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Introduction
One of the main tasks of cryptography is to enable two entities to communicate
in a secret fashion, that is, if someone listens to their conversation, they are
unable to find out what they are talking about. This is done by transforming
the plaintext (the message) into a ciphertext and sending the ciphertext instead.
Nowadays, both plaintext and ciphertext can be thought of as a sequence of bits
- elements of F2. In order to make sure the cipher is secure, we need to study the
properties of the functions we compose the cipher from. A function transforming
a fixed length (dimension) string of bits to another fixed length string of bits and
ones is called a Boolean function.

In the following pages, we will be describing a search for a Boolean function
with particular properties. Linear transformations are very easy to understand
and analyze (using linear algebra) and as such are usually not good for cryp-
tographic purposes. On the other hand, just not being linear does not mean
much for cryptographic suitability of a function. Using linear and differential
cryptanalysis, one can “attack” a function if it is “close” to linear in some sense.
The “further” a function is from being linear the better. Perfect nonlinearity
of a function Fn

2 → Fn
2 (that is for any input difference we can get any output

difference) is not possible due to the characteristic of 2 (addition is the same as
subtraction).

The best we achieve is half of the output differences being possible. This is
called almost perfect nonlinearity or APN for short. There are infinite families
of APN functions (that is, there are known APN functions in an infinite number
of dimensions). We can represent Boolean function in different ways, i. e. as a
polynomial in the input bits. Most of the known APN functions are quadratic -
that is the degree of this polynomial is 2.

A useful attribute of a Boolean function is what is called a Walsh transform
and the corresponding Walsh spectrum of a function. Among other uses, the
Walsh spectrum is invariant under some kind of equivalence on Boolean functions.
Interestingly, for a long time, all known APN functions had the same (depending
on the dimension) “classical” spectrum and it was conjectured that all APN
functions do. However, in 2009 a sporadic example (meaning it is not an infinite
family) in dimension 6 was introduced.

In this thesis, we will describe a construction of quadratic functions with non-
classical spectra and we will try to understand the functions in this class and
whether it’s possible for a function in this class to be APN. Better understanding
of such constructions might lead to finding another examples of APN functions
with non-classical spectra or even an infinite family of such functions. In the
following chapters, we deduce necessary conditions for the functions in order to
be APN with a goal of making a computer search feasible. Furthermore, we prove
that an infinite subclass of functions in this construction cannot be APN. At the
end of the thesis we describe the computer searches we performed.
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Preliminaries
In this chapter we will describe the basic theory of Boolean functions upon which
the rest of this thesis is built. This chapter’s sources are [1], [2] and [3] where the
theory of Boolean functions can also be found in a greater depth.

Definition (Boolean function). A Boolean function is a function Fn
2 → F2.

Definition (Vectorial Boolean function). A vectorial Boolean function is a func-
tion Fn

2 → Fm
2 .

Definition (Coordinate function). Let F = (f1, . . . , fm) : Fn
2 → Fm

2 . The func-
tions fi : F2

n → F2 are called coordinate functions of F .

Remark. The vectorspace Fn
2 can be endowed with a structure of the field F2n

as both are n-dimensional vectorspaces over F2. So we can represent a vectorial
Boolean function Fn

2 → Fn
2 as a function F2n → F2n instead. In this form, the

function can be conveniently described as a polynomial (according to the following
theorem).

Theorem 1 (Lagrange’s interpolation). Let f : F2n → F2n. Then there exists
an unique polynomial pf ∈ F2n [x] of degree at most 2n − 1, such that ∀x ∈ F2n :
f(x) = pf (x).

Proof. Existence: Let
la(x) :=

∏
b∈F2n \{a}

x + f(b)
a + f(b)

. Then la(x) ∈ {0, 1} and la(x) = 1 ⇐⇒ a = x. Let pf (x) := ∑
a∈F2n f(a)la(x).

Then ∀x ∈ F2n : f(x) = pf (x).
Uniqueness: Let p, q ∈ F2n [x] of degree at most 2n − 1, such that ∀x ∈ F2n :

f(x) = p(x) = q(x).
Let r(x) = (p + q)(x). Then ∀x ∈ F2n : r(x) = p(x) + q(x) = 0 and so r has 2n

roots. But since deg(r) ≤ 2n − 1 it must be a zero polynomial. Therefore, p = q.
f

Theorem 2 (Frobenius). The mappings σi : F2n → F2n , 0 ≤ i < n given by
σi(α) = α2i are distinct, and form all automorphisms of F2n.

Definition (Linearized polynomial). We say a polynomial L is linearized if it is
of the form L(x) = ∑n−1

i=0 aix
2i for some ai ∈ F2n .

Remark. The set of all linearized polynomials in F2n [x] correspond to the set of
all linear functions F2n → F2n .

Definition (Algebraic normal form). Each function f : Fn
2 → F2 can be uniquely

written down in a form f(x1, . . . , xn) = ∑
I⊂{1,...,n}

aI
∏
i∈I

xi, where aI ∈ F2, that

is, as a polynomial from F2[x1, . . . , xn] where each xi appears with exponents at
most 1 (since ∀b ∈ F2 : b = b2). This representation is called the algebraic normal
form of f .
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Definition (Algebraic degree). Algebraic degree of a Boolean function
f : Fn

2 → F2 is the degree of its algebraic normal form.
Algebraic degree of a Boolean function F : Fn

2 → Fm
2 is the maximum algebraic

degree of its coordinate functions.

Remark. Functions with an algebraic degree of 1, are linear nonzero functions
plus a constant.

Definition (Quadratic function). We say a function f : F2n → F2n is quadratic,
if its algebraic degree is 2.

Lemma 3. Let f : Fn
2 → Fm

2 be a quadratic function, a ∈ Fn
2 .

Then Df,a : Fn
2 → Fm

2 , x ↦→ f(x + a) + f(x) + f(a) + f(0) is a linear function.

Proof. A vectorial function is linear if and only if all its coordinate functions are
linear. Let fi be a coordinate function of f .
Using its Algebraic normal form, we can write

fi(x1, . . . , xn) =
∑

0≤i<n

Aixi +
∑

0≤i<j<n

Bijxixj + C.

Then

Dfi,a(x) = f(x + a) + f(x) + f(a) + f(0) =∑
0≤i<n

Ai(xi + ai) +
∑

0≤i<j<n

Bij(xi + ai)(xj + aj) + C+

+
∑

0≤i<n

Aixi +
∑

0≤i<j<n

Bijxixj + C+

+
∑

0≤i<n

Aiai +
∑

0≤i<j<n

Bijaiaj + C+

+ C =
∑

0≤i<j<n

Bij(xiaj + aixj)

Therefore, ∀x, y ∈ Fn
2 , we have

Dfi,a(x) + Dfi,a(y) =
∑

0≤i<j<n

Bij(xiaj + aixj) +
∑

0≤i<j<n

Bij(yiaj + aiyj) =

=
∑

0≤i<j<n

Bij((xi + yi)aj + ai(xj + yj)) = Dfi,a(x + y).

f

Definition (Absolute trace). A function

Tr : F2n → F2, u ↦→ u + u2 + u22 + · · ·+ u2n−1

is called the trace function from F2n to F2 or an absolute trace.

Remark. Trace is F2-linear, meaning that Tr(0) = 0 and ∀u, v ∈ F2n : Tr(u+v) =∑n−1
i=0 (u + v)2i = ∑n−1

i=0 u2i + v2i = Tr(u) + Tr(v).

Definition (Relative trace). Let k | n. A function

Trn
k : F2n → F2k , u ↦→ u + u2k + u22k + · · ·+ u2n/k−1

is called the relative trace function from F2n to F2k .
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Remark. The relative trace is F2k-linear, meaning that ∀u, v ∈ F2n : Trn
k(u + v) =∑n/k−1

i=0 (u + v)2ki = ∑n/k−1
i=0 u2ki + v2ki = Trn

k(u) + Trn
k(v) and

∀u ∈ F2n , q ∈ F2k ⊂ F2n : Trn
k(qu) = ∑n/k−1

i=0 q2ki
u2ki = ∑n/k−1

i=0 qu2ki = q · Trn
k(u).

In another words, solutions to Trn
k(x) = 0 are a vector subspace of F2n .

Definition (Walsh transform). A Walsh or Walsh-Hadamard transform of a vec-
torial Boolean function F : Fn

2 → Fm
2 is a function F̂ : Fn

2 × Fm
2 → Z defined by

F̂ (u, v) =
∑

x∈Fn
2

(−1)v·F (x)+x·u

Remark. The products in the exponent in the previous definition are any scalar
products and so for F : F2n → F2m , we might use the trace:

F̂ (u, v) =
∑

x∈Fn
2

(−1)Trm
1 (vF (x))+Trn

1 (xu)

Notation. By {∗a∧∧k, b∗} we denote a multiset where a has a multiplicity of k
and b has a multiplicity of 1.
Definition (Walsh spectrum). The multiset of all the values of a (vectorial)
Boolean function F is called the Walsh spectrum of F , denoted WF .
WF = {∗F̂ (u, v); u ∈ F2m , v ∈ F2n∗}

Proposition 4. Let n = 2m, f, g : Fn
2 → Fm

2 , F = (f, g) : Fn
2 → Fn

2 . Then
Wf ⊂ WF .
Proof.

f̂(u, v) =
∑

x∈Fn
2

(−1)v·f(x)+x·u =
∑

x∈Fn
2

(−1)(v,0)·(f(x),g(x))+x·u = F̂ (u, (v, 0))

f

Definition (Almost perfect nonlinearity). A Boolean function F : Fn
2 → Fn

2 is
called almost perfect nonlinear (APN) if, for every a ∈ Fn

2
∗, b ∈ Fn

2 the equation
F (x) + F (x + a) = b has 0 or 2 solutions.
Lemma 5. Let f : F2n → F2n be a Boolean function.
Then f is APN ⇐⇒ ∀a ∈ F2n : |{f(x) + f(x + a)|x ∈ F2n}| = 2n−1.
Proof. Let f be APN. Then |{f(x) + f(x + a)|x ∈ F2n}| =
|{b ∈ F2n : f(x) + f(x + a) = b has 2 solutions}| = 2n/2 = 2n−1.
Let |{f(x) + f(x + a)|x ∈ F2n}| = 2n−1.
Then for each b ∈ |{f(x) + f(x + a); x ∈ F2n}|, the number of solutions of
f(x) + f(x + a) = b is ≤ 2n/2n−1 = 2. Since the number of solutions to
f(x) + f(x + a) = b is even (if x is a solution, than x + a is also a solution), it
means, that f is APN. f

Proposition 6. Let f : F2n → F2n be a quadratic Boolean function.
Then f is APN ⇐⇒ f(x)+f(x+a)+f(a) = 0 has exactly 2 solutions ∀a ∈ F∗

2n.
Proof. According to Lemma 3, solutions to f(x)+f(x+a)+f(a)+f(0) = 0 form
a vector subspace of F2n . Therefore, for each b ∈ F2n , the number of solutions
of f(x) + f(x + a) = b is either zero, or the same as the number of solutions of
f(x) + f(x + a) = f(a) + f(0). f
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Theorem 7 ([3], page 161).
Power mappings on F2n, x ↦→ xd for the following exponents are APN.
Name Exponents d Conditions Reference
Gold functions 2i + 1 gcd(i, n) = 1 [4]
Kasami functions 22i − 2i + 1 gcd(i, n) = 1 [5]
Welch function 2k + 3 n = 2k + 1 [6]
Niho function 2k + 2k/2 − 1, k even n = 2k + 1 [7]

2k + 2(3k+1)/2 − 1, k odd
inverse function 22k − 1 n = 2k + 1 [4]
Dobbertin function 24k + 23k + 22k + 2k − 1 n = 5k [8]

Remark. Mappings x ↦→ x3 are always APN (for each n) as directly follows from
the last theorem.
Remark. Most of the known APN functions are quadratic and most of them share
the same ”classical” Walsh spectrum.

Definition (Classical spectra). We say that the Walsh spectrum of an APN
function F : Fn

2 → Fn
2 is classical if it only contains values {0,±2m,±2m+1, 22m}

for even n = 2m or {0,±2m+1, 22m+1} for odd n = 2m + 1.

The only known quadratic function with non-classical spectrum was given in
[9] for m = 3. In the following pages we will be investigating an approach that
might lead to another example, in m = 4.

Remark. For u ∈ F2n , by 1/ui or u−i we usually mean u2n−1−i.

Definition (Extended-affine equivalence). We say that two Boolean functions
F, G : F2n → F2n are extended-affine (EA) equivalent, if there exist affine per-
mutations L1, L2 : F2n → F2n and an affine function L3 : F2n → F2n such that
L1 ◦ F ◦ L2 + L3 = G.

Theorem 8. Let F, G : F2n → F2n be two EA equivalent Boolean functions. Then
F is APN if and only if G is APN.

Proof. G is APN ⇐⇒
∀a ∈ F∗

2n : |{G(x) + G(x + a) : x ∈ F2n}| = 2n−1 ⇐⇒
∀a ∈ F∗

2n : |{L1 ◦ F ◦ L2(x) + L1 ◦ F ◦ L2(x + a) : x ∈ F2n}| = 2n−1 ⇐⇒
∀a ∈ F∗

2n : |{L1(F (L2(x) + F (L2(x + a))) + L1(0) : x ∈ F2n}| = 2n−1 ⇐⇒
∀a ∈ F∗

2n : |{F (L2(x)) + F (L2(x) + L2(a) + L2(0)) : x ∈ F2n}| = 2n−1 ⇐⇒
∀a ∈ F∗

2n : |{F (y) + F (y + L2(a) + L2(0)) : y ∈ F2n}| = 2n−1 ⇐⇒
∀b ∈ F∗

2n : |{F (y) + F (y + b) : y ∈ F2n}| = 2n−1 ⇐⇒
F is APN.
We substituted y = L2(x) and b = L2(a) + L2(0) since L2 is a permutation. f

Theorem 9. Let F, G : F2n → F2n be two EA equivalent Boolean functions. Then
F and G have the same Walsh spectrum.

Definition (Cyclotomic coset). Let s, n ∈ N, n ≥ 2. The cyclotomic coset of s is
given by Cs = {2is (mod n)|i ∈ N}.

Notation. We will denote F∗ = F \ {0} and F∗∗ = F \ {0, 1}.
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1. The general construction

1.1 A known example of APN function with
non-classical spectrum

An example of an APN function with non-classical spectrum F26 → F26 was given
in [9] (page 18). Its univariate representation has the form

X ↦→ X3 + U11X5 + U13X9 + X17 + U11X33 + X48 (1.1)

where U is a generator of F∗
26 . The Walsh spectrum of this function is:

{∗0∧∧891, 8∧∧2944, 16∧∧256, 32∧∧4, 64∗}.

.

1.2 Description of the construction
To find an APN function with non-classical Walsh spectrum F : F22m → F22m we
consider functions
f, g : F2m → F2m , where

f, g are quadratic, f has non-classical spectrum

g(x, y) = L(x, y) + gx(x) + gy(y)

L(x, y) =
∑

0≤i,j<m

aijx
2i

y2j

gx(x) =
∑

0≤i,j<m

bijx
2i+2j

gy(y) =
∑

0≤i,j<m

cijy
2i+2j

aij, bij, cij ∈ F2m , 0 ≤ i, j < m

where f, g give a bivariete representation of F .
Since f has a non-classical spectrum, F also does (Proposition 4), so we need to
find g, such that F is APN. We will fix the function f and will search for the
function g. Trying all coefficients aij, bij, cij and checking the resulting function
for APNness is computationally infeasible, so we want to restrict the search space
by making some assumptions and finding necessary conditions for g.
It is reasonable to expect we can check≈ 224 functions in a second, ≈ 245 functions
in a month.
For a search with m = 4, even if we fix the functions gx, gy, there is an unfeasible
number (1616 = 264) of coefficients aij to try. We would like to decrease the
number of coefficients aij we try to something around 245.

7



If F is APN, then

F (x, y) + F (x + u, y + v) + F (u, v) = 0

or equivalently

f(x, y) + f(x + u, y + v) + f(u, v) = 0
g(x, y) + g(x + u, y + v) + g(u, v) = 0

(1.2)

has two solutions ∀u, v ∈ F2m , (u, v) ̸= (0, 0).

The motivation behind trying this construction for m = 4 is, that for m = 3
and f(x, y) = x2y + xy2 + xy it lead to finding APN functions F26 → F26 with
the same spectrum as eq. (1.1) (which are equivalent to it).

In the next sections, we will be describing two choices of f ,
i. e. f(x, y) = x2y + xy + xy2 and f(x, y) = x2y + xy2, focusing on the case
m = 4.

We choose these functions because of their simplicity (and because the first
one lead to the known example). Computer experiment shows that both of these
functions have non-classical spectrum in F24 → F24 .

Lemma 10. For each u, v ∈ F2m , (u, v) ̸= (0, 0), f(x, y)+f(x+u, y+v)+f(u, v) =
0 must have at most 2 · 2m solutions in order for Equation (1.2) to have two
solutions.

Proof. According to Proposition 6, solutions to f(x, y)+f(x+u, y+v)+f(u, v) =
0 as well as solutions to g(x, y)+g(x+u, y+v)+g(u, v) = 0 form a vector subspace
of F2n .
Let Au,v,b = {(x, y) ∈ F2m × F2m|f(x, y) + f(x + u, y + v) + f(u, v) = b},
Bu,v,b = {(x, y) ∈ F2m × F2m|g(x, y) + g(x + u, y + v) + g(u, v) = b}.
Assume that g(x, y) + g(x + u, y + v) + g(u, v) = 0 has two solutions, that is
∀b ∈ F2m : |Bu,v,b| ≤ 2. Each pair (x, y) ∈ Au,v,0 makes g(x, y) + g(x + u, y + v) +
g(u, v) = b for some b ∈ F2m . Since |F2m| = 2m and |Bu,v,b| ≤ 2, this means that
|Au,v,0| ≤ 2 · 2m. f

Proposition 11. 1. The function f(x, y) = x2y + xy2 has the following spec-
tra:
m = 3: {0∧∧399,−16∧∧42, 16∧∧70, 64}
m = 4: {0∧∧1455,−16∧∧1200, 16∧∧1360,−64∧∧30, 64∧∧50, 256}

2. The function f = x2y + xy2 + xy has the following spectra:
m = 3: {0∧∧267,−8∧∧84, 8∧∧108,−16∧∧18, 16∧∧30,−32, 32∧∧3, 64}
m = 4: {0∧∧2271,−16∧∧600, 16∧∧680,−32∧∧224, 32∧∧288,−64∧∧12, 64∧∧20, 256}

Proof. Computer calculation. f

We leave calculating the spectra of these functions for general m for future
work.

Proposition 12. For m = 3, 4, 5, both f = x2y + xy2 and f = x2y + xy2 + xy
satisfy Lemma 10.

Proof. Computer calculation. f
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2. Fixing f = x2y + xy + xy2

Throughout this chapter, we will assume f(x, y) = x2y + xy2 + xy. When we
substitute f(x, y) = x2 + xy + xy2 into Equation (1.2), we get that

0 = f(x, y) + f(x + u, y + v) + f(u, v)
= xy + x2y + xy2 + uv + u2v + uv2

+ (x + u)(y + v) + (x + u)2(y + v) + (x + u)(y + v)2

= xv + yu + x2v + yu2 + xv2 + y2u

= x(v + v2) + y(u + u2) + x2v + y2u

and
0 = g(x, y) + g(x + u, y + v) + g(u, v)

have two common solutions.

2.1 Conditions from differences u = 0 or v = 0
For u = 0, we get that

0 = x(v + v2) + x2v,

0 = g(x, y) + g(x, y + v) + g(0, v).
(2.1)

have two common solutions.
Similarly, from v = 0, we get that

0 = y(u + u2) + y2u,

0 = g(x, y) + g(x + u, y) + g(u, 0)
(2.2)

have two common solutions.

Proposition 13. If F = (f, g) is APN, then gx and gy are APN.

Proof. Since ∀(x, y) ∈ {0} × F2m solves the first equation of (2.1),
g(0, y) + g(0, y + v) + g(0, v) = 0 cannot have any other solutions, other than
y ∈ {0, v}. But since g(0, y) = gy(y) it means, that gy is APN.
By similar argument, from v = 0 and Equation (2.2), we get that gx is APN. f

Lemma 14. If F = (f, g) is APN, then

(a) ∀v ∈ F∗∗
2m , y ∈ F2m : g(v + 1, y) + g(v + 1, y + v) + g(0, v) ̸= 0,

(b) ∀u ∈ F∗∗
2m , x ∈ F2m : g(x, u + 1) + g(x + u, u + 1) + g(u, 0) ̸= 0.

Proof.

(a) (x, y) ∈ {(0, 0), (0, v)} are two common solutions of Equation (2.1).
This means, that since (x, y) ∈ {v + 1} × F2m solves the first equation of
(2.1), it cannot solve the second one.
This gives us ∀v ∈ F∗∗

2m , y ∈ F2m : g(v + 1, y) + g(v + 1, y + v) + g(0, v) ̸= 0.
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(b) By similar argument, from v = 0 and Equation (2.2), we get that
∀u ∈ F∗∗

2m , x ∈ F2m : g(x, u + 1) + g(x + u, u + 1) + g(u, 0) ̸= 0.

f

To proceed further, we should fix the functions gx, gy. Proposition 13 tells us,
that they need to choose them to be APN.
For the sake of simplicity, let us fix gx(x) = x3, gy(y) = αy3, α ̸= 0.
The function gx is APN according to Theorem 7 and the function gy is EA-
equivalent to it and thus (according to Theorem 8) also APN.
Different more complicated choices of gx, gy might lead to more or less equivalent
results as simpler choices. For example let m = 4 and gx(x) = x9, gy(y) = αy9.
Then g(x, y) = (x3 + α′y3 + L′(x, y))2, where α′ = α8, and L′(x, y) = L(x, y)8 =∑

0≤i,j<m ai−3,j−3x
2i

y2j

Proposition 15. In order for the construction to work, we need

(a) 0 = x2u + u2x + L(u, u + 1) has solutions ⇐⇒ u ∈ F2,

(b) 0 = αy2u + αv2x + L(v + 1, v) has solutions ⇐⇒ v ∈ F2.

Proof.

(a) If u ∈ F2, then x = 0 solves the equation.
Let u ̸∈ F2, then Lemma 14 (b) yields

0 ̸= g(x, u + 1) + g(x + u, u + 1) + g(u, 0)
= x3 + α(u + 1)3 + L(x, u + 1) + (x + u)3 + α(u + 1)3+

+ L(x + u, u + 1) + u3 + α03 + L(u, 0)
= x3 + L(x, u + 1) + (x + u)3 + L(x + u, u + 1) + u3

= x3 + L(u, u + 1) + x3 + x2u + xu2 + u3 + u3

= x2u + u2x + L(u, u + 1)

(b) If v ∈ F2, then y = 0 solves the equation.
Let v ̸∈ F2, then Lemma 14 (a) yields

0 ̸= αy2u + αv2x + L(v + 1, v)

f

Notation. Recall, that L(x, y) = ∑
0≤i,j<m aijx

2i
y2j .

Through the rest of this chapter, we let

Aij = aij + aji, Bi = ai−1,i−1 +
∑

0≤j<m

aij (2.3)

(where the indices are modulo m).
This allows us to write

L(x, x + 1) =
∑

0≤i,j<m

aijx
2i+2j +

∑
0≤i,j<m

aijx
2i =

∑
0≤i<j<m

Aijx
2i+2j +

∑
0≤i<m

Bix
2i

(2.4)
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Lemma 16. This notation implies∑
0≤i<j<m

Aij =
∑

0≤i<m

Bi.

Proof.

m∑
i=0

Bi =
m∑

i=0

⎛⎝ai−1,i−1 +
m∑

j=0
aij

⎞⎠ =
m∑

i=0
ai−1,i−1 +

m∑
i=0

m∑
j=0

aij =

m∑
i=0

ai−1,i−1 +
∑

0≤i<j<m

(aij + aji) +
∑

0≤i=j<m

ai−1,j−1 =
∑

0≤i<j<m

Aij

f

2.2 Generalisation to large fields
In this section we will show that the construction does not result in an APN
function for large values of m.

Lemma 17. Let a ∈ F2n. Then x2 + x = a has solutions (two) in x ∈ F2n ⇐⇒
Tr(a) = 0.

Proof. Let x2 +x = a be a solution. Then Tr(a) = Tr(x2 +x) = Tr(x2)+Tr(x) =
Tr(x) + Tr(x) = 0.
Let L(x) = x2 + x. L is a linearized polynomial and Ker L = {0, 1} =⇒
dim Ker(L) = 1. For every linear mapping dim Im(L) + dim Ker(L) = n and so
we get dim Im(L) = n− 1 =⇒ | Im(L)| = 2n−1.
Since |{x ∈ F2n ; Tr(x) = 0}| = 2n−1, Im L must be equal to this set. f

Lemma 18. Let f(x) = ∑2n−1
i=0 aix

i be a polynomial with ≤ k nonzero coefficients.
Then the number of nonzero coefficients of Tr f is ≤ nk.

Proof. Let I := {i ≤ 2n; ai ̸= 0}. Then

Tr f = Tr
∑
i∈I

aix
i =

∑
i∈I

Tr(aix
i) =

∑
i∈I

n−1∑
j=0

aj
i (xi)j

and so Tr f has ≤ n · |I| = nk nonzero coefficients. f

Lemma 19. Let a, b ∈ F2n , k ∈ N. Then (a + b)k = ∑
i≼k

aibk−i where u ≼ v ⇐⇒

Su ⊆ Sv and Su is support of the binary representation of u.

Lemma 20. If F is APN, then

(a)

Tr
(

L(u, u + 1)
u3

)
=

q−2∑
i=1

ui

(b)

Tr
(

L(v + 1, v)
αv3

)
=

q−2∑
i=1

vi

11



Proof.

(a) If u = 0, then Tr (L(u, u + 1)/u3) = Tr
(
L(u, u + 1) · u2m−1−3

)
= Tr 0 = 0.

Let u ∈ F∗
2m . According to Proposition 15 (a) x2u + u2x + L(u, u + 1) = 0

has solutions ⇐⇒ u = 1.
Using the substitution x ↦→ xu, we get an equivalent condition of

x2 + x = L(u, u + 1)
u3

having solutions in x ⇐⇒ u = 1. Lemma 17 implies that

Tr
(

L(u, u + 1)
u3

)
=

⎧⎨⎩0, u = 1
1, u ̸= 1

Thus, for u ∈ F2m we have

Tr
(

L(u, u + 1)
u3

)
=

⎧⎨⎩0, u = 0, 1
1, u ̸= 0, 1

Using Lagrange interpolation we can get an unique polynomial representa-
tion of the right side.
Using the fact that u2 + u = 0 ⇐⇒ u = 0, 1 and the fact that uq−1 =
0 ⇐⇒ u = 0, we can also craft it like so:

(u2 + u)q−1 =
∑

i≼q−1
u2iuq−1−i =

∑
i≤q−1

uq−1+i =
q−2∑
i=1

ui.

(b) Same idea, except that we will start with Proposition 15 (b).

f

Theorem 21. For m ∈ N, m ≥ 9, ”the construction” does not yield an APN
function F .

Proof. Assume it does. According to Lemma 20, we have

Tr
(

L(u, u + 1)
u3

)
=

q−2∑
i=1

ui.

Let k denote the number of nonzero coefficients of L(u,u+1)
u3 which is also the

number of nonzero coefficients of L(u, u + 1).
From Equation (2.4), we can see, that k ≤

(
m
2

)
+
(

m
1

)
.

Applying Lemma 18 to Tr
(

L(u,u+1)
u3

)
= ∑q−2

i=1 ui we get the following inequality:

2m − 2 = q − 2 ≤ m

((
m

2

)
+ m

)
,

which is not satisfied for m ≥ 9. Therefore, for such m we get a contradiction
with the assumption of F being APN. f
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2.3 The case α = 1
Let us fix m = 4 for now and let us see what exponents we can get in

L(x, x + 1)
x3 = L(x, x)

x3 + L(x, 1)
x3 =

∑
0≤i<j<4

Aijx
2i+2j−3 +

∑
0≤i<4

Bix
2i−3.

We can look for the exponents in the table below.
i j 2i + 2j + 15− 3
0 1 15
0 2 2
0 3 6
1 2 3
1 3 7
2 3 9

i 2i + 15− 3
0 -2=13
1 -1=14
2 1
3 5

The cyclotomic cosets in F24 are:
C1 = {1, 2, 4, 8}
C3 = {3, 6, 12, 9}
C5 = {5, 10}
C7 = {7, 14, 13, 11}
C0 = {0}

Remark. Cyclotomic cosets tell us, which monomials of a polynomial will get
”mixed together”, when we take the trace.
For example let h(x) = q7x

7 + q11x
11 + q12x

12. Then

Tr(h(x)) = q7x
7 + (q7x

7)2 + (q7x
7)4 + (q7x

7)8+
+ q11x

11 + (q11x
11)2 + (q11x

11)4 + (q11x
11)8+

+ q12x
12 + (q12x

12)2 + (q12x
12)4 + (q12x

12)8

= q7x
7 + q2

7x14 + q4
7x13 + q8

7x11+
+ q11x

11 + q2
11x

7 + q4
11x

14 + q8
11x

13+
+ q12x

12 + q2
12x

9 + q4
12x

3 + q8
12x

6

= (q7 + q2
11)x7 + (q2

7 + q4
11)x14 + (q4

7 + q8
11)x13 + (q8

7 + q11)x11+
+ q12x

12 + q2
12x

9 + q4
12x

3 + q8
12x

6

As we can see, coefficients q7 are q11 are getting mixed in the trace (since 7 and
11 lie in the same cyclotomic coset), but they do not affect (for example) the
monomial x3 (since 3 lies in a different coset).

Proposition 22. For m = 4, α ̸= 1 the construction does not work.

Proof. Lemma 20 gives us:

Tr
(

L(x, x)
x3

)
+ Tr

(
L(x, 1)

x3

)
=

q−2∑
i=1

xi = Tr
(

L(x, x)
αx3

)
+ Tr

(
L(1, x)

αx3

)

If we look at which terms do contribute to the monomial x3, from the first equality
we get:

13



Tr(x3) = Tr(A12x
3 + A03x

6 + A23x
9) = Tr(A12x

3 + (A03x
6)8 + (A23x

9)2) =
Tr(x3A12) + Tr(x3A8

03) + Tr(x3A2
23) and so A12 + A8

03 + A2
23 = 1.

However, at the same time, from the second equality, we get:
A12 + A8

03 + A2
23 = α

This gives α = 1. f

In the previous proof, we deduced the condition A12 + A8
03 + A2

23 = 1 from C3.
We can use cyclotomic cosets to deduce further conditions for the coefficients.

Theorem 23. Let Aij, Bi be as above. Let m = 4. If F is APN, then

(a) Tr(A01) = 0

(b) B2
2 + A02 = 1

(c) A12 + A8
03 + A2

23 = 1

(d) B3 + B4
3 = 1

(e) A4
13 + B0 + B2

1 = 1

Proof.

(a) From C0 we get 0 = Tr(A01).

(b) From C1 we get Tr(x) = Tr(B2x + A02x
2) = Tr((B2

2 + A02)x2)
=⇒ B2

2 + A02 = 1.

(c) We deduced this in the previous proof.

(d) From C5 we get Tr(B3x
5) = x5(B3 +B4

3)+x10((B3 +B4
3)2), so B3 +B4

3 = 1.

(e) From C7 we get Tr(x7) = Tr(A13x
7+B0x

13+B1x
14) = Tr(x13(A4

13+B0+B2
1))

=⇒ A4
13 + B0 + B2

1 = 1.

f

Lemma 24. x + x4 = 1 has four solutions for x ∈ F24 .

Proof. x + x4 = Tr4
2(x). However, since the solutions to Tr4

2(x) = 0 are a two
dimensional vector subspace F22 of F24 , x + x4 = a has four solutions for each
a ∈ F22 . f

Lemma 25. When m = 4, the conditions given in Theorem 23 reduce the size of
the search space from 1616 = 264 to 249.

Proof. The number of possible combination of values of A01, A02, A03, A12, A13,
A23, B0, B1, B2, B3 is 22+5·4−1 = 221.
(If we choose B3 matching condition (d) (4 values) and B2, A03, A23, B1, A13 freely,
conditions (b), (c), (e) determine coefficients A02, A12, B0 uniquely. The value of
A01 is determined by Lemma 16), in half of the cases it will match condition (a).)

14



Rewriting the meaning of our notation Aij, Bi into a system of equations
yields:

a00 +a01 +a02 +a03 +a33 = B0
a00 +a01 +a11 +a12 +a13 = B1 + A01

a02 +a11 +a12 +a22 +a23 = B2 + A02 + A12
a03 +a13 +a22 +a23 +a33 = B3 + A03 + A13 + A23

As we can see, the corresponding matrix⎛⎜⎜⎜⎝
1 1 1 1 0 0 0 0 0 1
1 1 0 0 1 1 1 0 0 0
0 0 1 0 1 1 0 1 1 0
0 0 0 1 0 0 1 1 1 1

⎞⎟⎟⎟⎠
has rank 3 and so 3 of the coefficients aij, i ≤ j are uniquely determined by

the other 7. Since coefficients aji, i < j are uniquely determined by aij and Aij,
this leaves us at 221+7·4 = 249 of total combinations. f

Remark. The previous proof provides a way of generating all the matching com-
binations of coefficients efficiently.
Remark. In Proposition 22 we proved that α must be equal to 1 for m = 4. How-
ever, we can actually generalize this result to m ≥ 4.
What enabled us to prove Proposition 22, was the fact that there existed a cy-
clotomic coset (C3) that did not have any elements of the form 2i − 3. We need
to show that this is the case in general when m > 4.

Lemma 26. Let m > 4, let Cs be a cyclotomic coset in F2m. Then |Cs| ≤ m and
the total number of cyclotomic cosets in F2m is greater than m.

Proof. Since 2m ≡ 1 (mod 2m − 1), we have C1 = {1, 2, 4, . . . , 2m−1} and so
|C1| = m.
Now, ∀s : Cs = {s · a|a ∈ C1} and so |Cs| ≤ |C1| = m.
Suppose the number of cyclotomic cosets, N is at most m. Then we have

2m − 1 =
∑

Cs is a cyclotomic coset
|Cs| ≤ N ·m ≤ m2.

This is a contradiction with m > 4. f

Theorem 27. For m ≥ 4, α ̸= 1 the construction does not work.

Proof. Case m = 4 is proved in Proposition 22. Let m > 4.
Since (21 − 3) · 2 ≡ −2 ≡ (20 − 3), 20 − 3 and 21 − 3 lie in the same cyclotomic
coset. This means, that numbers of the form 2i−3 cover at most m−1 cyclotomic
classes.
Now, according to Lemma 26 there are more than m cosets and therefore there
is a coset which is not covered by any number of the form 2i − 3.
Similar to Proposition 22 we get two conditions that say that some combination
of the coefficients is supposed to be 1 and α at the same time. f
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2.4 Further conditions from other differences
If F = is APN then

f(x, y) + f(x + u, y + v) + f(u, v) = 0

g(x, y) + g(x + u, y + v) + g(u, v) = 0
has two solutions, that is the only common solutions to

x(v + v2) + y(u + u2) + x2v + y2u = 0 (2.5)

x2u + xu2 + y2v + yv2 + L(u, y) + L(x, v) = 0 (2.6)
are (x, y) ∈ {(0, 0), (u, v)}.
Lemma 28. If F is APN, then
∀(u, v) ∈ F2

2m \ F2
2 : v(v + 1) + u(u + 1) + L(u, u + 1) + L(v + 1, v) ̸= 0.

Proof. Notice (x, y) = (v + 1, u + 1) solves Equation (2.5). Substituting into
Equation (2.6), we get:

0 = (v + 1)2u + (v + 1)u2 + (u + 1)2v + (u + 1)v2 + L(u, u + 1) + L(v + 1, v)
= u + u2 + v + v2 + L(u, u + 1) + L(v + 1, v)

And it cannot have any solution (unless (x, y) = (0, 0) ⇐⇒ (u, v) = (1, 1) or
(x, y) = (u, v) ⇐⇒ (u, v) ∈ {(0, 1), (1, 0)}). f

Theorem 29. If F is APN, then
(a) ∀u ∈ F∗∗

2m : u(u + 1) ̸= L(u, u + 1)

(b) ∀v ∈ F∗∗
2m : v(v + 1) ̸= L(v + 1, v)

(c) ∀u, x ∈ F∗
2m : L(u, x) = L(x, u) ⇐⇒ u = x

Proof.

(a) This is a special case of Lemma 28 with v = 1.

(b) This is a special case of Lemma 28 with u = 1.

(c) Let u = v
Equation (2.5) becomes

(u + u2)(x + y) + u(x2 + y2) = 0 (2.7)

while Equation (2.6) becomes

u(x2 + y2) + u2(x + y) + L(u, y) + L(x, u) = 0 (2.8)

The only common solutions to Equation (3.7) and Equation (3.8) are
(x, y) ∈ {(0, 0), (u, u)}.
Since ∀x = y solves Equation (2.7), it cannot solve Equation (2.8) (unless
x = 0, u = 0 or x = u).
In other words we get the following condition:

∀u, x ∈ F∗
2m , x ̸= u : L(x, u) ̸= L(u, x)

16



f

Remark. We do not need to know all the coefficients aij of L to evaluate L(x, x+1)
and therefore to check whether x2 + x ̸= L(x, x + 1) - knowing the values of
Aij ∀i, j : 0 ≤ i < j < m; Bi ∀i : 0 ≤ i < m is sufficient.

More than that - we do not even need all the coefficients to check whether
∀u, x ∈ F∗

2m : L(u, x) + L(x, u) = 0 ⇐⇒ u = x, knowing the values of Aij ∀i, j :
0 ≤ i < j < m; aii ∀i : 0 ≤ i < m is sufficient since

L(u, x) + L(x, u) = L(u, x + u) + L(u, u) + L(x, x + u) + L(x, x) =
= L(u, u) + L(x, x) + L(x + u, x + u)

17



3. Fixing f = x2y + xy2

In this section we will start with f = x2y + xy2. We will fix again gx(x) =
x3, gy(y) = αy3.

When we substitute f(x, y) = x2 + xy2 into Equation (1.2), we get that

0 = f(x, y) + f(x + u, y + v) + f(u, v)
= x2y + xy2 + u2v + uv2 + (x + u)2(y + v) + (x + u)(y + v)2

= x2v + u2y + xv2 + uy2

and
0 = g(x, y) + g(x + u, y + v) + g(u, v)

have two common solutions.

3.1 Conditions from differences u = 0 or v = 0
For u = 0, we get that

0 = xv2 + x2v,

0 = g(x, y) + g(x, y + v) + g(0, v).
(3.1)

have two common solutions.
Similarly, from v = 0, we get that

0 = yu2 + y2u,

0 = g(x, y) + g(x + u, y) + g(u, 0)
(3.2)

have two common solutions.

Proposition 30. If F is APN, then gx, gy are APN.

Proof. Since ∀(x, y) ∈ {0} × F2m solves the first equation of (3.1),
g(0, y) + g(0, y + v) + g(0, v) = 0 cannot have any other solutions, other than
y ∈ {0, v}. But since g(0, y) = gy(y) it means, that gy is APN.
By similar argument, from v = 0 and Equation (3.2), we get that gx is APN. f

Lemma 31. Let u, v ∈ F∗
2m. Then

(a) ∀y ∈ F2m : g(v, y) + g(v, y + v) + g(0, v) ̸= 0,

(b) ∀x ∈ F2m : g(x, u) + g(x + u, u) + g(u, 0) ̸= 0.

Proof.

(a) (x, y) ∈ {(0, 0), (0, v)} are two common solutions of Equation (3.1).
This means, that since (x, y) ∈ {v} × F2m solves the first equation of (3.1),
it cannot solve the second one.
This gives us ∀v ∈ F∗

2m , y ∈ F2m : g(v, y) + g(v, y + v) + g(0, v) ̸= 0.

18



(b) By similar argument, from v = 0 and Equation (3.2), we get that
∀u ∈ F∗

2m , x ∈ F2m : g(x, u) + g(x + u, u) + g(u, 0) ̸= 0.

f

Proposition 32. Let u, v ∈ F∗
2m. If F is APN, then

(a) x2u + xu2 + L(u, u) = 0 has no solution.

(b) αy2v + αyv2 + L(v, v) = 0 has no solution.

Proof.

(a) Expanding g(x, y) = x3 + αy3 + L(x, y) in Lemma 31 (b) gives:

0 ̸= g(x, u) + g(x + u, u) + g(u, 0)
= x3 + αu3 + L(x, u) + (x + u)3 + αu3 + L(x + u, u) + u3

= x3 + L(x, u) + (x + u)3 + u3

= x2u + u2x + L(u, u)

(b) Similarly from Lemma 31 (a).

f

Proposition 33. If F is APN, then

(a)

Tr
(

L(u, u)
u3

)
= uq−1

(b)

Tr
(

L(v, v)
αv3

)
= vq−1

Proof.

(a) Similar to Lemma 20. Applying the substitution x ↦→ xu to Proposition 32
(a), we get that x2 + x = L(u,u)

u3 has no solutions for u ̸= 0. Applying
lemma 17, we get

Tr
(

L(u, u)
u3

)
=

⎧⎨⎩0, u = 0
1, u ̸= 0

= uq−1

.

(b) Analogously from Proposition 32 (b).

f
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Notation. Recall, that L(x, y) = ∑
0≤i,j<m aijx

2i
y2j .

Through the rest of this chapter, we let

Aij = aij + aji. (3.3)

This allows us to write

L(x, x) =
∑

0≤i,j<m

aijx
2i+2j =

∑
0≤i<j<m

Aijx
2i+2j +

∑
0≤i<m

aiix
2i+1

. (3.4)

Similarly as in the previous section, let us fix m = 4 and look at the conditions
we get from the cyclotomic classes.
The exponents we can get are:

i 0 0 0 0 1 1 1 2 2 3
j 0 1 2 3 1 2 3 2 3 3

2i + 2j + 15− 3 14 15 2 6 1 3 7 5 9 13

Theorem 34. Consider Aij as above. Let m = 4. If F = (f, g) is APN, then:

(a) 1 = Tr(A01) = Tr(A01/α)

(b) 0 = a2
11 + A02 = (a11/α)2 + A02/α

(c) 0 = a22 + a4
22 = (a22/α) + (a22/α)4

(d) 0 = A12 + A8
03 + A2

23 = (A12/α) + (A03/α)8 + (A23/α)2

(e) 0 = A4
13 + a33 + a2

00 = (A13/α)4 + a33/α + (a00/α)2

Proof.

(a) From C15 we get u15 = Tr(A01u
15) = A01u

15 + A2
01u

30 + A4
01u

60 + A8
01u

120 =
u15(A01 +A2

01 +A4
01 +A8

01) =⇒ A01 +A2
01 +A4

01 +A8
01 = 1 ⇐⇒ Tr(A01) = 1

And also v15 = Tr(A01v
15/α) =⇒ Tr(A01/α) = 1.

(b) From C1 we get 0 = Tr(a11u + A02u
2) = Tr((a2

11 + A02)u2)
=⇒ a2

11 + A02 = 0
And also 0 = Tr(a11v/α + A02v

2/α) =⇒ (a11/α)2 + A02/α = 0

(c) From C5 we get 0 = Tr(a22u
5) = u5(a22 + a4

22) + u10(a22 + a4
22)2

=⇒ a22 + a4
22 = 0

And 0 = Tr(a22v
5/α) = v5(a22/α + (a22/α)4) + v10(a22/α + (a22/α)4)2 =⇒

a22/α + (a22/α)4 = 0

(d) From C3 we get 0 = Tr(A12u
3 + A03u

6 + A23u
9) = Tr(u3(A12 + A8

03 + A2
23))

=⇒ (A12 + A8
03 + A2

23) = 0
And 0 = Tr(A12v

3/α + A03v
6/α + A23v

9/α) =⇒ A12/α + (A03/α)8 +
(A23/α)2 = 0

(e) From C7 we get 0 = Tr(A13u
7 + a33u

13 + a00u
14) = Tr(u4(A4

13 + a33 + a2
00))

=⇒ A4
13 + a33 + a2

00 = 0.
And 0 = Tr(A13v

7/α + a33v
13/α + a00v

14/α) =⇒ (A13/α)4 + a33/α +
(a00/α)2 = 0
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Corollary 35. Furthermore, if α ̸= 1, we have the following conditions:
(a) Tr(A01) = Tr(A01/α) = 1

(b) A02 = 0, a11 = 0

(c) a22 = a4
22

α ̸∈ F4 =⇒ a22 = 0

(d) A12 = A8
03(1 + α6)/(α7 + α6)

A23 = A4
03(1 + α11)/(α3 + α11)

(e) a33 = A4
13(1 + α)/α2

a00 = A2
13/(α + α8)

Proof.

(a) Theorem 34(a)

(b) In Theorem 34(b), if we substitute a2
11 = A02 into (a11/α)2 + (A02/α) = 0,

we get A02(1/α2 + 1/α) = 0. Since α ̸= 1 this means, that A02 = 0 and also
a11 = 0.

(c) Substituting one condition from Theorem 34(c) to another one gives
a22(1/α + 1/α4) = 0. If α ̸= F4 then 1/α + 1/α4 ̸= 0 and so a22 = 0.

(d) Substituting A2
23 from one equation in Theorem 34(d) to the other gives

A12(1/α + 1/α2) + A8
03(1/α8 + 1/α2) = 0 and so

A12 = A8
03

1/α8 + 1/α2

1/α + 1/α2 = A8
03

1 + α6

α7 + α6 .

.
Substituting A12 instead gives A8

03(1/α8 +1/α)+A2
23(1/α2 +1/α) = 0 =⇒

A2
23 = A8

03
1/α8 + 1/α

1/α2 + 1/α
= A8

03
1 + α7

α6 + α7

=⇒ A23 =
(

A8
03

1 + α7

α6 + α7

)8

= A4
03

1 + α11

α3 + α11 .

(e) Substituting a00 from one equation in Theorem 34(e) to the other gives
A4

13(1/α4 + 1/α2) + a33(1/α + 1/α2) = 0 and so

a33 = A4
13

1/α4 + 1/α2

1/α + 1/α2 = A4
13

1 + α2

α3 + α2 = A4
13

(1 + α)2

(1 + α)α2 = A4
13(1 + α)/α2.

Substituting a33 instead gives A4
13(1/α4 + 1/α) + a2

00(1/α2 + 1/α) = 0 =⇒

a2
00 = A4

13
1/α4 + 1/α2

1/α2 + 1/α
= A4

13
1 + α2

α2 + α3 =⇒

a00 =
(

A4
13

1 + α2

α2 + α3

)8

= A2
13

1 + α

α + α9 = A2
13

1 + α

α(1 + α)8 = A2
13/(α + α8).
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Lemma 36. For m = 4, α = 1, conditions in Theorem 34 reduce the search space
from 1616 = 264 to 249.

Proof. Theorem 34(a) is satisfied for 8 values, Theorem 34(c) is satisfied for 4
values. Other than that, there are 11 free coefficients. =⇒ 23+2+11·4 = 249. f

Lemma 37. When m = 4, the conditions given in Corollary 35 reduce the search
space from 1616 = 264 to 236 for α ∈ F∗∗

4 and to 234 for α ̸∈ F4.

Proof. Corollary 35(a) is satisfied for 4 values, Corollary 35(c) is satisfied for 4
values (resp. 1 if α ̸∈ F4), other than that, there are 8 free coefficients. =⇒
22+2+8·4 = 236 resp. 22+0+8·4 = 234 if α ̸∈ F4. f

3.2 Further conditions from other differences
If F = is APN then

f(x, y) + f(x + u, y + v) + f(u, v) = 0

g(x, y) + g(x + u, y + v) + g(u, v) = 0

has two solutions, that is the only common solutions to

x2v + u2y + xv2 + uy2 = 0 (3.5)

x2u + xu2 + α(y2v + yv2) + L(u, y) + L(x, v) = 0 (3.6)

are (x, y) ∈ {(0, 0), (u, v)}.

Lemma 38. If F is APN, then

(a) ∀u, v ̸= 0, u ̸= v : (α + 1)(u2v + uv2) + L(u, u) + L(v, v) ̸= 0

(b) (1 + α)(x2u + xu2) + L(x, u) + L(u, x) = 0 ⇐⇒ x ∈ {0, u}

(c) ∀x ∈ F2m : (1 + α)(x2u + xu2) + L(u, x + u) + L(x, u) ̸= 0

(d) L(u, u) = 0 ⇐⇒ u = 0

Proof.

(a) Since (x, y) = (v, u) solves Equation (3.5), it cannot solve Equation (3.6).
In other words we get the following condition:

(α + 1)(u2v + uv2) + L(u, u) + L(v, v) ̸= 0 ∀u, v ̸= 0, u ̸= v.
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To prove parts (b-d), let u = v ∈ F∗
2m .

Equation (3.5) becomes

u2(y + x) + u(y + x)2 = 0 (3.7)

while Equation (3.6) becomes

x2u + xu2 + α(y2u + yu2) + L(u, y) + L(x, u) = 0 (3.8)

The only common solutions to Equation (3.7) and Equation (3.8) are
(x, y) ∈ {(0, 0), (u, u)}.

Now, Equation (3.7) has solutions of the form x + y = 0 and x + y = u.

(b) Let y = x. Substituting into Equation (3.8), we get

(1 + α)(x2u + xu2) + L(x, u) + L(u, x) = 0

and it cannot have any solution x ∈ F2m \ {0, u}.

(c) Let y = u + x. Equation (3.8) becomes

(1 + α)(x2u + xu2) + L(u, x + u) + L(x, u) = 0

and it cannot have any solution x ∈ F2m .

(d) This is a special case of (c) for x = 0.

f

Theorem 39. If F is APN, α = 1, then

(a) x ↦→ L(x, x) is a permutation

(b) ∀x, u ∈ F∗
2m , x ̸= u : L(x, u) ̸= L(u, x)

(c) ∀x ∈ F2m , u ∈ F∗
2m : L(x, u) ̸= L(u, x + u)

Proof. These are just special cases of Lemma 38 for α = 1. f

Remark. We do not need to know all the coefficients aij of L to evaluate L(x, x)
and therefore to check whether x ↦→ L(x, x) is a permutation - knowing the values
of aii ∀i : 0 ≤ i < m, Aij ∀i, j : 0 ≤ i < j < m is sufficient.
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4. Computer search

4.1 Implementation
We implemented all of the searches in the C++ language. The source code is
available as an attachment.
Let g ∈ F2[x], deg g = m be an irreducible polynomial. Then (g) is a prime (and
maximal) ideal in F2[x] and therefore, F2[x]/(g) is a field (of size 2m). From each
coset in F2[x]/(g), we will pick an unique representative - a polynomial of degree
at most m− 1. This shall be our representation of the field F2m .

In the C++ language we will represent each polynomial of degree at most m−1
using binary digits of a number 0 . . . 2m−1, for example x3 +x+1 ≃ 10112. This
means that addition corresponds to binary XOR operation and multiplication
(modulo g) will have to be calculated using binary shifts and XORs. To speed up
the programs, rather than calculating each multiplication every time it is needed,
we will precompute a multiplication table for each pair of elements of F2m and
store it in a two-dimensional array (where the indexes are the two elements and
the values are the products). In fact, we will precalculate a few more tables for
the maps (x, y) ↦→ (x2, y), (x, y) ↦→ (x4, y) etc. On the other hand, general powers
are not used very often in the search, so we can just calculate them iteratively.
The same goes for the inverses, which I calculate as 2m − 2 powers.

We shall test the APNness of F = (f, g) with the following algorithm.

Algorithm 0 Test for APNness, g(x, y) = x3 + αy3 + L(x, y)
Input: aij, α, Ru,v = {(x, y) ∈ F2

16, f(x, y) + f(x + u, y + v) + f(u, v) = 0}
Output: Whether the function F = (f, g) is APN

function testAPN({aij}, α, {Ru,v})
for all (u, v) ∈ F2

16, u ̸= v do
i← 0
for all (x, y) ∈ Ru,v do

if x2u + u2x + ay2v + av2y + L(x, v) + L(u, y) = 0 then
i← i + 1
if i > 2 then

return false
return true

For m = 4, one tests takes on average 0.4µs.

4.2 Search for a known example in m = 3
For a search in this dimension, a bruteforce search trough all values of aij, 0 ≤
i, j < 3 is feasible.
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Search 1 m = 3, f(x, y) = x2y + xy2 + xy, g(x, y) = x3 + αy3 + L(x, y), α ∈ F∗
8

Output: All α, {aij} for which F = (f, g) is APN with non-classical spectra.
for all (u, v) ∈ F2

8 do
Ru,v ← {(x, y) ∈ F2

8, f(x, y) + f(x + u, y + v) + f(u, v) = 0}
for all α ∈ F∗

8 do
for all (a00, a01, a02, a10, a11, a12, a20, a21, a22) ∈ F9

8 do
if testAPN({aij}, α, {Ru,v}) then

yield {aij}

4.3 Searches in m = 4
Using the conditions given in Corollary 35 we can simply run through all the
combinations of coefficients aij that match those conditions, and for each of them,
check if what we get is what we are looking for. This is what the following two
algorithms are doing, the difference being that Search 2 assumes α ̸∈ F4 while
Search 3 only needs α ̸∈ F2.

Search 2 m = 4, f(x, y) = x2y + xy2, g(x, y) = x3 + αy3 + L(x, y), α ∈ F16 \ F4

Input: α ∈ F16 \ F4
Output: All {aij} for which F = (f, g) is APN with non-classical spectra.

for all (u, v) ∈ F2
16 do

Ru,v ← {(x, y) ∈ F2
16, f(x, y) + f(x + u, y + v) + f(u, v) = 0}

a11 ← 0
a22 ← 0
for all A01 ∈ F16, Tr(A01) = Tr(A01/α) = 1 do

for all (a01, a02, a13, a31, a03, a30, a12, a23) ∈ F8
16 do

a10 ← A01 + a01
a20 ← a02
a33 ← (a13 + a31)4(1 + α)/α2

a00 ← (a13 + a31)2/(α + α8)
a21 ← (a03 + a30)8(1 + α6)/(α7 + α6) + a12
a32 ← (a03 + a30)4(1 + α11)/(α3 + α11) + a23
if testAPN({aij}, α, {Ru,v}) then

yield {aij}

This program took approximately 4 hours on 4 cores and did not find anything.
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Search 3 m = 4, f(x, y) = x2y + xy2, g(x, y) = x3 + αy3 + L(x, y), α ∈ F4 \ F2

Input: α ∈ F4 \ F2
Output: All {aij} for which F = (f, g) is APN with non-classical spectra.

for all (u, v) ∈ F2
16 do

Ru,v ← {(x, y) ∈ F2
16, f(x, y) + f(x + u, y + v) + f(u, v) = 0}

a11 ← 0
for all A01 ∈ F16, Tr(A01) = Tr(A01/α) = 1 do

for all a22 ∈ F16, a22 = a4
22 do

for all (a01, a02, a13, a31, a03, a30, a12, a23) ∈ F8
16 do

a10 ← A01 + a01
a20 ← a02
a33 ← (a13 + a31)4(1 + α)/α2

a00 ← (a13 + a31)2/(α + α8)
a21 ← (a03 + a30)8(1 + α6)/(α7 + α6) + a12
a32 ← (a03 + a30)4(1 + α11)/(α3 + α11) + a23
if testAPN({aij}, α, {Ru,v}) then

yield {aij}

This program took approximately 26 hours on 2 cores and did not find any-
thing.

When α = 1, conditions in Corollary 35 are not available, and those in Theo-
rem 34 do not restrict the search space enough to enable a search in a reasonable
time. What we can do is use Theorem 39(a). Since we do not need to know all
the coefficients aij to evaluate L(x, x), we can expand Aij = aij + aji only after
we check that x ↦→ L(x, x) is a permutation.

Search 4 m = 4, f(x, y) = x2y + xy2, g(x, y) = x3 + y3 + L(x, y)
Output: All {aij} for which F = (f, g) is APN with non-classical spectra.

for all (u, v) ∈ F2
16 do

Ru,v ← {(x, y) ∈ F2
16, f(x, y) + f(x + u, y + v) + f(u, v) = 0}

for all a22 ∈ F16, a22 + a4
22 = 0 do

for all A01 ∈ F16, Tr(A01) = 1 do
for all (a00, a11, A03, A13, A23) ∈ F5

16 do
A02 ← a2

11
a33 ← A4

13 + a2
00

A12 ← A8
03 + A2

23
if x ↦→ L(x, x) is permutation then

for all (a01, a02, a03, a12, a13, a23) ∈ F6
16 do

a10 ← A01 + a01
a20 ← A02 + a02
a30 ← A03 + a03
a21 ← A12 + a12
a31 ← A13 + a13
a32 ← A23 + a23
if testAPN({aij}, 1, Ru,v) then

yield {aij}
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This program did not even find any permutations x ↦→ L(x, x) with the con-
ditions above.

For the case f(x, y) = x2y + xy2 + xy, we have Theorem 23, but we lack a
strong condition similar to Theorem 39(a).

Search 5 m = 4, f(x, y) = x2y + xy2 + xy, g(x, y) = x3 + y3 + L(x, y)
Output: All aij for which F = (f, g) is APN with non-classical spectra.

for all (u, v) ∈ F2
16 do

Ru,v ← {(x, y) ∈ F2
16, f(x, y) + f(x + u, y + v) + f(u, v) = 0}

for all B3 ∈ F16, B3 + B4
3 = 0 do

for all (B1, B2, A03, A13, A23) ∈ F5
16 do

A02 ← B2
2 + 1

A12 ← A8
03 + A2

23 + 1
B0 ← A4

13 + B2
1 + 1

A01 ← A02 + A03 + A12 + A13 + A23 + B0 + B1 + B2 + B3
if Tr(A01) = 0 then

for all (a00, a11, a12, a13, a22, a23, a33) ∈ F7
16 do

a21 ← A12 + a12
a31 ← A13 + a13
a32 ← A23 + a23
a30 ← a31 + a22 + a32 + a33 + B3
a20 ← a11 + a21 + a22 + a23 + B2
a10 ← a00 + a11 + a12 + a13 + B1
a03 ← A03 + a30
a02 ← A02 + a20
a01 ← A01 + a10
if testAPN({aij}, 1, Ru,v) then

yield {aij}

This search takes too long to finish completely. Employing condition The-
orem 29(c) could help a little bit, but it would still be too much. However, if
there was an APN function with non classical spectrum within the search space,
there would be a lot of other function equivalent to it. The fact that an incom-
plete search did not find any such function suggests, that there indeed (with high
probability) is not any.
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Conclusion
Through some mathematical analysis as well as some computer searches, we found
out that there are no APN functions F : F28 → F28 with non-classical spectra of
the form

F = (f, g), f, g : F16 → F16,

f(x, y) = x2y + xy2, or f(x, y) = x2y + xy2 + xy,

g(x, y) = x3 + αy3 +
∑

0≤i,j<4
aijx

2i

y2j

, α ∈ F∗
16, aij ∈ F16.

This is only a subset of all the possible functions. There is a potential to
continue with the search for different choices of f, g or even to write
F = (f, g) : F2n → F2n , f : F2n−m → F2n−m , g : F2m → F2m , where 2m ̸= n.
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