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Introduction
A string representation of a graph G is a map of its vertices to strings (bounded
continuous curves) in a plane such that two strings intersect each other if and
only if corresponding vertices are connected by an edge. Such graphs are called
string graphs. The class of string graphs is one of the oldest and most general
graph classes. The concept was firstly used by Benzer [3] in the context of genetic
structures and then the class was formalized by Sinden [25] to describe electrical
networks and printed circuits. The most well-known results about string graphs
are that their recognition is NP-hard Kratochvíl [15] and much later it was proven
by Schaefer et al. [23] that it is in fact NP-complete.

One of the main motivations for defining and studying graph classes is finding
more efficient algorithms for graphs from that class. Unfortunately, string graphs
seem to be too general as there are no positive results about problems that are
NP-hard for general graph but easier when restricted to string graphs.

In 1991, Kratochvíl [14] defined outerstring graphs as string graphs where
strings are contained in a disk and one endpoint of each string is on the boundary
of the disk.

A further natural restriction of outerstring graphs is done via geometric re-
strictions on the shape of strings. We might want strings in the shape of halflines,
straight-line segments, axis-aligned L-shapes, etc. This leads to several classes of
graphs that have been studied in recent years.

Probably the most relevant paper, where these problems are addressed, is
written by Cardinal et al. [5]. Apart from defining several new classes of intersec-
tion graphs, they prove their mutual containment and separation. The main tool
for that is a lemma that can force the order of strings in an outer or grounded
string representation. We generalize this lemma to string representations, where
a pair of strings can intersect each other multiple times, and use it for our main
results.

Minimum Weight Independent Set (MIS) is an NP-hard problem for general
graphs. Recently, outerstring graphs (and their subclasses) received a big at-
tention thanks to the algorithm for MIS problem running in time Opk4q for a
given a piece-wise linear outerstring representation1 Keil et al. [13]. Parameter k
denotes here the number of total bends in the given piece-wise linear outerstring
representation.

In Section 2 we give an overview of several classes of intersection graphs and
prove that there are no non-trivial inclusions among them and that all the classes
are distinct.

In Section 3 we prove that recognition of outerstring graphs is NP-hard. Our
result also implies that even for a graph that has a piece-wise linear outerstring
representation with linear (in the number of vertices) number of total bends, the
problem of finding its outerstring representation is NP-hard. Therefore to keep
the MIS algorithm polynomial, the outerstring representation of the graph must
be provided as an input and can not be computed.

1If a graph has an outerstring representation, we can modify it such that each string is
piece-wise linear. Note that there exist outerstring graphs that require an exponential number
of bends in their piece-wise linear outerstring representation.
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Part of the thesis from Section 2 (weaker version of Cycle Lemma 1 and The-
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every result already published in the preprint.
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1. Preliminaries
A graph G “ pVG, EGq is a simple undirected graph with the set of vertices VG

and the set of edges EG. For brevity, we will denote edge between vertices u and
v as uv instead of tu, vu.

A graph H “ pVH , EHq is an induced subgraph of graph G “ pVG, EGq by
vertices V 1 Ď VG if VH “ V 1 and EH “ tuv|uv P EG, u P V 1, v P V 1u. We use the
notation that H “ GrV 1s.

An intersection representation of the graph G is a map of vertices v P VG to
sets sv such that two sets sv and su intersect if and only if the corresponding
vertices v and u are adjacent in G. Graph G it then called an intersection graph
of the set tsv|v P VGu.

A string representation of the graph G is an intersection representation where
sv are bounded continuous curves (also called strings) in the plane. Graphs, for
which exist their string representations, are called string graphs and we denote
the class of string graphs as String.

We can further restrict the class of String graphs by restricting where the
strings can be placed.

An outer representation of the graph G is a string representation of G where
all strings are realized inside a disk and one endpoint of each string lies on the
boundary B of the disk. Graphs with such representation are called outerstring
graphs or outer string graphs and we denote their class as Outer-string. The
endpoint of a string, that is on the boundary B, is called anchor.

Similarly, a grounded representation of the graph G is a string representation
of G where each string has one endpoint on a common line called grounding line
and the rest of the string belongs to one halfplane defined by the grounding line.
For easier visualization, we will consider the grounding line to be horizontal and
the halfplane, that contains strings, to be below that line. The endpoints of
strings on the grounding line are called anchors.

Figure 1.1: An example of grounded (left) and outer (right) string representa-
tion in black color. The gray lines show a reduction from grounded to outer
representation and vice versa. Adopted from Cardinal et al. [5].

It is easy to see that in the case of general strings a graph admits an outerstring
representation if and only if it admits a grounded representation (Cardinal et al.
[5], see Figure 1.1). The reason for separate definitions is that with additional
constraints on the shape of strings these classes may differ.

We say that a graph class C1 is a proper subclass of C2 if C1 Ď C2 and C1 ‰ C2
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In Section 3 we are concerned about the computational complexity of recog-
nition of outerstring graphs. NP is a class of decision problems solvable in poly-
nomial time by a non-deterministic Turing machine. A problem P is NP-hard
if every problem Q from NP can be reduced in polynomial time to P. To show
that a problem P is NP-hard is enough to show a polynomial reduction of any
NP-hard problem to P .

The most well-known NP-hard problem is SAT. A logical formula is in con-
junctive normal form (CNF) if it is a conjunction of clauses, where a clause is
a disjunction of literals. The SAT problem is a decision problem whether there
exists a satisfying assignment of variables of given CNF formula or not.

Definition 1. An exact-3-CNF formula is a logical formula in conjunctive nor-
mal form where each clause consists of exactly three distinct literals.

Definition 2. An Exact-3-SAT problem is a problem of deciding whether a given
exact-3-CNF formula have a satisfying assignment or not.

It is a well-known fact that Exact-3-SAT, as well as many other variants of
SAT problem, is NP-hard. This can be shown by a trivial reduction from the
NP-hardness of the SAT problem.

5



2. Classes of intersection graphs
Here we mention some well-known graph classes and relations between them.
The summary of all inclusions among the classes we are later more interested in
is given in Figure 2.1. Additional arguments that there are no missing inclusions
are provided in Section 2.2. Our original results are:

• Grounded-tL, Lu Ę Grounded-L (Theorem 3)

• Grounded-seg Ę Grounded-tL, Lu (Theorem 4)

• Mpt Ę Outer-1-string (Theorem 5)

In the following list of graph classes is in parenthesis mentioned notation for
the given graph class that will be used in the rest of the thesis.

k-string Graphs (k-String) A string graph G is a k-string graph if each pair
of strings has at most k common intersections. Restricting number of intersections
restricts graphs in the class because there exist string graphs requiring exponential
number of intersections [16].

Outer-k-string graphs (Outer-k-string) A graph G is outer-k-string graph
if it has an outerstring representation where each pair of strings has at most k com-
mon intersections. Note that Outer-k-string ‰ Outer-stringX k-string.

Piece-wise linear outerstring graphs Each outerstring representation of
graph G can be transformed to a representation where each string is replaced
by a piece-wise linear curve. Because the class of such graph is exactly Outer-
string, this notion is useful just for algorithmic purposes to parametrize time
complexity of an algorithm by number of straight line segments k in this repre-
sentation.

SEG graphs (Seg) Intersection graphs of straight segments are called seg-
ment graphs or just SEG graphs. After several results about subclasses of pla-
nar graphs being in Seg, in 2019 Chalopin and Gonçalves [7] finally proved the
Scheinerman’s conjecture from 1984, that every planar graph admits a Seg rep-
resentation. Recognition of segment graphs is known to be NP-hard [17]. More
recently Matoušek [18] showed that recognition of segment graphs is complete in
the existential theory of the reals1. Another quite recent result about Seg graphs
is that they are are not χ-bounded [21], which means that the chromatic number
of the graphs is bounded from above by a function of their clique number.

Bk-VPG graphs (Bk-VPG) Vertex intersection graphs of paths on a grid
(VPG) are intersection graphs of strings that are formed of several consecutive
horizontal or vertical line segments. Bk-VPG graphs are subclass of VPG graphs,
where each string may contain at most k bends. They were introduced by Asi-
nowski et al. [2][2] but the motivation for such class goes back to the first paper

1The existential theory of the reals is a problem known to be NP-hard that lies in PSPACE.
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about intersection graphs regarding RC circuits. A folklore result is that VPG
graphs are exactly String graphs. In Chaplick et al. [9] was given a complete
hierarchy of VPG graphs – for every k is Bk-VPG a proper subclass of Bk`1-VPG.
In the same paper was shown that recognition of Bk-VPG graphs is NP-hard and
that for k ě 1 there is no inlcusion relation between Seg and Bk-VPG graphs. In
recent years there were also several results about how restricted subclass of Bk-
VPG still contain planar graphs, for example Chaplick and Ueckerdt [8] proved
that planar graphs are B2-VPG graphs.

L-graphs (L) L-graphs are intersection graphs of axis-aligned L-shapes. By
L-shape we mean a union of a horizontal and a vertical segment, in which the
left endpoint of the horizontal segment and the bottom endpoint of the vertical
segment coincides. We can look at L-graphs as a further restricted subclass of B1-
VPG graphs. There was a conjecture for a long time that planar graphs are even
subclass of L-graphs, which was finally proven by Gonçalves et al. [11]. Since it is
known that L-graphs are a subclass of segment graphs [20], this result strengthen
a previous result that all planar graphs are segment graphs by Chalopin and
Gonçalves [7].

Max point-tolerance graphs (Mpt) There are two common names for the
class of intersection graphs of L-shapes where all L-shapes have their bends on
a common downward-sloping line – they are called either Max point-tolerance
graphs or Monotone L-graphs. This happened because the class was independently
introduced by Catanzaro et al. [6] and by Ahmed et al. [1]. We will mostly use the
shortcut version of the former name – Mpt. Alternative characterization of this
class is via graph that admit a vertex ordering that avoids a certain forbidden
pattern [1, 6]. This graph class is also known to contain several well-known
subclasses, such as outerplanar graphs and interval graphs [1, 6].

Outer segment graphs (Outer-seg) Outer segment graphs are graphs with
an outer representation of straight-line segments. This class was introduced by
Cardinal et al. [5] where was proven that it is a proper subclass of Outer-1-
string. The recognition of Outer-seg is complete in the existential theory of
the reals.

Ray graphs (Ray) Another class defined in [5] are ray graphs which are in-
tersection graphs of rays (=halflines) in a plane. The two notable results are
that Ray is proper subclass of Outer-seg and that their recognition is DtRu-
complete [5].

Grounded segment graphs (Grounded-seg) Grounded segment graphs are
graphs admitting a grounded string representation where each string is a line
segment. The class of intersection graphs of downward rays (Down-ray) is
exactly Grounded-seg [5]. In the same paper it was shown that grounded
segment graphs are proper subclass of ray graphs.
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Grounded L-graphs (Grounded-L) Grounded L-graphs are the intersection
graphs of grounded L-shapes, that is, L-shapes with top endpoint on the horizontal
grounding line. We get the same class if we consider outerstring graphs with
strings of L-shapes that have their upper endpoint of the horizontal segment
placed on the boundary B of the disk. This class has been first considered by
McGuinness [19] who has shown that this class is χ-bounded. The χ-boundedness
result has been later generalized to all outerstring graphs by Rok and Walczak
[22].

Grounded tL, Lu-graphs (Grounded-tL, Lu) The class of grounded tL, Lu-
graphs is similar to Grounded-L, but the representation may use both L-shapes
and L-shapes. A L-shape consists of a horizontal and a vertical segment which are
placed such that the right endpoint of the horizontal segment coincides with the
bottom endpoint of the vertical segment. Middendorf and Pfeiffer [20] showed
that Grounded-tL, Luis a subclass of Grounded-seg by vertical stretching
of the grounded segment representation such that the segments locally behaves
almost as horizontal segments of L-shapes and L-shapes.

Circle graphs (Circle) Circle graphs are the intersection graphs of chords
inside a circle. By firstly shifting all endpoints of chords into the upper right
quarter of the circle and then changing straight-line chords into L-shapes we can
get equivalent intersection representation by L-shapes drawn inside a circle, so
that both endpoints of each L-shape touch the circle [2]. Circle graphs include
all outerplanar graphs [26].

Interval graphs (Int) Interval graphs are the intersection graphs of intervals
on the real line. It is easy to see that interval graphs are subclass of Grounded-
L. Interval graphs are equivalent to grounded-L graphs in which the length of
horizontal segments of L-shapes increases from left to right. Similarly, interval
graphs are also subclass of Mpt because they are equivalent to Mpt representa-
tions where all vertical segments reaches above the highest anchor. Note that not
every graph from the intersection of Mpt and Grounded-Lis an interval graph.
Any cycle Cn of length n ě 4 is a counterexample.

Permutation graphs (Per) Permutation graphs are the intersection graphs
of line segments whose endpoints lie on two parallel lines. Equivalently, we may
observe that these are exactly the graphs admitting an L representation in which
the top endpoints of all the L-shapes are on a common horizontal line and the
right endpoints are on a common vertical line.

Outerplanar graphs (Outerplanar) Outerplanar graphs are graphs that
have a planar drawing where all vertices belong to the outer face of the drawing.

For simplicity we will assume in this thesis that certain degenerative cases are
not allowed. We forbid self-intersection of strings and infinite many points of in-
tersection of two strings (except interval graphs). We also assume that when two
strings share a common point, it must be a proper crossing (i.e. strings can not
just touch each other). Moreover, we assume that L-shapes are not degenerated
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Figure 2.1: Some notable graph classes. We will show that there are no inclusions
apart from those represented by arrows and and those following from transitivity.
Moreover, all the graph classes are distinct.

which means that the left and the right endpoints of the horizontal segment in
the L-shape are distinct and similarly the top and the bottom endpoints of the
vertical segment in the L-shape are distinct. These assumption doesn’t affect the
expressive power of most intersection graph classes but they allow us to make
our arguments more clear because we don’t need to discuss corner cases. The
only affected classes are the k-string and Outer-k-string where the forbid-
den touching of two strings instead of proper crossing might increase number of
intersections needed in the string representation.

2.1 Forcing induced order of vertices
For each grounded representation of a graph G with a horizontal grounding line,
the left-to-right order of anchors on the grounding line defines a linear order of
the vertices VG that correspond to the anchors. We say that this order is induced
by the grounded representation. Similarly, for Mpt representations we define the
induced order of vertices VG as the order of the bends of L-shapes, that correspond
to these vertices, on the common sloping line.

The induced order of an outerstring representations of G is the clockwise order
of anchors of strings, that correspond to the vertices, on the boundary B of the
disk from top of the disk. Because each outerstring representation can be rotated
or inverted without affecting the outerstring representation in any way, we define
that such orders are equivalent.
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Formally, let G be a graph with vertices VG “ tx1, x2, . . . , xnu and ă be linear
order of its vertices x1 ă x2 ă ¨ ¨ ¨ ă xn. We will call an ordered graph pG,ăq
the pair of a graph G with a linear order of its vertices ă. We say that two
orders are equivalent if we can get one order from the other by a finite sequence
of cyclic shifts (x1 ă x2 ă ¨ ¨ ¨xn Ñ x2 ăc ¨ ¨ ¨ ăc xn ăc x1) and reversals
(x1 ă x2 ă ¨ ¨ ¨xn Ñ xn ără ¨ ¨ ¨ ăr x2 ără x1).

We say that graph G admits a constrained outerstring representation with the
order ă if there exists an outerstring representation of G that induces ă.

Now we are ready to formulate the Cycle Lemma which is used to force any
induced order (or order equivalent to that order) in an outerstring representation
of the graph G. We present a generalization of Cycle Lemma by Cardinal et al.
[5] from graphs with an outer-1-string representation to graphs with outerstring
or grounded string representation and to several additional graph classes.

A cycle extension of the ordered graph pG,ăvq is an unordered graph H “

pVH , EHq with these properties (see Figure 2.2):

• VH is the disjoint union of the sets VG “ tx1, . . . , xnu and VC “ ty1, . . . , y5pu.

• Vertices of VG induce a copy of G and vertices of VC induce a cycle of length
5p with edges y1y2, y2y3, . . . , y5p´1y5p, y5py1.

• Each vertex xi P VG is either adjacent to y5p and has no other neighbors in
VC , or is adjacent to y5p and y5p´1 and has no other neighbors in VC

Figure 2.2: An ordered graph pG,ăq (left) and one of its possible cycle extensions
H (right).

Lemma 1 (Cycle Lemma). Let pG,ăq be an ordered graph with cycle extension
H defined as above. Then in every grounded string representation and in ev-
ery outerstring representation of H is the order of vertices VG induced by the
representation equivalent to the order ă.

On the other hand, for any graph class C P tGrounded-L, Grounded-tL, Lu,
Mpt, Grounded-seg, Outer-1-string, Outer-stringu, for every C repre-
sentation of a graph G inducing an order ă on VG there is a cycle extension H
of pG,ăq such that a C representation of H can be constructed by adding into the
given representation of G the curves representing the vertices of VHzVG.

Before proving Lemma 1 we will study outerstring representations of cycles.
Firstly, we need a little bit of notation. Let s be a string and X “ tx2, x3u be
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set of some important points on the string s. By spx2, x3q we will denote part of
the string s between points x2 and x3. Let x1 be an endpoint of s. Then by the
nearest point to x1 in s we mean the point which we will visit first if we start in
the point x1 and move along the string s. Formally the nearest point to x1 in s
from points X is such xi P X that spx1, xiq XX “ txiu.

Lemma 2. Let C be a cycle on vertices y1, y2, . . . , y5n with an outerstring repre-
sentation where a vertex yi is represented by a string ci. Then there exists a closed
Jordan curve which is a union of substrings centerpiq of strings ci. The order of
the substrings on J is equivalent to centerp1q ă centerp2q ă ¨ ¨ ¨ ă centerp5nq.

Proof. Denote ai the anchor of string ci in the outerstring representation and a1
i

the second endpoint of string ci.
We will describe the construction of the closed Jordan curve J .
Denote p1

1,2 an arbitrary intersection of c1 and c2. The point p1
1,2 divides c2

into two distinct subcurves c2pa2, p1
1,2q and c2pp

1
1,2, a1

2q. We pick the subcurve
that contain some intersection with c3. If both of them intersect c3, we can
pick arbitrarily. We denote the nearest intersection with c3 as p2,3. We continue
this process until we get back to the intersection with c1 and define point p5n,1.
Formally, by “continuing this process” we mean that for i P t3, 4, . . . , 5nu we
perform the following step: In step i we start at point pi´1,i, pick one of the
subcurves cipai, pi´1,iq, cippi´1,i, a1

iq that intersect ci`1 and denote pi,i`1 the nearest
intersection with ci`1 from pi´1,i along the picked subcurve.

Now it remains to define p1,2. If there is no intersection of c1pp5n,1, p1
1,2q and

c2pp
1
1,2, p2,3q, we rename p1

p1, 2q to p1,2. Otherwise we denote p1,2 the nearest
intersection with c2pp

1
1,2, p2,3q from p5n,1 in c1pp5n,1, p1

1,2q. See Figure 2.3.
At the end of this process we call central part of ci, denoted as centerpiq, the

subcurve of ci between pi´1,i and pi,i`1. By taking the union over all central parts
centerpiq we get a closed Jordan curve J .

The fact, that J is non-self-intersecting follows from its construction and can
be proved by mathematical induction: We start with J “ tu and just strings
s1 in the representation. Then we will be adding central parts centerpiq with
corresponding strings si for i P t2, 3, . . . , 5nu. When we add central part centerpiq,
it can potentially intersect only the previous part centerpi´1q because si doesn’t
intersect any other already added strings (string si`1 will be added later). But
intersection of centerpi´ 1q and centerpiq would contradict the choice of pi´1,i as
the nearest intersection of the two strings. Now remain just the last central part
– centerp1q. Because of the possible change of p1

1,2 to the nearest intersection of
centerp1q with centerp2q from p5n,1, centerp1q can not intersect centerp2q. The
order of centerpiq strings in J immediately follows from the construction.

Proof of Theorem 1. Let us begin with the first part. Let pG,ăq be an ordered
graph with a cycle extension H as described above. For convenience we will treat
indices of vertices from VC modulo 5n (so y5p`1 “ y1 etc.).

If pG,ăq has a grounded string representation we can transform it to an
outerstring representation by placing the boundary B of the disk around the
whole grounded representation and prolonging the strings to the boundary with-
out crossing each other (see Figure 1.1).

Let si be a string corresponding to the vertex xi P VG, ci a string corresponding
to yi P VC , ai the anchor of ci and a1

i the other endpoint of ci.

11



Figure 2.3: An outerstring representation of 5-cycle. The resulting Jordan curve J
is thickened. Note that at the beginning it would be hard to determine the correct
position of p1,2 as it depends on the position of p5,1. In case of the depicted graph
it would be sufficient to study c5 but for more complex outerstring representations
with more intersections we might need to analyze more strings. In extreme case
the, choice might even depend on the position of p1,2.

According to Lemma 2, there exists a closed Jordan curve J , which is a union
of so-called central parts centerpiq Ď ci that are in J in the order equivalent to
centerp1q ă centerp2q ă ¨ ¨ ¨ ă centerp5nq. Further we will use the same notation
as is used in the lemma.

Denote the first point of ci from anchor ai contained in J as pi. The initial
part of a string ci, denoted as startpciq, is the part of ci from its anchor ai to pi.
Let RJ be the interior region of J .

Let a, b, c be three distinct points on the Jordan curve J . Then denote
curvepa, b, cq the part of J bounded by points a and c which contain b. Simi-
larly, for distinct points a, b, c P B let boundpa, b, cq be the part of the boundary
B bounded by points a, c containing point b. We define Ri as the interior region
of Jordan curve that we get as a union of startp5i ´ 3q, curvepp5i´3, p5i, p5i`2q,
startp5i` 2q and boundpa5i`2, a5i, a5i´3q (see Figure 2.4).

Note that string si is the only string corresponding to some vertex from VG

that can intersect the boundary of Ri. String c5i is contained in RiYRJ because
part of the string is inside the union (centerp5iq is part of the boundary of Ri)
and c5i cannot intersect the boundary of Ri YRJ . Because si must intersect c5i,
at least part of si is also in Ri Y RJ . Because si cannot intersect the boundary
of RiYRJ , the whole string is contained in RiYRJ . In particular, the anchor of
si is in Ri XB. Therefore, the anchors of s1, s2, . . . , sn appear on B in the order
which, up to equivalence, corresponds to the order ă on VG.

The second part of the proof is much easier. Let us assume that we are given
a C representation of G. It is easy to see that for all mentioned graph classes we
can realize the new vertices of cycle extension in small enough neighborhood of

12



Figure 2.4: Regions Ri and RJ for a string si. The thickened line is the Jordan
curve J . String si cannot leave the region Ri YRJ .

grounding line or boundary B of the disk. In case of Mpt representation we use
a cycle extension where each vertex from VG is adjacent to two vertices y5i´1 and
y5i from VG. In case of all other classes we use a cycle extension where each vertex
from VG is adjacent only to one vertex y5i from VG. For examples of extensions
of the C representations see Figure 2.5.

Figure 2.5: Extending the representation of G into a representation of its cycle
extension for Grounded-L, Mpt, Grounded-seg and outer-1-string repre-
sentations. Note that for Grounded-tL, Lu representations we can use the same
approach as for Grounded-L. Similarly, the extension of Outer-1-string can
be used for Outer-string representations.

2.2 Separation between graph classes
Our goal is this section is to show that there are no inclusions among classes from
Figure 2.1 apart from the depicted ones and that all the classes are distinct.

The classes Int, Circle, Outerplanar and Per are well studied and it is
known that the only inclusions among them are Outerplanar Ĺ Circle and
Per Ĺ Circle.
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The upper-right part of Figure 2.1 was proven by Cardinal et al. [5]. In fact,
several of those classes were firstly defined in that paper and the proper inclusions
among them are one of a few known results about those classes.

Grounded-seg “ Down-ray Ĺ Ray Ĺ Outer-seg Ĺ Outer-1-string

Catanzaro et al. [6, Observation 6.9] showed that the graph K2,2,2 (the octahe-
dron) is a permutation graph while it is not in Mpt, and therefore no superclass
of Per is contained in Mpt. On the other hand, we will show in Theorem 5 that
there exists a graph from Mpt not contained in Outer-1-string. Thus Mpt
is incomparable with all the classes that are supersets of Per and subsets of
Outer-1-string. Because both Outerplanar and Int are subsets of Mpt
but they are incomparable between each other, none of these classes can be a
superset of Mpt. By using the same argument for Mpt and Outer-1-string,
which are incomparable between each other, we get that both these classes are
proper subclasses of Outer-string. And similarly also both Circle and Int
are proper subclasses of Grounded-L. To complete the hierarchy, we only need
the separations from Theorem 3 and Theorem 4.

For the following proofs we will use Cycle Lemma to show that some graph
doesn’t belong to certain graph class. The ability to prescribe order of the vertices
enable us to come up with relatively small examples which are easy to analyze.
Theorem 3. The class Grounded-L is a proper subclass of Grounded-tL, Lu.

Proof. From definition of Grounded-L and Grounded-tL, Lu graphs follows
that Grounded-LĎGrounded-tL, Lu. To show that these classes are distinct,
consider graph G “ pVG, EGq with vertices VG “ tx1, x2, x3, x4u and edges EG “

tx1x2, x2x3, x1x4u. Figure 2.6 shows a grounded-{L, L} representation of G which
induces the order of vertices x1 ă x2 ă x3 ă x4.

Let us show that the graph G doesn’t have a grounded-L representation with
the induced order of the vertices x1 ă x2 ă x3 ă x4. This can be simply argued
from characterization of Grounded-L graphs by forbidden patterns by Jelínek
and Töpfer [12] because one of the forbidden patterns is exactly the graph G.

For the sake of completeness we include an alternative short prove here: Let
ℓi denote an L-shape corresponding to the vertex xi and hi denote the length of
the vertical segment in the L-shape ℓi. Because x1x4 P EG, the vertical segment
of ℓ1 reaches all the way to the right to ℓ4. Because x1x2 P EG, the vertical
segment of ℓ2 is below the vertical segment of ℓ1 (h1 ă h2). Because x1x3 R EG,
h3 ă h1. That is a contradiction as there is no way how to realize the edge x2x3.
See Figure 2.6 for illustration.

Figure 2.6: Grounded-{L, L} representation of graphs G and G1 as defined in the
proof of Theorem 3 (G left, G1 middle) and a partial grounded-L representation
of G that can not be extended to the full representation (right).

Let pG1,ăG1q be an ordered graph obtained by putting graph G and a mirror
image of G next to each other. Formally, pG1,ăG1q is an ordered graph with
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VG1 “ tx1, x2, x3, x4, y4, y3, y2, y1u, EG1 “ tx1x2, x2x3, x1x4, y1y2, y2y3, y1y4u and
vertex order ăG1 defined as x1 ăG1 x2 ăG1 x3 ăG1 x4 ăG1 y4 ăG1 y3 ăG1 y2 ăG1 y1.
Now let pG2,ăG2q be an ordered graph obtained by putting two distinct copies
of pG1,ăG1q next to each other.

We apply Cycle Lemma 1 to the ordered graph pG2,ăG2q. The second part
of the lemma says that there exists a grounded-{L, L} representation of graph H,
which is a cycle extension of the ordered graph pG2,ăG2q. Let G˚ be an induced
subgraph of H by vertices VG2 . The first part of the lemma states that any
grounded string representation of G˚ induces an order of the vertices equivalent to
ăG2 . From construction of the graph G2 follows that there exist four consecutive
vertices z1, z2, z3, z4 in VG˚ that induces exactly the ordered graph pG,ăq. Such
graph doesn’t have a grounded-L representation, thus also H doesn’t admit a
grounded-L representation. It follows that Grounded-L‰Grounded-tL, Lu.

In similar way we prove that also other classes of graphs are distinct. We only
need to pick a different initial ordered graph pG,ăq that doesn’t belong to the
smaller class.

Theorem 4. The class Grounded-tL, Lu is a proper subclass of Grounded-
seg.

Proof. It was proven by Middendorf and Pfeiffer [20] that Grounded-tL, Lu is
a subclass of Grounded-seg. To show that these classes are distinct, consider
graph G “ pVG, EGq with vertices VG “ tx1, x2, x3, x4, x5, x6u and edges EG “

tx1x2, x1x3, x1x5, x1x6, x2x5, x2x6, x4x6, x5x6u. Figure 2.7 shows a grounded-SEG
representation of G which induces the order of vertices x1 ă x2 ă x3 ă x4 ă x5 ă

x6.
Let us show that the graph G doesn’t have a grounded-{L, L} representation

with the induced order of the vertices x1 ă x2 ă x3 ă x4 ă x5 ă x6. For
contradiction, let us assume that there is such representation. Denote ℓi an L-
shape or L-shape corresponding to xi in the representation. Let hi denote the
length of the vertical segment of ℓi. Without loss of generality let us assume that
h1 ă h6. Thus ℓ1 is an L-shape. ℓ4 intersects ℓ6 but not ℓ1 and therefore it is an
L-shape with h4 ă h1 (see Figure 2.7). ℓ5 should intersect both ℓ1 and ℓ6 but not
ℓ4 which is impossible. Contradiction.

Figure 2.7: Grounded segment representation of the graph G as defined in the
proof of Theorem 4 (left) and its grounded-{L, L} representation of vertices x1, x4
and x6 (right).

The ordered graph pG,ăq is symmetrical, which means that pG,ăq is isomor-
phic to pG,ărq where ăr is reversal order of ă as defined in the Section 2.1.
Therefore we don’t need to add a mirror image of pG,ăq . Let pG2,ăG2q be
an ordered graph obtained by putting two distinct copies of pG,ăq next to each
other.
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Let H be a cycle extension of the ordered graph pG2,ăG2q. According to
Cycle Lemma 1 H admits a grounded segment representation. Because the order
of the vertices from VG2 in H is equivalent to ăG2 , there exist six vertices that
induce the ordered graph pG,ăq. Thus H R Grounded-tL, Luand Grounded-
L‰ Grounded-seg.

Theorem 5. The class Mpt is not a subclass of Outer-1-string.

Proof. Let us consider a graph G, whose Mpt representation is depicted in the
left part of Figure 2.8. Its set of vertices is VG “ tx1, x2, . . . , x7u and its set
of edges is EG “ tx1x5, x1x7, x2x4, x3x4, x3x5, x3x6, x4x5, x4x6u. Let ă be the
induced order of its vertices x1 ă x2 ă ¨ ¨ ¨ ă x7.

We claim that the ordered graph pG,ăq doesn’t have an outer-1-string rep-
resentation. Denote si a string corresponding to xi, ai the anchor of si and pij

the intersection point of si and sj if xi and xj are adjacent. Because each pair of
strings has at most one intersection, pij is well defined. The graph is symmetrical
and thus without loss of generality we can assume that s4 intersects s2 before
it intersects s6. Let J be a closed Jordan curve consisting of the subcurve of s1
between a1 and p17, the subcurve of s7 between p17 and p37, the subcurve of s3
between p37 and a3 and the segment of the grounding line between a3 and a1.
Because a4 and s6 are outside the closed curve J and the string s2 is inside the
curve (resp. a2 is on the curve J), s4 must intersect J twice. However, s4 can
intersect J only in the subcurve of s3 which forces two intersections of s4 and s3.
Contradiction.

Figure 2.8: Mpt representation of the graph G used in the proof of Theorem 5
(left) and highlighted Jordan curve J that s4 must intersect twice (right).

Let H be a cycle extension of G. From Cycle Lemma 1 follows that H ad-
mits an Mpt representation but H doesn’t have an outer-1-string representation
because HrVGs is an ordered graph isomorphic to pG,ăq.
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3. Recognition of outerstring
graphs is NP-hard
One of the basic and most natural questions about any graph class is how to
recognize whether a given graph G belongs to the class and computational com-
plexity of such question. It was shown by Kratochvíl [15] that recognizing string
graphs is NP-hard. Later results by Kratochvíl and Matoušek [17] show that the
recognition of Seg is complete in the existential theory of the reals. Cardinal
et al. [5] later showed that also the recognition of Grounded-seg, Outer-
seg and Ray is complete in the existential theory of the reals. We continue in
a similar direction and prove that the recognition of Outer-string graphs is
NP-hard.

Positive complexity results about recognition of intersection graphs include
polynomial algorithms for recognizing interval graphs Booth and Lueker [4], circle
graphs Gabor et al. [10] and intersection graphs of rays in two directions Shrestha
et al. [24].

In this section we show that recognition of Outer-string graphs is NP-hard
by reduction from Exact-3-SAT. The main idea of the construction is similar to
the construction by Kratochvíl [15] where it was shown that recognition of string
graphs is NP-hard.

Theorem 6. The problem of deciding whether a given graph G is an outer-2-
string graph or it is not an outerstring graph is NP-hard.

3.1 Cycle Lemma for subset-orderings
For creating variable-gadgets we use a generalized Cycle Lemma for graphs which
does not prescribe total ordering of their vertices but leaves some freedom by
enforcing only some particular partial order.

Definition 3. A partial order ăv of the vertices of a graph G is a subset-order if
there exists a partition X1, X2, . . . , Xp of vertices VG with linear ordering X1 ăs

X2 ăs ¨ ¨ ¨ ăs Xp such that xi ăv xj if and only if xi P Xi, xj P Xj and Xi ăs Xj

We say that a linear order ă of vertices VG is consistent with a subset-order
ăv if ăv can be extended to a linear order equivalent to ă.

A subset-cycle extension of the subset-ordered graph pG,ăvq is an unordered
graph H “ pVH , EHq with these properties:

• VH is the disjoint union of the sets VG “ tx1, . . . , xnu and VC “ ty1, . . . , y5pu.

• Vertices of VG induce a copy of G and vertices of VC induce a cycle of length
5p with edges y1y2, y2y3, . . . , y5p´1y5p, y5py1

• Each vertex xi P Xj is adjacent to y5j.

Lemma 7 (Subset Cycle Lemma). Let pG,ăvq be a subset-ordered graph and H
its subset-cycle extension as defined above. Then ăv is consistent with the order
of the vertices VG induced by any outerstring representation of H.
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On the other hand, let ă be an ordering of vertices V pGq induced by an outer-
string representation of graph G. Then for any subset-order ăv consistent with ă
the subset-cycle extension H of pG,ăvq has an outerstring representation which
can be constructed from the outerstring representation of G just by adding curves
representing the vertices of VHzVG.

Proof. Let us assume for contradiction that there exists an outerstring represen-
tation of H which is not consistent with subset-order ăv. That means that we
can pick p vertices from VH such that each of these vertices is from different part
of the partition X1, X2, . . . , Xp and their order is not equivalent with the order
of the partition. More precisely, we denote the picked vertices z1, z2, . . . , zp such
that zi P Xi for all i P t1, 2, . . . , pu. Let ăz be the order of these vertices in the
outerstring representation. Because these vertices are not ordered according to
the subset order ăv, ăz is not equivalent with ăv.

A graph induced by vertices tz1, . . . , zpuY ty1, y2, . . . , y5pu is exactly the cycle
extension of an ordered graph ptz1, . . . , zpu,ăvq according to Lemma 1. We get a
contradiction with the fact that ăv and ăz are not equivalent.

On the other hand, for any order of the vertices consistent with ăv we can
extend the outerstring representation in the neighborhood of the boundary circle
B similarly as in the case of Lemma 1.

Figure 3.1: Two possible realizations of a subset-ordered graph G and its subset-
cycle extension. The subset-order is tx1, x2, x3u ă x4 ă x5.

3.2 Construction
Let ϕ “ c1 ^ c2 ^ ¨ ¨ ¨ ^ cm be an exact-3-CNF formula containing variables
x1, x2, . . . xn and clauses c1, c2, . . . , cm. We write xi P cj if variable xi is present
in clause cj (either as a positive xi or a negative ␣xi literal).

Each variable xi is represented by a gadget which can be realized either
clockwise or counterclockwise where clockwise realization corresponds to assign-
ing TRUE value to variable xi and counterclockwise realization corresponds to
FALSE value of xi. Each clause cj is represented by several edges which can not
be realized if all literals in cj are false. For each clause cj containing variable xi

the gadgets for xi and cj are connected by a pair of vertices (i.e. strings) Lxi
cj

and
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Rxi
cj

. The mutual position of Lxi
cj

and Rxi
cj

“transfers” the information about value
of xi to the clause.

Let G be an auxiliary incidence graph of variable-vertices and clause-vertices.
Formally, VG “ tc1, c2, . . . , cmu Y tx1, x2, . . . , xnu and edges EG “ ttxi, cju|xi P

cj, @i P rns, @j P rmsu. Let DpGq be a straight line drawing of G with all vertices
x1, x2, . . . xn on a common circle B in clockwise order and all edges and clause-
vertices drawn inside the circle. We will use the notation Dpvq resp. Dpeq for the
image of a vertex v resp. an edge e in the drawing D. Example of such graph
and its drawing is given in Figure 3.2.

Figure 3.2: An auxiliar graph G of formula ϕ “ px1 _ x2 _ x3q ^ px2 _ ␣x3 _

x4q ^ px2 _ x4 _ x5q where clauses are named c1, c2 and c3 from left to right.

Now we are ready to define graph H which has an outerstring representation
if and only if the exact-3-CNF formula ϕ is satisfiable.

The idea of the construction is to replace each edge xicj in G by two vertices
Lxi

cj
, Rxi

cj
in H which can be realized by strings in some ϵ-neighborhood of Dpxicjq.

Variable-vertices are replaced by variable-gadgets which ensure that the pairs of
edges Lxi

cj
, Rxi

cj
are for one variable realized in the same order. The variable-gadget

uses construction of subset-cycle extension from Lemma 7. Clause-vertices are
replaced by clause-gadgets that are realizable if and only if the corresponding
clause is satisfied. Clause-gadgets consist of several incidences between edge-
vertices Lxi

cj
resp. Rxi

cj
for variables xi present in clause cj similarly as in Kratochvíl

[15].
Now we describe H in full detail:
We start with the set of vertices of H. Denote ℓpxiq number of clauses

that contain variable xi. Let V pxiq be the set of vertices of a variable-gadget
of xi. V pxiq “

!

Lxi
c1 , Rxi

c1 , . . . Lxi
cℓpxiq

, Rxi
cℓpxiq

)

1 where each pair of vertices Lxi
cj

,
Rxi

cj
corresponds to some edge xicj in G. Moreover, we add auxiliary vertices

V 1pxiq “ typxiq1, ypxiq2, . . . ypxiq5p2ℓpxiq`1qu for each variable xi. We define VH “
Ťn

i“1 V pxiq Y V 1pxiq.
Now we describe the edges of H and their purpose:

• For each variable xi denote xic1, xic2, . . . , xicℓpxiq the outgoing edges in the
clockwise order from the variable-vertex xi in DpGq and add to H edges of
a subset-cycle extension which forces subset-ordering Lxi

c1 ă Rxi
c1 ă Lxi

c2 ă

1Here we slightly abuse the notation of indices of clauses but we don’t want to further
complicate the formal notation
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Rxi
c2 ă ¨ ¨ ¨ ă Rxi

cℓpxiq
ă V ztV pxiq Y V 1pxiqu as defined in the Lemma 7 using

vertices ypxiq1, ypxiq2, . . . ypxiq5p2ℓpxiq`1q. We denote these edges E1.

• We add edges between all vertices from the same variable-gadget. This
ensures that even if the suset-cycle extension of the anchors in a variable-
gadget will be realized in the reverse order than in G, the strings can leave
the ϵ-neighborhood of the variable-gadget in the same order as in DpGq.

E2 “

n
ď

i“1
tLxi

cj
Lxi

ck
, Rxi

cj
Rxi

ck
, Lxi

cj
Rxi

ck
, Rxi

cj
Lxi

ck
|@j, k P rℓs; j ‰ ku

• For each crossing of edges xicj, xmcn in DpGq we add edges Lxi
cj

Lxm
cn

, Rxi
cj

Rxm
cn

,
Lxi

cj
Rxm

cn
, Rxi

cj
Lxm

cn
in H. This allows us to create an outerstring representation

of H similar to the drawing of G where strings representing Lxi
cj

and Rxi
cj

will be drawn next to each other in the ϵ-neighborhood of Dpxicjq.

E3 “ tL
xi
cj

Lxm
cn

, Rxi
cj

Rxm
cn

, Lxi
cj

Rxm
cn

, Rxi
cj

Lxm
cn
||Dpxicjq XDpxmcnq| ą 0u

• For each clause-vertex cj we add several edges which we will call a clause-
gadget of cj. Let xa, xb and xc be variables used in cj. Then we add edges
Lxa

cj
Lxb

cj
, Lxa

cj
Rxb

cj
, Lxa

cj
Lxc

cj
, Rxa

cj
Rxb

cj
, Rxa

cj
Lxc

cj
, Rxa

cj
Rxc

cj
, Lxb

cj
Lxc

cj
, Lxb

cj
Rxc

cj
, Rxb

cj
Rxc

cj
. If

ϕ contains negation of xi, we swap Lxi
cj

and Rxi
cj

in the construction of edges
so we treat these edge as if they had opposite orientation. We denote E4
edges forced by all clause-gadgets.

3.3 Correctness
For the clause-gadget we need a lemma that a complement of the cycle of length
six doesn’t admit an outerstring representation in which the vertices are placed
on the boundary in the same order as in the cycle.

Lemma 8 (Kratochvíl [14], Corollary of Claim 3). Let G “ pVG, EGq be a graph
on six vertices VG “ ta, b, c, d, e, fu with edges EG “ tac, ad, ae, bd, be, bf, ce,
cf, dfu. There doesn’t exist a constrained outerstring representation of G with
vertices a, b, c, d, e, f placed in this order on the boundary.

Lemma 9. Let ϕ be an exact-3-CNF formula and graph H constructed as de-
scribed above. Then if ϕ is satisfiable, H admits an outer-2-string representation
and if ϕ is not satisfiable, H does not have an outerstring representation.

Proof. If ϕ is satisfiable, we construct an outerstring representation of H. Let
x1, x2, . . . , xn be a satisfying assignment of ϕ. Let DpGq be the drawing of G
used to construct H. Because DpGq is a straight line drawing, there exists some
ϵ such that ϵ-neighborhoods of circle B, of all vertices and of all edges are disjoint
except adjacent objects (e.g. circle B with variable-vertices and vertices with
incident edges) and edges which cross with each other. We will use NpOq for ϵ-
neighborhood of an object O. From now on, DpGq will be used only to define the
place of variable-gadget in the ϵ-neighborhood of corresponding variable-vertex,
clause-gadget in the ϵ-neighborhood of corresponding clause-vertex and strings
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connecting variable-gadgets and clause-gadgets in the ϵ-neighborhood of corre-
sponding edges.

Firstly, we construct variable-gadgets. If xi “ TRUE in the satisfying as-
signment, we place anchors of Lxi

c1 , Rxi
c1 , Lxi

c2 , . . . , Lxi

cℓpxiq
in the clockwise order on

the boundary B in Npxiq and intersect strings as prescribed by E2 in this neigh-
borhood to get Lxi

c1 , Rxi
c1 , Lxi

c2 , . . . , Rxi

cℓpxiq
clockwise ordered on the border of Npxiq.

The intersection is shown in Figure 3.3.

Figure 3.3: Intersections in Npxiq in case of clockwise (left) and counterclockwise
(right) orientation of the anchors that ensures the clockwise orientation on the
border of Npxiq.

If xi “ FALSE in the satisfying assignment, we place anchors of Lxi
c1 , Rxi

c1 ,
Lxi

c2 , . . . , Rxi

cℓpxiq
in the counterclockwise order in Npxiq and intersect strings as

prescribed by E2 in this neighborhood once to get Lxi
c1 , Rxi

c1 , Lxi
c2 , . . . , Rxi

cℓpxiq
clock-

wise ordered on the border of Npxiq.
Now, we prolong all strings Lxi

cj
resp. Rxi

cj
to Npcjq through Npxicjq. By

this construction we create intersections corresponding to edges E3. In Npcjq we
intersect strings as shown in Figure 3.4. Because all clauses are satisfied, the
three depicted cases cover all possibilities up to symmetry. This will ensure edges
from E4.

To finish the construction, we add all vertices and edges of subset-cycle ex-
tensions (i.e. vertices

Ťn
i“1 V 1pxiq) in NpBq. Because the order of anchors of

all vertices fulfills the ordering prescribed by subset-cycle extensions for each
variable, it is possible to do that according to Lemma 7.

Observe that in our construction two strings intersect each other at most two
times, so if ϕ is satisfiable, H has an outer-2-string representation.

If ϕ is not satisfiable, let us assume for contradiction that there exists an
outerstring representation of H. From the construction of H, namely the addition
of subset-cycle extensions for each variable, follows that for each variable xi the
anchors in variable-gadget of xi are oriented either clockwise or counterclockwise.
We define xi “ TRUE if they are oriented clockwise and xi “ FALSE if they
are oriented counterclockwise. Because such assignment of all variables cannot
satisfy ϕ, there must be a clause cj P ϕ which is not satisfied.

Let xa, xb and xc be the variables in cj. Then Lxa
cj

, Rxa
cj

, Lxb
cj

, Rxb
cj

, Lxc
cj

, Rxc
cj

forms an outerstring representation of a complement of a cycle on six vertices
where anchors of strings are in the order of the six cycle2. Such constrained

2Here we use notation assuming that all variables are in cj as positive literals. Otherwise
Lxi

cj
and R

xj
cj would be realized in opposite orientation but also their neighbours in cj would be

swapped. So we would only need to rename the vertices but the resulting oriented subgraph
would remain the same.
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Figure 3.4: Possible intersection in Npcjq when at least one literal is realized
clockwise (has TRUE value).

outerstring representation doesn’t exist according to Lemma 8 (see Figure 3.5).

Now we are ready to prove the main theorem.

Proof of Theorem 6. We will show a polynomial reduction of Exact-3-SAT to the
recognition of outerstring graphs. Let ϕ be an exact-3-CNF formula. Graph H as
described above can be constructed in polynomial time. According to Lemma 9
graph H has an outerstring representation if and only if ϕ is satisfiable and thus
the problem of recognizing whether a graph admits an outer-2-string representa-
tion or not is at least as hard as Exact-3-SAT which is known to be NP-hard.

From Theorem 6 follows that also finding an outerstring representation of
an outerstring graph is NP-hard. Because we use this result to show that the
maximum weight independent set algorithm by Keil et al. [13] needs an outer-
string representation on its input and complexity of this algorithm depends on
total number of piece-wise linear segments in the outerstring representation, we

22



Figure 3.5: Unsatisfied clause corresponds to complement of six cycle. Its con-
strained outerstring representation doesn’t exist.

will show that graph H as defined above admits a piece-wise linear outerstring
representation with a few bends.

Proposition 10. Graph H that can be used to find a satisfying assignment of an
exact-3-CNF formula ϕ with n variables and m clauses admits a piece-wise linear
outerstring representation with 60m` 5n linear segments.

Proof. With a little bit careful placement we can realize all strings from subset-
cycle extensions as single linear segments. There are 30m ` 5n such strings in
total.

Strings of vertices Lxi
cj

(resp. Rxi
cj

) can be realized with one bend inside Npxiq,
one bend between Npxiq and Npcjq to arrive to the boundary of Npcjq in a similar
way as depicted in Figure 3.4 (i.e. to form vertices of regular hexagon), one bound
on the boundary of Npcjq and one possible bound inside Npcjq (in case of a clause
with only one literal with TRUE value). That means 5 linear segments per string
and 30m segments in total.

It would be possible to further reduce the total number of bends with more
precise analysis but the important part of this proposition is that the total number
of needed segments is linear with respect to the size of the formula ϕ.
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Conclusion
In this thesis we studied the outer and grounded string representations of graphs.
After mentioning previous results about classes we were interested in, we fill the
remaining unresolved inclusions among them to provide a comprehensive overview
of these classes and their mutual proper inclusions in Figure 2.1.

To prove the missing proper inclusions (resp. incomparability in case of Mpt)
we used a powerful tool called Cycle Lemma (Lemma 1). Even though a similar
lemma was previously known, we have generalized the lemma from outer-1-string
graphs to outerstring graphs and thus greatly broaden the scale of problems for
which it can be used. Because even the previously known version of Cycle Lemma
is fairly new (published in 2016) and now it can be applied even to outerstring
graphs, we believe that one of the most promising directions for future research
would be to investigate problems that could be solved by this lemma.

In Section 3 we showed that the decision, whether a given graph admits an
outer-2-string representation or it is not an outerstring graph at all, is NP-hard.
This comes as another usage of the generalized Cycle Lemma. Unfortunately, we
were unable in our reduction from Exact-3-SAT to encode the satisfiability of CNF
formula ϕ into a graph G, that would admit an outer-1-string representation in
case of ϕ being satisfiable. So the natural open question strengthening the result
from Theorem 6 is:

Question. Is the decision problem, whether a given graph G is an outer-1-string
graph or it is not an outerstring graph, NP-hard?
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