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Introduction
In the world of automated theorem proving, there had always been a disconnect
between how computers and humans do mathematics. One of the reasons why
computers have not been able to emulate human reasoning is the human capacity
for intuition. When working with a well known structure (e.g. field of real num-
bers), they operate with its mental image. Therefore they can usually correctly
guess whether or not a given sentence will hold or not. This assessment is possible
even if the human can not prove the sentence using a formal proof system. Com-
puters have so far been unable to do this estimation very well, mostly because
they operate only with axioms of the structures and have no such image.

In this thesis, we do first experiments with trying to build such mental image,
so that it can later be used to do these estimations. The ultimate aim is to have
an oracle that guesses validity of given sentences based on a number of pre-trained
models of the theory.

Another crucial aspect of intuitive understanding of structures is the ability
to naturally extend them. Most structures have extensions that can be called
”algebraic”, i.e. those that arise when we add solutions to an equation that has
no solution in the structure itself. Best known examples are algebraic extensions
of rings, for example using the equation x2 − 2 = 0 in Z or x2 + 1 = 0 in R.

The structures that mathematicians work with, however, can be quite com-
plex. So complex in fact, that handcrafting a model that the computer can
work with gets quite challenging. That is why we rely on the machine learning,
namely we rely the universal property of the neural networks - their ability to
approximate any continuous function with arbitrary precision. Neural network
learning, however, needs to work with differentiable functions, that do not exist
in most structures. To enable their usage we choose a representation of the struc-
ture elements in Rn, which we will call grounding. Here we will use exclusively
handpicked groundings that give us better insight into the performance of the
model.

We try to teach the networks using the propositions that are true/false in
the structures. The details can be found in chapter 2. Using this approach with
the framework Tensorflow (Abadi et al. [2015]) we have built neural models and
extensions of groups, namely Zn and Sn. Results of these experiments can be
found in chapter 3. However, we have so far not tried any experimentation on
other structures. Experiments with other structures are possible, however beyond
the scope of this thesis.
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1. Background
In this section we will discuss the fundamentals of both model theory and neural
networks. Since this thesis seeks to unify two vastly different fields of mathematics
and computer science, understanding of both of them is essential. A reader
acquainted with those fields should not find any surprises here.

1.1 Model theory
Model theory is the area of mathematics that studies mathematical structures
through the lens of mathematical logic.

1.1.1 Basic definitions
Most of these definitions are paraphrased from Weiss and D’Mello [2015].

Definition 1. A language L is a set of function, constant and relation symbols
with associated arities.

Definition 2. A term in the language L is a finite sequence of function and
constant symbols from L and variables that is defined recursively:

1. A variable is a term.

2. A constant is a term.

3. If f is n-ary function and t1, . . . tn are terms then f(t1, . . . tn) is also a term.

Only sequences that can be obtained using this constructions are terms.

Definition 3. A Formula in the language L is a finite sequence of any symbols
in L, logical operations (∧,∨,¬,→) and the equality symbol =. It is also defined
recursively:

1. If t1 and t2 are terms then t1 = t2 is a formula.

2. If R is an n-ary relation symbol and t1, . . . tn are terms then R(t1, . . . tn) is
a formula.

3. If φ is a formula then ¬φ is also a formula.

4. If ϕ and ψ are formulas, then φ ∧ ψ, φ ∨ ψ and φ→ ψ are also formulas.

The definition usually also includes the quantifiers ∃ and ∀.

5. If φ is a formula and x is a variable that is not already used with a quantifier
then (∃x)φ and (∀x)φ are formulas.
∀ is called the universal and ∃ is called the existential quantifier

Once again, only sequences obtained by this construction are formulas. All sub-
sequences of a formula that are also formulas are called subformulas.
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Definition 4. Given a formula φ, a free variable is a variable in φ that is not
used in a quantifier. A variable that is used in a quantifier is called bound. If
x1, . . . xn are all the free variables of φ then we usually write φ as φ(x1, . . . xn)
to show that it has free variables. A sentence is a formula that has no free
variables. A free formula is a formula that has only free variables.

Definition 5. An L-theory is a set of sentences in the language L.

Note that theory can be also infinite. Also note that the cardinality of a
theory of a finite language is at most countable1.

Definition 6. A structure S is a collection (S, I) where S is a nonempty set
(called the universe of S) and I is an assignment that assigns interpretations
to the elements of L. Naturally it assigns function symbols to functions on S,
constant symbols to elements of S and relation symbols to relations on S with
their appropriate arities.

Now we will need to know what does it mean for a sentence to be true in a
structure. In order to do that we first need to know the values of terms.

Definition 7. Let t(v1 . . . vn) be an L-term and ϕ : {v1, . . . vn} −→ S be an
assignments of the variables to the universe of an L-structure S. Then we recur-
sively assign values to subterms of t.

1. Value of vi is ϕ(vi)

2. Value of c where c is a constant is I(c)

3. If t1 . . . tm are terms with assigned values s1 . . . sm and f is a function then
f(t1, . . . tm) is assigned the value I(f)(s1, . . . sm).

Definition 8. Let φ(x1, . . . xn) be an L-formula and S an L-structure. Then
given a variable assignment ϕ : {x1, . . . xn} −→ S we assign the truth value of all
subformulas of φ as follows:

1. If the subformula is of the form t1(x1, . . . xm) = t2(x1, . . . xm) where t1 and
t2 are terms, then it is true if and only if t1 and t2 have the same value
assigned with variable assignment ϕ.

2. If the subformula is of the form R(t1, . . . tr) where t1, . . . tr are terms with
assigned values s1, . . . sr then it is true if and only if I(R)(s1, . . . sr) holds
in S.

3. Any logical operators work as normal, e.g. ¬ψ is true if and only if ψ is false
or ψ1 ∧ψ2 is true if and only if both ψ1 and ψ2 are true in this assignment.

4. If the subformula is of the form (∀y)ψ(y, x1, . . . xm) then it is true if and
only if for any extension ϕ′ of ϕ that also assigns y does ψ(y, x1, . . . xm)
hold (with assignment ϕ′).
Alternatively if the subformula is of the form (∃y)ψ(y, x1, . . . xm) then we
only require that there exists at least one such ϕ′.

1Assuming either countable set of variables, or taking the formulas ”up to renaming of
variables”.
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Definition 9. Given an L-formula φ(x1, · · ·xn) we say that φ holds in an L-
structure S if it is true for any variable assignment. This is denoted as S |=
φ(x1, . . . xn). A formula φ is satisfiable if there exists a structure S in the same
language where S |= φ

Note that this definition also works if φ is a sentence.

Definition 10. Given an L-theory T , we say that an L-structure S is a model
of T if T |= φ for every φ ∈ T .

This S is by no means unique. In fact, most theories have vastly different
models.

Definition 11. Formulas φ and ψ are equivalent if they are both true under
the same variable assignments of their free variables in any of their models2.

Note that this definition does not include semantic differences, e.g. renaming
of variables. For this we use a different definition:

Definition 12. We say that L-formulas φ and ψ are equisatistfiable if either
both are satisfiable or both are not.

The models of φ and ψ can be different, they might not even be in the same
language. Every pair of equivalent formulas is also equisatisfiable, since they share
all models 3. This term is used almost exclusively in formula manipulations.

Important things to notice in this section are that the universe S has no
restrictions. The models trained by us use S as a subset of Rn in order to allow
working with neural networks.

1.1.2 Skolemization
Existential quantifiers have been a major hurdle for automatic theorem provers,
since they add a lot of complexity to the proving algorithms. For example if a
formula starts with ∀x∃y∀z then y can be completely different for each x, but does
not depend on z. To ”remember” this dependency in further proofs, the theorem
prover needs to do some processing. We call this process Skolemization by its
inventor, Thoralf Skolem.

Definition 13. We say that a formula φ is in prenex normal form if it is
written as a sequence of quantifiers followed by a free formula.

Theorem 1. Every formula is equivalent to a formula in prenex normal form.

Proof. We recursively apply the quantifier equivalence rules (we also assume that
there exists at least one element):

2This definition is not the standard one, since we only define equivalence with respect to
models. Normally equivalence of formulas is a semantic property, regardless of models or even
satisfiability. However, to define equivalence properly, we would need to define multiple other
terms from mathematical logic, which we will not do for better readability of this section.
Classic definition can be found in Mendelson [1997].

3This is also true with the classical definition of equivalence, even though it does not require
the formulas to be satisfiable.
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• (Qx φ) ∧ ψ is equivalent to Qx (φ ∧ ψ) where Q is either ∃ or ∀.

• (Qx φ) ∨ ψ is equivalent to Qx (φ ∨ ψ) where Q is either ∃ or ∀.

• ¬(∃xφ) is equivalent to ∀x¬φ

• ¬(∀xφ) is equivalent to ∃x¬φ

If we treat implication φ→ ψ as equivalent to ¬φ ∨ ψ we are done.

Definition 14. We say that a formula φ is in Skolem normal form if it is in
prenex normal form and all quantifiers are universal.

Skolemization is a process that turns formulas from prenex normal forms to
Skolem normal form by introducing new function and constant symbols. We
repeatedly apply this step:

Let φ be a formula that has the form

∀x1∀x2, . . .∀xi∃yψ(x1, . . . xi, y)

where x1, . . . xn are all universally quantified and ψ is a formula in prenex normal
form. Then the Skolemized version of φ is obtained by introducing a new i-ary
function symbol fy and replacing all occurrences of y in ψ with fy(x1, . . . , xi).
Thus we get

∀x1∀x2, . . .∀xiψ(x1, . . . xi, fy(x1, . . . , xi))

We say that fy is the Skolem function of y.
If φ has the form ∃yψ(y), i.e. there are no universal quantifiers at the start

we introduce a Skolem constant cy and replace all occurrences of y in ψ by cy,
obtaining ψ(cy). This is consistent with the notion of constants being 0-ary
functions.

Theorem 2. Every formula φ is equisatisfiable to the formula ϕ that is obtained
by the Skolemization process.

Proof. We need to prove that we can build a model of ϕ from a model of φ and
vice versa. Let S be a model of φ and WLOG let φ be in prenex normal form
Q1x1, . . . Qnxnψ(x1, . . . xn) where Q-s are quantifiers and ψ is a free formula. We
need to add interpretations of all Skolem functions and constants to build the
model S ′ |= ϕ.

First, let us assume that y is the first existentially quantified variable in φ
and fy(x1, . . . , xi) its Skolem function (to include Skolem constants we permit
i = 0). Since S is a model of φ, we know that for every x1, . . . xi ∈ S there
exists an y that is the ”witness” that φ holds. We define fy(x1, . . . xi) = y.
Since there is such y for every tuple of x-es, this is a well-defined function. And
we can easily see, ψ(x1, . . . xi, y, xi+2, . . . xn) has the same truth value in S as
ψ(x1, . . . xi, fy(x1, . . . xi), xi+2, . . . xn) does in S ′, therefore S ′ |= ϕ. We repeat this
process of defining Skolem functions for every step of the Skolemization process,
and we get the whole S ′.

The other way around is just as easy. Since ψ(x1, . . . xi, fy(x1, . . . xi), xi+1, . . . , xn)
holds in S ′, there obviously exists an y ∈ S that ψ(x1, . . . xi, y, xi+1, . . . , xn), that
being y = fy(x1, . . . xi).
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This process had first been introduced to prove a general theorem in model
theory, but we will use it to enable manipulation with existential quantifiers.
More about the usage of this theorem can be found in Mendelson [1997] and
Weiss and D’Mello [2015].

1.1.3 Substructures and extensions
In order to do any constructions in model theory, we need to know how models
relate to each other. As it is right now, our models exist completely separately
from each other, with the only comparisons being possible through the lens of
formulas. However, if two structures are models of the same theory, we can
not differentiate between them using just that theory. That is why we need the
notions of substructures and extensions.

Definition 15. Let S, T be structures in the same language L. Then a mapping
of S to T is any function f : S → T that satisfies the following (for any x1, .., xn ∈
S):

1. If F is an n-ary function in L then f(FS(x1, . . . , xn)) = FT (f(x1), . . . , f(xn)).

2. If c is a constant in L then f(cS) = cT .

3. If R is an n-ary relation in L then RS(x1, . . . , xn) holds if and only if
RT (f(x1), . . . , f(xn)) holds.

If it also holds that f is one-to-one, then f is called an embedding.

Definition 16. We say that a structure S is a substructure of S ′ if they are
in the same language, S ⊆ S ′ and all symbol interpretations agree on S. That
means that (S, I|S) is a structure. Here I|S means the assignments of symbols
is the same but restricted to S.

We also say that S ′ is an extension of S

There are not many things that hold in extensions for general. For example a
carthesian product of two structures with naturally defined functions, constants
and relations is an extension of both of them, but their elements do not necessarily
”interact” with each other. To ensure this interaction we need new definitions.

Definition 17. Let S be an L-structure and S ′ its extension. Let t1(x) and t2(x)
be L′-terms with only one variable where L′ is the language L with added names
for each element of S. We say that the predicate4 φ(x) : ”t1(x) = t2(x)” is an
equation in S. If φ(x) holds for some x ∈ S ′, we say that x is the solution of
φ. If the if S is not a subset of the set of solutions of φ, we say that the equation
is non-zero.

Definition 18. Let S be a structure, S ′ its extension and let s ∈ S ′ be an element.
If there exists a non-zero equation φ(x) in S for which s is a solution then s is
algebraic5. If there is no such equation, then s is transcendental.

4Predicate is a formula with only one free variable
5Normally we do not require the φ to be an equation, but for the purposes of our model we

will make this assumption
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We see that every element s ∈ S is algebraic. We can take x = s as the
equation.

A reader acquainted with field extensions will recognize these terms. Indeed,
these are generalizations of those terms, so that the theory can be modified and
applied to other structures than fields. A crucial difference is that this definition
does not guarantee the existence of an extension. An example of this is 0·x = 1·x
in any field. However, there are classes of structures where every equation yields
an algebraic extension. One such example are groups.

1.1.4 Groups and their algebraic extensions
Definition 19. A group is a structure in the language {·,−1 , e} (where · is binary
function, −1 is unary and e is a constant) that also models the following theory6

1. ∀a, b, c (a · b) · c = a · (b · c)

2. ∀a a · e = e · a = a

3. ∀a a · a−1 = a−1a = e

We will call · composition, −1 inverse and e shall be unit.

Note that this is the skolemized version of the theory that has ∃e∀a e · a =
a · e = a or ∃e(∀a e · a = a · e = a ∧ ∀a∃b a · b = b · a = e)7.

Definition 20. A substructure of a group is a subgroup (denoted G ≤ G′). We
say that a subgroup is normal if ∀x ∈ G′ ∀g ∈ G x−1 · g · x ∈ G, or simply
x−1Gx ≤ G. We denote it as G ⊴ G′.

It can be proven that this subgroup is of the form {t(b1, . . . bn)|b1, . . . bn ∈
B, t is a term}. It is also the intersection of all groups that contain B (Drápal
[2000]). Note that if we use this as a definition, we can expand the notion of a
generated substructure to any model.

Definition 21. Let G be a group and B a set of elements of G. Then a subgroup
generated by B is the smallest subgroup of G that contains B. We denote it as
⟨B⟩G.

Definition 22. Let G ≤ H be two groups. Then the sets hG = {h · g|g ∈ G}
for any h ∈ H are called left cosets of G. If G is a normal subgroup, then
we can induce a composition on these cosets: hG · h′G = (h · h′)G (a proof that
this is really a group can be found in Drápal [2000]). We will call this group the
quotient group H/G.

As with algebraic extensions over fields, we can use this quotient group to
craft an algebraic extension to any equation.

First, however, we need a group that we can do quotient of.

Definition 23. Let G be a group. Then we will define an extension G[x] as such:
6For the sake of simplicity we will use multiple = signs in the definitions. To be absolutely

correct, we could re-write these as a = b = c −→ a = b ∧ b = c ∧ c = a.
7Once again we use simplified notation.
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• Elements of G[x] are formal strings of the form g1x
n1g2x

n2 . . . gkx
nkgk+1

where k can be any integer (including 0-in that case we have an element of
g), gi are elements of G (all except g1 and gk+1 have to be different from e)
and ni are non-zero integers.

• · is defined as concatenation of strings with adjustment for inverses. We do
this adjustment by repeating the following:

1. If we there is a substring gigi+1 we replace it with (gi · gi+1).
2. If there is a substring xni−1exni we replace it by xni−1+ni.
3. If there is x0, we replace it by e.

If none of these replacements is possible, we have a valid element.

• e is the same as in G.

• If g = g1x
n1g2x

n2 . . . gkx
nkgk+1 then g−1 = g−1

k+1x
−nk . . . x−n1g−1

1 . We can
easily verify that g · g−1 is indeed equal to e.

Without loss of generality we can assume that any equation φ has the form
t(x) = e, where t is a term. If φ(x) : ”t1(x) = t2(x)” would have a different form,
then φ′(x) : ”t1(x) · (t2(x))−1 = e” has exactly the same solutions.
Theorem 3. Let G be a group and φ(x) an equation of the form t(x) = e where
t(x) has at least one occurrence of x. Then there exists an extension G′ of G such
that there exists g ∈ G′ that is a solution to φ.
Proof. If we apply simplifications from definition 23, t has the form g1x

n1g2x
n2 . . . gkx

nkgk+1.
This modification of φ still has the same solutions.

This way t can be seen as an element of G[x]. Let us then define B =
{gtg−1|g ∈ G[x]}. ⟨B⟩ is a normal subgroup of G[x]. We immediately see that
gbg−1 ∈ ⟨B⟩, (even gbg−1 ∈ B) for all b ∈ B, g ∈ G[x]. Now if b = b1b2 . . . bn

where bi ∈ B then

gbg−1 = gb1b2 . . . bng
−1 = gb1g

−1gb2g
−1 . . . gbng

−1.

We define bi
′ = gbig

−1 for i ∈ {1, . . . , n}. Now

gbg−1 = (gb1g
−1)(gb2g

−1) . . . (gbng
−1) = b1

′b2
′ . . . bn

′.

Since ∀i bi
′ ∈ B, also gbg−1 ∈ ⟨B⟩.

Now we know that G[x]/⟨B⟩ is a group. In it, all elements of G form different
cosets, since g⟨B⟩ always has the element g · t(x) and no two g ∈ G can produce
the same g · t(x). Also, since t(x) has at least one occurrence of x, we know that
g /∈ ⟨B⟩ ∀g ∈ G. Therefore G ≤ G[x]/⟨B⟩.

The last thing we need to show is that x⟨B⟩ is a solution to φ(x). Indeed,
since t(x) ∈ ⟨B⟩,

t(x⟨B⟩) = t(x)⟨B⟩ = ⟨B⟩ = eG[x]/⟨B⟩.

Therefore G[x]/⟨B⟩ is the desired extension.

A reader acquainted with field extensions will immediately recognize this con-
struction. Indeed, it had been the inspiration for this proof. Worth noticing is
that this construction can also naturally lead to the notions of Galois groups and
indices of group extensions, but that is beyond the scope of this thesis.
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1.2 Neural networks
Neural networks have been one of the most important and well developed meth-
ods in machine learning in recent years. The main advantage of their usage is
their universal property - the fact that given an ϵ > 0 there exists for every
smooth function a neural network that approximates it with the error of at most
ϵ. Assuming that we have a structure whose universe is a subset of Rn, we can
approximate any of its functions with arbitrary precision 8. How exactly do we
do that will be discussed in chapter 2. More about this subject can be found
in Goodfellow et al. [2016]. This publication is also the principal source for this
section.

1.2.1 What is a neural network
In this section we will describe a feedforward neural network. We call it feed-
forward because it lacks feedback connections. It is therefore simpler, although it
does not have any ”memory”. If a network has feedback connections, it is called
recurrent. Such networks are also widely used in machine learning, however
they are not used here, and are beyond the scope of this thesis.

A network is usually represented by chaining of functions, called layers. Thus
if we have a network f(x) = fn(fn−1(. . . f1(x)) . . . ) we call f1 the first layer, f2
second and so on. The number of these layers is called the depth of a model.
The last layer is called output layer, while the rest are called hidden layers
since we usually can not interpret the meaning of the data used and produced by
them.

In general the output fi does not need to have the same dimension as the
input x or the output y. But for the sake of simplicity, all hidden layers usually
tend to have the same dimension between them. This is called the width of
the network. Both depth and width can have a profound effect on the network’s
performance.

These networks are called neural, because they are inspired by biological neu-
rons. In each layer the singular neurons are scalar functions from each element of
input to each element of the output. These elements are also commonly referred
to as nodes. When we add together all neurons that lead to a node of the output,
we get a vector to scalar function, that is the building block of a layer. This is
better illustrated in Figure 1.1.

The simplest neural networks are linear models, e.g. linear regression. In these
models each neuron is a simple multiplication by a parameter. These models
however have many drawbacks, for instance that they can only model linear
functions. That is because the layers are linear functions, therefore several layers
in a sequence also form a linear function.

We overcome this by altering the layer input in a non-linear fashion, ideally
preserving the most important parts of it. This is an important area of ongoing
research.

One of the most widely used methods to break the linearity is the use of so-
called activation functions. Activation function is a non-linear R → R function
that we perform on each node to know if it ”activates”. There are several functions

8Assuming a suitable extension of the functions to facilitate the smoothness.
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Figure 1.1: Neurons in a layer

Each arrow represents a single neuron-a scalar to scalar function

that fulfill this purpose, each with their advantages and disadvantages. The
simplest is ReLU : the Rectified Linear Unit (Nair and Hinton [2010], Jarrett
et al. [2009], Hahnloser et al. [2000]). It is defined as ReLU(x) = max{x, 0}.
It is the most used activation function because it is the simplest function that
also preserves most of what makes linear functions easy to work with (simple
derivation). It has however some drawbacks that we will discuss later.

Figure 1.2: ReLU

0 x

y

0

1.2.2 Example: XOR
One of the simplest examples of the usefulness of this non-linearity is the binary
operation XOR: the eXclusive OR. It is a function {0, 1}2 → {0, 1} that is 1 if and
only if exactly one of the inputs is 1. This function is impossible to approximate
with linear regression, but there exists a simple network with ReLU activation
functions that exactly approximates it. This example network is the same as can
be found in Goodfellow et al. [2016].

Let us start with linear regression. As the loss function9 we will use the most
9Loss function and its notation with parameters θ is introduced in subsection 1.2.5.
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common one, the mean square error. It has the form

J(θ) = 1
n

∑
(f̂(x; θ)− f(x))2

where f is the function we try to estimate and f̂ is the learned function. Since
we are now using linear regression, f̂ has the form f̂(x; w, b) = x⊤w + b where w
is called the weight vector and b is the bias (in this case scalar). Using the least
squares method we get w = (0, 0)⊤ and b = 1

2 . This is obviously not a good fit
as it just outputs 1

2 regardless of the input.
If we however permit the usage of activation functions (ReLU), we can hand-

craft a network that will fit the function perfectly. Now our network will have
the form

f̂(x; W, c,w, b) = w⊤ max{0,W⊤x + c}+ b

where
W =

(
1 1
1 1

)
,

c =
(

0
−1

)
,

w =
(

1
−2

)
,

and b = 0. This network is illustrated in Figure 1.3. This is also not the only
network that estimates XOR perfectly.

Figure 1.3: XOR network

x1 x2

ReLU ReLU

y

·1 ·1·1 ·1

+0 −1

·1 ·(−2)

Let us see what happens when we apply the input data to it in matrix form⎛⎜⎜⎜⎝
0 0
1 0
0 1
1 1

⎞⎟⎟⎟⎠ .
After the first layer multiplication by the weight matrix W we have⎛⎜⎜⎜⎝

0 0
1 1
1 1
2 2

⎞⎟⎟⎟⎠ .
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When we add the bias vector c we get⎛⎜⎜⎜⎝
0 −1
1 0
1 0
2 1

⎞⎟⎟⎟⎠ .
Now we apply ReLU: ⎛⎜⎜⎜⎝

0 0
1 0
1 0
2 1

⎞⎟⎟⎟⎠ .
This concludes the first layer of the network. Then we multiply each row with

w⊤ and we get ⎛⎜⎜⎜⎝
0
1
1
0

⎞⎟⎟⎟⎠
which is exactly the desired output.

In this case we got the hand-crafted solution from a book. Normally the
weights and biases are found using an optimization method such as gradient de-
scent. Here we found the perfect solution, a global minimum to the loss function.
But that is not generally possible.

1.2.3 Other activation functions
ReLU, while being the most popular activation function, is not the only one used
here, because it also has some drawbacks. The fact that its gradient is 0 on all
negative inputs means that gradient descent optimization methods might get us
to the state where a node ”dies” - all gradients regardless of data are 0. This
tends to happen if our input and output contain few non-zero elements. In that
case it is advised to use a different activation function.

Before the introduction of ReLU the default activation functions were sigmoid

σ(x) = 1
1 + e−x

and hyperbolic tangent
tanh(x) = ex − e−x

ex + e−x

functions. They are related to each other since tanh(x) = 2σ(2x)− 1. The main
advantage of these functions is that they only output values in an open interval,
(0, 1) for sigmoid and (−1, 1) for tanh. They also have nonzero gradient over their
whole domain, which ensures that gradient descent optimization always works.
However, as can be seen in Figure 1.4 if the inputs are far enough from 0, the
gradients become very small. This results in gradient descent optimizers taking
longer time (Krizhevsky et al. [2012]). If this happens, we say that the functions
saturate. This is also the reason why these functions fell out of use.

There had been also a number of attempts to fix the ”dead” node problem
with ReLU. Most of them try to preserve the piece-wise linearity, since it is the
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Figure 1.4: Sigmoid and tanh functions
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Figure 1.5: ReLU variations
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ReLU’s strongest advantage. Among examples are Leaky ReLU (Maas et al.
[2013]), Parametric ReLU (He et al. [2015]) or Exponential LU (Clevert et al.
[2015]). They all try to combat this problem by redefining ReLU on negative
numbers. They can be seen in Figure 1.5

They are defined as follows:

Leaky ReLU: LReLU(x) = max{0.01 · x, x}

Parametric ReLU: PReLU(x) =

⎧⎨⎩a · x x ≤ 0
x x ≥ 0

where a is a learned parameter
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Exponential LU: ELU(x) =

⎧⎨⎩α(ex − 1) x ≤ 0
x x ≥ 0

where α is a learned parameter

There is to this day ongoing search for better activation functions, for example
in Ramachandran et al. [2018] they propose a different function called Swish,
defined as x · σ(β · x) where β is a learned parameter. They were able to find
this function by crafting a set of basic functions and rules to combine them, thus
greatly enlarging the set of activation functions tried. The Swish function is
presented as a compromise between ReLU and the sigmoid:

If β = 0, Swish becomes the scaled linear function f(x) = x
2 . As

β → ∞, the sigmoid component approaches a 0 − 1 function, so
Swish becomes like the ReLU function. This suggests that Swish can
be loosely viewed as a smooth function which non-linearly interpolates
between the linear function and the ReLU function.(p.5)

Ramachandran et al. [2018] also contains performance comparisons for all
above mentioned activation functions.

1.2.4 Universal approximation
The most useful property of the neural networks is their ability to approximate
any continuous function (Cybenko [1989]). The universal approximation theorem
is stated thusly:

Definition 24. Let In be the unit cube [0, 1]n and µ a measure on In. Then
σ : R→ R is discriminatory if for any θ ∈ R and y ∈ In∫

In

σ(y⊤x+ θ)dµ(x) = 0

if and only if µ = 0.

Theorem 4. Let σ be a discriminatory function. Then the finite sums of the
form

G(x) =
N∑

j=1
αjσ(y⊤

j x+ θj)

are dense in C(In) (space of all continuous function on In).
This means that for any f ∈ C(In) and ϵ > 0 there is a sum G(x) of the form

as above such that ∀x ∈ In |G(x)− f(x)| < ϵ.

The proof of this theorem, along with the proof that sigmoid-like functions
are discriminatory can be found in the original paper.

There is however no bound on the width of the network, which may pose
a problem for the computers. Fortunately, however, Lu et al. [2017] prove that
using a ReLU activation function we only need the width n+4 to achieve universal
approximation on compact subsets of Rn. On the flipside, this width-bound also
erases the depth-boundedness seen in the theorem above.

The relation between depth and width had not yet been fully established.
Partial results show that there are networks whose decrease in depth would re-
quire an exponential increase in width in order to keep the same accuracy (Eldan
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and Shamir [2016]). This leads to preference of deep neural networks, rather than
wide. The other way - decreasing width and increasing length - had not yet been
fully explored, but Lu et al. [2017] also prove that this increase in some cases has
to be more than polynomial.

This universal approximation is the reason that the usage of neural networks
is possible in model building. For example if S ⊂ R⋉ is the universe of a model
and f : Sm → S is a function, we can approximate it by first introducing an
arbitrary smooth function f ′ : Rnm → Rn such that f ′|S = f , and then finding a
neural network that approximates f ′.

1.2.5 Learning and optimization
Mathematical optimization is a branch of applied mathematics that is about
finding local extremes in functions. We use it to find parameters for our neural
network.

To use it in practice we first define a function that enumerates how far we are
from the desired output,

J : Θ→ R

where Θ is the universe of all possible sets of parameters for our estimator. We
will call J the loss function. The set of parameters that is the minimum of J is
the set that leads to the best estimator. Using optimization on J we seek to find
this minimum.

With neural networks we use the general form

J(θ) = 1
|X|

∑
x∈X

j(f̂(x; θ))

where j is the loss on a singular input. Note that the universe of inputs may be
infinite. In those cases we only use a finite subset X in each of the optimization
steps.

A very common loss function is the mean squared difference first introduced
above. There j = (f̂(x; θ) − f(x))2. It is widely used because of its simplicity,
but it also has some drawbacks, e.g. sensitivity to outliers. It was also used to
optimize the networks built for this thesis.

After we have a loss function, we choose an optimization method. A very basic
one is gradient descent. This method is commonly introduced as a solution to
the foggy hill problem. In this problem we have a traveler that wants to reach the
summit of a hill, but because of the fog he can only see his immediate vicinity.
He therefore always goes in the direction of the steepest climb and if he can not
see any climb, he declares that he had reached the summit. In this problem we
seek the maximum height above sea level as a function of longitude and latitude.

Gradient descent is an algorithm that can be used on functions that are dif-
ferentiable with respect to θ. It works in steps. It starts at a random θ0 ∈ Θ. In
each step t it computes the gradient ∇t of J(θt) and then sets

θt+1 = θt − ϵ · ∇t,
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since −∇t is the direction of the steepest descent. ϵ is a parameter of the algo-
rithm that describes how ”long” the steps are. It is also called the learning rate.
A careful consideration needs to go into the choice of this parameter. Too large
ϵ can lead to the algorithm ”overshooting” the minimum, while with a small ϵ,
the finding of the minimum can be very slow.

Usually the universe the function operates on is infinite, or too large to use
efficiently. In those cases we do the gradient descent in batches. As mentioned
before, we take a sample subset X of the universe (called batch) and we do the
descent step using that with the loss function J . It is important to note that the
gradient would be different with every X we choose. That may lead (although
rarely) to the situations where in one step we have the gradient that is opposite
of the previous one, thus undoing the previous step. Another disadvantage of
gradient descent is that it only finds local minima, so any small valley would stop
the algorithm. To combat this, we usually make some alterations. One approach
is discussed in subsection 1.2.7.

1.2.6 Back-propagation
Next problem in optimizing a neural network is computing the gradients in each
step. Since the input dimension can be quite large, numerical computation of
gradients, although possible, is usually slow. One of the fundamental properties
of neural networks is the simplicity of their individual components that allows
us to compute gradients more efficiently. The most widely used method is called
Back-propagation (Rumelhart et al. [1986]) or Backprop.

This name comes from the inverse of the term Forward-propagation - usage
of the feedforward network to compute an output. Input propagates forward
through the network until it produces an output, and subsequently the loss J(θ).
Back-propagation is taking this loss and propagating it backwards to produce a
gradient.

At the heart of this method lies the chain rule of calculus. Let f and g be
R→ R differentiable functions and z = f(y) = f(g(x)). Then

dz

dx
= dz

dy

dy

dx
.

This also holds in higher dimensions, where it is generalized to

∂z

∂xi

=
n∑

j=0

∂z

∂yj

∂yj

∂xi

where ∂z
∂yj

are partial derivations of f in j-th coordinate and ∂yj

∂xi
are partial deriva-

tions of gj - the j-th coordinate of g with respect to its inputs i-th coordinate.
Written with a Jacobian matrix J of g it is

∇xz = J⊤∇yz.

As we can see, if Jacobians of vector to vector functions and gradients of
vector to scalar or scalar to scalar functions in our network are known, we can
compute gradients with respect to any subset of inputs starting from any point
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Algorithm 1 A basic back-propagation algorithm for the most basic feedforward
neural networks. We assume that each layer of our network is an affine function
y(i) = f (i)(x(i−1)) = W (i)x(i−1) + b(i) with activation function a on each element:
x(i) = a(y(i)). x-es here are states between layers and y-s are states before apply-
ing activation functions for non-linearity. Here x(0) = y(0) = input and f (1) is the
first layer.
Require: ŷ, y: Computed and expected result respectively. ŷ = x(n)

Require: J(ŷ, y): A loss function
Require: {x(i), y(i)}: Computed values for all layers
Require: {W (i), b(i)}: Network weights and biases
g ← ∇ŷJ(ŷ, y): Initialization of gradient with respect to the computed value
for i = n− 1, . . . , 0 do
g ← ∇y(i)J = g ⊙ a′(y(i))
Undo the derivation of the activation function. For the sake of simplicity we
assume that a has no parameters, but if it had we could save their gradients
here.

∇b(i)J = g

∇W (i)J = gx(i)⊤ //g is a column vector and x(i)⊤ is a line
Compute the gradients with respect to this layer’s parameters

g ← ∇x(i−1)J = W (i)⊤
g

Propagate the gradient to previous layer
end for

in our network. We can accomplish this by applying the chain rule recursively
(and taking the rest of the inputs as constants).

However, this algorithm computes the gradient for only one input. If our
batch size is higher, we compute all gradients and add them together. This can
get computationally difficult, so most software uses procedures to speed it up.
For example the Tensorflow framework uses what Goodfellow et al. [2016] calls
the symbol to symbol approach. The framework adds new nodes to the network
that are used to compute the derivations. This way the back-propagation can be
done by the same engine. Specifically we add nodes for gradients of each layer
and other nodes for computing with the chain rule. Then if we treat the batch
as a matrix, we can compute gradients during only one run through the graph.
Figure 1.6 illustrates this process.

1.2.7 Adam optimizer
In the framework built for this thesis we use the Adam (Adaptive moment es-
timation) optimizer (Kingma and Ba). It is based on gradient descent, but it
also conserves the momentum. In each learning step it uses a weighted average
of previous gradients, thus it is not as dependent on the exact batch chosen for
the step. It also helps overcome local minima, since it takes longer to reverse
the direction of descent. It uses 4 parameters: α - learning rate, β1 - gradient
momentum decay, β2 - second gradient moment momentum decay and ϵ - a small
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Figure 1.6: An example of the symbol to symbol approach. Note that f (3) here
can also be the loss function
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parameter to avoid division by zero. The description of algorithm can be found
in Algorithm 2.

The paper recommends using α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
These values are also the default values in Tensorflow framework and were also
used for building the models for this thesis.

This optimizer is best suited for very noisy functions or functions with a lot
of local minima. In the step 7 of the loop we update each parameter with a
different step size, dependent on the second moment. The effective step size for
each element is ∆t = α · m̂t/

√
v̂t. Therefore the step size gets higher if the space

is sparse, i.e. it only has several large gradients. If the gradients are closer to
each other, we get smaller steps. We generally expect there to be a wild variance
when we are further from the optimum (due to noise) that diminishes the closer
we get. This way Adam can tune its step size based on how close we estimate
that we are.

In the 5th and 6th step of the loop we perform bias corrections. This is because
the model without these corrections is naturally biased towards the initial value.
As an example, let us assume that in the gradient g1 has one element value 10.
Then m1 has for this element 10 · (1− β1), that is 1 if we use recommended pa-
rameters. The average, however, should obviously be 10. If we do the correction,
this is exactly what we have.

Another nice property of Adam is its invariance towards rescaling. If we rescale
the gradients with a positive constant c, it cancels out: ∆t = c · m̂t/

√
v̂t · c2 =

m̂t/
√
v̂t.

More information about this algorithm, including the convergence analysis,
proof of convergence or extensions can be found in the original paper.
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Algorithm 2 Adam optimizer. This algorithm is exactly like it can be found
in the original paper. g2

t denotes element-wise square. All vector operations are
element-wise. ft represents the loss function f realized over the training batch in
the step t.
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t0 ← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

end while
return θt (Resulting parameters)
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2. Neural modelling
This thesis is inspired by the work of Serafini and d’Avila Garcez [2016]. In
their paper they propose the creation of Real Logic, a framework that uses ten-
sor networks 1 to process sentences and assign them truth value in the interval
[0, 1] (we call this ”uncertainty” fuzzy logic). They propose to do this by intro-
ducing a grounding: a function that grounds a structure in real vector space,
including all elements, functions, constants and even relations. This grounding is
approximated using neural networks.

The place where this thesis differs from this work is the type of the structure
we try to emulate. In the original paper they model a relational structure, while
we forego the relations completely and only implement functions and constants.

Definition 25. Let L be a language. Then a grounding is a function G that
satisfies:

1. G(c) ∈ Rn for every constant c.

2. G(f) where f is a function symbol is a map Rnm → Rn where m is the arity
of f .

3. G(r) where r is a relation symbol is a function Rnm → [0, 1] where m is the
arity of r.

Grounding is then naturally extended to any term and atomic formula as such:

G(f(t1, . . . , tn)) = G(f)(G(t1), . . .G(tn))

G(r(t1, . . . , tn)) = G(r)(G(t1), . . .G(tn))

There are also rules for logic on formulas:

G(¬r(t1, . . . , tn)) = 1− G(r(t1, . . . , tn))

G(ϕ1,∨ · · · ∨ ϕn) = µ(G(ϕ1), . . . ,G(ϕn))

Where µ is a co-t-norm: an operator that joins the ”probabilities” of the
sentences being true into one. A t-form (or a triangle form) is a function in
fuzzy logic that replaces conjunction, e.g. ⊤min(a, b) = min{a, b} or ⊤Luk(a, b) =
max{0, a + b − 1}. A co-t-form is a dual that does the same with disjunction
(µ(a, b) = 1−⊤(1− a, 1− b) because a∨ b = ¬(¬a∧¬b)). For more about fuzzy
logic see Hájek [1998].

In this thesis, however, we will be dealing with specific structures. Therefore
we also define G(x) for each element of the structure. The rules for extending to
terms still have to hold.

1A type of neural networks
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Figure 2.1: An example network obtained from a literal f(h(x1), x2, c) =
g(c, h(x1)) where x1 and x2 are inputs, f, g, h are functions and c is a constant.
Loss is computed from the difference of t̂1 and t̂2.

2.1 Building a neural model
First we will discuss the idea behind the general neural models. However, because
of the limited scope of the experiments not every concept introduced in this
section was implemented. To see what was done in practice, refer to section 2.3
and chapter 3.

Let T be an L-theory that describes a class of structures. We assume that T
is finite. We also assume that all φ ∈ T are in Skolem normal form. If not, we
use the skolemized version of T . We also assume that L has no relation symbols.
How these could be implemented is discussed in chapter 4.

We pick a grounding for the elements. We take an appropriate subset of Rn

to represent the elements. Here we assume that the grounding is handpicked, i.e.
it is given externally. Other possibilities are also discussed in chapter 4.

Next we build a neural network for each of the symbols following the rules
of groundings (see Definition 25). They are initialized randomly. Then we take
these neural networks as building blocks and we build a network for each axiom
of T , as illustrated in Figure 2.1. Since we assume that there are no relation
symbols, each axiom has to have at least one equality sign. If the axiom is an
equality between two terms, we use this as the basis for our loss function.

In the case that the axiom has more such equalities (or negations of them)
we do some adjustments. Because we do not assign a truth value (0-1) to the
atomic formulas, the methods of aggreggating subformulas in Definition 25 could
prove problematic. Therefore we will need different methods to combine the mean
squared differences.

The loss function of a negation of a subformula φ should be computable from
its own loss, e.g.

J¬φ = 1
Jφ

.

If φ1, φ2 are subformulas, loss of φ1 ∨ φ2 will be e.g. min{Jφ1 , Jφ2} and loss
of φ1 ∧ φ2 will be e.g. Jφ1 + Jφ2 . However, these operations are for now just
a speculation and further research is warranted. For example ∨ could use a
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Figure 2.2: Network used for learning an extension defined by the equation
t1(x) = t2(x). Note that only cex is optimized, everything else is treated as a
function.

function with a gradient that depends on both parts of the equation, while ∧
might perform better using a different method of aggregation (e.g. 2

√
J2

φ1 + J2
φ2).

It may be a good idea to also penalize straying from the groundings of the
elements, since this may produce functions that are not exactly S → S. Possible
ways to achieve this are discussed in chapter 4.

After computing the loss for each axiom, we aggregate them like with ∧ and
use back-propagation from there. This is, however, very costly with regards to
computation time. Therefore in our experiments we used a different, simplified
approach (see section 2.3).

2.2 Neural model extension
Another part of this thesis is learning model extensions. In subsection 1.1.3 we
have discussed which type of extensions are we interested in.

Assume we have already built a model G for a structure S and we want
to extend it to include a solution of an equation t1(x) = t2(x)2. Note that
t1 and t2 are allowed to have parameters from S. Since we assume that the
representation is already settled, the usage of parameters is not a problem. We
will treat the equation as an axiom ∃x t1(x) = t2(x). In its skolemized version
it is t1(cex) = t2(ctextex). We already have a framework to find the grounding of
such a constant (Figure 2.2). However, we need to remove any possible penalties
for straying away from the representations of S.

During the learning of this constant, it is vital that the optimization process
does not change any parameters of other functions and constants. Otherwise we
would not get an extension of the already built structure, only its modification.

After the optimizer found a minimum, we evaluate various terms with this
new constant to test if it behaves as expected.

2We assume that it has no solution in S.
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2.3 Implementation for groups
Axioms of groups can be used differently, since the definitions of symbols stem
from one another. e is defined from ·, and −1 is defined from e and ·. This is
because we can regard e and −1 as Skolem symbols (subsection 1.1.4). However,
this ordering of symbols is not generally possible.

There are many different types of groups, that have vastly different complexity
levels. We have built models for the cyclic groups (namely Z10 and Z20) and
symmetric groups (S3 and S4). These groups have been selected for being the
simplest and the most complex finite groups respectively.

To better see if the computer is able to represent these groups correctly, we
have opted to use the multiplication table for the first experiments with the
learning of ·. The multiplication table is a table of pre-computed values for each
pair of the elements. This is a simplification of learning the model only based on
some propositions valid in it, but it is an essential one for human interpretability
of the results. To demonstrate the ability of the network to generalize, and
to a degree ”understand” the composition function, several entries (up to 10%)
had been selected as testing data - they are never used during the optimization
process.

Both · and −1 are 4-layer feed-forward neural networks with all connections.
The width of each layer is 3n where n is the size of the grounding. The activation
functions on each layer are leaky ReLU. The loss function for each network is
the mean squared difference. There is no penalty for straying too far from the
element representations, since this is already covered by the multiplication table
approach. Each network is optimized using the Adam optimizer with default
settings. Inputs are given in batches of 25 random pairs for · and 5 elements for
−1 and e.

Each of the group functions is trained with a different network, with a separate
optimizer. Because of the difficulty of determining whether a network is trained
well, all of them were trained at the same time. The network used for learning the
composition is described in Figure 2.3, unit in Figure 2.4 and inverse in Figure 2.5.

Note that e had been used during the training of composition as a part of
the training data. However, this knowledge had not been passed to the optimizer
seeking to find this e.
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Figure 2.3: Learning of composition. An incomplete multiplication table is used
to determine the loss. x1, x2 is a randomly selected pair.

Figure 2.4: Learning of the unit. Parameters in the composition network are not
altered in this optimization process. Note that the unit element is also present in
the multiplication table used for the learning of the composition. However, this
information is not shared, and the optimizer has to find it by itself. Learning is
based on the axiom ∀a a · e = a. The dual axiom e · a had been disregarded for
the sake of efficiency.
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Figure 2.5: Learning of the inverse. Here we use the learned unit and composition.
We use the axiom a−1a = e. The dual aa−1 = e is disregarded.
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3. Results
In this chapter we will discuss the results of our experiments with groups. Note
that the error rate depicted in the graphs is not the loss, but rather its square
root. This is done as to represent errors on the original scale.

3.1 Cyclic groups
Cyclic groups are the simplest groups possible. They are defined as groups gen-
erated by only one element x. They are all isomorphic to either (Z,+,−, 0) -
integers with addition - or (Zn,+,−, 0) - {0, 1, 2, . . . n− 1} with addition modulo
n.

3.1.1 Z10

The group selected first was Z10. All elements were represented as themselves
in R1. Since there is no element a such that a + a = 1, this was selected as the
equation through which we will extend this group. Expected extension is Z20,
where the embedding is a = 1, therefore 1Z10 ↦→ 2Z20 . We will call this a the half.

The results of one experiment with training the composition, inverse and
the unit are depicted in Figure 3.1. As we can see, we can get a very good
approximation of composition and the unit. The inverse lags behind a little, but
that is expected because it is dependent on both of the other functions, therefore
the errors in them reflect in the inverse much more.

The inverse also appears smoother. That is because the testing set for the
inverse network contains 10% of all data, therefore here it is only one element.
That means that all testing batches are the same (although that is not true for
these training batches).

One unexpected result was the fact that while in most runs the unit tended to
be around 0, sometimes it also settled around 10. That could also be considered
a right answer, although 10 is not in the chosen representation.

While learning the extension, most of the time the ”half” settled around 5.5.
This is of course one of two possible intuitive solutions to a+ a = 1, the other of
course being 0.5. Table 3.2 shows how the extension settled in several different
runs. Note that the runs had different lengths, but the half always settled so
early that the length had no effect.

Table 3.3 shows how two different runs generated Z20 using iterated (learned)
composition on the ”half” element.

3.1.2 Z20

The second group we experimented with was Z20. Because of its larger size, the
experiments with it were longer.

Once again, the equation by which we extend the group was a + a = 1.
The results of one experiment can be seen in Figure 3.4. Once again, 10% was
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excluded from the training. The trend lines are similar to Z10 (Figure 3.1), with
composition and inverse training quickly, while inverse lags behind. The inverse
line is much noisier, because now the testing data has 2 elements, out of which 5
are chosen for testing (with repetition).

Values for the half in different runs can be seen in Figure 3.5. Once again,
the algorithm usually found one of the two intuitive answers, 0.5 and 10.5. A
graph showing the iterated composition of the half is depicted in Figure 3.6. As
we see, the learned structure appears at first as very similar to the expected Z40,
however we start seeing very large deviation after 40 compositions. The cause of
this is unknown, but we suspect it could be caused by the network not learning
the associativity axiom. Indeed, 19 + 1 .=19+(half+half) outputs correctly 0,
however (19+half)+half does not output 0.

3.1.3 Infinite group Z
The last cyclic group experiment was with the infinite group (Z,+). The training
set comprised of integers from an interval [−10000, 10000] in order to avoid over-
flow errors. Because neural network learning is already hard on such a diverse
set, we opted to not exclude any data for training.

a+a = 1 still has no solution in this group. In contrast to the previous cases,
there is only one intuitive solution and that is 1

2 . The group generated by this 1
2

is isomorphic to the original. Unfortunately, we were unable to get to this point.
The learned half was -1.1713637. When we tried to generate some elements of
the extension, we obtained

1 2 3 4 5 6
-1.1713637 1.0000439 2.2069557 2.8777812 3.2506382 3.4578807

7 8 9 10
3.57307 3.637094 3.6726806 3.6924593

Indeed, the learned half+half=1, but the composition fails for larger itera-
tions.

3.2 Symmetric groups
Symmetric groups, or permutation groups are the most complex finite groups.
Indeed, a corollary from Cayley’s theorem is that every finite group is isomorphic
to a symmetric group of large enough size (D.L.Johnson [1971]). This is why they
have been chosen for further experiments.

Every symmetric group is generated by the set of transpositions of two ele-
ments. Each element can therefore be written as a sequence of transpositions.
Although this sequence is not unique, all such sequences have the same length. For
each permutation σ we define sgn(σ) = (−1)l where l is this number of transposi-
tions. It also holds that sgn(σ1 ◦ σ2) = sgn(σ1)sgn(σ2). Therefore sgn(σ ◦ σ) = 1.
(proofs in Hlad́ık [2019])

For this reason the equation that we sought to find the extension for is h◦h =
(0, 1) where (0, 1) denotes the transposition of elements 0 and 1. sgn((0, 1)) = −1,
therefore we know that h can not be in the original group.
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The structure of this extension is suspected to be some form of the semidi-
rect product of Sn × Z2, although the basic semidirect product appears to be
insufficient.

3.2.1 S4 with a basic grounding
S4 is the group of permutations of 4 elements. A ”näıve” grounding of elements
was chosen first. It assigns each permutation (a, b, c, d)1 the element [a, b, c, d] ∈
R4. The advantage of this grounding is its simplicity and shortness. The main
disadvantage, however, is that the mean squared error loss function is biased.
We can see this on an example where [0, 1, 2, 3] is one transposition away from
both [1, 0, 2, 3] and [3, 1, 2, 0], however in the latter case the mean squared error
is considerably higher.

For the training we once again use only 90% of the data. During the training
we expectedly observe significantly higher training times, as exemplified in Fig-
ure 3.8. This is also compounded by having slightly more elements (24). We are
also unable to achieve the same precision. Learning of the unit was again very
precise, see table 3.9.

When it comes to learning of h, we see even more problems than in the case
of cyclic groups. Some half elements are seen in table 3.10. They are noticeably
different from each other, something we did not observe before. The reason why
these were the vectors found is unknown.

However, as we see in table 3.11, generating even a small subgroup results in a
failure. Since h◦h = (0, 1), we expect that h4 = (h◦h)◦(h◦h) = (0, 1)◦(0, 1) = e.
Unfortunately, we were never able to get this equation to hold with h◦(h◦(h◦h)))).
Once again, reason for this is unknown. But because (h ◦ h) ◦ (h ◦ h) yielded
reasonable results, we suspect that again the associativity is the problem.

3.2.2 S4 with matrix grounding
To fix the problem with the bias of the loss function we add the ”one-of-n”
representation. This representation is used for elements that are equally different
from each other. This representation attaches to each of the n elements a vector
from the canonical basis of Rn. If we take the basic representation of S4 and
change every element to its one-of-n representation, we get a vector in R16 that
has exactly four ones and the rest are zeroes. For example

(1, 2, 0, 3)→ ((0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (0, 0, 0, 1))

This erases the loss function bias, because now the mean squared difference
between any two permutations depends only on the number of elements switched.
One-to-n representation can also be seen as the matrix representation. Indeed,
(1, 2, 0, 3) can be represented as⎛⎜⎜⎜⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
a
b
c
d

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b
c
a
d

⎞⎟⎟⎟⎠ .
1This being the full representation of the permutation.
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A proof of this is an easy exercise in linear algebra.

This new grounding, however, brought several new problems. For example
3/4-ths of the expected output are zeroes. This created a problem early on in the
experimentation with the network only outputting a zero vector on any input.
That is the reason why leaky ReLU had been used as an activation function as
opposed to standard ReLU. This change solved this problem, since they avoid the
”neuron death” - a situation where input to ReLU is so negative that it always
outputs 0 and thus has no gradient.

Another problem was the size of the vectors relative to the number of ele-
ments, e.g. S3 has only 6 elements but this representation has size 9. However,
since the size of the group Sn grows exponentially while the matrix representation
only quadraticaly, for large enough n the benefits of a less biased loss function
outweigh the costs. Unfortunately, because of the amount of computation power
needed to get to this point we were not able to verify this hypothesis.

As we can see in Figure 3.12, this representation is still efficient for composi-
tion, but the inverse is clearly wrong. Furthermore, as we see in table 3.13, the
unit was usually significantly different from what was expected. This is the place
where a penalty for straying away from an element could help significantly, as
this problem most likely emerged as a consequence of the increase in dimension.

These two factors lead to the consequence that the inverse is not able to out-
put elements of the grounding. If it did, composition would also output a−1a in
grounding, but the learned e is not in it.

The extension element h is shown in table 3.14 along with parts of the gen-
erated subgroup. In the same vein as before, h ◦ h shows promise, but h4 breaks
down.
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Figure 3.1: Error rate for the learning of composition, inverse and unit in Z10 on
the testing data. Testing data percentage is 10%

Figure 3.2: Different values of ”half” found during different runs. The first run
(red) was very peculiar since it had over 2 700 000 epochs, but this representation
settled already around epoch 300 000. It is not clear how this interacts with the
rest of the elements.

-0.9417969 5.5017343 5.500125 0.5014977 5.500004 5.507943

Figure 3.3: Extension groups generated in two runs (read left to right, top to bot-
tom). The blue elements are supposed to be in the original embedding, i.e. they
should be 1...9 ascending with the last 3 elements being 0, ”half”, 1 respectively.
In the first run we see that we have had very low success, even though the first
half+half looks promising. The second run had much better success and with the
exception of 9 it hit all original elements reasonably well, even those last 3.

5.500004 0.99998194 10.919293 6.419118 1.9191066
9.268123 4.7680063 0.26805452 12.234171 7.7339497
3.2338893 8.733828 4.233731 1.9053116 9.292908
4.792793 0.2928396 12.189646 7.6894255 3.1893663
8.689303 4.189211

5.5069175 0.99456155 6.5232387 2.0135 7.5396843
3.032562 8.556266 4.051762 3.872835 5.4972463
0.9848655 6.5135655 2.0038028 7.530016 3.022867
8.546589 4.04206 3.9609222 4.6975384 0.18309715
5.713754 1.20193
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Figure 3.4: A Z20 learning run. These results are from 10% testing data. We see
that the trends we observed in Z10 continue, and it appears that extra time is
not needed. However, in different runs we encountered difficulties with learning
the inverse function.

Figure 3.5: Values for the half in different Z20 runs. Once again, the reason for
why the red one is so different is unknown. The tendency towards 0.5 instead of
10.5 can be attributed to the fact that the initial parameters have been restricted
to avoid overflow errors.

0.4999506 -6.5685954 10.500707 0.49987993 0.5000777
0.49967808 0.49978873 0.49993014 0.50047106 10.499506
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Figure 3.6: An example of a group generated from the ”half” element. We see
that there were no problems with addition of the half, except the modulus is not
applied correctly.

Figure 3.7: Z as an infinite group. Because of limitations of the software, we
only trained on the interval [−10000, 10000] (hence the trained group is not really
infinite). There was no testing set, but the network seemed to generalize well even
outside of the training interval. Examples are computed 11000−1 = −11001.614
or 15000 + (−12000) = 2999.9941.
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Figure 3.8: One run of learning the S4 with the basic grounding. This graph
shows error rates on 10% testing data. We see that the training is expectedly
much slower than in the cyclic groups.

Figure 3.9: Units learned in S4 with basic grounding. The expected output was
[0, 1, 2, 3]. As we see, they are very precise.

1.) 0.03967234 1.0745986 1.957876 2.9761093
2.) 0.00685234 1.0557759 2.1151063 3.2438033
3.) 0.01609807 0.9784863 2.011951 3.0008512

Figure 3.10: h-s found in several runs. As expected, they do not look like any-
thing.

1.) -0.9288303 1.8216157 0.17884427 2.0224957
2.) 1.2200519 0.5469334 3.7773933 -0.22675751
3.) 2.9790108 2.5041845 1.9638568 -1.186425

Figure 3.11: h composed with itself several times. h2 and h6 should both be
[1, 0, 2, 3]. h4 should be [0, 1, 2, 3].

h 2.9790108 2.5041845 1.9638568 -1.186425
h2 1.0137038 0.6440371 1.960084 3.0298772
h3 1.899735 0.6546894 2.3109381 2.1213117
h4 1.4959755 0.52787334 2.564281 2.4759564
h5 1.3819728 0.7297171 2.8694618 2.1578472
h6 1.1029358 0.97653824 3.1764572 1.9179444
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Figure 3.12: S4 with matrix grounding. The testing data percentage is 5% The
composition is very successful, but the inverse is not.

Figure 3.13: Units found in S4 with matrix representation. An identity matrix
was expected. Places where 1 was expected are blue, black ones are for 0.

0.9291287 0.39432997 -0.09073094 -0.00462165
-0.49930313 2.5813785 -1.0001388 -0.51179993
0.38528794 0.32126167 1.4879085 -0.3122037
0.16110185 -0.10436057 -0.3780875 1.356762

0.36581007 0.11518399 -0.29025748 0.7275856
0.38638538 0.95944846 -0.47597495 -0.14604506
0.203323 -0.15147878 0.65808797 -0.03862157
0.4341608 -0.57306635 -0.15940993 1.5463064
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Figure 3.14: An extension attempt for S4 with matrix representation. The blue
numbers are expected to be 1 and black ones 0. As we see, h2 is pretty much
exactly what we wanted, but h4 breaks down.

h -0.44275028 0.45813385 0.84849375 -0.4929848
0.29338264 0.25557452 0.701611 -0.33617198
0.5497755 0.75910103 -0.16280994 -0.17575327
0.20515643 0.25966993 0.10358979 1.0272595

h ◦ h 0.0016880417 0.99703968 -0.0002135747 -0.0009868203
0.99901026 -0.0018832732 -0.0010174632 0.0011361403

-0.0027710588 -0.0013556076 1.0073379 -0.001112761
-0.0005431428 0.0049326816 -0.0010595275 1.00323

h4 0.72058374 0.17218184 0.04241377 0.04261543
0.4558762 -0.00405501 0.55539876 0.00293861

-0.02832983 0.10163078 0.4973646 0.4502491
-0.02180864 0.6911213 -0.02542126 0.4643306
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4. Comments and discussion
The main difference of our approach and the approach of Serafini and d’Avila
Garcez [2016] is the exclusion of relations. Relations should also be neural net-
works that take a tuple of elements as input and output a number in [0, 1].
Relation is, just like an equality between two terms, an atomic formula. In chap-
ter 2 we have discussed how to combine different atomic formulas with fuzzy logic
operators.

The loss functions shown in chapter 2 were based on mean squared difference,
which is very inefficient when it comes to 0-1 functions. Here we could use some
modifications of cross-entropy function that are robust even with noisy labels
(Zhang and Sabuncu [2018]), since we can not generally be sure of the expected
truth value of an atomic subformula.

Another challenge is posed by the axioms that combine both a relation and a
term equality, e.g. R(. . . ) =⇒ t1(. . . ) = t2(. . . ). Here we would have to combine
the two different loss functions. One workaround is to use a different loss on the
equality subformulas, something that is more related to the cross-entropy.

Our preliminary research showed that to learn each relation we expectedly
need both positive and negative examples. We have tried to learn the Sheffer
stroke (Sheffer [1913]) - a function on booleans for which all sentences of the type

((U |(V |W ))|((Y |(Y |Y ))|((X|V )|((U |X)|(U |X)))))

are true for all subformulas U, V,W,X, Y . The expected result is the XOR func-
tion. The axiomatic approach however led to the network always yielding 1, since
there were no examples where it should output 0.

Another big challenge in the neural modelling is the choice of grounding. As
we have seen with S4, the choice can profoundly impact the learning process. For
the models described in this thesis we have used handpicked groundings, but those
require prior knowledge of the structure. In order to eliminate this requirement,
we need to use a self-found representation of elements. We could do this using
recurrent neural networks that have been extensively used in feature extraction,
even in logic itself. For example Wang et al. [2014] have successfully embedded
a knowledge graph (a set of 3-ary relations) to a continuous space, where similar
relations are spatially closer to each other. This, under some modification, could
prove a promising start for further research.

We have also encountered a big problem when training S4 with the matrix
grounding, due to the fact that the learned e was not in the original grounding.
Although the axiom a · e = a was satisfied for all a in the grounding, e not being
an element prevented the inverse function from being an S → S function. This
leads to the conclusion that we should utilize some penalty for the constants
(and maybe functions) that are too far from the given elements. One approach
could be to alternate between learning the constants axiomatically and pushing
them towards the nearest element (”grid-fitting”). With some fine-tuning of the
learning rates this could provide us with a state of equilibrium where a constant
settles on an established element. However if the learning rates are configured
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badly, we could end up in a state where the axiomatic optimizer seeks to abandon
an element, but is continually pushed back by the ”grid-fitter”.

One of the main features of the Adam optimizer used in our experiments is the
variable learning rate. Generally speaking, it learns quicker when it is far from
the minimum and slower when it is near. We could utilize this and use an inverse
learning rate for the ”grid-fitting” optimizer. This would lead to the Adam being
dominant during the search for the minimum, and when the minimum is closer,
the ”grid-fitter” would gain precedence and force the constant to be closer to one
of the structure elements. This is, however, only speculation.

38



Conclusion
We have seen some promising results with regards to using neural networks to
simulate particular mathematical models by learning on propositions that are
true/false in them. We have successfully learned neural representations of groups,
namely the cyclic and symmetric groups. Another focus of the work was building
extensions to those models, relying on the learned functions.

For every model built here we used the multiplication table to learn the com-
position operation. Even despite the fact that the whole table is not needed (we
have had good results even with 10% of the table missing), prior knowledge of
the structure is still required. In order to truly follow the ideas of the model
theory, we would need to drop the table altogether. How to do this is currently
not known and would be a subject to further experimentation.

Another place to improve the method shown here is the grounding, specifically
the usage of handpicked representations. This would ideally also be eliminated,
since it is another essential part of the model that relies on prior knowledge of
the structures. For the self-finding of the groundings we could use recurrent
neural networks, which are widely used for feature extraction. Another method
that could improve performance is mutable grounding, i.e. grounding that could
change during the learning process to better reflect the structure learned. How-
ever, this might be quite nontrivial.

A very large part of this thesis is model extension. Despite initial optimism
stemming from the successes of the finite cyclic groups, the results have been
rather lackluster. We speculate that this is caused by the fact that we used the
multiplication table rather than the associativity axiom. The associativity ob-
viously holds in the original universe, since the multiplication table had been
learned quite efficiently. One way to ensure associativity on the extension as well
would be introduction of axioms such as (h · a) · b = h · (a · b) where h is the
extension element. However, training for general associativity - i.e. associativity
on the whole domain Rn might slow down the learning process severely.

Because the work shown here is very early, there was little focus on the end
goal - building an oracle that would gauge the probability that a given sentence is
true. This would be a boon to the automated theorem proving community. Cur-
rent trend is to use machine learning on the sentences themselves, thus skipping
the models altogether. This approach has considerable limitations.

Unfortunately, the model-building process is very slow (order of hours on a
home computer), therefore building an array of models for every problem would
take some time. Classical Automated theorem proving competitions run in rela-
tively short times (minutes), rendering this method rather unwieldy for usage in
the state it is in right now. There is however a feasible niche for this model-based
oracle in recent large-theory competitions and benchmarks and in theory build-
ing, i.e. expanding a given theory without a set goal. Large-theory benchmarks
such as CASC LTB and the MPTP Challenge provide a large global time limit
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(days) for solving many related problems. Machine learning of useful models for
predicting the validity of lemmas and conjectures could be very useful there.

Another area where the neural models could be useful is axiom selection, like
SRASS described in Urban et al. [2008]. Proving a conjecture C from a large
knowledge base usually needs only a subset of the axioms. Since automated
theorem provers perform better on smaller axiom sets, finding such a subset is
crucial. SRASS attempts this by numbering the axioms in the knowledge base
φ1, φ2, . . . and then finding a model for {¬C,φ1, . . . φn} for ever larger n. If no
such model exists, φ1, . . . φn is the desired subset on which the theorem prover
can run.
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Aleš Drápal. Teorie grup: základńı aspekty. Karolinum, 2000. ISBN 80-246-0162-
1.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural
networks. Conference on Learning Theory, page 907–940, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Dou-
glas, and H Sebastian Seung. Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers:surpassing human-level performance on imagenet classification. Proceed-
ings of the IEEE international conference on com-puter vision, page 1026–1034,
2015.
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