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Onoi in 1970 and which was the least known example of such structure of size 2k.
Based on this construction, we introduce the notion of Onoi structures and Onoi
mappings between them which generalizes Onoi’s construction and which allows
us to construct non-affine selfdistributive quasigroups of size 22k for k ≥ 3.

We present and implement algorithm for finding central extensions of selfdis-
tributive quasigroups which enables us to classify non-affine selfdistributive quasi-
groups of size 2k and prove that those quasigroup exists exactly for k ≥ 6, k ̸= 7.
We use this algorithm also in order to better understand the structure of non-
affine selfdistributive quasigroups of size 26.

Keywords: quasigroups non-affine quandles selfdistributivity medial quasigroups
enumeration

iii



Contents

Introduction 2

1 Basic notions 3
1.1 Quasigroups, quandles and loops . . . . . . . . . . . . . . . . . . 3
1.2 Affine quandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Correspondence between classes of quasigroups and loops . . . . . 6
1.4 Abelian and central extensions of quandles . . . . . . . . . . . . . 8

2 Construction of latin quandles of size 2k 11
2.1 Onoi structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Construction of latin quandles from Onoi structures . . . . . . . . 13

3 Classification of non-affine latin quandles of size 2k 19
3.1 Algorithm for finding central extensions . . . . . . . . . . . . . . . 19

3.1.1 Abelian groups Ck
2 . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Abelian group C2
4 . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Existence of non-affine latin quandle of size 27 . . . . . . . . . . . 21
3.3 Non-affine latin quandles of size 26 . . . . . . . . . . . . . . . . . 21
3.4 Enumeration of latin quandles . . . . . . . . . . . . . . . . . . . . 22

Conclusion 24

Bibliography 25

A Attachments 26

1



Introduction
Sudoku is maybe one of the most popular logical games worldwide. We can
ask ourselves as mathematicians, how would it be possible to transform solving
sudoku into some mathematical problem. One of the possible ways is to ask in
how many ways can we fill an n× n square with numbers from 1 to n such that
each number appears in each row and each column exactly once.

This approach still seems to be rather combinatorial (such structures are called
latin squares in combinatorics). But if we will understand latin squares as mul-
tiplication tables of an operation ∗ on a set with n elements, we will obtain the
notion of well-known algebraical object - a quasigroup. As one of the most impor-
tant aspects of studying mathematics is finding beauty (e.g. studying beautiful
objects, properties or proofs), we can ask ourselves further: Which properties of
quasigroups are particulary beautiful?

Wouldn’t be a quasigroup whose translations are homomorphisms really nice?
We can consider either left or right translations and we obtain left or right selfdis-
tributive quasigroups. In this thesis, we will be interested in the left selfdistribu-
tive ones and hence we will usually omit the adjective ”left”, the case of right
selfdistributive is dual.

It turns out that selfdistributive quasigroups can be further divided into two
subclasses - affine ones can easily be obtained from abelian groups, while the non-
affine ones are in no easy correspondence with any well-known class of structures.

The history of non-affine selfdistributive quasigroups of size 2k is quite in-
teresting: One of the first examples of such a structure was introduced by Onoi
in 1970 in his article [6] and this example has size 216. But since then, Onoi’s
example is still the least known example of non-affine selfdistributive quasigroup
of size 2k. On the other hand, a lot of new results was presented in the theory of
selfdistributive quasigroups (for example, it was proven that the least non-affine
selfdistributive quasigroup has 15 elements and it is known for many primes p
which is the least k such that there exists non-affine selfdistributive quasigroup
of size pk).

Our main aim in this thesis will be to examine non-affine selfdistributive
quasigroups of size 2k - to construct the least example of such a quasigroup and
possibly also to classify all such quasigroups, e.g. to find out for which k’s there
exists an example of such a structure.

In order to reach our goal, we will use Onoi’s construction and also the new
developed commutator theory for selfdistributive quasigroups.
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1. Basic notions
In this chapter, we will introduce some basic concepts for studying quandles.
More related definitions and theorems can be found in [5] and in [1].

1.1 Quasigroups, quandles and loops
An algebraical structure is a non-empty set with a collection of operations of
arbitrary finite arity. In the whole thesis, we will consider only finite structures
without explicitly mentioning this.

Let (Q, ∗) be an algebraical structure with a binary operation ∗. Let us define
for a ∈ Q the left translation La : Q → Q by La(b) = a ∗ b.

Definition 1 (left quasigroup). We say that the binary structure (Q, ∗) is a left
quasigroup if all its left translations are bijective.

In a left quasigroup we can define the left division \ by a\b = L−1
a (b). For

a left quasigroup Q we define the displacement group and the left multiplication
group by

Dis(Q) = ⟨LaL−1
b | a, b ∈ Q⟩,

LMlt(Q) = ⟨La | a ∈ Q⟩.

We can define right translation, right quasigroup and right division / in a sim-
ilar way. We say that (Q, ∗) is a quasigroup if it is both left and right quasigroup.
In order to express that the structure (Q, ∗) has both left and right translation
bijective (i.e. it is a quasigroup), we use also the adjective latin.

It is easy to see that each group is a quasigroup (with a\b = a−1b and b/a =
ba−1) which means that we can see the concept of quasigroup as a non-associative
generalization of groups without identity element.

From the combinatorial point of view, we can describe quasigroup as a set Q
with binary operation ∗ whose multiplication table is a latin square (i.e. each
number appears in each row and each column exactly once).

We say that a left quasigroup (Q, ∗) is connected if LMlt(Q) acts transitively
on Q. If (Q, ∗) is a quasigroup, then Lb/a(a) = (b/a) ∗ a = (R−1

a (b)) ∗ a =
RaR

−1
a (b) = b, i.e. (Q, ∗) is connected.

Definition 2 (rack). Let (Q, ∗) be a left quasigroup. We say that (Q, ∗) is a rack
if all its left translations are automorphisms, i.e. if a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)
for all a, b, c ∈ Q (we call this property the left-selfdistributivity).

We will often omit the adjective left and we will call left-selfdistributive quasi-
groups just selfdistributive quasigroups (it would be also possible to replace left-
selfdistributivity by right-selfdistributivity and this case would be dual).

Definition 3 (quandle). We say that a rack (Q, ∗) is a quandle if it is idempotent,
i.e. the identity a ∗ a = a holds for all a ∈ Q.

3



We say that a quandle Q is medial if the identity (a∗b)∗(c∗d) = (a∗c)∗(b∗d)
holds for all a, b, c, d ∈ Q, we say that it is (left) involutory if a ∗ (a ∗ b) = b holds
for all a, b ∈ Q.

It is easy to see that left-distributive quasigroups are exactly latin quandles,
because from a ∗ (a ∗ a) = (a ∗ a) ∗ (a ∗ a) we get that (a ∗ (a ∗ a))/(a ∗ a) =
((a ∗ a) ∗ (a ∗ a))/(a ∗ a), i.e. a = a ∗ a. On the other hand, latin quandle is
a selfdistributive quasigroup by definition.

The concept of selfdistributivity appeared for the first time already in the 19th
century in the work of logicians Peirce and Schröder and nowadays it appears in
many areas of mathematics including low-dimensional topology (knot and braid
invariants), theory of symmetric spaces and set theory (a nice historical overview
of selfdistributivity can be found e.g. in [8]).

There are nice examples of selfdistributive operations in many areas of math-
ematics, some of them are listed below:

• Group conjugation: Let (G, ·) be a group and let us define an operation ∗
on the set G by a ∗ b = aba−1. Then (G, ∗) is a quandle (but rarely a latin
one).

• Reflection in (Euclidean) geometry: We can define an operation ∗ on the
set of points (on some surface) such that a ∗ b is the reflection of b over a.
This gives us also a quandle (but not necessarily a latin quandle, e.g. on
a sphere).

• Convex combination: Let V be a real vector space and s ∈ [0, 1). Let us
define an operation ∗ on V by u ∗ v = s · u+ (1 − s) · v. This is a quandle
once more and for s ̸= 0 it is also a selfdistributive quasigroup.

Definition 4 (loop). A quasigroup (Q, ∗) is called a loop if it has a neutral
element 1 (i.e. 1 ∗ a = a = a ∗ 1 for all a ∈ Q).

We list here a few identities for loops which we will use later. We use the
notation ab instead of a · b and ab · c instead of (a · b) · c. A loop (Q, ·) is called:

• Moufang if (ab · a)c = a(b · ac) for all a, b, c ∈ Q;

• commutative if ab = ba for all a, b ∈ Q;

• (left) Bol if (a · ba)c = a(b · ac);

• with two-sided inverses if for all a ∈ Q there exists a−1 ∈ Q such that
aa−1 = 1 = a−1a;

• with automorphic inverse property if it has two-sided inverses and (ab)−1 =
a−1b−1 for all a, b ∈ Q;

• Bruck (or only B-loop) if it is a Bol loop with automorphic inverse property;

• uniquely 2-divisible if the mapping a ↦→ a2 is a bijection.
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1.2 Affine quandles
Let G be a group, f ∈ Aut(G) and let H be some subgroup of Fix(f) = {x ∈ G |
f(x) = x}. Let us denote by G/H the set of left cosets of G by H, i.e. G/H =
{gH | g ∈ G}. Let us define an operation ∗ on G/H by g1H∗g2H = g1f(g−1

1 g2)H.
Then, (G/H, ∗) is a quandle, called the coset quandle. If G is abelian and H = 1,
then (G/1, ∗) is called affine and we will denote it by Aff(G, f).

Definition 5 (affine quandle). A quandle (Q, ∗1) is called affine if it is isomorph
to some affine coset quandle Aff(G, f).

It is easy to see that an affine quandle is a quandle: It is a left quasigroup
because if (1 − f)(a) + f(x) = a ∗ x = b then x = f−1(b− (1 − f)(a)), moreover,
a∗(b∗c) = a∗((1−f)(b)+f(c)) = (1−f)(a)+f(b)−f 2(b)+f 2(c) = (1−f)((1−
f)(a)+f(b))+f((1−f)(a)+f(c)) = (a∗b)∗(a∗c) and a∗a = (1−f)(a)+f(a) = a.

We can easily see that an affine quandle Aff(G, f) is latin if and only if
(1 − f) ∈ Aut(G). Hence, we can easily enumerate affine latin quandles (i.e.
affine selfdistributive quasigroups) of size k by taking all abelian groups of this
size with their automorphisms. The following theorem shows that the group G
in Aff(G, f) is determined uniquely up to isomorphism:

Theorem 1. Let Aff(G, f) be isomorph to Aff(H, g). Then, G ≃ H.

Proof. This is an easy consequence of [5, Theorem 5.6].

In the context of universal algebra, the adjective ”latin” means ”being es-
sentially a module”. This can be formalized as follows: Let (A, f1, f2. . . .) be
an algebraical structure. We call an operation f on A a term operation if it can
be obtained by composing the basic operations f1, f2, . . .. A polynomial operation
is an operation that is obtained from a term operation by substituting constants
for some variables. Two algebras with the same underlying set are said to be term
(polynomially) equivalent if they have the same term (polynomial) operations.

An algebraical structure is called affine if it is polynomially equivalent to
a module.

An affine quandle Aff(G, f) is polynomially equivalent to a module over the
ring of Laurent polynomials Z[s, s−1, t, t−1] with the underlying additive struc-
ture (G,+) where the actions of s and t correspond to the actions of (1−f) and f
respectively.

We will look at this correspondence for affine latin quandle considered as
quasigroup: Let Aff(G, f) = (G, ∗, \, /). We can clearly write a ∗ b = (1 −
f)(a)+f(b) = sa+ tb. Moreover, a\b = t−1(b−sa) and b/a = s−1(b− ta). Hence,
polynomial operations of (G, ∗, \, /) are subset of polynomial operations of the
module (G,+).

We can show also the other inclusion: Actions of s, s−1, t and t−1 are polyno-
mial operations over (G, ∗, \, /) because: sa = a ∗ 0, ta = 0 ∗ a, s−1a = a/0 and
t−1a = 0\a. Finally, a + b = (a/0) ∗ (0\b). We have showed that the quasigroup
(G, ∗, \, /) and the module (G,+) are polynomially equivalent.

For a group G we will denote by G′ the commutator of this group, i.e. G′ =
⟨g−1

1 g−1
2 g1g2 | g1, g2 ∈ G⟩.

The following theorem holds for connected quandles:
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Theorem 2. Let (Q, ∗) be a connected quandle. Then, the following are equiva-
lent:

1. Q is affine,

2. Q is medial,

3. Dis(Q) = LMlt(Q)′ is abelian.

Proof. See [5, Theorem 7.3] (they prove it for right-selfdistributive quandles in-
stead of left-selfdistributive, but this case is dual).

Hence, we obtain correspondence between idempotent medial quasigroups and
abelian groups with their automorphisms (we can use the previous theorem, each
quasigroup is connected and idempotent medial quasigroups are quandles and
hence are isomorphic to Aff(G, f) for some abelian group G and f ∈ Aut(G)).

1.3 Correspondence between classes of quasi-
groups and loops

We have already seen in the previous section that there is an easy correspon-
dence between medial idempotent quasigroups and abelian groups. Since the
theory of abelian groups is well-developed, this correspondence enables us to eas-
ily enumerate all those quasigroups. We can ask ourselves if there exist similar
correspondences also for other classes of quasigroups (or latin quandles). All re-
sults mentioned in this chapter comes from [8] and [11] where also deeper facts
can be found.

First of all, we will show that it is possible to generalize the correspondence be-
tween idempotent medial quasigroups and abelian groups for medial quasigroups
that are not necessarily idempotent:

A permutation ϕ of Q is called affine over (Q, ·) if there exist an automorphism
ϕ̃ of (Q, ·) and q ∈ Q such that ϕ(a) = q · ϕ̃(a) or ϕ(a) = ϕ̃(a) · q for all a ∈ Q.
A quasigroup (Q, ∗) is called affine over a loop (Q, ·) if for every a, b ∈ Q it holds
that a ∗ b = ϕ(a) · ψ(b), where ϕ, ψ are affine mappings over (Q, ·) such that
ϕ̃ψ̃ = ψ̃ϕ̃.

We have the following correspondence:

Theorem 3. Let (Q, ∗) be a quasigroup. Then, the following are equivalent:

1. (Q, ∗) is medial,

2. (Q, ∗) is affine over an abelian group.

Proof. See [8, Theorem 3.1].

There is a similar correspondence between distributive quasigroups (i.e. quasi-
groups that are also right-selfdistributive) and commutative Moufang loops. But
this corerspondence is not of our particular interest because the only non-medial
distributive quasigroups are of size 3k for k ≥ 4 (see [8, Theorem 3.5]).

We can obtain similar correspondence also between involutory latin quandles
and uniquely 2-divisible Bruck loops:
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Theorem 4. Let Q be a set and e ∈ Q. Then, there is a one-to-one correspon-
dence between involutory latin quandles on Q and uniquely 2-divisible Bruck loops
on Q with identity element e. This correspondence is given by:

• If (Q, ∗) is an involutory latin quandle, then (Q,+) is a uniquely 2-divisible
Bruck loop with identity element e, where + is defined by a + b = (x/e) ∗
(e\y).

• If (Q,+) is a uniquely 2-divisible Bruck loop with identity element e, then
(Q, ∗) is an involutory latin quandle, where a ∗ b = (a+ a) − b.

• Those mappings are mutual inverses.

Proof. See [11, Theorem 3.1].

This correspondence is also not of our particular interest because there exists
no involutory latin quandle of size 2k (this is an easy consequence of Theorem 8.1
in [1]).

For general left-selfdistributive quasigroups, we will be able to obtain a cor-
respondence with the class of Belousov-Onoi loops:

Let (Q, ·) be a loop and ψ ∈ Aut(Q). We will call (Q, ·, ψ) a Belousov-Onoi
(or just BO-) module if the identity ϕ(ab) ·ψ(ac) = a ·ϕ(b)ψ(c) holds (ϕ is defined
by ϕ(a) = a/ψ(a)). For example, group with its automorphism ψ is a BO-module
and every Bruck loop with ψ(x) = x−1 is a BO-module.

We can obtain a (latin) quandle from a BO-module in the following way:

Theorem 5. Let (Q, ·, ψ) be a BO-module and let us define an operation ∗ on Q
by a ∗ b = ϕ(a)ψ(b). Then, (Q, ∗) is a quandle. It is a quasigroup if and only if
ϕ is a permutation.

Proof. See [8, Proposition 5.2].

If (in the notation of the theorem) (Q, ∗) is a quasigroup, then (Q, ·) is called
a Belousov-Onoi (BO-) loop with respect to ψ. If ϕ is an automorphism, the
representation of (Q, ∗) over (Q, ·) is called right linear.

Theorem 6. The following are equivalent for a quasigroup (Q, ∗):

1. it is left self-distributive,

2. it is right linear over a BO-loop.

Proof. See [8, Theorem 5.5].

As we already mentioned in the previous section, it is easy to use the corre-
spondence between medial quasigroups and abelian groups in order to enumerate
all medial quasigroups of a given size. The correspondence between involutory
latin quandles and Bruck loops was used for enumeration of those quandles re-
cently in [11].

On the other hand, it is hard to make use of the correspondence between
selfdistributive quasigroups and Belousov-Onoi loops. This explains, why are
we interested in the construction of non-medial (i.e. non-affine) selfdistributive
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quasigroups and why we have to develop other tools in order to construct those
quasigroups.

It is harder to enumerate latin quandles than to enumerate several classes of
loops because (as we have already showed before) latin quandles are homogeneous
while it is often possible to partition a given loop into non-trivial blocks that are
preserved under homomorphism. Examples of this approach to enumeration of
certain classes of loops can be found e.g. in [11] and in [2].

1.4 Abelian and central extensions of quandles
The terminology in this section comes from [1].

Definition 6 (extension). Let (Q, ∗Q) be a left quasigroup, (A,+,−, 0) an abelian
group and φ, ψ, θ the following mappings:

φ : Q×Q → End(A),

ψ : Q×Q → Aut(A),

θ : Q×Q → A.

Let us define an operation ∗ on Q×A by (a, x)∗(b, y) = (a∗Q b, φa,b(x)+ψa,b(y)+
θa,b). Then, Q×φ,ψ,θA = (Q×A, ∗) is a left quasigroup and we call it an abelian
extension of Q by φ, ψ, θ. If the mappings φ and ψ are constant, we will call it
a central extension.

Similar theory of central extensions for groups is described e.g. in [7, pages
201 - 216], theory of abelian extensions of loops was described in [9].

Abelian extensions of quandles are not necessarily quandles but we can easily
derive conditions for φ, ψ and θ that are equivalent to the fact that this extension
is a quandle:

Lemma 7. Let (Q, ∗) be a rack, (A,+,−, 0) an abelian group and φ, ψ, θ as in
Definition 6. Then, Q ×φ,ψ,θ A is a rack if and only if the following conditions
are satisfied for all a, b, c ∈ Q:

ψa,b∗c(θb,c) + θa,b∗c = ψa∗b,a∗c(θa,c) + φa∗b,a∗c(θa,b) + θa∗b,a∗c, (1.1)

ψa,b∗cψb,c = ψa∗b,a∗cψa,c, (1.2)

ψa,b∗cφb,c = φa∗b,a∗cψa,b, (1.3)

φa,b∗c = φa∗b,a∗cφa,b + ψa∗b,a∗cφa,c. (1.4)

Moreover, Q×φ,ψ,∗A is a quandle if and only if, additionally, Q is a quandle and

θa,a = 0, (1.5)

φa,a + ψa,a = 1A, (1.6)

for all a ∈ Q.
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Proof. Because Q ×φ,ψ,θ A = (Q × A, ∗1) is a left quasigroup, it is a rack if and
only if it is left-selfdistributive, i.e. if for all a, b, c ∈ Q and x, y, z ∈ A it holds
that:

(a, x) ∗1 ((b, y) ∗1 (c, z)) = ((a, x) ∗1 (b, y)) ∗1 ((a, x) ∗1 (c, z)).

This gives us the following equation:

(a ∗ (b ∗ c), φa,b∗c(x) + ψa,b∗c(φb,c(y) + ψb,c(z) + θb,c) + θa,b∗c =
((a ∗ b), (a ∗ c), φa∗b,a∗c(φa,b(x) + ψa,b(y) + θa,b)+

ψa∗b,a∗c(φa,c(x) + ψa,c(z) + θa,c) + θa∗b,a∗c.

By equating coefficients, we get the equations from Lemma 7. Moreover, Q×φ,ψ,θA
is a quandle if and only if for all a ∈ Q and x ∈ A:

(a, x) ∗1 (a, x) = (a, x).

This means that

(a ∗ a, φa,a(x) + ψa,a(x) + θa,a) = (a, x).

But, obviously, this happens if and only if Q is a quandle and the conditions 1.4
and 1.5 are satisfied.

Let Q ×φ,ψ,θ A be a central extension that is a quandle. Then, we have the
following two homomorphisms of quandles:

• An injective homomorphism f : Aff(A,ψ) −→ Q×φ,ψ,θA defined by f(a) =
(q, a) where q is a fixed element of Q. This is a homomorphism because
f(a∗ b) = f((1−φ)(a)+φ(b)) = (q, (1−φ)(a)+φ(b)) = (q ∗q, ψ(a)+φ(b)+
θq,q) = f(a) ∗ f(b) (we use the condition 1.6).

• A surjective homomorphism g : Q×φ,ψ,θ A −→ Q defined by g(q, a) = q.

We can also easily obtain conditions that are equivalent to the fact that
an abelian extension is a latin (or medial) quandle.

Lemma 8. Let Q ×φ,ψ,θ A be an abelian extension that is a quandle as in the
previous lemma. Then, it is a latin quandle if and only if φa,b ∈ Aut(A) for all
a, b ∈ Q.
Q×φ,ψ,θA is medial if and only if the following conditions hold for all a, b, c, d ∈ Q:

φa∗b,c∗d(θa,b) + ψa∗b,c∗d(θc,d) + θa∗b,c∗d = φa∗c,b∗d(θa,c) + ψa∗c,b∗d(θb,d) + θa∗c,b∗d,
(1.7)

φa∗b,c∗d(φa,b) = φa∗c,b∗d(φa,c), (1.8)

ψa∗b,c∗d(φc,d) = φa∗c,b∗d(ψa,c), (1.9)

φa∗b,c∗d(ψa,b) = ψa∗c,b∗d(φb,d), (1.10)

ψa∗b,c∗d(ψc,d) = ψa∗c,b∗d(ψb,d). (1.11)
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Proof. If there exist a, b ∈ Q and x, y ∈ A, x ̸= y such that φa,b(x) = φa,b(y)
(i.e. φa,b is not a bijection) then (a, x) ∗1 (b, z) = (a ∗ b, φa,b(x) + ψa,b(z) + θa,b) =
(a, y) ∗1 (b, z). But this means that R(b,z) is not a bijection, i.e. Q×φ,ψ,θ A is not
latin.
If, on the other hand, φa,b ∈ Aut(A) for all a, b ∈ Q, we can easily define L−1

(a,x)
and R−1

(a,x) for all a ∈ Q, x ∈ A and hence, Q×φ,ψ,θ A is latin.
We can obtain the rest of the lemma similarly as in the Lemma 7 using the
equations that define mediality.

Lemma 9. Let Q ×φ,ψ,θ A be an abelian extension and let α ∈ Aut(A) then,
Q×φ,ψ,θ A is isomorph to Q×αφα−1,αψα−1,αθ A.

Proof. Let us consider the mapping Φ : Q ×φ,ψ,θ A → Q ×α−1φα,α−1ψα,αθ A de-
fined by Φ((a, x)) = (a, α(x)). This is clearly a bijection. Moreover, we have
Φ((a, x) ∗ (b, y)) = Φ((a ∗Q b, φa,b(x) + ψa,b(y) + θa,b)) = (a ∗Q b, α(φa,b(x)) +
α(ψa,b(y)) + α(θa,b)) = (a ∗Q b, (αφa,bα−1)(α(x)) + (αψa,bα−1)(α(y)) + αθa,b =
Φ((a, x)) ∗ Φ((b, y)). Hence, Φ is an isomorphism.

The importance of the notion of central extensions of quandles for construction
of selfdistributive quasigroups of prime power size can be clearly seen from the
following theorem:

Theorem 10. Let Q be a latin quandle of prime power size. Then, there exists
a latin quandle E (with |E| < |Q|) and an abelian group A such that Q ≃ E×φ,ψ,θ

A for some abelian group A and φ, ψ, θ as in Definition 6.

Proof. According to [1, Corollary 6.6] Q is nilpotent and hence there exists a chain
of congruences 0Q ≤ α1 ≤ . . . ≤ αn = 1Q such that αi+1/αi is a central congruence
of Q/αi.
Let us assume that αi+1 ̸= αi for all i ∈ 0, 1, . . . , n (otherwise, we can forget some
of the congruences).
Then, α1/α0 = α1 is a central congruence of Q/α1 and |Q/α1| < |Q|. Moreover,
Q/α1 is connected (because it is a latin quandle) and Disα1 = ⟨LaL−1

b |aα1b⟩ acts
transitively on every block of α1 because blocks of each congruence of an affine
latin quandle are connected by the comment above [1, Proposition 7.8].
Then, Q ≃ Q/α1 ×φ,ψ,θ A for some abelian group A by [1, Proposition 7.8].

If we consider non-affine latin quandles, they are not central extensions of
a trivial quandle (i.e. of a quandle with one element) because those extensions
are only affine quandles as we can easily see from the conditions of Lemma 7.

There is surely no central extension of an arbitrary quandle Q by an abelian
group of size 2 because there is only one abelian group of this size, namely Z2
and there is no f ∈ Aut(Z2) such that (1 − f) ∈ Aut(Z2). We know all the
latin quandles of size ≤ 47 (all those quandles are stored in the RIG library [10]).
Hence, we are able to obtain all non-affine latin quandles of size 2k for k ≤ 7 by
constructing central extensions of smaller latin quandles that we already know.
We will use this approach later in Chapter 3.
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2. Construction of latin quandles
of size 2k

In this chapter, we will introduce the notion of Onoi structure. Then, we will use
Onoi structures to construct several affine and non-affine latin quandles of size
2k.

2.1 Onoi structures
Definition 7 (Onoi structure). We will say that an algebraical structure A =
(A,+, 0, ·, α) with two binary operations +, ·, a constant 0 and an unary opera-
tion α is an Onoi structure if it satisfies the following properties:

• (A,+, 0) is an abelian group and a+ a = 0 for all a ∈ A,

• · is left- and right-distributive with respect to +, i.e. a·(b+c) = (a·b)+(a·c)
and (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ A,

• α is an automorphism of the structure (A,+, 0, ·),

• α2(a) + α(a) + a = 0 for all a ∈ A,

• (α(a) · b) = (a · α(b)) for all a, b ∈ A.

We call this structure an Onoi structure in honour of V. I. Onoi, who con-
structed two Onoi structures in 1970 (see [6]). We will introduce these examples
later.

From the definition of an Onoi structure, we can obtain several properties of
this structure that are summarized in the following lemma:

Lemma 11. Let A = (A,+, 0, ·, α) be an Onoi structure. Then following prop-
erties hold for all a, b, c ∈ A:

• 0 · a = a · 0 = 0,

• α2(a) + α(a) = a,

• α3 = 1A,

• if |A| > 1, then α, α2 and 1A are different mappings,

• α2(a · b) = (α(a) · b),

• α2(a) · b = a · α2(b),

• α(a) · (α(b) · c)) = a · (b · c).

Proof. Straightforward computation, we will show only the last property:
α(a) · (α(b) · c)) = α(a) · (α(b) ·α3(c)) = α(a) ·α(b ·α2(c)) = α2(a) · (α(b) ·α(c)) =
α2(a) · α(b · c) = α3(a) · (b · c) = a · (b · c).

11



From the properties in lemma 11, we can easily derive the following corollary:
Corollary. Let A = (A,+, 0, ·, α) be an Onoi structure. Then, (A,+, 0, ·, α2) is
also an Onoi structure.

Obviously, the smallest non-trivial Onoi structure (i.e. |A| > 1) has at least
4 elements (we are not able to define 3 different automorphisms on an abelian
group of smaller size then 4). We will construct a four-element Onoi structure in
the following example:
Example (Onoi, 1970). Let S = {0, 1, 2, 3} and let us define the operations +, ·
by the following tables:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 3 2
2 0 3 2 1
3 0 2 1 3

Let us define α as the permutation (1, 2, 3), i.e. α is defined as follows: α(0) = 0,
α(1) = 2, α(2) = 3, α(3) = 1.
Obviously, (S,+, 0) is an abelian group, because (S,+, 0) ≃ Z2

⨁Z2. We can
easily verify also the rest of the axioms from definition 7 (we have a small com-
mutative structure, therefore it is also possible to simply examine all possibilities
for a, b and c).

We will denote the Onoi structure constructed in Example 2.1 by S.
Let us denote the set of permutations on a set X by ΣX . For a given Onoi

structure O = (O,+, 0, ·, α), n ∈ N and σ ∈ Σ{1,...,n} we can construct a structure
On
σ = (On,+n, 0n, ·σ, αn) as follows:

• On = {(a1, a2, . . . , an) | ai ∈ O, i = 1, 2, . . . , n},

• (a1, a2, . . . , an) +n (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

• 0n = (0, 0, . . . , 0),

• (a1, a2, . . . , an) ·σ (b1, b2, . . . , bn) = (aσ(1) · b1, aσ(2) · b2, . . . , aσ(n) · bn),

• αn((a1, a2, . . . , an)) = (α(a1), α(a2), . . . , α(an)).

Lemma 12. Let n ∈ N, σ ∈ Sn. Then, On
σ is an Onoi structure.

Proof. (On,+n, 0n) is clearly an abelian group, because it is a product of abelian
groups. All other properties from the definition 7 can be checked straightforward,
we will show only the last one:

αn((a1, a2, . . . , an)) ·σ (b1, b2, . . . , bn)
= (α(a1), α(a2), . . . , α(an)) ·σ (b1, b2, . . . , bn)

= (α(aσ(1)) · b1, α(aσ(2)) · b2, . . . , α(aσ(n)) · bn)
= (aσ(1) · α(b1), aσ(2) · α(b2), . . . , aσ(n) · α(bn))

= (a1, a2, . . . , an) ·σ αn((b1, b2, . . . , bn))
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Let n ≤ m, σ1 ∈ Σ{1,...,n}, σ2 ∈ Σ{n,...,m}. Then, we can see the Onoi structure
On
σ1 as a substructure of Om

σ1∪σ2 by taking an injective homomorphism ι : On →
Om defined by ι(a1, a2, . . . , an) = (a1, a2, . . . , an, 0, . . . , 0) (it is clearly an injective
mapping and it is easy to check that it is also a homomorphism). From now on, we
will understand On

σ1 as an substructure of Om
σ1∪σ2 without explicitly mentioning

it.
We will mention also another example of an Onoi structure that was con-

structed by Onoi in [6]:
Example (Onoi, 1970). Let M2(S) be the set of all 2 × 2 matrices over S (i.e.
the matrix addition +2 and multiplication ·2 is given in the obvious way using
the addition and multiplication in S). Let us define α2 : M2(S) → M2(S) by
α2((xij)) = (α(xij)). Then, (M2(S),+2, 02×2, ·2, α2) is an Onoi structure.

We can generalize this construction in a natural way for an arbitrary Onoi
structure O = (O,+, 0, ·, α), n ∈ N and σ ∈ Σ{1,...,n}×{1,...,n}: We will define
the Onoi structure Mσ

n (O) = (Mn(O),+n, 0n×n, ·σn, αn) by taking the standard
matrix addition +n, αn(xij) = (α(x)ij) and ((xij) ·σn (ykl)) = ((∑n

j=1 xσ(i,j) ·yjk)ik).
We will not prove that this is in fact an Onoi structure but the proof is straight-
forward and similar to the proof of Lemma 12.

2.2 Construction of latin quandles from Onoi
structures

Let O be an Onoi structure and let Aff(O,α) = (O, ∗) be an affine quandle.
Then, a ∗ b = (1 − α)(a) + α(b) = a + α(a) + α(b) = α2(a) + α(a) (we use the
properties of an Onoi structure). Moreover, (O, ∗) is a latin quandle because
(1 − α) = α2 ∈ Aut((O,+, 0)).

Let O = (O,+, 0, ·, α) be an Onoi structure and let us define the mapping
θ : O3 → O by θ(a, b, c) = a · (b · c). Then, we can easily show (using definition 7
and lemma 11) that θ has the following properties (for all a, b, c, d ∈ O):

• θ(a + b, c, d) = θ(a, c, d) + θ(b, c, d), θ(a, b + c, d) = θ(a, b, d) + θ(a, c, d),
θ(a, b, c+ d) = θ(a, b, c) + θ(a, b, d),

• θ(0, b, c) = θ(a, 0, c) = θ(a, b, 0) = 0,

• α(θ(a, b, c)) = θ(α(a), α(b), α(c)),

• θ(α(a), b, c) = θ(a, α(b), α(c)),

• θ(a, α(b), c) = θ(a, b, α(c)).

We will generalize those properties for mappings between two Onoi structures
in the following definition:

Definition 8 (Onoi mapping). Let O1 and O2 be two Onoi structures. We say
that a mapping θ : O3

1 → O2 is an Onoi mapping if it has the following properties
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for all a, b, c, d ∈ O1:

θ(a+1 b, c, d) = θ(a, c, d) +2 θ(b, c, d),
θ(a, b+1 c, d) = θ(a, b, d) +2 θ(a, c, d),
θ(a, b, c+1 d) = θ(a, b, c) +2 θ(a, b, d),

(2.1)

α2(θ(a, b, c)) = θ(α1(a), α1(b), α1(c)), (2.2)

θ(α1(a), b, c) = θ(a, α1(b), α1(c)), (2.3)

θ(a, α1(b), c) = θ(a, b, α1(c)). (2.4)

It holds also that θ(0, b, c) = θ(a, 0, c) = θ(a, b, 0) = 0 because θ(0, b, c) =
θ(0 + 0, b, c) = θ(0, b, c) + θ(0, b, c) and by subtracting θ(0, b, c) from both sides
we get that θ(0, b, c) = 0 and we can show similarly that θ(a, 0, c) = θ(a, b, 0). It
is also easy to show that the properties from the previous definition hold for α2

1
and α2

2 instead of α1 and α2.

Lemma 13. Let O1 = (O1,+1, 01, ·1, α1) and O2 = (O2,+2, 02, ·2, α2) be two
Onoi structures and let θ : O3

1 → O2 be an Onoi mapping. Let us define A(O2) =
(O2,+2, 02) and θ∗

a,b = θ(a, a+1b, a+1b) for a, b ∈ O1. Then, the central extension
Aff(O1, α1) ×α2

2,α2,θ∗ A(O2) = (O1 ×O2, ∗) is a latin quandle.

Proof. For simplicity, we will not use the indexes by α and · if it will be clear,
in which structure are we working. Let us also denote the quandle operation in
Aff(O1, α) by ◦. We will verify the conditions from lemma 7:

For (1.1) we have for all a, b, c ∈ O1:

α2(θ∗
b,c) +2 θ

∗
a,b◦c

= α(θ(b, b+ c, b+ c)) + θ(a, a+ α2(b) + α(c), a+ α2(b) + α(c)
= θ(α2(b), b+ c, b+ c) + θ(a, a+ α2(b) + α(c), a+ α2(b) + α(c)

= θ(α2(b), b+ c, b+ c) + θ(a, a, a) + θ(a, a, α2(b))
+θ(a, a, α(c)) + θ(a, α2(b), a) + θ(a, α2(b), α2(b)) + θ(a, b, c)

+θ(a, α(c), a) + θ(a, c, b) + θ(a, α(c), α(c))
= θ(α2(b), b+ c, b+ c)

+θ(α2(a), c, c) + θ(α2(a), c, a) + θ(α2(a), a, c) + θ(α2(a), a, a)
+θ(α(a), a, a) + θ(α(a), a, b) + θ(α(a), b, a) + θ(α(a), b, b)

+θ(a, c, c) + θ(a, c, b) + θ(a, b, c) + θ(a, b, b)
= θ(α2(a), c+ a, c+ a) + θ(α(a), a+ b, a+ b)

+θ(α2(b), b+ c, b+ c) + θ(a, b+ c, b+ c)
= α(θ(a, a+ c, a+ c)) + α2(θ(a, a+ b, a+ b))

+θ(α2(a) + α(b), α2(a) + α(c) + α2(a) + α(b), α2(a) + α(c) + α2(a) + α(b))
= α2(θ∗

a,c) +2 α
2
2(θ∗

a,b) +2 θ
∗
a◦b,a◦c

(1.2) holds automatically because ψa,b (from definition 6) is equal to α2 and
hence it is a constant mapping (i.e. the same mapping for all a, b ∈ O1).

For (1.3): α2 ◦ α2
2 = α3

2 = α2
2 ◦ α2.

For (1.4): α2
2 = α2 + 1O2 = α2

2 ◦ α2
2 + α2 ◦ α2

2.
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For (1.5): θ∗
a,a = θ(a, a+ a, a+ a) = θ(a, 0, 0) = 0 for all a ∈ O1.

For (1.6): α2
2 + α2 = 1O2 by the definition of Onoi structure.

Hence, (O1 ×O2, ∗) is a quandle by the Lemma 7 and since α2
2 is an automor-

phism, it is also a latin quandle by Lemma 8.

We will denote the quandle constructed in lemma 13 by Q(O1,O2, θ).
Let us examine the inverse to L(b,y) in (O1 × O2, ∗) from the previous lemma

(this inverse exists since (O1 × O2, ∗) is a (latin) quandle): Let us define M(b,y) :
O1 ×O2 → O1 ×O2 by M(b,y)(a, x) = (α1(b) + α2

1(a),
α2(y) + α2

2(x) + θ(b, a + b, a + b)). We will prove that M(b,y) is a left inverse to
L(b,y) (where L(b,y)(a, x) = (b, y) ∗ (a, x)) for all (b, y) ∈ O1 ×O2:

Let (a, x), (b, y) ∈ O1 ×O2. Then:

M(b,y)(L(b,y)(a, x))
= M(b,y)(α2

1(b) + α1(a), α2
2(y) + α2(x) + θ(b, a+ b, a+ b))

= (α1(b) + α1(b) + a, α2(y) + α2(y) + x

+α2
2(θ(b, a+ b, a+ b)) + (θ(b, α2

1(b) + α1(a) + b, α2
1(b) + α1(a) + b)))

= (a, x+ θ(α1(a), α1(a+ b), α1(a+ b)) + θ(α1(a), α1(a+ b), α1(a+ b))) = (a, x)

Hence, M(b,y) is the desired inverse to L(b,y), i.e. L−1
(b,y) = (α1(b) + α2

1(a), α2(y) +
α2

2(x) + θ(b, a+ b, a+ b)).

Lemma 14. Let O1 = (O1,+1, 01, ·1, α1) and O2 = (O2,+2, 02, ·2, α2) be two
Onoi structures and let θ : O3

1 → O2 be an Onoi mapping. Then, the quan-
dle Q(O1,O2, θ) is affine if and only if the following two equations hold for all
a, b, c ∈ O1:

θ(a, b, b) = θ(b, a, a), (2.5)

θ(a, b, c) = θ(a, c, b). (2.6)

Proof. For simplicity, we will not use the indexes by α and · in the whole proof
if it will be clear, in which structure are we working.

We will use lemma 7 and prove that Dis(Q(O1,O2, θ)) is abelian if and
only if the conditions 2.5 and 2.6 hold. A group is abelian if and only if all its
generators commute. Hence, the quandle Q(O1,O2, θ) is affine if and only if for
all a, b, c, d, u ∈ O1, w, x, y, z, v ∈ O2:

L(a,w) ◦ L−1
(b,x) ◦ L(c,y) ◦ L−1

(d,z)(u, v) = L(c,y) ◦ L−1
(d,z) ◦ L(a,w) ◦ L−1

(b,x)(u, v)

Let a, b, c, d, u ∈ O1, w, x, y, z, v ∈ O2 be arbitrary. Then, the left side gives
us:
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L(a,w) ◦ L−1
(b,x) ◦ L(c,y) ◦ L−1

(d,z)((u, v))
= L(a,w) ◦M(b,x) ◦ L(c,y) ◦M(d,z)((u, v))

= L(a,w) ◦M(b,x) ◦ L(c,y)((α(d) + α2(u), α(z) + α2(v) + θ(d, d+ u, d+ u))
= L(a,w) ◦M(b,x)(α2(c) + α2(d) + u, α2(y) + α2(z) + v + θ(α2(d), d+ u, d+ u))

+θ(c, α(d) + α2(u) + c, α(d) + α2(u) + c)))
= L(a,w)((α(b) + α(c) + α(d) + α2(u), α(x) + α(y) + α(z) + α2(v)
+θ(d, d+ u, d+ u)) + θ(α(c), α(d) + α2(u) + c, α(d) + α2(u) + c))

+θ(b, b+ α2(c) + α2(d) + u, b+ α2(c) + α2(d) + u)))
= (α2(a) + α2(b) + α2(c) + α2(d) + u, α2(w) + α2(x) + α2(y) + α2(z) + v

+θ(α2(d), d+ u, d+ u)) + θ(c, α(d) + α2(u) + c, α(d) + α2(u) + c))
+θ(α2(b), b+ α2(c) + α2(d) + u, b+ α2(c) + α2(d) + u)

+θ(a, a+ α(b) + α(c) + α(d) + α2(u), a+ α(b) + α(c) + α(d) + α2(u)))

Similarly, the right side gives:

L(a,w) ◦ L−1
(b,x) ◦ L(c,y) ◦ L−1

(d,z)((u, v))
= (α2(c) + α2(d) + α2(a) + α2(b) + u, α2(y) + α2(z) + α2(w) + α2(x) + v

+θ(α2(b), b+ u, b+ u)) + θ(a, α(b) + α2(u) + a, α(b) + α2(u) + a))
+θ(α2(d), d+ α2(a) + α2(b) + u, d+ α2(a) + α2(b) + u)

+θ(c, c+ α(d) + α(a) + α(b) + α2(u), c+ α(d) + α(a) + α(b) + α2(u)))

These expressions are equal if and only if:

θ(α2(b), α(c), c) + θ(α2(b), α(d), d) + θ(α2(b), α2(c), u) + θ(α2(b), α(c), d)
+θ(α2(b), α2(c), b) + θ(α2(b), u, α2(c)) + θ(α2(b), u, α2(d)) + θ(α2(b), α(d), c)

+θ(α2(b), α2(d), u) + θ(α2(b), α2(d), b) + θ(α2(b), b, α2(c)) + θ(α2(b), b, α2(d))
+θ(a, α2(c), c) + θ(a, α2(d), d) + θ(a, c, u) + θ(a, α2(c), d)

+θ(a, α2(c), b) + θ(a, α(c), a) + θ(a, u, c) + θ(a, u, d)
+θ(a, α2(d), c) + θ(a, d, u) + θ(a, α2(d), b) + θ(a, α(d), a)

+θ(a, α2(b), c) + θ(a, α2(b), d) + θ(a, a, α(c)) + θ(a, a, α(d))
= θ(α2(d), α(a), a) + θ(α2(d), α(b), b) + θ(α2(d), α2(a), u) + θ(α2(d), α(a), b)

+θ(α2(d), α2(a), d) + θ(α2(d), u, α2(a)) + θ(α2(d), u, α2(b)) + θ(α2(d), α(b), a)
+θ(α2(d), α2(b), u) + θ(α2(d), α2(b), d) + θ(α2(d), d, α2(a)) + θ(α2(d), d, α2(b))

+θ(c, α2(a), a) + θ(c, α2(b), b) + θ(c, a, u) + θ(c, α2(a), b)
+θ(c, α2(a), d) + θ(c, α(a), c) + θ(c, u, a) + θ(c, u, b)

+θ(c, α2(b), a) + θ(c, b, u) + θ(c, α2(b), d) + θ(c, α(b), c)
+θ(c, α2(d), a) + θ(c, α2(d), b) + θ(c, c, α(a)) + θ(c, c, α(b))

(2.7)

Assume that Q(O1,O2, θ) is affine, i.e. Dis(Q(O1,O2, θ)) is abelian. Then,
the equation 2.7 holds for all a, b, c, d, u.

We can express this equation as g1
a,b,c,d(u)+f 1

a,b,c,d = g2
a,b,c,d(u)+f 2

a,b,c,d for some
mappings g1

a,b,c,d and g2
a,b,c,d and constants f 1

a,b,c,d, f 2
a,b,c,d depending on a, b, c, d,
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where g1
a,b,c,d(0) = g2

a,b,c,d(0) = 0. If the quandle Q(O1,O2, θ) is affine, then
g1
a,b,c,d = g2

a,b,c,d and f 1
a,b,c,d = f 2

a,b,c,d. We will compare g1
a,b,c,d and g2

a,b,c,d:

θ(α2(b), α2(c), u) + θ(α2(b), u, α2(c)) + θ(α2(b), u, α2(d)) + θ(α2(b), α2(d), u)
+θ(a, c, u) + θ(a, u, c) + θ(a, u, d) + θ(a, d, u)

= θ(α2(d), u, α2(a)) + θ(α2(d), α2(a), u) + θ(α2(d), u, α2(b)) + θ(α2(d), α2(b), u)
+θ(c, a, u) + θ(c, u, a) + θ(c, u, b) + θ(c, b, u)

This has to hold for all a, b, c, d ∈ O1, i.e. we can set a = 0 and c = α(d):

θ(α2(b), d, u) + θ(α2(b), u, d) + θ(α2(b), u, α2(d)) + θ(α2(b), α2(d), u)
= θ(α2(d), u, α2(b)) + θ(α2(d), α2(b), u) + θ(α(d), u, b) + θ(α(d), b, u)

This holds if and only if:

θ(α2(b), α(d), u) + θ(α2(b), u, α(d)) = θ(α(d), u, α2(b)) + θ(α(d), α2(b), u)

By setting e = α2(b) and f = α(d) (α is an automorphism) we get that the
equation

θ(e, f, u) + θ(e, u, f) = θ(f, u, e) + θ(f, e, u) (2.8)

holds for all e, f, u ∈ O1
Now, we are able to simplify (2.7) (we use also the identity θ(a, b, a) = θ(a, a, b)

which can easily be derived from (2.8)):

θ(α2(b), α(c), c) + θ(α2(b), α(d), d) + θ(α2(b), α(c), d) + θ(α2(b), α(d), c)
+θ(a, α2(c), c) + θ(a, α2(d), d) + θ(a, α2(d), b) + θ(a, α2(b), d)

= θ(α2(d), α(a), a) + θ(α2(d), α(b), b) + θ(α2(d), α(a), b) + θ(α2(d), α(b), a)
+θ(c, α2(a), a) + θ(c, α2(b), b) + θ(c, α2(b), d) + θ(c, α2(d), b)

(2.9)

We set b = 0, c = 0 and we get that: θ(a, α2(d), d) = θ(α2(d), α(a), a) and
hence θ(a, α(d), α(d) = (θ(α(d), a, a) and hence (2.5) holds.

We will simplify (2.9) further:

θ(α2(b), α(c), d) + θ(α2(b), α(d), c) + θ(a, α2(d), b) + θ(a, α2(b), d)
= θ(α2(d), α(a), b) + θ(α2(d), α(b), a) + θ(c, α2(b), d) + θ(c, α2(d), b)

We set c = 0 and we get:

θ(a, α2(d), b) + θ(a, α2(b), d) = θ(α2(d), α(a), b) + θ(α2(d), α(b), a) (2.10)

By (2.8) we get that:

θ(a, α2(d), b) + θ(a, α2(b), d) = θ(α2(d), a, b) + θ(α2(d), b, a)

And therefore we get from (2.10) that θ(α2(d), α2(a), b) = θ(α2(d), b, α2(a))
and hence (2.6) holds.

On the other hand, if (2.5) and (2.6) hold, we can easily simplify the equa-
tion (2.7) to the form 0 = 0 and therefore in this case Dis(Q(O1,O2, θ)) is
abelian and hence is Q(O1,O2, θ) an affine quandle. The lemma is proven.

17



Now, we are able to construct non-affine latin quandle of size 22k for k =
4, 5, 6, 7, . . .:

Recall that S denotes the Onoi structure constructed in example 2.1 and
that On

σ denotes the Onoi structure constructed from an Onoi structure O by
taking the set On, where all the operations are given by operations in O and
the multiplication is given by (a1, a2, . . . , an) ·σ (b1, b2, . . . , bn) = (aσ(1) · b1, aσ(2) ·
b2, . . . , aσ(n) · bn), where · denotes multiplication in O.

Let k ∈ N, k ≥ 4. Let m,n ∈ N, m,n ≥ 2 such that m ≤ n and m+n = k. Let
us denote by eli the element of Sl that consists of zeros except on the i-th position
where it has 1. Let σ1 ∈ Σ{1,2,...,m}, σ2 ∈ Σ{n+1,...,m} such that σ1 ̸= 1{1,2,...,m}.
Let us define θ : Sm × Sm × Sm → Sn by θ(a, b, c) = a ·σ1 (b ·σ1 c). Then,
Q(Sm

σ1
,Sn

σ1∪σ2
, θ) is a latin quandle by lemma 13 (because θ is clearly an Onoi

mapping by the comment above the definition 8).
Let i ∈ {1, 2, . . . , n} be such that σ1(i) ̸= i. Then, θ(emi , emi , emσ1(i)) = emi ·σ1

(emi ·σ1e
m
σ1(i)) = emi ·σ1e

m
σ1(i) = emσ1(i) ̸= (0, . . . , 0). If σ2

1(i) = i then θ(emi , emσ1(i), e
m
i ) =

emi ·σ1 (emσ1(i) ·σ1 e
m
i ) = emi ·σ1 e

m
i = (0, . . . , 0) (because σ1(i) ̸= i). Otherwise (i.e.

σ2
1(i) ̸= i), θ(emi , emσ1(i), e

m
i ) = emi ·σ1 (emσ1(i) ·σ1 e

m
i ) = emi ·σ1 (0, . . . , 0) = (0, . . . , 0).

This means that the condition (2.6) from lemma 14 is not satisfied and hence
Q(Sm

σ1
,Sn

σ1∪σ2
, θ) is a non-affine latin quandle.

We are able to construct also a non-affine quandle of size 26:
Let us define θ : S2 × S2 × S2 → S by θ((a, b), (c, d), (e, f)) = b · (d · e), where

· denotes multiplication in S. We will prove that this is an Onoi mapping. Let
a, b, c, d, e, f, g, h ∈ S. Then:

• For (2.1) we have: θ((a, b) +2 (c, d), (e, f), (g, h)) = (b+ d) · (f · g) = b · (f ·
g) + d · (f · g) = θ((a, b), (e, f), (g, h)) + θ((c, d), (e, f), (g, h)), we can easily
show this property also for the other components of θ,

• for (2.2): α(θ((a, b), (c, d), (e, f))) = α(b · (d · e)) = (α(b)) · (α(d) · (α(e)) =
θ(α2((a, b)), α2((c, d)), α2((e, f))),

• for (2.3): θ(α2((a, b)), (c, d), (e, f)) = α(b) · (d · e) = b · α(d · e) = b · (α(d) ·
α(e)) = θ((a, b), α2((c, d)), α2((e, f))),

• for (2.4): θ((a, b), α2((c, d)), (e, f)) = b · (α(d) · e) = b · (d · α(e))
= θ((a, b), (c, d), α2((e, f))).

This means that θ is an Onoi mapping. Hence, Q(S2
id,S, θ) is a latin quandle

by lemma 13.
We have θ((0, 1), (0, 1), (1, 0)) = 1 · (1 · 1) = 1 · 1 = 1. On the other hand,

θ((0, 1), (1, 0), (0, 1)) = 1 · (0 · 0) = 1 · 0 = 0. Hence, the condition (2.6) from
Lemma 14 is not satisfied and therefore Q(S2

id,S, θ) is a non-affine latin quandle.
We have proved the following key theorem:

Theorem 15. Let k ∈ N, k ≥ 3. Then, there exists a non-affine latin quandle
of size 22k.
Proof. If n ≥ 4, we can take m = 2, n = k − 2 and σ1 = (1, 2). Then,
Q(Sm

σ1
,Sn

σ1∪σ2
, θ) is a non-affine latin quandle as we showed above. If n = 3

then Q(S2
id,S, θ), where θ((a, b), (c, d), (e, f)) = b · (d · e), is a non-affine latin

quandle (see construction above).
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3. Classification of non-affine
latin quandles of size 2k

We saw in the previous chapter that there exists non-affine latin quandle of size
22k for k ≥ 3.

By looking into the RIG library [10] where all quandles of size ≤ 47 are stored
we can see that there exists no non-affine latin quandle of size 2k for k ≤ 5.
Hence, the quandle constructed above the Theorem 15 is the smallest non-affine
latin quandle of size 2k.

We can also easily construct non-affine latin quandle of size 2k for k odd, k ≥ 9
by taking one of the affine latin quandles of size 23 from the RIG library and non-
affine latin quandle of size 2k−3 that exists by Theorem 15 and constructing their
direct product. The existence of non-affine latin quandle of size 2k for k even,
k ≥ 6 follows directly from this theorem.

Now, we are left with the question whether there exists also a non-affine latin
quandle of size 27. In order to answer this question, we will use central extensions
that were introduced in the first chapter. With the help of central extensions, we
will be also able to better understand the structure of non-affine latin quandles
of size 26.

3.1 Algorithm for finding central extensions
By Theorem 10 and by the comment under this theorem, we are able to construct
all non-affine latin quandles of size 27 by constructing central extensions of latin
quandles of size 2k for k ≤ 5.

We will introduce algorithm for finding central extensions that are latin quan-
dles of size 27. This algorithm can easily be modified also for quandles of size 2k
for arbitrary k ∈ N.

Let us denote the cyclic group with k elements by Ck and we will denote its
elements by 0, 1, . . . , k − 1.

Lemma 7 and Lemma 8 says that we can construct a central extension that
is a latin quandle only from abelian groups A that have an automorphism φ such
that ψ = 1A − φ is also an automorphism.

This is certainly not possible for groups of the type C2k1 × C2k2 × . . .C2kn

where k1 > k2 ≥ . . . ≥ kn because each automorphism φ has to map the element
(1, 0, . . . , 0) of order 2k1 to another element of order 2k1 and all such elements
are obviously of the form (a1, a2, . . . , an) with a1 odd. Hence, φ(1, 0, . . . , 0) =
(a1, . . . , an) where a1 is odd. But (1A − φ)(1, 0, . . . , 0) = (1 − a1,−a2, . . . ,−an)
and 1 − a1 is clearly even and hence 1A − φ is not an automorphism.

Hence, the only abelian groups that could provide us with a central extension
that is a non-affine latin quandle of size 27 are Ck

2 for 1 < k ≤ 5, C4 × C4
and C4 × C4 × C2. We can exclude the case A = C4 × C4 × C2 either by
looking on all automorphisms of A (up to conjugation) and finding out that
there is no φ ∈ Aut(A) such that (1 − φ) ∈ Aut(A) or by using the canonical
embedding mentioned above Lemma 8, using the fact that there is no affine
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quandle Aff(A, f) (it can be seen in the RIG library) and using that Aff(A, f)
is determined uniquely by the group A (see Theorem 1).

3.1.1 Abelian groups Ck
2

The automorphism group of Ck
2 is exactly the group GLk(2) of regular k × k

matrices over Z2. By Lemma 9, we can examine only representatives of conju-
gation classes of GLk(2), as we want to examine non-affine latin quandles only
up to isomorphism (we actually want to find out whether there exists any non-
affine latin quandle of size 27). Moreover, by 8 we have to examine only matrices
A ∈ GLk(2) that are representatives of conjugation classes for that it holds that
(Ik − A) ∈ GLk(2), where Ik denotes the identity matrix.

Hence, given an affine quandle Q of size 2k and A ∈ GLk(2), Lemma 7
provides us with a set of equations for θa,b ∈ C7−k

2 , a, b ∈ Q. This means
that we are actually solving a system of linear equations for the vector θ =
((θ1,1)1, . . . , (θ1,1)7−k, (θ1,2)1, . . . , (θ2k,2k)7−k) that has 22k(7 −k) elements over C2.
These equations are given by the condition θa,a = 0, i.e. (θa,a)i = 0 for all a ∈ Q,
i ∈ 1, . . . , 7 − k and by the equation (1.1) (we set φ = A, ψ = Ik − A), i.e.
(Ik − A)(θb,c) + θa,b∗c = (Ik − A)(θa,c) + A(θa,b) + θa∗b,a∗c for all a, b, c ∈ Q. The
rest of the equations from Lemma 7 is clearly satisfied.

We can solve this system efficiently on the computer (we implemented it using
the GAP system [4], this system enabled us also to work easily with representa-
tives of conjugation classes). We will get a vector space consisting of all solutions
θ of this system. Now, we have to find out, if each basis element of this space
satisfies also all the equations from Lemma 8 stating that the central extension
Q×A,Ik−A,θ is an affine quandle, i.e. equations A(θa,b) + (Ik −A)(θc,d) + θa∗b,c∗d =
A(θa,c) + (Ik − A)(θb,d) + θa∗c,b∗d for all a, b, c, d ∈ Q (the other equations from
Lemma 8 are clearly satisfies).

If those equations are satisfied by all basis elements, there exists no central
extension of Q by A that is a non-affine latin quandle, otherwise we find such
a quandle.

3.1.2 Abelian group C2
4

We can use the same method as in the previous subsection. The only difference
is that we will be working with matrices over C4 (automorphisms of C2

4 are given
by some 2 × 2 matrices over C4). This means that we are not able to use the
methods for solving linear equations over fields.

We are able to solve this problem by transforming it to solving linear equations
over integers (the algorithm for solving those equations is provided in the GAP
system) as we can see from the following lemma (it is a simplification of the
approach described in [3, Chapter 3]):

Lemma 16. Let A ∈ Cm×n
k be a matrix representing a system of linear equations

Ax = o over Ck. Then, x = (x1, x2, . . . , xn) is a solution of this system if
and only if there exists a solution y = (y1, y2, . . . , yn+m) of the integral system
of linear equations By = o, where B is obtained by concatenating A and the
diagonal matrix k · Im, such that xi = yi for i ∈ {1, 2, . . . , n}.
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Proof. If x = (x1, x2, . . . , xn) is a solution of Ax = o then, for all i ∈ {1, 2, . . . ,m}
ai,1x1 + ai,2x2 + · · · + ai,nxn = 0 mod 4, i.e. there exists ki ∈ N0 such that
ai,1x1 + ai,2x2 + · · · + ai,nxn = 4ki. Hence, y = (x1, x2, . . . , xn, k1, . . . , km) is
a solution of By = o.

If, on the other hand, for all i ∈ 1, . . . ,m, ai,1y1+ai,2y2+· · ·+ai,nyn+4yn+i = 0,
surely ai,1y1 + ai,2y2 + · · · + ai,nyn = 0 mod 4. for all i ∈ 1, . . . ,m.

3.2 Existence of non-affine latin quandle of size
27

We implemented the algorithms from the previous subsections in the GAP system
and after few days of computation time we were able to prove that there exists no
non-affine latin quandle of size 27. The programs and their results can be found
in the attachement of this thesis.

The results enable us to finish the classification of non-affine latin quandles
of size 2k:

Theorem 17. There exists a non-affine latin quandle of size 2k if and only if
k = 6 or k ≥ 8.

Proof. If k ≥ 6 is even, the existence of non-affine latin quandle follows from
Theorem 15, if k > 8 is odd, we can form a direct product of the (affine) latin
quandle of size 23 (provided by the RIG library, [10]) and the non-affine latin
quandle of size 2k−3 that exists by Theorem 15.

If, on the other hand, k ≤ 5, there exists no non-affine latin quandle of size
2k as can be seen in the RIG library. We were able to prove the remaining case
k = 7 on the computer using the implementation of the algorithms above.

3.3 Non-affine latin quandles of size 26

We will use the algorithm for finding central extensions in order to better un-
derstand the structure of non-affine latin quandles of size 26. With the help of
those algorithms, we are able to determine for which latin quandles Q and abelian
groups A there exists θ : Q×Q −→ A and ψ ∈ Aut(A) such that Q×(1−ψ),ψ,θ A
is a non-affine latin quandle of size 27.

We found out (using the algorithm above) that there exists no central exten-
sion of latin quandle of size 4 by the abelian group C4 × C4. Hence, the only
abelian groups A for that there exists a central extension that is a non-affine latin
quandle are of the form C6−k

2 (where k = |Q|). The automorphisms ψ ∈ Aut(A)
for that there exists this central extension are listed in Table 3.1.

We could use the obtained results in order to enumerate all non-affine latin
quandles of size 26 by simple isomorphism checking. The problem is that for some
quandles Q and abelian groups Ck

2 there are more than 230 possibilities for θ and
hence we would need to do too many isomorphism checkings.
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3.4 Enumeration of latin quandles
In this section, we will sketch a possible approach to enumeration of non-affine
latin quandles. One of the problems with enumeration of this kind of quandles is
that they do not form a variety (they are defined by the invalidity of mediality).
Hence, in order to enumerate all non-affine latin quandles of size 2k, we would
probably have to enumerate all latin quandles of this size and also all affine latin
quandles of this size (the latter is quite an easy task due to the correspondence
between affine quandles and abelian groups). The terminology and ideas used in
this section come from the approach to enumeration of loops that was presented
in [2].

Let (Q, ∗) be a latin quandle, A an abelian group and f ∈ Aut(A) such that
Aff(A, f) is a latin quandle. Let us denote by C(Q,Aff(A, f)) (cocycles) the set
of all mappings Q×Q −→ A and by Map(Q,Aff(A, f)) the set of all mappings
from Q to A. Let us define:

Quandle Q Automorphisms ψ ∈ Aut(C6−log2(|Q|)
2 )

4 1 none

8 2

⎛⎜⎝1 0 1
1 1 1
0 1 1

⎞⎟⎠
8 3

⎛⎜⎝1 0 1
1 1 0
0 1 0

⎞⎟⎠
16 1

(
1 1
1 0

)

16 2
(

1 1
1 0

)
16 3 none

16 4
(

1 1
1 0

)

16 5
(

1 1
1 0

)

16 6
(

1 1
1 0

)

16 7
(

1 1
1 0

)

16 8
(

1 1
1 0

)

16 9
(

1 1
1 0

)

4 1 × 4 1
(

1 1
1 0

)

Table 3.1: Latin quandles Q (numbered as in RIG library [10]) and automor-
phisms ψ ∈ Aut(C6−log2(|Q|)

2 ) for that there exists θ : Q×Q −→ C6−log2(|Q|)
2 such

that Q×(1−ψ),ψ,θ C6−log2(|Q|)
2 is a non-affine latin quandle of size 26.
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Hom(Q,Aff(A, f)) = {τ : Q −→ Aff(A, f)|τ is a homomorphism
of quandles},

Let us define the mapping Map(Q,Aff(A, f)) −→ C(Q,Aff(A, f)) by τ ↦→
τ̂ where τ̂a,b = τ(a ∗ b) − (1 − f)(τ(a)) − f(τ(b)). Then, this defines a homo-
morphism of groups with kernel Hom(Q,Aff(A, f)). We denote its image by
B(Q,Aff(A, f)) ≃ Map(Q,Aff(A, f))/Hom(Q,Aff(A, f)) and we will call its
elements coboundaries.

Lemma 18. Let A be an abelian group such that Aff(A, f) is a latin quandle.
Let τ̂ ∈ B(Q,Aff(A, f)). Then φ : Q×(1−f),f,θ A −→ Q×(1−f),f,θ+τ̂ A defined by
φ(q, a) = (q, a+ τ(q)) is an isomorphism of quasigroups.

Proof. It is clearly a bijection. Moreover, φ((p, a) ∗ (q, b)) = (p ∗ q, (1 − f)(a) +
f(b)+θp,q+τ(p∗q)) = (p∗q, (1−f)(a)+f(b)+θp,q+τ̂p,q+(1−f)(τ(a))+f(τ(b))) =
φ((p, a)) ∗ φ((q, b)).

Hence, in order to obtain all quasigroups that are central extensions of Q by A
(in the sense of Definition 6) up to isomorphism, it is sufficient to consider only
the cohomology H(Q,Aff(A, f)) = C(Q,Aff(A, f))/B(Q,Aff(A, f)).

Let V be a variety of quasigroups (e.g. a subset of quasigroups axiomatized
by identities, an example are (medial) latin quandles). If Q ×(1−f),f,θ A ∈ V,
it is necessary that Q,Aff(A, f) ∈ V by the comment above Lemma 8. Let
Q,Aff(A, f) ∈ V, we will call θ ∈ C(Q,Aff(A, f)) a V-cocycle ifQ×(1−f),f,θA ∈
V and we will denote the set of all V-cocycles by CV(Q,Aff(A, f)).

By Lemma 18, it holds that θ ∈ CV(Q,Aff(A, f)) if and only if θ + τ̂ ∈
CV(Q,Aff(A, f)) for some τ̂ ∈ B(Q,Aff(A, f)).

We can define an action of the group Aut(Q)× (Aut(A)∩Aut(Aff(A, f))) on
C(Q,Aff(A, f)) for α ∈ Aut(Q) and β ∈ Aut(Aff(A, f)) ∩ Aut(A) by θ(α,β)

p,q =
β−1(θα(p),α(q)). Moreover, the following lemma holds:

Lemma 19. Let Q and Aff(A, f) be latin quandles, θ ∈ F (Q,Aff(A, f)), α ∈
Aut(Q) and β ∈ Aut(Aff(A, f))∩Aut(A). Then, Q×(1−f),f,θA ≃ Q×(1−f),f,θ(α,β)

A.

Proof. We can define a bijection Q×(1−f),f,θ(α,β) A −→ Q×(1−f),f,θ A by (q, a) ↦→
(α(q), β(a)). It is straightforward to check that this is also an isomorphism.

Hence, in order to enumerate all central extensions Q ×(1−f),f,θ A, it is suffi-
cient to consider only representatives from the orbits of the action of Aut(Q) ×
(Aut(A) ∩ Aut(Aff(A, f))).

We can see that the theory that we described above is slightly more com-
plicated than the theory for enumeration of loops developed in [2]. Hence, the
enumeration of latin quandles is really a non-trivial task that goes beyond the
extent of this thesis.
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Conclusion
We were able to reach our main aim from the introduction section and to classify
non-affine selfdistributive quasigroups of size 2k, this classification is given by
Theorem 17. We were able to prove that the least k for that there exists such
a quasigroup is k = 6 in two inependent ways - we constructed such a quasigroup
explicitely (construcion above Theorem 15) and we found also several central
extensions that provide us with such a quasigroup (in Table 3.1).

We developed also a generalization of Onoi’s construction (presented in his
article [6]) that provides us with an interesting examples of selfdistributive quasi-
groups of size 2k for that we are able to determine whether they are affine or not
(due to Lemma 14).

On the other hand, there are still many open questions in the area of classifica-
tion and enumeration of non-affine selfdistributive quasigroups left. One of them
is, whether there exists an indecomposable (e.g. such that Q is not isomorph
to the direct product Q1 × Q2 for any Q1, Q2 ̸= Q) non-affine selfdistributive
quasigroup of size 2k for some odd k - the only quasigroups of this kind that
we were able to construct were direct products of smaller affine and non-affine
quasigroups.

Another open question is the enumeration of non-affine selfdistributive quasi-
groups - we were not able to say how many of them (up to isomorphism) exist
of size 26 and the question is surely harder for greater k’s. Another question
for further research could be to classify quasigroups that are constructed from
Onoi structures (or to classify Onoi structures itself), because the construction
presented in section 2 seems to be quite easy and it enables us to compute mul-
tiplication tables of quite huge quasigroups efficiently. Maybe it is also possible
to generalize the notion of Onoi structures in order to construct quasigroups of
size pk for other primes p.

It could be quite depressing to end up with more open questions than we
had at the beginning. But this is probably quite normal and even quite nice
aspect of exploring the world of mathematical ideas. When we are able to answer
one question, the desire to understand, explore and answer other new questions
grows. And it is surely good the way it is - because the provoked desire means
that we are still capable of perceiving the beauty of the ideas. And the beauty
raises love. And that is everything what matters.
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[11] Vojtěchovský, Petr, Stuhl, Izabella. Enumeration of involutory latin
quandles, Bruck loops and commutative automorphic loops of odd prime
power order. accepted to Nonassociative Mathematics and its Applications,
proceedings of the 4th Mile High Conference on Nonassociative Mathematics,
Denver, Colorado.

25



A. Attachments
Compact disc with programs introduced in Section 3 and their results
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