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Introduction

Decay π0 → e+e− is thoroughly studied over the years. The major reasons
are following. Firstly, the direct confrontation of the experimental data with
theoretical predictions gives us a good tool for testing a low-energy dynamics of
the Standard Model (SM) and possible physics beyond the SM. Secondly, the
process is even in the lowest order described by the exchange of two virtual
photons and therefore is connected directly with a pion transition form factor
Fπ0→γγ which cannot be calculated from the first principles. Better understanding
of this form factor is for example important in the muon anomalous magnetic
moment g - 2 [1].

The very first theoretical prediction of the decay rate was performed by Drell
[2]. This calculation initiated various attempts to calculate amplitude within
the leading order based on various approaches by which was pion transition form
factor Fπ0→γγ determined [3, 4, 5, 6, 7, 8]. Renowned theoretical interest appeared
after the publication of the branching ratio π0 → e+e− from the KTeV-E799-II
experiment at Fermilab [9] with the result

B(π0 → e+e−(γ), xD > 0.95) = (6.44 ± 0.25 ± 0.22) × 10−8, (1)

where the first uncertainty corresponds to statistical and second to systematical
error. In the above expression, xD is a Dalitz variable defined as

xD = m2
e+e−

M2
π0

= 1 − 2 Eγ
Mπ0

, (2)

where Mπ0 is mass of neutral pion, m2
e+e− corresponds to the mass of the electron-

positron pair (qe+ +qe−)2 and Eγ is the photon energy. Constraint to the variable
xD of the type (1) is imposed to get rid of the Dalitz decay π0 → e+e−γ which
is dominant at low xD. In order to subtract the radiative corrections the collab-
orants of KTeV-E799-II experiment used the theoretical work of Bergström [10]
with the result

Bno−rad
KTeV (π0 → e+e−) = (7.48 ± 0.29 ± 0.25) × 10−8. (3)

This result was confronted with the SM prediction in [11] where the calculation
was done for the various form factor Fπ0→γγ models. They shown that the result
was almost insensitive on the chosen model. Within the model using the data
of CLEO combined with the operator product expansion (CLEO + OPE model)
[12] they came to the result

Bno−rad
SM (π0 → e+e−) = (6.23 ± 0.09) × 10−8. (4)
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which can be interpreted as a discrepancy of 3.3 σ in comparison with (3). After
this result a big amount of the theoretical work (e.g. [13]) including NLO cor-
rections was performed. However, only the work [14] calculated two-loop QED
radiative corrections of the order O(α3p2) without any approximation (except
of the estimate of the ξ parameter 1). Adding of this contribution reduced the
discrepancy between prediction of the SM and experiment to 2 σ.

Another important ingredient naturally appearing in the loop correction cal-
culations using effective theory are the finite contributions of the counterterm
diagrams which are described by a parameter χ. This parameter describes high-
energy loop contribution since the effective theory is not usable in this energy
region and can be obtained by comparison with the model dependent calcula-
tion. In our particular case this comparison was done in the lowest order by [7]
within a model using the large NC limit and Lowest Meson Dominance (LMD)
approximation with the result

χRLMD(770MeV ) = 2.2 ± 0.9. (5)

Different approach was chosen in [15]. The parameter χR was obtained by the fit
of the experimental data with the result

χRfit(770MeV ) = 4.5 ± 1.0. (6)

In this paper also the NLO chiral contributions in the leading log (LL) approx-
imation were considered. However, as was shown, this contribution at least in
this approximation, can be neglected.

In this thesis we want to pick up on the work [14] and calculate part of the NLO
contribution of the order O(α2p4) stemming from the chiral perturbation theory
(χPT) [16, 17, 18] enriched by photons and leptons [19, 20]. The contribution
of this order consists of three Feynman diagrams, namely one tadpole diagram
and two diagrams with the bubble insertion. Last, but not least it is possible
use also this chiral NLO contributions to improve the estimate of the theoretical
uncertainty of the parameter χR.

Thesis is organized as follows. The first chapter is devoted to the short review
of the chiral perturbation theory. In the second chapter we set the notation and
discuss general dynamical and kinematical properties of the process π → e+e−.
All relevant Feynman diagrams are introduced here, too. The third chapter
consist of subchapters in which the whole technique of the calculation of two-loop
diagrams is described. The general structure of a renormalization is discussed in
the fourth chapter. This concept is then applied on our particular case in the
fifth chapter. In the sixth chapter all the analytical results associated with the
calculated two-loop graphs are presented. The appendix A is dedicated to the
Feynman rules used in this thesis. IBP identities are listed in the appendix B.
In the appendix C, (generalized) harmonic polylogarithms are introduced. The
last two appendices are devoted to master integrals. In the appendix D, the
decomposition of all B functions used in this thesis to master integrals is listed.
The results for the individual master integrals are listed in appendix E.

1This parameter correspond to the finite contribution of QED NLO counterterms
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Chapter 1

Chiral effective theory

In the first part of this chapter we briefly introduce the idea of an effective field
theory (EFT). After that we discuss the symmetries of QCD in the chiral limit
and we will show why the existence of light particles (in comparison with other
particles in the spectrum) with dynamical properties of Goldstone bosons (pseudo
Goldstone bosons) should be expected even in the real case, where the masses of
three lightest quarks are non-zero, but much lower than the QCD scale parameter
ΛQCD. The biggest part of the chapter will be devoted to the transformation
properties of Goldstone bosons and to the chiral perturbation theory (χPT).

1.1 Effective field theory

Effective field theory (EFT) approximately describes low-energy dynamics of the
underlying fundamental theory. This approximation is valid in regions of the
energy which are (much) lower than some energy scale Λ. In EFT we work only
with degrees of freedom suitable for the particular energy domain. Perhaps the
most famous effective theory is the Fermi theory where the baryons and leptons
were used as degrees of freedom instead of quarks, leptons and gauge bosons. This
theory is valid in regions of the momentum transfer q2 << M2

W , where MW is the
mass of the W boson. In general, these theories are non-renormalizable as we need
to use the most general Lagrangian to assure that observables calculated in EFT
are related to those in the underlying theory. This means if we want to achieve
the same accuracy as in the underlying theory we need to include infinite number
of terms (increasing in the parameter p

Λ) of the EFT Lagrangian and the theory
becomes non-renormalizable. Any term of the Lagrangian is described by its own
coefficient so-called low-energy constant (LEC). However, if we are satisfied with
the calculation to particular order of the p

Λ we can perform a renormalization
by redefining fields and LEC occurring only in the part of the EFT Lagrangian
describing dynamics to the desired order p

Λ .
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1.2 Goldstone theorem

Let us consider a Lagrangian which is invariant under some Lie group G. Then
between the generators of this group Qi and the Hamiltonian H corresponding
to this theory exists a relation

[H, Qi] = 0. (1.1)

Assume now existence of the generators Qa which do not belong to the subgroup
of G which annihilate ground state of the system, i.e. the ground state is not
invariant under these generators

Qa |0⟩ ≠ 0. (1.2)

This conditions immediately imply a degeneracy of a vacuum state. This phe-
nomenon is called spontaneous symmetry breaking. In the manner of the rela-
tivistic quantum field theory this means that in this theory there have to exist
as many spinless massless bosons (Goldstone bosons) [21] as is the number of the
generators Qa.

1.3 Quantum Chromodynamics

The Lagrangian of QCD is of the form

LQCD = −1
4G

A
µνG

µν
A − Mijq

i
aq
j
a + iqik /Dklq

i
l , (1.3)

where −1
4G

A
µνG

µν
A includes the kinetic term of gluons and the pure interaction

between gluons, Mijq
i
aq
i
a is the mass term for quarks and iqik /Dklq

i
l contains the

kinetic term for quarks as well as the interaction term between quarks and gluons.
Dkl denote covariant derivative defined as

Dµ
kl = δkl∂

µ + igs(λAGµ
A)kl, (1.4)

where gs is the strong coupling constant, λA are Gell-Mann matrices (A = 1, ..., 8)
and Gµ

A is the gluon field. The big latin index in (1.3) is related to the colour
group SU(3)C in the adjoint representation (A = 1, ...., 8) and greek index to the
Lorentz group. Small upper latin indices represent flavour indices and lower latin
indices correspond to the colour group SU(3)C in the fundamental representation
(a = 1, 2, 3). Quark field is in general six dimensional vector in the flavour space.
However, in the low energy limit we are working only with three lightest quarks,
since the other three can be integrated out from the theory. Schematically

qi =

⎛⎜⎝ud
s

⎞⎟⎠ , (1.5)

Mij =

⎛⎜⎝mu 0 0
0 md 0
0 0 ms

⎞⎟⎠ . (1.6)
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As we can see, the Lagrangian (1.3) is invariant just under the local non-
abelian group SU(3)C . Focus now on dynamical aspects of this theory. The
basic parameters of bare QCD are the bare coupling constants gs,0 and quark
masses mq,0. However, on the loop level these quantities must be renormalized
since we want to get rid of infinities appearing in loop calculations. At the one
loop level in the dimensional regularization scheme we get for the renormalized
coupling constant

gs = gs,0 +
g3
s,0

16π2

(11
2 − 1

3Nf

)1
ϵ

+O(g5
s,0), (1.7)

where Nf is the number of quark flavours. Change ratio of the gs with respect to
renormalization scale µREN is given by the β function

β(gs) = µREN
∂gs

∂µREN
= gs

2
∂

∂ϵ−1

(
Z

−1/2
G Z−1

ψ Zg
)
, (1.8)

where ZG, Zψ and Zg are the normalization functions of the gluon field, the quark
field and the vertex respectively . In the lowest order we get for the β function

β(gs) = −
(
11 − 2

3Nf )
g3
s

16π2 +O(g5
s). (1.9)

As we can see, the β function is negative in the case of Nf = 6. We can interpret
this as the decrease of the coupling constant gs with increasing of the renormal-
ization scale µREN . Let us now derive the expression which relate the coupling
constant gs and the renormalization scale µREN to one equation. For this purpose
we put the solution in the lowest order for the β function (1.9) to (1.8) and we
get

gs(µREN)
(4π)2 = 1(

11 − 2
3Nf )ln(µ2

REN/Λ2
QCD)

, (1.10)

where ΛQCD is the integration constant of the (1.8). This quantity is independent
of the renormalization scheme µREN and thus represent a significant parameter
of QCD. In fact, the theory is characterized by mass scale ΛQCD instead of the
coupling constant gs (so-called dimensional transmutation). This parameter can
be experimentally measured. It recent value is

ΛQCD = 218 ± 24MeV. (1.11)

The interpretation of (1.10) is following. When the energies are much higher
than ΛQCD (E >> ΛQCD) the theory is weakly coupled (asymptotic freedom) and
the dynamics can be described by the perturbative QCD. In case of E ∼ ΛQCD

the theory is strongly coupled and cannot be described by the perturbative QCD.
This is the reason why we are forced to use the chiral perturbation theory in our
calculations.

1.3.1 Massless quarks

In the case of massless quarks the QCD Lagrangian is richer in terms of the
symmetries. Let us firstly focus on the chirality of quark fields. Left- and right-
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handed quark fields are defined as

qR = PRq = 1
2(1 + γ5)q, (1.12a)

qL = PLq = 1
2(1 − γ5)q. (1.12b)

Then with the use of PR +PL = 1 and PRPL = PLPR = 0 we can divide the part
of the QCD Lagrangian with quark fields to two independent parts (the colour
and flavour indices are suppressed)

Lchir
QCD,q = q /Dq = qR /DqR + qL /DqL. (1.13)

In this case the Lagrangian remains invariant under the chiral rotation U(Nf )R×
U(Nf )L, where the Nf is the number of quark flavours. Vector and axial Noether
currents corresponding to this symmetry are given by

V µ
a = 1

2qγµΣaq, (1.14a)

V µ
0 = 1

2qγµq, (1.14b)

Aµa = 1
2qγµγ5Σaq, (1.14c)

Aµ0 = 1
2qγµγ5q, (1.14d)

(1.14e)

where Σa are in the case of Nf = 2 Pauli matrices and in the case of Nf = 3
Gell-Mann matrices in the flavour space. However, the axial current Aµ0 is not
conserved due to the anomaly. So, the symmetry group of QCD in the chiral
limit can be written in the form

G = SU(Nf )R × SU(Nf )L × U(1)V . (1.15)

Focus now on the ground state of the theory. From an experimental fact that
there does not exist a baryon octet with negative parity we can deduce that a
charge operator QA

a related to Aµa does not annihilate QCD vacuum. Schemati-
cally

QA
a |0⟩ ≠ 0. (1.16)

The ground state is then invariant under H ⊂ G, where

H = SU(Nf )V × U(1)V . (1.17)

This spontaneously broken symmetry gives rise in the chiral limit to N2
f − 1

Goldstone bosons. In the next subchapter we illustrate why we should expect
the spectrum of pseudo Goldstone bosons (particles with dynamical properties
as Goldstone bosons which have finite masses but are much lighter than other
particles of the spectrum) even in the real case of massive quarks.
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1.3.2 Massive quarks

The mass pattern of the quarks is of the following form [22]

Type of quark Mass of quark
u 2.2+0.5

−0.4 MeV
d 4.7+0.5

−0.3 MeV
s 95+9

−3 MeV
c 1.275+0.025

−0.035 GeV
b 4.18+0.04

−0.03 GeV
t 173+0.4

−0.4 GeV

Table 1.1: Table of the mass pattern of quarks.

In the table 1.1 u, d, and s masses are estimates of so-called “current-quark
masses” in a mass-independent subtraction scheme such as MS at a scale µ ≈ 2
GeV. The c and b quark masses are the “running” masses in the MS scheme at
µ = mq. The mass of t is estimated from direct measurements.

The divergence of currents is now determined by the mass quark matrix M

∂µV
µ
a = 1

2iq(MΣa − ΣaM)q, (1.18a)

∂µV
µ

0 = 0, (1.18b)

∂µA
µ
a = 1

2iq(MΣa + ΣaM)γ5q, (1.18c)

∂µA
µ
0 = 2iqMγ5q + Nf

8π2 TrCGµνG̃
µν . (1.18d)

In the case of the most general mass matrix M, the only exactly conserved current
is the diagonal vector current. That means only one charge per quark flavour is
conserved. However, in special cases of the mass matrix M also the other currents
can be conserved. Baryon number, strangeness, electric charge, etc. are linear
combinations of the charge corresponding to conserved currents.

Let us now illustrate, why we should expect existence of pseudo Goldstone
bosons in the real case. In general, pseudo Goldstone bosons exists in the theory
where the symmetry is spontaneously broken and in addition also explicit broken.
This means that the current corresponding to the generators which break the
symmetry spontaneously is no more conserved. However, if the parameter which
cause the non-conservation of the current mentioned above is small in comparison
with other parameters (e. g. the mass of u, d and s quarks in comparison
with ΛQCD) we should expect the existence of pseudo Goldstone bosons in the
spectrum. Assume that the u and d quarks have same masses mu = md. Then
the QCD Lagrangian has the exact SU(2) isospin symmetry. In the case that
masses of the u and d quarks are much lower than masses of the other quarks (as
they really are, see table 1.1) and ΛQCD we should expect three lightest particles
composite from the u and d quarks in the spectrum. These correspond to pseudo
Goldstone bosons which should have the same masses in the limit mu = md.
Now, if we assume that the masses mu and md are almost equal, then we can
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assume approximative isospin SU(2) symmetry. If we rewrite the mass term to
the form

muuu+mddd = 1
2(mu +md)(uu+ dd) + 1

2(mu −md)(uu− dd), (1.19)

it can be seen that the QCD Hamiltonian for 2 quarks consist of the isospin
symmetry part and the isospin breaking part

H = Hsym + Hbreak, (1.20a)

Hbreak =
∫

d3x
1
2(mu −md)(uu− dd). (1.20b)

If the term Hbreak is small in the comparison with Hsym then we can assume the
isospin symmetry SU(2) as approximative. This approximative symmetry leads
to the existence of three pseudo Goldstone bosons with very similar but non-
identical masses (isotriplet of Goldstone bosons). In fact, we can really observe
the isotriplet of spinless bosonic particles, which are much lighter than other
particles (triplet of pions π+, π− and π0) with very similar masses. This idea can
be extended to the case of three quarks (u, d and s) which are much lighter than
the other three quarks (c, b and t). In this case the approximative symmetry
is SU(3) symmetry known as eightfold way, which leads to the octet of pseudo
Goldstone bosons. These pseudo Goldstone bosons really appear in a nature
(note that the pion triplet is much lighter than the other five pseudo Goldstone
bosons containing much heavier s quarks). The meson octet mentioned above is
depicted in the figure 1.1.

Figure 1.1: Meson octet of pseudo Goldstone bosons.
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1.4 Chiral perturbation theory

In this chapter we firstly define Goldstone boson fields as the low-energy degrees
of freedom and set their transformation properties. Then we show how to create
the effective Lagrangian consisting of these bosons. In the end, we introduce the
effective Lagrangians used in calculations of this thesis.

1.4.1 Transformation properties of Goldstone bosons in
QCD

Let us consider an underlying theory the Lagrangian of which is invariant under
Lie group G and the ground state is invariant under subgroup H ⊂ G. The
effective Lagrangian describing the underlying theory on some scale Λ should
have the following properties:

1. Degrees of freedom of the underlying theory should be replaced by degrees
of freedom relevant to the energy region E << Λ

2. The effective Lagrangian should be invariant under the same symmetry
group as the fundamental theory

3. The ground state of the system (Goldstone bosons) should stay invariant
under the subgroup H

Illustration of this process will be shown on the example of QCD with two
and three massless quarks. In the former (latter) case we expect three (eight)
degrees of freedom describing the triplet of pions (octet of lightest mesons). In
general, Goldstone boson fields are functions on Minkowski space M4 collected
to n component vector Φ = (ϕ1, ..., ϕn), defining the real vector space

M ≡ {Φ : M4 → Rn |ϕi : M4 → R}. (1.21)

Our aim is to find a mapping φ which maps (g,Φ) ∈ G ×M to φ(g,Φ) ∈ M . For
this mapping we require following properties

φ(e,Φ) = Φ, (1.22a)
φ(g1, φ(g2,Φ)) = φ(g1g2,Φ)), (1.22b)

φ(h,Φvac) = Φvac, (1.22c)

where g1, g2 ∈ G, h ∈ H and Φvac corresponds to the classical ground state
Φvac = 0. To fulfill the desired condition on the theory we choose Goldstone
bosons as left cosets {gH | g ∈ G}

Φ = φ(gH, 0). (1.23)

Let us now show that the origin is mapped onto the same vector in Rn under all
elements of a given coset gH

φ(gh, 0) = φ(g, φ(h, 0)) = φ(g, 0). (1.24)
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Another important property is that the mapping is injective with respect to all
the left cosets {gH | g ∈ G}. Let us consider two elements g, g ∈ G so that
g /∈ gH. Let us assume φ(g, 0) = φ(g, 0)

0 = φ(e, 0) = φ(g−1g, 0) = φ(g−1, φ(g, 0)) = φ(g−1, φ(g, 0)) = φ(g−1g, 0),
(1.25)

but this implies g ∈ gH in contradiction with the assumption and therefore
φ(g, 0) ̸= φ(g, 0). It means there exists an isomorphic mapping between the left
cosets {gH | g ∈ G} and Goldstone boson fields.

In QCD (G = SU(Nf )L × SU(Nf )R and H = SU(Nf )V ) let g = (L,R) ∈ G.
Left cosets can be characterized through SU(N) matrices U = RL† such that
gH = (1, RL†)H. With this parametrization it can be shown that U transforms
under g = (L,R) as

U = RL† ↦→ U ′ = RUL
†
. (1.26)

In the special case of QCD with massless quarks we can define U = exp
(

iϕ
F0

)
where

ϕ =
N2

f −1∑
i=1

ϕiΣi, (1.27)

here N2
f − 1 is the number of corresponding generators Σi of the SU(Nf ) group.

F0 is the constant with the dimension of the energy. This constant correspond to
the decay constant of Goldstone bosons in the chiral limit. In a special case of
two and three massless quarks we get for the ϕ

ϕ(2) =
3∑
i=1

ϕiτi =
(

π0 √
2π+

√
2π− −π0

)
, (1.28)

ϕ(3) =
8∑
i=1

ϕiλi =

⎛⎜⎜⎝
π0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K− √
2K0 −

√
2

3 η

⎞⎟⎟⎠ . (1.29)

where τi and λi are Pauli matrices and Gell-Mann matrices respectively. The
ground state of the system now corresponds to U = 1 (ϕ = 0). Let us check, if
this state is really invariant under the subgroup H = {(V, V )|V ∈ SU(2)}

φ (g = (V, V ), 1) = V 1V † = 1. (1.30)

Much more information about transformation properties of Goldstone bosons
can be found in [23].

1.4.2 Lagrangian of the chiral perturbation theory

The Lagrangian with the minimal number of derivatives constructed using U =
exp

(
iϕ
F0

)
and its derivatives as the building blocks has the form

L(2)
eff = F 2

0
4 Tr(∂µU∂µU †), (1.31)
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where the superscript (2) denote the second order in the power counting scheme.
Let us now show, that the Lagrangian has desired properties of the effective
Lagrangian. Firstly, if we expand both U it can be rewritten as

L(2)
eff = F 2

0
4 [...+ 1

F 2
0
∂µϕa∂

µϕbTr(τaτb) + ...] = 1
2∂µϕa∂

µϕa + Lint,(2)
eff , (1.32)

where two parts correspond to the kinetic term of the Lagrangian and to the
interaction part containing infinite number of terms. Another property of the
Lagrangian which should be fulfilled is the invariance under SU(N)R×SU(N)L×
U(1). The invariance under U(1) is trivially satisfied since the baryon number
of Goldstone bosons is zero, thus ϕ ↦→ ϕ and U ↦→ U . The invariance under
SU(N)R × SU(N)L can be proved if we realize ∂µL = ∂µR = 0. Then, because
U ↦→ RUL† 1

L(2)
eff ↦→ F 2

0
4 Tr(R∂µUL†L∂µU †R†) = F 2

0
4 Tr(∂µU∂µU †) = L(2)

eff . (1.33)

1.4.3 Mass term in the Lagrangian of the chiral pertur-
bation theory

In the previous section we saw how the breaking of exact symmetry SU(N)L ×
SU(N)R ↦→ SU(N) leads to the appearance of pseudo Goldstone bosons with
finite masses. Additionally, masses of pseudo Goldstone bosons are different if
masses of compositing quarks are different. The general form of the mass term
in QCD for three lightest quarks can be written as

LM = −qRMqL − qLM†qR, (1.34)

M =

⎛⎜⎝mu 0 0
0 md 0
0 0 ms

⎞⎟⎠ . (1.35)

If we want to achieve an invariance of LM, we need to demand from M to
transform as M ↦→ RML†, although M is a constant matrix. With this trans-
formation property, we can construct the invariant effective Lagrangian in the
lowest order which has the form

L(2)
eff,M = F 2

0B0

2 Tr(MU † + UM†), (1.36)

where B0 is constant with the dimension of energy. For better interpretation let
us determine a mass term from Lagrangian (1.36) which obviously originate from
term

−B0

2 Tr(ϕ2M), (1.37)

which explicit form is
Tr(ϕ2M) =2(mu +md)π+π− + 2(mu +ms)K+K− + 2(md +ms)K0K0

+ (mu +md)π0π0 + mu +md + 4ms

3 η2 + 2√
3

(mu −md)π0η.
(1.38)

1Please note, in all cases U represent the function on the Minkowski space, e.g. U(x).
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For simplicity of solution, let us get rid of mixing term of π0η with assumptions
mu = md = m. Then we get for masses of pseudo Goldstone bosons

M2
π = 2B0m, (1.39a)

M2
K = B0(m+ms), (1.39b)

M2
η = 2

3B0(m+ 2ms). (1.39c)

As we can see, constant B0 serve as ”dimension regularizator” in the relation
of mass terms 2. In power counting scheme (see the following subchapter) quark
masses should be taken as O(p2) because of mq ∼ M2

PGB. Let us also remark that
from the linear combination of the (1.39), we can derive famous Gell-Mann-Okubo
relation

4M2
K = 3M2

η +M2
π . (1.40)

For completeness, let us add that in this thesis we work in the approximation
mu = md, what leads to M2

π± = M2
π0 .

1.4.4 Power counting scheme

A main purpose to define EFT is to calculate Feynman amplitudes of the pro-
cess for some particular energy domain. As was mentioned, the most general
EFT Lagrangian has infinite number of terms. However, this Lagrangian can
be organized in terms of the increasing number of derivatives and quark masses.
Schematically

Leff = L(2)
eff + L(4)

eff + L(6)
eff + ... . (1.41)

This power counting scheme is essential in determination of the accuracy in our
calculation. The biggest contribution to some particular process will be from
Feynman diagrams using lowest possible orders. In the chiral perturbation the-
ory the lowest possible Lagrangian is of the order two, since the derivatives which
count as O(p) must be always coupled with Lorentz indices and the quark mass
is counted as O(p)2 (see 1.39). In addition, if we want to make the chiral per-
turbation theory locally invariant, we need to introduce external fields with the
coupling constant. The one of our interest is the electric charge, since in our
Feynman diagrams the interaction between pions and photons is included. The
electric charge is counted in the power counting scheme as O(p).

Let us now show how can we perform the power counting analysis on the
arbitrary amplitude. For this purpose let us rescale all external momenta qi ↦→ tqi
and quark masses mq ↦→ t2mq. The calculated amplitude is then rescaled as

M ↦→ tDM, (1.42)
2in general constant B0 is related to the quark condensate ⟨0|qq|0⟩ as 3F 2

0 B0 = − ⟨0|qq|0⟩
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where D is so-called chiral dimension which is given by (see [23])

D = nNL − 2NI +
∞∑
k=1

2kN2k,

= 2 + (n− 2)NL +
∞∑
k=1

(2k − 2)N2k,

(1.43)

where n is the number of space-time dimensions, NL is the number of loops,
NI is the number of internal Goldstone boson lines and N2k is the number of
vertices from L2k. Let us now interpret, why should we expect lowering of the
contribution (1.42) with increasing of the chiral dimension D. From the definition
of U = exp

(
iϕ
F0

)
we see that every momentum (stemmed from derivative) which

appear in the arbitrary vertex is divided by the factor ∼ F0 of some particular
order. Since the constant F0 is connected with chiral symmetry breaking scale as
Λχ = 4πF0 = O(1GeV), and the energy with which we are working in the chiral
perturbation theory is E < 1 GeV. Therefore the implication of the constrain
0 < t < 1 is reasonably.

As an example we calculate the chiral dimension D of diagrams, with which
we are working in this thesis. For the leading order diagram depicted in the
figure 2.2 is the corresponding DLO = 4 and for NLO contributions depicted in
the figure 2.3 we get Dtadpole = Dbubble = 6.

1.5 Wess-Zumino-Witten Lagrangian

In this section we only outline principles by which the Wess-Zumino-Witten La-
grangian can be derived. More details about enriching the χPT by photons and
leptons can be found in [23, 19, 20]. The principle of the addition of the external
field to the effective field theory is same as in underlying theories. Firstly, we
need to show how external fields can be added to QCD, in order to satisfy the
SU(3)L × SU(3)R × U(1)V (in case of three quarks) symmetry. We will follow
procedure of Gasser and Leutwyler [24, 25]. In this procedure we add to the
Lagrangian in the chiral limit terms corresponding to couplings of nine vector,
eight axial currents, scalar and pseudoscalar quark densities with external fields.
Schematically

L = Lchir
QCD + Lext, (1.44)

Lext =
N2

f −1∑
i=1

vµi qγµ
Σi

2 q + 1
3v

µ
(s)qγµq +

N2
f −1∑
i=1

aµi qγµγ5
Σi

2 q

−
N2

f −1∑
i=1

sµi qΣiq + i
N2

f −1∑
i=1

pµi qγ5Σiq

=qγµ(vµ + 1
3v

µ
(s) + γ5a

µ)q + q(iγ5p− s)q,

(1.45)

where in the last line we introduced denotation where we omit the group index and
the corresponding generator. For recovering the Lagrangian in the limit of three
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lightest quarks, we need to set vµ = vµ(s) = aµ = p = 0 and s = diag(mu,md,ms).
For further convenience, we introduce external fields rµ and lµ defined as

rµ = vµ + aµ, (1.46a)
lµ = vµ − aµ. (1.46b)

Let us now go through to the local invariance of the Lagrangian (1.45). If we
denote the quark field transformation as

qR ↦→ exp(−iθ(x)
3 )VR(x)qR,

qL ↦→ exp(−iθ(x)
3 )VL(x)qL,

(1.47)

then the demand of the local invariance is fulfilled, if external fields transform as
(in what follows the space-time dependence of functions is omitted)

rµ ↦→ VRr
µV †

R + iVR∂µV †
R,

lµ ↦→ VLl
µV †

L + iVL∂µV †
L ,

vµ(s) ↦→ vµ(s) − ∂µθ,

s+ ip ↦→ VR(s+ ip)V †
L ,

s− ip ↦→ VL(s+ ip)V †
R,

(1.48)

where VR, VL and exp(−i θ(x)
3 ) in the (1.47, 1.48) are members of SU(3)R, SU(3)L

and U(1) group respectively. Let us now turn our attention to the particular
case, in which we want to add the photon field to our Lagrangian. In the case of
three quarks, the photon field Aµ is given by

rµ = lµ = −eAµQ, (1.49)

where e is absolute value of the elementary charge and Q = diag(2/3,−1/3,−1/3)
is the quark charge matrix. The external Lagrangian Lext is given by

Lext = − eAµ(qLQγµqL + qRQγµqR = −eAµqQγµq

= − eAµ(2
3uQγµu− 1

3dQγµd− 1
3sQγµs = −eAµJµ.

(1.50)

In order to achieve the form of Lext as (1.50) in case of two quarks, we need to
define the photon field Aµ through

rµ =lµ = −eAµ τ3

2 ,

vµ(s) = − e

2A
µ.

(1.51)

Let us now concentrate on the demand of the locally invariant χPT La-
grangian. The matrix U then transform as

U(x) ↦→ VR(x)U(x)VL(x)†. (1.52)
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Due to this requirement in theories invariant under SU(N)R × SU(N)L × U(1),
the classical derivative changes to the covariant derivative in the following form

∂µU ↦→ DµU ≡ ∂µU − irµU + iUlµ, (1.53)

where rµ and lµ correspond to external fields which transform under SU(N)R ×
SU(N)L ×U(1) as (1.48). With this transformation a covariant derivative trans-
forms in the desired way

DµU ↦→ VR(DµU)V †
L . (1.54)

In order to describe two-loop diagrams of our interest, we need the part of
the interaction χPT Lagrangian describing the interaction of the 2πγ, 3πγ and
3π2γ. The vertex 2πγ is obtained after the requirement of the local invariance of
the Lagrangian (1.31). Schematically

L(2)
ππγ = F 2

0
4 Tr(DµUD

µU †). (1.55)

The Lagrangian describing the dynamics of other two vertices has to be minimally
of order O(p4). Corresponding Lagrangian was introduced by Wess-Zumino-
Witten [26, 27]. The relevant part of this Lagrangian can be written as

L(4)
WZW = − Nc

48π2 ϵ
µναβTr

[
Au{eQ(∂νU∂αU †∂βUU

† − ∂νU
†∂αU∂βU

†U)}

+ 4i∂µAνAα{e2Q2∂βUU
† + e2Q2U †∂βU − 1

2e
2QUQ∂βU

†

+ 1
2e

2QU †Q∂βU}
]
.

(1.56)

The relevant parts of the Lagrangian (1.56) which describe vertices 3πγ and 3π2γ
can be schematically written as

Lπ0π+π−γ = −i eNc

12π2F 3
0
ϵµναβ∂νπ

+∂απ
0∂βπ

−, (1.57)

Lπ0π+π−γγ = − e2Nc

18π2F 3
0
ϵµναβ∂µAνAα

[
π−π0∂βπ

+ − 2π−∂βπ
0π+ + ∂βπ

−π0π+
]
,

(1.58)
where ϵµναβ is fully antisymmetric epsilon tensor and Q is a charge matrix of u
and d quarks

Q = 1
3

(
2 0
0 −1

)
. (1.59)

The introduction of counterterm diagrams is basic technique to get rid of
infinities, emerging from multi-loop calculations. For renormalization of two-
loop diagrams of our interest, the introduction of one-loop counterterm diagrams
and tree counterterm diagram is necessary. For this purpose, the Lagrangian
describing π2γ, πe+e− and 3πe+e− has to be introduced. The very first vertex
is described by Wess-Zumino-Witten Lagrangian, the relevant part of which was
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introduced in (1.56). Element from this Lagrangian describing process π2γ can
be written in the compact form as

L(4)
CT,πγγ = π0

8 Kπγγ

(
α

π

)
ϵµναβF

µνFαβ, (1.60)

where in the constants Kπγγ we put all the terms corresponding to differing
counterterm vertices and α is the fine structure constant. The part of the χPT
Lagrangian describing interactions of the pion fields and the fermionic fields [5]
has the form

L(6)
Pe+e− = 3i

32

(
α

π

)2
ψγµγ5ψ

[
χ1Tr(Q2DµUU

† −Q2DµU
†U)

+ χ2Tr(U †QDµUQ− UQDµU
†Q)

]
.

(1.61)

Let us discuss the constants χ1 and χ2 in more detail. As was mentioned in the
introduction, counterterms in the effective theory has the finite contribution to
the amplitude. In our particular case this contribution in LO was calculated in [7]
with result χRLMD(770MeV ) = 2.2±0.9. This parameter correspond to the linear
combination of constants χ1 and χ2 as we can write the Lagrangian describing
process π0 → e+e− in the form

L(6),fin
π0e+e− = −

(α
π

)2χ1(µ) + χ2(µ)
16F0

ψγµγ5ψ∂
µπ0

= χ(µ)
4F0

(α
π

)2
ψγµγ5ψ∂

µπ0,

(1.62)

where we denoted χ(µ) = −χ1(µ)+χ2(µ)
4 . Since in our particular case the function

of counterterm graph π0 → e+e− is also to subtract superficial divergences, we
write the Lagrangian describing vertex π0e+e− as

L(6)
CT,π0e+e− =

(
α

π

)2Kπe+e−

4F0
ψγµγ5ψ∂

µπ0, (1.63)

where the constant Kπe+e− contain the finite contribution from the counterterm
as well as the part subtracting superficial divergences. The last remaining vertex
3πe+e− is obviously also described by the Lagrangian (1.61). Schematically

L(6)
CT,π0π−π+e+e− =Kπ0π−π+e+e−

24F 3
0

(
α

π

)2
ψγµγ5ψ(π−π0∂µπ

+

− 2π−∂µπ
0π+ + ∂µπ

−π0π+).
(1.64)

The whole χPT Lagrangian used in this thesis can be then schematically
written as

LχPT =F
2
0

4 Tr(DµUD
µU †) + F 2

0B0

2 Tr(MU † + UM†) + L(4)
WZW

+ L(4)
CT,πγγ + L(6)

CT,πe+e− + L(6)
CT,πππe+e− .

(1.65)
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Chapter 2

General structure of the
amplitude

In this section we discuss general properties of the amplitude. Firstly, we set
the notation and kinematics. As a next step we summarize all the Lagrangians
necessary for the description of our particular process. Then we introduce pion
transition form factor Fπ0→γγ and amplitude Pπ0→e+e− which are necessary for the
description of the process π0 → e+e−. After that, we calculate them in the LO of
χPT. Last, but not least we introduce a two-loop diagrams which are calculated
in this thesis.

2.1 Notation and kinematics

The matrix element describing process π0 → e+e− is defined as

⟨e+(q+, s+)e−(q−, s−); out|π0(Q); in⟩ = i(2π)4δ(4)(Q− q+ − q−)Mπ0→e+e− , (2.1)

where the amplitude Mπ0→e+e− has the general form

Mπ0→e+e− = u(q−, s−)V(q+, q−)v(q+, s+), (2.2)

where V is effectively one particle irreducible π0 → e+e− vertex. Because pion is
a pseudoscalar particle the form of V(q+, q−) can be only composed as

iV(q+, q−) =P (q2
+, q

2
−, Q

2)γ5 + A+(q2
+, q

2
−, Q

2)γ5(/q+ +m)
+ (/q− −m)A−(q2

+, q
2
−, Q

2)γ5

+ (/q− −m)γ5(/q+ +m)B(q2
+, q

2
−, Q

2), (2.3)

and after the inclusion of the on-shell condition we are left only with one form
factor P (q2

+, q
2
−, Q

2) and we get

iuV(q+, q−)v = P (q2
+, q

2
−, Q

2)uγ5v. (2.4)
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The decay rate is then given by

Γπ0→e+e− = Mπ

8π β(M2
π)|P (q2

+, q
2
−, Q

2)|2, (2.5)

β(M2
π) =

√1 − 4m2

M2
π

. (2.6)

Note that, the form factor P (q2
+, q

2
−, Q

2) can be expressed by V(q+, q−) as

P (m2,m2, Q2) = − lim
q2

±→m2

1
2Q2 Tr

[
(/q− +m)V(q+, q−)(/q+ −m)γ5

]
. (2.7)

For further calculations let us also introduce the dimensionless kinematic vari-
able which will be necessary for the further calculation

y = M2
π

4m2 . (2.8)

2.2 Dynamical aspects of the process π0 → e+e−

The e+e−γ interaction is described by the Lagrangian of the spinor QED

LQED = −1
4FµνF

µν −mψψ + iψ /Dψ − 1
2(∂µAµ)2, (2.9)

where 1
4FµνF

µν and mψψ are kinetic terms of photon field and mass term of
the fermionic field respectively, 1

2(∂µAµ)2 is gauge fixing term, iψ /Dψ include an
interaction term and the kinetic term of the fermionic field and /D denote covariant
derivative defined as

Dµ = ∂µ + ieAµ. (2.10)

The low energy dynamics of the strong interaction cannot be described by the
perturbative QCD (quantum chromodynamics). That is the reason why we are
forced to use effective theories, where degrees of freedom correspond to composite
objects. The effective theory which is used in this diploma thesis is the chiral
perturbation theory (χPT) with dynamical leptons and photons [20]. One of the
relevant part describing dynamics of pseudo Goldstone bosons (massive bosons
with dynamical properties of Goldstone bosons) and photons was introduced by
Wess-Zumino-Witten [26, 27] . The whole part of the χPT Lagrangian used in
this thesis was discussed in the chapter 1 and is schematically summarized in
(1.65).

Whole corresponding Lagrangian describing process π0 → e+e− is then in the
form

L = LQED + LχPT . (2.11)
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2.3 Pion transition form factor Fπ0→γγ and am-
plitude Pπ0→e+e−

In this section we introduce the pion transition form factors Fπ0→γγ and amplitude
Pπ0→e+e− with their properties. After that, they will be calculated in the LO of
the chiral expansion, thanks to what, we will be able to calculate decay rate of
the process π0 → e+e− in the LO.

2.3.1 General structure and properties of the Pπ0→γγ

Let us introduce the pion transition form factor Fπ0→γγ through the strong matrix
element as

−e2
∫
d4xeik·x ⟨0|T (jµ(x)jν(0)) |π0(Q)⟩ = ie2ϵµναβkαQβFπ0→γγ(k2, (Q− k)2),

(2.12)
where jµ(x) is the hadronic part of electromagnetic current

jµ(x) = 2
3uγ

µu− 1
3dγ

µd. (2.13)

At the leading order in e, the one particle irreducible vertex of the amplitude
for the decay π0 → e+e− has the form (see figure 2.1)

iVLO,QED
π0e+e− (q+, q−) =e4ϵµναβ

∫ d4l

(2π)4Fπ0γγ((l + q+)2, (l − q−)2)

× (l + q+)α(l − q−)β
[(l + q+)2 + i0][(l − q−)2 + i0]γµ

1
[/l −m+ i0]

γν .

(2.14)

In the figure 2.1 the shaded blob correspond to the strong matrix element (2.12).
If we put (2.14) to the formula (2.7) we can obtain a relation at the leading order
in e for P of the relevant amplitude in the form [28]

PLO
π0e+e−(m2, Q2) = −ie

4m

Q2

∫ d4t

(2π)4
Fπ0γγ(D(−), D(+))
D(−)D(+)D(0) λ(Q2, D(−), D(+)), (2.15)

where
D(±) = (t± q±)2 + i0, (2.16)
D(0) = t2 −m2 + i0, (2.17)

and
λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (2.18)

is the triangle function.

In what follows, we calculate the pion transition form factor Fπ0→γγ in the
chiral limit to the NLO. It means that the pion transition form factor Fπ0→γγ can
be written as

Fπ0→γγ = FLOπ0→γγ + FNLOπ0→γγ + ..., (2.19)
where in the FNLOπ0→γγ are included all two-loop terms, each corresponding to the
different Feynman diagram.
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Figure 2.1: Feynman diagram of the process π0 → e−e+ with highlighted strong
matrix element.

2.3.2 LO amplitude in the chiral expansion

The Feynman diagram at the LO in the chiral expansion is depicted in the figure
2.2. For description of this diagram we need Lagrangian of the spinor QED (2.9)
and vertices (1.60, 1.63) introduced in the chapter 1. Schematically

L(4)
πγγ = π0

8

(
α

π

)
ϵµναβF

µνFαβ, (2.20)

L(4)
CT,π0e+e− = − α2

4π2
χ

F 2
0
∂µπ

0ψγµγ5ψ, (2.21)

where constants defined in the chapter 1 now correspond to Kπγγ = 1 (because
now this vertex describes the bare interaction) and Kπe+e− = −χ. If we define χ
in MS

χ = χR(µ) + 3
2

[1
ϵ

+ ln(4π) − γE

]
, (2.22)

than the χR(µ) is the finite contribution of the counterterm diagram at a scale µ.
We take its numerical value from [7] where it was calculated in the limit of the
large NC with result

χR(770MeV) = 2.2 ± 0.9. (2.23)

Let us derive FLOπ0→γγ . For this purpose we will use the formula (2.12) and
vertex π0 → γγ listed in the appendix A and we get

FLOπ0→γγ = 1
4π2

1
F0
, (2.24)

Calculation will rapidly simplify with the use of (2.15). We get

PLO
π0→e+e− = −ie

4m

Q2
1

4π2
1
F0

∫ d4l

(2π)4
1

D(−)D(+)D(0)λ(Q2, D(−), D(+)). (2.25)

Computation was done e.g. in [14] . Result reads
|PLO
π0→e+e− |2 = (8, 90 ± 0, 39) · 10−14, (2.26)

where the whole uncertainty is caused by the uncertainty of the χR. With the
use of (2.5) we get for the decay rate

ΓLOπ0→e+e− = (7, 73 ± 0.34) · 10−6MeV. (2.27)
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Figure 2.2: LO χPT diagram and corresponding counterterm diagram describing
process π0 → e+e−.

2.4 Structure of the two-loop diagrams

One of the main aim of this thesis is to calculate two-loop chiral corrections to
P (q2

+, q
2
−, Q

2) of the order O(α2p4) and pick up on the QED two-loop corrections
calculated in [14]. Corresponding Feynman diagrams with their counterterm
diagrams we are dealing with are shown in the figure 2.3. Whole following chapter
is devoted to the calculations of these diagrams.

Feynman rules for vertices describing diagrams in the figure 2.3 are listed in
the appendix A.

Figure 2.3: List of two-loop chiral Feynman diagrams and their counterterms
diagrams of the order O(α2p4).

Remark that to the family of the chiral two-loop corrections of the order
O(α2p4) belongs also the diagram which renormalize the on-shell pion. However,
this diagram differs from one-loop diagram depicted in the figure 2.2 just by the
constant factor (usually denoted as Z factor) and was calculated e. g. in [15].
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Chapter 3

Calculation of two-loop graphs

3.1 Generalization of two-loop graphs to auxiliary
graph

The goal of this chapter is to express all of the calculated two-loop Feynman
diagrams in a compact form. This is done by rewriting all of the Feynman ampli-
tudes as linear combinations of loop integrals containing just scalar propagators.
All the scalar propagators necessary for this process are depicted in the so-called
Auxiliary graph.

If we consider a general scalar Feynman graph with k loops, E external legs
and I internal lines then the amplitude of this graph can be decomposed as a
linear combination of the following terms

∫
dnl1....dnlk

∏Nsp

i=1 F
ai
i∏I

j=1 Pj
, (3.1)

where Fi are independent scalar products of both external and internal momenta,
Nsp is the number of these scalar products, ai is the non-negative integer number
and Pj is the propagator of the given Feynman graph. Quantity Nsp can be
expressed in terms E and k as follows

Nsp = k(E − 1) + k(k + 1)
2 . (3.2)

As a next step we would like to write all independent scalar products in terms
of denominators of propagators. This decomposition of scalar products allow us to
rewrite linear combinations of the terms (3.1) in terms of the linear combination
of the integrals

B(n1, ...., nI) =
∫

dnl1....ddlk
1∏I

j=1(Pj)nj
, (3.3)

where nj could be now any positive or negative number.
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In our case, we are working with the graphs where E = 3 and k = 2. So, from
(3.2) we get Nsp = 7. As we can see from the chapter 2, our Feynman diagrams
consist of six independent propagators. That means, if we want to express all our
amplitudes in the form (3.3), we are forced to add one independent propagator.
This procedure can be visualized by so-called Auxiliary graph. The Auxiliary
graph of our problem is depicted in the figure 3.1. This graph has nothing to do
with dynamics of our process (in means of Feynman diagrams). Its function is
just to represent propagators. The general formula (3.3) can now be rewritten to
the form

B(n1, ...., n7) =
∫

ddlddk 1∏7
j=1(Pj)nj

. (3.4)

In the following text we will denote functions in the equation (3.4) as B functions.

Figure 3.1: Auxiliary graph representing six propagators which are present in our
two-loop calculations and the propagator which was added.

Finally, we will write out all the propagators which appear in B functions

P1 = l2 −M2
π ,

P2 = t2 −m2,

P3 = (l + q+)2 −M2
π ,

P4 = (l − q−)2 −M2
π ,

P5 = (t+ q+)2,

P6 = (t− q−)2,

P7 = (l − t)2 −M2
π ,

(3.5)

and all the independent scalar products expressed in terms of the propagators
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(3.5)

l2 = P1 +M2
π ,

t2 = P2 −m2,

l.q+ = P3 − P1 −m2

2 ,

l.q− = P1 − P4 +m2

2 ,

t.q+ = P5 − P2 − 2m2

2 ,

t.q− = P2 − P6 + 2m2

2 ,

l.t = P1 + P2 − P7 +m2

2 .

(3.6)

Now, we have all necessary ingredients for derivation of the NLO amplitudes
introduced in (2.3). For better understanding, let us derive the amplitude corre-
sponding to the second diagram in the figure 2.3. Firstly, for the determination
of the P amplitude (2.15) we need to calculate 1-loop diagram

We can express this diagram, with use of the Feynman rules listed in the appendix
A, in the dimensional regularization scheme as 1

iΓµν = − ie2NCϵαβγµµ
4−n

12π2F 3
0

∫ dnl
(2π)n

(l − q)αlβQγ(2l − q)ν
(l2 −Q2)((l + q)2 −Q2 , (3.7)

which can be simplified, if we realize that two identical momenta coupled with
the antisymmetric tensor ϵαβγµ give zero contribution, just like the integral where
in the numerator is the odd power of the loop momenta. Simplified integral reads
then

iΓµν = ie2NCϵαβγµµ
4−n

6π2F 3
0

∫ dnl
(2π)n

qαlβQγlν
(l2 −Q2)((l + q)2 −Q2 . (3.8)

Further, we can rewrite this integral to the form in which the loop momentum ap-
pears only in the denominator of propagators by the Passarino-Veltman reduction

iΓµν = iqαQγ e
2NCϵαγµνµ

4−n

12π2F 3
0

(
A

(1 − n) + B(4Q2 − q2)
2(1 − n)

)
, (3.9)

1note that the Q2 = M2
π
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where

A =
∫ dnl

(2π)n
1

(l2 −Q2) = iM2

(4π)2

(1
ϵ

− γE − ln
(M2

4π
)

+O(ϵ)
)
, (3.10)

B =
∫ dnl

(2π)n
1

(l2 −Q2)((q − l)2 −Q2)

= i
(4π)2

(1
ϵ

− γE −
∫ 1

0
dx ln

(M2 − q2x(1 − x)
4π

)
+O(ϵ)

)
.

(3.11)

If we compare (3.9) with (2.12), then we get corresponding contribution to the
pion transition form factor

F up−bubble
π0γγ = − NC

12π2F 3
0

(
A

(1 − n) + (4Q2 − q2)B
2(1 − n)

)
. (3.12)

Inserting this to the general formula (2.15), we can write the whole amplitude P
in terms of B functions as

P (m2, Q2)up−bubble
π0γγ =i e4mNC

12π2F 3
0Q

2
µ2(4−n)

(n− 1)

(1
2{4Q2

[
Q4B(0, 1, 1, 0, 1, 1, 1)

+B(0, 1, 1, 0, 1,−1, 1) +B(0, 1, 1, 0,−1, 1, 1)
− 2B(0, 1, 1, 0, 0, 0, 1) − 2Q2B(0, 1, 1, 0, 1, 0, 1)

− 2Q2B(0, 1, 1, 0, 0, 1, 1)
]

−
[
Q4B(0, 1, 1, 0, 0, 1, 1)

+B(0, 1, 1, 0,−2, 1, 1) +B(0, 1, 1, 0, 0,−1, 1)
− 2B(0, 1, 1, 0,−1, 0, 1) − 2Q2B(0, 1, 1, 0,−1, 1, 1)

− 2Q2B(0, 1, 1, 0, 0, 0, 1)
]
} +Q4B(1, 1, 0, 0, 1, 1, 0)

+B(1, 1, 0, 0,−1, 1, 0) +B(1, 1, 0, 0, 1,−1, 0)
− 2Q2B(1, 1, 0, 0, 0, 1, 0) − 2Q2B(1, 1, 0, 0, 1, 0, 0)

− 2B(1, 1, 0, 0, 0, 0, 0)
)
.

(3.13)

P amplitude corresponding to the third diagram in the figure 2.3 is symmet-
rical to the P (m2, Q2)up−bubble

π0γγ , what leads to the result

P (m2, Q2)down−bubble
π0γγ = P (m2, Q2)up−bubble

π0γγ . (3.14)

In order to calculate amplitude P corresponding to the tadpole diagram (first
diagram in the figure 2.3), it is necessary to calculate 1-loop diagram
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With the use of the Feynman rule for π0π+π−γγ listed in the appendix A, we can
express this loop in the sense of dimensional regularization as

iΣµν = i4e2NCϵαβµνµ
4−n

36π2F 3
0

∫ dnl
(2π)n

(q + k)α(q − k)β
(l2 −Q2)

= − i2e2NCϵαβµνµ
4−n

9π2F 3
0

qαkβA,

(3.15)

and for the corresponding contribution to the pion transition form factor (2.12)
we get

F tadpole
π0γγ = − 2NC

9π2F 3
0
A. (3.16)

Finally, we obtain P (m2, Q2)tadpoleπ0γγ in terms of B functions

P (m2, Q2)tadpoleπ0γγ =i2e
4m

Q2
NCµ

2(4−n)

9π2F 3
0

[
Q4B(1, 1, 0, 0, 1, 1, 0)

+B(1, 1, 0, 0,−1, 1, 0) +B(1, 1, 0, 0, 1,−1, 0)
− 2Q2B(1, 1, 0, 0, 0, 1, 0) − 2Q2B(1, 1, 0, 0, 1, 0, 0)
− 2B(1, 1, 0, 0, 0, 0, 0)

]
.

(3.17)

3.2 Symmetry relations, restrictions and IBP
identities

This section is divided to two subsections in which we will describe the methods
which simplify computation of the particular amplitudes.

3.2.1 Symmetry relations and restrictions

As follows from the name, symmetry relations allow us to relate different B
functions coupled with symmetry in one equation. Generally, we can write them
in the form

B(n1, ...., nI) = (−1)a1n1+......+aInIB(σ(n1), ...., σ(nI)), (3.18)
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where σ represent a permutation and a1 take the value of 1 or 0. If we want to
find a symmetry relations in the particular case, the best way how to do it is to
look on the auxiliary graph. In our case we see that we can make permutations
( 3 ↔ 4 , 5 ↔ 6) without change of the result. In mathematical form

B(n1, n2, n3, n4, n5, n6, n7) = B(n1, n2, n4, n3, n6, n5, n7). (3.19)
In order to simplify and speed up our calculations, we will use some restrictions
which tell us when the particular B function is equal to zero. For example, we
can use the fact that massless tadpole gives zero contribution to the Feynman
amplitude. In our case this can be written as

B(a1, 0, a2, a3, a4, 0, 0) = 0, (3.20)
where ai is any integer.

Surely, there exist more symmetry relations and the restrictions, but for our
calculations the symmetry relations and the restrictions written above are suffi-
cient.

3.2.2 IBP identities

Let’s define a scalar Feynman integral

I(n1, ......, nN) =
∫

dnk1.....dnkLf(k1, ......, kL, p1, ....., pE), (3.21)

f(k1, ......, kL, p1, ....., pE) = 1
P n1

1 ....P nN
N

, (3.22)

where Pi is the denominator of the scalar propagator. Now, if we multiply the
integrand f with the momentum qµ,j (any of the L + E momenta) and take a
four-divergence ∂

∂kµ
i
, we obtain from the d-dimensional Gauss theorem∫

dnk1.....d
nkLOijf = 0, (3.23)

Oij = ∂

∂kµi
qµ,j, (3.24)

where we assume a vanishing of the surface term in the infinity. Now, if we
introduce so called shift operators defined as

i±I(n1, ..., ni, ..., nN) = I(n1, ..., ni ± 1, ..., nN), (3.25)
then we can rewrite operator Oij as the linear combination of shift operators.
These equations are called IBP identities [29, 30].

It is clear that this construction can be applied on our particular case, where
we have eight different operators Oij acting on the integrand of the B functions.
Schematically, this can be written as∫ dnl

(2π)n
dnk

(2π)n

(
1
∂lµ
1
∂kµ

)(
lµ kµ qµ+ qµ−

) 1∏7
j=1(Pj)nj

= 0. (3.26)

The individual relations of (3.26) in terms of the shift operators can be found in
the appendix A.
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Number of propagators MI’s
2 B(0,0,1,0,0,0,1)*, B(0,1,0,0,0,0,1)*, B(0,1,1,0,0,0,0)*,

B(1,1,0,0,0,0,0)*
3 [B(-1,0,0,1,1,0,1), B(0,-1,0,1,1,0,1), B(0,0,0,1,1,0,1)],

[B(-1,1,1,0,0,0,1), B(0,1,1,0,0,0,1)], B(0,0,0,0,1,1,1)*,
B(0,0,1,0,1,1,0)*

4 [B(-1,1,0,1,1,0,1), B(0,1,0,1,1,0,1), B(0,1,-1,1,1,0,1)],
B(0,1,0,0,1,1,1)*, B(0,1,1,0,1,1,0)*, B(1,1,0,0,1,1,0)*

Table 3.1: Table of MI classified by the number of propagators and topologies.

3.3 Reduction to master integrals by Laporta
algorithm

It is known that any B function can be reduced by IBP identities to linear combi-
nation of the finite set of so-called master integrals (MI’s). These MI’s belongs to
the same topology or subtopology as the original B function. With the topology,
we mean set of integrals which contain the same denominators of propagators to
the arbitrary positive integer power (we do not put any constrain on denominators
of propagators with negative integer). The Laporta algorithm [31, 32] is based on
the fact that number of MI’s are finite. In general, it fixes some sector (topology)
and starts generating IBP relations with the different index substitution. Since
the number of integrals is finite, after some time the number of equations will be
bigger than number of integrals and the system can be solved. Laporta algorithm
is implemented to the software Mathematica by the package FIRE [33].

In the table 3.1, you can see the set of MI’s in our particular problem and
in the figures 3.4, 3.5 and 3.6 are depicted the Feynman diagrams of these MI’s
organized by numbers of propagators. MI’s which can be solved trivially are
marked with asterisk. The MI’s in brackets belong to the same topology and will
be solved by the differential equation method (see section 3.4).

3.4 Differential equation method

In the previous section we showed how to obtain MI’s. Now, we show how to solve
them by differential equation method (DEM) [34, 35]. First part of this section
is devoted to the general scheme of this method. In the latter subsection, we
will deal with the problems concerning decoupling of the equation and boundary
conditions.

31



(a) (b) (c)

(d)

Figure 3.4: Subset of MI with 2 propagators. There are two different topologies
on this picture, namely (a) and (b, c, d). The diagrams are ordered in accordance
with the table 3.1.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.5: Subset of MI with 3 propagators. There are three different topologies
on this picture, namely (a, b, c), (d, e), (f, g). The diagrams are ordered in accor-
dance with the table 3.1. Black dot marks the negative power of the propagator
in terms of B function.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Subset of MI with 4 propagators. There are two different topologies on
this picture, namely (a, b, c) and (d, e, f). The diagrams are ordered in accordance
with the table 3.1. Black dot marks the negative power of the propagator in terms
of B function.

3.4.1 General equations of DEM

Let us consider a situation where we are dealing with Feynman graphs with E
external legs. Then the number of independent kinematical variables is

N = E(E − 1)
2 . (3.27)

As was shown in the previous sections, the amplitude can be decomposed to the
linear combination of MI’s of the form

I(s1, ...., sN) =
∫

dnl1....dnlk
1∏I

j=1(Pj)nj
, (3.28)

where si is i-th kinematical variable. Now, let us differentiate MI by one of these
kinematical variable. After the chain rule with external momenta qj’s we get

∂I(s1, ...., sN)
∂si

= ∂qj,µ
∂si

∂I(s1, ...., sN)
∂qj,µ

= (
E∑

j,k=1
Cjk(s1, ...., sN)qk,µ)∂I(s1, ...., sN)

∂qj,µ
.

(3.29)

Coefficients Cjk(s1, ...., sN) can be found by conditions which we impose on the
solution. Consequently, the solution can be rewritten in terms of the shift oper-
ators (3.25). We illustrate this approach on our problem. As was mentioned in
the chapter 2 our kinematical variable has the form

y = M2
π

4m2 . (3.30)
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Let us denote the coefficients occurring in (3.29) as A, B and C (associated with
momenta q+, q− and (q+ + q−) respectively). The part with the coefficient C can
be calculated trivially, if we realize that the square of momenta (q+ + q−)2 occurs
only as a mass of pion propagators. Schematically we can write this in the form

( ∂
∂y

)
1

= 4m2(n11+ + n33+ + n44+ + n77+). (3.31)

The coefficients A and B can be calculated as follows. First, we assume that our
wanted operator is in the form

( ∂
∂y

)
2

= (Aq+,µ +Bq−,µ) ∂

∂qµ+,−
. (3.32)

Next, let us impose the normalization condition and the on-shell condition

( ∂
∂y

)
2

(
M2

4q2
+,−

)
= 1, (3.33a)[( ∂

∂y

)
2
, q2

+,−

]
= 0, (3.33b)

then we will get operator
(
∂
∂y

)
2

as

( ∂
∂y

)
2

= 1
2y(y − 1)[(2y − 1)q+,µ − q−,µ] ∂

∂qµ+

= 1
2y(y − 1)[(2y − 1)q−,µ − q+,µ] ∂

∂qµ−

= 1
y(y − 1)[−(2y − 1)

(n4 + n6

2
)

+ n4y4+1− + n6y6+2−

− n4
4+3−

2 − n6
6+5−

2 + n4m
2y4+ + 2n6m

2y6+],

(3.34)

and the resulting operator ∂
∂y

as a sum

∂

∂y
=
( ∂
∂y

)
1

+
( ∂
∂y

)
2

= 1
y(y − 1)[−(2y − 1)

(n4 + n6

2
)

+ n4y4+1− + n6y6+2−

− n4
4+3−

2 − n6
6+5−

2 + n4m
2y4+ + 2n6m

2y6+]

+ 4m2(n11+ + n33+ + n44+ + n77+).

(3.35)

From (3.35) we can observe that operator ∂
∂y

creates a combination of integrals
which belong to the same topology or subtopology as the original integral. This
means that every integral appearing on the RHS of the differential equation can
be decomposed by the IBP identities to the linear combination of MI’s belonging
to the particular topology. So, if we use the operator (3.35) on every MI of a
certain topology, we get the system of differential equations which can be solved
in principle. An example of this method is showed in the chapter 6.
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3.4.2 Decoupling of differential equations

We would like to solve the system of the differential equations after their ob-
taining. Unfortunately, in most cases the system of MI’s is not decoupled in the
lowest order of ϵ. In this situation, we are forced to find basis in which the equa-
tions decouple. The algorithm searching for the suitable basis works in following
steps:

1. Choosing different integrals belonging to the same topology as MI which
we want to solve.

2. Finding a solution of (3.35) for the chosen integrals in terms of MI’s

3. Finding a relation between our chosen integrals and MI’s by IBP relations

4. Substitution for MI’s in terms of the chosen integrals in the point 2.

5. Repetition of this process until the system decouples

The algorithm of this type can be programmed for example in Mathematica.
When the system decouples the integrals can be solved to the required order of
ϵ. Now, the only remaining problem is to fix the integration constants from the
boundary conditions.

3.4.3 Boundary conditions

Integration constants can be fixed from the singularity of integrals in some specific
kinematic points. For this purpose, it is convenient to redefine our kinematical
variable (for example when we want to have a singularity of the diagram in the
point 0 instead of ∞). Actually, searching for the appropriate kinematical variable
is a weak point of this method. There exists also another possibility how to fix
the integration constant. Sometimes, the integrals was computed in some specific
point of the kinematical variable in the literature. From this known solution we
can fix the integration constant for the general case [36].
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Chapter 4

General structure of
renormalization

In this section we discuss the general scheme of a renormalization for one-loop
and two-loop contributions. Within this thesis we use common dimensional reg-
ularization and non-renormalizable effective field theory renormalization scheme
[37]. We write effective Lagrangian in the form

L =
∑
n

µ−2ϵnLn, (4.1)

where µ−2ϵn is the dimensional scale resulting from dimensional regularization
scheme and Ln contains counterterms which are needed for renormalization of
corresponding n-loop Feynman graphs. In the next sections, we follow the analysis
from [14].

4.1 Renormalization of the one-loop contribu-
tions

Generally, for the renormalized one-loop Feynman graph we can write schemati-
cally

δ1–loop =µ−2ϵmD
[( µ
m

)2ϵ
(
δ1–loop

−1
ϵ

+ δ1–loop
0 + ϵδ1–loop

1 +O(ϵ2)
)

+
(
χ(µ) − δ1–loop

−1
ϵ

)]
,

(4.2)

whereD is dimension of δ. In this formula the first bracket represents contribution
of the bare loop while the second bracket represent the counterterm contribution.

We use here the renormalization scheme suitable for effective theories and
require renormalization scale independence order by order in the loop expansion.
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At one loop order this means that the term

χ =
( µ
m

)−2ϵ
(
χ(µ) − δ1–loop

−1
ϵ

)
+ δ1–loop

−1
ϵ

= χ(µ) + δ1–loop
−1 ln

( µ2

m2

)
+O(ϵ),

(4.3)

is µ independent. In terms of this scale invariant variables (4.2) can be rewritten
to the form

δ1–loop = mD
(
δ1–loop

0 + χ+O(ϵ)
)
. (4.4)

4.2 Renormalization of the two-loop contribu-
tions

At the two-loop level the corresponding contribution can be divided to the three
categories

δ2–loop = δ2–loop
G + δ1–loop

CT + δtree
CT , (4.5)

where δ2–loop
G is a genuine two-loop contribution which we can write in the form

δ2–loop
G = µ−4ϵmD

( µ
m

)4ϵ
(
δ2–loop

−2
ϵ2 + δ2–loop

−1
ϵ

+ δ2–loop
0 + ϵδ1–loop

1 +O(ϵ2)
)
, (4.6)

δ1–loop
CT represent contribution of one-loop graphs with counterterms and can be

written as

δ1–loop
CT =µ−4ϵmD

( µ
m

)2ϵ∑
i

(
η

(i),1–loop
−1
ϵ

+ η
(i),1–loop
0 + ϵη

(i),1–loop
1 +O(ϵ2)

)

×
(
χ(µ)(i),1–loop − δ

(i),1–loop
−1
ϵ

)
,

(4.7)

where the bracket on the first line correspond to the pure loop contribution and
the terms on second line corresponds to the counterterm vertex. δtree

CT represent
tree counterterm graph which is necessary for renormalization of the remaining
superficial divergences. Naively

δtree
CT =µ−4ϵmD

[
χ(µ)tree − δ2–loop

−2 −∑
i η

(i),1–loop
−1 δ

(i),1–loop
−1

ϵ2

−
δ2–loop

−1 −∑
i

(
η

(i),1–loop
0 δ

(i),1–loop
−1 − χ(µ)(i),1–loopη

(i),1–loop
−1

)
ϵ

− ln
( µ2

m2

)2δ2–loop
−2 −∑

i η
(i),1–loop
−1 δ

(i),1–loop
−1

ϵ

]
,

(4.8)

here the term χ(µ)tree consist of linear combinations of the two-loop couplings
χ(µ)(i),2–loop and powers of external momenta. However, the sum δ2–loop

G + δ1–loop
CT
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should be free from non-local divergences (divergences containing terms propor-
tional to ln

(
µ2

m2

)
) , i.e. only divergences which contain polynomials of external

momenta and masses remain. This leads to the constraints

2δ2–loop
−2 −

∑
i

η
(i),1–loop
−1 δ

(i),1–loop
−1 = 0, (4.9)

δ2–loop
−1 −

∑
i

η
(i),1–loop
0 δ

(i),1–loop
−1 =

(
δ2–loop

−1

)
l
, (4.10)

where
(
δ2–loop

−1

)
l

is local.

Now, if we introduce invariant couplings χ(i),1–loop and χtree in the same manner
as (4.3), namely

χ(i),1–loop =
( µ
m

)−2ϵ
(
χ(µ)(i),1–loop − δ

(i),1–loop
−1
ϵ

)
+ δ

(i),1–loop
−1
ϵ

, (4.11)

χtree =
( µ
m

)−4ϵ
[
χ(µ)tree + δ

(i),2–loop
−2
ϵ2

−

(
δ2–loop

−1

)
l
+∑

i χ(µ)(i),1–loopη
(i),1–loop
−1

ϵ

]

− δ
(i),2–loop
−2
ϵ2 +

(
δ2–loop

−1

)
l
+∑

i χ
(i),1–loopη

(i),1–loop
−1

ϵ
,

(4.12)

then we are able to rewrite δ2–loop
G + δ1–loop

CT as

δ2–loop
G + δ1–loop

CT =µ−4ϵmD
( µ
m

)4ϵ
[
δ2–loop

−2
ϵ2

+

(
δ2–loop

−1

)
l
+∑

i

(
χ(i),1–loopη

(i),1–loop
−1

)
ϵ

+ δ2–loop
0

+
∑
i

(
χ(i),1–loopη

(i),1–loop
0 − δ1–loop

−1 η
(i),1–loop
1

)
+O(ϵ)

]
,

(4.13)

and the tree-level counterterm graph to the form

δtree
CT =µ−4ϵmD

( µ
m

)4ϵ
[
χtree + δ2–loop

−2
ϵ2

+

(
δ2–loop

−1

)
l
+∑

i

(
χ(i),1–loopη

(i),1–loop
−1

)
ϵ

]
.

(4.14)

As a result we get for δ2–loop the form which is invariant with respect to change
of the renormalization scale µ

δ2–loop =mD
[
δ2–loop

0 + χtree + δ2–loop
0

+
∑
i

(
χ(i),1–loopη

(i),1–loop
0 − δ1–loop

−1 η
(i),1–loop
1

)
+O(ϵ)

]
.

(4.15)
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Chapter 5

Counterterm technique of
renormalization

This chapter is devoted to the counterterm diagrams necessary for the renor-
malization of the genuine two-loop loop diagrams δ2–loop

G , i. e. we introduce the
diagrams contributing to δ1–loop

CT + δtree
G .

5.1 One-loop counterterm diagrams

In this section we firstly introduce the one-loop diagrams, where the divergent
one-loop subgraphs are replaced by point-like counterterm vertices (this corre-
spond to the first bracket contribution in the (4.7)). After that, we evaluate the
divergent part of one-loop subgraphs in order to renormalize our Lagrangian and
subsequently we determine δ1–loop

−1 from the second bracket of (4.7).

5.1.1 One-loop counterterm diagrams with counterterm
vertices

All necessary one-loop counterterm diagrams are depicted in the figure 5.1. The
effective one-particle irreducible vertex (defined in (2.2)) of the triangle diagram
can be written as

iV tr(q+, q−) = − Kπ0γγα
2

F0

ϵµναβ
π

∫ dnl
(2π)n (l + q+)α(l − q−)β

× γµ(/l +m)γν
(l2 −m2)(l − q−)2(l + q+)2 .

(5.1)

With use of (2.12) and (2.15) we can find the P form factor for this countert-
erm diagram (in fact this loop diagram with exception of the counterterm was
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calculated in the section 2.3.2) in terms of the B functions

P tr(m2,M2) = − iKπ0γγα
2

F0(4π2)
m

M2 {M4B(0, 1, 0, 0, 1, 1, 0)

+B(0, 1, 0, 0,−1, 1, 0) +B(0, 1, 0, 0, 1,−1, 0)
− 2

[
B(0, 1, 0, 0, 0, 1, 0) +B(0, 1, 0, 0, 1, 0, 0)

]
− 2B(0, 1, 0, 0, 0, 0, 0)}.

(5.2)

The effective one-particle irreducible vertex of the second diagram depicted
in the figure 5.1 has the following form

iV tad(q+, q−) = −iKπ0π+π−e+e−α2NC

12F 3
0 π

2

∫ dnl
(2π)n

/Qγ5

(l2 −m2) . (5.3)

As one can observe, for this type of the diagram we cannot use the formula
(2.15) for the determination of P amplitude as before, but we need to derive the
corresponding amplitude from the relation (2.7). If we insert the equation (5.3)
to (2.7) we get (after the anticommutation of γ5 matrices)

P tad(m2,M2) = − lim
q2

±→m2

Kπ0π+π−e+e−α2NC

24M2F 3
0 π

2 Tr
[
(/q− +m)/Q(/q+ +m)

]
×B(1, 0, 0, 0, 0, 0, 0)

= − mKπ0π+π−e+e−α2NC

6F 3
0 π

2 B(1, 0, 0, 0, 0, 0, 0).

(5.4)

Figure 5.1: One-loop counterterm diagrams necessary for renormalization.

5.1.2 Renormalization of the Lagrangian

All divergent one-loop subgraphs which we need to renormalize in order to get
rid all necessary divergences in our calculations are depicted in the figure 5.2.

Bubble insertion diagram

The first diagram we are dealing with is the bubble insertion diagram 5.2a. This
loop was expressed in the dimensional regularization scheme in (3.7) which can
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(a) (b)

(c)

Figure 5.2: Set of the divergent loop diagrams necessary for renormalization.

be simplified to the form (3.9). This expression can be rewritten by Feynman
parametrization and subsequently calculated with master formula of the general
form ∫ dnl

(2π)n
(l2)r

(l2 − C2)s = i(−1)r+s
(4π)n/2

Γ(r + n
2 )Γ(s− r − n

2 )
Γ(n2 )Γ(s)

(
C2
)r+ n

2 −s
. (5.5)

This formula was used in (3.10) and (3.11) and for the UV divergent part of (3.9)
we get (note we denote here the loop contribution as Σ instead of Γ in order to
do not confuse it with gamma function)

iΣBID,div
µν = −qαkβ

ϵ

e2NCϵαβµν
36π2F 3

0

3M2 − m2

2
(4π)2 . (5.6)

Let us now renormalize the Lagrangian of our particular process. The part of
the Lagrangian which should subtract the divergence above is of the form

L(4)
CT,πγγ = π0

8 Kπγγ

(
α

π

)
ϵµναβF

µνFαβ, (5.7)

where the constant Kπγγ in the spirit of the fourth chapter can be written as (see
(4.7))

Kπγγ = µ−2ϵ(1− δ
(BID),1 – loop
−1

ϵ
+χ(BID),1 – loop − δ

(Tad),1 – loop
−1

ϵ
+χ(Tad),1 – loop), (5.8)

where −δ(BID),1–loop
−1

ϵ
+χ(BID),1–loop corresponds to the part renormalizing the bubble

insertion diagram and − δ
(Tad),1–loop
−1

ϵ
+χ(Tad),11–loop renormalize the tadpole diagram

discussed in the following content. The term δ
(BID),1–loop
−1 can be derived from

comparison of the (5.8) with the Feynman rule for the πγγ vertex listed in the
appendix A with result

δ
(BID),1–loop
−1 = − iNC

144π3F 2
0

(
3M2 − m2

2
)
. (5.9)
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Tadpole diagram

Next diagram of our interest is the tadpole diagram depicted in the figure 5.2b.
The analytical structure of this loop was written in (3.15). The divergent part of
the diagram can be calculated by the use of (5.5) with the result

iΣTad,div
µν = −1

ϵ

2e2NCϵαβµνk
αqβ

9π2F 3
0

M2
π

(4π)2 . (5.10)

As in the previous case this divergence is subtracted by the renormalization of
the Lagrangian part corresponding to (5.7). Factor δTad),1–loop

−1 has then the form

δ
(Tad),1–loop
−1 = iNCM

2
π

18π3F 2
0
. (5.11)

Triangle diagram

The last diagram which is necessary to calculate in order to renormalize the
relevant parts of the Lagrangian is the triangle diagram depicted in the figure
5.2c. The loop can be written in the dimensional regularization scheme as

iΣTriangle = − iµ4−ne4NCϵ
αβµν

36π2F 3
0

(4Q− 2Q− − 2Q+)β

×
∫ dnl

(2π)n
(2l + q+ − q−)α(γµ(/l +m)γν)

((l + q+)2 −M2)((l − q−)2 −M2)(l2 −M2) .
(5.12)

Now, if we notice that the only divergent part originate from the term which
is proportional in the numerator of the integrand to l2 than we can after the
Feynman parametrization for the divergent part of the loop iΣTriangle write

iΣTriangle,div = − ie4NCϵ
αβµν

36π2F 3
0

(4Q− 2Q− − 2Q+)β

×
∫ ∫ 4dxdy

n

∫ dnl
(2π)n

l2(γµγαγν)
(l2 − C2)3 .

(5.13)

Let us focus on the term ϵαβµνγµγαγν . This term can be written in the basis of
γ matrices (in general this basis is spanned by 16 matrices 1, γµ, γµγ5 and σµν)
only as

ϵαβµνγµγαγν = Cγ5γβ, (5.14)

where C is a appropriate constant. This constant can be determined if we calcu-
late trace of (5.14) multiplied with γβγ5. Then we get

4iϵαβµνϵαβµν = 16C, (5.15)

and with the use of the identity ϵαβµνϵαβµν = −4! we have for the constant C

C = −6i. (5.16)
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If we use the master formula (5.5) then we can express the whole result for
iΣTriangle,div as

iΣTriangle,div = − i
ϵ

e4NC

96π4F 3
0
γ5(2/Q− /Q− − /Q+). (5.17)

The relevant part which subtract this divergence is included in the renormalized
part of the Lagrangian

L(6)
CT,π0π−π+e+e− =Kπ0π−π+e+e−

24F 3
0

(
α

π

)2
ψγµγ5ψ(π−π0∂µπ

+

− 2π−∂µπ
0π+ + ∂µπ

−π0π+),
(5.18)

where Kπ0π−π+e+e− has the form

Kπ0π−π+e+e− = (1 − δ
(Triangle),1 – loop
−1

ϵ
). (5.19)

Term δ
(Triangle),1 – loop
−1 is obtained after the comparison of (5.17) with the vertex

π0π−π+e+e− which is listed in the appendix A. The result reads then (note we
used δ

(Triangle),1 – loop
−1 instead of −4χ)

δ
(Triangle),1 – loop
−1 = iNC

4π2 . (5.20)

5.2 Tree level counterterm diagram

For the subtraction of the remaining divergences, we introduce the tree level
counterterm diagram depicted in the figure 5.3. Let us remind that remaining
divergences after the sum of two-loop diagrams with one-loop counterterm dia-
grams should be local. Unfortunately, due to lack of time we were not able to
determine the explicit form of the complete tree level counterterm Lagrangian
since it has complicated structure. However, the corresponding vertex should
have the similar form as (1.62). Schematically

L(6)
CT,π0e+e− = −

(α
π

)2Ktree(M2, ∂)
16F0

ψγµγ5ψ∂
µπ0, (5.21)

where Ktree(M2, ∂) is a second order polynomial of the external momenta and
masses.

Figure 5.3: Tree level counterterm diagram necessary for renormalization.
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Chapter 6

Results for the master integrals

In this section we firstly introduce our convention for normalization of integrals
and we show the importance of the correctly chosen kinematical variable on ex-
ample. The other part of the section is devoted to the analytical results of the
diagrams depicted in the figure 2.3.

6.1 Normalization of integrals and substitution
of kinematical variables

In order to maximally simplify calculations of differential equations, we introduce
the dimensionless integral b defined as

B(n1, ..., n7) =
(
iΓ(1 + ϵ)(4π)ϵ−2

)2
(
µ

m

)4ϵ
m2(4−

∑
i
ni)b(n1, ..., n7). (6.1)

Differential equations are then solved to the desired order in ϵ of b functions.
Schematically

b(n1, ..., n7) =
∑
i≥−2

b(n1, ..., n7)(i)ϵi. (6.2)

Another important part of the calculation is the correct selection of the kine-
matical variable. In order to express all our results in harmonic polylogarithms
(see appendix C), we were forced to use two different kinematical variables

x = 1√
4y = m

Mπ

, (6.3)

z = −

√
1 − 1

y
− 1√

1 − 1
y

+ 1
. (6.4)

44



6.2 Example of calculation by differential equa-
tion technique

In this subsection we will show in detail the calculation in both lowest orders
of the Laurent expansion for the one of the MI’s subtopologies. All of these
calculations will be expressed in the kinematical variable x. Let us consider the
integrals with the following topology

RHS of differential equations contains also tadpole diagrams (MI’s of two propa-
gator topology) which Laurent expansions is known since they can be calculated
by the Feynman parametrization and will be expressed in concrete calculations
as known functions of the kinematical variable. For completeness, let us list the
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results for the tadpoles in two lowest orders expressed in the variable x

t
(−2)
1 = 1

x2 , (6.5a)

t
(−1)
1 = 2(HPL({0}, x) + 1)

x2 , (6.5b)

t
(−2)
2 = 1

x4 , (6.6a)

t
(−1)
2 = 4HPL({0}, x) + 2

x4 . (6.6b)

The system of the differential equations in the lowest order for the basis of the
MI’s is of the form

∂b
(−2)
1
∂y

= 4y(b(−2)
1 + 4y + 2) − 3b(−2)

2
2y(4y − 1) , (6.7a)

∂b
(−2)
2
∂y

= 2b(−2)
1 − 6b(−2)

2 + 6
1 − 4y + 3b(−2)

2
2y − 10. (6.7b)

As one can see, the differential equations did not decouple for this choice of the
basis. So, it is necessary to find different basis in which the differential equations
decouple. One of the possibility is the basis

b(0, 1, 2, 0, 0, 0, 1) ≡ r1, (6.8a)
b(−1, 2, 1, 0, 0, 0, 2) ≡ r2. (6.8b)

The relations between this two basis (in terms of the kinematic variable y) are
following

b1 =r1

(27yϵ3

2 + 9ϵ3

2(4y − 1) + 11ϵ3

(1 − 4y)2 − 2ϵ3

(4y − 1)3 + 9yϵ2 + 3ϵ2

4y − 1

− 2ϵ2

(1 − 4y)2 + 6yϵ− 2ϵ
4y − 1 + 4y − 95ϵ3

8 + 11ϵ2

4 − 7ϵ
2 − 1

)

+ r2

(
− 18ϵ3

4y − 1 + 4ϵ3

(1 − 4y)2 + 4ϵ2

4y − 1 + 13ϵ3 − 2ϵ2 + 4ϵ
)

+ t1

( 51ϵ3

64y2

− 7ϵ2

32y2 + ϵ

16y2 − 13ϵ3

64y + 17ϵ3

4(4y − 1) − 13ϵ3

2(1 − 4y)2 + ϵ3

(4y − 1)3

+ 33ϵ2

32y − 5ϵ2

2(4y − 1) + ϵ2

(1 − 4y)2 − ϵ

16y + ϵ

4y − 1 + 1
8y

)

+ t2

(
− 461ϵ3

32y + 37ϵ3

4y − 1 − 6ϵ3

(1 − 4y)2 + 65ϵ2

16y − 6ϵ2

4y − 1 − 9ϵ
8y + 1

4y

)
,

(6.9)
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b2 =r1

(
− 86

3 y
2ϵ3 − 56y2ϵ

3 − 11yϵ3

6 + 35ϵ3

6(4y − 1) + 3ϵ3

(1 − 4y)2

− 2ϵ3

3(4y − 1)3 − (2y(4y(4y(68y − 89) + 125) − 55) + 5)ϵ2

6(1 − 4y)2 + 10yϵ
3

− 2ϵ
3(4y − 1) + 4(1 − 4y)y + 7ϵ3

12 − ϵ
)

+ r2

(44yϵ3

3 − 14ϵ3

3(4y − 1)

+ 4ϵ3

3(1 − 4y)2 − 8y(8y(6y − 5) + 9)ϵ2

3(1 − 4y)2 + 4ϵ2

3(1 − 4y)2 + 16yϵ
3 − 20ϵ3

3

)

+ t1

(
− 5ϵ3

96y2 + (4y − 1) (24y2 − 98y + 25) ϵ2

48(1 − 4y)2y
+ ϵ2

48(1 − 4y)2y2

+ 157ϵ3

96y − 13ϵ3

12(4y − 1) − 11ϵ3

6(1 − 4y)2 + ϵ3

3(4y − 1)3 + ϵ

8y + ϵ

3(4y − 1)

+ 3ϵ3

16 + ϵ

12 + 1
2

)
+ t2

(17ϵ3

16y + 31ϵ3

3(4y − 1) − 2ϵ3

(1 − 4y)2

+ (4y − 1)(2y(220y − 93) + 7)ϵ2

24(1 − 4y)2y
+ ϵ

12y − 73ϵ3

8 − 11ϵ
6 + 1

)
.

(6.10)

The solution of the integrals ri is searched as the Laurent expansion to the desired
order of ϵ. Schematically

ri =
∑
j≥−2

r
(j)
i ϵj (6.11)

Notice the dependence of b1 and b2 on the integral r2 in the (6.9, 6.10). This
integral does not appear in the 0th order in ϵ. So, it is enough to calculate r2 in
terms of the Laurent expansion (6.11) to the power of ϵ which is one less in the
order as it is in case of r1. Now, we switch to the kinematic variable x in order to
get differential equations which solutions can be expressed in HPL’s (appendix
C). System of the differential equations in the lowest order reads now

∂r
(−2)
1
∂x

=1 − 2r(−2)
1

(x− x3) , (6.12a)

∂r
(−2)
2
∂x

=x
2(2r(−2)

1 − 4r(−2)
2 + 3) + 4(r(−2)

2 − 1)
4x(x2 − 1) . (6.12b)

As we can see the differential equation for r(−2)
1 is decoupled. The calculation

of r(−2)
1 can be done (as all other orders) by the technique of the variation of

constants. We get
r

(−2)
1 = 1

2 + (−1 + 1
x2 )C(−2)

1 . (6.13)

Finally, the integration constant C(−2)
1 is fixed from [36], where the MI of this

subtopology were calculated for the limits of x → 1 and x → ∞. After the
comparison of results (which are b(−2)

1 (x = 1) = 3
2 and b

(−2)
1 (x = ∞) = 1

2) we get
for the integral constant C(−2)

1 and r
(−2)
1

C
(−2)
1 =0, (6.14a)
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r
(−2)
1 =1/2. (6.14b)

Now, the calculation of the r−2
2 can be also performed

r
(−2)
2 = (C(−2)

2 + x)
x

. (6.15)

In order to fix constant C(−2)
2 , we need also know r

(−1)
1 . The differential equa-

tion has the following form (note appearance of HPL({0}, x) from the tadpoles
diagrams (6.5) and (6.6))

∂r
(−1)
1
∂x

= 4HPL({0}, x) + 4C(−2)
2 x− 2r−1

1 − 2x2 + 3
x− x3 . (6.16)

The differential equation for r(−1)
1 can be solved trivially

r
(−1)
1 = 1

4x2

(
4C(−2)

2

(
x2 − 1

)
HPL({p}, x) + 8x2HPL({0}, x)

− 4C(−1)
1

(
x2 − 1

)
− C

(−2)
2 (4 − 4(x− 2)x) + x2 + 1

)
.

(6.17)

The integration constants C(−1)
1 , C(−2)

2 are fixed as before from the knowledge of
the analytical form of the MI’s in limiting cases (here the results are b(−1)

1 (x =
1) = 17

4 and b
(−1)
1 (x = ∞) = 5

4 ). We get

C
(−2)
2 =0, (6.18a)

C
(−1)
1 = − 1

4 . (6.18b)

The result for r(−2)
2 and r

(−1)
1 reads then

r
(−2)
2 =1, (6.19a)

r
(−1)
1 =2HPL({0}, x) + 1

2 . (6.19b)

This procedure is repeated in the calculation of the following orders. Complete
results for all MI’s are given in the appendix E.

6.3 Results of two-loop graphs

In this section we list the results for the pure two-loop diagrams (i. e. contri-
bution δ2–loop

G without counterterms) depicted in the figure 2.3. The results will
be expressed in the kinematic variable y defined in (2.8). We express the results
through form factor P defined in (2.3) (see also (2.4) and (2.5)). The structure
of the form factors PNLO for all two-loop diagrams calculated here in terms of
B functions can be seen in (3.13), (3.14) and (3.17). Decomposition of the in-
dividual B functions appearing in (3.13, 3.14, 3.17) to MI’s can be found in the
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appendix D. The results for each MI are listed in appendix E. Finally, let us list
these amplitudes in terms of MI’s

P (m2, y)up−bubble
π0γγ =i e4NC

12π2F 3
0 4my

µ2(4−n)

(n− 1){32m4y2B(0, 1, 1, 0, 1, 1, 0)

+ 16m4y2B(1, 1, 0, 0, 1, 1, 0)

− 8
3m

4y(37y − 2)B(0, 1, 0, 1, 1, 0, 1)

− 16
3 m

2yB(−1, 1, 0, 1, 1, 0, 1)

− 8
3m

2(y − 1)B(0, 0, 0, 1, 1, 0, 1)

− 8m2yB(0, 1,−1, 1, 1, 0, 1)
+ 4m2yB(0, 1, 1, 0, 0, 0, 1)(4m2 + 8y − 1)
+ 2(5 − 8m2)yB(−1, 1, 1, 0, 0, 0, 1)

+B(0, 0, 1, 0, 0, 0, 1)(8(m2 − 1)y + 4
3)

+ 4(2m2 − 3)yB(0, 1, 0, 0, 0, 0, 1)
+ 8(m2 − 1)yB(0, 1, 1, 0, 0, 0, 0)

− 8
3B(−1, 0, 0, 1, 1, 0, 1) − 4

3B(0,−1, 0, 1, 1, 0, 1)

+ ϵ
[

− 32m4y2B(0, 1, 1, 0, 1, 1, 0)

+ 4
3m

4y(100y − 11)B(0, 1, 0, 1, 1, 0, 1)

+ 44
3 m

2yB(−1, 1, 0, 1, 1, 0, 1) (6.20)

+ 22
3 m

2(y − 1)B(0, 0, 0, 1, 1, 0, 1)

+ 8m2yB(0, 1,−1, 1, 1, 0, 1)

+ 8
3m

2(1 − 24y)yB(0, 1, 1, 0, 0, 0, 1)

− 12yB(−1, 1, 1, 0, 0, 0, 1)

+ (8y − 11
3 )B(0, 0, 1, 0, 0, 0, 1)

− 26
3 yB(0, 1, 0, 0, 0, 0, 1) − 2

3yB(0, 1, 1, 0, 0, 0, 0)

+ 22
3 B(−1, 0, 0, 1, 1, 0, 1) + 11

3 B(0,−1, 0, 1, 1, 0, 1)
]

+ ϵ2
[4
3m

4y(4y + 1)B(0, 1, 0, 1, 1, 0, 1)

− 4
3m

2yB(−1, 1, 0, 1, 1, 0, 1)

− 2
3m

2(y − 1)B(0, 0, 0, 1, 1, 0, 1)

− 4
3m

2yB(0, 1, 1, 0, 0, 0, 1)

− 52
3 yB(0, 1, 0, 0, 0, 0, 1) − 28

3 yB(0, 1, 1, 0, 0, 0, 0)
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− 2
3B(−1, 0, 0, 1, 1, 0, 1) − 1

3B(0,−1, 0, 1, 1, 0, 1)

+ 1
3B(0, 0, 1, 0, 0, 0, 1)

]
+O(ϵ3)}.

P (m2, Q2)down−bubble
π0γγ = P (m2, Q2)up−bubble

π0γγ . (6.21)

P (m2, y)tadpoleπ0γγ =i 2e4

4my
NCµ

2(4−n)

9π2F 3
0

{4y(4m4yB(1, 1, 0, 0, 1, 1, 0)

− 3B(0, 1, 0, 0, 0, 0, 1)) − 8ϵ
[
yB(0, 1, 0, 0, 0, 0, 1)

]
− 16ϵ2

[
yB(0, 1, 0, 0, 0, 0, 1)

]
+O

(
ϵ3
)
}.

(6.22)
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Conclusion

In this diploma thesis the chiral corrections to the decay π0 → e+e− are studied in
a detailed way. Firstly, χPT was presented with all the relevant parts of the χPT
Lagrangian describing the dynamics of our particular process. Subsequently, we
introduced the diagrams calculated in the presented work. Mainly, we focused on
the two-loop chiral corrections of the order O(α2p4). In order to calculate these
diagrams, we firstly calculated the pion transition form factor Fπ0→γγ (2.12) for
each of these diagrams. With this knowledge, we were able to determine P
amplitudes (defined in (2.3)) with the use of (2.15) in terms of scalar integrals
(also called B functions (3.4)). To calculate all the P amplitudes we expressed
necessary scalar integrals to linear combinations of so-called MI’s. This reduction
was done by Laporte algorithm based on IBP relations. MI’s themselves was then
calculated by the differential equation method.

Following content was dedicated to the renormalization of the two-loop Feyn-
man diagrams we were dealing with. Firstly, we set the general structure of
renormalization. After that, we introduced all the necessary one-loop countert-
erm diagrams. The counterterm vertices were determined in the classical way,
i. e. we firstly calculated divergent parts of all the relevant one-loop subgraphs
and then we subtracted these divergences by the renormalized Lagrangian. All
these results together with the results for the P amplitudes of two-loop graphs
are presented.

Unfortunately, due to lack of time we were not able to do all the necessary
calculations to get the final and finite results for the relevant two-loop diagrams.
With these results we would be able to determine finite contributions of one-loop
counterterm diagrams χ(1 – loop)(µ) describing the high-energy loop contribution
(since the χPT is the effective field theory). However, in this work all the results
necessary for the determination of χ(1 – loop)(µ) was presented and we hope that in
the following months, we will be able express these parameters also numerically.
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Appendix

A Feynman rules

In this appendix we list the Feynman rules for the corresponding vertices used in
this master thesis

• e+e−γ vertex:

= ieγµ

Figure 2: Feynman rule for e+e−γ vertex.

• πe+e− vertex:

= i
(
e2

16π2

)2 4χ
F0

(
/q1 + /q2

)
γ5

Figure 3: Feynman rule for πe+e− vertex.

• π2γ vertex:

= i e2

4πF0

ϵµναβ
π

qα1 q
β
2

Figure 4: Feynman rule for π2γ vertex.

• 2πγ vertex:
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= ie(p1 + p2)µ

Figure 5: Feynman rule for 2πγ vertex.

• 3πγ vertex:

= −eNcϵ
αβγµ

12π2F 3
0
p1,αp2,βp3,γ

Figure 6: Feynman rule for 3πγ vertex.

• 3π2γ vertex:

= −e2Ncϵ
αβµν

36π2F 3
0

(q1 − q2)α(−2p1 − 2p2 + 4p3)β

Figure 7: Feynman rule for 3π2γ vertex.

= − iχNc

6F 3
0

( e2

4π2

)2
(−2/p3 + /p1 + /p2)γ5

Figure 8: Feynman rule for 3πe+e− vertex.

B IBP identities

In this appendix the set of IBP identities (3.26) are listed individually. They are
written in terms of the shifting operators (3.25) and are presented in the form
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(3.24) where i = l, t and j = l, t, q±

Olq+ =n11+(1− − 3− +m2) + n33+(−3− + 1− −m2)
+ n44+(−3− + 1− −m2 + 4m2y)
+ n77+(−3− + 1− + 5− − 2− −m2),

Olq− =n11+(−1− + 4− −m2) + n33+(−4− − 1− +m2 − 4m2y)
+ n44+(4− − 1− +m2) + n77+(4− − 1− + 2− − 6− +m2),

Olt =n11+(−1− − 2− + 7− −m2) + n33+(−1− + 7− − 5− +m2)
+ n44+(−1− + 7− − 6− +m2)
+ n77+(−1− + 2− + 7− − 6− − 3m2),

Oll =2n11+(−1− − 4m2y) + n33+(−1− − 3− − 8m2y +m2)
+ n44+(−1− − 4− − 8m2y +m2)
+ n77+(−1− + 2− − 7− − 6− − 8m2y +m2),

Otq+ =n22+(−5− + 2− + 2m2) + n55+(−5− + 2−)
+ n66+(−3− + 2− + 4m2y) + n77+(1− − 4− − 3− + 2− +m2),

Otq− =n22+(−2− + 6− − 2m2) + n55+(−6− + 2− + 4m2y)
+ n66+(−2− + 6−) + n77+(1− − 4− − 2− + 6− −m2),

Otl =n22+(−1− − 2− + 7− −m2) + n55+(−2− + 7− − 3−)
+ n66+(−2− + 7− − 4−) + n77+(1− − 2− + 7− + 8m2y −m2),

Ott =2n22+(−2− +m2) + n55+(−5− − 2− + 4m2)
+ n66+(−2− − 6− + 4m2) + n77+(1− − 2− − 7− + 3m2).

C Generalized Harmonic Polylogarithms

In this appendix we introduce functions by which we expressed two-loop contri-
butions calculated in this thesis in an analytical form.

C.1 Harmonic Polylogarithms

The harmonic polylogarithms (HPL’s) [38] are a generalization of the usual poly-
logarithms and of the Nielsen polylogarithms. These functions are popular in
multi-loop calculations because of the ease with which we can perform an ana-
lytic continuation to the arbitrary region and their brevity. They are a function
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of one variable x and labeled by a vector a = (a1, ...., an). The indices ai can
acquire three different values 0, 1,−1. The dimension of the vector n is called the
weight of the function. The functions through we define HPL’s have the form

f0(x) = 1
x
, (23a)

f1(x) = 1
1 − x

, (23b)

f−1(x) = 1
1 + x

. (23c)

Then the HPL’s of the weight one are written as

HPL(0;x) = log(x), (24a)

HPL(1;x) =
∫ x

0
f1(t)dt = −log(1 − x), (24b)

HPL(−1;x) =
∫ x

0
f−1(t)dt = log(1 + x) (24c)

and higher weights HPL’s can be written schematically by the general formula

HPL({01, ....., 0n};x) = 1
n! logn(x), (25a)

HPL({a, a1, ....., ak};x) =
∫ x

0
fa(t)HPL({a1, ....., ak}; t)dt. (25b)

Let us also introduce the linear combinations of the HPL’s because of the maximal
brevity of the solution

HPL(+;x) =HPL(1;x) + HPL(−1;x), (26a)
HPL(−;x) =HPL(1;x) − HPL(−1;x), (26b)

HPL({±, a1, ....., ak};x) =HPL({1, a1, ....., ak};x)
± HPL({−1, a1, ....., ak};x). (26c)

As one can imagine, in the calculation of multi-loop Feynman diagrams by
the differential equation technique, we often encounter the integral consist of the
HPL’s and polynomials. The integrals which are possible to express after the
integration as a product of the HPL’s and polynomials can be derived from (25)
and have the form ∫ Cti

(1 − t2)kHPL(...; t)dt,
∫ Cti

(1 − t)kHPL(...; t)dt,
∫ Cti

(1 + t)kHPL(...; t)dt,∫
CtiHPL(...; t)dt.

(27)

where C is an arbitrary constant and k > 0 is an integer.
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As another important rule consider the product of two HPL’s. Imagine, we
have two arbitrary HPL’s HPL({u1, ....., uq1};x) and HPL({v2, ....., vq2};x). Then
their product can be decomposed as

HPL({u1, ....., uq1};x)HPL({v2, ....., uq2};x) = HPL(u;x)HPL(v;x)
=

∑
w∈u⊎v

HPL(w, x), (28)

where u ⊎ v means all possible combinations of u and v where the internal order
of both components of vectors is preserved. For example, for vectors u = (a, b)
and v = (c, d) we have

HPL({a, b};x)H({c, d};x) = HPL({a, b, c, d};x) + HPL({a, c, d, b};x)
+ HPL({c, a, b, d};x) + HPL({c, a, d, b};x)
+ HPL({c, d, a, b};x) + HPL({a, c, b, d};x).

(29)

HPL’s with its properties are implemented to various programming languages
such as Mathematica [39], FORTRAN [40] and C++ [41].

C.2 Generalized Harmonic Polylogarithms

Unfortunately, there exist cases when the indices 0, 1 and −1 of ai are not suffi-
cient to describe a particular Feynman diagram. In this situation we are forced to
find all the remaining singularities occurring in our calculations and define gen-
eralized harmonic polylogarithms (GHPL’s) [42]. Let us illustrate this process on
our particular case. In the appendix E.3 we calculate three MI of four propagator
topology in kinematical variable

z = −

√
1 − 1

y
− 1√

1 − 1
y

+ 1
. (30)

As we can see in 0th order appear harmonic polylogarithms with new indices a
and −a corresponding to the functions through we define HPL’s

fa(z) = 1
(−1

2 + i
√

3
2 ) − z

, (31a)

f−a(z) = 1
(1

2 + i
√

3
2 ) + z

. (31b)

Singularities of this functions are roots of the equation 1 + z + z2 = 0 and lie
on a complex unit circle deviated from real axis by 120 ◦ and 240 ◦ respectively.
GHPL’s of the weight one have then the form

HPL(a; z) =
∫ z

0
fa(t)dt = −log((−1

2 + i
√

3
2 ) − z) + log(−1

2 + i
√

3
2 ), (32a)

HPL(−a; z) =
∫ z

0
f−a(t)dt = log((1

2 + i
√

3
2 ) + z) − log(1

2 + i
√

3
2 ). (32b)

56



GHPL’s obey same properties as was discussed for HPL’s. In addition to integrals
(27) we are able to calculate integrals of the form

∫ Cti

(1 + t+ t2)kHPL(...; t)dt, (33a)
∫ Cti

((−1
2 + i

√
3

2 ) − t)k
HPL(...; t)dt, (33b)

∫ Cti

((1
2 + i

√
3

2 ) + t)k
HPL(...; t)dt. (33c)

Finally, let us give the example where the usefulness of the GHPL’s is illus-
trated. Consider that we want to substitute variable z for variable x in the term
HPL({minus, 0}, x) (this example is used in our calculations). Firstly, we rewrite
this term to the integral form in the variable z

HPL({minus, 0}, x) =HPL({1, 0},
√

z

(1 + z)2 ) − HPL({−1, 0},
√

z

(1 + z)2 )

=
∫ z

0
dz log

( √
z

(1 + z)
) 2z√

z
(z+1)2 (z2 + z + 1)

×
(

− z − 1
2
√

z
(z+1)2 (z + 1)3

)
,

(34)

where the last factor comes from the differential dx. This equation can be further
simplified to the form

HPL({minus, 0}, x) =
∫ z

0
dz
( log(z)

2 − log(1 + z)
) 1 − z

(z + 1) (z2 + z + 1) . (35)

Here we see in the denominator polynomial (z2+z+1) which roots define GHPL’s
of our particular case. If we expand further equation (35) in the sense of complex
numbers, we get

HPL({minus, 0}, x) =
∫ z

0
dz

( log(z)
2 − log(1 + z)

)
× (− 1

z + (1
2 + i

√
3

2 )
+ 1

−z + (−1
2 + i

√
3

2 )
+ 2
z + 1).

(36)

As one can observe this equation can be written in terms of HPL’s and GHPL’s
introduced above. The final formula reads then

HPL({minus, 0}, x) =1
2
(
2HPL({−a,−1}, z) − HPL({−a, 0}, z)

− 2HPL({a,−1}, z) + HPL({a, 0}, z)
− HPL({minus, 0}, z) + HPL({plus, 0}, z)
− 4HPL({−1,−1}, z)

)
.

(37)
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D Decomposition to master integrals

In this appendix we list the decomposition of non-master B functions contributing
to PNLO in terms of master integrals

B(0, 1, 1, 0,−1, 1, 1) = 1
2m2y

(
4m4yB(0, 1, 0, 1, 1, 0, 1)

+ 2m2(−2yB(−1, 1, 0, 1, 1, 0, 1)
− (y − 1)B(0, 0, 0, 1, 1, 0, 1)) + 2y(B(0, 1, 0, 0, 0, 0, 1)
+B(0, 1, 1, 0, 0, 0, 0)) − 2B(−1, 0, 0, 1, 1, 0, 1)

−B(0,−1, 0, 1, 1, 0, 1) +B(0, 0, 1, 0, 0, 0, 1)
)

+ ϵ

m2

(
B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)

)
+ 2ϵ2

m2

(
B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)

)
+O

(
ϵ3
)
,

B(0, 1, 1, 0, 1,−1, 1) = 1
8m2ϵ

(
3(−4m2yB(0, 1, 1, 0, 0, 0, 1) −B(−1, 1, 1, 0, 0, 0, 1)

+B(0, 0, 1, 0, 0, 0, 1) +B(0, 1, 0, 0, 0, 0, 1)

+B(0, 1, 1, 0, 0, 0, 0))
)

− 1
8m2

(
− 9m2B(0, 1, 1, 0, 0, 0, 1)

− 3B(−1, 1, 1, 0, 0, 0, 1) − 3B(0, 0, 1, 0, 0, 0, 1)

+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)
)

+ ϵ

4m2

(
3B(0, 0, 1, 0, 0, 0, 1) +B(0, 1, 0, 0, 0, 0, 1)

+B(0, 1, 1, 0, 0, 0, 0)
)

+ ϵ2

2m2

(
3B(0, 0, 1, 0, 0, 0, 1)

+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)
)

+O
(
ϵ3
)
,

B(0, 1, 1, 0, 1, 1, 1) = 3
128m6y2ϵ

(
− 4m2yB(0, 1, 1, 0, 0, 0, 1) −B(−1, 1, 1, 0, 0, 0, 1)

+B(0, 0, 1, 0, 0, 0, 1) +B(0, 1, 0, 0, 0, 0, 1)

+B(0, 1, 1, 0, 0, 0, 0)
)

− 1
128 (m6y3)

(
8m2yB(−1, 1, 0, 1, 1, 0, 1)

+ y(m2(8m2(4y − 1)B(0, 1, 0, 1, 1, 0, 1)
− 32m2yB(0, 1, 1, 0, 1, 1, 0) + (3 − 64y)B(0, 1, 1, 0, 0, 0, 1)
+ 4B(0, 0, 0, 1, 1, 0, 1) + 8B(0, 1,−1, 1, 1, 0, 1))
− 15B(−1, 1, 1, 0, 0, 0, 1) + 13B(0, 0, 1, 0, 0, 0, 1)
+B(0, 1, 0, 0, 0, 0, 1) + 9B(0, 1, 1, 0, 0, 0, 0))
− 4m2B(0, 0, 0, 1, 1, 0, 1) + 4B(−1, 0, 0, 1, 1, 0, 1)
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+ 2B(0,−1, 0, 1, 1, 0, 1) − 2B(0, 0, 1, 0, 0, 0, 1)
)

+ ϵ

64m6y3

(
8m2yB(−1, 1, 0, 1, 1, 0, 1)

+ y(2m2(4m2(8y − 1)B(0, 1, 0, 1, 1, 0, 1)
− 8m2yB(0, 1, 1, 0, 1, 1, 0) + (1 − 16y)B(0, 1, 1, 0, 0, 0, 1)
+ 2B(0, 0, 0, 1, 1, 0, 1) + 2B(0, 1,−1, 1, 1, 0, 1))
− 6B(−1, 1, 1, 0, 0, 0, 1) + 3B(0, 0, 1, 0, 0, 0, 1)
+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0))+
2(−2m2B(0, 0, 0, 1, 1, 0, 1) +B(0,−1, 0, 1, 1, 0, 1)

−B(0, 0, 1, 0, 0, 0, 1)) + 4B(−1, 0, 0, 1, 1, 0, 1)
)

− ϵ2

32(m6y2)

(
(B(0, 0, 1, 0, 0, 0, 1) −B(0, 1, 0, 0, 0, 0, 1)

+B(0, 1, 1, 0, 0, 0, 0)
)

+O
(
ϵ3
)
,

B(0, 1, 1, 0,−2, 1, 1) =1
3(−32m4(y − 2)yB(0, 1, 0, 1, 1, 0, 1)

− 64m2yB(−1, 1, 0, 1, 1, 0, 1)
− 32m2(y − 1)B(0, 0, 0, 1, 1, 0, 1)
+ 6m2(1 − 4y)B(0, 1, 1, 0, 0, 0, 1)
+ 30yB(0, 1, 0, 0, 0, 0, 1) + 30yB(0, 1, 1, 0, 0, 0, 0)
− 32B(−1, 0, 0, 1, 1, 0, 1) − 6B(−1, 1, 1, 0, 0, 0, 1)
− 16B(0,−1, 0, 1, 1, 0, 1) + 19B(0, 0, 1, 0, 0, 0, 1)
+ 3(B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)))

+ 2
3ϵ(4m

2yB(−1, 1, 0, 1, 1, 0, 1)

+ 2m2(y − 1)B(0, 0, 0, 1, 1, 0, 1)
+ 2y(−2m4(4y + 1)B(0, 1, 0, 1, 1, 0, 1)
+ 2m2B(0, 1, 1, 0, 0, 0, 1)
+ 7B(0, 1, 0, 0, 0, 0, 1) + 7B(0, 1, 1, 0, 0, 0, 0))
+ 2B(−1, 0, 0, 1, 1, 0, 1) +B(0,−1, 0, 1, 1, 0, 1)

−B(0, 0, 1, 0, 0, 0, 1)) + 2
3ϵ

2(4m2yB(−1, 1, 0, 1, 1, 0, 1)

+ 2m2(y − 1)B(0, 0, 0, 1, 1, 0, 1)
+ 4y(m4(−(4y + 1))B(0, 1, 0, 1, 1, 0, 1)
+m2B(0, 1, 1, 0, 0, 0, 1) + 7B(0, 1, 0, 0, 0, 0, 1)
+ 7B(0, 1, 1, 0, 0, 0, 0)) + 2B(−1, 0, 0, 1, 1, 0, 1)
+B(0,−1, 0, 1, 1, 0, 1) −B(0, 0, 1, 0, 0, 0, 1)) +O(ϵ3),

B(0, 1, 1, 0, 1, 0, 1) = 3
32m4yϵ

(
− 4m2yB(0, 1, 1, 0, 0, 0, 1)
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−B(−1, 1, 1, 0, 0, 0, 1) +B(0, 0, 1, 0, 0, 0, 1)

+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)
)

− 1
32 (m4y)

(
m2(−(16y + 1))B(0, 1, 1, 0, 0, 0, 1)

− 3B(−1, 1, 1, 0, 0, 0, 1) +B(0, 0, 1, 0, 0, 0, 1)

+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)
)

+ ϵ

16m4y

(
B(0, 0, 1, 0, 0, 0, 1) +B(0, 1, 0, 0, 0, 0, 1)

+B(0, 1, 1, 0, 0, 0, 0)
)

+ ϵ2

8m4y

(
B(0, 0, 1, 0, 0, 0, 1)

+B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0)
)

+O
(
ϵ3
)
,

B(0, 1, 1, 0, 0,−1, 1) =2m2B(0, 1, 1, 0, 0, 0, 1) + (4y − 2)B(−1, 1, 1, 0, 0, 0, 1)
− (2y − 1)(B(0, 1, 0, 0, 0, 0, 1) +B(0, 1, 1, 0, 0, 0, 0))
+B(0, 0, 1, 0, 0, 0, 1),

B(0, 1, 1, 0,−1, 0, 1) =2m2B(0, 1, 1, 0, 0, 0, 1) − 2B(−1, 1, 1, 0, 0, 0, 1)
+B(0, 0, 1, 0, 0, 0, 1) +B(0, 1, 0, 0, 0, 0, 1)
+B(0, 1, 1, 0, 0, 0, 0),

E Results for MI

In this appendix we list the analytical results for the individual MI’s listed in the
table 3.1. Note that some results are listed in the different basis as the original
one. We do not list the transformation formulas of these basis explicitly since
some of them are extremely long. However, all of these formulas are known.

E.1 Two propagator topology

This topology contains two MI’s depicted in the figure 9. Both MI’s can be
calculated by Feynman parametrization technique with results

b1 = (4y)1−ϵΓ(ϵ− 1)2

Γ(ϵ+ 1)2 , (38)

b2 = (16y2)1−ϵΓ(ϵ− 1)2

Γ(ϵ+ 1)2 . (39)
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Figure 9: Two propagator topology

These results have the following expansions (in the variable z)

b
(−2)
1 = (z + 1)4

z2

b
(−1)
1 = −4(z + 1)4HPL({−1}, z)

z2 + 2(z + 1)4HPL({0}, z)
z2 + 2(z + 1)4

z2

b
(0)
1 =8(z + 1)4HPL({−1}, z)2

z2 + 2(z + 1)4HPL({0}, z)2

z2

+ 4(z + 1)4HPL({0}, z)
z2 + HPL({−1}, z)(−8(z + 1)4HPL({0}, z)

z2

− 8(z + 1)4

z2 ) + 3(z + 1)4

z2

b
(1)
1 = − 32(z + 1)4HPL({−1}, z)3

3z2 + 4(z + 1)4HPL({0}, z)3

3z2

+ 4(z + 1)4HPL({0}, z)2

z2 + 6(z + 1)4HPL({0}, z)
z2

+ HPL({−1}, z)2(16(z + 1)4HPL({0}, z)
z2 + 16(z + 1)4

z2 )

+ HPL({−1}, z)(−8(z + 1)4HPL({0}, z)2

z2 − 16(z + 1)4HPL({0}, z)
z2

− 12(z + 1)4

z2 ) + 4(z + 1)4

z2 .

b
(−2)
2 = z + 1

z
+ 2

b
(−1)
2 = −2(z + 1)2HPL({−1}, z)

z
+ (z + 1

z
+ 2)HPL({0}, z) + 2(z + 1)2

z
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b
(0)
2 =2(z + 1)2HPL({−1}, z)2

z
+ (z + 1)2HPL({0}, z)2

2z

+ 2(z + 1)2HPL({0}, z)
z

+ HPL({−1}, z)(−2(z + 1)2HPL({0}, z)
z

− 4(z + 1)2

z
) + 3(z + 1)2

z

b
(1)
2 = 4(HPL({0}, x)(4HPL({0}, x)(2HPL({0}, x) + 3) + 9) + 3)

3x4 .

E.2 Three propagator topology, type a

Figure 10: Three propagator topology, type a
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There are three MI’s in this topology depicted in the figure 10. The pioneering
calculation for these types of diagrams was done in [36]. The basis in which the
calculation was done is following

r1 ≡ b(0, 0, 0, 1, 1, 0, 1)

r2 ≡ b(0, 0, 0, 3, 1, 0, 1)
r3 ≡ b(0, 0, 0, 2, 1, 0, 2).

The result expressed in Laurent expansion reads then (in the variable z)

r
(−2)
1 =z + 1

z
+ 2

r
(−1)
1 = − 4(z + 1)2HPL({−1}, z)

z
+ 2(z + 1)2HPL({0}, z)

z
+ 11(z + 1)2

4z

r
(0)
1 =8(z + 1)2HPL({−1}, z)2

z
+ 2(z + 1)2HPL({0}, z)2

z

+ 11(z + 1)2HPL({0}, z)
2z + HPL({−1}, z)(−8(z + 1)2HPL({0}, z)

z

− 11(z + 1)2

z
) + (35 + 4

√
3π)(z + 1)2

8z

r
(1)
1 = − 32(z + 1)2HPL({−1}, z)3

3z + (16(z + 1)2HPL({0}, z)
z

+ 22(z + 1)2

z
)HPL({−1}, z)2 + (−8(z + 1)2HPL({0}, z)2

z
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3(z + 1)2 .

E.3 Three propagator topology, type b

Figure 11: Three propagator topology, type b

There are two MI’s in this topology depicted in the figure 11. An integration
constant was fixed from [14], where these integrals were calculated in the limit
x → ∞ and x → 1. The basis in which the calculation was done is following

r1 ≡ b(0, 1, 2, 0, 0, 0, 1)

r2 ≡ b(−1, 2, 2, 0, 0, 0, 1)
The result expressed in Laurent expansion reads then (in the variable x)

r
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1 =1

2
r

(−1)
1 =2HPL({0}, x) + 1

2
r

(0)
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2

r
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x2 )HPL({minus, 0}, x) − 12HPL({0,minus, 0}, x)
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x2
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E.4 Three propagator topology, type c

Figure 12: Three propagator topology, type c

This topology contain one MI depicted in the figure 12. This MI can be calculated
by Feynman parametrization technique with results

b1 = − 1
(−1 + ϵ)

x4ϵ

ϵ2x2 (43)

The result expressed in Laurent expansion reads then (in the variable x)
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3x2 + 8HPL({0}, x)2

x2 + 4HPL({0}, x)
x2 + 1

x2 .
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E.5 Four propagator topology, type a

Figure 13: Four propagator topology, type a

As we can see in the figure 13, there are three MI’s in this topology. The suitable
point for fixing integration constants is z = 1. Instead of original basis we use
the more appropriate basis

r1 ≡ b(0, 1, 0, 2, 1, 0, 1)

r2 ≡ b(0, 1, 0, 1, 1, 0, 2)

r3 ≡ b(0, 2, 0, 1, 1, 0, 1).
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These integrals have the following Laurent expansion (in z variable)
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E.6 Four propagator topology, type b

This topology contain one MI depicted in the figure 14. The suitable point for
fixing integration constants is z = 1. This integral has the following Laurent
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Figure 14: Four propagator topology, type b

expansion (in z variable)
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on corrections beyond the leading order. The European Physical Journal C,
74(8):3010, 2014.

[16] Steven Weinberg. Phenomenological Lagrangians. Physica A: Statistical
Mechanics and its Applications, 96(1):327 – 340, 1979.

[17] J Gasser and H Leutwyler. Chiral perturbation theory to one loop. Annals
of Physics, 158(1):142 – 210, 1984.

[18] J. Gasser and H. Leutwyler. Chiral perturbation theory: Expansions in the
mass of the strange quark. Nuclear Physics B, 250(1):465 – 516, 1985.

[19] Res Urech. Virtual photons in chiral perturbation theory. Nuclear Physics
B, 433(1):234–254, 1995.

[20] M Knecht, H Neufeld, H Rupertsberger, and P Talavera. Chiral perturbation
theory with virtual photons and leptons. The European Physical Journal C-
Particles and Fields, 12(3):469–478, 2000.

[21] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. Broken Symmetries.
Phys. Rev., 127:965–970, Aug 1962.

[22] K. Agashe et al. Review of Particle Physics. Phys. Rev. D, 98:030001, Aug
2018.

[23] Stefan Scherer and Matthias R. Schindler. A Chiral perturbation theory
primer. 2005.

[24] J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. An-
nals Phys., 158:142, 1984.

[25] J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the
Mass of the Strange Quark. Nucl. Phys., B250:465–516, 1985.

[26] J. Wess and B. Zumino. Consequences of anomalous Ward identities. Phys.
Lett., 37B:95–97, 1971.

[27] Edward Witten. Global Aspects of Current Algebra. Nucl. Phys., B223:422–
432, 1983.

71



[28] L. Bergström. Rare decay of a pseudoscalar meson into a lepton pair—A way
to detect new interactions? Zeitschrift für Physik C Particles and Fields,
14(2):129–134, Jun 1982.

[29] A. G. Grozin. Integration by parts: An Introduction. Int. J. Mod. Phys.,
A26:2807–2854, 2011.

[30] K.G. Chetyrkin and F.V. Tkachov. Integration by parts: The algorithm to
calculate β-functions in 4 loops. Nuclear Physics B, 192(1):159 – 204, 1981.

[31] Stefano Laporta. High-precision calculation of multiloop Feynman inte-
grals by difference equations. International Journal of Modern Physics A,
15(32):5087–5159, 2000.

[32] S Laporta and E Remiddi. The analytical value of the electron (g − 2) at
order α3 in QED. Physics Letters B, 379(1-4):283–291, 1996.

[33] AV Smirnov and FS Chuharev. FIRE6: Feynman Integral REduction with
Modular Arithmetic. arXiv preprint arXiv:1901.07808, 2019.

[34] A.V. Kotikov. Differential equations method. New technique for massive
Feynman diagram calculation. Physics Letters B, 254(1):158 – 164, 1991.

[35] Mario Argeri and Pierpaolo Mastrolia. Feynman diagrams and differential
equations. International Journal of Modern Physics A, 22(24):4375–4436,
2007.

[36] J. Fleischer, M. Yu. Kalmykov, and A. V. Kotikov. Two loop selfenergy
master integrals on-shell. Phys. Lett., B462:169–177, 1999. [Erratum: Phys.
Lett.B467,310(1999)].

[37] Johan Bijnens and Lisa Carloni. The Massive O(N) Non-linear Sigma Model
at High Orders. Nucl. Phys., B843:55–83, 2011.

[38] Ettore Remiddi and Jos AM Vermaseren. Harmonic polylogarithms. Inter-
national Journal of Modern Physics A, 15(05):725–754, 2000.
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