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Introduction

0.1 Motivation

Geometry

This master thesis is about geometry of Poisson-Lie T-duality. Since ”geometry”
can mean almost anything and ”Poisson-Lie T-duality” may seem as an attempt
to discourage the reader from opening this text, we should start with few words
of motivation.

By geometry, we mean mostly differential geometry, study of smooth mani-
folds and structures on them, and theory of Lie groups, smooth symmetries, and
of course their infinitesimal friends - Lie algebras. While using a lot of usual
machinery, we will define and describe structures which are probably not so com-
mon. They fit into the program of higher structures in differential geometry - the
idea comming from category theory.

Category theory teaches us that instead of studying, for example, symmetries
of a particular object (manifold, topological space,lattice. . . ), forming a group,
we should look at all the (invertible) relations between all different objects, which
form a groupoid. If the object is a smooth manifold, we usually study smooth
symetries, which tend to form Lie group. Now if we have many objects, for exam-
ple, a smoothly changing family of manifolds (imagine a solid body deforming in
time), we want to consider all the (invertible) relations between different elements
of the family. This is a Lie groupoid - groupoid which is a smooth manifold at
the same time.

When we try to do something similar to Lie algebras, we obtain Lie algebroids
and (with a slight modification) Courant algebroids. As one could expect, these
are easier to work with than groupoids. Also the algebroid – groupoid corre-
sponence is a tricky bussiness which has not been fully understood yet (at least
not in the broad mathematical community). Nevertheless, both Lie and Courant
algebroids have been proved quite useful both in mathematics and theoretical
physics.

There is also a different point of view on Courant algebroids, which is com-
ming from some kind of ”higher” geometry - namely graded geometry. Graded
geometry/supergeometry studies spaces equipped with sheaves of graded alge-
bras. Courant algebroids fit very naturally to this setting as graded symplectic
manifolds. This can give us an idea why they really behave a bit like symplectic
manifolds in practice. For example, there is a reduction procedure of Courant
algebroids, quite similar to usual symplectic reduction. Dirac structures, which
play an important role in study of Courant algebroids, are a bit like Lagrangian
submanifolds of symplectic manifold.

Our interest in Courant algebroid lies in their applications to theoretical
physics, namely string theory. They are especially suitable for studying σ-models
and string dualities giving equivalences between different σ-models. We will use
them to mathematically formulate Poisson-Lie T-duality in a very general way.
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T-duality

T-duality (target space duality) is a particular symmetry of string theory or
more generally a duality between two (type IIA and type IIB) string theories.
These theories are described by σ-model (or effective actions) which concerns a
manifold M (target space) with an additional structure, so called (backgrounds):
a Riemannian metric g, two-form B, three-form H and and dilaton field. T-
duality enables us to show that two theories with completely different manifolds
and backgrounds are equivalent in various senses.

More specifically, a σ-model consists of smooth maps l : Σ → M with the
following action:

Sσ[l] =
∫

Σ
⟨h, l∗(g)⟩h · volh +

∫
X
l∗(B) +

∫
X
l∗(H), (1)

where (Σ, h) is a two-dimensional Lorenzian manifold called worldsheet equipped
with a Lorenzian metric h, M is a manifold (the target) with a metric g, a two-
form B, and a closed three-form H (we omit dilaton for simplicity), X is a three-
dimensional manifold with Σ as a boundary and l in the last term an arbitrary
extension of l on Σ to X. At the classical level, we can find the equations of
motion and try to solve them. We can also quantize the σ model which leads
consequently to ”effective actions” which are functionals of the background fields
(so they become dynamic).

T-duality is a tool how to show that two different target spaces lead to equiv-
alent effective actions or even σ- models, which is consequently interpreted as an
equivalence of physical theories.

The usual T-duality, also known as Abelian (=commutative) T-duality, con-
cerns target spaces M , which are bundles with tori as fibres (n-dimensional torus
Tn = U(1)n is the only connected compact Abelian Lie group of dimension n). See
[12] for an example of such fibrations. However, physical theories often possess
non-abelian symetries (for example, the gauge group of standard model of parti-
cles is product of groups of small unitary matrices, namely U(1)×SU(2)×SU(3),
but it is also often useful to consider theories with SU(N)-symmetry, for large
N or even N → ∞). Because of this fact, there has been an effort to generalize
T-duality to a non-abelian T-duality in past 25 years.

In ninetees Klimčik [1], together with Ševera [2], [3] invented a theory of non-
abelian T-duality, called Poisson-Lie T-duality, because they used Poisson-Lie
groups (Lie groups with compatible Poisson structure). Ševera then found out
that both Poisson-Lie T-duality and Abelian T-duality can be naturally formu-
lated in terms of Courant algebroids. The aim of this thesis is to describe this
language and to state a general formulation of T-duality, motivated by thoughts
of Ševera.

In this formulation, T-duality becomes ”plurality” meaning that it relates sev-
eral different models, not just two ”dual” models. It is worth to say that to get
a reasonable physical theory, we also need dilaton field. It can be nicely incom-
porated into the realm of Courant algebroids as a Courant algebroid connection
(an analogy of Levi-Civita connection on tangent bundle). See, for example, [4].
However, for our discussion this aspect is not that important and we omit it.
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0.2 Outline
In the first chapter, we will recall important notions as principal bundles and their
connections. Then we will define Lie algebroids, especially Atiyah Lie algebroid,
which gives a useful insight into principal bundles. Lie algebroids will also serve
as a motivation for more complicated Courant algebroids.

In the second chapter, we start with the theory of Courant algebroids. We will
give examples and characterize so-called exact Courant algebroids. Then we will
describe metric aspects of algebroids, namely we define generalized metric which
encorpotates usual Riemannian metric. Finally we will define Dirac structures
and use them to define relations between Courant algebroids similarly to canonical
relations in symplectic geometry.

In the third chapter, we will describe an important construction of Courant
algebroids - the reduction by a group action. It will give us new interesting
examples and also provide an insight how seemingly unrelated Courant algebroids
can actually share some properties when they are comming from the same Courant
algebroid by reductions by different groups. This is a source of Poisson-Lie T-
duality.

In the fourth chapter we will formulate Poisson-Lie T-duality in a general
way, without using group actions and reductions. The reduction from the third
chapter will serve as a nontrivial example for this fenomenon.

The text is intended for a reader willing to learn basics of Courant algebroids
and get an idea about Poisson-Lie T-duality. I tried to present this technical, but
beautiful topic in a clear, informal way, which I decided to support by adding
several exercises.

The thesis attempts to review the results which are spread around the recent
papers of Pavol Ševera, Branislav Jurčo, Jan Vysoký as well as some older, clas-
sical results of others. Hovewer all errors and typos in the thesis are done solely
by me.
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1. Lie algebras and algebroids

1.1 Basic definitions and facts
In this thesis all manifolds and maps between them are smooth (C∞)
otherwise it is explicitly stated. Our base field is R so all Lie groups and Lie
algebras are over R etc. All Lie algebras and groups are finite dimensional.

I expect the reader to be familiar with smooth manifolds and vector bundles
on them and basic Lie theory. If not, I personally recommend the book [Baez].

In this section I will set the notation and remind some basics of fibre (vector,
principal) bundles I will need throughout the thesis.

We usually work with a connected Lie group D and its closed Lie subgroup
G ⊂ D, with the corresponding Lie algebras g ⊂ d. Elements of Lie algebras
are usually denoted by Greek letters ξ, µ, ζ . . . , elements of Lie groups by Latin
letters d, g, h . . . .

Fibre bundles

We sometimes omit words ”fibre”, ”vector” and ”principal” when it is
clear from the context.

We start with recalling the definition of a fibre bundle. These bundles are
useful because they contain both vector bundles and principal bundles as spe-
cial cases. Intuitively, they are manifolds, which locally look like a Cartesian
product of two manifolds, but their global topology can be (and usually is) more
complicated.

Definition 1.1.1. A fibre bundle (P,M, π, F ) consists of manifolds P (the total
space), M (the base space or just the base), F (the fibre) and a surjective map
π : P → M (bundle projection) such that for every point x of M there exists an
open neigbourhood U ⊂ M and a diffeomorphism (local trivialization)

π−1(U) ∼= U × F. (1.1)

We usually omit F in (P,M, π, F ) because it can be extracted (up to diffeomor-
phism) from (P,M, π) as F ∼= π−1(x) =: Px for any x ∈ M.

Definition 1.1.2. A vector bundle (E,M, π) is a fibre bundle which has a vector
space as a fibre and local trivializations are linear with respect to fibres. Dimen-
sion of the fibre Ex at a point x ∈ M is called rank of E in x. It is a locally
constant function on M so if M is connected, rank of E is just a number.

Example 1.1.A. Tangent and cotangent bundle of a connected manifold M of
dimension n are both vector bundles on M with dimension n.

Definition 1.1.3. A bundle map (Q,N, π) → (P,M, π′) consists of a pair of
maps f : N → M and ϕ : Q → P such that the diagram

P P ′

M M ′

π

ϕ

π′

f

(1.2)
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fibre bundle P

base manifold B

fibre F

Figure 1.1: A Fibre bundle with the total space P , base space M and fibre F . [5]

commutes. An invertible bundle map is called an isomorphism of fibre bundles.
For vector bundles we add the assumption that (vector) bundle maps are linear
with respect to fibres.

A bundle, which is isomorphic to Cartesian product bundle P = M × F ,
is called trivial. The condition 1.1 is called local triviality, because it describes
precisely that P is locally Cartesian product of M with F.

Definition 1.1.4. If (P,M, π) is a fibre bundle, a (smooth) map s : M → P is a
(global) section of this bundle, if π◦s = idM . In other words, the section s assigns
to every point x of M a point s(x) in the fibre of x (in a smooth way). Space of
all sections is denoted by Γ(P ).

If P is a vector bundle, Γ(P ) is a natural C∞(M)-module1. For any vector
bundle map E → F there is a corresponding C∞(M)-linear map between the
spaces of sections Γ(E) → Γ(F ). If there is a C∞(M)-linear isomorphism Γ(E) →
Γ(F ), then also E and F are isomorphic. In fact, by celebrated Serre-Swan
theorem, there is an equivalence of categories of vector bundles overM and finitely
generated projective modules over C∞(M)-modules. We sometimes interchange
E and its space of sections Γ(E), and similarly with bundle maps.
Exercise 1.1.B. Interpret a global section of a vector bundle as a vector bundle
map. What about fibre bundles?

Principal bundles

Definition 1.1.5. Let M be a manifold and D be a Lie group. A principal D-
bundle is a fibre bundle (P,M, π) together with a right action P × D → P such
that D preserves fibers of P , it acts freely and transitively on each fibre (for every
x ∈ M and every pair v, w ∈ Px = π−1(x) there exists a unique element d ∈ D
such that v · d = w) and there are some local trivializations φU : P ↾U→ U × D
covering P which respect the action (we say that they are equivariant), in other
words, for every p ∈ P and d ∈ D we have

φ(p · d) = φ(p) · d.

Recall that P is the total space and M is the base space.
1We could also consider the whole sheaf of (local) sections, but in smooth setting we can

almost always work with global sections.
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For a nice mathematical exposition, see [6]. In physics literature, D is usually
called gauge group.
Example 1.1.C. A Lie group D is a principal D-bundle over a one point manifold
M = {∗}.
Example 1.1.D. Let (V,M, π) be a vector bundle. Then we can produce a principal
bundle called frame bundle F(V ) of V. The fibre at a point x ∈ M consists of
all vector space bases of the fibre Vx of V . Lie group GL(n) of n × n invertible
matrices, where n is rank of V acts on each fibre by matrix multiplication freely
and transitively, so F is a principal GL(n)-bundle.
Exercise 1.1.E. Show that three-sphere S3 is a principal S1-bundle over S2. (Pos-
sible hint: if you are familiar with complex projective space CP n, show that Sn+1

is a principal S1-bundle over CP n and remember that CP 1 is Riemann sphere.)
The projection is the famous Hopf map.

Definition 1.1.6. Let (P,M, π) be a principal D-bundle and V be a vector
space with a representation of a Lie group D (a Lie group homomorphism ρ :
D → GL(V )). An associated bundle to P with fibre V , is a vector bundle VP over
M whose total space is a set of equivalence classes [p, v] ∼ [pd, d−1v] of pairs of
elements from P × V. The projection assigns [p, v] to π(p).

Analogical construction can be done for fibre bundles if we have a group acting
on the fibre and consider left actions on instead of representations.

The following example is so important, that it deserves to be a definition.

Definition 1.1.7. Lie group D has a canonical adjoint representation on the
underlying vector space of its Lie algebra d – take an element ξ ∈ d, conjugate its
exponential curve exp(tξ) by an element d of D and take the derivative at t = 0
to get a tangent vector again:

Add(ξ) = ∂t(d exp(tξ)d−1)|t=0.

So for any principal D-bundle P we can produce the associated bundle dP with
respect to this representation, the adjoint bundle. It is a special case of a Lie
algebra bundle (example 1.2.3). The total space of dP consists of the pairs [p, ξ] ∈
P ×d, modulo the equivalence relation [p ·d, ξ] ≡ [p,Add−1 ξ]. The adjoint bundle
occurs in the example 1.3.C and theorem 3.3.3.

There are at least two ways of thinking about principal bundle (P,M, π) and
it is important to change this views frequently.

• We concentrate on M and think about P as a collection of fibres Px at
every point x of M. (Imagine yourself standing on the Earth M and looking
around you. The set of all directions you can look to forms a group D = S1

and collection of these S1 gives a principal S1-bundle over the Earth M .
The action of S1 turns the head of every terrestrial by a given angle.) Every
fibre Px is isomorphic to group D and we can act by D on each fibre at the
same time. This last note is the important distinction between principal
and vector bundles - fibres of vector bundle of rank n are also isomorphic
to a group - Rn with usual addition. However, we cannot add a fixed vector
v ∈ Rn to every vector in each fibre because the meaning of this addition
is dependent on the choice of isomorphisms.
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• We concetrate on P and think about it as a (huge) manifold equipped with
a nice (free) action of a group D. The base space M is then a space of orbits
of the action.
We can happily study additional structures on P (such as vector fields,
forms, or even metrics) and keep in mind that if these structures behave
well with respect to the action, they can induce similar structures on the
space of orbits M . Many structures on M (e.g. principal connections) are
complicated just because they are quotients of more natural objects living
on P (and taking a quotient is kind of drastic operation).

A fact we will use throughout all the thesis is that D-action induces an action
of its Lie algebra d by derivations of vector fields. Informal introduction first.
There is an advantage and at the same time a source of possible confusement
with Lie algebra actions:

Vector fields on M form an (infinite-dimensional) Lie algebra Γ(TM) with
bracket being usual Lie bracket of vector fields. Although we do not want to
get into the wild world of infinite-dimensional manifolds, it is fruitful to think of
Γ(TM) as a Lie algebra corresponding to the (infinite-dimensional) Lie group of
diffeomorphisms Diff(M) of M (vector fields are ”infinitesimal diffeomorphisms”
and give rise a flow along them, which can be thought as the exponential map
Γ(TM) → Diff(M)).

An usual action of Lie group D on a manifold M is a group homomorphism
from D to Diff(M) so we can expect that there is a corresponding ”infinitesimal
action”, i.e. a Lie algebra homomorphism # : d → Γ(TM). However, it is not
an action in the sense that it moves elements of M , rather it describes tangent
directions to movements of elements of M .

On the other hand, it is natural to consider an action of d on the Lie algebra
Γ(TM) itself: d × Γ(TM) → Γ(TM), (ξ,X) ↦→ ξ · X, meaning that for any
element ξ we have a linear map from Γ(TM) to itself, which is a derivation in
the sence that

ξ · [X, Y ] = [ξ ·X, Y ] + [X, ξ · Y ].
In other words, this action is a Lie algebra morphism d → Der(Γ(TM)) where
Der(Γ(TM)) is Lie algebra of all derivations on Γ(TM) with commutator as the
bracket.

This action takes a vector field X and an element ξ of the Lie algebra, and
assings to it the (Lie) derivative of vector field X along the curve, which is given
by action of elements of d which lie on the curve tangent to the element ξ of Lie
algebra d.

Both actions are sometimes called ”the infinitesimal action of the action of
D”, because they are completely equivalent. An infinitesimal action # as a ho-
momorphism from d → Γ(TM) induces a homomorphism from d to Der(Γ(TM))
by ξ ↦→ [ξ, ·]. On the other hand, every derivation on the Lie algebra of vector
fields is of this form, i.e. actually represented by a single vector field2, so we
obtain a Lie algebra homomorphism from d to Lie algebra of vector fields.

The moral of the last paragraph is that we can interchange the vector field
ξ# and the map [ξ#, ·] freely and it does not hurt much (but it is good to know

2This is a great property of tangent bundle, and one of the complications with Courant
algebroids is that they do not possess it.
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that we have both). Now we proceed to the precise definition (just in case you
have never heard).

Definition 1.1.8. Let (P,M, π) be a principal D-bundle. Let ξ be an element of
Lie algebra d. This means that there is a (smooth) curve t ↦→ exp(tξ) in D with
ξ as a tangent vector in t = 0 (hence at identity element of D). For any element
p ∈ P we consider a curve p · exp(tξ) and we call ξ# its tangent vector at t = 0
(hence at point p). This procedure gives a map

# : d → Γ(TP )
ξ ↦→ ξ#,

which is injective and preserves the usual Lie bracket of vector fields

#([ξ, µ]) = [ξ#, µ#]

for every ξ, µ ∈ d. We call # the infinitesimal action of d on P . Vector fields of
the form ξ# for some ξ ∈ d are called vertical.

The image of # (as a set of tangent vectors of the sections) is a subbundle
of the tangent bundle of P because # is point-wise injective. It is called vertical
bundle V P. Equivalently (for principal bundles), vertical bundle is the kernel of
the tangent map of the projection

Tπ : TP → T (P/D).

Its sections are called vertical fields. Those are precisely vector fields tangent to
orbits of the action. Fundamental vector fields are vertical.

Infinitesimal action gives an isomorphism of V P with the trivial d-bundle over
P. Meaning: if you walk on P and choose a direction of a vertical vector field, you
will never leave your fibre, but all vertical vector fields together span all possible
directions in the fibre.

We can also reverse the procedure and ”integrate” an infinitesimal action of
d to an action of the Lie group. The proof of this classical theorem can be found
in [7].

Theorem 1.1.9 (Lie-Palais). Every infinitesimal action of a finite-dimensional
Lie algebra d on a compact manifold M integrates to an action of some Lie group
D on M.

1.2 Lie algebroids

Introduction

Our first task is to explain a technical notion of a Courant algebroid (CA) which
we will use to formulate T-duality. For this, we first define a similar but simpler
notion of a Lie algebroid and we describe some examples (most notably the tan-
gent bundle (1.2.B) and Atiyah Lie algebroid (1.3.C) of a given principal bundle).

In the next chapter we will proceed to Courant algebroids and we will no-
tify important distinctions between these two concepts, for example (2.1.8) and
(2.1.9).
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Lie algebroid is a natural generalization of the concept of a Lie algebra.3
Informally, it is some kind of vector bundle with a structure of Lie bracket on the
space of its sections. Lie algebra can then be thought as a Lie algebroid over a
single point.

Lie algebroids

Lie algebras play two different roles in our story:

• One is that we aim to generalize them to Lie algebroids, which offer a
natural living space and unified language for natural geometric structures
which occur as backgrounds for sigma models. Lie algebras or their bundles
serve as an example of Lie algebroids. This is the point of view of this
section.

• The second role is the usual one, as in the definition 1.1.8 - they consist
of infinitesimal symmetries of some object - the object can be a manifold,
vector bundle or even an algebroid. We usually have a corresponding Lie
group action acting by diffeomorphisms or bundle isomorphisms. This will
become important in the chapter 3.

Definition 1.2.1. Let E → M be a vector bundle with an R-bilinear map [·, ·]E :
Γ(E) × Γ(E) → Γ(E) and a vector bundle map ρ : E → TM (called anchor)
such that the following axioms hold for every f ∈ C∞(M) and ψ, ψ′, ψ′′ ∈ Γ(E):

1. Leibniz rule: [ψ, fψ′] = f [ψ, ψ′] + ρ(ψ)(f)ψ′

2. (Γ(E), [·, ·]E) satisfies Leibniz identity:

[ψ, [ψ′, ψ′′]]E = [[ψ, ψ′], ψ′′]]E + [ψ′, [ψ, ψ′′]]E

Then we call (E, ρ, [·, ·]E) a Leibniz algebroid. If [·, ·]E is skew-symmetric, then
(E, ρ, [·, ·]E) is called Lie algebroid. The space of sections Γ(E) then forms a Lie
algebra with [·, ·]E.

Proposition 1.2.2. For any Leibniz algebroid (E, ρ, [·, ·]E), the anchor ρ becomes
a bracket homomorphism:

ρ([ψ, ψ′]E) = [ρ(ψ), ρ(ψ)].

Proof. I recommend you to do this computation (with use of Leibnitz identity
and Leibnitz rule). It can seem a bit complicated, so we do it here:

We start with Leibnitz identity (CA1),

[ψ, [ψ′, fψ′′]]E = [[ψ, ψ′], fψ′′]]E + [ψ′, [ψ, fψ′′]]E
[[ψ, ψ′], fψ′′]]E = [ψ, [ψ′, fψ′′]]E − [ψ′, [ψ, fψ′′]]E,

3There is also a notion of Lie groupoid, which we will not use here.
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now we expand everything by Leibnitz rule (CA2)

ρ([ψ, ψ′])(f)ψ′′ + f [[ψ, ψ′], ψ′′] = [ψ, f [ψ′, ψ′′]]E + [ψ, ρ(ψ′)(f)ψ′′]E
− [ψ′, f [ψ, ψ′′]]E − [ψ′, ρ(ψ)(f)ψ′′]E.

On the right hand side, we expand by (CA2) even more,

ρ([ψ, ψ′])(f)ψ′′ + f [[ψ, ψ′], ψ′′] = ρ(ψ)(f)[ψ′, ψ′′]E + f [ψ, [ψ′, ψ′′]]E
+ ρ(ψ)(ρ(ψ′)(f))ψ′′ + ρ(ψ′)(f)[ψ, ψ′′]E
− ρ(ψ′)(f)[ψ, ψ′′]E − f [ψ′, [ψ, ψ′′]]E
− ρ(ψ′)(ρ(ψ)(f))ψ′′ − ρ(ψ)(f)[ψ′, ψ′′]E

Finally, something cancels out and we use Leibnitz identity again.

ρ([ψ, ψ′]E)(f)ψ′′ = ρ(ψ)(ρ(ψ′)(f))ψ′′ − ρ(ψ′)(ρ(ψ)(f))ψ′′.

Since f and ψ′′ was arbitrary, we obtain the result. ■

Example 1.2.A. If M has only one point {∗}, a Lie algebroid E is just a Lie
algebra. The anchor is the trivial map E → {0} = T{∗}.
Example 1.2.B. The tangent bundle TM of a manifold M is a Lie algebroid with
Lie bracket of vector fields and the identity of TM as the anchor. This is kind
of motivating example of a Lie algebroid. Tangent bundle is not just an ordinary
vector bundle, it acts on itself by Lie bracket, which allows us to define Lie
derivative on tensors (products of powers of TM and T ∗M). Our aim is to study
similarly rich structures.

Definition 1.2.3. A vector bundle (E,M, π) is a Lie algebra bundle if there
exists a Lie algebra d such that every fibre Ex has a structure of a Lie algebra
isomorphic to d and the local trivializations E↾U

∼= U × d restrict to a Lie algebra
homomorphism Ex

∼= {x} × d for every point x of M .

Example 1.2.C. Any Lie algebra bundle is a Lie algebroid with the constant zero
anchor. Notice that a Lie algebroid in general can be something much more
complicated then just a bunch of Lie algebras parametrized by points of M , as in
the example 1.2.B - Lie bracket of tangent vectors in a given point does not make
any sense, because it depends on the behavior of fields at the neighbourhood
of the point. This is a translation of the algebraic fact that Lie bracket is not
C∞-linear,

[X, fY ] ̸= f [X, Y ],
but it satisfies Leibnitz rule instead,

[X, fY ] = f [X, Y ] +X(f) · Y.

1.3 Group actions on manifolds and bundles
We will construct an example of a Lie algebroid, which is useful for studying
principal bundles. We start with some general comments on group actions on
manifolds and bundles.
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An action by D on a manifold P can be thought as some artificial degrees of
freedom. For example, if P is a classical state space, i.e. a symplectic manifold,
two states in the same orbit are interpreted as physically equivalent, so we want
to work with the quotient space to get rid of this redundance. The quotient is
not necessarily a well defined manifold, but if the action is free and proper, then
everything works well.4

So let us suppose that we have such a nice action and take the quotient
M = P/D of P by D. We would also like to transfer structures as vector bundles,
algebroids, metrics etc. from P to M . This is not always possible, for example,
a quotient of a symplectic manifold is not symplectic, because we loose the non-
degeneracy. Nevertheless we can consider a suitable D-invariant submanifold Q
of P such that Q/D is symplectic.

Many structures of our interest have the underlying vector bundle - Lie alge-
broids for example, but also Riemannian and symplectic structures live naturally
on vector bundles (of tensors). So we first describe how to do a quotient of a
vector bundle. Bundles which allow us to do it are called equivariant.

Definition 1.3.1. Let E π−→ P be a fibre bundle and D be a Lie group with a
(right) action on both the base space P and the total space E. Then (E,P, π) is
an equivariant bundle if π is an equivariant map, i.e. it commutes with actions
on P and on E:

d ◦ π = π ◦ d

where d denotes the action of an element d ∈ D on either P or E. IF E is a vector
bundle over P then E is called equivariant vector bundle if it is an D-equivariant
bundle and D acts on E by vector bundle isomorphisms. In other words, the
fibre of p is mapped to the fibre of pd by multiplication by d ∈ D and for vector
bundles we require this multiplication map to be linear.

Remark 1.3.2. For any d ∈ D we can also act by d−1 which maps the fibre of
pd to the fibre of p and it is clearly inverse to the multiplication by d, so every
multiplication gives an isomorphism of fibres.

Definition 1.3.3. The section v ∈ Γ(E) of an equivariant bundle E → P is an
invariant5 section if vp · d = vp·d.

Exercise 1.3.A (important). If E is a D-invariant vector bundle over P , then
E/D is a vector bundle over P/D. Rank of E/D equals rank of E. The space of
sections Γ(E/D) is in canonical bijection with D-invariant sections Γ(E)D of E,
i.e. every D-invariant section induces a unique section of E/D. .
Warning 1.3.4. Invariant sections form a vector space, but not a C∞(P )-module,
so they do not form a space of sections of any subbundle of E. However, they are
naturally a C∞(P/D)-module due to the identification with sections of E/D.
Example 1.3.B (see (1.3.5) and (1.3.8)). Let P be a principalD-bundle, so we have
the (free and proper) action of D on P . Tangent bundle TP is always equivariant
vector bundle over P , with action on the total space given by tangent maps to

4If not, we can still do something, for example work with a so-called ”action Lie groupoid”
instead of the (not well defined) quotient. See [8].

5It seems to me that the word equivariant would be suitable too, but we keep this notation,
because the term ”equivariant differential form” is left for something different
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right multiplications by elements of D. The vertical subbundle V P ⊂ TP is an
invariant subbundle and given a principal connection A , its horizontal bundle is
also invariant, by the equivariance of the connection.

Atiyah Lie algebroid

We take a principal D-bundle (P,M, π) and look at the tangent bundle TP of P.
As we already know, there is a subbundle V P ⊂ TP of vertical vector fields, is
isomorphic to the trivial bundle P × d via the infinitesimal action6. But it is not
as trivial as it can seem, because it possess the action of D, restricted from TP.
If we quotient by this action, we get the adjoint bundle 1.1.7. The bundle TP is
an equivariant vector bundle (we have right translations, on V P ∼= d×P there is
diagonal action), so we can take quotients by the action to get bundles over M.

Moreover, we have a surjective bundle map,

TP TM

P M,

T π

π

(1.3)

which is constant on orbits of the D−action on TP (exercise), so it induces a
surjective map over the identity of M,

TP/D TM

P/D ∼= M M.

T π/D

id

(1.4)

The kernel of this map is V P/D ∼= dP .

Example 1.3.C (Atiyah Lie algebroid). For any principal D-bundle P over M , we
have Atiyah algebroid TP/D which fits into an exact sequence (Atiyah sequence)
of vector bundles over M

0 dP TP/D TM 0.T π/D (1.5)

In other words, it is an extension of the Lie algebroid TM by a Lie algebra bundle
dP . Atiyah algebroid of the principal D-bundle D over a point is its Lie algebra
d, which is easily seen from the sequence - tangent space of a point is just {0},
and the adjoint bundle is trivial, so d → TP/D must be an isomorphism.

Principal connections

The importance of Atiyah Lie algebroid rises notably from the fact, that principal
connections of P are in one-to-one correspondence with splittings of 1.5. We recall
the definition of a principal connection and mention most important properties,
since they will become an important tool in explicit constructions of reductions
of Courant algeboids.

6If we pick a basis (ξ1, ξ2, . . . , ξn) of d, then (ξ#
1 , ξ#

2 , . . . , ξ#
n ) gives a global frame of V P .
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Definition 1.3.5. Let (P,M, π) be a principal D-bundle. We denote by

# : d → Γ(TP )
ξ ↦→ ξ#

the infinitesimal action of d on P . A (principal) connection A on (P,M, π) is a
d-valued one-form on the total space P , A ∈ Ω1(P, d) ∼= C∞(P, P ⊗ d) such that

1. A(ξ#) = ξ for any X ∈ d (A recovers Lie algebra elements on the funda-
mental fields of the action).

P T ∗P ⊗ d

d

A

#
id (1.6)

2. A is D-equivariant:
R∗

dA = Add−1A

for every d ∈ D where R∗
d is the pullback of one-forms by the right trans-

lation by the element d and Ad is the usual adjoint action (see 1.1.7) of D
on its Lie algebra d.

We can think of A as a bundle map from TP to the trivial bundle P ×d. The
equivariance of A translates to the equivariance of this map, with respect to right
action of D on TP by tangent maps TRd of right translations Rd, and the right
action of D on P × d being pointwise the usual left Ad-action but acting by the
inverse element to make it right.

TP P × dA
D D (1.7)

Important remark 1.3.6. For any principal bundle, a principal connection always
exists and there are many of them in general. This fact follows from the partition
of unity.

Definition 1.3.7. Let A be a connection on a principal D-bundle (P,M, π), then

F = dA+ 1
2[A ∧ A]d ∈ Ω2(P )

is its curvature form or just curvature. The connection A is flat, if its curvature
vanishes.

The curvature is a two-form on P with values in d. However, it is D-invariant
and horizontal (vanishes whenever it eats at least one vertical field), so it admits
a corresponding two-form F on the base space M with values in adjoint bundle
dP (1.1.7) (notice that A is not horizontal, so we can not do this globally). 7 This
form F ∈ Ω2(M, dP ) is often also called curvature.

One of the striking features of the curvature form F is that it allows us
to define some cohomology classes (characteristic classes), such as Pontryiagin

7This is why the forms of these two properties together are sometimes called basic.
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classes, so it gives a link to algebraic topology. Those are elements of de Rham
cohomology of M defined with the use of the curvature F and the pairing ⟨·, ·⟩d but
in the end, they do not depend on the choice of the connection. This is a subject
of (much more general) Chern-Weil theory. [9] We will need (and define) just the
first Pontryiagin class, which we use to formulate a topological obstruction for
reduction of Courant algebroids.

Consider a principal D-bundle P π−→ M with a connection A ∈ Ω1(P, d) and
let F ∈ Ω2(M, dP ) be the curvature form of A (on the base). Suppose moreover
that d is equipped with a non-degenerate pairing ⟨·, ·⟩d. Then the first Pontryiagin
class of the pair (A, ⟨·, ·⟩d) is the form

⟨F ∧ F ⟩d ∈ H4(M). (1.8)

Definition 1.3.8. As we know that elements of Lie algebra d correspond to
vertical vector fields, we can think of A as a vector bundle map from TP to V P.
The first condition says that A equals identity on V P, so it is a projection. We call
its kernel horizontal subbundle HP and we obtain a vector bundle decomposition
TP ∼= V P ⊕HP (dependent on A).

The equivariance of the connection 2 implies that the horizontal subbundle
is D-invariant. i.e. it is preserved by the action of D. Its section are horizontal
vector fields. For every vector field X on M there is a unique horizontal field
Xh such that Tπ(Xh) = X so we can think of horizontal fields as lifts of vector
fields on M (and recall that by definition, we have A(Xh) = 0). In fact, principal
connections on P are in one-to-one correspondence with D-invariant subbundles
HP of TP such that TP ∼= HP + V P .

Proposition 1.3.9 (Splittings and connections). Splittings of the sequence 1.5
(vector bundle maps σ : TM → TP/D satisfying π ◦σ = idT M) are in one-to-one
correspondence with principal connections of P → D.

Proof. Given a splitting σ : TM → TP/D, the image of σ is D-invariant and
complementary to V P, hence it defines a connection. Given a connection A,
we define σ(X) := Xh where Xh is the horizontal lift of X with respect to
the connection. If σ preserves the bracket, we have [Xh, Y h] = [X, Y ] for the
corresponding connection A. ■

Exercise 1.3.D. Splittings, which preserve brackets (Lie algebroid morphisms)
correspond to connections with zero curvature (flat connections).
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2. Courant algebroids

2.1 Courant algebroids

Quadratic Lie algebras

As Lie algebroids generalize Lie algebras, Courant algebroids generalize quadratic
Lie algebras.

Definition 2.1.1. A quadratic Lie algebra is a Lie algebra (d, [·, ·]d) together
with a non-degenerate symmetric bilinear form ⟨·, ·⟩d that is invariant under the
adjoint action of d on itself, i.e. for every X, Y, Z ∈ d

⟨[X, Y ]d, Z⟩d + ⟨Y, [X,Z]d⟩d = 0

Definition 2.1.2. We say that a Lie group D is quadratic Lie group if the corre-
sponding Lie algebra d is equiped with a non-degenerate symmetric bilinear form
⟨·, ·⟩d such that this form is D-invariant (with respect to usual Ad action of D on
d). Equivalently, its Lie algebra d is a quadratic Lie algebra.

Remark 2.1.3. If d is a Lie algebra of a Lie group D, d is quadratic if and only if D
admits a bi-invariant pseudo-Riemannian structure (smooth fibre-wise symmetric
nondegenerate bilinear form on the tangent bundle ofD). So informally, quadratic
Lie group is a Lie group where we can measure distances and angles, and the same
is possible in the corresponding (quadratic) Lie algebra.
Example 2.1.A (Quadratic Lie algebras).

• Every Lie algebra d has adjoint representation on itself:

Ad : d × End(d) (2.1)
ξ ↦→ [ξ, ·]d, (2.2)

This representation gives us a symmetric bilinear form

⟨ξ, µ⟩ = Tr(Ad(ξ) Ad(µ)),

Killing form, which is non-degenerate if and only if Lie algebra d is semisim-
ple. Many important algebras are semisimple, for example son for n > 2,
sln for n > 1 or sp2n.

• If moreover d is a Lie algebra of a compact group, Killing form is negative
definite.

• commutative ones Rn with the trivial zero bracket and Euclidean inner
product.

• We are mostly interested in quadratic Lie algebras of split characteristic
(n, n). If we start with Lie algebra g we can define (as a vector space)
d = g ⊕ g∗ where g∗ is the dual space of g. The vector space d admits a
natural pairing of characteristic (n, n) where n is the dimension of g. We
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could hope that d has a compatible structure of a Lie algebra. This is a
case just for a special kind of Lie algebras g, called Lie bialgebras. Those
are Lie algebras equipped with a ”cobracket” δ : g → g ⊗ g compatible in
some sence with the Lie algebra bracket. This additional structure induces
Lie algebra structure on g∗ and consequently on d making it a quadratic
Lie algebra. See [10].

• If we consider g, g∗ and d as in the previous example, we have a split exact
sequence

0 → g → d → g∗ → 0.
To generalize this, we can consider just pairs (d, g) where d is a quadratic
Lie algebra and g is a Lagrangian subalgebra, in the sense that g = g⊥. Note
that this condition already forces the characteristic of d to be split by (2.1.5).
We then have the isomorphism d/g ∼= g∗, but there is no decomposition like
d = g ⊕ g∗ in general as not every exact sequence of Lie algebras splits.

Definition 2.1.4. A pair (d, g) where d is a quadratic Lie algebra and g is a
Lagrangian subalgebra (g = g⊥) is called Manin pair.

When we work with a Manin pair (d, g) we usually assume that d integrates
to a (quadratic) Lie group D of dimension 2n and g to a closed subgroup G ⊂ D.
Remark 2.1.5. On the other hand, existence of a subalgebra g ⊂ d for which
g = g⊥ implies that the signature is split. If the signature of ⟨·, ·⟩d is (p, q), then
g ⊂ g⊥ implies dim(g) ≤ min(p, q) and if g⊥ ⊂ g, then dim(g) ≥ max(p, q). We
see that this together gives p = q.

Nondegeneracy is quite a strong condition. For example, it is the reason why
we cannot simply take the quotient of symplectic manifold (M,ω) by symplectic
action of a Lie group G - we obtain a manifold M/G with a well defined two form
ω′, but it will not be non-degenerate. The same problem occurs with Courant
algebroids since they are equipped with non-degenerate pairing on sections.

Courant algebroids

Courant algebroids and Dirac structures were introduced by Liu, Weinstein and
Xu in [11].
Definition 2.1.6. A Courant algebroid (CA) is a vector bundle E → M with a
fibrewise non-degenerate symmetric bilinear form ⟨·, ·⟩ (the pairing), with a vector
bundle map ρ : E → TM the anchor, and with a R-bilinear map (the bracket)
[·, ·] : Γ(E) × Γ(E) → Γ(E) such that for all u, v, w ∈ Γ(E) and f ∈ C∞(M)

[u, [v, w]] = [[u, v], w] + [v, [u,w]] (CA1)
[u, fv] = f [u, v] + ρ(u)(f)v (CA2)

ρ(u)⟨v, w⟩ = ⟨[u, v], w⟩ + ⟨v, [u,w]⟩ (CA3)
⟨w, [u, v] + [v, u]⟩ = ρ(w)⟨u, v⟩. (CA4)

These axioms surely ask for some explanation. Axioms CA1 and CA2 are the
same as for Lie algebroids. Axiom CA3 is compatibility of pairing with bracket.
The main difference between Courant and Lie algebroids is that the bracket of
CA is not antisymmetric. However, it is not that bad since its symmetric part is
ruled by the last axiom CA4.
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Remark 2.1.7. The anchor preserves brackets, as in the case of Lie algebroids
(with the same argument 1.2.2).
Warning 2.1.8. It is not true that [fu, v] = f [u, v] − ρ(v)(f)u as in case of Lie
algebroids. Instead, we get an additional term comming from the lack of anti-
symmetry of the bracket and by CA4 we have:

[fu, v] = f [u, v] − ρ(v)(f)u+ dE(f⟨u, v⟩),

where dEf ∈ Γ(E) is given by ⟨u, dEf⟩ = ρ(u)f (more on this below). This is a
source of many technical problems with Courant algebroids.
Remark 2.1.9. There exist an equivalent definition of CA with antisymmetric
bracket, which does not satisfy CA1. We will not use it. The important thing
is that if you have both Leibnitz identity CA1 and antisymmetry it forces the
anchor to be zero so we do not get much interesting stuff.
Example 2.1.B. A Courant algebroid E over a point is a quadratic Lie algebra.
See 1.2.A.

The most important example you should keep in your mind is the generalized
tangent bundle equipped with the obvious pairing of vector fields and one-forms
and so-called Courant bracket, which is a clever extension of Lie bracket of vector
fields. This is analogical to usual tangent bundle being the canonical example
of a Lie algebroid. Things get a bit more complicated, because there is actually
some freedom in choosing the bracket - it can be ”twisted” by a three-form, which
is one of the first motivations to consider abstract Courant algebroids, to explain
this freedom as a ”choice of splitting” into a direct sum of some subbundles.
Example 2.1.C. Let M be a manifold of dimension m and consider the (fibre-
wise) direct sum of its tangent and cotangent bundle TM ⊕T ∗M. It is sometimes
called the generalized tangent bundle. This bundle has a natural non-degenerate
symmetric bilinear form of the signature (m,m) given by the natural pairing of
tangent vectors and one-forms:

⟨X + α, Y + β⟩ = β(X) + α(Y ). (2.3)

Moreover, TM ⊕ T ∗M admits a natural Courant bracket

[(X,α), (Y, β)] =
(
[X, Y ],LXβ − iY dα

)
∀X, Y ∈ Γ(TM), α, β ∈ Γ(T ∗M).

(2.4)
It is also useful to thing about the bracket as an action of the space sections of
TM ⊕ T ∗M on itself, which is maybe enlightening in the matrix notation

(X + α) ·
(
Y
β

)
=
(

LX 0
dα LX

)(
Y
β

)
(2.5)

We see that without α, this would be just the ordinary action of vector fields by
Lie derivative on TM and T ∗M (recall that LX(Y ) is precisely [X, Y ].)

Proposition 2.1.10. The bundle TM ⊕T ∗M → M with ⟨·, ·⟩, [·, ·] defined above
and the anchor ρ : TM ⊕ T ∗M being the projection onto the first factor, is a
Courant algebroid.
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Exercise 2.1.D. Prove this to remember CA axioms (hint: it is just Cartan cal-
culus).
Remark 2.1.11. In the literature, you can also find a different convention of the
pairing.

⟨X + α, Y + β⟩ = 1
2(β(X) + α(Y )),

because some people find amusing that then ⟨X + α,X + α⟩ = α(X). This is a
common source of confusion.

Exact and Transitive Courant algebroids

Nondegeneracy of the pairing ⟨·, ·⟩E means precisely that the map gE : E → E∗

given by gE(v)(w) = ⟨v, w⟩E is an isomorphism. So we can identify E with E∗ by
this map. The anchor map ρ : E → TM induces ρT : T ∗M → E∗ (by composition
of linear forms with ρ). Finally, we can use this map and the inverse of gE to
define adjoint anchor map:

ρ∗ = g−1
E ◦ ρT .

By definition, we have the (defining) relation for ρ∗, which is useful in every
argument concerning this map:

⟨ρ∗(α), u⟩E = α(ρ(u)) (2.6)

for any u ∈ Γ(E) and α ∈ Γ(T ∗M) = Ω1(M)
and more specifically for exact one-forms

⟨ρ∗(df), u⟩E = ρ(u)(f). (2.7)

The composition ρ∗ ◦ d is sometimes denoted dE. Notice that the axiom CA4
gets a form

[u, v] + [v, u] = dE⟨u, v⟩(=: ρ∗d(⟨u, v⟩)) (CA4’)

Lemma 2.1.12. For any Courant algebroid ρ ◦ ρ∗ = 0.

This lemma gives us a sequence (chain complex) of vector bundles over M

0 T ∗M E TM 0,ρ∗ ρ (2.8)

Definition 2.1.13. A Courant algebroid (E, ρ, ⟨·, ·⟩E, [·, ·]E) is exact, if the se-
quence (2.8) is exact. In other words, ρ is surjective and im(ρ∗) = ker(ρ). (clearly
ρ∗ is injective if ρ is surjective).

Every exact CA is, in fact, isomorphic to the generalized tangent bundle
TM ⊕ T ∗M with the usual pairing and some kind of twisted bracket.
Example 2.1.E. Given an exact Courant algebroid, we can always choose an
isotropic splitting σ : TM → E of the exact sequence (2.8), meaning that
ρ(σ(X)) = X and ⟨σ(X), σ(Y )⟩ = 0 for every X, Y ∈ Γ(M). This splitting is
not unique. For a given σ we can define a three-form H on M (”curvature”) by

H(X, Y, Z) := ⟨[σ(X), σ(Y )], σ(Z)⟩ ∀X, Y, Z ∈ Γ(TM)
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Notice that the skew-symmetry of H follows because the image of σ is isotropic
subspace, and the bracket is skew-symmetric on isotropic subspaces, as we can
see from the axiom CA4. With a given splitting σ, we can actually find bundle
isomorphism of E with the direct sum TM ⊕ T ∗M.

TM ⊕ T ∗M ∼= E

X + α ↦→ σ(X) + ρ∗(α).

Exercise 2.1.F. Show that this map preserves the pairing (hint - the images of
both σ and ρ∗ are isotropic, and use the defining property 2.6 of ρ∗.) Show also
that anchors commute with this isomorphism.

By this exercise, we can safely identify E with the generalized tangent bundle
TM ⊕T ∗M (so a vector field X with the section σ(X) of E) and the only task is
to compute how the bracket of E behaves in terms of vector fields and one-forms.
In terms of this identification, H is as follows:

H(X, Y, Z) := ⟨[X, Y ], Z⟩ ∀X, Y, Z ∈ Γ(TM) ⊂ Γ(E).

This form is key to the classification of exact Courant algebroids. It satisfies two
properties:

• It is closed: dH = 0, so it represents a cohomology class in H3(M).

• If we change the splitting, the cohomology class of H is preserved.

Proof. We leave the first part as an exercise. Use the invariant formula for exterior
derivative and axioms of CA.

dH(X0, X1, X2, X3) =
∑

i

(−1)iXiH(X0, . . . , X̂i, . . . , X3)−

−
∑
i<j

(−1)i+j−1H([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , X4)

Let’s take two isotropic splittings σ and σ′. Then ρ(σ(X) − σ′(X)) = 0 for every
X ∈ Γ(TM) so σ(X) − σ′(X) = ρ∗(α) for a unique α ∈ T ∗M. We define a two
tensor B ∈ Γ(T ∗M⊗2) by iXB = α. It is clearly smooth. By definition of ρ∗ we
have

B(X, ρ(v)) = ⟨σ(X) − σ′(X), v⟩

for any v ∈ Γ(E). We apply this to v = σ(Y ) and by properties of σ and σ′, we
get

B(X, Y ) = −⟨σ(X) − σ′(X), σ(Y )⟩
= −⟨σ′(X), σ(Y )⟩
= −⟨σ′(X), σ(Y ) − σ′(Y )⟩
= −⟨σ(Y ) − σ′(Y ), σ′(X)⟩ = −B(Y,X)

■
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This implies that exact Courant algebroids are classified by third de Rham co-
homology group H3(M,R). Finally, Courant bracket [·, ·]E on E ∼= TM ⊕ T ∗M
reads

[(X,α), (Y, β)] =
(
[X, Y ],LXβ − iY dα +H(X, Y, ·)

)
for all X, Y ∈ Γ(TM) and α, β ∈ Γ(T ∗M). We can see that it is the same bracket
as of example 2.1.C, except it is ”twisted” be the three-form H.

H → H + dB

As a consequence, when we integrate the form H over a closed 3-manifold, we can
think about the result as an invariant of an exact Courant algebroid, and not just
the form H. So when you spot a god-given closed three-form somewhere, you can
actually try to find a natural Courant algebroid for it. See for example [12] where
(topological) T-duality is formulated in terms of H-twisted de Rham cohomology.
We hope this could be generalized (and clarified) in terms of Courant algebroids.

Definition 2.1.14. We say that a Courant algebroid E is transitive if its anchor
ρ is surjective.

Important remark 2.1.15. Every exact algebroid is transitive, but not the other
way round. A transitive Courant algebroid E over M is exact if and only if
it has rank 2m where m = dim(M). It follows from the CA short exact se-
quence (2.8)/rank-nullity theorem (exercise). Therefore it is easy to recognize
(non)exactness of CA’s.
Example 2.1.G. Transitive algebroids which are not exact come naturally from
the ”heterotic” reduction 3.3.3 of CA’s by an action of a quadratic Lie group.
Example 2.1.H. [13] Let d be a Lie algebra with a non-degenerate invariant sym-
metric pairing ⟨·, ·⟩ (i.e. d is a CA over a point), D a connected Lie group which
integrates d, and G is a Lie subgroup of D with corresponding Lie subalgebra g
of d such that g⊥ = g (i.e. g ⊂ d is a Lagrangian Lie subalgebra). Note that the
existence of such algebra already implies that the characteristic of ⟨·, ·⟩ is split
(n, n), as we know from the note 2.1.5. We consider the trivial vector bundle
d × D/G over D/G, equivalently, the pullback of d → {∗} by the trivial map
D/G → {∗}.We claim that

d ×D/G → D/G

is ”naturally” an exact Courant algebroid:

• The pairing is easiest to define (by its point-wise nature). We just define
the pairing on every fibre as the pairing ⟨·, ·⟩d.

• The anchor of d → {∗} is trivial (tangent bundle of a point is {0}) and
there is no sensible way how to use it to define a bundle map from d ×
D/G → T (D/G). Fortunately, we can put the anchor by hand by taking
the infinitesimal action of d on D/G corresponding to canonical (right)
action of D on the (left) coset space D/G.

• Once we have defined the anchor, the bracket on d × D/G can be defined
on constant sections as the Lie bracket on d and then extended by Leibnitz
rule.
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• It is easy to check that we get a Courant algebroid. Exactness follows
from the dimensional argument 2.1.15. If g has dimension g, then d has
dimension 2g because g is Lagrangian and D/G has dimension g, so the
rank of the fibre is twice the dimension of the base space.

We can actually generalize this example for arbitrary transitive Courant al-
gebroid with a non-trivial base at the place of d → {∗}. The CA structure on a
pullback will be constructed using the reduction of Courant algebroids. More on
this in the next chapter.
Example 2.1.I. Let E be a Courant algebroid with the anchor ρ and take F :=
ker(ρ). Then F is a subbundle and both bracket and pairing on E can be restricted
to F so that we obtain a Courant algebroid structure (with the new anchor being
identically zero). At the same time, it is a Lie algebroid, because the bracket
becomes antisymmetric due to the vanishing of the anchor. Notice also that this
algebroid is not transitive, and we usually call an algebroid with zero anchor
totally intransitive algebroid.
Exercise 2.1.J. Find a Courant algebroid E over M , with dimension 2m =
2 dim(M) such that it is not exact. Possible hint the example 2.1.I and the
theorem 3.3.3.

Generalized metric

By a metric we mean Riemannian metric on some manifold M (smooth choice
of a positive definite inner product on every tangent space of M). Riemann
metric plays a crucial role in general relativity. In strings/supergravity, there are
additional fields - so-called B-field, which is for us just a nondegenerate two-form,
a closed three-form H (and dilaton φ we omit here).

A generalized metric allows us to take together the Riemannian metric g on M
and B-field into one structure (H is given by the splitting of an exact CA). Both
g and B can be thought as a nondegenerate bundle map from tangent bundle TM
to cotangent bundle T ∗M and g (resp. B) is its symmetric (resp. antisymmetric)
part.

g +B : TM → T ∗M. (2.9)
Giving such a map is equivalent to giving its graph

(X, (g +B)X) ⊂ TM ⊕ T ∗M

which is a subbundle on which the restriction of natural pairing of E = TM⊕T ∗M
is positive definite. This motivates the following definition:
Definition 2.1.16. A generalized metric in a Courant algebroid E → M is a
maximal positive-definite subbundle V +of E with respect to ⟨·, ·⟩E.

We also define V − as an orthogonal complement of V + with respect to ⟨·, ·⟩E. It
is also a subbundle, negative definite with the respect to ⟨·, ·⟩E. By nondegeneracy
of ⟨·, ·⟩ we have

E = V + ⊕ V −.

For an element v ∈ V we define orthogonal projections to V + (resp V −) as v+

(resp v−). The vector v+ is uniquely characterized by v+ ∈ V + and

⟨v, v+⟩ = ⟨v, v⟩. (2.10)
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Changing the sign of ⟨·, ·⟩E to −⟨·, ·⟩E does not change the definition of orthogonal
complement and projections, which is easy to see from the property 2.10. We also
have a formula for the reflection V+ : E → E with respect to the subspace V +:

V+(v) = 2v+ − v.

Remark 2.1.17. Notice that in the definition of generalized metric there is no use
of the bracket [·, ·]E. On the other hand, we can use the bracket to find an elegant
formula for Levi-Civita connection of the metric g on M. For more on this, see
[14], but beware of the symmetric definition of the bracket there.

TM

T ∗M

V +

V −

Figure 2.1: Generalized metric

Remark 2.1.18 (Equivalent formulations of generalized metric.). A generalized
metric can be also defined as an involutive bundle map τ : E → E, τ 2 = idE,
for which G(·, ·) = ⟨·, τ(·)⟩ is symmetric and positive definite (point-wise) bilinear
form on E. Such a map has two eigenvalues: 1 and -1, and V +, V − are corre-
sponding eigenspaces. Conversely, we can define τ as a reflection with respect to
the subspace V +. More on this later in (1). For a detailed treatment of different
formulations, see: [15].

The expression g+B (2.9) of a generalized metric on an exact CA E depends
on the splitting of E. What happens if we change the splitting?

Lemma 2.1.19. Let E be an exact Courant algebroid with a given spliting in-
ducing the three form H. Suppose we have also a generalized metric V +, which
has a form g+B in this splitting (g is Riemannian metric and B is a two-form).
If we change the splitting by a two-form C:

H → H + dC

the metric V + will change its form to g +B − C.
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Exercise 2.1.K. Prove this (recall that two isotropic splittings always differ by a
two-form B in a sense that σ′(X) = σ(X) + ρ∗(B(X, ·))).

So for any exact Courant algebroid E we can take a splitting E ∼= TM⊕T ∗M
and get a closed three-form H. A generalized metric V + is then equivalent to
a pair g,B where g is a Riemannian metric on M and B is a two-form on M .
Together, an exact CA with a chosen splitting and generalized metric gives us
the triple (g,B,H).

But in fact, there is a unique splitting of E such that B = 0: In lemma 2.1.19
we just take the splitting with H := H−dB. So we deduce that an exact Courant
algebroid with a generalized metric is equivalent to a pair g,H, g is a metric, H
is a closed 3-form.
Example 2.1.L. Let d be a CA over a point M = {∗} (a quadratic Lie algebra).
Generalized metric V + is just a maximal positive definite subspace of d. Notice
that since d is not exact, we can not speak about any g or B (and M is just
a point anyway). However, d → {∗} is transitive, which is important.We can
consider Lagrangian subalgebra g ⊂ d, so we have the exact sequence:

0 → g → d → d/g → 0,

and the pairing gives us a map

d → g∗ (2.11)
ξ ↦→ ⟨ξ, ·⟩d ↾g (2.12)

This map has g as kernel (g is Lagrangian) so we obtain a map d/g → g∗ which is
injective and in fact an isomorphism, because d/g and g∗ have the same dimension.
So we have the exact sequence

0 → g → d → d/g → 0.

If it splits (this is not possible for every pair (g, d) but for many examples it is),
we get a decomposition d ∼= g + g∗ with the pairing given by canonical pairing
of forms and vectors. A generalized metric V + is then equivalent to a graph
(v,R(v)) of a map R : g → g∗ which is equivalent to a bilinear form B such that
B(v, w) = R(v)(w) on g with positive definite symmetric part:

B(v, w) +B(w, v) = ⟨(v,B(v, ·)), (w,B(w, ·))⟩d ≥ 0.

Example 2.1.M. Let V + be a generalized metric in d as in the previous example.
Then V + ×D/G ⊂ d×D/G is a generalized metric in d×D/G since the pairing is
defined pointwise. This algebroid is exact, so if we choose a splitting of it (see 2.8),
we obtain a Riemannian metric g, a two form B and a closed three-form H on M.
The σ-model based on these data is called Poisson-Lie σ-model. Poisson-Lie T-
duality relates two (or many) such σ-models which live on quotients by different
subrgoups G0, G1 of the same D and they are given by the same generalized
metric on d.
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D/G0 × d D D/G1 × d

D/G0 d D/G1

D/D ∼= {∗}

Poisson-Lie T-duality

Figure 2.2: Poisson-Lie T-duality scheme over a point.

2.2 Relations between Courant algebroids
It is time to sketch what are we actually going to do (and then continue for some
time with definitions and get back in the next chapter). Our goal is to relate
somehow two exact Courant algebroids (equipped with generalized metrics) which
are seemingly unrelated - they live on different manifolds and metrics look very
differently. But in fact, both algebroids and metrics are coming from the same
source, which is a third Courant algebroid, but which is just transitive.

Pullbacks of Courant algebroids

Last two examples form together an example of a ”pullback” of Courant algebroid
and generalized metric on it. We would like to generalize them to the situation
where we have a nontrivial manifold M instead of a point, a transitive Courant
algebroid E over M and a surjective submersion N → M. (instead of the trivial
map D/G → {∗})

Recall that when N ϕ−→ M is a map of manifolds and E π−→ M is a fibre bundle
than we can construct the pullback bundle ϕ∗(E) π′

−→ N such that there is a
bundle map

ϕ∗(E) E

N M

ϕ′

π′ π

ϕ

(2.13)

satisfying the universal property of pullback: For every bundle F → N and
a bundle map F → E, there is a unique bundle map F → ϕ∗(E) such that the
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following diagram commutes:

P

ϕ∗(E) E

N M

ϕ′

π′ π

ϕ

(2.14)

The fibre Fp of pullback bundle is isomorphic to Eϕ(p) for every point p.
Pullback of a vector bundle is a vector bundle too.

If ϕ : N → M is a submersion and E is a CA over M , we can consider
the pullback bundle of E by ϕ to obtain a vector bundle E1 on N of the same
rank as E. Now we can ask which structures can be transferred from E to E1.
It is easy to see (not so easy, I should write it down), that we can pull back
the pairing to obtain a nondegenerate pairing on E1, which basically follows
from C∞−bilinearity of the pairing. The problem comes with the anchor and
consequently with the bracket because the bracket is not C∞-bilinear and the
lack of this property is measured by the anchor. So we can define bracket on
the pullback of sections, but we cannot just simply extend it to other sections
without the anchor. It seems that there is no natural anchor, coming from E.
Fortunately, as examples above show, we can sometimes define a suitable anchor
on M1 with no obvious relation to the anchor no M.

Example 2.2.A. Courant algebroid d×D/G over D/G from the example 2.1.H is
the pullback of (quadratic Lie algebra) d over M = {∗} as a vector bundle by the
trivial map D/G → {∗}. The anchor of d is a trivial zero map, while the anchor
of d ×D/G is nontrivial (infinitesimal action of d on D/G).

Pullback of a generalized metric is again a generalized metric.

Dirac structures

Dirac structures were originally defined in [16] and [17] for the generalized tangent
bundle TM ⊕ T ∗M as a far-reaching generalization of symplectic and presym-
plectic and Poisson structures (so coming from problems of classical mechanics
and control theory). Dirac structures were motivated by ideas in Dirac paper
[18], hence the name.

Recall that a symplectic form ω on a manifold M is a closed (dω = 0) non-
degenerate two-form on M . A symplectic form ω ∈ Ω2(M) induces a map
B : TM → T ∗M by X → iXω = ω(X, ·) for any vector field X. A symplec-
tic form is non-degenerate, which means that this map is an isomorphism, and
it is closed, which allows us to define Poisson structure (Lie algebra structure on
C∞(M) which satisfies Leibnitz rule with respect to the product of functions).

We can relax these conditions to get more general structures, and an elegant
method how to do it consistently is to consider the graph of B as a subbundle
of TM ⊕ T ∗M and then look to all subbundles with similar properties as those
extracted from the graph of B.

This is where Courant algebroids (and their subbundles) naturally come to
the game - we are looking for subbundles of generalized tangent bundle and its
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pairing and bracket are suitable for formulating desired properties. See [19] for a
detailed review.

In our point of view, Dirac structures in a Courant algebroid play a similar
role as Lagrangian submanifolds do in symplectic geometry.

We always suppose that our CA’s have the pairing of split signature. In fact,
we know from the remark (2.1.5) that it is forced by the existence of a Lagrangian
subbundle, which is equal to its orthogonal complement.

Definition 2.2.1. Dirac structure in Courant algebroid E → M is a submanifold
N of M together with a Lagrangian subbundle L ⊂ E↾N

with respect to ⟨·, ·⟩E

such that ρ(L) ⊂ TN and if any two sections v, w of E satisfy v, w↾N
∈ L, then

[v, w]↾N
∈ L. The submanifold N is called the support of the Dirac structure L

(or L is supported on N .)

Proposition 2.2.2. Given an exact Courant algebroid E ∼= TM ⊕ T ∗M with
a closed three-form H, a Dirac structure L supported on N with ρ(L) = TN
corresponds to a two-form B ∈ Ω2(N) such that dB = H↾N

.

Remark 2.2.3. If we do not assume that ρ(L) = TN , then ρ(L) ⊂ TN is an
integrable distribution (roughly a subset of TN whose sections are locally gen-
erated by a set of linearly independent vector fields closed under Lie bracket).
Such a distribution is tangent to some submanifolds K ⊂ N , integral leaves and
Dirac structure corresponds to a two form BK , on each such leaf K, for which
BK = H↾K

. We will neither prove or use it.

Proof. 1. At every point n ∈ N , the fibre Ln of the subbundle L consists
of pairs of tangent vectors and one-forms at n: (X,α) (we use the same
notation as for sections). From the surjectivity of ρ↾L

, we know that every
tangent vector occurs in such a pair (ρ is just a projection to the first
coordinate). If (X,α), (X, β) ∈ Ln then (0, α − β) ∈ Ln and now for every
vector Y ∈ TnN we can find a pair (Y, γ) ∈ Ln and use that the pairing of
E vanishes on Ln (Lagrangian property) to get

⟨(0, α− β), (Y, γ)⟩E = (α− β)(Y ) + γ(0) = 0

by Lagrangian property of Ln, so α↾N
= β↾N

.

2. We see that for every tangent vector X we have a unique one-form α at the
same point such that (X,α) ∈ L. This assigment defines a map B : TN →
T ∗N which is smooth (exercise). Such a map is equivalent to a two-tensor
B ∈ T ∗N2⊗ given by B(X, Y ) := B(X)(Y ). Moreover, again by Lagrangian
property, we obtain

B(X, Y ) +B(Y,X) = B(X)(Y ) + B(Y )(X) = ⟨(X,B(X), (Y,B(Y )⟩ = 0,

so B is a two-form on N , B ∈ Ω2(N).

3. Now we consider two sections (X, iXB) and (Y, iYB) of E that restrict to
sections of Γ(L) on N . The condition of [·, ·]-preserving of sections of L. is
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equivalent to (we restrict everything to N)

[X, Y ] + i[X,Y ]B = [(X, iXB), (Y, iYB)]E
[X, Y ] + i[X,Y ]B = [X, Y ] + LXiYB − iY diXB + iXiYH

i[X,Y ]B = LXiYB − iY iXB + iXiYH

i[X,Y ]B = i[X,Y ]B + iY LXB − iY diXB + iXiYH (2.15)
0 = iY diXB + iY ixdB − iY diXB + iXiYH (2.16)

iXiY dB = iXiYH

This holds for every X, Y ∈ Γ(E), so dB = H↾N
. where in 2.15 we used the

well-known formula
[LX , iY ] = i[X,Y ]

and in 2.16 we used Cartan formula

LX = diX + iXd.

Finally, it is easy to verify that given such a two-form B, L defined by

Ln = {X ∈ TnN,α ∈ T ∗
nM : B(X, ·) = α↾T ∗

nN
}

is a Dirac structure with the support N.
■

Remark 2.2.4. If H = 0, we obtain a closed two-form B by preceeding proof. and
B has a constant rank. The manifold M equipped with such a structure is called
presymplectic. If B happens to be an isomorphism (= B is non-degenerate), we
obtain a symplectic manifold (M,B). This means that Dirac structures general-
ize (they relax both non-degeneracy and closedness of B) symplectic and presym-
plectic structures, which was also the original motivation for their definition. See
[19].
Exercise 2.2.B. Let g ⊂ d be a Lagrangian Lie subalgebra of a quadratic Lie
algebra d i.e. (d, g) is a Manin pair. If g′ is another Lagrangian Lie subalgebra
of d then the trivial bundle D/G × g′ is a Dirac structure (with full support) in
Courant algebroid D/G× d from the example 2.1.H.

Generalized isometries

Definition 2.2.5. Let E1 → M1 and E2 → M2 are Courant algebroids, and
denote Ē1 the same CA as E1 just with the pairing −⟨, ⟩E1 instead of ⟨, ⟩E1 .
Dirac relation between E1 and E2 is a Dirac structure in Ē1 × E2 → M1 ×M2.

Dirac structures play a similar role to canonical structures (Lagrangian sub-
manifolds of products) in symplectic geometry. Namely, they allow us to define
generalized maps between Courant algebroids.

Definition 2.2.6. Let V + be a generalized metric in E. Reflection V with respect
to V + is a usual orthogonal reflection with respect to ⟨, ⟩, in other words V(x) =
x+ − 2x.
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Definition 2.2.7 (Generalized isometry.). Let E1 and E2 be Courant algebroids
with generalized metrics V +

1 and V +
2 respectively. Dirac relation L between E1

and E2 is generalized isometry, if (V1 + V2)L = L.

We can formulate the definition of generalized isometry in a more familiar
way. We start with linear-algebraic lemma:

Lemma 2.2.8. Let E1, ⟨·, ·⟩E1 , V
+

1 and E2, ⟨·, ·⟩E2 , V
+

1 be two vector spaces equipped
with nondegenerate pairings (=symmetric bilinear forms) and generalized metrics
(maximal positive-definite subspace with respect to the pairing) and L be a La-
grangian subspace of Ē1 × E2. Then the following are equivalent:

1. (V1 + V2)L = L where Vi is a reflection of Ei with respect to the subspace
Vi.

2. L is a graph of a bijection ϕ from E1 to E2, which preserves metrics:
ϕ(V +

1 ) ⊂ V +
2 .

Proof. 1. Assume first 2. This means that L is of the form (e, ϕ(e)), e ∈ E1 and
if e ∈ V +

1 (e = e+) then ϕ(e) = ϕ(e)+. We have to show that if (e, ϕ(e)) ∈ L
then (e+ − 2e, ϕ(e)+ − 2ϕ(e) ∈ L). Because L is a linear subspace, this is
equivalent to (e+, ϕ(e)+) ∈ L which is equivalent to

ϕ(e+) = ϕ(e)+.

As we have seen, the element e+ is characterized by two properties: e+ ∈ V +

and ⟨e+, e+⟩ = ⟨e+, e⟩. L is Lagrangian, so ϕ preserves the pairing.

⟨ϕ(e+), ϕ(e+)⟩E2 = ⟨e+, e+⟩E1

= ⟨e+, e⟩E1

= ⟨ϕ(e+), ϕ(e)⟩E2

We have assumed that ϕ(e+) ∈ V +
2 so together we obtain that ϕ(e+) satisfies

characteristic properties of ϕ(e)+.

2. Suppose now 1. We will show that for every e ∈ E1 there is a unique
ϕ(e) ∈ E2 such that (e, ϕ(e)) ∈ L and ϕ is a linear map preserving the
metric. Suppose that there are two elements g, h ∈ E2 such that (e, g) ∈ L
and (e, h) ∈ L. We can substract them to get (0, f := g − h) ∈ L. Now, by
the reflection condition we obtain 0+ = f+, but 0+ is 0. Similarly 0− = f−

and we have V + ∩ V − = {0}, so f = 0 and g = h. Similarly, we can show
that ϕ is injective and

■

Proposition 2.2.9. Let E1,E2, V
+

1 , V
+

2 be as above and L is a Dirac relation
between E1 and E2. Then L is generalized isometry if and only if Lp is a graph
of a bijection ϕp : E1,π1(p) → E2,π2(p) and ϕp maps V +

1 to V +
2 .

Proof. Since this statement is purely pointwise, we can apply the lemma to
Lp, E1,π1(p), E2,π2(p) and we are done. ■
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3. Reduction of Courant
algebroids

3.1 Why reduction
In this chapter, we describe the reduction of Courant algebroids. It is an impor-
tant construction which allows us to construct interesting examples of Courant
algebroids. We can think about Courant algebroid E → P as some kind of addi-
tional structure on a manifold P , similarly to Riemannian metric or a symplectic
form (we know, for example, that an exact Courant algebroid is more or less
equivalent to a closed three-form).

If a connected Lie group D acts on P so that also E is equipped with some
kind of a D-action (to be defined below), it is natural to ask whether we can define
a Courant algebroid on the space of orbits P/D. This task comes with natural
difficulties (lack of non-degeneracy of reduced pairing), with similar origins as
with group actions in symplectic geometry. Fortunately, these problems can be
solved by applying similar methods.
Remark 3.1.1. In fact, as we have mentioned in the introduction, there is a more
general procedure of reduction of graded symplectic manifolds, graded symplectic
reduction, which generalizes both usual symplectic reduction and Courant alge-
broid reduction. You can find more in [20].

3.2 Extended actions
The idea of extended actions comes from [21]. We will not need it in the full
generality. Suppose we have a principal D-bundle P π−→ M. Recall that the action
of a Lie group D on P induces the infinitesimal action of Lie algebra d, which
is a Lie algebra homomorphism # : d → Γ(TP ) and also an action of d on the
space Γ(TM) by ξ ·X := [ξ#, X] for every ξ ∈ d and X ∈ Γ(TM).

Let E be Courant algebroid over P . Since the space of sections Γ(E) is not a
Lie algebra, we can not talk about a Lie algebra homomorphism d → Γ(E), but
we can still consider a map R : d → Γ(E) which is a morphism of corresponding
brackets:

R([ξ, ν]d) = [R(ξ), R(ν)]E. (3.1)

One important feature of the infinitesimal action is preserved - such a map
R still induces a true Lie algebra action on the space of sections Γ(E), i.e. Lie
algebra morphism from d → Der(Γ(E)) defined by:

d → Der(Γ(E))
ξ ↦→ [R(ξ),−]E

so the Lie algebra action induced by R on Γ(E) is given by

ξ · v = [R(ξ), v]E. (3.2)
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Proof. This statement is a direct consequence of Leibnitz identity for E.

[ξ, ν]d ↦→ [R([ξ, ν]d), ·]E
= [[R(ξ), R(ν)]E, ·]E (R preserves bracket)
= [R(ξ), [R(ν), ·]E]E − [R(ν), [R(ξ), ·]E]E (Leibnitz identity)
= [[R(ξ), ·]E, [R(ν), ·]E] (commutator in Der(Γ(E))).

■

Definition 3.2.1 ([21], definition 2.12). Let P be a principal D-bundle over M
with the corresponding infinitesimal action # of d. A trivially extended action of
d on Courant algebroid E → P is a map R : d → Γ(E), which

1. preserves bracket 3.1,

2. we have ρ ◦R = #, i.e. the following diagram commutes:

d Γ(E)

Γ(TM),

R

#
ρ (3.3)

3. the induced action ξ ·v = [R(ξ), v]E integrates to the D-action on the space
of sections Γ(E) (and hence on total space E.)

4. If moreover d is equipped with a pairing ⟨·, ·⟩d and the map R preserves the
pairing, the pair (E,R) is called equivariant Courant algebroid.

So an equivariant Courant algebroid is an equivariant bundle with respect
to some action of D, such that corresponding infinitesimal action comes from
the map R which preserves pairing and bracket and it gives the action on base
through the anchor.

If E has a surjective anchor (E is transitive) and possesses a trivially extended
action, it can be always made to be an equivariant Courant algebroid, by ”pulling
back” the pairing of E to d. So let R : d → Γ(E) be a trivially extended action.
We define pairing on d with use of R and ⟨·, ·⟩E as follows:

⟨ξ, ν⟩d := ⟨R(ξ), R(ν)⟩E.

This is in general a function, so to make the pairing well defined, it has to be
constant on P . If P is connected, it is really the case by the following argument:

d⟨R(ξ), (R(ν)⟩E = [R(ξ), R(ν)] + [R(ν), R(ξ)] = R([ξ, ν] + [ν, ξ]) = R(0) = 0.

So any extended action R gives us a pairing on the Lie algebra d in such a way
(tautologically) that R preserves pairings.
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Equivariant splitting

The condition that the action of d given by R integrates to the action of D is
a technical one and it can be easily fullfilled if we have a d-invariant isotropic
splitting of E with respect to d-actions on Γ(TM) and Γ(E). This means that
there is a bundle map σ : TM → E such that σ([ξ,X]) = [R(ξ), σ(X)]E and
ρ ◦ σ = IdT M .

Proposition 3.2.2. If E, d and R are as above and E has an d-equivariant
isotropic splitting with respect to R, than R is an extended action on E, and E
in an equivariant Courant algebroid:

Proof. See [21]. ■

0 Γ(T ∗M) Γ(E) Γ(TM) 0ρ∗ ρ

σ
(3.4)

We can reformulate this conditions for exact Courant algebroids in terms of
the generalized tangent bundle: σ gives us an isomorphism of Courant algebroids
E ∼= TM ⊕ T ∗M with bracket twisted by some closed three-form H. The map R
is then given by

R(ξ) = ξ# + ωξ

for some one-forms ωξ forming together a linear map ω : d → Ω1(P ). The action
on E ∼= TM ⊕ T ∗M given by R is:

[ξ# + ωξ, X + α]E = [ξ#, X] + Lξ#α− iXdωξ + iXiξ#H (3.5)

or in matrix notation

(ξ# + ωξ) ·
(
X
α

)
=
(

Lξ# 0
iξ#H − dωξ Lξ#

)(
X
α

)
(3.6)

hence we can immidiately see that the equivariance of the splitting can be refor-
mulated as follows:

iξ#H = dωξ. (3.7)

This condition has an important consequence - we know that the form H is
closed, i.e. dH = 0. Now, if we look at Lie derivative along some fundamental
vector field ξ# and use Cartan formula, we get

Lξ#H = diξ#H + iξ#dH = d2ωξH = 0 (3.8)

We see that H is an invariant form.
We have not used yet that R preserves bracket. Lets see what it means in

terms of the splitting. By the definition of R

[R(ξ), R(µ)]E = [ξ#, µ#] + Lξ#ωµ − iµ#dωξ + iµ#iξ#H (3.9)
R([ξ, µ]d) = [ξ, µ]# + ω[ξ,µ] (3.10)
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We know that (3.9) and (3.10) are equal. The map # preserves bracket, so
the vector part is fine and we are left with the equality of one-forms, which we
reformulate using 3.7.

ω[ξ,µ] = Lξ#ωµ − iµ#dωξ + iµ#iξ#H

ω[ξ,µ] = Lξ#ωµ − iµ#dωξ + iµ#dωξ

ω[ξ,µ] = Lξ#ωµ. (3.11)

The resulting equation 3.11 means precisely that ω : d → Ω1(P, d) is an
equivariant map with respect to ad-action on d (the derivative of Ad-action) and
the (usual) action of d by Lie derivative of fundamental vector fields on one-forms.
Remark 3.2.3. Both conditions can be put together into this claim: The map
H+ω : d → Ω∗(M) is a closed equivariant form of Cartan model of the equivariant
cohomology, see [21], page 8.

Fixing a connection

We have chosen an equivariant isotropic splitting so that we have

R(ξ) = ξ# + ωξ.

We have not really specified these ω’s yet, but we have the neccesary condition
(3.7),

dωξ = iξ#H. (3.12)

There is a nice way for choosing the map ω - we fix a connection A ∈ Ω1(P, d)
and define

ωξ = ⟨A, ξ⟩d.

This is fine because the pairing kills the ”Lie algebra” part and we are left with
a one-form on M . In fact (we will not prove this), for a fixed connection A, there
is always an isotropic splitting σ such that R is of this form [22]. The condition
(3.7) becomes a relation between H and A :

⟨dA, ξ⟩d = d⟨A, ξ⟩d = iξ#H. (3.13)

Now we reverse the logic and we will analyze what dH = 0 means for the
connection A. We will obtain that the first Pontryiagin class, which can be
constructed from A, vanishes. On the other hand, we know that this class is in-
dependent of the connection, so we obtain a topological criterion on the principal
bundle P (and the pairing of d) for the existence of a trivially extended action
on the exact Courant algebroid over P , resp. existence of an equivariant exact
Courant algebroid.

Proposition 3.2.4 ([22]). Let E π−→ P be an exact Courant algebroid over a
principal D-bundle P . Suppose that R is a trivially extended action given by

R(ξ) = ξ# + d⟨A, ξ⟩d

for some fixed connection A and a non-degenerate pairing on d.
Then the first Pointryagin class of (A, ⟨·, ·⟩) vanishes.
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Proof. We start with (3.13),

iξ#H = ⟨dA, ξ⟩d (3.14)

The same property has the Chern-Simons form of A,

CS3(A) := ⟨F ∧ A⟩ − 1
3⟨A ∧ [A ∧ A]d⟩d,

namely
iξ#CS3(A) = ⟨dA, ξ⟩d.

The Chern-Simons form also satisfies

dCS3(A) = ⟨F ∧ F⟩ = π∗⟨F ∧ F ⟩d.

This together implies that the most general form of the three-form H is

H = π∗H0 + CS3(A) (3.15)

where H0 ∈ Ω3(M) is a three-form on the base M (not necessarily closed),

CS3(A) = ⟨F ∧ A⟩ − 1
6⟨A ∧ [A ∧ A]d⟩d

is the Chern-Simons form of A, and F is the curvature of A, F = dA+ 1
2 [A∧A]d.

In particular,
0 = dH = π∗dH0 + ⟨F ∧ F⟩d

so
dH0 = ⟨F ∧ F ⟩d

hence the first Pontryagin class has to vanish. ■

3.3 Reduction of Courant algebroids

Heterotic reduction

Heterotic reduction is described in [23], page 17.
Remark 3.3.1. We call the reduction with a non-degenerate pairing on Lie algebra
heterotic and the resulting Courant algebroid is heterotic Courant algebroid. The
reason is that there is a connection of this construction with the heterotic string
theory. See [23].

Suppose now that we have an equivariant exact Courant algebroid E over P
as usual.

We consider the image of R

K = im(R) ⊂ E.

Some observations:

• K is a subbundle of E because for every point p ∈ P , the mapping R : d →
Ep is injective (the infinitesimal action of a free action is always pointwise
injective and we have ρ ◦ R = # so R is injective too). The orthogonal
complement K⊥ is a subbundle too.
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• K is D-invariant. (D-action is a global version of infinitesimal action of R,
so on infinitesimal level it is just the identity [R(ξ), R(µ)] = R([ξ, µ]).

• K⊥ is D invariant because K is D-invariant and ⟨·, ·⟩ is D-invariant. Hence
K⊥/K ∩K⊥ is D-invariant.

• The pairing on E restricts to (in general degenerate) pairing on K⊥ and
induces a nondegenerate

¯
pairing on K⊥/(K ∩K⊥).

Remark 3.3.2 (dimension counting). If the dimension of d is d and the dimension
of M is m, we have the following:

• dimK = d by the injectivity of R,

• dimK⊥ = dimTP + T ∗P − d = 2m+ 2d− d = 2m+ by non-degeneracy of
⟨·, ·⟩,

• dimK⊥/K ∩K⊥ = dimK⊥ = 2m+ d.

We define the reduced Courant algebroid as(
K⊥

K ∩K⊥

)
/D.

Its sections correspond to D-invariant sections of (K⊥/K ∩K⊥):

Γ
((

K⊥

K ∩K⊥

)
/D

)
∼= Γ

(
K⊥

K ∩K⊥

)D

.

We now look at the situation when the pairing is non-degenerate, as in the
previous section (d is quadratic Lie algebra). In this case, K⊥/K ∩ K⊥ = K⊥

because every subspace is complementary to its orthogonal complement.
Example 3.3.A. Let P → M be a principal D-bundle, with d quadratic, and we
fix a connection A ∈ Ω1(P, d). We take the bundle TM ⊕ dP ⊕T ∗M (generalized
tangent bundle (2.1.C) plus the adjoint bundle (1.1.7)). The space of sections
Γ(TM ⊕ dP ⊕ T ∗M) consists of triples (X,Ψ, α) where X is a vector field, Ψ is
a section of dP and α is a one-form. This bundle can be canonically identified
with the reduced bundle K⊥/D. This will give us an explicit description of the
reduced bundle and a nice new concrete example of Courant algebroid. We will
identify the spaces of sections, in other words, we have to find an isomorphism
from Γ(TM ⊕ dP ⊕ T ∗M) to (K⊥)D, the space of D-invariant sections of K⊥.

1. Every vector field X on M has its horizontal lift Xh on P which is a D-
invariant section of K⊥: If ξ ∈ d then

⟨Xh, ξ# + ⟨A, ξ⟩d⟩E = ⟨A(Xh), ξ⟩d = 0

because A kills horizontal vector fields.

2. Every section Ξ of dP gives a D-invariant section of K⊥ which at point pP
is an element

Ξ# + ⟨A,Ξ#⟩d.
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3. Every one form α ∈ Ω1(M) has its pullback π∗(α) ∈ Ω1(P ) by the projection
π : P → M. It is obviously D-invariant and orthogonal to K.

Theorem 3.3.3 (Heterotic Reduction). Let P → M be a principal D-bundle,
with d equipped with a non-degenerate pairing ⟨·, ·⟩d, and A ∈ Ω1(P, d) a fixed
connection. Denotw F ∈ Ω1(M, dP ) its curvature and suppose that the first Pon-
tryiagin class is trivial by dH0 = ⟨F ∧ F ⟩d for some H0 ∈ Ω3(M). We can
identify the sections of dP with D-invariant functions P → d. The connection A
also induces a vector bundle connection ∇ on dP by ∇X(Ψ) = XhΨ.

Then the reduced Courant algebroid is isomorphic to the bundle

E ′ = TM ⊕ dP ⊕ T ∗M

with the pairing given by

⟨(X,Ψ, α), (Y,Ψ′, β)⟩ = α(Y ) + β(X) + ⟨Ψ,Ψ′⟩d, (3.16)

the bracket

[(X,Ψ, α), (Y,Ψ′, β)] =([X, Y ],∇XΨ′ − ∇Y Ψ − F (X, Y ) − [Ψ,Ψ′]d, (3.17)
LXβ − iY α +H0(X, Y, ·)/2
− ⟨F (·, X),Ψ′⟩d + ⟨F (·, Y ),Ψ⟩d + ⟨∇Ψ,Ψ′⟩d). (3.18)

Finally, the anchor is given by the projection to TM. This algebroid is obviously
transitive but not exact.

The proof is too technical to write it down. The important thing is that the
reduced Courant algebroid exists, it is not exact, because it additionally contains
one copy of the adjoint bundle, and we are able to write down explicit formulas
if we wish so.
Important remark 3.3.4. It is also important that there is no natural bundle
map from E = TP ⊕ T ∗P to E ′ because, in the reduction procedure, we take a
subspace and then a quotient (similarly as in symplectic reduction). However, we
expect there is a ”Courant algebroid morphism” (i.e. some correspondence given
by Dirac structure of the product) between E and E ′).

Isotropic reduction

We have just seen what happens if we reduce Courant algebroid by an action of
(quadratic) Lie group with non-degenerate pairing on its Lie algebra. Now we are
going to describe a different reduction procedure of the same algebroid E over P.

This time, we choose a subgroup G of D such that its Lie algebra g is La-
grangian inside d, i.e. a maximal subalgebra with the property that the pairing
of d restricts to constant zero on g. This is kind of oposite extreme to non-
degeneracy. While in the non-degenerate situation the image of the action and
its orthogonal complement were complementary, K ∩ K⊥ = 0, this is no longer
true for G. We remember that in the (arbitrary) reduction procedure, we have to
quotient out the intersection K ∩K⊥. In this case, it is just K because K ⊂ K⊥

by isotropy of g. This means that we quotient out one copy of g and hence the
resulting algebroid will be exact, just by the dimension argument 2.1.15.
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We can use the same setting (choice of connection and splitting) as for the
heterotic reduction but keep in mind that now we reduce from P to P/G = N,
so we also want to consider G-related objects. The connection A we chose in the
last section has values in d, not g, but we keep it (so the naive guess ⟨A, ξ⟩g ↾g= 0
is not true).

As we said, we are going to obtain an exact Courant algebroid over P/G.
Poisson-Lie T-duality (or plurality) relates these algebroids for different subroups
of D. We omit details which are similar to the previous treatment and use
the same notation with subscript 0 to emphasize that we are working with a
subgroup/subalgebra with zero pairing.

So we have G ⊂ D and corresponding g ⊂ d with g = g⊥. The group D acts
on P so also G has an action on P with the space of orbits N := P/G and P
is a principal G-bundle over N. We also take the restriction of the infinitesimal
action # : d → Γ(TP ) to subalgebra g (denoted by the same symbol). Since g is
Lagrangian, the pairing is zero ⟨ξ, µ⟩d ↾g= R(ξ, µ) = 0 for all ξ, µ ∈ g.

Finally, we restrict the trivial extended action R to R0 : g → Γ(E) and repeat
the construction with the same fixed connection A ∈ Ω1(P, d) (so it is not a
principal connection of the G-bundle P → P/G = N) and the same equivariant
splitting of E.1

We define K0 := im(R0) ⊂ im(R) ⊂ E and denote the orthogonal complement
K0 in E by K⊥

0 . This subbundle contains K⊥ obviously, because K0, the image
of g, is in the image K of d. But we can say more:

Lemma 3.3.5.
K⊥

0 = K⊥ ⊕K0. (3.19)

Proof. We know that K ⊕ K⊥ = E. So if v ∈ K⊥
0 , we can decompose it into

v = vK + vK⊥ with vK ∈ K and vK⊥ ∈ K⊥. Now vK is in K, the image of
d-action and it is orthogonal to K0, the image of g. But g is Lagrangian, so any
element of d which is orthogonal to g, lies in g. Hence vK ∈ K0. ■

Now the reduced Courant algebroid is(
K⊥

0
K0 ∩K⊥

0

)
/G =

(
K⊥

0
K0

)
/G = K⊥/G. (3.20)

The space of sections of the reduced CA is isomorphic to

(K⊥)G.

Theorem 3.3.6 (Reduction by isotropic). K⊥/G is an exact Courant algebroid
over N = P/G.

Proof. See [21]. ■

It is time for some more dimension counting:

• dim g = dim d/2 = d/2 (this is why we like Lagrangian subalgebras),
1There is also a possibility to work with a G-connection and a different splitting in which

the extended action R0 becomes just # on g, which is useful if we want to compute Ševera form
of the reduced CA on N. This is, however, not so important here.
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• dimN = dimP/G = dimP − dimG = dimM + dimG = m+ d/2

• rankE = rank TP ⊕ TP = 2n+ 2d

• rankK = d/2

• rankK⊥ = 2m+ 3d/2 (not 2m+ d/2 as one could expect - K and K⊥ are
not complementary, rather K⊥ consists of all tangent vectors TN , which
gives m+ d/2 (so also elements of K) and such one forms, which anihilate
K, but those have dimension d)

• rankK⊥/K = 2m + d = m + d/2 + m + d/2 = dimTN ⊕ T ∗N so we im-
midiately see (remark 2.1.15) that the result is an exact Courant algebroid.
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4. General formulation of
Poisson-Lie T-duality
In the last chapter, we state the general formulation of (geometric) Poisson-Lie
T-duality and we briefly mention some applications.

4.1 Overview of T-duality

The setting

The whole setting of Poisson-Lie T-duality is a bit complicated, so let’s start
slowly while looking at the diagram 4.1.

• So far we have met a principal D-bundle P over a space M. We are going to
forget about P for some time and we will see it again when we will construct
the example.

• On M we take a transitive Courant algebroid E ′ with the pairing of split
signature (we think about the reduced algebroid E ′ from an exact algebroid
on P ).

• We consider two manifolds N0, N1 with maps ϕ0 : N0 → M and ϕ1 : N1 →
M which are both surjective submersions.

• Suppose moreover that on every Ni there is an exact Courant algebroid Ei

which is isomorphic to the pullback of E ′ by ϕi as a vector bundle and has
a compatible pairing, for i = 1, 2. Notice that this forces the ranks of N0
and N1 to be the same.

E0 ∼= ϕ∗
0(E ′) E1 ∼= ϕ∗

1(E ′)

N0 E ′ N1

M

ϕ0

ϕ1

Figure 4.1: Setting

We have seen such a setting with M being a point in the example 2.1.M. This
together means that manifolds N0 and N1 are quite arbitrary, but their Courant
algebroids ”have the same origin”, which is the algebroid E ′ → M. It may seem
as something artificial, but it can be quite non-trivial to see that such Courant
algebroid E ′ exists when you see just N0 and N1 and their algebroids (and also
keep in mind that we have to do a step aside from the nice world of exact CA’s
because E ′ is not exact).
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P

N0 ×M N1 N1

N0 M

ϕ1

ϕ0

Figure 4.2: The fibered product.

4.2 Poisson-Lie T-duality

L ⊂ E0 × E1

E0 ∼= ϕ∗
0(E ′) N0 ×M N1 E1 ∼= ϕ∗

1(E ′)

N0 E ′ N1

M

Generalized isometry L

ϕ0

ϕ1

Figure 4.3: General Poisson-Lie T-duality

Theorem 4.2.1 (Poisson-Lie T-duality). [13] Let E ′ → M be a transitive Courant
algebroid equipped with a generalized metric V +. Let N0

ϕ0−→ M and N1
ϕ1−→ M

be two surjective submersions. Suppose that there is an exact Courant algebroid
E0 → N0 (resp E1 → N0) which is isomorphic to the pullback of E ′ by ϕ0 (resp
ϕ1) as a vector bundle with compatible pairing. Then pullback V +

0 (resp V +
1 ) of

V + by ϕ0 (resp. ϕ1) is a generalized metric in E0 (resp. E1) and there is a
generalized isometry L between E0 and E1 sending V +

0 to V +
1 .

Proof. The idea is simple - E ′ sits inside the product of E0 with E1 in a diagonal
fashion and together with its metric V + it provides generalized isometry. This
gives a hint that the support of Dirac structure should be a set of pairs of elements
(x, y) ∈ N0 ×N1 such that ϕ0(x) = ϕ1(y). These pairs form the fibered product

N0 ×M N1.

This set is actually a smooth manifold, which follows from the fact, that maps
ϕ0, ϕ1 are transversal to each other. This is always true if at least one of them is
a surjective submersion.

The ”diagonal” E0 ×E′ E1 is a Dirac structure with the support N0 ×M N1
and it gives us the generalized isometry between E0 and E1. ■
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4.3 The reduction example
As we have said, the fundamental example of Poisson-Lie T-duality comes from
the reduction. The setting is described in the diagram 4.4. Courant algebroids
E0 on the left and E1 on the right side are results of isotropic reductions of the
upper algebroid by two subgroups G0, G1 of D (with Lagrangian Lie subalgebras
g0 and g1 of d), respectively, and Courant algebroid E ′ below is the result of the
heterotic reduction of E by D.

Dashed arrows symbolize reductions – remember there is no bundle map in
general, see (3.3.4).

E

E0 ∼= ϕ∗
0(E ′) P E1 ∼= ϕ∗

1(E ′)

N0 = P/G0 E ′ N1 = P/G1

M = P/D

ϕ0

ϕ1

Figure 4.4: Reduction diagram

We define Ni = P/Gi, M = P/D, then ϕi is a natural projection from P/Gi to
P/D which sends a G-orbit to a unique D-orbit containing it (ϕ : p ·G ↦→ p ·D for
any p ∈ P ). The maps ϕi are surjective submersions for i = 1, 2 (both projections
P → P/D and P → P/G are surjective submersions hence also the map ϕ is a
surjective submersion.

P

N M
ϕ

It is not hard to realize that E0 (resp. E1) is really isomorphic to the pullback
of E ′ via ϕ0 (resp. ϕ1). If we equip E ′ by a generalized metric, we can pullback
it to E0 and E1 and get a generalized isometry between E0 and E1.

Remark 4.3.1. It is also possible to take a generalized metric on the upper Courant
algebroid E and reduce them to E0, E1, E

′. If we do it, we obtain the generalized
geometry between E0 and E1. For reductions of metrics see [23].
Exercise 4.3.A. Find another non-trivial example of T-duality 4.2.1.
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Conclusion
In the thesis, we were studying geometrical structures which are useful for de-
scribing non-abelian Poisson-Lie T-duality. We recalled the language of Lie and
Courant algebroids and described how two Courant algebroids on different spaces
can be related, which we interpreted as Poisson-Lie T-duality.

We would like to sketch some possible directions for future study.

1. First of all, we should understand better the applications of this geometric
picture, namely σ-models arising from it. It also includes understanding,
how to incorporate dilation field into it. There are papers [4] and more
recently [24] and [25] dealing with that.

2. Courant algebroids are a special case of graded symplectic manifolds. The
language of graded geometry is a bit involved, but it provides many new in-
sights into the topic (generalizations, constructions. . . ). It would be maybe
fruitful to translate as much as possible to this language.

3. There is also topological (abelian) T-duality [12], relating the twisted equiv-
ariant cohomology (or K-theory) of two different spaces. We would like to
extend it to Poisson-Lie T-duality, with using of this geometric setup.
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List of Abbreviations
C field of complex numbers
R field of real numbers
Z ring of rational integers
C∞(M) algebra of smooth functions on M

TM tangent bundle of M
T ∗M cotangent bundle of M
(E,M, π) fibre/vector bundle (1.1.1)
Γ(E) space of sections of bundle E
Γ(TM) space (Lie algebra) of vector fields on M

Γ(⋀k T ∗M) ≡ Ωk(M) space of k-forms on M

iX contraction (interior product) by a vector field X

LX Lie derivative along X
d exterior derivative
Hk(M,R) k-th de Rham cohomology
Sn n-dimensional sphere
Der(A) Lie algebra of derivations on a (Lie) algebra A
G,D Lie groups
g, d corresponding Lie algebras
⟨·, ·⟩g invariant inner product on g

# infinitesimal action
R extended (infinitesimal) action
GL(n) Lie group of n× n real invertible matrices
⟨·, ·⟩E pairing of a Courant algebroid E

[·, ·]E the bracket of a Courant algebroid E

ρ the anchor map E → TM

σ an isotropic splitting of the anchor ρ
f, g, h . . . functions
u, v, w, . . . sections of algebroids
X, Y, Z, . . . vector fields
α, β, γ, . . . linear forms
ξ, ν, ζ, . . . Lie algebra elements
End(V ) set of linear maps V → V

Σ, h a wordsheet with a Lorentzian metric
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