ((1.23]). The evolution equation of magnetic

field for bracket (1.27]) reads as

8tBi = —eijkﬁjD,t (129)

11



and for (|1.23) as
0B; = —£ij1d; D} — 0; (Bim! — B;m!) — mlo; B;. (1.30)

As for vacuum, if the initial condition div B(r,¢ = 0) = 0 is satisfied then neither
(1.29) nor (1.30]) can violate the Gaufi’s for magnetic charge for further times.

The discussion for the electric charge is more subtle. The evolution equations

of D for brackets ((1.27)) and (1.23]) are

OD; = £ij40; B} — > GO@UI : (1.31)
a=1 Mq
BtDZ- = €Z'jkajB;£ — 8j (Dzm; — D]mj) — mjajD] s (132)

respectively. The divergent part of the first two equations is equal to the charge-
weighted sum of the evolution equations of the partial mass densities generated
by the respective brackets. Therefore, if

divD = p¢ (1.33)

is satisfied as an initial condition then again neither ((1.31)) nor ([1.32]) can violate
it.
Casting divergence on equation ((1.32) gives

00:D; = —0; (mlo;D;) . (1.34)

Clearly, the form of equation (1.34]) is the same as for a conserved continuum-
advected density (quantity). Therefore, analogously to the previous, if is
satisfied as an initial condition it will be satisfied during the evolution.

From the geometric point of view the Gaufi’s laws can be seen as gauge in-
variance of the respective Lie algebraic structures [20].

We have shown that the dynamics of charged continuum generated by brack-
ets and structurally preserves the Gauf’s laws for electric and mag-

netic charge.

1.3.4 Polarization

The reversible evolution of a charged mixture in electromagnetic field is described
by one of the Poisson brackets in the previous section and a choice of energy. But
such description does not, in general, capture the intrinsic dipole moments of the
molecules, i.e. polarization. An additional bound charge is present due to internal
dipole density of the matter on top of the modeled free charge.

Description of the polarization charge depends profoundly on the chosen vari-
ables, the time/space scales and the internal structure of the assumed matter.
The classical treatment on the macroscopic level, see e.g. [27], resorts to the
definition of polarization vector P. The divergence part of P is set equal to
the density of polarization charge. The time derivative of P represents current,
therefore it is added to the left-hand side of the Ampere’s law.

Russakoff in [28] acquired the polarization as a consequence of averaging of
microscopic Maxwell’s equations with point charges and subsequent expansion
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with respect to spatially correlated charges. This approach leads, compared to
the Purcell’s, to a definition of the polarization related magnetization M which
is proportional to the averaged relative velocities of the correlated charges. Nei-
ther Russakoff nor Purcell discussed the dynamics of the point charges nor the
correlated collections of charges, i.e. molecules and ions.

Disturbances of the electric field propagate with the speed of light. The
polarization depends on the internal dynamics of atoms and molecules, therefore,
the speed of disturbance propagation should be small compared to the speed of
light.

Intrinsic dynamics of polarization

Density of polarization P represents a vector field just as the displacement field
D. Advection of the vector field by the fluid mechanics is then expressed by
a semidirect product as in Sec. [1.3.3] Similarly as in that Section, we can add
(besides P) the conjugate momentum variable (to be denoted by ). The Poisson
bracket expressing advection of the pair (@, —P) by fluid mechanics is shown in
the following section.

The canonical Poisson bracket of state variables u and P reads

[F.GY(P, 1) = [ dr (FpGy, — GrF) | (1.35)

which is analogical to ((1.15)). Bracket ([1.35) can represent a continuum of ele-
mentary dipoles with fixed centres of mass, but changing length and orientation.
Indeed, covector field p can be interpreted as proportional to the relative momen-

tum of a dipole particles, c.f. variable t in (1.151)) and (1.152). The divergence
part of P represents the bound charge density,

pp = —divP. (1.36)

Advected cotangent bundle (u, —P)

When the dipoles are not fixed in space, but advected by a fluid, the interaction
is captured by coupling of bracket ((1.35) and fluid dynamics bracket (1.14]) by
semidirect product,

{F7 G}FMP# (pOm Mua S, P7 l’l’) = {F7 G}(CIT) (Pm ,uu7 S) + {Fa G}PN(Pa H)

n / drP; (0,Fp,Guyy — 0,Gp Fo))

+ /draij(F“uiGPi - G“uz‘FPi)

+ / Ar P, (Fun8,Gp, — G, 0;Fp) (1.37)
(7G5 (p, #) — [ @wdyp (FuGo, = GFo)

_ /dr,uz (F,qung“ui — G'ujajFuui) s

which is analogical to bracket ((1.157). Note that the total momentum of the
coupled system is denoted as #u. This Poisson bracket expresses kinematics of
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fluid mechanics advecting the polarization density with its conjugate momentum
(relative momentum of the intrinsic dipole charges).
Note that bracket ((1.37)) may be briefly expressed as

{F, G} (pa,*u, 5, P, ) = {F, G} (pa, "1, 5) + {F, G}*(P, )
+{F, G}V (P, "u) + {F, G}V (p, Mu) (1.38)

using the definition of {F, G} from (1.23) and {F, G}SP)a from (1.37).
The evolution equations given by (1.37)) are as follows,

(atpa)rev = _aj(pa MujT) (139&)
(048)rev = —0;(s"u;") (1.39b)
(O "ti)rey = = Y, palipl, — 505" — "u;0; ;" — PjainT + M}aiﬂj
a=1
+0; (PP = papsh = Muituyt) (1.39¢)
(0 P)rew = b = 05 (P ut = PyusT) = Pui'0; Py (1.39d)
(Outts)rev = =P = Fu;T0; 15 — 10, i, (1.39)

where x' denotes derivative of energy with respect to x (as everywhere in this
paper). Later they will be equipped with dissipation of p triggering subsequent
relaxation of polarization.

Reduced variable M

Instead of the conjugate polarization momentum g, we can choose to work with
curl of it,

M = curl p. (1.40)

Similarly to the relation of vector potential and magnetic field, considering func-
tionals depending only on M instead of u turns Poisson bracket (1.39)) to

{F, G}P(P, ./\/l) = /d[’ (FpiEijkajGMk — GpiEijkajFMk) . (141)

Bracket ((1.41) has identical form as electromagnetic bracket (1.17]), and gives
evolution equation structurally similar to (1.136]) due to the presence of curl M.

Coupling of (|1.41)) and ([1.7]) given by the semidirect product reads as
(E,GY™ (p,, Mu,5,P M) = {F, G} ™ (p, “u,5) + {F,G}P (P, M)
RGP (M, P) 1 {F,GIF (Mu, M) (1.42)
The form of {F, G}5?, defined in (T.23)), is the same as for coupling of {F, G}(EM)
and the fluid mixture due to the form of ((1.41)). In this case, the relation of the

total momentum, denoted Mu, and the mass momentum is related to the total
momentum as

Mau=u+P x M. (1.43)
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The evolution equations given by ((1.42)) are as follows,

(Otpa)rer = —0;(paul) (1.44a)
(048)rev = —05(s Mul) (1.44D)
(&Mui)rev = — zn: pa&-pL — s0;st — MujaiMu; — Pj@-PjT — ./\/ljal-/\/l;
a=1
+0; (PP + MIM; = Mu ™M) (1.44c)
(0P)re = €ijt 0 M} — 0y (P Mul — P Mul) — Mulo; Py (1.44d)

(OMi)rey = _5ijkajpg — 3j(/\/l¢Mu} - M; Muj) — Mu;r@j./\/lj. (1.44e)

The reason to carry out the projection from g to M was to bring the equa-
tions closer to comparable results in literature, e.g. [5]. Contrary to the con-
struction used in , M plays role of an independent variable beforehand
and its reversible evolution does not depend on the employed entropy principle
(nor dissipation) as it is the case in [5]. Moreover, M itself does not appear in
the evolution equation for P, the conjugate M' does due to (1.41]). Therefore,

M = M in the context of (1.136]) and ((1.142)).

Coupling to the electromagnetic field

Having coupled fluid mechanics with polarization density and its conjugate mo-
mentum, let us make the final step - coupling electromagnetic field. Both pairs
(i, P) and (D, B) were coupled to fluid mechanics by semidirect product. Ad-
vection of both pairs by fluid mechanics can be thus expressed (using ((1.17]),

(1.23), (1.37))) by Poisson bracket
+{FGY™(D,B) +{F,G}*"("m, D) +{F,G}*"("m, B)
+{F,GYM(P, p) + {F, G} ("m, P) + {F, G}V (*m, )

(1.45)
The evolution equations implied by ([1.45]) are

(atpa)rev = _aj (pa 'um;r) (146&)

(048)rev = —0;(s"m}) (1.46b)

(0" Mi)rey = — Y palipl, — 505" — "m;0; *m!
a=1

(0:Di)sev = €ixd; B — 9; (Di#m} — D;#ml) — #mlo;D; (1.46d)
(@tBi)rev == _5ijkajD;2 - 8j (Bz ”m} — Bj “mj) — “mZT@ij (1466)

(0P, )sew = g} — 0 (Pi#m} — P;#ml) — #mlo; P, (1.46f)

(Orpti)sew = — P = #m1ojp; — 1;0; "mi". (1.46g)
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Bracket ([1.45) can be further projected, using ([1.42)) and thus replacing p
with M, as follows,
{F, G} (pa, Mm, s,D,B, P, M) = {F, G} (p, 'm, s)
+{F,G}"(D,B) + {F,G}*"("'m, D) + {F,G}*"(*'m, B)
+{F,G}? (P, M) + {F,G}*"(Mm, P) + {F,G}*"("'m, M)

(1.47)

This bracket leads to the following system of equations:
(8tpa)rev = _aj (pa Mm;) (148&)
(018)rev = —0;(sMml) (1.48D)

(atMmi)rev = Z paaipl — s0;s" — Mmj@;Mm;
a=1

— D;0,D} — B;0; B} — P;0,P] — Mio,M,;
+0; (DID; + BIB; + PIPj + MM} — Mm;Mml) | (1.48¢)
(8tDi)reV = 5ijk8jB,1 - (‘3]- (Dz Mmj - Dj Mmj) - Mmja]D] (148d)
(atBi)rev = —€ijkalet — aj (Bz Mm;r — Bj Mmf) — Mm;r@]Bj (1486)
(0P)rev = €3j80 M} — 0, (P Mml — P Mml) — Mmlo, P, (1.48f)
(@Mi)rev = —5ijk8jP,j — 8j (Msz; — Mj Mmj) — Mmja]./\/l] (148g)

Brackets ([1.45) and ((1.47) can be also seen as coupling of (1.35)) and ((1.40))

to (|1.23)), respectively, using the Lie derivative technique. The total momenta are

m=*u+DxB, (1.49)
Mm=Mu+DxB. (1.50)

Total charge

Maxwell equation ([1.33]) was derived by taking divergence of the evolution equa-
tion for D. However, the usual form of the equation also contains the bound
charge explicitly. Let us thus define the field of electric induction D as

D=D-P. (1.51)

For a functional F'(D,P) = F(D,P) then holds that
5ﬁ> <6F> <5F>
o) (2E) (2 (1.52)
<5P b ) D)o

Pl - Pl —D' and D' — DI (1.53)

For the quadratic energy of the electromagnetic field D?/(2¢¢), Eq. (1.51]) can be
rewritten as

or

eeE+P =D, (1.54)
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which is the usual relation between electric displacement D, electric field E = Dt
and polarization. Since divD is equal to the free charge density, it also holds
that

codivE +divP = p¢ (1.55)

which is the usual form of the Maxwell equation for divD.

Transformation has of course implications on the form of Poisson brack-
ets (1.37) and ((1.42). Let us assume the functionals in and depend
on D instead of D. The former then reads

{F, G}D’“‘(pa, "m,;s,D,B,P,u) =
{F,G}Y*""(pa, #m, s,D,B,P,p) — {F,G}**(D,p)  (1.56)

Bracket ([1.56) can be further projected, using ([1.42)) and thus replacing p
with M, as follows,

{F,GY?(pa, Mm, s, D,B,P,M) =
{F, G} (p,, Mm,s,D,B,P,M) — {F,G}*(D,M)  (1.57)

The form of and makes it clear that the transformation (|1.51))
just slightly alters the evolution equations given in ([1.45]) and ((1.48)), respectively.
Obviously, only the evolution of D and the covector variable to P, either u or
M, are changed.

The altered evolution equations — in the respective cases — of the electric
induction and the covector quantity then become, cf. ,

(?tDi = EijkajB;L — [L;r - aj (Dz “m} - Dj “mj) - “mg(‘?ﬂ)j > (158)
and, cf. (T8),
0D; = eipd; (Bf — M!) = 0; (DiMml — D; Mml) — Mmlo,D; | (1.60)

oM, = —eipd; (P = DI) = 0; (M Mm] — My Mml) — Mmlo;M; . (L61)

respectively.

The formulation with D and M are comparable with similar equations known
from literature, see [5 Section 3].

The divergent part of evolves as a convected density although the po-
larization charge density is not conserved due to divu!. After the conjugate
polarization momentum g has relaxed to zero, bound charge becomes a con-
served quantity. In other words, by transformation one recovers the usual
from of the Maxwell equation . Apparently, the divergent part of
evolves as a conserved mass-related density.

In summary, reversible evolution equations for a mixture coupled with elec-
tromagnetic fields, polarization and its conjugate momentum were constructed in
a geometric way (semidirect products). By further transformation from D to D
the usual form of the Gaufl law including bound charge is recovered.
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Polarization waves and stress

Let us begin with the canonical polarization bracket (1.35). Let us assume that
the energy contains a contribution corresponding to dipole-dipole interaction pro-
portional to the square of polarization gradient. Hence, we have

EPY = /dr; (B0, Pi0; P+ apr®) (1.62)

where o and 3 are assumed to be positive constant parameters. The Hamiltonian
evolution of P and p due to bracket ((1.35) with energy (1.62) reads

AP, = o (1.632)
Oty = BO;0; F; (1.63b)

Let us calculate
P = Oi(ap;) = apo;o;P; (1.64)

which is a polarization wave equation. The speed of polarization sound is given

by vap.

Let us now consider (pa, s, “m, D, B, P, u) level of description equipped with

bracket (|1.45) where (1.62]) contributes to the energy. The evolution equation for
total momentum #“m ([1.46¢)), without specifying the other energy contributions,
reads

(D" Mi)rew = — > padipl, — s0i8" — Pm;0; m!

a=1
+0; (DID; + Bl B; — 0u(BOP;) Py — picupt; — "mi"m}) . (1.65)

The terms with P and p in the right hand side of ([1.65) may be written in a
divergence form as

(8
0; (53@(@3) - 5ij§akplakpl — B0k (0xP) P; — apuifi; + 251'3'/%/%) , (1.66)

which is the stress contribution due to the polarization. The third term in is
not symmetric w.r.t. ¢ and 7, therefore, the conservation of the angular momentum
is not granted. It is sufficient to show that the cross product of the discussed term
and position r can be written in a divergence form. We have, omitting /3,

EsriTr0j (PjOk(0kP;)) = €5ri0j (17 POk (01 P;)) — €51 POk (0 )0y
= €50 (1, POk (O P;)) — €550k (PjOkP;) + €55i0k POk P; (1.67)

where the second terms is simultaneously symmetric and antisymmetric in ¢ and
7, hence it is zero.

1.3.5 Magnetization

The magnetization of matter, see e.g. [27, Sec.11], is due to the orientation of
spins. Perhaps due to the resemblance with dynamics of rigid body rotation, the
pioneering model of magnetization by Landau & Lifshitz [29] was based on that
dynamics. In the following text we first recall the Hamiltonian formulation of
rigid body dynamics and then we let the rigid body dynamics be advected by the
fluid (using again the semidirect product theory).
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Intrinsic dynamics of magnetization

The configuration manifold of rigid body rotations is the Lie group SO(3). The
standard machinery of differential geometry, e.g. |11} 30] or [10, Eq.3.69], con-
cludes that the Lie algebra dual, where angular momentum M seen from the
body reference frame plays the role of state variable, is equipped with Poisson
bracket

(F,GY500) (M) = — / drMie; Far, G, (1.68)

where 7 is the gyromagnetic ratio. Bracket is also called the spin bracket,
see e.g. |31]. The evolution equation implied by this bracket is (by the same
procedure as in Sec.

M =M x Eu, (1.69)
E being energy of the rotation. Derivative of energy with respect to M is the
angular velocity w.

Advection by fluid mechanics

Similarly as in the case of electromagnetic field or polarization, we will now con-
struct the Poisson bracket expressing advection of magnetization and its dynamics
by fluid mechanics (using again semidirect product). Now, however, the advected
structure is not a cotangent bundle, but a Lie algebra dual. The general formula
for semidirect product of two Lie algebra duals, see [18, Eq. 40], then gives
Poisson bracket

{F, G}SO(S)X(mEHMD)<pa, Mm’ s, ]:)7 B, M) — {F, G}mEHMD + {F, G}SO(3)
+ 7 (M, Fyp, > Ga) — v (M, Gy, > Fu) (1.70)

where “'m is the new total momentum of the coupled system and M denotes the
magnetization. Note that the advected electrodynamics are kept in the bracket
for completeness. The right action of velocity field Fy, on the vector field Gy, is
defined as negative of Lie derivative as usually,

(Frign & Gaa); = = (Foin,05Gas, — Gar, 0Py, ) (1.71)
Using (1.71)), bracket ([1.70]) becomes
{F, G}SO(S)X(mEHMD) (pa, Mm’ s, D, ]_))7 M) _ {F, G}mEHMD + {F, G}SO(B)
+ ’Y/dI‘MZ <8jFMmZGM]. - (‘3JGMszMJ)

M

(P, Gy (Mm, M) =
+y / dr M, (8;F1s,G vty — 0,Gas, Fany, )

(1.72)

which is the explicit form of Poisson bracket expressing kinematics of magnetiza-
tion advected by fluid mechanics.
The evolution equation equations implied by ([1.72]) are

(8t Mmi)rev = — Z pa@pL — s@isT —Mm]@Mmj — DJ&D; — BjﬁlBjT — fyMJ@MJT

a=1
+0; (DD, + BIB; — yM;M} — Mm;Mm]) | (1.73a)
(8t]\/[i)rev = ’}/EijijMli — ”}/Mjaz MTTLI - aj (’}/MZ Mm;) . (173b)
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These evolution equations show how magnetization is advected by fluid mechan-

ics, and how such advection affects the fluid motion itself. Moreover, magneti-
zation keeps its intrinsic rigid-body-like dynamics. Finally, note that there is no
explicit coupling to the electromagnetic field just as in the original [29] paper.
The coupling is achieved implicitly later by letting energy depend on both M and
B.

Spin-spin interaction stress

The spin-spin interaction contribution to the energy can, on the continuum level,
be modeled by the gradient of magnetization as in [29]. Let us assume

- /dr%@kMZ@jM,- , (1.74)

where « is a constant positive parameter. The Hamiltonian evolution of the
magnetization field due to bracket (1.68) reads

M; = —yae;;u M;0,0, M, (1.75)

Let now (po, Mm, s, D, B, M) be the considered level of description governed
by (1.70)). The evolution of the total momentum, see ([1.73a)), reads

(8 Mmz rev = Z paa pa — 38 S mJE?ZMm;r - D]((?ZDJ - B]@B]T

a=1

—+ vaM]&ﬁk(?ij + 8j (DJD] + BJB] + ’Y&MlakakM] — Mmi MmT> s

J

(1.76)

where only the derivatives of energy w.r.t. M are expressed. Thus, the magnetiza-
tion terms in ([1.76]) specify the stress due to the spin-spin interaction. The terms
can be, similarly to the dipole-dipole interaction (|1.66)), written in the divergence
form as

0;

ad; (Mz&'@jMz - éj@k:Mlale + Miakak:Mj> : (1.77)

The non-symmetric term in ((1.77)) is equivalent to the one already discussed in
the polarization case (1.67)), therefore, it also does not violate the conservation
of the angular momentum.

1.3.6 General level (p,,m,s, D, B, P, u, M)
The hierarchy of the brackets built in the preceding paragraphs will be completed

on the level of description containing all the discussed variables. The General
bracket reads
{F,G}Y*MP(p,,m, 5, D, B, P, u, M) = {F, G} (po, 1, 5)
+{F,G}"™)(D,B) + {F, G}<SP>( )+ {F,G}"")(m,B)
+{E,GYPH(P,p) +{F.G}(m, P) + {F, G} (m, p)
+{F, G} M) +{F, G} M@, M) . (1.78)
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The first line is due to the dynamics of the CIT-mixture. The second line of
accounts for the electromagnetism and its coupling to continuum. The third line
contains the polarization bracket and its coupling to continuum. The fourth line
of is due to the magnetization dynamics and its coupling to continuum.
Brackets {-,-}P), {.,.}P)a and {-,-}P)m were found due to the semidirect
product theory.

The evolution equations implied by the General bracket are

(8tpo<)rev = _8j(pam;[) (179&)
(048)rev = —0;(s) (1.79D)

(0 )eew = — D paOipl, — 08" — m,0m!

a=1

+0; (DID; + BIB; + PP — pupl — y MM —m}) . (1.79¢)

(0D)sev = €560 B — i} — 9 (Dim} — Dyml) — mlo;D; (1.794)
(0Bi)sey = —€ix0;D), — 0; (Bim}, — By} ) — ml0; B; (1.79€)
(OP,)sew = i — 0; (P} — Pyinl) — 0, P; (1.79f)

(Oepti)re — P + D} — 0t — pijoim) (1.79g)

(0 M:)sew = V2350 M; M| — yM;Om} — ; (v My} (1.79h)

This is the most detailed set of reversible evolution equations expressing evolution
of a mixture coupled with electromagnetic field, polarization and its conjugate
momentum and magnetization.

The bracket can be projected to the levels of description upon which
it was built. One can simply evaluate the bracket on a set of functionals
independent of a certain variables, see [16]. For instance the projection from p
to M can be seen as evaluation on functionals independent of div p. In the rest
of this paper we enrich the reversible equations for irreversible terms in order to
reduce this rather detailed description to the common continuum models coupling
matter and electromagnetic field.

1.4 Continuum thermodynamics and
reductions

After having constructed a hierarchy of Poisson brackets for fluid mechanics of
mixtures advecting electrodynamics, polarization and its conjugate momentum
and magnetization, let us now enrich that detailed reversible dynamics by dissipa-
tive irreversible terms. This allows to see relaxation of fast mesoscopic variables
and the effects on dynamics of less detailed variables. For instance we let the con-
jugate polarization momentum p relax to recover the standard Single Relaxation
Time (SRT) model, which is widely used for comparison with experiments. We
also let the magnetization M relax to recover the full Landau & Lifshitz model not
only evolving in the laboratory frame, but being advected by the fluid. Finally,
we approach the level of mechanical equilibrium, where evolution is governed
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by generalized Nernst-Planck-Poisson equations. In summary, a comprehensive
multiscale thermodynamic construction of fluid mixtures equipped with electro-
dynamics, polarization and magnetization is provided.

1.4.1 Gradient dynamics

But before adding dissipative terms to the actual evolution equations, let us recall
the general framework of gradient dynamics, where irreversible evolution is gen-
erated by derivatives of a dissipation potential [32]. Sound statistical arguments
for gradient dynamics based on the large deviations principle was found in [33|
34, 135]. This paragraph closely follows [10, Sec. 4.5, 4.6].

Dissipation potential

Consider a set of state variables x, and let energy, entropy and mass of the
system be denoted by £(x), S(x) and M (x), respectively. A dissipation potential
= :x* — R is a family of functionals of conjugate variables x* parametrized by
x. We require every parametrization Z[x*] = Z(x)[x*] to satisfy:

1. Positiveness: =[x*] > 0 and Z[x* = 0] = 0.

2. Monotonicity of derivative: <55 x*> >0 Vx*.

ox* )

3. Convexity near x* = 0.

4. Degeneracy with respect to mass < b8 M (x)> = 0.

ox* 7 Ox

5. Degeneracy with respect to energy < 0% ‘5E(x)> = 0.

6. Z[x*] be even with respect to time-reversal transformation.

The irreversible evolution of a functional F(x) is then given as

(F(x))m = <§i 55(,(),5F(X)> . (1.80)

X =" 5X
Gradient dynamics automatically satisfies the second law of thermodynamics
(growth of entropy in isolated systems). This is guaranteed for instance for con-
vex dissipation potentials, but also non-convexity far from the origin (equilibrium)
can be taken into account [36]. Moreover, it is in close relation to the method of
entropy production maximization [37]. Gradient dynamics plays a key role when
formulating dissipation in the GENERIC framework.

Energetic representation of gradient dynamics

The reversible evolution, treated in the preceding sections, has two building
blocks, a Poisson bracket and energy. Energy then enters the evolution equa-
tions via the conjugate variables to the energy,

_OE

T
X =",
0x

(1.81)
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while entropy being one of the state variables. This is the energetic represen-
tation [38]. In contrast, the irreversible evolution is expressed with respect to
conjugates to the entropy to keep the gradient structure, i.e. in the en-
tropic representation. Let us now recall the conversion rules between the two
representations.

Entropy in the entropic representation and energy in the energetic represen-
tation are expressed as

S(e.6) = [drs((e. () and E(s,§) = [dre((s &),  (182)

where &; are the state variables other than s and e. Assuming that s(e, &) and
e(s, &) are locally algebraic (i.e. not involving any gradients), the transformation
rules can be also resolved locally. It holds that

0E Oe
(r)= = . 1.
) = S ((5,6)m) (18)
Hence, the known transformation rules [10] can be applied. Eventually, we have
1 &
sir) = (1), ) =-"10). (1.84)
Pointwise application of the transformation rules ((1.84)) yields
ol 5 : ocl ¢ 2
¢ = = = — 52 v = ¢ = i T 5 185
o~ e 00w der (&) &(+) (1.85)
dst dst 1 2
=0 = — = —(s 1.86
ag; g (&) ()" (1.86)

Suppose that é(e*, £*) = Z(sf,£"). Then the functional derivatives with respect
to the entropic variables can be locally transformed into derivatives with respect
to the energetic variables as follows,

6= 62
_ 1
5er (r)= —s 5l (r) (1.87a)
6= 6= 6=
N | T 1=
56* (I') S (S 5ST gz 5§J> (I‘) (187b)

Conservation of energy requires that 3575* e=s, = 0 (recalling the assumption of

algebraic dependencies). Therefore,

6= 6=
t i _
<s 5l + ¢ ) (r)y=0 (1.88)

has to be satisfied. This is for instance satisfied for zero-homogeneous functions
f

of i—T
Gradient dynamics of state variable &; at point r is then

0= T(S:

(0, (v) = yglx*:s5 =5 @(r) ) (1.89)
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and irreversible evolution of entropy at point r, s(r) = (S, ;) becomes, according

to (T50),

6= 85
T = 1.90)
62 , 62
- <(5 L€ 5€*€ > (r) (1.91)
:g&ff( r)>0. (1.92)

A simple notorious example of the dissipation potential is

Sa _ 0=Z4 1 £f
/dr27- ( ) and S T TN (1.93)

This is a prototype of dissipation potential, since any general dissipation potential
can be approximated by a quadratic one due to the convexity near equilibrium
and flatness at equilibrium.

1.4.2 Dynamic maximum entropy principle

The principle of maximum entropy (MaxEnt), where unknown value of a variable
is determined by finding the maximum value of entropy subject to constraints
given by declared knowledge, has been successfully applied in many fields (infor-
mation theory, thermodynamics, etc.) [39]. However, in non-equilibrium thermo-
dynamics the problem is not only to find value of a fast variable that has relaxed,
but also to find the vector field along which the fast variable evolves, its evolution
equation, when only less detailed variables are among the state variables (observ-
ables). To this end we recall the method of Dynamic MaxEnt (DynMaxEnt) |40,
10].

Let us demonstrate the principle on perhaps the simplest possible example
— an isothermal damped particle in potential field. State variables are position
and momentum of the particle (¢,p). Reversible evolution is given by Hamilton
canonical equations (canonical Poisson bracket on the cotangent bundle and en-
ergy). Let the irreversible evolution be given by friction velocity v = pT, i.e. using
a quadratic dissipation potential. The overall evolution equations are then

q=p' (1.94a)
p=—q - (1.94D)
taking energy as
E = p—Q + V(q). (1.95)
2m

These are the equations for a particle in potential field V' (¢) moving with friction
coefficient ¢ > 0.

Let us now treat the state and conjugate variables as independent quanti-
ties. Motivation for this is provided by contact-geometric formulation of non-
equilibrium thermodynamics [41] and [10]. The minimum of energy subject to
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the knowledge of ¢ is at p = 0, which is the value approached by evolution of p.
At this relaxed value the evolution equation for momentum becomes

0=—q" —(p'. (1.96)

To satisfy this equation, we have solve it, which actually provides a constitutive
relation for the conjugate variable p’. Plugging this constitutive relation back
into the equation for ¢, we obtain

) Ly 1
q ¢! CVq- (1.97)
This evolution drives position ¢ towards minima of potential V'(gq).

In summary, by relaxing the fast variable p, the originally reversible equation
for ¢ becomes irreversible while p being enslaved by ¢. This procedure can be
carried out analogically in the case of continuum thermodynamics as we shall
demonstrate below.

1.4.3 Relaxation of conjugate polarization momentum g

In [subsection 1.3.4] polarization was equipped with conjugate momentum g. In-
spired by the relaxation of the damped particle in [subsection 1.4.2] we shall let
the conjugate momentum relax to recover dissipative evolution of polarization.

Polarization relaxation via p

For convenience we suppose that the energy of the considered system does depend
on the magnetic field and magnetization. Therefore, all derivatives of energy w.r.t
the aforementioned fields vanish.

Let us moreover assume a dissipation potential quadratic in u, see ((1.93)),

11 11 (ph)?
= — [ qr-— *2:/d S 1.08
/rQTM(“) rQTM<ST (1.98)

Assuming also energy quadratic in g, the MaxEnt value of p is zero. Us-
ing (1.791)), the DynMaxEnt relaxation of g can be formulated as

0= =D — P — —2 (1.99)

which is the constitutive relation to be plugged into the remaining evolution
equations. In particular, equation for polarization becomes

0P, = s'7,(D} — Pf) — 0; (P} — Pym}) — mio; P; . (1.100)

Note that the new terms appearing in the right hand side of equation (|{1.100])
can be seen as generated by dissipation potential Z*) evaluated at constitutive

relation (1.99)),

(1]

—_ T, 2
®) = 2@ i_, ipi_ph) = /dré‘ (P - D). (1.101)
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Similar ideas were presented in [42]. This is the dissipation potential generating
irreversible evolution of P.

We may also pursue further relaxation of the polarization. Assuming energy
quadratic in P,

1 |
EP :/dr P2 — Pl— _—p, (1.102)
2xeo X€o

implies the MaxEnt value of P being zero. Equation (1.100)) consequently gives
Pl =DI . (1.103)

as the Dynamic MaxEnt value of PT. Moreover, if the energy is quadratic in D,
then, using ({1.55]), we can write:

divD = divegE = —divegxE + pr = eodiv ((1 4+ x)E) = pr . (1.104)

Hence, we have recovered the usual form of Coulomb’s law for a linear isotropic
dielectric material.

Single Relaxation Time model

Consider again equation ([1.100) with a further assumption of mechanical equi-
librium, i.e. m' = 0. Then, for quadratic energy

1 P2
E=[dr— <D2 n ) (1.105)
20 X

the evolution of polarization (({1.100)) becomes

f 1
op =" (Di - H) , (1.106)
€0 X

which represents a dissipative evolution of polarization subjected to electric field.

Let us first analyze the evolution equation by applying harmonic electric field
% = FEyexp(iwt). Equation (1.106)) then gives the Single Relaxation Time (SRT)
model of polarization, see e.g. [43],

__ xBo
1+ cgiox’

Ty st

Py (1.107)

provided that P = Pyexp(iwt).

In summary, by letting the conjugate polarization momentum p relax, a dissi-
pative evolution of polarization is obtained . If the mechanical equilibrium
is further assumed, this dissipative evolution is compatible with the SRT model
widely used for comparison to experiments. Finally, the equilibrium of the dissi-
pative evolution is the linear relation between polarization and electric intensity
known from electrostatics.
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1.4.4 Polarization relaxation via M

The conjugate momentum to polarization g can be replaced by its curl, M, as
above in Eq. , which brings the equations closer to results in literature
(see Sec. [LB]). Suppose that energy of the considered system is independent
of the magnetic field and magnetization, so that derivatives of energy w.r.t the
aforementioned fields vanish. Quadratic dissipation in €;;,0; M, ,I reads

0= 1

M a&jaaazsﬁjﬁmz. (1.108)

1 2
== [dr— .
/r2TM(V><./\/l) —

Assuming also energy quadratic in M, the MaxEnt value of M is zero. Relaxation

of M can be then expressed as, using (1.61)) and (1.84)),

1 T
0= 8t./\/ll = eijk(?j <D}; - P]I - 5klsal/\/ls> .

= S (1.109)

In the isothermal case (s" = const.) it follows from (1.48)) that
6ijk8j8tPi = STTM&jkaj (D;L — P];F — 81 (PkmlT — leL) — mL@lPl) s (1110)

which represents relaxation only of the curl part of the polarization field, keeping
the bound charge intact.

The Dynamic MaxEnt allows to obtain the value of M' consistent with a
given dissipation potential. The impact of such reduction on the polarization will
be always introduced through curl M. Clearly, the divergence part of P cannot
be by this affected. Therefore, Dynamic MaxEnt of M cannot, in principle, lead

to relation (1.103]).

1.4.5 Relaxation of magnetization

Let us now discuss relaxation of magnetization M inspired by the Landau &
Lifshitz model [29]. Consider the following dissipation potential analogical to

[L109).

1 (M xMH?
EM:/dr27M< :T ) . (1.111)

The derivative of (1.111]) w.r.t MT is

=M 1 1
Hence, the irreversible evolution of M due to (1.111f) reads
o= 1 |
(&tl\/[i)m = —S 5Mj = ﬂgimstgsjijMk
1
= (M- MHM — (M- M)MT), (1.113)

which is compatible with the Landau & Lifshitz model of magnetization once
suitable energy is provided, [44) Sec.3.7].
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Having recovered the Landau & Lifshitz model, let us also formulate its gener-
alization version advected by fluid mechanics and interacting with magnetic field.
We take quadratic energy

B — poM)?
E = W’ (1.114)
2410
derivatives of which energy are
B
Ho
This permits us to define the field of magnetic intensity
o B
HY == M, (1.116)
Ho

which is the usual relation between H, B and M. This is our motivation of the

choice of energy (1.115)).
For energy ({1.114]) it holds, moreover, that

BT = —M'. (1.117)

Combining ((1.73b)) and (1.113)) then leads to the evolution of the magnetization,
using also ((1.114)), (1.115)) and |1.117]

0, M; = —eijuM; By — yM;0Mml — 50 (M%Mm;)
1

- ﬂgimstgsjijBk . (1.118)

Equation (1.118]), supplied with the rest of Eqs. (1.79f), is the generalized
Landau-Lishitz magnetization relaxation model, where magnetization relaxes, in-
teract with electromagnetic field and where it is advected by the fluid.

1.4.6 Electro-diffusion — dissipation of D and p,

Poisson bracket for mixtures may be endowed with a weakly non-local
electro-diffusion dissipation potential describing an irreversible evolution of the
partial densities (friction between components of the mixture and the zero-th
species, e.g. solvent),

=P (p%, DY) :/dr an [(&- (pe — Po) — €0 (:f—zo> Df)

a,f#0
MOC/B * * Zﬁ 20 *
5 (ai (PB - Po) —€o <m5 - mo) Dz)] , (1.119)

where M, is a symmetric, positive definite matrix of binary diffusion coefficients.
The dissipation potential conserves both mass and energy.
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The irreversible part of the evolution equations can be expressed in energy-

conjugate variables, using ((1.84), as

t t
— DI
(Orpe)ime = Z ) P,B Tpo — ¢ (ZB _ ZO) 7; (1.120a)
570 S mg Mmg) S
n T i 1
Pp — Po Z8 zo \ D;
irr — — i Ma i — —_— = — | — 1.120b
(Oito) a,%;éoa ( o (6’ st € <m5 77%) st )) ( 0b)

n T T
(0,D;); :Zeo(za—Z())M apﬁ_po_eo A _ A 23
i )irr S Me mo af ) ST mg mo ST
(1.120¢)

Note that the divergent part of is identical to the sum of
and weighted by the charge per mass of the respective species. There-
fore, the irreversible evolution given by is compatible with Gaufy’s law
given by . In other words

ai ((at 7, II'I‘ Z 607 atpa)lrr (1121)

a=0 Ma

Equations express irreversible evolution of densities of the constituents
and electric displacement under mutual interaction. The right hand sides of the
equations for densities can be regarded as gradients of respective electrochemical
potentials. Evolution for the D field leads to relaxation of the field consistent with
the Gaufl law and with the Poisson equation. Equations and
represent generalized Nernst-Planck fluxes with evolution equation for D, see also
Sec. [1.4.7]

Note that a dissipation potential introducing dissipation of the partial mass
densities (i.e. containing p) is required to contain corresponding terms with D*
so that an irreversible evolution compatible with the Gauf} law, c.f. , is
introduced via Zp+ into the evolution equation for D and vice-versa. Therefore,
if the validity of Gauf}’s law for the free charge is required then the form of
dissipation potential involving DT is thus restricted. For example, the irreversible
evolution given by

XZ/dr;T (D*)*> or XE= /dr %&O 8 (ph, — pO)Maﬁa( p0> (1.122)

would not preserve the structure of Gaufl’s law. This is our motivation for sug-
gesting dissipation potential (1.119)).

1.4.7 Generalized Poisson-Nernst-Planck-Stokes

The electro-diffusion due to introduces a dissipative fluxes identical to
those of the generalized Planck-Nernst-Poisson systems (gPNP) presented in [5],
although, on more detailed level of description. In this paragraph, we would like
to discuss the reduction of the description of the mass momenta for the gPNP
systems. Let us consider a level of description where pu, M, P are already relaxed,
ie. . Moreover, on short enough distances magnetic field effects are usually
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negligible compared with effects of the electric field, in contrast to long distances,
where electric field usually does not play any relevant role due to screening. Let
us analyze the former case, paving the way towards electrochemical problems.

Assuming that no magnetic field is present and that its evolution equation
be satisfied, it follows that

E=Fp=-Vop, (1.123)

where ¢ plays the role of electric potential. Following ((1.104)), energy

D2
EEW — / dro— implies D=~V (1.124)
15

where € = €¢(1 + x). Moreover, negligible magnetic field also implies m = u.

The considered level of description consists of (pa, u, s, ¢). Further relaxation
of momentum may lead to certain difficulties. Suppose for a moment that energy
does not depend on the momentum and so the unknowns are (p,,s,¢). The
momentum equation then reads

0 x — Z pa&pl — 50,57 —nfo,0 . (1.125)
a=1
Clearly, the first two terms of equation ([1.125) form the gradient of the fluid
pressure, so that curl of the equation would be:

0 x Eijkgj (Z eopaﬁkg0> . (1.126)

a=1

Thus ¢ would have to satisfy an additional equation, so that the unknowns (pq, ¢)
would be overdetermined if considered in more than one spatial dimension, see [45]
Eq. 16a] or [5, Eq. 132].

To avoid this, a dissipation of mass momentum might be introduced. Again,
the energy is quadratic in u, see , hence, its MaxEnt value is zero, leaving
the remainder of the momentum equation as an constitutive equation for the
velocity field. For the dissipation potential generating the irreversible part of the
Navier-Stokes equations, see e.g. [10, Eqns. 4.74, 4.76]. The viscous dissipative
terms are then added to the reversible balance of mass momentum (|1.23)), with
neglected magnetic field. The whole gPNP-Stokes systems eventually reads:

n Pt i
Pz — P z z0 \ D
Oipa = 0; (pavi + 3" Mg (ai o . L (B - 0) )) (1.127)

=0 mg mg) st
Oipo = (povl %&0 M3 ( pﬁ Po — e (7255 — ;f()) Zj)) (1.128)
= - f: padipl, — s0;s' — 000,050
a=0
+ 0, (’7 (00, + Oy;) + 88,%,0(%(,0) 2000, (1.129)
0= —0; (eo(1+ x)0ip) + Zoeom—,oa (1.130)
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The reversible part of partial mass densities evolution are equipped with the gen-
eralized Nernst-Planck flux (1.120a]) and (1.120b). The unknowns of the system
the are (pq, s, @, v).

In summary, the reduction of momentum in (p,, u, s, ¢) should either consider
dissipation in u or give no further relevance to the momentum equation.

1.4.8 Maxwell-Stefan Poisson-Nernst-Planck

Mutual dissipation of the momenta can be introduced on, (py, Uy, S, D, B)-level
of description, see ([1.28)), as follows,

"M,
Ef:/er—a(uZ—uS)Q . (1.131)
Q T2

Dissipation potential ((1.131]) is similar to the Maxwell-Stefan diffusion relations
and represents a friction proportional to the differences of velocities with respect
to Oth-species. The MaxEnt values of the partial momenta gives, using

€0Za
0= M, 5 — ug i ( aé% -
Ola uﬂ) P Po m

paDj> a={1,....,n}, (1.132)
(0%

where isothermal conditions, i.e., relaxation of the partial entropies, and relax-
ation of magnetic field are assumed. The formulas for the partial velocities can
be directly introduced into the partial mass balances. Depending on the consid-
ered problem, the zero-th species can be selected as the crystalline lattice or the
solvent. Its velocity might be regarded as unaffected by the process, therefore,
spatially constant. The partial mass balances read as

€02

M,

[0

T
up = B, (”“S <5’Z~pL—|— ) )) a={l,... n}. (1.133)

Equation (1.132) may introduced into = so that the dissipation potential on
the reduced level is found,

—=f
=
=

2
<sfpa (@p:; _ 67312“ D;)) . (1.134)

L |
—MSP
== = [ dr E
(1.132) /Q = 2M, o

1.5 Comparison to the Dreyer et al. approach

C. Guhlke, W. Dreyer et al. in [46] published a comprehensive analysis of fluid
mixtures coupled with electromagnetic fields, including polarization and mag-
netization. Their treatment of surfaces as independent thermodynamic systems
interacting with the bulk, being beyond the scope of the presented work, have
elucidated many electrochemical problems using non-equilibrium thermodynam-
ics, for instance unified theory of the Helmholtz and Stern layers, a derivation of
Butler-Volmer equations, or useful asymptotic techniques, see |47, 48| |5, 49].
Since our goal is in close relation to that works, let us compare the two
approaches in detail. Dreyer et al. assumed that the total charge density can be
described as a continuum-advected density giving, formally, the divergent part of
D. Additionally, they assumed the free charge density as (1.26)), therefore, they
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concluded that the polarized charge density is also a continuum-advected density,

—divP = py, . (1.135)

They formally defined the evolution of the polarization as
O P; = —é?z‘jkaj]\//jk + 0P + J} (1.136)

where M is magnetization and J} is the dissipative polarization flux and v is the
barycentric velocity. The divergent part of (1.136) is

0(—0iP) = =0 (0 Py + JF) (1.137)

They assume that the total momentum, i.e. the momentum of the electro-
magnetic field and the mass, and the total energy are conserved. The coupling
between the charged fluid and the electromagnetic field is then given by the choice
of Lorentz force |5, Eqn. 36al:

n 2o
ki = (Z €0, Pa T pb) (Ei + €ijnv;Br) , (1.138)

a=1 «

as a source term in the mass momentum balance and choice of Joule heating:
= (J +J)E; (1.139)

as a source term in the internal energy balance. Symbol J¥ denotes the dissipa-
tive free charge flux equivalent to (1.120c). E and B stand for the electric and
magnetic field, respectively. Eventually, the system of equations is closed with
making use of an entropy principle. First, this leads to a reformulation of the
polarization evolution equation. Second, an additional evolution equation for the
magnetization is found. They read

1 1 (9py 1
(‘9,5Pi = — Ujajpi + §P] (@vi — @vj) + TiP <OR + Ez + TeiijjBk> s (]_]_40)
_ 1 1 (0pp 1
GtMi = — ’UjajMi + §M] (ﬁjvi — aﬂ}j) + TiM (]/\Zz + TBl> s (1141)

where p1 denotes the free energy density.
The divergence part of the reversible part of ([1.140)); i.e. neglecting the dissi-
pative term, e.g. assuming 7p be large, yields

0,0,P, = 0, (—vjajﬂ + ;Pj (D50, — aiuj)> . (1.142)

Clearly, the closure-supplied additional terms to the evolution of the polarization
do not respect the continuum-advected density structure of compared
to which was used for the construction of the balance equations. In other
words, the reversible evolution suggested by Dreyer et al. does not conserve the
polarization charge density.

In summary, the main difference between the treatment of the polarization
charge presented by Dreyer et al. and those introduced in [subsection 1.3.4]is the
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recognition of the co-vector quantities structures (P, p) and (P, M), respectively.
This results to a different coupling to the continuum.

Also the Lorentz force acting on the total charge is different for the two
treatments. The total momentum [5, Eqn. 35a], cf. (1.138)), reads

m” =u4+DxB. (1.143)

Hence, the magnetic field acts upon the polarization charge as it would be a free
charge density. This we find controversial as the form should stem, in our opinion,
from a reduction of more detailed level of description of a charged mixture. On
the other hand, this is certainly a shortcoming of the presented treatment as a
certain form of interaction between the magnetic field and moving polarization
charge should be present. Although, once the magnetic field is relaxed, this
coupling does not alter the form of equations.

1.6 Summary and Conclusions

In the first section a hierarchy of Poisson brackets describing the reversible dy-
namics of a charged, polarized and magnetized continua coupled with electromag-
netic field has been developed by means of differential geometry. The semidirect
product of the fluid mechanics Lie Algebra dual (p,u,s) and electromagnetism
cotangent bundle (A, —D) results in a reversible electro-magneto-hydrodynamics
was already known |20} |25] 18]. Newly, cotangent bundle (u, —P) describing dy-
namics of polarization charge is also coupled using the same technique. Finally,
the spin dynamics represented by the Lie algebra of SO(3) is coupled to the Lie
algebra dual of fluid mechanics giving rise to the reversible dynamics of spin fluid.

The second section is dedicated to the introduction of the irreversible dynam-
ics and reduction of the before-built levels of description using the dissipation
potential to formulate the irreversible evolution and the Dynamic Maximization
of Entropy (DynMaxEnt) technique to find passage from finer to rougher levels of
description. In this manner, the conjugate momentum to the polarization, p, is
relaxed giving rise to dissipation of the polarization itself. The further exploita-
tion of the induced dissipation of P leads to recovering of P = gqyE formula and
the Single Relaxation Time model for dielectrics. The dissipation potential for
the magnetic moment M was found so that the Landau-Lifshitz model of spin
relaxation was recreated. Finally, the electro-diffusion dissipation potential was
introduced, leading to a generalized Nernst-Planck-Poisson-Stokes model.

In summary, we present a geometric construction of a hierarchy of Poisson
brackets expressing kinematics of fluid mixtures, electrodynamics, polarization
and its conjugate momentum and magnetization. Afterwards, dissipation is in-
troduced on detailed levels of description, which are then reduced to less detailed
and more common levels.
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Appendix

The quantities used troughout the section are listed below.

Quantity Symbol SI units
magnetic field B kg/s?/A
magnetic field intensity BT, H Am™!
displacement field D C/m?
electric induction field D C/m?
electric field E., D', D! Vm™!
polarization density P C/m?
polarization momentum Vsm™!
polarization momentum M Am™!
magnetization density M Am™!
partial mass density P kg/m?3
mass momentum density u kg/m?/s

List of momenta densities and the corresponding levels of description.

momentum density level of description

U (pa,s,0)

m (pa,s,u,D B)

Mu (o, s,u, P, M)

"0 (pas 5,0, Pop)

IJJm (pa7 8’ u7 P7 M? D7 B)
Pmo (pa,s,u,P,u,D,B)
Mm  (pa, s,u,P, M, D, B)

(

1.1 Total momentum transformation

We presented two Poisson brackets describing the dynamics of charged mixture.
The first, {F,G}EMED) (5 'm s, D, B) is expressed with the total momentum
m in (.23). The second, {F, G}"FMID) (5w, s, D, B) is expressed with the mass
momentum u in . A sketch of the transformation of the latter to the former
is presented below.

Let us assume that F is a functional depending on (Pas 1, s,D, B). We define

F(pa,m,s,D,B) = F(p,,u,s,D,B) provided
m=u+DxB. (1.144)

Hence, the derivative of the functionals may by transformed to each other em-
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ploying chain rule which yields

Fp, =F,. , (1.145a)
Fuy =Fn, | (1.145b)
F,=F,, (1.145¢)
Fp, =Fp, — €ijuFn, By (1.145d)
F, =Fp, + €ijuFon, Dy, . (1.145¢)

We define G analogously to F'. Hence, introducing ((1.144)) and (|1.145)) into ((1.27))

gives

{F, é}(“EMHD)(pa, u,s,D,B) = /dr Z Pa (0iF,, Gy — .. .)
a=1

+ /drs (OiFsGimy — )

+ /dI‘ (ml — Ez‘jijBk) (8lFmLGml — ... )

+/dr[(

K3

FD. — 5iqumqu) 5ijk0j (GBk + 5k"rsGmTDs) — .. }

ZaPa
+ /dr;eo g (AFmZ<GYDZ — 5ijkajBk) - .. )
. Zafa
—f-/er@OiBi&iijijmk s (1146)
a=1 Mq

where the dots are in place of the antisymmetric terms, i.e. terms with F and G
swapped. We collect the terms forming {F, G}(©™)|,,, and {F, G}EM see (1.14)
and ([1.17]), respectively, and replace the charge density with the divergence of D,

cf. (1.33). We obtain

{F,G}UEMED) () w5, D, B) = {F, G} |, + {F, G}EW (1.147)

elmag.-mom. A =

mom.-mom. R =

- / dr [eueipgFrn, BydiCp, — -]

+ / dr [e5566hs Fi; (Gon Ds) — . .|

+ / drd, Dy (Fp,Gp, — ...

- / dre D, By, (0 Fyn, Gy — ... )

- /dr {EijkgipquTSFmqugj (G, Ds) — .. }
~ [ Aoy (siju Fon, G, B~ -

+ / dr(?lDlBi&ijmj Gy,

The first line contains the bracket of Classical Irreversible Thermodynamics with
m instead of u and the electromagnetic bracket. The remaining terms can be
sorted out into two categories. The terms on the second, third and fourth line
of are the electromagnetic field-momentum coupling . The remainder of
the terms are the momentum-momentum coupling, i.e. containing Fy,Gp,.
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With making use of by-parts integration and the properties of Levi-Civita’s
symbo]E] the terms of ([1.147)) labeled with A read

A={F G}"(D,m)+ {F,G}5"(B,m) . (1.148)

thus we can rewrite (|1.147)) as

{F,G}UEMED) () w5, D, B) = {F, G} |, + {F, G}EW
+{F,G}5")(D,m) + {F, G} (B, m)
+R. (1.149)

Therefore, we have recovered the bracket { F, G}™EMHD) iy (T.749). The cumber-
some proof that R = 0 is contained in [10, Eqns (3.251)-(3.257)].

1.2 Elementary dipole

Two classical charged mass points are described by their positions, r! and r?,

momenta p' and p?, carrying charge ¢; and ¢, respectively. The dynamics of
the particles is governed by the canonical Poisson bracket:

2

{F,G}y™(x? Z 5Gp = Galps) . (1.150)
Assume that ¢ = ¢ = —¢o and consider the following transformation of the
variables:
L S S (1.151)
= =q(r —r?), )
mi + Mo 4
1 2
mep™ — 1 p
H=p'+p? t=———, 1.152
PP q(m1 + mo) (1152

Bracket ((1.150]) then transforms into:

{F7 G}mp(R7 H7 P? t’) :(FRlGHZ - GRZFHZ>
+ (Fp,Gy, — Gp,F,,) . (1.153)

1.3 Semi-direct product

This Section closely follows 18] and [10, Sec. 3]. Hamiltonian formulation of
electromagnetism is given by the co-tangent bundle 7*M = V xV* and canonical
Poisson bracket for A € V and Y € V*, interpreting Y as —D.

Hamiltonian fluid mechanics is the Lie Algebra dual I* = (X x (F x F))" with
the Poisson bracket {F, G}'™(p,u,s). Where u(r) € X and p(r), s(r) € F.

1.
i.e. €rij€rim = 040jm — Oim0ji
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The semidirect product of the latter and former is, see [18, Eq. 64] given as
{F7 G}I*D(T*M<IO> m, s, Y7 A) = {F7 G}FM + /dr(FAzGYz - GAZFYz)

+ <FA,Gm|>A> — <GA,Fm[>A>
+(Y, Fn > Gy) — (Y, G > Fy) (1.155)

where m denotes the total momentum of the joined dynamics. The right action
of lon T*M is defined as

Foo>a=—Lp,a=—(Fp, 00, + 0;0,F,, ) dr'. (1.156)

for the co-vector field a. Introducing (1.156|) for A and Y = —D into (|1.155))
yields

{F,Gy"™MIPA (p,m, 5, D, A) = {F, G} ™|y + {F, G}™1A
+ [ arDi (8;Fp, G, — 9,Gi P, )
+ / drd;D;(Fyn.Gp, — G, Fp,)
+ / drD;(Fyp 8,Gp, — Goi03 Fp))
- / drd; A, (Fa,Gony — G, )
~ [ e (Fa,0,Gon, — Ga,0iF,) (1.157)

after some algebra. This bracket can be further projected to the functional de-
pendent on B, see (1.16)), then

Fu, = €imnOnF, . (1.158)

Bracket {F, G}®Ma transforms to electromagnetic bracket (1.17). The remainder
of the terms of ([1.157)) affected by (1.158) can be written as

- / drd; Aicimn (0nFp, Gy — - ) — / drAsejyon (O Fr, Gy — - )

- / Ar(9:A; — 0:A;)imn (9 F, Gy — ...

— [ dreiuBicimn (OnFo, G, — )

= [@rBy (0,F5,Gr, — ) = [ AvBy (05, G, — ... (1.159)

The term with second derivatives stemming from by-parts integration cast of the
second term on the first line of (1.157) contains €;,,,0;0,, Fp, and is, therefore,

identically zero. Finally, introducing ((1.159)) into (1.157]) gives the sought bracket
(1.23)) for one-species continuum.

1.4 Chemical reactions

Let us denote species by A,. Consider M chemical reactions written as

dalA, = > bLA, forr=1,...,M . (1.160)
a=1 a=1
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The stoichiometric coefficient + is given by 7% := b], —a/, for species A, and r-th
chemical reaction. Let us define the dissipation potential

=W onept) = [ a3 R0 (1.161)
o (1= 6%, (60) + - exp (= B.X(60) )
(1.162)
where 3, € [0,1], R,(pa) > 0 and
X, (p!) = le le ot forr—1,.... M, (1.163)

are symmetry factors, reaction rates and chemical affinities, respectively.
Then Z(%) gives, using (1.80]), the irreversible evolution of p, due to chemical

reactions (|1.160)) for a given entropy. That is
5E(chk)

(Dipa)ir = <5p* Pa=Spa’ §Z>
—Fy(pa) (exp (1= B)X,(02)) = exp (= BX(2)) ) - (1164)

The presented formulation of chemical kinetics as a dissipative evolution was
given in |50, |10, (1].

1.5 Boundary terms for MSPNP

The specification of the boundary conditions in continuum non-equilibrium ther-
modynamics, see e.g. [51] or [5], is based on global balance equations for surfaces
with discontinuities. The fluxes of quantities across the boundary stemming from
the balances are later on specified with making use of an entropy principle for
surface quantities. Ottinger [52] introduced the notion of boundary conditions for
GENERIC formulation of Navier-Stokes equations formulated in terms of Poisson
bracket and dissipation brackets. The two approaches give, for the description of
single momentum continuum, fairly similar results.

Let us restrict ourselves to the irreversible evolution to demonstrate a possible
way of obtaining similar, although less general, results for the case of weakly non-
local dissipation. Consider the following linear functional,

m) = / drp.y , (1.165)
Q

where v is a sufficiently smooth function with, in general, non-zero trace on 0f).
The flux of p, across 92 due to weakly non-local dissipation potential ((1.134)) is

obtained by evaluating the irreversible evolution of m} as

SEMSP 5

1 €0%
7 o= (= _ L, 2 (g o G0%a gy A
CUE < ops, " Opa >S /89 drMa ( (spa) (@pa + Ma, O )) v

_/erai L\i[a <_(5Tﬂa)2 (az‘PL + 672:8@' ))] v
(1.166)
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The surface integral, here not neglected /omitted, contains the flux of p, across
Q. For v = 11in Q is (1.166) equivalent to a global balance equation of p, in
volume (2 without convection (which was already relaxed for ((1.134))).

Adsorption

Let Q C R be simply connected with smooth boundary. Let us further assume
that a distinct thermodynamic system is carried by 02 described by surface mass
densities pa and surface entropy density . Let us also assume that the values of

the bulk quantltles may be defined on OQ e.g. in sense of traces as in ({1.166]).
Let us define the following dissipation potential,

2
—A/ % * *
= , = dS— < ) , 1.167
S (ga pa|F) 50 27a \s — Pa ( )

where the trace of bulk partial mass density p, on 0f) appears. We propose to
evaluate the irreversible evolution of p, due to EA analogously as in ([1.80)), that

is,

a 5"‘A 5:00c 1
«)irr — = — r - P . 1.168
ol = (5o s 5pa> (g~ sl (1.168)
oN

The flux of p,|aq due to ZM5F and EA may be interpreted, similarly to (1.166]),
using m], see (1.165)), as

6=MSP gmy 0= om}
<WﬁM=< ,7%>+<,7%> , (1.169)
Q o0

0Py 0pa 0p% 0pa

where the first term on the right hand side is ([1.166)). The function v can be
localized to the boundary, so that the volume integrals vanish. Therefore, one can
compare the surface terms , using ({1.166)), and conclude for isothermal conditions
that

1
v =—— (pz — p;|ag> on 0f , (1.170)
) TA \s

(STpa)2 < €0%a
APl (9.l + 2220, >
M, Pt Mg, 14

thus obtaining the interpretation of the irreversble flux of p,|sq. Because the
reversible evolution is already relaxed, the formula (|1.170)) specifies the boundary
condition for the flux of p,.

1.5.1 Application to yttria-stabilized zirconia interface

This section demonstrates a particular connection between the first and second
chapter. The bulk diffusion equation and the surface balance for
the mobile oxide ions will be derived below using the results of the first chapter.
The free energy models for bulk and surface YSZ and, consequently,
the bulk and surface chemical potentials are shared by the both

formulations.
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Bulk diffusion of oxide ions

Let us assume the isothermal setting of the second chapter, where Zr*", Y** and
immobile O form the crystalline lattice with vanishing velocity, see Sec. [2.2|
The flux of mobile oxide ions w.r.t. the crystalline lattice in the bulk is given
by . The flux, using the standard notation for the chemical potential and

temperature pl, = p, and s' = T respectively, reads

ml’ m
Otpom = 0; <po <3i,uom + 2050 0¢Q0>) , (1.171)
MOm MOom

where subscript Om denotes the mobile oxide ions. Let us employ the gradient
of the chemical potential of mobile oxide, see (2.31a)), that reads

kT 1
Oiftom = ————0;y . 1.172
m y(1—y) ( )
The choice
1 _# 2
- 1 + mom(-v7)m 1.173
MOm ]CBTQ ( + m# ) ) ( )

renders ((1.171)) equivalent to (2.35b|) with (2.36b|) which is derived differently
within the second chapter. in (1.173]) and 11.172:, the notation of the second
chapter is used .

The surface balance of oxide ions

Let us further apply ([1.168]) to the surface of YSZ, see Sec. . Again, the usual
notation for the symbols in (1.168]) is
o fla
ph = — and gf; = —S? . (1.174)

S

Hence, the evolution equation ((1.168|) for mobile oxide ions reads

1 /Sj/Om m
(Orpom) = . <— a M% asz) - (1.175)

and is, in an isothermal setting, for suitable choice of 74 and vanishing lattice
velocity, equivalent to the adsorption flux of mobile oxide ions .

It remains to derive the production of oxide ions due to the chemical reaction.
The chemical kinetics in Appendix [1.4] can be straightforwardly reformulated for
the surface species, due to the absence of spatial derivatives. It is sufficient to use
surface densities in place of the volume densities, that is, to equip the quantities
with the subscript s, i.e., to write p, and s instead of p, and s, respectively.

The constitutive equations for the mass production ((1.164), assuming the
surface densities, is identical to those employed in the second section 7
see notation @ Therefore, the same production term for electron-
transfer reaction @right,i.e., the production of the surface mobile oxide ions,
follows from (|1.164]). This, combined with , renders the evolution for
mobile oxide ions identical to derived in the second chapter.
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2. Charged double layer of high
temperature solid oxide interface

2.1 Introduction

Detailed continuum models of high temperature solid oxide electrochemical cells
(SOEC)E]describe the underlying chemistry with spatially distinguished phases
(oxide ion conductor, electric conductor, gas) of the triple phase boundary [53, 54,
55, [56]. Surface physics processes such as tangential diffusion and surface chemical
reactions of the surface species are employed. In particular, the electron-transfer
reaction at the triple phase boundary is usually modelled with Butler-Volmer-
type kinetics containing overpotential, the difference of the electric potential be-
tween the metal and the bulk of the YSZ, as the driving force. The ionically
or electrically conductive parts of a solid oxide cell are electroneutral in the re-
spective bulks. The overpotential, appearing at the phase interface is caused by
formation of a charged double layer of oxide ions in YSZ and electrons in the
electrode. Although the overpotential correlates with the excess concentration of
oxide ions available for the electron-transfer reaction in steady-state scenarios, it
cannot capture the dynamics of the double layer. Therefore, if such a model is
compared to the results of a dynamic current-voltage measurement, e.g., electro-
chemical impedance spectroscopy or linear-sweep voltammetry, the dynamics of
the double layer is underrepresented.

To determine the structure and dynamics of the space-charge layer of oxide
ions in the YSZ, at the continuum level, the Poisson-Nernst-Planck (PNP) system,
generalized in order to account for the effect of the finite density of available lattice
sites for oxide ions, can employed.

Such an approach was already used to capture the formation and behavior of
the electrochemical double layers at electrode-electrolyte interfaces |57, |58]. The
PNP system was successfully applied to the solid-state electrochemical systems,
e.g., lithium batteries [59, 60, |61].In [62], the PNP equations were already applied
for proton ceramic fuel cells, however, the thermodynamics of the crystalline
lattice and of the surface were not taken into account.

In this work, a modeling approach for charged bulk-surface interfaces based
on first principles of nonequilibrium thermodynamics resulting in a generalized
Poisson-Nernst-Planck system [5] (based on [17]) is used to formulate the model
of dynamics of the space-charged layer at the YSZ-metal-air triple interface. The
main advantage of this approach is its consistency between the free energy (equi-
librium) and fluxes (dynamics).

The paper is organized as follows. The free energy model of the bulk YSZ,
capturing the crystalline structure, immobile oxide ions and elastic deformation,
is developed in section [2.2] The resulting chemical potentials are introduced
into the gPNP model [5] after its modification for the description of the lattice
velocity. Section is dedicated to the treatment of the bulk metal and gas.
Both phases are assumed to be in a diffusional equilibrium. The free energy of
the surface and the surface dynamics are described and developed in the Section

'Either fuel cells, or electrolysis cells.

43



2.4 The modeling approach results in a coupled system of evolution equation
describing the transport of oxide ions in the bulk of electrolyte, adsorption of
oxide ions from bulk to the surface and electron-transfer reaction alongside with
the Poisson equation.

Using a finite volume based discretization, double layer capacitance and linear-
sweep voltammetry simulations are performed in Section 2.5l The performed
simulations study the effects of the newly introduced concept immobile oxide
ions, the free energy parameters and the kinetic rates on the current response.

The novelty of the approach lies in the synthesis of the crystalline lattice
bulk-surface free energy description and the coupled bulk-surface dynamics in
non-equilibrium thermodynamics framework. Owing to this, it is possible to
simulate the equilibrium behavior, e.g., the double layer capacitance, and dynamic
behavior, e.g., the cyclic voltammetry, using a single model. Notable contribution
to the state of the art models of YSZ is the thermodynamic treatment of the
surface dynamics.

2.2 Bulk YSZ

We consider the charge transport exclusively in the isothermal electrostatic set-
ting, therefore the temperature 7' is assumed to be constant and the electric field
is given as . = —V . Moreover, a simple material model for polarization based
on a constant susceptibility y is chosen.

2.2.1 General mixture and crystalline structure

Mixture quantities. We model YSZ as mixture of four constituents: zirco-
nium and yttrium cations denoted by Zr and Y, respectively, and oxide anions.
We assume that only a part of the oxide anions is freely mobile and refer to these
as Om, whereas the remaining immobile oxide anions Oi are fixed to the under-
lying crystal structure. For referencing the different constituents of the mixture
we use the index set Zysy = {Zr,Y,0i,Om}. Each constituent is characterized
by the atomic mass m, and its atomic charges z,ey, where a € Zysz. The con-
stant eq is the elementary charge and z, is the charge number of the constituent.
Multiplication of the number densities n, by m, gives the partial mass densities,

0 = MaNa - 2.1
p (

The (total) mass density p and the free charge density n' of YSZ are defined as
follows,

p= Z MaNg nf = e Z ZoNa - (2.2)

a€lysz a€lysz

While each species is transported by its partial velocity v,, we introduce for the
mixture the barycentric velocity

v = ! > pava - (2.3)

P a€lysz
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The diffusion fluxes of the constituents are determined by the transport relative
to the barycentric velocity, viz.,

Jo = pa(Va — V) implying the constraint > J,=0. (2.4)

a€lvsy

Crystalline structure. The crystalline structure of pure ZrO, is well known,
see e.g. [63] and might be described conveniently in terms of unit crystal cells.
Unit crystal cells of yttria-doped zirconia are, due to the yttria doping, difficult
to be described systematically [64]. To overcome this, we introduce cation and
anion spatial lattices, so that they coincide with the respective lattices in pure
cubic ZrOs, i.e., locations of Zr*" or O* . Contrary to the pure ZrO,, the cation
lattice of YSZ is occupied also by Y*' and some of the anion lattice sites may
be empty. The cation lattice unit cell is assumed to be face-centered cubic and
contains 8 cations in its vertices and 4 in the centers of the faces. Each vertex
site is shared by seven other unit cells and each face-center site by one additional
unit cell. Hence, there are Mg = 4 cation lattice sites belonging to one unit
cell. There are Mf = 8 anion lattice sites contained in the cation lattice unit
cell, these are located inside the unit cell and not being shared by the neighboring
unit cells. In general, the ratio m = Mf / Mééé is a fixed constant that results from
the given combination of materials. In the case of YSZ, we have m = 2. The
spacing of the lattice can be described by a number density n” of unit crystal
cells, that may be non-homogeneous in space due to the non-uniformity of the
lattice. The densities of the cation lattice sites are then given as n? = Méﬁ n#
while for the anion lattice sites is m]\/[zfE n#. We assume that all cation lattice
sites are actually occupied by either zirconium or yttrium cations whereas some
of the anion sites may be left unoccupied. We thus have

nﬁ = ng, +ny , mnéé > noi + Nom - (2.5)

To further specify the state of the YSZ , we introduce the proportion v# of
immobile oxide ions and the filling ratio y of the anion lattice sites,

noj NOm
mnga mngc — Noi
In addition, we define the molar fraction 27 of Y,0O3 in YSZ,
1
in
o 2.1
nc - inY

To simplify the model, we assume the Zirconium, Yttrium and immobile oxide
ions are bound to the lattice and thus all are transported with identical lattice
velocity

Vg = VT for a € {Zr,Y,0i} . (2.8)

2.2.2 Free energy and chemical potentials

The free energy densityf| py» of YSZ is assumed to be a function of temperature
T, partial mass densities p, and the electric field E. We suppose that the free

2The free energy function is defined here as: pi) = pu — P - E — Tps, where pu is the density
of internal energy.
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energy density pt (T, pa, E) can be split into four additive parts: reference energy,
entropy of mixing, elastic energy and polarization energy,

PU(T (Pa)actysys B) = ppr™ + pyPol 4 pyptnech 4 (2.9)

where only piP°® depends on the electric field E and only py™>* depends on
the crystal structure. The entropy density ps and the chemical potentials of the
respective species u, are defined with respect to the free energy density as

o oy _
ar — P Dpa  He

(2.10)

Reference energy. The reference free energy describes a suitable chosen ref-
erence state and is assumed to be

prt =" papl? (2.11)

a€clysy

Here, ;17 denotes the temperature dependent reference chemical of each individ-
ual constituent.

Polarization energy. On top of the free charge density n¥ according to ight,
an excess charge density n” may arise in the material due to the presence of the
electric field, mechanical strain, etc., see for example |65, Chapter 2]. This excess
charge is usually described by a polarization vector P so that

—divP =n". (2.12)

We refrain from a comprehensive discussion of constitutive modeling of polariza-
tion like, e.g., in [5] and assume that in bulk YSZ, the relaxation time of the
polarization is small and the polarization vector P is proportional to the electric

field E, i.e.,
Opy _
OFE
The number Y is the electric susceptibility of YSZ, which for simplicity is assumed

spatially homogeneous here. Integrating (2.13) such that pyP°®r vanishes for
E — 0 yields the free energy density due to polarization

-P, P = ys,E . (2.13)

pyPr = — | B (2.14)

Elastic energy. We introduce the material pressure p, which is independent of
the electric field E, and is defined by the Gibbs-Duhem relation

p=—p0+ Y pafla (2.15)

a€lysz,

where p@Z = pyr + pyp™x 4 pypmech - The elastic contribution to the free energy
is based on a simple linear constitutive relation between the material pressure p
and the number densities n, of YSZ,

p=p" + K< S vin, — 1) : (2.16)

a€lysz
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Here K is the bulk modulus of YSZ and v/¥ are the specific volumes of the
YSZ species under the reference pressure p™. In general, the specific volumes
are functions of temperature and pressure, but for simplicity we assume v(’ff are
constant.

By use of an alternative set of variables for the free energy density p@Z the
Gibbs-Duhem relation ([2.15)) can be written as, cf. [58, equation A.6],

p_Ov (2.17)

p* Op

Here p&(t, p, o) denotes the free energy density o as a function of the total
mass density p and the mass fractions ¢, = ”7‘*.

Insertion of (2.16)) into (2.17) and integration such that pi™" vanishes for
p — p"¥ yields the desired elastic contribution to the free energy py™e, viz.

pet = (p* — K)(pf — 1)+ KpfIn(pf) , (2.18)

where pf = > hezyq, V",

Entropy of mixing. The entropy of mixing depends on the microscopic con-
figuration of the mobile oxide ions in the anion lattice. We therefore consider a
YSZ specimen that is homogeneous, so that n, = N,/V, where N, is the total
number of a species in a volume V. Let W represent the number of possible re-
alizations to arrange the mobile oxide ions on the anion lattice. Then the mixing
entropy density, according to Boltzmann’s formula, reads

o —— I?/S In(WW) . (2.19)

Every immobile oxide ion is assumed to be fixed at a certain anion lattice site.
The number of anion lattice sites available for the mobile oxide ions is therefore
(m N& — No;). Thus, there are

— (m N& — Ng;)!
Nom! (m N — Noi — Now)!

(2.20)

ways to place the mobile oxide ions, which are indistinguishable, at the admissible
lattice sites. Using Stirling’s formula, we obtain for the mixing entropy density

pnmix ~~ —kB(Tnné’E — nOi)(y Iny + (1 — y) 111(1 — y)) ) (2’21)

with the filling ratio y according to (2.6). Then the entropic contribution to free
energy density follows by integration of (2.10))r with respect to the temperature,

™ = kT (mn¥ — noy)(ylny + (1 —y)In(1 —y)) . (2.22)

The integration constant is chosen such that the entropy of mixing contribution
to the free energy density vanishes at T' = 0.
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Chemical potentials. The chemical potentials are independent of the electric
field due to the choice of a constant susceptibility. With the above contributions
to the free energy, the chemical potential are

ref _ref
pom = 5+ A5 () 28 (ot (22)) L oma)
ref — Tef
MOi:Mgfif—f)f(iln(l—y)—i—f%(pref—i—l(ln(l—f—p [f )) , (2.23b)

ol

—_pref
ua:u;ef—km’;‘fln(l—y)—k%<pref+Kln<1+p Kj_j ))

a=7r,Y . (2.23c)

2.2.3 Bulk governing equations and constitutive
modeling

The electro-thermodynamic state of YSZ, occupying an interval Qysz; C R at
any time t, is described by the number densities n, (o € Zysyz), the barycentric
velocity v and the electrostatic potential ¢, which all are functions of time and
position. In the isothermal electrostatic setting with a constant susceptibility,
the evolution equations for the electro-thermodynamic state variables in the bulk
are given by the Poisson equation, partial mass balances and the quasi-static
momentum balance [45, |5,

—eo(14 X)0sap = ', (2.24a)
Opa + 0.(pav + Jo) =0, a € Tysy , (2.24D)
0.p+nt0.0=0. (2.24c)

The diffusion flux. The constraint (2.4)ene and the constitutive equations
(2.8) imply that the diffusion fluxes have to be pairwise linear dependent. We
chose Jom as the independent flux and obtain

Jo = Lo Jom for o€ {Zr,Y,0i} . (2.25)

_er + py + poi

An entropy principle [5] is exploited to obtain the constitutive equation for the
flux Jow. To this end, the entropy production due to diffusion is written as a
sum of binary products as

!
&p= > JuD, >0, (2.26)
a€lysy,
where the driving forces are
o Zafo 1
D, = —(82/; + maof ZQD) for a€ IYSZ . (227)

To satisfy the second law of thermodynamics, i.e., to guarantee that the entropy
production is non-negative, we insert the relations (2.25)) into the entropy pro-
duction (2.26) and then chose a linear relation between the diffusion flux Joy,
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and the resulting term depending on the driving forces. We obtain

pz:(Dzy — Dowm) + py(Dy — Dom) + poi(Doi — Dom)
Pzr + py + poi

Jom = —M ( ) (2.28)

with M > 0.

Here, mobility coefficient M may be a function of the thermodynamic variables
and their derivatives, as long as it is guaranteed to be non-negative.

Incompressibility. A useful simplification of the YSZ bulk model is possible
when taking the large bulk modulus K of YSZ into account. Hayashi et al. in
[66] reported a bulk modulus of YSZ of K = 205GPa at 25°C and we assume it
to be in a comparable order of magnitude at the operating temperature of YSZ
at 600°C. This motivates to study the incompressible limit p{if — o00. Under

the assumption that the pressure p is bounded, we obtain from the constitutive

relation (2.16)) the constraint
K/p™ — oo > v¥n,=1. (2.29)

a€lvsy,

Thus, the pressure p becomes an independent variable of the system and the sum
of all number densities is independent of the pressure. For simplicity we assumed
that the crystal lattice does not deform over time and that all species except
species Om move with the lattice velocity. To be consistent with the incompress-
ibility constraint , we thus have to require that the specific volume of the
mobile oxide ions vanishes, i.e.,

vt =0 . (2.30)

In the incompressible limit K /p™ — oo, the chemical potentials (2.23)) are linear
in the pressure:

. ref knT )
fom = fom T -0 (1—y> ; (2.31a)
re vref
poi = ] — 5L In (1 — y) + 2obp | (2.31b)
fho = p" + m% In(1-y)+ %p a=7rY . (2.31c)

Vanishing lattice velocity. For further simplification of the YSZ model, we
assume that the lattice does not deform over time such that an appropriate ref-
erence frame can be chosen where the lattice velocity v# vanishes,

v =0, (2.32)

Then the mass balance equations imply constant number densities for the im-
mobile species, i.e., dn, = 0 for @« = Zr, Y, Oi, and the barycentric velocity is
given by pv = pomUom Which can be expressed in terms of the diffusion flux of
the mobile oxide ions as

(pze + py + poi)v = Jom - (2.33)

The assumptions of incompressibility and vanishing lattice velocity may be
also viewed alternatively as a description of the charge transport in the reference
frame of the cation lattice which does not undergo any deformation.
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2.2.4 Summary of the bulk YSZ model

The constitutive modeling above motivates to change the set of variables from the
number densities (n4)aez tO {nﬁ, v# 2% y}. Due to the vanishing lattice velocity
the quantities n¥, z# and v# are constant in time and are further considered
as model parameters. Therefore, the thermodynamic state of the bulk YSZ is
described by three quantities: filling ratio y, electrostatic potential ¢ and pressure
p. In addition, we define the lattice volume V#, lattice mass m* and lattice charge
number 2 as

V#né7£ = anvgf + nyv{}ef + nowgef

1—a# 217
= nf ( v 4 Zoy +my# v§f> : (2.34a)

1+a# 2 142

1—a* 277
m#nﬁ = nﬁ (Hx#er + 1_i_?my +muv* m()) , (2.34b)
1—a# 227
#,# _ F #
2"nd = ng <1+x#zzr+1+x#ZY +mv zo> , (2.34c)
respectively.

The evolution of the thermodynamic state is then described by

_50(1 + X)azzgo = nF s (235&)
1 — v#)m —v#)m
O0:p+n'p=0. (2.35¢)

Let us assume M linearly dependent [67] on pom as M = D*22 por,. Eventually,

the free charge and the diffusion flux of mobile oxide ions are given as

n' = egnd, (2% + 20(1 — v )m y) | (2.36a)

—v#)m —v#)m azy €0z
JOIH = —MOm D % (1 + Mom u m#) y) (1 —y + Yy %B%m z‘p) ) (236b)

where ([2.35c) was used in place of the pressure gradient term. The parameter
x# has usually values in the range of [0, 0.2] and we have v# € [0, %fiiz] The
remaining parameters of the YSZ model are given in Tab. .

2.3 Bulk metal and gas phase

In order to act as an electrolyte in a SOEC, the YSZ has to be connected to two
different materials: a gas phase and some electric conductor. In this paper, we
do no consider the internal structure of these parts of the SOEC. Therefore, we
assume the gas to be equilibrated such that boundary conditions at the gas-YSZ
surface can be determined easily. Although not appropriate for the use in real
SOEC, we will treat the conductor as a pure metal, since this way the conductor
can be almost completely removed from the model.
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temperature T 800°C

dielectric constant 'y 40
Zr cation charge number zy, +4
Y cation charge number zy +3
oxide ion charge number zom, zo; —2
Zr molar mass My, 91.22 gmol !
Y molar mass My 88.91 gmol !
O molar mass Mo 16 gmol !
ratio of C/A lattices m 2
YSZ molar fraction z# 0.08
ratio of immobile O*"  v# [0, %ﬁiz]
specific lattice volume of YSZ V# 3.35 x 1072 m3
lattice cation number density nk (V#)~1
diffusion coefficient D 1 x 107" m?/s

Table 2.2.1: Characteristic values. Per-particle masses m,, are used in the calcu-
lations.

2.3.1 Bulk gas

The gas in the bulk is assumed to behave as an ideal mixture of ideal gases.
We introduce the index set Z,,s of the constituents of the gas phase. For each
constituent, the partial pressure is p, = coRT. The chemical potential of a
gaseous species reads

re kT Pa
tta (e T) = (T + . In <pref> for a € Zyps, (2.37)

where the reference pressure is given by the standard atmospheric pressure p™ =
100 kPa and p” is the chemical potential of the pure substance.

In the bulk domain Q. C R?, we assume that the diffusion is fast such that
the chemical potentials are homogeneous in space, i.e., Vu, = 0 for a € Zgys.
Since there are no charge carriers in the gas, we assume that the electric potential
© is also homogeneous in the gas phase.

2.3.2 Bulk metal

For the description of the conductor, we apply the Sommerfeld model of metals,
cf. [68]. The metal is considered as a mixture of positively charged metal ions
M and free electrons e~ with negligible volume and high mobility. Thus, we use
the index set Zeta = {M™T,e7} for the constituents. We assume the metal ions
to be incompressible and thus the density of metal ions to be homogeneous in the
whole metal domain Qea1 C R?, cf. [58]. Sufficiently far away from the metal
boundary, i.e., outside of double layers, the metal is electroneutral and therefore
the bulk number density n.- of the electrons and the corresponding bulk chemical
potential y.- are material dependent constants. Neglecting electric resistance, the
electric potential ¢ is homogeneous in the metal bulk. Moreover, we assume quasi-
equilibrium in the metal such that in particular the electrochemical potential of
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the electrons is constant not only in the bulk but also inside double layers, i.e.,

V(M- pte— — eop) =0 . (2.38)

2.4 Surface — triple phase boundary

The electrodes in solid oxide cells are combined of YSZ, metal and the gas phase.
Thus, an interface model should, in principle, treat three thermodynamically
distinct surfaces and one triple phase line present in the electrode. For a start,
in this work, we aim at a strongly simplified 1D model of the electrodes. To
incorporate the triple phase boundary into such a 1D model, we assume that the
only contribution of the metal as an electric conductor is to provide free electrons
for the charge transport. We make the following assumptions:

i) The YSZ surface is endowed with a thin layer of metal ions and their cor-
responding free electrons.

ii) The tangential diffusion of electrons along the surface is assumed to be fast
compared to all the other treated kinetic processes.

iii) The metal ions and electrons do not contribute to the internal energy and
entropy of the surface.

Due to the first assumption, the electrons are transported only tangentially to the
surface. The second assumption implies spatially homogeneous surface electro-
chemical potentials which only may change in time. The last assumptions allows
to approximate the triple phase boundary by a simple surface model, which can
be reduced to a 1D model in a straightforward way. A more detailed derivation of
this reduction of a triple phase line into a 1D model can be found in the context
of intercalation electrodes in [69).

The following derivation of the YSZ surface model is based on the general
approach developed in [45] 5].

2.4.1 Surface constituents and basic quantities.

As in the bulk, we describe the YSZ surface as a mixture of different surface con-
stituents and apply for the surface quantities analogous notation with an underset
's’ added. In the isothermal case, the surface temperature Z is identical to the
constant bulk temperature 7" and appears in the equations only as a parameter.
In addition to the constituents from the metal and the bulk phases of the gas and
YSZ bulk, surface reaction products may be present on the surface. Thus, the
index set of all surface constituents is of the form Zg = Zygy U Zgas U Zmetal U Lreact
where Z,qact is the index set of surface reaction products.

Each surface constituent is characterized by its surface number density Na,

atomic mass m, and electric charge number z,. The partial mass densities p,,
S
the total mass density p and the free electric charge density for the surface are
S
defined by

— — F_
Pa = Malla P=2 Pa nt =) Zaola - (2.39)

s a€lg s a€lsg
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We assume that proper preparation and cutting of the bulk YSZ crystal results
in the formation of a planar face which can be represented by our surface model.
Therefore, as in the bulk YSZ case, the surface lattice density of cations is in
certain relation to the surface density of anion lattice, i.e., the surface anion

density is mn"c7£ The surface cation lattice is assumed to be fully occupied by
S

S
zirconium and yttrium cations, whereas the anion lattice is partially occupied by

mobile and immobile oxide ions.

néﬁ = ng, + ny , mné’ﬁ > noi + Nom - (2.40)
s S S S s S S

The surface model needs to reflect the structure of the bulk YSZ model. The
YSZ surface is defined by the cation crystal lattice. The deformation of the
cation lattice therefore prescribes the surface velocity. In order to maintain the
compatibility of the bulk model and the surface model, we have

v=0*. (2.41)

On the YSZ surface gaseous species may adsorb and some reaction products
may be formed. The admissible adsorption sites for gaseous species and reaction
products in general depend on the lattice sites of the YSZ crystal. We assume that
these adsorption sites coincide with the anion surface lattice sites of YSZ. Several
chemical reactions may occur. Denoting the constituents by A, for a € Zg, the
reactions can be written in the form

Ry
> e == > blA, for  i=1,...,M. (2.42)
a€lg Sb a€lg

The constants a’,, bl, are positive integers and v/, := b!, — a’, denote the stoichio-
metric coefficients of the reactions. Here ch > 0 denotes the forward reaction
rate and accordingly R; > 0 denotes the backward reaction rate. The net reaction
rate is defined as R’ = R} — R}. Since charge and mass have to be conserved in
every single reaction, we have

Z meY, =0  and Z ZaVe =0 for i=1,...,M. (2.43)

a€clg a€lg

2.4.2 Surface free energy

The surface free energy can in general be assumed to be independent of the electric
field. Here, we also assume that there is no elastic energy contribution and we
distinguish two different entropic contributions to the free energy density. One
takes into account the entropy of mixing of the mobile oxide ions on the anion
lattice and the other is due to for the mixing of adsorbed gas species and reaction
products on the adsorption sites. The metal ions and electrons only contribute
to the reference energy. The free energy density for the surface is of the form

pw(7;7 (pa)aEZS) — pwref + pwmix, anions + p¢mix, adsorbates ' (244)
ss S s s s s S s
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The surface entropy and the surface chemical potentials are defined as

p opip
o= = — = | = Is . 2.4
or ) =0 dpo | The ok D

In general an elastic energy contribution has to be taken into account. The
derivation of the energy is quite similar to the bulk. In [58] an example for a metal-
electrolyte interface can be found. It turns out that if the constitutive equation
of the surface tension depends only on the immobile YSZ species, and the lattice
velocity v is equal to the surface velocity, then the remaining equations for
the adsorption and surface reaction are independent of the elastic contribution.
Therefore, for simplicity, we ignore the surface elasticity.

Surface mixing of oxide ions. On the surface we introduce the coverage of
anion lattice sites as
NOm
S
y=—7—"". (2.46)
s mnd — noj
S s S
Then, the free energy contribution due to the mixing entropy of the oxide ions
can be derived in analogous way like in the bulk as

pwmix,anions — kBJ; (,rsn néé _ Q/Oi) (% hl(y) + (1 — y) ]n(l — y)) (247)

S S S S S

Surface mixing of gaseous adsorbates and reaction products. Since
some of the adsorption sites for gaseous constituents might not be occupied,
we can define the number density of vacancies and the surface coverage of the
gaseous species as

ny =mnk — > na, (2.48)
® ®os aeIgaSUIreact ®

Na
Yo = — = for a € Zgas U Zreact U {V'} . (2.49)
S m nc

The free energy contribution due to the configuration of adsorbed gaseous species
can be derived by Boltzmann’s formula where the vacancies are taken into ac-
count. We obtain

pwmix,adsorbates _ ]{?BY; zl nﬁ Z Ya In Yo - (250)

S S S S
5 a€ZgasUTreactU{V'}

Reference surface energy. As in the bulk, the reference surface free energy
describes a suitable chosen reference state of the surface and is assumed to be

™ = 3 paiti (2.51)

a€lg

uré denotes the temperature dependent reference chemical potential of each in-
dividual constituent.
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Surface chemical potentials. The surface chemical potentials are given in
terms of the surface number densities according to definition (2.45))ight as

ref ke T ?SJ
Hom = [Gm + oo In ) (2.52a)
e, sz;
Hoi = /SLOif — o In (1 — gs/) : (2.52b)
f mk:BT
Ha = [y +Smas<ln (1—y) +lnyv>, a=17rY, (2.52¢)
o BT (40
fa = o’ 4+ —=1n , @ € Lyas U Lrenct (2.52d)
s s « Yyv
o = ggff : @ € Tinetal - (2.52e)

2.4.3 Governing equations, constitutive modeling and
coupling to the bulk

For the coupling of bulk and surface, we have to introduce the boundary traces
of the bulk quantities. For a generic function u(¢, ) in the YSZ bulk, we define

YSZ g
ul g = ;Begzlgx;_}su . (2.53)

In analogous way, traces for functions in the gas bulk domain can be defined.
Due to the choice of pairwise disjoint index sets for the bulk domains, most of
the quantities are only defined in one of the subdomains. Therefore, we assume
the simplification u|s = lim, ,su. By convention, we let v denote the outer
normal of the YSZ domain.

In the planar one-dimensional approximation of the general surface mass bal-
ance equation, cf. [45] 5], the tangential transport and the curvature related terms
vanish. Only the surface chemical reactions and mass transport normal
to the surface can change the surface densities of the constituents. The surface
mass balances and the remaining surface equation for the electric field in the
electrostatic approximation read

M
Otpa = ZyimaRi + ((Ja + pa(v — v))u) , o€ Iysy . (2.54a)
s i=1 °

S
M . .
Dipa =Y _~amaR" — ((Ja + pa(v — v))v) ;€ Ly (2.54b)
s i=1 S S
M . .
Oipo = vaxma]%Z , o € Lrenct - (2.54c¢)
s i=1
50((1 +x)Ve V) 0= 757,F : (2.54d)

We assume that Zr,Y,Oi are not involved in any surface reaction. Since v, =
# o . .
v? = v for @ € {Zr,Y,0i} according to (2.8) and (2.55), the surface mass

balance equations (2.54a)) imply that the corresponding surface number densities
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are constant, i.e.,

0 = pa (v — v)|s = (Ja + pa(v — g))‘s = Oina (2.55)
fora =7r,Y,0i .

Maxwell’s surface equations in the electrostatic setting imply that the electro-
static potential is continuous at the gas-YSZ interface, see, e.g. |65]. for further
details. This allows us to introduce the surface electrostatic potential,

o= 0|8 = |8 . (2.56)

2.4.4 Constitutive modeling

To derive constitutive equations for the normal mass fluxes and surface reaction

rates, we apply the entropy principle according to [5]. At first, we reduce the

entropy production £ derived in [5, eqn. (6.14)] to the isothermal electrostatic
S

one-dimensional setting ﬁ, Viz.,

(=g 2 (3 )

S k=1 ﬁEIS

gr-eact
Pa YSZ
+ > ((Jau + pa(v — U)V) ("Ta — T))
a€lysyz ° s S
§vsz
22 gas |
LY (— (Jav + palv — v)v) (“T _ T)) >0 (2.57)
a€Lgas ® s S
Egas
on S.

The entropy production can be split into the three contributions: &;eact, {ysz and
S S
€gas, stemming from surface the reactions (2.42)), adsorption from the bulk YSZ

S
and adsorption from the gas phase, respectively. In analogous way like in the

bulk, the structure of the entropy production (2.57) allows to derive constitutive
equations such that the second law of thermodynamics is satisfied, i.e., the entropy
production is non-negative.

Adsorption from YSZ bulk. Let us define the adsorption of oxide ions from
the bulk to the surface as

0?7 (YSZ) — O* (s) . (2.58)

3For the representation of the entropy production, we assumed that the kinetic term % plv—
S

v)? is small and can be ignored.
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According to (2.55)), £ysz contains only the term with normal flux of mobile oxide

ions, i.e.,

HOm

A IC

YSZ

, (2.59)

S

where the second bracket on the right hand side is equal to affinity of (2.58)).
By using a linear relation between the differences of chemical potentials and the
mass flux, the entropy production £ysy is guaranteed to be non-negative,

S

HOm

YSZ I
DR C

YSZ
with D>0. (260)

S

Adsorption from gas phase. In the bulk gas phase, the fluxes are restricted
by the constraint 3-,c7 . Jo = 0 and on the surface, (2.41]) has to be satisfied.
Therefore, we reformulate the entropy production due to the gas adsorption, as

gas

Mo
Mo s
€ = —ol0— 00| (F )

S

gas

Lo (261)

+ > (—(Jay+pa(v_g)y)>(ﬂa;uo_Fs‘ogﬁsbo)

a€Zsas\{0}

where an arbitrary species is selected and denoted by the index 0. Linear relations
are employed to define the constitutive relations for the mass fluxes of the gas
species on S,

gas

s (ua—uo_’ia_’s“’)
o\ T

S S
for a € Zyas \ {0} ,
e
s s \T T

The phenomenological coefficients ]\s/[ o and J\S/[ are positive to guarantee a non-

- (Jav + pa(v — g)y) (2.62a)

S

with Mo, M >0.  (2.62Db)
S S S

negative entropy production.

Surface reactions. For the surface reactions, we use the nonlinear closure
developed in [45]

VA »Y
R' = 0

‘ . 1_§ '
exp <_kiT 2 ”Y&ma/sﬁa) — exp <(k137?) > ’y;maga)] ., (2.63)

s a€ls acls

with Ry > 0. The constants $° € (0,1) are called symmetry factors. In an
asymptotic limit of vanishing double layer width the constitutive equation (2.63))

allows to derive generalized Butler-Volmer equations for the surface reactions, see
[48].
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2.4.5 Summary of the surface model

On the surface, we consider a single surface net reaction (2.69)yight with 5= 1/2.
From the YSZ phase only the mobile oxide ions and from the conductor only
the surface electrons are allowed to participate in this reaction. We assume fast
adsorption from the gas phase, i.e., jia|s = o for a € L.

S

AG y
é% = —2Rosmh < [kB; + Yom In (1 — y)

+ 2 %1H< r€f>+ > 7a1n< V)D (2.64a)

a€lgas a€lreact

AGpg —“Yommom,LLOm%—% Mo~ ,ugef—i— Z Vamauref+ Z %mauff (2.64b)

S aEIgaS a€Zreact
Moreover, we choose
m
D =40 (2.65)
s kB
so that [1;10} = 1/m?/s. Finally, only the following evolution equation is solved
for on the surface,
(1= v#)m AG yls 17Y
Oy — A =744 > = nR, (2.66
MoGT— YT LMo | T i s ¥ moYomR , (2.66)
S
with
AG 4 = momp& — mompisd g (2.67)
reaction kin. coef. Ry 1 x 109 /m?/s
oxide ion adsorption coef. Aq 1 x 10'7 /m? /s
surface density of cations (Sz# YV# ~1.04 x 10719 m?
surface ratio of imm. ox. ions ¥ 0.9

surface anion lattice num. m [0,4]

gibbs energy of adsorption AG, 0.2¢V

gibbs energy of reaction AGgR 0.2eV

partial pressure of Oy po, 21 kPa
standard pressure p"% 100 kPa

Table 2.4.1: Characteristic values and parameters for the surface part of the
model.
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2.5 Simulation of a SOC half-cell

We consider an YSZ-air electrode that contains the YSZ and gas bulk domains
and the YSZ-gas surface S located at xg. We chose a point zp > xg outside of
the double layer, located in the bulk YSZ sufficiently far away from S. Thus, the
YSZ can be assumed to be electroneutral and consequently also isobaric in the
YSZ bulk including xg. We assume that the pressure at xp corresponds to the
outer pressurd’]and the filling ratio of the anion lattice sites y at 2 is determined
by the crystal lattice, i.e.,

Z#

yp =y(t,xp) = — (2.68a)

Zom (1 —v#)m’
p(t,zp) = 100kPa . (2.68b)

The gas phase consists of nitrogenﬂ N, and oxygen O, and values for the spatially
homogeneous chemical potentials py, and o, are prescribed.

On the YSZ surface, two reaction take place: dissociation of oxygen molecules
and electron transfer to form oxide anions, viz.,

0y =20 and O+2e” = 0> . (2.69)

The adsorption of gaseous species is assumed to be considerably faster than the re-
action and diffusion processes. Hence, the phenomenological coefficients in equa-
tions for gaseous adsorbates are large, implying that the surface chemical
potential and bulk chemical potential of the gas species are equal. Moreover, we
assume fast dissociation, i.e., the reaction rate for the dissociation reaction
is large, and we obtain from ([2.63])

fast adsorption: MN2|S = UN, /JJ02|S = Ko, (270&)
s s

fast dissociation of O,: 2Mo o = Mo, o, - (2.70Db)

Cell potential. The thin metal layer on the YSZ surface is assumed to be
connected to a metal current collector, e.g., a wire. Therefore, there is an electric
contact at the YSZ surface to an external circuit. Let u®' and @ex; denote the
(spatially homogeneous) chemical and the electrostatic potential in the current
collector bulk, respectively. Assuming, that the electrochemical potential of the
electrons is continuous at the surface, we can determine the contact potential

Uomf = Qext — A8
S

Ugef = kaTmef (ug’ft - /Sie—) ) (2.71)

Due to the incompressibility of the metal bulk and the constitutive equation
(2.52¢]) on the surface, the contact potential is a material dependent constant,
ie., U = 0.

4In general, the total stress has to specified, but due to electroneutrality assumption at zp
and the one dimensional approximation, the total stress and material pressure p coincide.
5We chose nitrogen as the reference species for the gas phase, i.e., Ag = Nj.
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In principle, we are capable to measure the electrostatic potential pp at zp,
e.g., with a suitable reference electrode. We define the half cell potential U of the
solid oxide half-cell as

U= eyt — B = Ugef +o—vp. (2.72)

Thus, boundary condition for the electrostatic potential in the YSZ domain is
given by the half cell potential U, and a normalization condition for ¢p, e.g.,

QOBZO.

Electric current. We are interested in the electric current I flowing through
the electric wire contacted to the SOC electrode. The global mass balance equa-
tions allows us to relate the electric current I, flowing through the wire, to the
quantities of the SOC electrode model as follows,

YSZ
S

I d

= = ——(eozomton) + g((1 + x)eoVir )|

M
A dt dt _Ze*eOZ’Ye*R ) (273)

=1

where A is the area of the cross section of the gas-YSZ interface. The derivation

of formula (2.73) is summarized in [section 2.A|

2.5.1 Double layer capacitance of blocking electrode

First, we want to investigate the equilibrium properties of the model derived above
and therefore assume that no electron transfer reaction take place on the surface.
This situation can be met if the contact of gas phase and YSZ is prevented by
e.g., continuous metal layer. When an applied voltage is sustained so that the
system is allowed to relax to an equilibrium state, and mobile oxide ions adsorb
or desorb between the bulk and the surface and a charged layer in the bulk of
YSZ is formed. We introduce the boundary layer charge QJp;, and the surface
charge Qg of the gas-YSZ interface as

TB
QpL = — / n" dz (2.74)
g
Qs = —Z0m€oNOom - (2.75)

In equilibrium both the surface charge and the boundary layer charge are
function of the applied half cell potential U, or — equally well — of the voltage
U—U = o —pp, cf. [58]. This allows us to define the corresponding surface,

S
boundary layer and double layer capacitance as

d d
QS 3 C’BL - 77“@0@]31‘ s CDL = Cs + CBL , (276)

Co———
ST AU -y AU - Ug7)

respectively. Due to the 1D approximation, we are able to derive explicit represen-
tations of the bulk and surface capacitance as functions of the potential difference
U— Uoref . The homogeneity of the electrochemical potential in equilibrium, i.e.,

Hom + Zommegm(p = NOm(xB) + Z0m £ (p(SL’B) , (277)

MOm
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allows to express the filling ratio and the free charge dependence on ¢ — pp as
n" (o = pp) = conft (=% + zom(1 = v¥)m y(o — p)) (2.78)

X(SD — ¢¥B) .
with X (p— =
1+ X(o—¢B) (p=¢s) 1—-yp

exp (—20m22 (0 —¢pp))
(2.79)

y(p — ¢B) =

Then multiplication of the Poisson equation (2.24a)) with 0, and integration
yields, assuming vanishing 0,¢ in the bulk,
2(307@£

Opp = —sign(y — ¢p) A+

x WBTu —v#)min (1= ys)(1+ X - ¢8))) - (¢ - pn)2#

= F(p—pp) . (2.80)

Clearly, the derivative of the potential is a monotonous function, thus, we can
express the boundary layer charge and capacitance as

_ [eser () _ n"(ps — vB)
QBL = /0 F((ﬁ) dSO s CpL = m . (281)

The impact of the mobility ratio v# and of dielectric constant x on the bulk
layer capacitance is shown in Fig. [2.5.1] To screen a positive surface potential, a
negatively charged layer in the YSZ has to be formed by occupying available anion
lattice sites. Clearly, this number of available anion lattice sites is independent
of the mobility ratio v# and thus, the charge layer profile and the double layer
capacitance Cpr, have to be independent of v# for positive applied potentials.
To the contrary, when the surface potential is more negative than the bulk, a
small 7 i.e., a large portion of the oxide anions is mobile, allows to vacate many
anion lattice sides near the surface, leading to effective screening of the surface
potential by a high negative charge density in the boundary layer and resulting
in high capacity. The growth of the double layer capacitance for increasing ¥,
can be attributed to a spreading of the boundary layer due to the greater amount
of the polarized charge. We fix y = 27 and v# = g# = 0.9 for all the following

numerical simulations if not stated otherwise. On the surface, we have

Y (o —¢n)
— = 2 2.82
e =) = Ty @0
. _ YB AGA ZOmeé
with Y(c,sp —¢p) = - exp (— kel ﬁ(f - SOB)> : (2.83)
Thus, we can express the surface charge and capacitance as
Qs = —zOmeO((l - I/jé)rgnéé)y : (2.84a)
2 2 Y(p —¢B)
Cs = “Om°0 (1 —vHYmn¥ 2 (2.84Db)
kBT s 78 g

(1 + Y(f - g03)>2 |
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Figure 2.5.1: Dependence of the double layer capacitance Cpy, as a function of the
applied half cell potential U on the mobility ratio v# (left) and on the dielectric
constant x (right).
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Figure 2.5.2: Left: surface capacitance Cs for different values of AG,. Right:
the combined double layer capacitance Cp;, Remaining parameters are y = 27,
v =v#* =0.9.

Fig. shows the influence of AGA on the double layer capacitance of
a blocking electrode. Negatively charged oxide ions tend to move into higher

electric potential. If the adsorption energy, AG, = mom,ugeﬁl — momugﬁl, is

positive, then energy is required to for oxide ion to pass from the bulk to the
surface. Stronger negative values of AGy foster the adsorption of oxide anions to
the surface and thereby shift the surface capacitance maximum to more negative
potentials. This can be seen most clearly in Fig. 2.5.2}. where only the surface
contribution is shown. Comparison of the Fig. [2.5.1] and Fig. suggests that
the bulk contribution remains undisturbed. The maxima of surface capacitance
in|2.5.2).¢ are due to the saturation of the surface for growing potential difference.
The position of the maxima occurs for

( o) = AGy  keT 1 (Y8
f ¥B) = 260 260 1 —YB )

max

(2.85)
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Experimental data comparison

Capacitance F/m?

.
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Figure 2.5.3: Blocking electrode capacitance, marked plots: experimental 8 % mol
polycrystalline YSZ [70], solid: fit of the blocking electrode model.

Comparison to experiment Fig. |2.5.3|compares simulations with fitted data
to experimentally measured capacitance curves for different temperatures [70].
We do not attempt to systematically adjust the model parameters to the data due
to the polycrystalline nature of the YSZ studied in the experiment, instead, we
try to illustrate the possible temperature dependence and the effect of the fitted
parameters. As the temperature dependencies would need additional modeling
efforts, as a first step, for this thesis, we performed the fit separately for each
temperature.

It is difficult to assert that a particular oxide ion is mobile or immobile in
the microscopic picture. It is suitable to consider the parameters v# and Z#
determining certain (dynamic) equilibrium between the admissible and occupied
vacancies in state with vanishing macroscopic free charge density. As this is
usually an effect of thermal excitations, the values of v# and g# should depend
on temperature. Also AG, presumably depends on the temperature.

To this end also m was treated as a fitting parameter shared for the three
S
cases.

temperature T 475°C  525°C  575°C
Gibbs adsorption energy AGA 0.14eV  0.16eV  0.18eV
bulk immobiles ratio v#* 0.85 0.57 0.07
surf. immobiles ratio v# 0.85 0.64 0.44

surf. lattice ratio m 0.26 0.26 0.26

Table 2.5.1: Fitted parameters, see Fig. [2.5.3
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2.5.2 Capacitive currents

In the case of time dependent applied voltages, the current representation (2.73|)
simplifies in the absence of reactions to the case of no electron transfer:

I = g(,z'onaeo?gonl) + E((1 + X)eoVSOV)’:SZ = i@s + iQBL . (2.86)

A dt dt

Thus, the current is composed of two contributions describing the change of the
surface charge and the boundary layer charge, respectively. However, unlike in the
equilibrium case, Q)s and (), are not uniquely determined by the applied voltage.
Consider a small time depending perturbation around the half cell equilibrium
potential U, i.e., the applied voltage is U(t) = U + AU(t). For a time scale of the
perturbation considerably slower than the diffusion and adsorption, the system
can be assumed to behave quasi-static and the current I can be linearised at U
such that

— dAU
] =~ ODL(U)W .

(2.87)
Thus, the double layer capacitance can be measured at low frequencies using
impedance spectroscopy, or with cyclic voltammetry (CV) at low sweep rate.
Here, sweep rate refers to the slope of voltage change during one linear cycle.

Kinetic coefficients The blocking electrode model contains two kinetic param-
eters: diffusion coefficient D and adsorption rate 1;10. If one of those parameters

is small w.r.t. sweep rate, a limitation of the total current occurs. To this end
the sweep rate is fixed to 1mV s~! in this paragraph. Small values of adsorption
coefficient limit charging and discharging of the surface oxide ions as it is shown
in Fig.[2.5.4] The current due to charging of the bulk double layer is not affected
by this.

Similarly, small values of D lead to limitation of the rate of charging the bulk
double as documented in Fig. 2.5.5 In this case, the charging of the surface is
affected, because the bulk diffusion limits the supply of the oxide ions.

Length of domain and sweep rate Faster sweep rates affect the current
response of the blocking electrode similarly as small values of the kinetic coef-
ficients. Fast-changing voltage unveils limited rates of oxide ion transportation
that can be attributed to concrete mechanisms. Figures illustrate this for
the oxide ion adsorption. Fig. ight in particular shows that the rate of the
surface charging is limited due to the adsorption. For even greater sweep rates,
the decreasing rates of current to the bulk diffusion limitation are displayed in

Figure eft-

The bulk diffusion limitation depends also on the domain length, see Figure

@ight :

2.5.3 Currents of full half cell

Let us now investigate a scenario where on the surface the electrochemical reac-
tion might proceeds. In the constitutive relation for the reaction rate according
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Figure 2.5.4: Voltammetry of blocking electrode varying adsorption coefficient
Ap. The current is scaled by the respective rate of voltage change. Left: total

current. Right: surface contribution to the current. The additional parameters
are: AGxy =0.2eV, D =1x 107" m?/s.
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Figure 2.5.5: Voltammetry of blocking electrode varying bulk diffusion coefficient
D. The current is scaled by the respective rate of voltage change. Left: total
current. Right: bulk contribution to the current. The additional parameters are:
AGA = 0.26\/, 1;10 =1x 1017 /IIlZ/S.

to (2.63)), we choose the symmetry factor § = %, yielding

1

]Si’ = —2]5%0 sinh (%;T(m()m,u()m — 2M— fle— — 2m02,u02)) (2.88)

With the chemical potential [2.52) and AGr = mompg), — 2me- uge_f — MO, ugf
S S S

we get

_ b [ 41 o,
R = —2Rsinh AT AGgr +In . ~ 35 In 7 , (2.89)
S S _ y pre

S

Cyeclic voltammetry with realistic sweep rate ryo = 1 mV s~!is fixed in further
demonstration of the basic features of the investigated system with the reaction.

65



5k
—10~ =1/ \v G,
Tvolt 10*V's Q@O\‘%

5,

P :
-‘._____\‘ . / —r = —3
1 e — 1.d e —
! \\ 7 i _ 1 R @t @s |7 i _ 1
- ! ! I - ! ! I i
—1 -0.5 0 0.5 -1 —0.5 0 0.5 1
Voltage V Voltage V

Figure 2.5.6: Voltammetry of blocking electrode varying sweep rates. The current
is scaled by the respective rate of voltage change. Left: increasing sweep rates
distinguish the charging of surface and bulk double layers. Right: the surface
charging contribution to the current. The additional parameters are: AGp =
0.2eV, D=1x10""m?/s, Ag = 1 x 10'" /m*/s.
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Figure 2.5.7: Linear-sweep voltammetry of blocking electrode. Left: increasing
sweep rates for thick electrolyte xp = 5 x 107 m. Right: Fixed fast sweep rate,
varying electrolyte thickness.

Free energy parameters

Gibbs energy of reaction AGp is treated as an additional free energy parameter
entering the model with the surface chemical reaction. The different AGg values,
see Fig. [2.5.8lr;, do not alter the charging of the double layer but lead to the
shift of the onset of the reaction current. Gibbs energy of adsorption AGy,, see
Fig. [2.5.8}ignt, shifts, consistently with the blocking electrode case, cf. Fig.
charging of bulk a surface layer. The shift of the reaction onset occurs because
AG, shifts the chemical potential of the surface oxide ions, cf. . The
reaction current is for either non-zero AGx or AGg in the depicted range much
greater then the bulk and surface contributions.
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Figure 2.5.8: Linear-sweep voltammetry different values of AGr (left) and AGx
(right). With reaction rate Ry = 1x 10°/m?/s and adsorption rate 4y =

1 x 1017 /m?/s.
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Figure 2.5.9: Linear-sweep voltammetry for different values of reaction coefficient
Ry. For AGr =0.2¢V, AGx = 0.2¢eV and 1;10 =1 x 10'7 /m?/s.

Reaction rate

According to surface reaction rate ]S%o changes the relative magnitude of the
reaction current, hence it also changes the relative onset of the reaction current
w.r.t bulk and surface contributions as it shown in Fig. The limiting case
of a small ]S%O is the blocking electrode. The effects of D and 1;{0 are for the
open system similar as for the blocking electrode case. Small values would lead
to surface charging and consequently to bulk charging limitations thus hindering
the reaction.

2.6 Discussion

The representation of the interface was chosen as uncomplicated as possible so
that the behavior of oxide ions double layer dynamics remains unobscured. This
was achieved, however, let us discuss the drawbacks of the treatment. First,
in a real electrode two distinguished surfaces (YSZ, metal) are present and the
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electron-transfer reaction occurs near their intersection. Hence, tangential diffu-
sion of the surface species comes into play together with the particular geometrical
realization. To this end a two or three dimensional model would be required in-
cluding the in-plane transport of the species. A question that naturally follows
is: where exactly does the electron-transfer reaction occur, at the contact line or
on one of the surfaces? Second, behavior of the metal electrons may in the close
vicinity of the contact line start to display quantum effects that may result in
richer behavior of the electron-transfer reaction. Third, the adsorption of gaseous
species may under some circumstances limit the supply of gaseous species to the
surface. Fourth, the appearing surface species depend on the particular electrode
material. In particular, the nature and amount of the surface species will be dif-
ferent for Pt, Au or LSM electrodes. Also and additional phase of surface oxide
ions with different adsorption energy might also be present. Finally, one might
also consider production of surface oxygen O(s) for the blocking electrode (al-
though no desorption to the gas phase is possible) and investigate the mechanical
strain to the interfaces due to this.

2.7 Summary and Conclusions

A generalized Poisson-Nernst-Planck system describing YSZ|gas|metal-interface
has been derived from first principles of nonequilibrium thermodynamics and
numerically solved for simulating double layer capacitance and cyclic voltammetry
measurements.

The core of the gPNP system is due to carefully derived free energy densities
for the bulk YSZ and the YSZ|metal|gas surface capturing the main features of
the YSZ crystalline nature. It is assumed that the described species, except for
mobile oxide ions, are bound to the crystalline lattice. These assumptions result,
using the entropy principle, in a novel form of the mobile oxide ion flux, which
is a certain combination of the electrochemical potentials of all species. The
charged layer in the metal is assumed to be in a diffusional equilibrium, since
no transport limitations of the electrons is assumed. Finally, the formula for the
electric current measured in the apparatus is derived.

A numerical model for the system has been derived and implemented in one
spatial dimension using the finite volume method, specifically a variant of the
Scharfetter-Gummel scheme, in the Julia programming language [71].

Although the model is strictly developed as isothermal, most of its parameters
may depend on the temperature. Therefore, the parametric study is also aimed to
demonstrate the scenarios where some of the parameters become limiting to the
charge transfer of the system. Finally, the capacitance of blocking YSZ electrode
taken from literature |70] is fitted with the model, the quality of the fit relies
heavily on the newly introduced ratios of immobile oxide ions v# and g#. For
each temperature these can be fitted alongside with AGa to the measured data.
While the derivation of the model assumed a single crystal, the measurements had
been obtained for polycrystalline YSZ. Therefore, the presented fitting results can
be seen only as a first step towards a model for polycrystalline YSZ which ideally
should be derived from the presented model using homogenization techniques.
Moreover, the presented model can serve as a starting point for further extensions
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containing more sophisticated surface chemistry capable of describing the anodic
and cathodic within one kinetic model.
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Appendix

The quantities used troughout the section are listed below. The undersetted let-
ter s denotes surface quantities, which were omitted.

Quantity Symbol SI units
electric field E Vm!
electric potential ® \Y%
polarization density P C/m?
partial mass density  p, kg/m?
total mass density P kg/m?
number density N 1/m?
free charge density n C/m?
polar. charge density nF C/m3
barycentric velocity v ms~!
partial velocity Vg ms~!
partial mass flux Jo kg/m?/s
partial velocity Vg ms?
free energy dens. pY J/m3
entropy dens. ps J/m3/K
chemical potential L Jkg™!
pressure P Pa
temperature T K

2.A Electric current

Let I be the electric current flowing through an electric wire to the gas-YSZ
surface, which can be measured by an amperemeter. The current is related to
the temporal change of the surface electron density and electron production on
the gas-YSZ surface. For spatially homogeneous fields on a gas-YSZ surface with
the area A, we have

I :Zfeo(in L fhkgk) | (2.90)
A0 T\dEst s

The derivation based on surface and bulk balance equations, see [5], the metal
model proposed in [58] and that the atomic mass of electrons are much smaller
than the atomic mass of metal atoms, i.e. mq-/my; ~ 0.

To express the electron number density N~ in (2.90) we use the identity

d d
aTSLF = <€oZe7;be + GOZOm’rSlom) , (2.91)

which follows from equation ([2.55)) and that the surface number density of metal
ions is constant. Then, with

YSZ
g

Introducing ([2.91)),(2.92)) into (2.90) yields the identity (2.73]).
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2.B Summary of the model

For easy reference, we summarize the model equations which have been imple-
mented.

—eo(1+ X)0.op = 0", (2.93a)
1 —v#)m 1 —v#)m
mOmat(‘/#)y + 0. ((1 + mom(m#)y> J0m> =0 (2-93b)
with
1 —v#*)m 1 —v#)m
JOm =—-D mOm<Vv#) (1 + mOm<Tn#)y>
azy Z20m€o
+ d,0|, 2.93c
(1—-y) Y ksT ( )
€o
n¥ =vE (zOm(l — v )Ym oy + z#) (2.93d)
for bulk with the choice of mobility coefficient
mMom 2 (1 — I/#)m
M=D m=2D —_— 2.94
kB PO MOom V# kB Yy ( 9 )

where [D] = m?s™! is a diffusion coefficient.

On the surface, we have with 5 = 1/2 The electrochemical reaction is supposed
to be

1
5o2 427 == 0~ (2.95)
and we define
AGx = Momfitm = Momlion| g + (2.96a)
S
/llref
AGR = mOm,uTOefn — moz% — 2mef,u‘:e_f ) (2.96b)
S

This leads to the surface equations in the form

(1 —v#)m AGA yls (1 —y)
O ————2 ) = Ao | — In ——=2- R, 2.97
MomO: o gs/ momAg kBT+n(1—y]5)y + Mom ! ( a)
with
AG v\ 2
R S Po, 2
— — 2.97b
}s% }S%O eXp( 6kBT> (1y) <pref> ( 97 )
AG y (1-8) (-8
Po ’
_ 1 _ R S 2
exp (( 6) k’BT ) (1 _ y) <p7"€f> ] )
CoRpsinh | 1ACR Ly [ 2 ) L (P02 (2.97¢)
— o sin > T 2n - 4npref )



with the choice of adsorption coefficient

2

D = Ay 0m (2.98)
s s kp

where [Ag] = m™?s™! denotes the rate of adsorption.
S

The two systems are coupled by the adsorption boundary condition

. 1—v#)m
JOml/‘S = <1 + mOm( # ) y) JOmV‘S (299)
m
AGy  Yls 0=y

+ In

)
Tht T ) (2100

:éOmOm

where v denotes an outer normal of YSZ domain at S.
If not stated otherwise, the simulation parameters used are given in table

2B.1

2.C The finite volume method

In order to perform the spatial discretization, we introduce collocation points
Tl = Tg,T9,...,Ty_1, Tp=xp in the simulation domain = (zg,zp). The
density of these points ins increased in a geometric fashion towards the electrode
surface at rg. Around the collocation points, we define the control volumes
wy = [wg, 2EA] w,; =[S B (=2 n— 1), w, = [F2et g,

The finite volume discretization method used to perform the numerical simu-
lation is based on the classical Scharfetter-Gummel scheme from semiconductor
device simulation |72] which assumes constant species fluxes between neighboring
control volumes, The fluxes are expressed via the unknowns in the correspond-
ing collocation points based on an analytical solution of the flux equation. This
approach automatically introduces an upwind stabilization of the discretization
scheme which is necessary to handle the possibly steep electric potential gradients
in the polarization boundary layer.

In order to handle the non-idealities occurring in generalized PNP models,
the scheme needs to be adapted in a thermodynamically consistent manner. For
an introductory discussion of the general ideas in the context of semiconduc-
tors, see [73], In the context of electrolyte simulation, a reformulation based on
species activities as primary variables can be a starting point for a corresponding
modification [74].

Here, we use an approach which starts from the reformulation of the species
flux based on the introduction of a drift potential g(y, ¢) combined of the excess
chemical potential describing the non-ideality and the electrostatic potential, an
idea which goes back at least to [75],

Jom = —D 0uy +y 0:9(y, ). (2.101a)
On [z, z], we set Yy = %(yk + y;) and

. (1—v#)m _ ~ .
Jom = | L+ mom———n | Jom = =D oy +y DO:f(y, ), (2.102a)
m —

029(y,)
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temperature T 800°C

dielectric constant 27
Zr cation charge number zy, +4
Y cation charge number zy +3
oxide ion charge number zon, 2o; —2
Zr molar mass My, 91.22 g mol !
Zr atomic mass my, 15.15 x 10~ kg
Y molar mass My 88.91 gmol ™!
Y atomic mass my 14.76 x 10725 kg
O molar mass Mon 16 gmol !
Om atomic mass mom,mo;  2.66 x 10720 kg
ratio of C/A lattices m 2
YSZ molar fraction z# 0.08
ratio of immobiles v# 0, L ?iii]
specific lattice volume of YSZ V# 3.35 x 107 m?
lattice cation number density n (V#)~L
reaction kin. coef.  Rg 1 x 101 /m?/s
oxide ion adsorption coef. Ay 1 x 10'7 /m? /s
surface density of cations (Sz# YV# ~1.04 x 10719 m?
surface ratio of imm. ox. ions Ié# 0.9
surface ratio of C/A latt. m [0,4]
gibbs energy of adsorption  AG, 0.2eV
gibbs energy of reaction AGg 0.2eV
partial pressure of Oy po, 21kPa
standard pressure p" 100 kPa

Table 2.B.1: Summary of parameters for the bulk-surface model.

where
D = D moy, - _me (1 + mOmWykl> , (2.103a)
0.1 = (14 m0u L2 0, 1 - )
— zomkeBOT (1 + mOmW§k1> 0. (2.103b)

The numerical flux between neighboring control volumes w; and w; is then
computed as

~om D l B( g(yk,sok)—g(yz,wz))
B[ - _
|z) — 24 D

JOom,kl =

uB <9(yk, %)bj 9y, s@;)) ]7 (2.104a)
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exp(a;)—l
Bernoulli function. Under the assumption of jo,, and 0,9(y,¢) = ¢’ being con-

stant, as in [72], the direct calculation of the numerical flux can be done using
the integration factor exp(—%) and integrating over [z, x;].

where yi, yi, ¢k, 1 are values in computational nodes and B(z) := is
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3. Thermodynamic optimization
of solid oxide cells

3.1 Introduction

In 1889 Gouy published paper [76], where he showed how to calculate useful
power of a device by thermodynamic means. The calculation was based on two
assumptions: (i) The environment surrounding the device is isothermal (ambient
temperature) and (ii) the mechanical power should be maximized. Similar result
was obtained by Stodola in |77]. Over more than a century of development was
comprehensively reviewed in [78], where also the method of entropy production
minimization (EPM) was elucidated. An advantage of thermodynamic optimiza-
tion based on EPM is that one can plot a continuous map of losses (given by
entropy production within EPM) revealing how much efficiency is lost at each
place of the device, see e.g. [79)].

To obtain the continuous map of losses, which is often proportional to entropy
production density, one has to solve the continuum non-equilibrium thermody-
namic equations governing the system under consideration. Usually the system is
in a steady-state (not evolving in time), and classical irreversible thermodynamics
(CIT), developed in [80,17], in the form presented by Bedeaux and Kjelstrup, [81,
82|, provides a systematic approach for developing thermodynamic descriptions
of the systems.

An alternative to continuum non-equilibrium thermodynamics is the endore-
versible thermodynamics [83, 84, [85] or finite-time thermodynamics [86, 87|,
where some parts of the system are studied in detail (as in the continuum ap-
proach) while some are described only on the macroscopic level of equilibrium
thermodynamics as in the theory behind the Gouy-Stodola theorem. Such ap-
proach is advantageous in engineering applications because it reduces the amount
of detail required in the full continuum calculations.

However, before trying to plot a map of losses, it is necessary to define what
the losses mean in terms of the state variables chosen for description of the sys-
tem, e.g. fields of concentrations, temperature and electric potential. Such task
inevitably leads to the choice of an objective function that is to be maximized and
constraints that are to be kept constant during the maximization. Regarding the
Gouy-Stodola theorem, it might seem natural to identify the losses with entropy
production, but it has been shown for example in [88, |89, |1] that it is not so
quite often. Firstly, one can choose a different objective function than electric
power, in which case entropy production clearly does not need to describe the
losses. Secondly, which is more important, even if one chooses useful work as
the function that should be maximized, entropy production is often inadequate
measure of losses for example when boundary of the system is not isothermal.

Indeed, it was shown in [89] and [1] that when considering a non-isothermal
fuel cell in steady state, entropy production is inadequate to address the map of
losses of electric power, since electric power is given by the flux of Gibbs energy
into the fuel cell diminished by a functional different from entropy production.
In other words, consider a steady state non-isothermal fuel cell with some flux
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Gibbs energy into the fuel cell. What is the maximum electric power one can
produce? The maximum work coincides with minimum of a functional that is
definitely different from entropy production.

So, maximum work at steady state does not necessarily correspond to min-
imum entropy production, which is zero entropy production by the second law
of thermodynamics. Consider now the difference in exergy of the fuel and ex-
hausts coming into and out of the fuel cell. This loss of exergy is often used as
a measure of losses in the device, see for example review article [6], [90] for dif-
fuser optimization, [91] for humidification-dehumidification system optimization,
[92] for methane decomposition optimization, [93] for combustion optimization,
or [94] for thermal storage optimization. But exergy destruction is proportional
to entropy production as shown in [6], and since entropy production is often in-
adequate to measure losses in the device, analysis of exergy must be also often
inapplicable, if power maximization is the optimization goal.

One could argue that exergy represents the maximum work one can obtain
from the device when the device relaxes to equilibrium with its surroundings.
This is of course true as shown for example in [95], §20. But is it always the goal
of exergy analysis to find how much work the device could deliver when relaxing
to equilibrium, for example when shutting down a power plant?

In summary, before one decides to measure efficiency of a device or a com-
ponent of the device by evaluating exergy destruction, one should either declare
that the goal is to find the maximum power the device can deliver when relaxing
to thermodynamic equilibrium, which means also shutting down the device, or
one should verify that zero entropy production corresponds to the most efficient
steady state of the device. The former is relatively simple, but restrictive, since
the device often works in a steady state. The latter needs a clear definition of
efficiency (or an objective function, e.g. electrical power) and constraints, and
usually relies on using continuum non-equilibrium thermodynamics.

Let us illustrate the latter approach on a fuel cell in a steady state, as in [1].
The objective function is the electrical power. The constraints contain flux of
Gibbs energy into the fuel cell. It follows from non-equilibrium thermodynamics
that if boundary of the fuel cell is isothermal, maximization of power is equiva-
lent to minimization of entropy production inside the fuel cell. If the boundary
is not isothermal, the equivalence is lost, and one should minimize a different
functional than entropy production, which means that exergy destruction (which
is proportional to entropy production) is inadequate to measure efficiency of the
fuel cell.

It is the purpose of this paper to shed more light on such pitfalls one can meet
when performing thermodynamic optimization. A one-dimensional steady state
fuel cell is considered and described within non-quilibrium thermodynamics in
the form of [81]. The model is chosen so that it can be solved analytically. The
objective function is the electrical power and several examples of constraints are
then considered. It is demonstrated that entropy production minimization does
not coincide with power maximization. Finally, several examples are identified
where exergy analysis and entropy production minimization are appropriate tools
of power maximization. We hope that readers will be discouraged from blind using
of exergy analysis.

78



3.2 Global balance laws

Consider a one-dimensional thermodynamic system, for example a fuel cell, in
nonequilibrium steady-state. Although the total energy of the system is constant
in time (steady state), there is non-zero flux of energy through boundary of
the system, as well as non-zero fluxes of particular species (fuel, exhausts, and
electrons). These transport processes are accompanied by transport of entropy.
There is no source of total energy in the system, which means that energy fluxes
through the boundary have to sum up to zero. On the other hand, entropy is
being produced inside the fuel cell, which means that fluxes through the boundary
sum up to the total entropy production inside the fuel cell.

Boundary of the system is characterized by two points, 0 and L. Difference
of any quantity between the two points will be denoted by A(e) = oL — &% Tt
is assumed that electrochemical reactions take place at the boundary, i.e. within
the two points, and so the two points themselves are also equipped with balance
equations.

3.2.1 Total energy balance

Balance of total energy of the system reads

0 . . .
gy Bron = 0= Ajy+ 32 Aljaha) + A(julhe + Fou)). (3.1)

neutral

Subscript « denotes association to species «, in particular subscript e is reserved
to denote electrons. Symbols j, and h, stand for molar flux of species a and
partial molar enthalpy of the species, respectively. Symbol ¢, stands for energy
of electrons due to electrostatic field ¢, i.e., po = —¢, and symbol j, denotes heat
flux.

From the practical point of view we cannot distinguish between chemical
potential of charged species, u., and the electrostatic potential energy of the
species, 2, F'¢. Therefore, we prefer working with electrochemical potential, ji, =
la + 2o F¢, and define electric potential of charged species « as

2aF 00 .= o + 2o Fp, (3.2)

which was proposed for example in [81], where the electrostatic potential, ¢, is
referred to as Maxwell potential. In particular, electric potential is defined as the
electric potential of electrons,

_F(be = e — FSO (33)

This is indeed the quantity measured by a voltmeter, since voltmeter in fact
measures the tiny current passing through it, which deflects the arrow of the
voltmeter by electromagnetic induction, and the current is proportional to differ-
ence in electrochemical potential of the electrons across the voltmeter. See [96]
for more discussion.

Electrical work produced by the system can be expressed as the energy flux
due to electrons passing boundary of the system,

Wel = A(ie¢e)7 (34)
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where 7, is electric current density due flux of electrons. Similarly, i, is electric
current density due to a charged species a.. Using the relation between enthalpy,
chemical potential and entropy

ha = pta + T'Sq, (3.5)
we obtain from (3.1]) that
Wel = _A<jq + Tjese) - Z A(jaha)~ (36)
T neutral

which is an another form of total energy balance . Note the usage of mea-
surable heat flux j, introduced in [81]. The measurable heat flux helps to keep
the energy balance free of the electron entropy flux, which we cannot measure
experimentally anyway. Equation (3.6) contains the usual meaning of balance of
energy, that electrical work is equal to heat and enthalpy flux into the system.

3.2.2 Entropy balance

As in the case of total energy, entropy cannot accumulate inside the system due to
steadiness of the state. Unlike energy, entropy is produced inside the considered
system due to nonequilibrium nature of the state.

Flux of entropy and entropy production can be expressed as

: Jq :
Js = ?q_'_ Z JaSa, (37&)
neutral
. (0] o
/ ol e
B Ly e Ly, ()
4 OxT 7;haurged neutral T
+T ST A, (3.7b)

Gradient of chemical potential at constant temperature,

Opa\ _ Opia  Opa 0
<8x) - Oz 0T Ox T (38)

_—sa

serves as a driving force for uncharged species. We considered that electrochem-
ical reactions are taking place among the species. Electrochemical affinity of
reaction 7 is defined as

Z V! fla (3.9)

where v, is the stoichiometric coefficient of species « in reaction r. Rate of the
reaction (in mol/m?/s) is denoted by &,. See [1] or [81] for derivation of these
formulas.

Finally, flux of entropy out of the system is equal to the total entropy pro-
duction inside the system, which means that

A(Jq + 3 jasa) = [oue € (3.10)

T neutral
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Total entropy production inside the system is denoted by II. Note that the
electron entropy flux is integrated into the measurable heat flux. Second law of
thermodynamics asserts general positiveness of entropy production, which implies
that

IT > 0. (3.11)

3.2.3 Efficiency of a device producing electricity

Consider a device producing electrical work by converting heat or chemical energy
into electric energy, e.g., a hydrogen fuel cell. Plugging jflo from the entropy

balance (3.10) into energy balance (3.6|) yields

Wa = —ji- (1 - TO) + 3 A (jalT 0 — ha)) = T°IL (3.12)

L
T neutral

This last equation connects electric power and entropy production. There is only
one term on the right hand side which is always non-positive, —T°II. Let us
assume that the objective function we wish to maximize is the electrical work.
Then it seems natural to design the device so that the entropy production is min-
imal while keeping the resources, the first two terms on the right hand side of Eq.
(3.12), constant, which leads to the method of Entropy Production Minimization
(EPM), reviewed in [6]. The resources are equal to exergy flux into the device
and the non-positive term is negative of the exergy destruction. It is clearly true
that when keeping exergy flux constant, the useful work is maximal when exergy
destruction (or entropy production) is minimal.

Consider non-isothermal boundary of the system. Exergy flux into the system
then contains heat fluxes through all parts of the boundary except for the part
with temperature 7T, temperature reservoir Tiy. This temperature reservoir is
often referred to as the surroundings. What if we do not wish to keep all those
heat fluxes constant when performing the maximization? That is often the case
for example in fuel cells, where efficiency is expressed as the ratio of electrical
work and flux of Gibbs energy into the system. No heat fluxes appear in the
definition of efficiency, and thus one could seek for maximum work when fixing
only flux of Gibbs energy into the fuel cell.

Such choice of optimization constraints has the important implication that,
since exergy flux is no longer constant, entropy production is no longer the func-
tional that should be minimized. See [1] for quantitative results. This idea is
further explored in the rest of this paper.

3.2.4 Physical model, constraints and optimization

Let us assume that we have chosen a physical model of the device. Hence, we
have a collection of governing parameters of the model uniquely determining
the state of the device. Such governing parameters are for example boundary
conditions, material parameters or geometrical features. If we assign a value to
each parameter, the values of all terms from Equation are accessible, in
principle, by means of computation. Hence the electric power, entropy production
and all energy fluxes through the boundary are determined by the governing
parameters through the chosen physical model.
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Figure 3.3.1: Scheme of the one-dimensional solid oxide fuel cell model. The
cell consists of 3 parts - the HOR surface at © = 0, the electrolyte inbetween
(0, L), and the ORR surface at = L. The surfaces are considered as points in
the one-dimensional model, they are assumed infinitely thin. Quantities in the
electrolyte are often denoted by subscript b as bulk. Current density is constant
thorough the cell and is denoted by j. Temperature is considered continuous in
[0, L].

Fixing the boundary energy flux value is easy when the energy flux is con-
sidered as one of the governing parameters. Otherwise, the boundary energy
flux value depends on the governing parameters and is determined by the chosen
model. In such case fixing the flux value generally means that not all values
of the governing parameters are suitable. Respecting such constraint requires
to distinguish some parameters as dependent and adjust their value in order to
satisfy the constraint. These parameters, values of which are being changed dur-
ing the optimization, are referred to as optimization parameters while the fixed
parameters will be called governing.

Optimization means adjusting an optimization parameter in such a way that
a cost or profit functional is minimized or maximized, respectively. Let us restrict
us to case of maximizing the electric power. The electric power is, in principle,
unbounded, so that we need to assume a constraint on energy resources flowing
through the boundary. Assumption of constrained power sources is in this case
inevitable, which means that at least one optimization parameter is needed.

3.3 Simple solid oxide fuel cell model

A concrete example of fuel cell optimization is shown in this section, and validity
of EPM hypothesis is examined. The model is chosen and simplified so that
it is analytically tractable. The purpose of the model is not to describe a real
device, but to elucidate the relations between optimization and EPM. A variety
of optimization constraints is tried out in order to expose the limits of EPM.

3.3.1 Solid oxide fuel cell

Considered a solid oxide fuel cell composed of three parts as it is illustrated in
figure[3.3.1} The ionic conductive solid is enclosed by two reaction surfaces, where
oxygen reduction and hydrogen oxidation, respectively, take place. The fuel cell
model works as follows. Oxygen molecules on the right reaction surface enter
the reaction while decomposing and accepting electrons. Then, the ions formed
on the reaction surface are transported through the solid. Finally, the ions are
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stripped of the electrons and form water vapor in reaction with hydrogen on the
left reaction surface. The electrochemical reactions read

1
502 +2¢ —0*" at = =1, (3.13)
H, + 0" —H,0 + 2¢ at =0, (3.14)

Electrons produced in hydrogen oxidation reaction (HOR) flow through an outer
circuit, where load — for example a resistor — is connected, to the surface where
oxygen reduction reaction takes place (ORR). Both reactions, HOR and ORR,
can be added to the overall reaction

1
H,; + 502 — HQO, (315)

chemical (Gibbs) energy of which is being converted to electrical work.

Solid electrolyte

This article is restricted to a steady state in one-dimensional approximation for
the sake of simplicity. The considered electrolyte consists of a segment (0, L) of
a conductive solid subject to boundary conditions. Because there are no elec-
trochemical reactions taking place in the electrolyte, the oxide ions are neither
consumed nor created therein, and flux of the ions is thus constant in space (due
to the 1D approximation),

dj
dr
Total electric current in the electrolyte is given by electric current of the ions,
i.e. j =1; = 2 F'j;. The electric potential of oxide ions is defined analogously to

electric potential of electrons in equation ([3.3]), and entropy flux due to the ions
is included into the bulk measurable heat flux,

0. (3.16)

. . J
Jab = Jq + Tﬁsi, (317)

which expresses heat transport within the bulk solid electrolyte. The total energy
density balance ([3.1]) then becomes

djen d . djgp,  dey
= = — ; — = . 1
0=-—-=gUptd)) = —F==ig (3.18)
(3.19)
In general, the stationary entropy density balance reads

djs

= Os, 3.20

2= C (3.20)

where o, and js stands for entropy production density and total entropy flux,
respectively. Inside the solid electrolyte the stationary entropy density balance
is as follows

A g JandT j dds

— 21
de T T2 dx T dx’ (3.21)
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where the left hand side is derivative of entropy density flux and the right hand
side is the entropy production due to transport of heat and ions. The force flux
relations read
ar = TR
doi _ _57dT 7, (3.22b)
dx F dx
where ji,,, j, T and ¢; stand for measurable heat flux, electric current, temper-
ature and electric potential of the ions, respectively, see [81, Egs. (9.8)]. The r
is an electric resistivity, A is thermal conductivity at zero current, and S* stands
for the transported entropy, which is, in accordance with [81, Eqn. (9.6)], defined
as

T TS
- / 5 7, (3.22a)

ilF
where 7 is Peltier’s coefficient. These equations describe interaction between
charged species and temperature gradient.
Straightforward integration of equation gives that

-/
T =TS = (‘”ﬁ) , (3.23)
T=const

Agy; = —*;AT —rjL. (3.24)

Differentiating equation ([3.22a)) with respect to z, consequently introducing the
total energy balance in order to get rid of the d% Job» term and comparing
the results with equation ((3.22b|) multiplied by the j yields
d? 72
A@T —_— .
This last equation is a linear differential second-order one, and equipped with the
boundary temperatures it gives

(3.25)

2 2
T(a) = —a® + (ALT + Té;) LT ze0,L]. (3.26)
Consequently, from equation ) the measurable heat flux becomes
AT T]QL S*j
L 2 F
Integrating the local entropy production density in the solid electrolyte, ,
expressed in the terms of temperature gradient and current along the the bulk of
the electrolyte yields

Hb_/ "S_/ (dx) ZZQ de. (3:28)

It is possible to evaluate this integral analytically due to the quadratic behavior
of temperature. Thus, using explicit temperature formula (3.26]), total entropy
production inside the electrolyte becomes

Jap(x) =rjfz — X T( ), x€][0,L]. (3.27)

,(TF 4+ T0) , A
I, = 52 STOTL rL + (AT) TOTEL" (3.29)
The entropy balance for the electrolyte reads
1L 0
Jab _ Jab gy (3.30)

TL 70
where the boundary heat fluxes are evaluated at 0+ and L—.
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Surface balances

The one-dimensional fuel cell model consists of three parts - two one-point sur-
faces, where reactions take place, and a bulk electrolyte. The model was solved
analytically within the electrolyte in the preceding section. Let us now consider
balance laws on the surfaces.

Oxygen electrode = = L

Total energy balance on the surface is simply a comparison of the energy fluxes
flowing into and out of the surface. Due to the definition of measurable heat flux
on the boundary, , and measurable heat flux in the electrolyte, , we
observe a measurable heat flux discontinuity. This is displayed in the total energy
balance of the oxygen reaction surface as follows

Iy —dg — 0L +ilget +ishl =0, w=L. (3:31)

Unlike the measurable heat flux, the other energy fluxes do not have their coun-
terparts because they do not appear on the respective sides of the surface.
Entropy flux through the surface from the side of the electrolyte (at L—) is

given only by the respective measurable heat flux divided by temperature at L,
TL. Entropy flux from the outer part of the surface consists of a measurable heat
flux contribution and flux of entropy due to oxygen. Entropy production within
the surface is given by entropy production due to the electrochemical reaction
taking place therein. Entropy balance of the surface then reads

1L 1L

% - jTiE + jLsl = TlLfTL . r=1, (3.32)
where s,, AL and €L denote partial oxygen entropy, reaction electrochemical
affinity and surface reaction rate, respectively. The right hand side of equation
is entropy production due to the surface reaction, which is the only source
of entropy production on the surface. The electrochemical affinity of oxygen
reduction reaction reads

AL =oF(gl — by + B =1, (3.33)

e

in accordance with Eq. (3.9).
From the steady-state assumption and charge conservation it follows that

2FEr = 5, (3.34)

where j is the electric current due to transport of the ions, also equal to —4F'j,
with j, being molar flux of oxygen.

For simplicity we assume linear relation between electrochemical affinity A~Z
and reaction rate &%,

K,
2RTT
The oxygen reduction reaction current exchange density K, is assumed to be a

temperature-independent constant characterizing kinetics of the reaction. R is
the universal gas constant.

j= Al x =L (3.35)
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Finally, combining equation ([3.34) with equation (3.35) leads us to formula
for the surface entropy production due to ORR,

R
R (3.36)

1 ~; .
ﬁALgL:

Hydrogen electrode x =0

Description of situation at the HOR surface is analogous to the ORR surface.
The energy balance reads

—j 4 G0+ 58) — joe® — johy — johe, =0 at x =0, (3.37)

where we experience a similar discontinuity of the measurable heat flux as in the
previous case. The steady state condition implies j = 2F'j, and j = —2Fj.
The entropy balance is also analogous to the previous case,

]/0 ]/(1)0 1 ~, -
0.0 0.0 0 ¢0 ,
_io + % — Jush — JusSw = g A&’ at 2 =0, (3.38)

The electrochemical affinity of the HOR reads
A® = 2P (67 = 60) + 1 — . (3.39)
and charge conservation implies
2FE0 = . (3.40)

As in the case of the ORR surface we assume a linear dependence of reaction rate
on the electrochemical affinity,

- 2RTO

j A at z=0. (3.41)

where K3, is current exchange density characterizing the HOR kinetics.
Finally, the entropy production due the HOR at the surface is

R
. 42
PR (3.42)

1 ~. .
ﬁ‘/4050:

3.3.2 Total entropy production

To obtain the total entropy production of whole fuel cell model we simply add the
production in solid electrolyte, (3.29) and productions due to the electrochemical

reactions, (3.36) and (3.42)). We obtain

1 ~ . 1 ~ .
o = T, + ﬁAO £+ ﬁAL ¢r

_ .2((TL+T°>TL+ R(K, + Ky)
N 2TO0TL FK, K,

A

—_—. 4
TOTEL (3:43)

) +(AT)?
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3.3.3 Current and voltage
Observing affinity of the total fuel cell reaction, (3.15)),
_ 1
Aot = sy + S 1t6 = iy (3.44)

we see that it can be expressed in terms of ORR and HOR affinities from equa-

tions, (3.33)) and (3.39)), as

‘ TL TO . . ~
2R] (E + Fh) = AL + ./40 = 2FA(¢1 - ¢e) + Atot' (345)

Introducing the equation (3.24)) instead of A¢;, expressing Ag, yields

A R,/ T T° S
Age =Tt - ]<7~L it Kh)> — AT, (3.46)

3.4 Fuel cell model optimization

In the preceding section we have outlined a simplified one-dimensional steady-
state model of a solid oxide fuel cell. The model was simple enough to admit
analytical solution, which will be advantageous in the present section.

Before proceeding with the optimization of the solid oxide fuel cell model from
section we need to specify governing and optimized parameters, constraints
and an objective, as we have discussed in general in the section [3.2.4, Those
specifications have to respect the physical nature of problem as well as they must
neither over- nor underdetermine the model equations.

Let us choose the electrical power Wy, to be the optimization objective, which
we want to maximize with respect to optimized parameter.

3.4.1 Optimization without a priori constraints

Optimization can proceed so that all but one necessary boundary conditions are
fixed and the remaining one is varied in order to attain maximum power.

Optimization of thickness L

Let us choose material parameters A, 7, S*, K, , K}, boundary conditions T, T°,
pl, p°, Ade to be some given parameters (governing parameters) while thickness
L will be the optimized parameter within 0 < a < L < b < co. In other words,
we seek the thickness L for which the electrical power is maximal.

Such choice of governing parameters reveals that the IV-formula deter-
mines current j as a decreasing function of thickness. Therefore, by definition of
electric power , it follows that the power is maximal for the smallest possible
L, therefore

a = arg max W (L) = arg max j(L), (3.47)
L L

and that W, is monotone with respect to L, which also means that

ngX Wel S Wel(O). (348)
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The power is thus bounded with respect to L, and it decreases as L increases.

Let us now inspect the entropy production dependence on L. The values
of entropy production tend to infinity for L — 0. Moreover, entropy
production is a smooth non-negative function, i.e.,

0 < argmin T (L). (3.49)
L

Therefore, for a sufficiently small we have

a <argminlly (L) =  argmax Wy (L) < argmin T, (L), (3.50)
L L L

which means that maximum power is not attained for the same L as minimum
entropy production.

In summary, when thickness L is the parameter that is varied in order to find
maximum power, the maximum power is attained for the smallest possible L. On
the other hand, entropy production density tends to infinity as L — 0, which
means that EPM is not a valid optimization strategy in this case.

Optimization of heat conductivity A

In this case we assume that L is a governing parameter, but thermal conductivity
A is the optimization parameter. The current is constant with respect to A
and so is the electric power, see Eq. (3.6). On the contrary, entropy production
is increasing with A increasing. Therefore, EPM does not coincide with
electrical power maximization in this case.

3.4.2 Optimization with constrained resources

It was demonstrated in the a priori unconstrained optimization examples in the
preceding section that EPM often does not correspond with maximization of use-
ful power. The examples, however, are somewhat ill-posed because we maximize
the power without paying attention to the amount of resources used. In practice,
the energy resources are limited, therefore, we introduce constraints on "source”
energy fluxes in this section.

Expressing the general formula for power in the particular situation of
the solid oxide fuel cell model yields

. . 7o Jj o[~
Wel = —jéL(l — ﬁ) + M(A + AT3£/2> — TOHtOt, (351)
no a priori sign >0

which can be rewritten as
W =C — T,y with respect to the optimization parameters. (3.52)

The terms with no a priori sign are the exergy flux into the fuel cell, and if they
are kept constant (denoted by C'), maximization of useful power corresponds to
minimization of entropy production. EPM is then a valid optimization method
in that case.
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What if we do not wish to fix all the terms with no a priori sign in equation
? Does then EPM still lead to the maximum power? The answer is negative
in general, as we have shown in Sec. Moreover, we show in the following
that even if constraints on energy influx are chosen, EPM does not often lead to
the maximum power anyway.

It is convenient to assume that the fuel cell model is connected to an external
load with resistan(:(ﬂ Using the Ohm’s law, A¢, = Z7, for the external load,
Eq. yields an useful formula electric current

A _ s
j= i~ 7ol : (3.53)
rL+ 7+ £(3 + 2)

The electric power of the fuel cell model can be also expressed as
Wy = Zj5* (3.54)

alternatively.

For all further optimization examples we assume that the set of governing
parameters (that remain constant) consists of T*, T py, po, pn , A, 7, Ko, and
K, while Z and L are the optimization parameters. It is necessary from the
mathematical point of view to have two optimization parameters instead of one
because otherwise we could not enforce any constraint.

Gibbs energy flux constraint

Optimization with Gibbs energy flux into the fuel cell as the constraint is a natural
choice in fuel cells because efficiency is often expressed as

We
n=—=, (3.55)
Ask
where the denominator is just the Gibbs energy flux. Hence, we consider
%.ﬁ(Z, L)=C, C is constant. (3.56)

Total affinity, given by formula (3.44)), is independent of Z and L, and con-
straint (3.56)) in fact fixes the current j. Observing the formula for j, Eq. (3.53)),
we see that constraint (3.56|) implies

7 = Ciet —rL, where C, is a positive constant. (3.57)

Both optimization parameters, Z and L, have to be positive. Assuming that L
has to be greater than some smallest possible positive thickness a, we see that
maximum value of 7 is

Zmax - Cref —ra. (358)

Because j is constant, the electric power is linear in Z, and maximum power is
achieved when Z is maximal possible, hence,

arg max Wy = Chef — 7a. (3.59)
z

I'With a little abuse of notation, we can set Z negative, which corresponds to an external
voltage source.
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This last equation identifies the value of Z for which the power is maximal.
Let us now search for minimum of entropy production. Introducing relations

(3.57)) into entropy production (3.43)) gives

TE +T°) R(K, + Ky) (AT)?\r

o, = 57 (70%—2 5 3.60
tot = J ( ypogt (Gt = 2+ = TGy — 7). 30

minimum of which is (given by solving a quadratic equation)

1

AT 2)\r 2
i H ot — Ore - . . 36].
argzmln tot £ ‘ j ‘ (TL—i—TO) ( )

In general we have
AT 2\ 2 :

[m + ’ ‘ (TL +TTO> — [argzmin ITios # arg;nax Wel] (3.62)

Electric power thus gains maximum value for different Z than at which entropy
production reaches minimum. Optimization with constrained Gibbs energy flux
is demonstrated in figure [3.4.Ta]

It was shown in [1] that maximum of electric power coincides with minimum
of entropy production if AT = 0, which can be seen also from Eq. easily.
How is this result reflected in Eq. ? Entropy production becomes
linear in L in the isothermal case and is thus minimal when Z is maximal, i.e.
where Wel is maximal. In formula the left hand side becomes zero as well
as the right hand side. This also agrees with Fig. |3.4.1al where extremal values
o, and W, tend to each other as AT — 0.

In summary, when the flux of Gibbs energy is kept constant during the opti-
mization, useful power and entropy production do not reach extrema (maximum
and minimum, respectively) simultaneously if the fuel cell is not isothermal. If
the fuel cell is isothermal, the extrema coincide.

Heat and Gibbs energy flux constraint

Another example of constraint is to fix both Gibbs energy flux and heat flux
through the hot reservoir, assuming 7% > T°,

j(Z, L)
2F
The implicit relation which binds Z and L is no longer as simple as in the case of
Gibbs energy flux constraint, Sec.|3.4.2] Unlike as in the previous case, we cannot
write an explicit formula relating Z and L. Nevertheless, plugging constraint

(3.63) into equation (3.51)), we obtain

. , j o~ T J (7
War = =it + 5 pA+ iy + 55 (A AT /2) = Tl (3.64)
constant 20

The non-constant terms in front of the entropy production in this formula make
EPM invalid also in this case. The corresponding electric power and entropy
production are plotted in figure for different boundary temperatures.
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3.4.3 Exergy flux as constraint

Finally, one can consider

AN
_jéL (1 — TL> + % (.A + ATSC{J/Z) = (C, (' is constant. (3.65)

Such constraint collapses equation into the form of equation , and
minimum of entropy production thus implies maximum of power for any couple
of optimization parameters in this case. Constraint however coincides with
exergy flux into the fuel cell.

Instead of fixing the whole flux of exergy into the fuel cell, we can fix both its
components separately, i.e.

i(Z L)

/L
jé (Zva)‘>:Ola and oF

A=C,, O and Cy are constant. (3.66)

Having two constraints, we have to work with three optimization parameters, for
example Z, L, \.

Note that by Eq. current j does not depend on A. Therefore, the second
constraint in implies that the Gibbs energy flux is also fixed. Treating L
as a function of Z, the first constraint in yields the following dependence
of Aon Z:

- Cref -7 .TL * So .2 C11ref -7 RTL
A= 7TAT [—Cl +]7 (S + 4) + ( 9 + FKO . (367)

Finally, we plug (3.67) into entropy production (3.43)), and get

R (TF T° AT s T0
TN(Z) = > Cret — Z+ = [ — + — ( 0)— 1——|c.
(Z) j<cf +F<KO+Kh>>+‘7F S+ - ) O

(3.68)
Bearing in mind that j is constant, we can see that the minimum of entropy
production coincides with the highest possible value of Z, where Z is limited by
the minimal thickness a as in equation . Maximum of electric power is also
reached at the maximal possible value of Z, reasoning of which is the same as
in section m This is, however, not surprising, since fixing constraints
inevitably leads to fixed flux of exergy into the fuel cell.

3.5 Conclusion

Efficiency of industrial devices producing electricity is often examined by means of
exergy analysis, that means by evaluating exergy destruction within the devices.
Since exergy destruction is proportional to entropy production, reducing exergy
destruction in fact means reducing entropy production. But the final goal of
such optimization is to raise the useful (electric) power delivered by the device.
Is reduction of entropy production always accompanied by growth of the useful
power? Not in general, as is demonstrated in this paper on several examples.
Before saying whether entropy production minimization (EPM) leads to useful
power maximization in a particular case, it is necessary to state what are the
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(a) Gibbs energy flux is kept constant. The maxima of power are attained on boundary
for every temperature difference. The entropy minima tend to power maxima with
decreasing temperature difference.
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(b) Sum of Gibbs energy flux and heat from hot reservoir is constrained. Entropy
production minima lie at boundary Z = 10. Work maxima tend move to Z = 0, with
decreasing temperature difference.

Figure 3.4.1: The resistance Z is the optimization parameter. Marks denote ex-
tremes of power and entropy production, respectively. Both, entropy production
and power values are relative to their value at [Z, L] = [1, 1]. Boundary temper-
ature T is in every case set constant to 1073 K, T is varied.
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constraints of the optimization, i.e., which quantities are kept fixed. For example
when exergy flux into the device is fixed (either as a whole or each part of it),
EPM is equivalent to maximization of useful power. Similarly when the maximum
work is sought that a device can deliver when relaxing to equilibrium (being shut
down), the maximum is obtained when no entropy is produced.

Consider now a fuel cell, which can be seen as a prototype of device converting
chemical energy into electricity. Therefore, it is reasonable to keep only flux
of Gibbs energy into the fuel cell constant during the maximization. Indeed,
Gibbs energy expresses the useful energy of the fuel while flux of exergy also
contains heat fluxes from all but one temperature reservoirs. If flux of Gibbs
energy into the fuel cell is fixed and boundary of the fuel cell is isothermal,
then EPM again leads to useful power maximization. On the other hand, if the
boundary is not isothermal, EPM fails to provide maximum useful power, see
Fig. 3.4.1al The situation is similar when flux of Gibbs energy and the heat
flux from the hotter temperature reservoir are kept fixed as useful power and
entropy production attain their respective extrema at different conditions, see
Fig. Finally, not fixing any energy flux through the boundary makes
EPM also inadequate for useful work maximization.

In summary, before assessing efficiency of a device by means of exergy anal-
ysis, one should first define the optimization procedure, which includes defining
constraints fixed during the optimization, and then one should verify that en-
tropy production minimization is equivalent to useful power maximization in the
particular case given by the device and the optimization procedure. Skipping any
of these steps, one may end up in a pitfall hidden behind the widely used theory
of exergy analysis.
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Summary and Discussion

The three topics were presented from the most abstract to the most applied,
although, the actual order of formulation was opposite. Let us now summarize
in this reverse order in order to document the questions that were solved during
the formulation process.

Exergy Analysis is a useful tool for the optimization of a certain class of de-
vices [6]. The limits of the entropy production minimization principle, which
is the basis of the Exergy Analysis, were investigated in [l 2]. In particular,
the entropy production minimization does not lead to power maximization of
devices with non-isothermal boundary [1]. This pitfall is documented on an ana-
lytically tractable one-dimensional example of a solid oxide hydrogen fuel cell [2].
The cell is described as a bulk yttria-stabilized zirconia where oxide ions and
heat are transported, enclosed with two reaction surfaces where reactions
or (B.13)), respectively, occur. The model is formulated within the framework of
non-equilibrium thermodynamics [1] thus the entropy production density is ex-
plicitly described. The device converts the temperature gradient and the chemical
energy of the fuel into electricity. The electric power is maximized with respect
to selected model parameters. It is shown that the values of the parameters
maximizing the electric power do not coincide with the values of the parameters
minimizing the entropy production of the device.

Although the model successfully demonstrates the limits of the Exergy Anal-
ysis applicability, its overall predictive power is poor. First, the choice of the
electron potential permits only the description of ion oxide transport in
a diffusional equilibrium, i.e., when the concentration of the oxide ions does not
change. Generally, a partial mass density is subject to time derivative in the mass
balance equation, cf. , and the mass flux is proportional to the gradient of
the respective electrochemical potential. A dependency of the electrochemical po-
tential on the partial mass density is therefore necessary to solve the mass balance
in time domain. Second, the linearized Butler-Volmer-type kinetics describing
the electrochemical reaction and relies on the overpotential, which
in this case is the difference of the electrostatic potential in the ionic phase and
in the electric conductor in the vicinity of the triple phase boundary. The jump
in the electrostatic potential across the boundary is due to the double layer, i.e.,
charge aggregation close to the interface. Hence, this type of ion transport and
electrochemical reaction model is useful to describe the processes which permit
the diffusional equilibrium of the double layer, although they can neither predict
the structure of the double layer nor the dynamics of the oxide ions arising in the
unsteady regimes, e.g., during electrochemical impedance spectroscopy or cyclic
voltammetry measurement. This was the actual incentive for the investigation
covered in the second chapter.

The results of the second chapter are contained in the paper |4]. The yttria-
stabilized zirconia — also called the Nernst mass — is a solid crystalline material.
The yttria doping stabilises the cubic face-centered structure of the cation lattice
at lower temperatures and also creates vacations — vacant sites — in the anion
lattice. A free energy density of YSZ bulk and surface is formulated in Section
of the second chapter, yielding an explicit formula for the chemical potential of
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oxide ions and allowing for the description of time dependent electro-
diffusive transport of oxide ions beyond the diffusional equilibrium regime. The
oxide ions are allowed to occupy the admissible lattice sites, therefore, a non-
vanishing free charge density may appear. In the bulk, the resulting system
of equations consists of the Poisson equation for the electrostatic potential and
the balance of oxide ions . Coupled to the bulk is a simplified model of
YSZ|gas|metal surface describing the adsorption of oxide ions, adsorption of gases,
and surface chemical reactions with electrons is presented in Section [2.4. The
model predictions can fit experimentally measured capacitance of YSZ blocking
electrode, see Fig. [2.5.3]

Despite the positive result, several questions regarding the validity of the
modeling approach arise. First, the characteristic length of the double layer is
around 1nm whereas the YSZ lattice constant is approximately 0.5nm. There-
fore, the actual geometry of the interface, which cannot be handled in the 1D
approximation, will come into play. In this context, the localization of the
electron-transfer reaction is questionable, furthermore it ignores possible quan-
tum behavior of the reacting electrons. Second, the chemistry of a real electrode
material may also include intermediate reaction steps. Finally, equation ([2.24c|)
is not valid in two and three spatial dimension, because the respective sides have
different curl, cf. . This leads to questions concerning the consistency of
the original thermodynamic framework [5] used for the formulation of the YSZ
interface model. To this end, the alternative thermodynamic formulation of the
equations describing the dynamics of charged mixture has been developed in the
first chapter.

Multiscale continuum thermodynamic theory coupling fluid mechanics and
electrodynamics, including fields of polarization and magnetization, has been
developed in the first chapter [3]. The kinematics of the advected fields is ac-
counted for by using the semidirect product of Lie algebras [18]. The devel-
oped Hamiltonian system is eventually endowed with gradient dissipa-
tion (1.80). The principle of Dynamic Maxmization of Entropy is employed to
find out dissipation-resulting reductions of the coupled description to less de-
tailed levels recovering some well known models, e.g., the Landau-Lifshitz spin
relaxation, the Single Time Relaxation model for polarized dielectric and the
generalized Poisson-Nernst-Planck model. The Maxwell-Stefan Poisson-Nernst-
Planck model is a model of charged species experiencing a friction when
moving relatively to the one fixed species, e.g., crystalline lattice. A derivation of
simple boundary dynamics for this model is proposed in Appendix together
with chemical kinetics in Appendix [1.4] thus, reconstructing the structure of the
model derived in the second chapter.

We will conclude with a critical discussion of the results of the first section.
First, the exact form of the Lorentz force acting upon the macroscopic polariza-
tion charge remains unclear, see Section[1.5, To this end, we intend to further in-
vestigate dynamics of two-(oppositely charged)particle distribution function cou-
pled with the electrodynamics and subsequent reductions of the description to a
one-particle distribution function with polarization field. Second, the absence of
consistently treated boundaries and boundary conditions in the GENERIC for-
malism impedes the systematic application of the theory, especially in the field
of electrochemistry, where the role of boundaries is crucial. Third, the presented
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theory is only valid for velocities that are small compared to the speed of light and
it is not compatible with the special relativity theory. Finally, we pose a burning
question: is it possible to derive Lorentz-invariant formulation of thermodynamics
of charged continuum within GENERIC?
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