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Abstract: Stars can be stretched and ripped apart by the super-massive black
hole at the core of a galaxy. The remnant gaseous trail gradually circularizes in
a ring of mass that spreads by the viscous forces into an accretion disc. In this
thesis we have studied the spectral line profile time evolution of radiation reflected
by the accretion disc located around a super-massive black hole. We assume the
central body to be a slowly rotating or non-rotating super-massive black hole with
no charge, in the first approximation represented by the Schwarzschild solution.
In a sense of Shakura-Sunyaev standard accretion disc model with the kinematic
viscosity parameter α ≈ 1 we allow the accretion disc evolution to be guided
by the angular momentum transfer equation with the initial mass ring located
at the tidal radius being the product of tidal disruption of a star passing by a
super-massive black hole. During the simulations we keep varying the mass of
the central body while we keep the mass and the radius of the star constant
(M = 1M⊙ and R = 1R⊙), i.e. taking into account the solar-type stars only. We
defer the prospects of the full analysis involving spin (and charge) of the central
body for the future study as it will be necessary to use the equations for the
redshift factor and the accretion disc evolution that correspond to the Kerr (or
Kerr-Newmann) metric.
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Abstrakt: Hvězdy mohou být protaženy a roztrhány super-masivńı černou d́ırou
v jádru galaxie. Zbytková plynná stopa postupně cirkularizuje v hmotnostńı
prstenec, který se p̊usobeńım viskózńıch sil vyv́ıj́ı v akrečńı disk. V této práci jsme
studovali evoluci časových profil̊u spektrálńıch čar zářeńı odraženého akrečńım
diskem umı́stěným kolem super-masivńı černé d́ıry. Předpokládáme, že centrálńı
těleso bude pomalu rotuj́ıćı nebo nerotuj́ıćı super-masivńı černá d́ıra bez náboje,
v prvńı aproximaci reprezentovaná Schwarzschildovym řešeńım. Ve smyslu mo-
delu Shakura-Sunayevova standardńıho akrečńıho disku s parametrem kinema-
tické viskozity α ≈ 1 povoĺıme akrečńımu disku vyv́ıjet se podle rovnice přenosu
momentu hybnosti s počátečńım hmotnostńım prstencem umı́stěným na slapovém
poloměru, který je výsledkem slapového trháńı hvězdy prolétávaj́ıćı kolem super-
masivńı černé d́ıry. Během simulaćı měńıme hmotnost centrálńıho tělesa, zat́ımco
hmotu a poloměr hvězdy udržujeme konstantńı (M = 1M⊙ and R = 1R⊙),
tj. bereme v úvahu jen hvězdy slunečńıho typu. Odkládáme vyhĺıdky plné
analýzy zahrnuj́ıćı spin (a náboj) centrálńıho telesa pro budoućı studium, protože
bude nutné použ́ıt rovnice pro posun frekvence a evoluce akrečńıho disku, které
odpov́ıdaj́ı Kerrově (nebo Kerr-Newmannově) metrice.

Kĺıčová slova: Galaxie – černé d́ıry – akrečńı disky – zářeńı
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Introduction

Figure 1: Artist’s illustration of TDE and the idea of the mechanism producing
subsequent spectral features by the illumination of the remnant material embed-
ded in the hot accreting environment. This scenario has been motivated by the
actual event XJ1500+0154 reported in X-ray and optical observations (see further
details in the subsequent sections). Image credit: Illustration: CXC/M. Weiss;
X-ray: NASA/CXC/UNH/[Lin et al., 2017], Optical: CFHT.

Tidal disruption events (TDEs) are transient phenomena that are caused by the
process of abrupt damage to a star approaching and transiting a critical dis-
tance from a compact gravitating body, presumably a super-massive black hole
(105M⊙ ≲ M ≲ 108M⊙) in the core of a galaxy or a massive black hole (M ≃ 103–
104M⊙) in a globular cluster. TDEs are caused by large difference of the gravita-
tional field that acts over the size of the star, as the gradient of the gravitational
force overcomes the star self-gravity and rips its body apart. The efficiency of
the process depends critically on the compactness of both the challenged star
and the acting (super-)massive black hole: more massive stars very close to less
massive black holes are increasingly prone to the disruption. Such episodes lead
to the increase of the mass accretion rate and the enhancement of the radiation
emerging temporarily in the form of a flare in X-ray band and in other wave-
lengths (see Figure 1). The flaring TDE objects give us an opportunity to probe
the environment of galactic nuclei and to determine their parameters, namely to
constrain its size, the mass and the angular momentum (spin) of its central body.

The number of TDE candidates grows as they are found serendipitously
during the slew surveys as sudden, unexpected rebrightening in the spectra in
contrast with for a longer time observed, rapidly changing X-ray spectra of active
galactic nuclei (AGN). TDE vary in different ways over the timescale of the
process, but their typical signpost is the bolometric luminosity decrease as ≈
t− 5

3 . However there are a couple observations of TDEs suggesting challenging
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interpretations. [Liu et al., 2009, 2014] show that in case of an additional black
hole present in the system the bolometric luminosity decrease as ≈ t− 5

3 is no longer
the case. They argue with the help of numerical simulations closely matching the
observed data that the second super-massive black hole causes the lightcurve to
be broken as it feeds on the accretion flow, when passing around the other one.
[Cummings et al., 2011] points out there is a possibility of a jet formation in
systems that are undergoing the early phases of tidal disruption. Based on the
data of the same observation [Kara et al., 2016] propose Fe Kα emission line in
a highly ionized state to be present in the spectra.

As a motivation (albeit tentative and indirect) we mention two crucial obser-
vational results that provide us with the evidence about the operation of accretion
mechanism onto super-massive black holes in galactic nuclei and the emerging
spectral features (see Figure 2 – 3). The current evidence about super-massive
black holes in great majority concerns AGN for obvious reasons: active galax-
ies are very bright in the electromagnetic window and they are this more easily
accessible to our observational techniques over the entire spectrum.

Figure 2 shows the interferometric image obtained recently by the Event
Horizon Telescope (EHT). The image of the core of the giant elliptical galaxy M
87 is broadly consistent with theoretical predictions, in particular, the compact
dark shadow that has been revealed in the core at significant dynamical range
reaching the contrast ∼ 50.

Figure 3 shows the X-ray spectrum of the Seyfert galaxy MCG 6-30-15 of
kiloelectronvolt range. The spectrum exhibits the skewed and redshifted profile
of the reflection line of iron (corresponding to Kα transition), consistent with the
scenario of super-massive black hole disc accretion.

In this diploma thesis we intend to study the effects of general relativity
around a super-massive black hole located at the galactic centre making itself
noticeable in the spectra of the strongest spectral lines such as Fe Kα line with
energy ≈ 6.4 keV. The strength of line combined with strong gravity in the
close proximity of a super-massive black hole allows to observe not only the
Doppler shift due to the rapid velocity of orbiting debris but also the gravitational
redshift and the light bending effect. Whereas TDEs are frequently associated
with inactive galaxies in quiescent state (see e.g. [Saxton et al., 2012], further
details in the subsequent sections) we anticipate the emergence of X-ray spectral
features in future observations of TDEs. With this outlook we study the expected
spectral features.

We aim to model the time evolution of a spectral line profile incipient due
to the interaction of corona, a high-energetic medium surrounding the galactic
nucleus, and the evolving accretion disc with a slowly rotating or non-rotating
super-massive black hole, i.e. approximated by the Schwarzschild solution, at
its centre. In the first chapter we describe the concept of tidal radius and tidal
disruption that would “generate” the initial mass ring. We also mention the key
equations describing the steady state thin accretion disc model, the Shakura-
Sunyaev standard accretion disc model, as well as the emission line and the
redshift properties of observed radiation. The second chapter concerns the results
of numerical integration of the angular momentum transfer equation (diffusion
equation), i.e. the surface density structure of the accretion disc, the spectral
line profiles of radiating gaseous rings and accretion discs, and the time evolution
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of spectral line profile of radiation reflected by the evolving accretion disc. In
the third chapter we summarize, contemplate our results, and we provide future
prospects of the study. We defer the prospects of constraining the spin of the
black hole to future work when the full Kerr metric is taken into account.

Figure 2: A shadow-picture of super-massive black hole located at the centre of
galaxy M 87 with a randomly distributed photons coming from the accretion disc
surrounding it. Image Credit: [Event Horizon Telescope Collaboration et al.,
2019].

Figure 3: Energy excess indicating Fe Kα emission in the spectra of MCG 6-30-15.
Image Credit [Tanaka et al., 1995].
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1. Theory

1.1 Tidal disruption of a star – basic relations
The classical gravitational interaction of two point-like bodies is described by the
Newtonian formula

F i = −GMm

R3 Ri = −GMm

R2 R̂i, (1.1)

where G stands for the gravitational constant, Ri is the i-th component of the
vector pointing from the body of mass M to the other body of mass m gravita-
tionally interacting with each other, and R̂i is normalized version of Ri attained
by dividing Ri by ∥R∥= ∥Ri

i∥ whereas i = 1, 2, 3. The resulting gravitational
acceleration of the test mass m by the body M (m ≪ M) is then described as

ai = −GM

R2 R̂i. (1.2)

When studying the gravitational acceleration let us introduce an infinitesimal
displacement δR (δR ≪ R) so that we can rewrite the equation (1.2) as follows

ai = − GM

(R ± δR)2 R̂i = − GM

(1 ± δR
R

)2
R̂i

R2 . (1.3)

Now taking into account δR ≪ R we can rewrite the equation (1.3) using Taylor
expansion as

ai = −GMR̂i

R2

(
1 ∓ 2δR

R
+ O

(
δR2

R2

))
. (1.4)

Neglecting the second order of “the displacement to position term” we are pre-
sented with an additional term describing the components of tidal acceleration
ai

tidal

ai
tidal = ±2GMδR

R3 R̂i. (1.5)

For our purposes let us set the mass of the body M to be the mass of a black hole
MBH, mass m to be the mass of a star M∗ and δR to R∗ as the radius of a star.
Significant tidal force is the primary characteristic a compact object, especially
the cosmic black holes. Setting the tidal force of black hole equal to the self-
gravity of the star (still assuming the purely Newtonian framework, neglecting
the effects of general relativity)⏐⏐⏐⏐ ± 2GMBHM∗R∗

R3

⏐⏐⏐⏐ =
⏐⏐⏐⏐ − GM2

∗
R2

∗

⏐⏐⏐⏐ (1.6)

gives us the limit for the distance at which the star is able to withstand the
gravitational pull exerted on its different parts by the black hole (or in general a
way more massive compact object than the star itself). Such a distance has been
called the tidal radius, Rtidal [Hills, 1975, Rees, 1988]. Rtidal depends on MBH,
M∗ and R∗ as follows

Rtidal =
(2MBH

M∗

) 1
3
R∗. (1.7)

5



We thus ignore the time evolution of black hole mass and set it to be constant on
the viscous timescale as the initial approximation. The tidal radius Rtidal scales
as ∝ M

1
3

BH whereas the gravitational radius, Rg defined as

Rg = GM

c2 , (1.8)

scales as ∝ MBH. That leads to the conclusion that there has to be a limiting
mass for the black hole’s capability to tidally strip or disrupt a star. This limiting
mass, i.e. the Hills mass MHills, is given as

MHills = 1.1 × 108M⊙

(
R∗

R⊙

) 3
2
(

M∗

M⊙

)− 1
2
, (1.9)

where both R⊙ and M⊙ are the radius and the mass of the Sun. Should the mass
of the black hole be greater or equal to MHills the passing star gets engulfed rather
than tidally stripped or disrupted [Stone, 2015].

It turns out to be useful to introduce the inverse impact factor given as
[Stone, 2015]

β = Rtidal

Rpericenter
, (1.10)

where Rpericenter stands for the pericentral distance from the black hole. This
dependence of the inverse impact factor (1.10) with respect to the system param-
eters, i.e. the mass of the central body MBH, is plotted in the Figure 1.1.

Let us propose such a set-up where there is a star orbiting around a massive
compact object, e.g. a black hole, and we want to describe the change of star’s
mass dM∗

dt
under the assumption that the star enters the area defined by the tidal

radius Rtidal. In our approximation we will imagine that the star consists of N
particles (representing elementary parts of its volume) all having a specific energy
e given by the Keplerian formula

e = −Gm

2a
, (1.11)

where m is the mass of a single point-like test particle and a is the semi-major
axis of the orbit described by the Kepler third law as

a =
(

t2Gm

4π2

) 1
3
, (1.12)

where t is the orbital period. As the stellar body approaches and crosses the
tidal radius, it gets damaged and a fraction of its material creates a trail. The
remaining trail gradually circularizes and get accreted onto the central body
whereas the whole process is governed by the viscous processes. We can write for
the accretion rate following relation

dM∗

dt
= dM∗

de

de

dt
≈ t− 5

3 , (1.13)

where we took into account that the term dM∗
de

is constant and equal to N and
e ≈ t− 2

3 which we got after inserting formula (1.12) for a in the equation (1.11).
In the first approximation we are presented with the equation (1.13) that is one
the five most decisive indicators that we expect from a tidal disruption of a star
(or in general, a celestial object). They are as follows (see e.g. [Komossa, 2015]
and further references cited therein):
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• the bolometric intensity lightcurve decaying as ≈ t− 5
3 (see the equation

1.13),

• the soft X-ray spectra hardening with passing time,

• no activity (of the galactic nucleus) observed prior to the tidal disruption,

• the bolometric luminosities ranging from 1045–1046 erg.s−1 peaking in the
interval of 0.2–2 keV [Montesinos Armijo and de Freitas Pacheco, 2011],
with great intensity fluctuations in the spectra compared to those observed
in the active galaxies,

• the central body limited by the Hills mass MHills (see the equation (1.9)).

Figure 1.1: Tidal disruption scenarios for red giants (red, solid line), solar-type
stars (blue, dashed line) and white dwarfs (black, dotted line). The interpretation
of this diagram is as follows – a given type of star can only be disrupted when
its parameters lie in its respective triangle, based on the work of [Luminet and
Pichon, 1989] focused on the tidal disruption of white dwarfs. For β <1 we are
presented with not fully disruptive encounters. Stars with parameters in the
upper right corner end up swallowed whole by the black hole, as this is described
by the black hole’s limit mass – the Hills mass given by the equation (1.9), and
on the contrary for the upper left corner black hole enters the star. Image credit:
[Stone et al., 2019].

1.2 Geometrically thin accretion discs – the sur-
face density equation

Accretion is a process mostly studied in the context of binary stellar systems
consisting of a donor and an accretor component. The special case that has been
studied are the X-ray binaries with a donor component a Roche lobe overflowing
star and a neutron star or black hole as an accretor [Guseinov and Zel’dovich,
1966, Novikov and Zel’dovich, 1966, Shklovsky, 1967], e.g. as in the case of AGN
where accretion dumps material onto the surface of a super-massive black hole.
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There are different kind of accretion modes, namely spherically symmetric
accretion [Bondi, 1952, Hoyle and Lyttleton, 1941] vs. the geometrically thin
accretion disc or geometrically thick tori regime. The mass from donor component
is, unlike from radially falling onto the accretor’s surface in case of spherically
symmetric accretion, slowly spiraling onto the surface of accretor creating a disc-
like structure called an accretion disc. The gravitational binding energy of the
falling material is transformed into kinetic energy and eventually emitted in the
form of radiation. It is the viscosity of infalling material that causes it to heat
while the gas is transported across the disc.

The basic equation describing the accretion disc is the continuity equation,
i.e. the mass conservation equation, complemented by the equations describing
conservation of momentum and energy balance [Frank et al., 2002].

In our case we will study the behaviour of systems with a super-massive black
hole as the accretor and substitute the donor component for a material that has
been tidally stripped off of a passing star. We presume the axial (cylindrical)
symmetry of the problem which is a simplification allowing us to proceed with
the analytical approaches further albeit the realistic astrophysical regimes are
fully described by three-dimensional spatial and temporal dependency.

Let us start with the formulation of the continuity equation. We will do so
in the most general way, working with the covariant derivatives

∂ρ

∂t
+ (ρuµ);µ = 0, (1.14)

where ρ is the density and uµ four-velocity (in our case working in 3 dimensional
flat space three-velocity). Since we study the system in Newtonian approximation
using curvilinear coordinates R, φ, z let us note that the metric tensor adopts the
following form [Zwillinger, 2002]

gµν =

⎛⎜⎝gRR gRφ gRz

gφR gφφ gφz

gzR gzφ gzz

⎞⎟⎠ =

⎛⎜⎝1 0 0
0 R2 0
0 0 1

⎞⎟⎠ . (1.15)

For the metric tensor given as (1.15) we find only three non-zero components of
Christoffel symbols of the first kind

ΓRφφ = −R, ΓφRφ = ΓφφR = R, (1.16)

where for their calculation we started from the definition

Γηµν = 1
2(gηµ,ν + gην,µ − gµν,η). (1.17)

Next, we can rewrite the equation (1.14) as

∂ρ

∂t
+ ρ;µuµ + ρuµ

;µ = 0, (1.18)

which taking into account the formula for covariant derivative of any scalar S,
any contravariant tensor of the first order Aµ and any contravariant tensor of the
second order Bµν

S;ν = S,ν , Aµ
;µ = Aµ

,µ + Γµ
σµuσ, Bµν

;σ = Bµν
,σ + Γµ

ασBαν + Γν
ασBµα, (1.19)
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can be used for the boxed terms in the equation (1.18) and then leads to

ρ,µuµ + ρuµ
,µ + ρΓµ

σµuσ = ρ,RuR + ρuR
,R + ΓR

σRuσ + ρΓφ
σφuσ + ρΓz

σzuσ

= ρ,RuR + ρuR
,R + ρgφφΓφRφuR

= ρ,RuR + ρuR
,R + ρ

R
uR

= (ρuRR),R

1
R

.

(1.20)

As a result of introducing the cylindrical coordinates we get from the general
form of (1.14) the continuity equation given as

∂ρ

∂t
+ 1

R
(ρuRR),R = 0, (1.21)

which after the integration in the z-direction (
∫ h

0 ρ dz = Σ where Σ denotes the
surface density of material in the accretion disc and h the vertical size of the
accretion disc) leads to the final form of the continuity equation

R
∂Σ
∂t

+ ∂

∂R
(RΣvR) = 0. (1.22)

For the derivation of the equation describing the conservation of momentum
we start by formulating the Euler equation of motion given as

∂uµ

∂t
+ uνuµ

;ν = −1
ρ

P µ
; − Φ µ

; + 1
ρ

Πµν
;ν , (1.23)

where Πµν is the stress tensor. We will study the φ-component of the equation
(1.23) leading to

∂uφ

∂t
+ uνuφ

;ν = 1
ρ

Πφν
;ν , (1.24)

not taking into account the pressure and the potential gradient −1
ρ
P φ

; and −Φ φ
;

terms of the equation (1.23) when setting µ = φ. We will work with a special
form of stress tensor Πµν given as

Πµν = η(uµ;ν + uν;µ − 2
3uα

;αδµν), (1.25)

describing its proportionality with four-velocity (in our case three-velocity) using
the parameter η called the dynamical viscosity. Now let us work out the second
term on the left side of the equation (1.24) looking at the φ-component

uνuφ
;ν = uRuφ

;R + uφuφ
;φ + uzuφ

;z

= uRuφ
,R + uRΓφ

φRuφ + uφuφ
,φ + uφΓφ

RφuR + uzuφ
,z + uz Γφ

αz uα

= uRuφ
,R + uφuφ

,φ + uzuφ
,z + 2uφuRgφφΓφφR

= uRuφ
,R + uφuφ

,φ + uzuφ
,z + 2

R
uφuR

= uR 1
R2

∂

∂R
(R2uφ) + uφuφ

,φ + uzuφ
,z ,

(1.26)
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with the boxed terms being equal to zero. Further let us look at the φ-component
of covariant divergence of stress tensor in the equation (1.24)

Πφν
;ν = Πφν

,ν + Γφ
σνΠσν + Γν

σνΠφσ

= Πφν
,ν + gφµΓµσνΠσν + gνµΓµσνΠφσ

= ΠφR
,R + Πφφ

,φ + Πφz
,z + gφφΓφRφΠRφ + gφφΓφφRΠφR + gφφΓφRφΠφR

= ΠφR
,R + Πφφ

,φ + Πφz
,z + 2

R2 RΠφR + 1
R2 RΠφR

= ΠφR
,R + Πφφ

,φ + Πφz
,z + 3

R
ΠφR

= Πφφ
,φ + Πφz

,z + 1
R3

∂

∂R
(R3ΠφR),

(1.27)

with the boxed terms being equal to zero. We are only interested in the third
term of the equation (1.27) and using the relation (1.25) we can write

(1.28)

1
η

ΠφR = uφ;R + uR;φ − 2
3uα

;α gφR

= gRRuφ
;R + gφφuR

;φ

= gRRuφ
,R + gRRgφφΓφφRuφ + gφφuR

,φ + gφφgRRΓRφφuφ

= uφ
,R + gφφΓφφRuφ + 1

R2 (uR
,φ + gRRΓRφφuφ)

= uφ
R + 1

R
uφ + 1

R2 uR
,φ − 1

R
uφ

= uφ
,R,

which combining with the result of (1.27), taking into account that terms ∼ ∂
∂φ

(...)
and ∼ ∂

∂z
(...) are zero, leads to the formula

Πφν
;ν = 1

R3
∂

∂R

(
R3η

∂Ω
∂R

)
, (1.29)

where we used the fact that uφ = Ω. Now we can come back to the equation
(1.24) and put in use formulae (1.26) and (1.29)

∂uφ

∂t
+ uR 1

R2
∂

∂R
(R2uφ) = 1

ρ

1
R3

∂

∂R

(
R3η

∂Ω
∂R

)
. (1.30)

Taking the respective derivatives of (1.30) and multiplying by ρR

Rρ
∂uφ

∂t
+ Ruφ ∂ρ

∂t
+ 1

R2 (RρuR) ∂

∂R
(R2uφ) + 1

R
(Ruφ) ∂

∂R
(RρUR) =

= 1
R2

(
R3η

∂Ω
∂R

)
,

(1.31)

which after multiplying the whole equation by R2 and re-arranging the terms
leads to

R3
(

ρ
∂uφ

∂t
+ uφ ρ

∂t

)
+ ∂

∂R
(R3ρuRuφ) = ∂

∂R

(
R3η

∂Ω
∂R

)
(1.32)
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further rewritten as

R3 ρuφ

∂t
+ ∂

∂R
(R3uRuφρ) = ∂

∂R

(
R3νρ

∂Ω
∂R

)
, (1.33)

where we used the fact that the dynamic viscosity η relates to the kinematic
viscosity ν via relation η = ρν. Taking into account that uφ = Ω (angular
velocity), uR = vR (radial velocity) and vφ = RΩ we can after the integration in
the z-direction (

∫ h
0 ρ dz = Σ) write the equation (1.33) in the following form

R
∂(ΣRvφ)

∂t
+ ∂

∂R
(R2vRvφΣ) = ∂

∂R

(
R3νΣ∂Ω

∂R

)
, (1.34)

usually written as

R
∂

∂t
(RΣvφ) + ∂

∂R
(R2ΣvRvφ) = 1

2π

∂G

∂R
, (1.35)

where G is R-dependent quantity called the gravitational torque, describing the
angular momentum transfer between radii, defined as [Frank et al., 2002]

G(R) = 2πνΣR3 dΩ
dR

. (1.36)

Both of the equations (1.22) and (1.35) were obtained assuming their most
general forms by accepting the axial symmetry ∂

∂φ
= 0 and further assumptions

like vφ ≫ vR ≫ vz of the studied problem. We can modify the equation (1.35)
into

R2vφ
∂Σ
∂t

+ RΣ ∂

∂t
(vφR) + Rvφ

∂

∂R
(RΣvR) + RΣvR

∂

∂R
(Rvφ) = 1

2π

∂G

∂R
(1.37)

and noticing that the boxed terms gives us the continuity equation (1.22) and
after we isolate Rvφ we get 0. Moreover the second term of the equation (1.37)
is also 0 because both R and vφ are independent variables. Therefore we are left
with

RΣvR
∂

∂R
(Rvφ) = 1

2π

∂G

∂R
. (1.38)

Now we assume the angular velocity having the Keplerian value given as

Ω = ΩKepler =
(

GM

R3

) 1
2
. (1.39)

At the end we get the heat equation-like partial differential equation

∂Σ
∂t

= 3
R

∂

∂R

[
R

1
2

∂

∂R
(νΣR)

]
, (1.40)

working with the continuity equation (1.22) and following relations

dΩ
dR

= −3
2

(
GM

R5

) 1
2
,
d(ΩR2)

dR
= (GM) 1

2

2R
1
2

, G(R) = −3πνΣ(GMR) 1
2 . (1.41)

11



Given the appropriate substitution and taking into account that we want the
kinematic viscosity η to be constant we can rewrite the formula (1.40) as

∂ΣR
1
2

∂t
= 12ν

x2
∂2

∂x2 (ΣR
1
2 ), (1.42)

where we used following

x = 2R
1
2 ,

∂

∂R
= 2

x

∂

∂x
. (1.43)

Let us substitute ΣR
1
2 with U and rewrite the equation (1.42) to

∂U

∂t
= 12ν

x2
∂2U

∂x2 . (1.44)

Taking into account the initial mass ring surface density profile in the form
of delta-distribution at the radius R = R0 we write

Σ(R, t = 0) = m

2πR0
δ(R − R0). (1.45)

The solution to the equation (1.42) with respect to the initial condition given
as (1.45) and boundary conditions Σ(Rinner = 0, t) = Σ(Router, t) = 0 can be
analytically written as [Frank et al., 2002]

Σ(x, τ) = m

πR2
0
τ−1x− 1

4 exp
{

− (1 + x2)
τ

}
I 1

4

(2x

τ

)
, (1.46)

where
x = R

R0
, τ = 12νtR−2

0 (1.47)

are both dimensionless quantities and I 1
4

is the modified Bessel function.
The Figure 1.2 depicts the analytical solution for the diffusion equation given

by the equation (1.46) for a chosen set of parameters τ .

Figure 1.2: Analytical solution to the diffusion equation (1.40) describing the
evolution of the surface density profile of the initial mass ring located at R0.

12



Once we set the ∂
∂t

= 0 the conservation equations (1.22) and (1.35) simplify
to

∂RΣvR

∂R
= 0 (1.48)

and
∂

∂R
(R2ΣvRvφ) = 1

2π

∂G

∂R
. (1.49)

We define, based on the equation (1.48), the mass accretion rate as [Frank et al.,
2002]

Ṁ = −2πΣvR (1.50)
with the minus sign since vR < 1 and the equation (1.49), taking into account
the equation (1.50) and (1.36), as [Frank et al., 2002]

νΣ = Ṁ

3π

[
1 −

(
Rinner

R

) 1
2
]
. (1.51)

Setting Ω to ΩKepler as in the equation (1.39) we can define the viscous energy
dissipation rate per unit are of the accretion disc as follows [Frank et al., 2002]

D(R) = 3GM (̇M)
8πR3

[
1 −

(
Rinner

R

) 1
2
]
. (1.52)

To calculate the infinitesimal luminosity contribution generated by the accretion
disc between the radii Rinner and Router we write [Frank et al., 2002]

Ldisc(Rinner, Router) = s
∫ Router

Rinner
D(R)πRdR, (1.53)

which can be taking by the limit of Router → ∞ rewritten as [Frank et al., 2002]

Ldisc = GMṀ

Rinner
= 1

2Lacc, (1.54)

where Lacc is the accretion luminosity. The equation describing the radial tem-
perature profile of the accretion disc follows the formula [Frank et al., 2002]

T (R) =
{3GMṀ

8πR3σ

[
1 −

(
Rinner

R

) 1
2
]} 1

4
, (1.55)

where Ṁ is the accretion rate constant, σ the Stefan-Boltzmann constant and
Rinner is the inner radius of the accretion disc (located on the surface of the
central body or the last stable circular orbit, etc.). If H is the typical scaleheight
in the z-direction we can write

H = cs√
GM

R
3
2 , (1.56)

whereby the thin disc assumption H
R

≪ 1 leads to

cs ≪
(

GM

R

) 1
2

= ΩKeplerR = vKepler, (1.57)

i.e. the Keplerian velocity vKepler must be higher than the speed of sound cc
(supersonic) [Frank et al., 2002].
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1.2.1 Shakura-Sunyaev standard accretion disc model
The following key points summarize the standard Shakura-Sunyaev accretion disc
model [Shapiro and Teukolsky, 1983]

• the contribution of the accretion disc to the gravitational field is neglected,
i.e. the gravitational field is generated only by the central body,

• the accretion disc is assumed to be steady,

• the accretion disc is assumed to be axially symmetric,

• the accretion disc is assumed to be thin, i.e. H
R

≪ 1,

• the radial inflow velocity is neglected, i.e. vR

vφ
≪ 1,

• the accretion disc is assumed to be in hydrostatic equilibrium and optically
thick in the vertical direction.

The kinematic viscosity ν is defined as follows [Frank et al., 2002]

ν = αcsH, (1.58)

where α is a parameter of so-called standard model describing the Shakura-
Sunyaev accretion disc structure. In order to obtain physically reasonable so-
lutions the semi-empirical α prescription must obey the inequality α ≲ 1.

The viscous, also noted as drift or diffusion timescale describes the time
horizon over which the accretion disc’s surface density profile changes and is
given by the equation [Frank et al., 2002]

tviscous ≈ R2

ν
. (1.59)

The dynamical timescale tdynamical describing the time of azimuthal motion of
accretion disc’s rotating material. Both the viscous and dynamical timescale
relate to each other as [Frank et al., 2002]

tviscous ≫ tdynamical = r

vφ

= 1
Ω , (1.60)

where Ω is the Keplerian angular velocity given by the equation (1.77). The
changes in the vertical direction of the accretion disc are balanced out over the
hydrodynamical timescale thydrodynamical related to the viscous timescale by the
formula [Frank et al., 2002]

tviscous ≫ thydrodynamical = H

cs
. (1.61)

Similar inequality holds for the thermal timescale tthermal describing the tem-
perature profile re-adjustment back to the thermal equilibrium across the whole
accretion disc [Frank et al., 2002]

tviscous ≫ tthermal. (1.62)
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1.3 Relativistic effects in spectral lines from
gaseous rings and accretion discs

Based on the activity the galactic cores can be distinguished as active and inactive
ones. The active galactic nuclei or AGN are supposed to have a super-massive
black hole at its centre surrounded by the accretion disc (see [Kazanas et al.,
2012] and the references therein). The amount of radiation produced by inactive
galaxies is incomparable to that of active ones. They are however also suspected
to have a super-massive black hole at its centre. Such quiescent galaxies quietly
lurking in the universe are perfect targets to study of tidal disruption using the
observation of sudden brightening in their spectra.

The mass accretion onto a central body, e.g. a stellar-mass black hole, an
intermediate black hole or a super-massive one that is believed to be in the centre
of every galaxy [Magorrian et al., 1998], is accompanied by a high temperature
material falling in on it. The reason for such high temperatures lies within the
friction forces that the material’s constituents act upon each other and ultimately
invoke the emission of electromagnetic radiation. The electromagnetic radiation
coming from the galactic nuclei spans across all bands with the major contribution
in the X-ray and UV spectra. In order to to pursue the observations of the galactic
cores in the optical one must wait for the density profile of the circum-nuclear
material to drop. Only then it will be possible to observe the radiation that is a
result of the reprocessed initial thermal radiation.

The radiation coming from central parts of galactic centre is strongly affected
by the gravity of its central body. One can study the properties of the observed
radiation (e.g. the radiation profile) taking different approximations. In the
classical view the radiation gets only Doppler shifted. In the special relativistic
case with the velocities close to the speed of light we end up with more general
form of Doppler shift a special case called the Doppler transverse redshift. The
general relativity adds in the object’s mass influence on the trajectory of light –
an effect called the light bending. Both the special relativistic and the general
relativistic approach cause the peaks of the spectra to be asymmetric meaning the
blueshifted peak is higher than the redshifted one which is a direct consequence
of the Liouville’s theorem.

The Fe Kα emission line forms a prominent energy excess at around 6.4 keV.
It is found in the X-ray spectra of some AGNs (e.g. [Liu et al., 2017] and references
therein) whereas it is also the strongest one observed. Physical mechanism behind
the origin of line with such a magnitude lies within the interaction of high energy
photons coming from the surrounding corona and the accretion disc’s plasma
spiraling down to the surface of the central body. Hard X-ray radiation emission
will accompany the jump of the excited electron from the energy level n=2 back to
the energy level n=1 in case of the Kα emission line. For the Kβ line the electron
jump occurs from energy level n=3 to energy level n=1. It is due to strength
of that particular emission line caused by its origin in close proximity of super-
massive black hole that enables us to study the effects of general relativity. The
first FeKα line was observed by [Tanaka et al., 1995] (see Figure 3) and studied
by [Fabian et al., 1989a, Kojima, 1991]. Over the years of the continuous study of
X-ray radiation coming from numerous AGN there we developed models to fit the
energy excess found in the spectra based on the data from the observations done
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by Chandra, Swift, XMM Newton, etc. It is the XSPEC laor model component
[Laor, 1991] and kyrline model component [Dovčiak et al., 2004] that are used
to model the spectral line profiles in case of taking into account the zero or non-
zero angular momentum of the central object. The article by [Kara et al., 2016]
proposed that the energy excess resembling that of an iron emission spectral line
may possibly be also found in the early stages of a tidal disruption.

What we will focus on is the time evolution of a spectral line emitted from an
accretion disc due to the interaction of high energy photons of corona with it. We
assume the initial mass ring to be created as a result of the tidal disruption of a
celestial object (a star) and evolving in time into an accretion disc as schematically
depicted by Figure 1.3 with the corona present throughout the whole process.

Figure 1.3: Vertical cross section through the galactic centre involving a black hole
as its central object, a star and a corona as a high-energetic interactive medium
surrounding the galactic centre: (a) the star approaching the central object of
the galactic centre - the black hole, (b) the tidal disruption event involving mass
transfer as the star gets closer to the tidal radius given by the equation (1.7), (c)
the initial mass ring (at time t = 0) and the stellar remnants flying away, (d) the
accretion disc as a results of the diffusion equation given by the equation (1.40)
(at time t ̸= 0).
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1.3.1 Liouville’s theorem and intensity-frequency formula
Let us calculate the infinitesimal phase-space volume element dV for the phase-
space (x, px) and dV ′ for (x′, p′

x)

dV = dxdpx, dV ′ = dx′dp′
x. (1.63)

Further rewriting the dx′ and dp′
x using the special relativistic Lorentz transfor-

mation as follows

dx =
√

1 − v2

c2 dx′ (length contraction),

dpx = dp′
x√

1 − v2

c2

(momentum transformation relation),
(1.64)

which leads to a conclusion that

dV = dxdpx =
❩
❩

❩
❩❩

√
1 − v2

c2 dx′ dp′
x

❩
❩

❩
❩❩

√
1 − v2

c2

= dx′dp′
x = dV ′,

dV = Lorentz invariant.

(1.65)

With the help of the Liouville’s theorem in the form of the equation (1.65)
we write for the volume V of phase-space (x, y, z, px, py, pz) following

Lorentz invariant = V = VspaceVmomenta = c dt dS p2 dp dΩ. (1.66)

Given the fact that photon momentum can be expressed as

p = hν

c
(1.67)

and putting it in use in the equation (1.66) we see that, the Planck constant h
and the speed of light c being both constants, dt dS ν2 dν dΩ is constant and using
the formulae for the infinitesimal energy element of the radiation dE

dE = Iν dt dS dν dΩ, dE = hνdN (1.68)

we can study the following specific combination of specific intensity Iν and fre-
quency ν

Iν

ν3 = dE

ν3 dt dS dν dΩ = h❩ν dN

❩ν dt dS ν2 dν dΩ = constant. (1.69)

Therefore we can write

Iobserved

Iemitted
= ν3

observed
ν3

emitted
= constant. (1.70)

where Iobserved, Iemitted, νobserved and νemitted are the observed and the emitted
values of intensity and frequency respectively.
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1.3.2 Redshift factor in Newtonian, special relativistic
and general relativistic scenario

We define the redshift factor as

g = νobserved

νemitted
. (1.71)

Let S′ be the rest-frame of the radiation source whereas S will be the observer’s
rest-frame. We choose the S′ frame to be located so that it moves with a velocity
v in the positive direction of x-axis. We define the wave four-vector kµ and k

′µ

as follows

kµ = ω

c
(1, cos(φ) sin(I), sin(φ) sin(I), cos(I)),

k
′µ = ω′

c
(1, cos(φ′) sin(I ′), sin(φ′) sin(I ′), cos(I ′)),

(1.72)

where φ and φ′ denote the azimuthal variables and I and I ′ the inclination of the
radiation source in S and S’ respectively. The Figure 1.4 depicts our interpretation
of the variable set-up in the observer’s rest-frame S in context of the radiation
from the accretion disc.
The wave four-vectors k

′µ and kµ are bound by the special relativistic Lorentz
transformation expressed as

k
′µ = Λµ

νkν (1.73)

with the special relativistic Lorentz transformation matrix Λµ
ν taking into ac-

count the motion in the positive direction of x axis and represented as

Λµ
ν =

⎛⎜⎜⎜⎝
γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ . (1.74)

Following the rules of Einstein summation we write the equation (1.73) as

k
′0 = ω′

c
= Λ0

0k
0 + Λ0

ik
i = γ

ω

c
− γβ

ω

c
cos(φ) sin(I). (1.75)

Using the formula ω = 2πν we rewrite the equation (1.75) in context of our
definition of the redshift factor (1.71) as

ωobserved

ωemitted
= νobserved

νemitted
= gSTR(R, φ, I) = 1

γ(1 − v cos(φ) sin(I)
c

)
, (1.76)

where velocity v is the velocity of Keplerian rotation defined as

v = vKepler =
√

GMBH

R
, (1.77)

which multiplied by cos(φ) sin(I) is equal to the radial velocity shifted in the line
of sight of the observer located in the infinity. In case we study the velocities for
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which v ≪ c the relativistic gamma factor behaves as γ → 1 and the equation
(1.76) can be written as

gNEWTONIAN(R, φ, I) = 1
1 − v cos(φ) sin(I)

c

. (1.78)

Comparing the equation (1.76) and (1.78) one can observe that there is a non-
zero redshift factor possibility even though the radial velocity is equal to zero.
This type of redshift occurs for φ values π

2 and 3π
2 called the special relativistic

transverse Doppler shift given as

gSTR−TRANSVERSE(R) = 1
γ

. (1.79)

As mentioned above (see section 1.1) the tidal disruption scenario favors
a set-up in which the accretor component is a massive compact object, e.g. a
super-massive black hole. According to the No-hair theorem black holes can be
described by three parameters - mass MBH, charge Q and angular momentum
(spin) a [Misner et al., 1973]. The space-time metric around a rotating charged
point mass can be described by the Kerr-Newman metric [Newman et al., 1965].
When setting the charge Q to 0 the Kerr-Newman metric simplifies to the Kerr
metric generated by a rotating point mass [Kerr, 1963]. Setting the angular
momentum a to 0 results in the Reissner-Nordström solution [Nordström, 1918,
Reissner, 1916] and further setting the charge Q to 0 leads to the Schwarzschild
solution. The Schwarzschild, the spherically symmetric, static, vacuum solution,
solution for a non-rotating mass with zero charge, is given as

ds2 = −
(

1 − 2
R

)
dt2 + 1

(1 − 2
R

)dR2 + R2dΩ2 (1.80)

with geometrized units G and c both set to 1, R measured in units of M and
dΩ2 = dθ2+sin2(θ)dφ2 (θ ∈ [0, π] and φ ∈ [0, 2π]). Whereas the special relativistic
form of the redshift factor (1.76) describes the radiation behaviour when reaching
the velocities close to the speed of light the general relativistic redshift factor
formula takes into account also the light bending. To express the redshift for
a set-up with a non-rotating black hole with no charge we will make use of the
general relativistic redshift factor formula [Pecháček et al., 2005]

g(R, φ, I)GTR =

√
R(R − 3)

R + sin(φ) sin(I)
√

R − 2 + 4(1 + cos(φ) sin(I))−1
. (1.81)

Figure 1.4: Radial variable R, azimuthal variable φ and inclination of the radia-
tion source I in the observer’s rest-frame S.
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2. Results

2.1 Numerical solution of surface density equa-
tion

The inherent idea about the numerical solution to the equation (1.42) lies within
the solution of the equation (1.44). Let us split the spatial and temporal dimen-
sions, limited by tmax and xmax into infinitesimal elements ∆x and ∆t respectively
as

∆x = xmax

nx − 1 , ∆t = tmax

nt − 1 . (2.1)

where nx and nt are denote the total number of spatial and temporal nodes of
the created grids. For U in point xi + ∆x holds

U(xi + ∆x) = U(xi) + ∆x
∂U

∂x

⏐⏐⏐⏐
x=xi

+ ∆x2

2!
∂2U

∂x2

⏐⏐⏐⏐
x=xi

+ ∆x3

3!
∂3U

∂x3

⏐⏐⏐⏐
x=xi

+ ... (2.2)

For U in point xi − ∆x holds

U(xi − ∆x) = U(xi) − ∆x
∂U

∂x

⏐⏐⏐⏐
x=xi

+ ∆x2

2!
∂2U

∂x2

⏐⏐⏐⏐
x=xi

− ∆x3

3!
∂3U

∂x3

⏐⏐⏐⏐
x=xi

+ ... (2.3)

Our notation will be U(xi + ∆x) = Ui+1, U(xi) = Ui and U(xi − ∆x) = Ui−1.
Using the equations (2.2) and (2.3) for Ui+1, Ui and Ui−1 we get the forward and
backward spatial difference

Ui+1 − Ui

∆x
+ o(∆x) = ∂U

∂x

⏐⏐⏐⏐
x=xi

,
Ui − Ui−1

∆x
+ o(∆x) = ∂U

∂x

⏐⏐⏐⏐
x=xi

, (2.4)

which can be rewritten as

Ui+1 = Ui + ∆x
∂U

∂x

⏐⏐⏐⏐
x=xi

+ ∆x2

2!
∂2U

∂2x

⏐⏐⏐⏐
x=xi

+ ...,

Ui−1 = Ui − ∆x
∂U

∂x

⏐⏐⏐⏐
x=xi

+ ∆x2

2!
∂2U

∂2x

⏐⏐⏐⏐
x=xi

− ...

(2.5)

Now let us combine the equations (2.5) by subtracting one from another and we
get

Ui+1 − Ui−1 = 2∆x
∂U

∂x

⏐⏐⏐⏐
x=xi

+ o(∆x3) + ..., (2.6)

which is usually called the central difference formula of the first order. After
combining the equations (2.5) and summing them up

Ui+1 + Ui−1 = 2Ui + ∆x2 ∂2U

∂x2

⏐⏐⏐⏐
x=xi

+ o(∆x4) + ..., (2.7)

which after rearranging leads to

∂2U

∂x2

⏐⏐⏐⏐
x=xi

= Ui+1 − 2Ui + Ui−1

∆x2 + o(∆x2), (2.8)
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we get what is called the central difference formula of the second order. By anal-
ogy with the equations (2.4) we can write for the temporal part of the equation

∂U

∂t

⏐⏐⏐⏐
x=xi

= Um+1
i − Um

i

∆t
+ (∆t). (2.9)

Now when we rewrite the equation (1.44) using the equations (2.8) and (2.9) we
get

Um+1
i − Um

i

∆t
+ o(∆t) = 12ν

x2
i

Um
i+1 − 2Um

i + Um
i−1

∆x2 + o(∆x2). (2.10)

We can rewrite the equation (2.10) in a more straight forward way (see [Bath and
Pringle, 1981])

Um+1
i = 12ν∆t

x2
i ∆x2 (Um

i+1 + Um
i−1 − 2Um

i ) + Um
i (2.11)

with the truncation errors o(∆t) and o(∆x2) in temporal and spatial direction
respectively.

In order to satisfy the equation (2.11) in terms of obtaining a numerically
stable solution there is a certain condition has to be met called von Neumann
stability criterion. In this case it can be expressed as (see [Bath and Pringle,
1981])

12ν∆t

x2
i ∆x2 <

1
2 . (2.12)

2.2 Initial assumptions and the resulting sur-
face density profile

With help of speed of sound cs in form

c2
s = kbT

µmp
, (2.13)

where kb is the Boltzmann constant, µ the mean molecular mass and mp the
mass of a proton, and the formula describing the typical scaleheight H (1.56), we
can rewrite the equation (1.58) to get an approximate order of the value of the
kinematic viscosity as

ν = αkbT

µ
√

GM
R

3
2 . (2.14)

As we aim to study the system spatial evolution on the scale of gravitational radii
we want to express the kinematic viscosity in appropriate dimension R2

g
s

instead
of m2

s
the equation (2.14) converts to

ν = αkbT

µmp
√

GM

1
R

1
2g
n

3
2 = Cνn

3
2 , (2.15)

with R = nRg. The constant Cν provides the sought approximate order of the
value of the kinematic viscosity. However it depends on the mass of the central
object and the black-body temperature at which the initial mass ring and the
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accretion disc afterwards radiates. To get the order of temperature we use the
equation describing the radial temperature profile of the accretion disc (1.55) and
the equation (1.54), limited by the Eddington luminosity of a star with mass M∗,
that is being accreted, given as [Frank et al., 2002]

LEdd = 4πGM∗mpc

σT
∼= 1.3 × 1038 M∗

M⊙
erg.s−1 = 1.3 × 1031 M∗

M⊙
W, (2.16)

where mp is the mass of a proton and σT is the Thompson scattering cross section.
Refraining from direct usage of delta distribution as an initial condition in

our numerical simulations we rather used the analytical solution itself in a “close
to zero” time τ = 0.008 across the whole thesis. In sense of von Neumann
stability criterion (2.12) we obtained the results for the numerical integration of
the equation (1.40) with its analytical solution (1.46) using the same boundary
conditions, i.e. Σ(Rinner = 0, t) = Σ(Router, t) = 0. In this case the accretion disc
is supposed to extend to the surface of the central object. Given the fact that the
equation (1.40) describes the surface density profile in Newtonian approximation
we need to re-define the boundary conditions in such a way that the surface
density profile will be cut off and set to zero at the innermost stable circular
orbit (ISCO) radius RISCO. Assuming a slowly rotating or non-rotating central
super-massive black hole, described by the Schwarzschild solution, the value of
the ISCO radius RISCO will be 6Rg = 3RS, as RS = 2Rg where Rg is defined by
the equation (1.8). The boundary conditions for such a set-up will therefore be
Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0.

The Figure 2.1 shows the results of our numerical integration for the equation
(1.46) in a sense that we compared the 1% – 5% multiple of analytical solution
with the difference of numerical and analytical solution, both with boundary
conditions Σ(Rinner = 0, t) = Σ(Router, t) = 0. The following Figures 2.2 to 2.5
show the error of our numerical solution compared to the analytical one for a given
time respectively. We can see that the accuracy of numerical solution grows as
grows the dimensionless time-resembling parameter τ . We have also investigated
as to where the mass median of the ring in a given time extends given different
boundary conditions Σ(Rinner = 0, t) = Σ(Router, t) = 0 and Σ(RISCO = 6Rg, t) =
Σ(Router, t) = 0 of the studied system (see Figure 2.6 and 2.7). As expected
the mass median position nears that of the central body but varies for larger
timescales as depicted by the Figure 2.8.
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Figure 2.1: Numerical solution to the diffusion equation (1.40) describing the
evolution of the surface density profile of the initial mass ring located at R0 =
23.6Rg.

Figure 2.2: Errors of the numerical solution in comparison to analytical solution
for τ = 0.016 with the initial mass ring located at R0 = 23.6Rg. The errors
marked by black crosses and evaluated relative to the 1% – 5% multiple of the
absolute value of the coresponding surface density.
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Figure 2.3: Errors of the numerical solution in comparison to analytical solution
for τ = 0.032 with the initial mass ring located at R0 = 23.6Rg. The errors
marked by black crosses and evaluated relative to the 1% – 5% multiple of the
absolute value of the coresponding surface density.

Figure 2.4: Errors of the numerical solution in comparison to analytical solution
for τ = 0.128 with the initial mass ring located at R0 = 23.6Rg. The errors
marked by black crosses and evaluated relative to the 1% – 5% multiple of the
absolute value of the coresponding surface density.
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Figure 2.5: Errors of the numerical solution in comparison to analytical solution
for τ = 0.512 with the initial mass ring located at R0 = 23.6Rg. The errors
marked by black crosses and evaluated relative to the 1% – 5% multiple of the
absolute value of the coresponding surface density.

Figure 2.6: Numerical solution to the diffusion equation (1.40) describing the
evolution of the surface density profile of the initial mass ring located at R0 =
23.6Rg with boundary conditions Σ(Rinner = 0, t) = Σ(Router, t) = 0. Black
crosses mark the margin for the half of mass of the accretion disc at a given time.
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Figure 2.7: Numerical solution to the diffusion equation (1.40) describing the
evolution of the surface density profile of the initial mass ring located at R0 =
23.6Rg with boundary conditions Σ(Rinner = 6Rg, t) = Σ(Router, t) = 0. Black
crosses mark the margin for the half of mass of the accretion disc at a given time.
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Figure 2.8: The surface density profile difference in case of different boundary conditions of the studied accretion disc – Σ(Rinner = 0, t) =
Σ(Router, t) = 0 (left panel) and Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0 (right panel) with the initial mass ring located at R0 = 23.6Rg. Red
lines mark the mass median boundary of a given accretion disc at a given time.
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2.3 Spectral line profile calculation
Radiation flux F i

ν with i = 1, 2, 3 is a vector entity such as F i
ν dSi and equals the

energy flow net rate of radiation in frequency interval (ν, ν + dν) across arbitrary
surface element dS per unit time and frequency. In its most general form we can
describe the monochromatic (/ specific) radiation flux by the following formula
[Hubený and Mihalas, 2014]

F i
ν =

∫
Iν(nx, ny, nz) ni dΩ, i = 1, 2, 3, (2.17)

integrating over all solid angles.
We adopt the axial symmetry of the studied systems. We write the formula

for overall observed monochromatic flux coming from a gaseous ring surrounding
the central body as

Fring−observed =
∫ 2π

0
Iobserved dφ. (2.18)

In Newtonian case we set the observed intensity Iobserved equal to the emitted one
Iemitted. In special relativistic and general relativistic scenario we use the equation
(1.70) and rewrite the equation (2.18) as

Fring−observed =
∫ 2π

0
Iemitted

ν3
observed

ν3
emitted

dφ, (2.19)

whereas we use the respective special relativistic and general relativistic redshift
factors (1.76) and (1.81) in form g(R = const1, φ, I = const2) variable only
in φ. For the initial radiation intensity profile we chose the delta distribution
representation

Iν ≈ δ(ν − ν0) (2.20)
assuming the ring radiates at one chosen frequency ν0 and approximating the
delta distribution as

δ(ν − ν0) ≈ lim
a→0

exp
(

−
(

ν − ν0

a

)2)
. (2.21)

Now if we want to model total value of flux from the accretion disc as a whole
we can do so by splitting it in numerous infinitesimal rings, calculate their re-
spective monochromatic fluxes and add them together using the following relation

Faccretion disc−observed =
∫ ∫

IobserveddS =
∫ Router

Rinner

∫ 2π

0
IobservedRdRdφ (2.22)

The argumentation and method for calculating of the value of total flux is similar
as for the ring expect for the fact one must let the special relativistic and general
relativistic redshift factor as g(R, φ, I) a function of R, φ and I. We describe the
initial radiation intensity profile using the delta distribution

Iν ≈ δ(ν − ν0)
1

Rp
(2.23)

assuming the entire disc radiates at the same chosen frequency ν0 and using the
same approximation for the delta distribution as in the equation (2.21). Depend-
ing on the parameter of the value of the outer radius of the corona surrounding
the accretion disc Rc we choose the parameter q = 0 for R < Rc, q = 2 for R ≈ Rc
and q = 3 for R > Rc [Fabian et al., 1989b].
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2.4 The spectral line profiles from gaseous rings
and accretion discs in Keplerian rotation

The major motivation standing behind the study of the spectral line profiles
lies in the possibility to infer the object’s inclination, to set constraints on the
size of the radiating region, the spin of the central body etc. In this section
we present the spectral line profiles of radiation coming from rotating rings in
Newtonian, special relativistic and general relativistic approximation using the
redshift factor formulae (1.78), (1.76) and (1.81) respectively. We also show the
spectral line profiles of radiation coming from accretion disc taking the general
relativistic approximation (1.81).

We assume the disc to be geometrically thin with dominant azimuthal veloc-
ity component whereas the radial and the vertical components can be neglected
(vφ ≫ vR ≫ vz) as mentioned in section 1.2. We do not take into account the
presence of magnetic field as it would change the prescription for the kinematic
viscosity (1.58). We study the properties of radiation distributed isotropically.
We assume the central object to be a slowly rotating or non-rotating super-
massive black hole with no electrical charge, described by the Schwarzschild so-
lution (1.80).

The following Figures 2.9 to 2.11 show the spectral line profiles for a mass ring
at 6Rg in Newtonian, special relativistic and general relativistic approximation
respectively normalized by two methods as

∫
Fν dv = 1/(/

∫
Fν dg = 1) and to

the height of the blueshifted peak of a given spectral line. The Figure 2.12 shows
the spectral line profiles for a gaseous ring at 10Rg, 15Rg, 30Rg, 50Rg and 80Rg
in general relativistic approximation using the normalization

∫
Fν dg = 1. The

Figure 2.13 shows the spectral line profiles for an accretion disc with varying
parameters Rinner, Router and I in general relativistic approximation using the
normalization

∫
Fν dg = 1.

Figure 2.9: The spectral line profile for a gaseous ring at 6Rg in Newtonian
approximation normalized: on the left – such as

∫
Fν dv = 1, on the right – to the

height of the blueshifted peak of a given spectral line. Black dotted line marks
the intrinsic frequency.
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Figure 2.10: The spectral line profiles for a gaseous ring at 6Rg in special rela-
tivistic approximation normalized: on the left – such as

∫
Fν dg = 1, on the right

– to the height of the blueshifted peak of a given spectral line. Black dotted line
marks the intrinsic frequency.

Figure 2.11: The spectral line profiles for a gaseous ring at 6Rg in general rela-
tivistic approximation normalized: on the left – such as

∫
Fν dg = 1, on the right

– to the height of the blueshifted peak of a given spectral line. Black dotted line
marks the intrinsic frequency.

Based on the Figures 2.9 – 2.11 we notice that the bigger the inclination is
the more the spectral line will be shifted. In the Figure 2.9 we can observe the
symmetrical redshifted (the material is receding) and blueshifted (the material
is closing in) peaks of the spectral lines. The spectral line profiles calculated in
special relativistic and general relativistic approximation show an asymmetry in
the height of the redshifted and blueshifted peak caused by using the formula
(1.70) which is a direct consequence of the Liouville’s theorem (1.65) and the
observed effect is called relativistic aberration (see Figure 2.10). The major dif-
ference between the Figures 2.9, 2.10 compared to the Figure 2.11 lies within the
gravitational redshift that causes the spectral line to be shifted to lower energy
as well as the light bending effect. In the Figure 2.11 the spectral line with the
inclination 35 deg is an example of a spectral line that has been fully redshifted
due to the gravitational redshift. As we change the inclination angle to 60 and 85
deg the Doppler broadening causes the line not to be fully redshifted anymore.
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We notice that both the gravitational redshift and the light bending effect get
weaker as the rotating rings are located further from the central black hole as
well as the fact that the blueshifted peak of the spectral line is higher the less the
radiation source is inclined (see Figure 2.12). Generally the broadening caused
due to the Doppler shift gets weaker because the Keplerian velocity of the rotat-
ing ring goes as ∝ R− 1

2 (see Figures 2.11 and 2.12, in case of general relativistic
approximation).

Figure 2.12: The spectral line profiles for a gaseous ring at 10Rg, 15Rg, 30Rg,
50Rg and 80Rg in general relativistic approximation normalized such as

∫
Fν dg =

1. Black dotted line marks the intrinsic frequency.
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Figure 2.13: The spectral line profiles for an accretion disc in general relativistic
approximation with the initial radiation intensity Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3

(right panel) normalized such as
∫

Fν dg = 1. The parameters are Rinner = 6Rg,
Router = 80Rg and I = 36 deg, if not stated otherwise. Black dotted line marks
the intrinsic frequency.

Varying the outer radius of the accretion disc shows that for bigger values
the spectral line profile tends to approach the intrinsic frequency (see the middle
two plots in the Figure 2.13). We also notice how the shape of the wings of the
spectral line profiles depends on the value of the inner radius of the accretion disc
(see the first two plots in the Figure 2.13). The spectral line profile for the initial
radiation intensity ≈ 1

R2 seems to be more sensitive to the changes of the outer
radius of the accretion disc rather than the inner radius. On the contrary, for
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the initial radiation intensity ≈ 1
R3 , it is the inner accretion radius that mostly

contributes to the spectral line profile changes. The bigger the inclination gets
the more we can expect the spectral line profile to be shifted (see the last two
plots in the Figure 2.13).

2.5 The spectral line profiles and their centroid
energy in scenario of a tidally disrupted star

In order to describe the spectral line profile features of radiation coming from
the central area of galactic nuclei with a massive object such as a super-massive
black hole we use general relativistic framework. On the other hand we do not
develop any kind of consistent realistic micro-physical approach. The resulting
spectral line profiles in this chapter are limited by the following condition

Rtidal ≤ 50Rg. (2.24)

The surface density profile of the initial mass ring located at the tidal radius
R0 = Rtidal will be evolving according to the equation (1.40), i.e. the value of
the outer radius of the accretion disc will be more than 2.5×that of the position
of the initial mass ring (see e.g. Figure 1.2). We have chosen the tidal radius
threshold value not only to enable the calculations to be stable and relatively fast.
The main reason was to capture the spectral line profile time evolution after the
occurrence of the tidal disruption in the close proximity of the central object in
the order of tens of Rg because the relativistic effects are negligible farther away.

The initial idea is to map the spectral line profile time evolution. We assume
the radiation to be reflected by the accretion disc whose surface density profile
is evolving. Therefore because the accretion disc is changing its radius the area
which could be potentially used to reflect the observed radiation is also changing.

In our system set-up we assume the star to be of a solar type, meaning
M∗ = 1M⊙ and R∗ = 1R⊙, and we keep varying the mass of the central object,
so that we cover the interval given as (2.24), see Table 2.1. The Table 2.2 sets the
constraints on the size of the accretion disc in a given system set-up. To calculate
the constraints of the size of the accretion discs we used the boundary condition
Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0 forcing the surface density profile to be zero
under the ISCO radius.

To calculate the order of the temperature profile of the accretion disc in
Table 2.1 we used the equation (1.55) whereas we used the formula describing the
accretion luminosity (1.54) to get the respective value of the accretion rate under
the assumption that it is limited by the Eddington luminosity of the accreted
star (2.16). The kinematic viscosity values in the Table 2.1 correspond to values
of Cν given by the equation (2.15). The respective values of tidal radius in
the Table 2.1 were calculated using the equation (1.7). At time τ = 0 we set
Rinner = Router = Rtidal as we are investigating the initial mass ring (see Table
2.2). The values of Rinner and Router at time τ ̸= 0 in the Table 2.2 result from the
numerical solution of the equation describing the evolution of the surface density
profile of the accretion disc given as (1.40).

The Figures 2.14 – 2.16, 2.17 – 2.19, 2.20 – 2.22 and 2.23 – 2.25 depict the
spectral line profile evolution and position of their centroid energy (mean values
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of energy in a given spectral line) for system set-up A, B, C and D respectively
using the normalization

∫
Fν dg = 1.
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Table 2.1: List of studied system set-up

System set-up star central body
T [K] ν[R2

g
s

] Rtidal[Rg]
M∗[M⊙] R∗[R⊙] MBH[M⊙]

A 1 1 1.5 × 106 ≈ 103 1.2 × 10−11 45.4
B 1 1 2 × 106 ≈ 103 9.3 × 10−12 37.5
C 1 1 4 × 106 ≈ 103 4.6 × 10−12 23.6
D 1 1 1 × 107 ≈ 103 1.9 × 10−12 12.8

Table 2.2: Parameters describing the size of the initial mass rings and accretion discs for system set-up A, B, C and D

τ
D C B A

Rtidal= 12.8 Rg Rtidal= 23.6 Rg Rtidal= 37.5 Rg Rtidal= 45.4 Rg
Rinner[Rg] Router[Rg] Rinner[Rg] Router[Rg] Rinner[Rg] Router[Rg] Rinner[Rg] Router[Rg]

0 12.8 12.8 23.6 23.6 37.5 37.5 45.4 45.4
0.008 8.5 17.0 15.7 31.3 24.9 49.9 30.3 60.1
0.016 6.7 18.7 12.4 34.4 19.8 54.7 24.0 66.4
0.032 6.0 21.2 8.0 38.4 12.8 61.6 15.5 74.4
0.128 6.0 28.6 6.0 52.5 6.0 83.0 6.0 100.8
0.512 6.0 42.6 6.0 78.1 6.0 124.4 6.0 150.4
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Figure 2.14: Spectral line profile evolution for the system set-up D with the inclination I = 35 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.15: Spectral line profile evolution for the system set-up D with the inclination I = 60 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.16: Spectral line profile evolution for the system set-up D with the inclination I = 85 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.17: Spectral line profile evolution for the system set-up C with the inclination I = 35 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.

39



Figure 2.18: Spectral line profile evolution for the system set-up C with the inclination I = 60 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.19: Spectral line profile evolution for the system set-up C with the inclination I = 85 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.20: Spectral line profile evolution for the system set-up B with the inclination I = 35 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.21: Spectral line profile evolution for the system set-up B with the inclination I = 60 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.22: Spectral line profile evolution for the system set-up B with the inclination I = 85 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.

44



Figure 2.23: Spectral line profile evolution for the system set-up A with the inclination I = 35 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.24: Spectral line profile evolution for the system set-up A with the inclination I = 60 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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Figure 2.25: Spectral line profile evolution for the system set-up A with the inclination I = 85 deg, with the initial radiation intensity
Iν ≈ 1

R2 (left panel) and Iν ≈ 1
R3 (right panel). Black dotted line marks the intrinsic frequency, red line marks the centroid energy of a

given spectral line.
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The spectral line shapes change drastically between the dimensionless time in-
terval τ = 0 and τ = 0.008. The Figures 2.14, 2.15 and 2.16 with the initial
mass ring located at R = 12.8Rg show such a behaviour in contrast with the
remaining Figures 2.17 – 2.25 with their initial mass rings located farther away
(R = 23.6, 37.5 and 45.4Rg). Let us note that the time parametrization we are
using is guided by the equation (1.47). Using the equation (1.47) we calculated
the time values of t for the given initial mass ring to evolve corresponding to
the dimensionless time τ (see Table 2.3). We notice that the sudden changes
in the spectral line shape 2.14, 2.15 and 2.16 compared to the remaining ones
are caused by the fact that the initial mass ring is located close to its respective
super-massive black hole and therefore the system evolves much faster than the
systems with a less compact central body.

We calculated the position of the half of the energy of each spectral line
profile in each system set-up during its evolution. In the context of spectral line
profiles we call this position the centroid energy and mark it by a red line. We
observe that the spectral line profiles assuming the source inclination I = 35 deg
but different position of the initial mass ring have more than half of its energy
redshifted (see Figures 2.14, 2.17, 2.20 and 2.23) during all of their evolution cycle
(τ ∈ [0, 0.512]). The remaining Figures showing the spectral line profile with the
radiation source being inclined as I = 60 or 85 deg show that more than half of
the energy is blueshifted during all of their evolution cycle (τ ∈ [0, 0.512]).

With the help of our results from section 2.4 we can approximately identify
the changes in different parameters. We can definitely see that the more the
spectral line profile of the initial mass ring and the spectral line profile from the
evolved accretion disc are shifted the higher is the inclination of the radiation
source. As we are increasing the value of the tidal radius Rtidal we see that
the evolved accretion disc stretches farther and farther away, see Table 2.2, as
calculated by the numerical integration of the equation (1.40). Therefore we
observe the spectral line’s tendency to approach the intrinsic radiation frequency
as the outer radius of the accretion disc Router grows with the increasing value
of the dimensionless time τ , especially in case of the initial radiation intensity
Iν ≈ 1

R2 . We also notice the influence of changing the value of the inner radius
of the accretion disc Rinner. These changes project mostly in the cases with the
initial radiation intensity as Iν ≈ 1

R3 into the changes of the wing shape of a
given spectral line profile. Comparing then the spectral line profiles having the
same inclination and the initial mass ring position we notice that once reaching
a certain dimensionless time τ during its evolution the shape of the wing stops
changing. That is caused by the fact we set the lowest possible value for the
radius of the accretion disc to be the ISCO radius RISCO = 6Rg.
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Table 2.3: Viscous timescales for system set-up A, B, C and D

τ
D C B A

t[yr] t[yr] t[yr] t[yr]
0.008 1821.7 2557.9 3194.5 3628.7
0.016 3643.5 5115.8 6288.9 7257.3
0.032 7286.9 10231.6 12777.8 14514.7
0.128 29147.6 40926.3 51111.2 58058.7
0.512 116590.4 163705.3 204444.9 232234.7
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3. Conclusions and future
prospects
We have studied the time evolution of the spectral line profiles (not taking into
account the continuum) originating from the accretion disc which had developed
as a result of the angular momentum transfer out of an initial mass ring. The
predicted evolution of spectral line profile is expected to emerge in future ob-
servations of TDEs in active galaxies. In our toy-model the initial mass ring
was located at the tidal radius given as (1.7) created by a tidal disruption of a
solar-type star passing by a super-massive black hole. Also we assumed the whole
system to be immersed in a high-energy medium (corona) surrounding the inner
parts of the galactic centre.

To infer the constraints on the changing size of the evolving accretion disc
we numerically solved the equation (1.40) (see Figure 2.1) where we compared
the numerical and analytical solution given as (1.46) (see Figure 2.2 – 2.5) with
the boundary condition Σ(RISCO = 0, t) = Σ(Router, t) = 0. We have also ad-
dressed the position of the median of mass in the accretion disc as it evolved
for two different boundary conditions Σ(RISCO = 0, t) = Σ(Router, t) = 0 and
Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0 (see Figure 2.6 and 2.7) and compared
them based on the median position in the final form of the accretion disc (see
Figure 2.8). In section 2.4 we present the spectral line profiles for rotating rings
in Newtonian (see Figure 2.9), special relativistic (see Figure 2.10) and general
relativistic approximation (see Figures 2.11 and 2.12) as well as the spectral line
profiles of accretion discs in general relativistic approximation (see Figure 2.13)
complemented by corresponding analysis.

The Figures 2.14 – 2.25 show the spectral line profile evolution and their
centroid energy for a different system set-up (see Table 2.1) coming from the
evolving accretion disc changing its size (see Table 2.2), taking into account the
boundary condition Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0.

The Figures 2.20 – 2.22 show the spectral line profile evolution in system
that involves the central object with the mass of 4 × 106M⊙ which is similar to
that of Sagittarius A*, i.e. the super-massive black hole in our Galaxy centre
(e.g. [Boehle et al., 2016]).

The future prospects of this study would be to look for the TDEs that might
have an energy excess resembling that of Fe Kα emission line in the spectra in
active galaxies and to compare it with the modeled spectra. In the future work
it will be necessary to use a more general form of the redshift factor and the
accretion disc evolution based on the Kerr or Kerr-Newmann metric.
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A. Appendix

A.1 Details of numerical calculations and plot
resolution

In order to obtain the numerical solution to the equation (1.40) we first had to
choose the appropriate value of the kinematic viscosity, in our case the value of
Cν , as we defined in the equation (2.15). Then after calculating the respective
tidal radius via the equation (1.7) we were able to calculate the time t using the
dimensionless time τ and the equation (1.47). We had to pick a reasonable ∆x and
∆t in order to satisfy the von Neumann stability criterion (2.12). One can notice
that the Figure 2.6 and 2.7 do not have the same resolution. This is caused by
the fact that these are numerical solutions having different boundary conditions,
Σ(Rinner = 0, t) = Σ(Router, t) = 0 and Σ(RISCO = 6Rg, t) = Σ(Router, t) = 0
respectively. The numerical solution depicted in the Figure 2.7 leaves out the x
values close to zero as we force the surface density to be zero at the ISCO radius
RISCO which makes it possible to choose higher spatial splitting than in case of
the numerical solution depicted in the Figure 2.6 not ignoring x values close to
zero.

For the spectral line profile calculation we used the delta distribution approx-
imation in form (2.21). We have chosen the parameter a = 0.01 for all spectral
line profile models except for the spectral line profile of the rotating ring in New-
tonian approximation (see Figure 2.9) where we chose a = 0.001. To make the
spectral line profile calculations stable and relatively short we kept diminishing
the infinitesimal contributions in radial dR and azimuthal direction dφ. Another
reason was the effort to partially dispose of the numerical noise, especially in case
of the accretion discs with the biggest covered area or the biggest inclination (see
the middle and the last two plots in the Figure 2.13). We have tried to choose an
appropriate plot resolution given the spectral line profile, i.e. the more “spiky”
the spectral line profile’s peaks the higher the plot resolution et vice versa.

The values for physical constants that we took into account are as follows:
the gravitational constant G = 6.67 × 10−11 m3.kg−1.s−2, the Stefan-Boltzmann
constant σ = 5.67 × 10−8 W.m−2.K−4, the semi-empirical α constant as α ≈ 1,
the speed of light c = 3 × 108 m.s−1, the Boltzmann constant kb = 1.38 × 10−23

J.K−1, the mean molecular mass µ ≈ 1, the mass of a proton mp = 1.67 × 10−27

kg, the solar mass constant M⊙ = 2 × 1030 kg and the solar radius R⊙ ≈ 7 × 108

m.
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