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1. Introduction
A machine learning algorithm is an algorithm that can learn from data. A
commonly used definition is: “A computer program is said to learn form experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with experience E”
[Mitchell, 1997]. We only provide this definition for completeness and our following
definitions will assume an intuitive translation to this definition.

Machine learning models are traditionally split into two categories, parametric
and non-parametric. Parametric models have a fixed number of learnable parame-
ters which are trained on a subset of the data called the training set. On the other
hand, non-parametric models typically have a variable number of parameters
which depends on the size of the data. This could mean that there is a parameter
associated with each data point. Non-parametric does not mean that there are no
parameters.

Most machine learning algorithms also have hyperparameters, which are
parameters that the learning algorithm can not learn itself, and they usually
control its behavior. A parameter could be chosen to be a hyperparameter because
it would not be reasonable to infer its value from the training data. An example
could be the type of optimizer being used to train a neural network (e.g., SGD
or Adam [Kingma and Ba, 2014]). A machine learning practitioner would not
consider the optimizer to be a property of the data distribution, and as a reasult
treat it as a hyperparameter set externally, rather than trying to infer it.

A parameter could also be set as a hyperparameter simply for practical reasons,
where in theory the parameter could be learned from the data, but optimizing it
directly would be too difficult. An example here could be the learning rate of a
stochastic gradient descent optimizer. Even if automatic differentiation [Maclaurin
et al., 2015] allows us to compute the gradient flow through arbitrary code, in
practice it is not being used to compute the gradients of hyperparameters like
the parameters of an optimizer, e.g. the learning rate. Instead, the learning rate
is treated as a hyperparameter and is set ahead of time, or according to a fixed
schedule. Even when early stopping or other heuristic methods are employed, it
would still be treated as a hyperparameter from the perspective of the learning
algorithm.

Bayesian statistics allows us to take a principled approach to setting hyper-
parameters. We would simply set a prior distribution on each hyperparameter
and marginalize over them, but unfortunately this has two problems. The prior
distribution almost always has parameters of its own, such as the rate parameter
λ of a Poisson distribution, or the concentration parameter vector α of a Dirichlet
distribution. We could go one step further and specify a prior on these parameters,
which are often called hyperpriors. But the real problem of Bayesian methods is
that the integral in the marginalization often ends up being intractable, and in
the case of more complicated models as neural networks, we are already computa-
tionally bottlenecked and cannot use methods such as Markov-Chain Monte Carlo
(MCMC) to approximate it.

There are however cases when the Bayesian approach does work. Either the
model is small and simple enough so that the integral can be actually computed,
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or its properties (such as conditional independence in LDA [Blei et al., 2003])
allow us to perform more efficient MCMC sampling, or the model could actually
have an analytic solution to the marginalization. The last case is something we
will make use of later on when we introduce Gaussian Processes.

Unfortunately, in the field of deep learning [Goodfellow et al., 2016] and
neural networks, our models are almost always so large that just computing a
point estimate of the parameters is close to our computational limits. For that
reason we do not usually employ Bayesian methods, but look for alternative – less
computationally heavy – approaches.

A simple approach to tune hyperparameter is either via random search, where
each parameter is sampled randomly from a given prior distribution, or via grid
search, where a fixed grid over the hyperparameter space is chosen, and then each
point on the grid is evaluated, and the best parameter combination is chosen.
The evaluation can be done using an arbitrary metric of performance, called the
objective function. This could simply be the loss achieved by the model on the
validation set, meaning we would create a function that takes the hyperparameters
as its arguments, train the model on the training set, evaluate its performance on
the validation set, and return that score as its value.

It is not difficult to see that neither of these approaches are optimal, as neither
take into account the already computed values of the loss (objective). If the model
is evaluated on one set of hyperparameters and achieves a high loss, we would like
the hyperparameter tuning mechanism to take this into account, and possibly try a
different combination. This process is similar to that of an agent trying to balance
the exploration-exploitation tradeoff [Russell and Norvig, 2016]. On one hand, we
would like to explore different combinations of hyperparameters and explore as
much of the search space as possible. But once we find a combination with a high
value of the objective function we would like to explore the space around that
combination to exploit the high value and possibly find a close combination that
is even better.

Therefore, we would like our hyperparameter optimization procedure to balance
the exploration-exploitation trade-off, and take previous evaluation into account
when choosing which point to evaluate next. Since the training of machine learning
models – and neural networks in particular – can be computationally costly, we
need to pick an optimization procedure that is sample efficient. Many modern
deep learning models take days, weeks, or even months to train on high end
hardware. To give a few examples, the recent OpenaI Five [ope] has consumed
800 PETAFLOPs-days over the course of 10 months. In comparison, a consumer
grade GPU GTX 1080 Ti achieves just over 11 TFLOPs. A smaller and more
realistic example would be the NVIDIA StyleGAN [Karras et al., 2018] trained
on 1024 × 1024 images, which takes almost 7 days on 8× Tesla V100 GPUs. In
our experiments (see Chapter 6) we train a tagger and lemmatizer on Czech and
English treebanks, where each evaluation takes about four GPU hours. Evaluating
the objective function translates to training one such model from scratch with a
given set of hyperparameters and obtaining an unbiased estimate of its performance
on a validation set.

Even though we have the ability to evaluate the objective function, we have
no way of computing its gradients, or obtain its analytic form. As a result we
have to treat it as a black box and use optimization techniques which do not
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require either. But even with the smaller models we have just mentioned, it is easy
to see that we cannot perform more than a few hundred of evaluations without
spending unreasonable computational costs. This immediately disqualifies many
of the common black box optimization techniques, such as evolution strategies
or simulated annealing, which require on the order of thousands evaluations to
converge [Golovin et al., 2017]. These methods do not model the objective function
in any way, but rather search the target space directly. Evolutionary algorithms
or simulated annealing never see the space as a whole, but rather perform some
variant of stochastic hill climbing, where given enough stochasticity the methods
can be considered to perform global optimization.

Bayesian optimization [Shahriari et al., 2016] is a black box optimization
technique which utilizes a probabilistic model to take a set of evaluations of the
objective function and computes a posterior over all possible functions given the
observed data. As the next step, it computes an acquisition function, which
is a function of the posterior, and represents the potential usefulness of the next
sample. A popular example is the expected improvement function (Chapter 4),
which is roughly defined as the expected improvement over the maximum obtained
so far, or more formally

EI(x) = E [max(0, f (x) - ymax)] ,

where ymax is the currently attained maximum. By sampling at the maximum of
the acquisition function we obtain the point that is most likely going to help us
the most. A key insight here is that the model is probabilistic. It does not simply
fit a regression line through the data points and find the maximum. Instead, we
fit a Gaussian Process (GP) which allows us to capture the uncertainty in the
predictions. This uncertainty is taken into account by the acquisition function,
and as a result it ends up balancing the exploration-exploitation trade-off by both
taking into account the predicted value, and our uncertainty in that value.

A key benefit is that the GP is fitted to the whole space, as compared to the
search based methods mentioned earlier. We can treat the GP as a surrogate
model of the objective function, and optimize it instead, as evaluating the GP at
any given point is usually orders of magnitude faster than evaluating the objective
function.

1.1 Our Contributions
We implemented a tool for optimizing arbitrary programs’ hyperparameters using
Bayesian optimization, including a scheduler which runs the evaluations on a clus-
ter, and a web interface visualizing the results. We do not provide any theoretical
extensions to Bayesian optimization – the benefit is only in the implementation.
This work however also serves as a thorough introduction to the theoretical back-
ground, specifically on GP. Understanding the theoretical aspects of GPs allows
the user to interpret the behavior of the optimizer, as well as to better understand
why some result visualizations might look the way they do.

Our implementation of Bayesian optimization utilizes the GPy library [GPy,
since 2012] which implements the basic GP regression model. We chose to use the
library mainly for the reasons of numerical stability. In theory, as we will show
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later Chapter 3, implementing GP regression is simple for a small toy example.
But with realistic data it is easy to run into numerical issues, some of which we
will go over in the following Chapter 2. Apart from numerically stable code, the
GPy allows for more control over the hyperparameters of the GP using constrained
optimization.

Fitting a GP model and optimizing the acquisition function is just the beginning.
A non-trivial amount of the work is devoted to evaluating the function in a flexible
way. In our case, we expect the user to provide a script which encapsulates the
function, accepts its parameters in the form of command line arguments, and
prints the result of the function on its standard output. This approach allows us to
run the evaluations in parallel, or even run them on a cluster. The implementation
is flexible enough so that a user could provide their own way of running the
evaluations, should they have specific needs. The experimental data is also stored
in an easy to access text format, with command line utilities that allow the user a
fine grained control over the experiment.

Lastly, running real-life experiments can be a time consuming process, and
having the ability to monitor the process and interfere if needed is an important
feature. This is why we provide a web interface that can visualize the progress
of the optimization. The user can explore the evaluated samples, as well as the
regression model at any point in time during the optimization.
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2. Bayesian Optimization
In this chapter we explore Bayesian optimization from a higher level perspective.
We describe the steps of the algorithm and give more motivation for choosing GPs
as a probabilistic model. We also explain the difference between hyperparameter
tuning and architecture search, which, even though similar at first, are completely
different tasks. Lastly, we present some examples of related work, both from the
point of hyperparameter tuning, as well as related areas, such as AutoML.

Consider the problem of optimizing an arbitrary continuous function f : X → R
where X ⊂ Rd , d ∈ N. We call f the objective function and treat it as a black box,
making no other assumptions on its analytical form, or on our ability to compute
its derivatives. Our goal is to find the global minimum xopt over the set X , that
is

xopt = arg min
x∈X

f (x).

We also assume that the evaluation of f is expensive, as the goal of Bayesian
optimization is to find the optimum in as few evaluations as possible. Consider
the case when evaluating f means performing a computation that is not only time
consuming, but for example also costs a lot of money. We might only have a fixed
budget which puts a hard limit on the number of evaluations we can perform.
If the function can be evaluated cheaply, other global optimization approaches
such as simulated annealing or evolution strategies could potentially yield better
results [Golovin et al., 2017].

Bayesian optimization techniques are some of the most efficient approaches
in terms of the number of function evaluations required. Much of the efficiency
stems from the ability to incorporate prior belief about the problem and to trade
of exploration and exploitation of the search space [Brochu et al., 2010].

It is called Bayesian because it combines the prior knowledge p(f ) about the
function together with the data in the form of the likelihood p(x|f ) to formulate
a posterior distribution on the set of possible functions p(f |x). We will use the
posterior distribution to figure out which point should be evaluated next to give a
likely improvement over the currently obtained maximum. This improvement is
defined by an acquisition function, which represents our optimization objective.
A simple example of an acquisition function is the probability of improvement,
which simply represents the probability of improving our objective compared to
the previously achieved maximum. We show a few other examples of acquisition
functions in a later Section 4.1.

The optimization procedure is sequential, using a Bayesian posterior update at
each step, refining its model as more data are available. At each step we maximize
the acquisition function in order to obtain the next sample point xi+1. We then
evaluate f (xi+1) to obtain yi+1, and incorporate it into the dataset. This process
is repeated for as many evaluations as we can perform. See Algorithm 1 for a
pseudocode.

At its core, Bayesian optimization has only two requirements. A probabilistic
regression model combining prior beliefs p(f ) with the data, and an acquisition
function describing the optimality of the next sampling point.
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Initialize x1 randomly and evaluate y1 = f (x1), D1 = (x1, y1).
for i = 1, 2, . . . do

Find xi+1 by maximizing the acquisition function.
Evaluate yi+1 = f (x(xi+1)).
Add the sample to the dataset Di+1 = Di ∪ (xi+1, yi+1).
Update the probabilistic model.

end
Algorithm 1: Bayesian Optimization, Brochu et al. [2010]

2.1 Prior Distribution over Functions
Bayesian methods by definition require a prior distribution over the quantity of
interest. Since we are building a probabilistic model over functions, we need to
provide a prior distribution over functions, which will capture our general beliefs
about the properties of the objective function. For example, if we knew that our
function was periodic, we would want a prior distribution over periodic functions.
But in the case of hyperparameter optimization we will generally only consider
continuous functions.

We will follow the general consensus of using a GP as a prior distribution
over functions [Brochu et al., 2010], because it provides many nice theoretical
properties, as well as tractable posterior inference. Other models, such as random
forests are also possible (see Section 2.2).

A Gaussian Process (GP) is an extension of the multivariate Gaussian distri-
bution to infinitely dimensional random variables. Just as a multivariate Gaussian
can be thought of as a distribution over vectors, a GP can be thought of as
a distribution over infinitely dimensional vectors, which when indexed by the
real numbers are equivalent to functions. A GP assumes that any finite subset
x = (x1, . . . , xn) is jointly Gaussian with some mean m(x) and covariance Σ(x).
A GP is defined by its mean function m and covariance function κ [Murphy and
Bach, 2012]. We write

GP(m(x), κ(x, x ′)).

By convention, we assume that the prior mean is a constant zero function,
that is m(x) = 0. Since the data is often normalized in practice, this does not
reduce the flexibility of the model. The power of a GP comes from its covariance
function, which for any two points xi and xj defines their covariance κ(xi , xj). If
xi and xj have a high covariance, the values of the function at those points will
be similar.

Figure 2.1 shows an example of a GP regression in one dimension. Because
GP is a non-parametric model, it uses the whole dataset D in order to compute
the posterior parameters. A theoretical benefit of this approach, as compared to
using a parametric model like a random forest, is that we reduce the number of
ways our model can underfit or overfit the data. Because we assume the mean
to be zero, our only parameter is the kernel function κ. As we will explain later
in Subsection 3.4.3, we restrict ourselves even further to the Matérn covariance
function, which only has two hyperparameters.

Because the model is non-parametric, it can still fit any arbitrary dataset it is
given, but its flexibility in terms of overfitting is controlled only via the kernel
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Figure 2.1: A GP regression fit to three data points in 1D, shown as small
black circles. The black line signifies the mean prediction, while the purple filled
area shows one standard deviation at each point. The three points marked as
x1, x2, x3 are where we are computing the posterior, that is p(x1, x2, x3|D). These
points together have a multivariate Gaussian distribution, with a marginal 1D
distribution shown vertically at each point. In order to draw a plot like this one we
compute the posterior over a fine grid on the X axis, and plot the mean parameter
and the diagonal of the covariance matrix, giving us the standard deviation. Image
source: Brochu et al. [2010].
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parameters. As an added benefit we can visualize the change in kernel parameters
over time during Bayesian optimization in order to get further insight into how
the model is fitting the data, as shown in Subsection 5.5.1.

Intuitively, it is often useful to think of a GP as a function, which instead of
returning a scalar f (x) returns the mean and standard deviation of a Gaussian
distribution over the possible values, centered at x . We leave a formal treatment
of GPs until Chapter 3.

2.2 Hyperparameter versus Architecture Search
Using our earlier definition, any parameter which the model does not learn on its
own could be considered a hyperparameter. This definition is broad enough to
allow a lot of flexibility, but some hyperparameters are better for the framework
of Bayesian optimization than others. Discrete and categorical hyperparameters
require special consideration. Bayesian optimization itself is flexible in the sense
that it allows for an arbitrary probabilistic model, but the specific choice does
matter when we consider discrete values. In the case of GPs, the model itself has
the ability to directly work with nothing but continuous real-valued vectors.

There has been some recent work [Garrido-Merchán and Hernández-Lobato,
2017] showing better approaches for handling integer-valued variables. The authors
suggest to round the appropriate values before computing their covariance. As the
kernel will consider the values as equivalent, their covariance will be maximized,
and the GP will be forced to predict a constant value over each integer region.
While this approach does help a little bit with integer-valued variables, it does
not improve handling of categorical (nominal) variables, which lack any form
of ordering. If we simply treat them as integers, the GP prior will enforce
relationships which do not exist.

An alternative approach to solving the problem with categorical variables
is to use a different model than GPs, namely random forests [Shahriari et al.,
2016]. Their main advantage is the ability to naturally handle various types of
data. We however do not explore random forests in this work, as many of the
hyperparameters of interest when tuning neural networks are either continuous
or integer-valued. Categorical variables, such as activation functions, are better
suited to be tweaked as part of neural architecture search [Zoph et al., 2017].

Regardless of the probabilistic model, categorical variables cause many imme-
diate problems. Consider the choice between SGD with momentum [Ruder, 2016]
and Adam [Kingma and Ba, 2014]. While SGD with momentum has a momentum
hyperparameter, Adam does not, but it has its own two extra hyperparameters,
β1 and β2. This gives us two different sets of mutually exclusive hyperparame-
ters. Bayesian optimization however does not have any natural way of handling
problems like this. Even if we did externally enforce two different modes based on
which categorical values was chosen, it would essentially be the same as running
two experiments in parallel, one with SGD, and one with Adam. Another issue
arises in visualization, which is one of the goals of this work. Inspecting the
samples from two or more different modes of the network at once is challenging at
best, and with multiple categorical variables the problem grows exponentially.

For these reasons, we chose not to provide direct support for categorical
variables, apart form converting them to integer variables with ordering and
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treating them as such. Some categorical variables can be optimized by simply
treating them as fixed within a particular experiment, and then running multiple
instances of that experiment with a different value each. Other categorical
variables, such as the types of layers, activation functions, or even the connections
between modules, are better left for the framework of neural architecture search,
which treats them in a principled way.

2.3 Related work
There are a few notable mentions of related work in the area of tuning hyperpa-
rameters of neural networks. The main motivation for this work is Google Vizier
[Golovin et al., 2017], which is a proprietary service at Google used for black box
optimization. There also exist a few implementations of Bayesian optimization.
Spearmint [Group, 2014] is the most fully featured one, but comes with a very
restrictive license, and does not perform any visualization of the results. GPyOpt
[authors, 2016], RoBO [Klein et al., 2017] and scikit-optimize [Head et al., 2018]
are the most notable libraries for Bayesian optimization, but they only provide
the basic optimization loop for Bayesian optimization, and do not handle long
running experiments in a possibly distributed environment.

An important mention is the AutoML, which is an attempt at automating many
aspects of Machine Learning. Several different approaches are being tried, for
example the TPOT [Olson et al., 2016] library uses evolutionary algorithms to not
only tune hyperparameters, but also perform architecture search on Scikit-Learn
algorithms, including building feature pre-processing pipelines, dimensionality
reduction, and feature elimination.

Unfortunately, a commonly shared problem of these higher level approaches is
the explosion of the search space. The more of the ML problem is handed over to
the search procedure, the bigger the search space gets, and at some point one has
to make certain trade-offs. The benefit of libraries as TPOT is their ease of use
on small problems, where the model can be trained within a few minutes. But as
is the goal of this thesis, we are interested in tuning hyperparameters of models
which can take hours or even days to train, and in such case we want to be as
efficient as possible.

Commercial services are also becoming more and more popular, both for
AutoML and just for hyperparameter optimization. Apart from the Google
Vizier service [Golovin et al., 2017] there also exist others, for example SigOpt
[sig] provides a cloud based solution to hyperparameter tuning using Bayesian
optimization. Amazon SageMaker [ama] is yet another commercially available
cloud based hyperparameter tuning service based on Bayesian optimization.
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3. Gaussian Processes
This chapter describes the technical details of the Gaussian distribution and its
extension, the Gaussian Process (GP). We believe it is important to have at least
a basic understanding of the underlying math to make claims about the behavior
of the model, especially since GPs behave quite differently than other parametric
machine learning models.

Since our objective is Bayesian optimization, we only derive the properties
necessary for its implementation. Specifically, we are interested in the conditional
and marginal distributions of a multivariate Gaussian. The conditional Gaussian
distribution allows us to compute the posterior p(f |x) at an arbitrary point, and
the marginal allows us to fit a GP regression model to each hyperparameter
separately for additional visualization.

Let us now continue with a more rigorous treatment of the Gaussian distribu-
tion. For a more thorough treatment, see Bishop [2016] and Murphy and Bach
[2012].
Definition 1. A random variable X has a univariate Gaussian distribution,
written as X ∼ N (µ, σ2), when its density is

p(x) = 1√
2πσ2 exp

{
- 1
2σ2 (x - µ)2

}
.

The parameters µ and σ are its mean and standard deviation.
Definition 2. We say that X has a degenerate Gaussian distribution when
X ∼ N (µ, 0), which formally becomes a Dirac delta function centered around µ.
Definition 3. A random variable X ∈ Rn has a multivariate Gaussian distri-
bution if any linear combination of its components is a univariate Gaussian, i.e.
aT X = Σn

i=1aiX i is a Gaussian for all a ∈ Rn. We then write X ∼ N (µ, Σ)
where E[X i ] = µi and cov(X i , X j) = Σij .
Remark. The parameters µ and Σ uniquely determine the distribution N (µ, Σ).
Definition 4. A random variable X ∼ N (µ, Σ) has a degenerate multivariate
Gaussian distribution if det Σ = 0.
Remark. Given a random variable X ∼ N (µ, Σ), random variables X1, . . . , Xn
are independent with distributions X i ∼ N (µi , σ2

i ) if and only if µ = (µ1, . . . , µn)
and Σ = diag(σ2

1, . . . , σ2
n).

Theorem 1. Given two random variables X , Y that are jointly Gaussian, they
are independent if and only if cov(X , Y ) = 0. Note that this statement is not
true for any random variable, and it is only a special property of the multivariate
Gaussian.
Proof. Consider the case of only a two-dimensional random vector X with a
multivariate Gaussian distribution. When cov(X1, X2) = 0 the covariance matrix
Σ is a diagonal matrix, and the density factorizes into a product of two marginal
densities.

In case X and Y are jointly Gaussian random vectors which are uncorrelated,
their covariance is a block diagonal matrix, which again trivially factors in two
marginal densities.
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Theorem 2. A Gaussian random variable X ∼ N (µ, Σ) has density if and only
if it is non-degenerate (i.e. det Σ ̸= 0, alternatively Σ is positive-definite). In this
case, the density is

p(x) = 1√
det(2πΣ)

exp
{

-1
2(x - µ)T Σ-1(x - µ)

}
. (3.1)

Remark. The normalizing constant in the denominator is also often presented in
an alternate form

det(2πΣ) = (2π)n det(Σ),
which follows from basic determinant properties. Alternatively, we can also move
the square root in the exponent and write (2π)n/2(det Σ)1/2.
Remark. In a special case of the multivariate Gaussian with n = 1, we have
Σ = σ2 (meaning cov(X , X) = σ2) and Σ-1 = 1

σ2 , and hence the multivariate
Gaussian formula becomes a univariate one:

p(x) = 1√
2πσ2 exp

{
- 1
2σ2 (x - µ)2

}
. (3.2)

3.1 Sampling
Even not of immediate interest for Bayesian optimization, we shortly show how
to generate samples from a multivariate Gaussian, because the ability is useful for
visualization purposes with GPs.

Theorem 3. Given a random variable X with cov[X ] = Σ, it follows from the
definition of covariance that cov[AX ] = AΣAT .

Proof.

cov[AX ] = E [(AX - E [AX ])(AX - E [AX ])T ] (3.3)
= E [(AX - AE [X ])(AX - AE [X ])T ] (3.4)
= E [A(X - E [X ])(X - E [X ])T AT ] (3.5)
= AE [(X - E [X ])(X - E [X ])T ]AT (3.6)
= Acov[X ]AT (3.7)
= AΣAT (3.8)

Theorem 4. Given a random variable X ∼ N (0, I ) and a positive-definite matrix
Σ with a Cholesky decomposition Σ = LLT , then

LX ∼ N (0, Σ). (3.9)

Proof. We can immediately use Equation 3.8.

LX ∼ N (0, LI LT ) = N (0, LLT ) = N (0, Σ). (3.10)
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Theorem 5. Any affine transformation of a Gaussian is a Gaussian. In particular,

X ∼ N (µ, Σ) =⇒ AX + b ∼ N (Aµ + b, AΣAT )

for any µ ∈ Rn , Σ ∈ Rn×n positive semi-definite, and any A ∈ Rm×n , b ∈ Rm.
We call this the affine property of a Gaussian.

Proof. Follows from the linearity of expectation together with Equation 3.9.

Since samples from N (0, I ) can be generated easily, using the affine property
we can generate samples from an arbitrary multivariate Gaussian. All that is
required is a procedure for Cholesky decomposition, and a way of generating
independent samples from a univariate Gaussian, which can be achieved using the
Box-Muller transform [Box, 1958].

3.2 Geometric Properties
If Σ is positive-definite, then Y ∼ N (µ, Σ) implies A-1(Y - µ) ∼ N (0, I )
where Σ = AAT . The random variable A-1(Y - µ) has a spherical shape in
n-dimensional space.

Looking further at the density formula for a multivariate Gaussian (Equa-
tion 3.1), the term (x - µ)T Σ-1(x - µ) is called the Mahalanobis distance between
x and µ. If we consider µ a constant, we can also view it as a quadratic form in
x. When Σ is an identity matrix, the Mahalanobis distance reduces to Euclidean
distance. In general, it can be thought of as a distance on a hyper-ellipsoid. Let
us now derive some intuition for that.

Since Σ is a covariance matrix, we know it is positive definite, and we can
perform its eigendecomposition to get Σ = UΛU T , where U is an orthogonal
matrix of eigenvectors, and Λ is a diagonal matrix of eigenvalues. Basic matrix
algebra gives us

Σ-1 = (U T )-1Λ-1U -1 = UΛ-1U T =
D∑

i=1

1
λi

uiuT
i ,

where the second to last equality comes from U being orthogonal (U -1 = U T ).
Substituting this in the Mahalanobis distance we get

(x - µ)T Σ-1(x - µ) = (x - µ)T
⎛⎝ D∑

i=1

1
λi

uiuT
i

⎞⎠ (x - µ) (3.11)

=
D∑

i=1
(x - µ)T 1

λi
uiuT

i (x - µ) (3.12)

=
D∑

i=1

y2
i

λi
, (3.13)

where yi = uT
i (x - µ) has exactly the same form as a D-dimensional ellipse. From

this we conclude that the contour lines of a multivariate Gaussian will be elliptical,
where the eigenvectors determine the orientation of the ellipse, and the eigenvalues
determine the length of the principal axes [Bishop, 2016].
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3.3 Conditional and Marginal Gaussian Distri-
bution

In this section we derive the conditional p(x1|x2) and marginal p(x1) for a given
joint distribution p(x1, x2). One of the interesting properties of a multivariate
Gaussian is that both the conditional and the marginal are also Gaussian, and we
can easily compute their parameters in closed from based on the parameters of
the joint distribution.

Before we derive the conditional and marginal distributions, let us state the
partitioned inverse formula without a proof.

Theorem 6 ([Murphy and Bach, 2012]). Consider a partitioned matrix

M =
[
E F
G H

]
(3.14)

where we assume E and H are invertible. Then

M -1 =
[

(M/H )-1 -(M/H )-1FH -1

-H -1G(MH )-1 H -1 + H -1G(M/H )-1FH -1

]
(3.15)

=
[
E-1 + E-1F(M/E)-1GE-1 -E-1F(M/E)-1

-(M/E)-1GE-1 (M/E)-1

]
, (3.16)

where

M/H = E - FH -1G (3.17)
M/E = H - GE-1F (3.18)

is called the Schur complement.

Proof. Since the proof is rather technical and only consists of applying the LDU
decomposition and many algebraic manipulations, we leave it out and refer the
reader to Murphy and Bach [2012] for details.

3.3.1 Conditional Distribution is a Gaussian
Suppose x is a D-dimensional random vector with a multivariate Gaussian dis-
tribution N (x|µ, Σ), and that x is partitioned into two vectors x1 and x2 such
that

x =
[
x1
x2

]
(3.19)

We also partition the mean vector µ and the covariance matrix Σ into a block
matrix, and name the inverse of the covariance matrix Λ = Σ-1, which simplifies
a few of the equations that follow. We derive the exact form of Λ and of its
individual blocks later in this section. For now we simply use the fact that Σ
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is positive-definite, and thus it is invertible. The matrix Λ is also known as a
precision matrix.

µ =
[
µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, Λ = Σ-1 =

[
Λ11 Λ12
Λ21 Λ22

]
(3.20)

Note that since Σ is a symmetric matrix, Σ12T = Σ21, and similarly Λ12T =
Λ21. Similarly, Σ11, Σ22, Λ11, and Λ22 are all symmetrical.

Before we derive the parameters of the conditional, we show that the conditional
distribution p(x1|x2) is a Gaussian. To do this, we take the joint distribution
p(x1, x2) and fix the value of x2 [Bishop, 2016]. Using the definition of the
conditional probability p(x1, x2) = p(x1|x2)p(x2) we can see that after fixing the
value of x2, p(x2) is simply a normalization constant, and the remaining term
p(x1|x2) is a function of x1 which together with the normalization constant gives
us the conditional probability distribution on x1. We now use the partitioned
form of the multivariate Gaussian defined by Equation 3.20 to show that p(x1|x2)
is actually a Gaussian.

Let us begin by looking at the exponent in Equation 3.1:

-1
2(x - µ)T Λ(x - µ) = -1

2

([
x1
x2

]
-
[
µ1
µ2

])T [
Λ11 Λ12
Λ21 Λ22

]([
x1
x2

]
-
[
µ1
µ2

])
(3.21)

= -1
2

[
x1 - µ1
x2 - µ2

]T[Λ11 Λ12
Λ21 Λ22

][
x1 - µ1
x2 - µ2

]
(3.22)

To make the next few equations easier to follow we set y1 = x1 - µ1 and
y2 = x2 - µ2.

-1
2

[
y1
y2

]T[Λ11 Λ12
Λ21 Λ22

] [
y1
y2

]
= (3.23)

= - 1
2

[
y1Λ11 + y2Λ21
y1Λ12 + y2Λ22

]T [
y1
y2

]
(3.24)

= - 1
2
(
yT

1 Λ11y1 + yT
2 Λ21y1 + yT

1 Λ12y2 + yT
2 Λ22y2

)
(3.25)

= - 1
2(x1 - µ1)T Λ11(x1 - µ1)+

- 1
2(x2 - µ2)T Λ21(x1 - µ1)+

- 1
2(x1 - µ1)T Λ12(x2 - µ2)+

- 1
2(x2 - µ2)T Λ22(x2 - µ2)

(3.26)

We see that this is a quadratic form in x1, and hence the corresponding
conditional distribution p(x1|x2) is a Gaussian. Because the Gaussian distribution
is completely defined by its mean and covariance, we do not need to figure out
the value of the normalization constant. We simply have to derive the equations
for µ and Σ.
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We continue with the proof from Murphy and Bach [2012]. We will make use
of the partitioned matrix inverse theorem Equation 3.16. To make the equations
more readable, we again define

y1 = x1 - µ1 (3.27)
y2 = x2 - µ2. (3.28)

We then simply take the block definition of a multivariate Gaussian and multiply
everything out

E = exp

⎧⎨⎩-1
2

[
y1
y2

]T [
Σ11 Σ12
Σ21 Σ22

] [
y1
y2

]⎫⎬⎭ (3.29)

= exp

⎧⎨⎩-1
2

[
y1
y2

]T [
I 0

-Σ-1
22Σ21 I

] [
(Σ/Σ22)-1 0

0 Σ-1
22

] [
I -Σ12Σ-1

22
0 I

] [
y1
y2

]⎫⎬⎭
(3.30)

= exp

⎧⎨⎩-1
2

[
yT

1 - yT
2 (Σ-1

22Σ21)
y2

]T [
(Σ/Σ22)-1 0

0 Σ-1
22

] [
y1 - Σ12Σ-1

22(y2)
y2

]⎫⎬⎭
(3.31)

= exp

⎧⎨⎩-1
2

[
(yT

1 - yT
2 Σ-1

22Σ21)(Σ/Σ22)-1

yT
2 Σ-1

22

]T [
y1 - Σ12Σ-1

22(y2)
y2

]⎫⎬⎭ (3.32)

= exp
{

-1
2(yT

1 - yT
2 Σ-1

22Σ21)(Σ/Σ22)-1(y1 - Σ12Σ-1
22y2)

}
× (3.33)

× exp
{

-1
2yT

2 Σ-1
22y2

}

We can immediately see that the first term is a quadratic form in x1 when x2
is held constant, and the second term is simply a normalization constant. Let us
now consider the first term in isolation and move the terms around a little bit.
We also make use of the fact that because Σ22 is a positive-definite matrix, its
inverse is also symmetric, so Σ-1T

22 = Σ-1
22. We also know that ΣT

12 = Σ21.

E1|2 = exp
{

-1
2(yT

1 - yT
2 Σ-1

22Σ21)(Σ/Σ22)-1(y1 - Σ12Σ-1
22y2)

}
(3.34)

= exp
{

-1
2(y1 - Σ12Σ-1

22y2)T (Σ/Σ22)-1(y1 - Σ12Σ-1
22y2)

}
(3.35)

= exp{-1
2(x1 - µ1 - Σ12Σ-1

22(x2 - µ2)T (Σ/Σ22)-1 (3.36)

(x1 - µ1 - Σ12Σ-1
22(x2 - µ2))} (3.37)

In Equation 3.37 we observe a multivariate Gaussian density with parameters

µ1|2 = µ1 + Σ12Σ-1
22(x2 - µ2) (3.38)

Σ1|2 = (Σ/Σ22)-1 = Σ11 - Σ12Σ-1
22Σ21. (3.39)
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At this point we know that p(x1, x2) = c · N (µ1|2, Σ1|2), where c is some
normalization constant. Here we make use of a general property of probability
distributions, which tells us that the exponentiated quadratic form we obtained in
Equation 3.37 is the conditional Gaussian we are looking for, and not some other
density. Because its value is finite and non-negative for all x1, we can normalize
it to a density by dividing Equation 3.37 by its integral over R. We do not even
need to prove the existence of the integral, because in this particular case its value
is exactly the normalization constant of a multivariate Gaussian.

The formula in Equation 3.39 is extremely important for the use of GPs as a
probabilistic model in Bayesian optimization. It allows us to compute the exact
parameters of the posterior p(f |x) at any given point, and as a result to compute
the acquisition function.

3.3.2 Marginal Distribution is a Gaussian
Now that we know that p(x1|x2) ∼ N (µ1|2, Σ1|2) we can again look at the
quadratic forms in Equation 3.33. Matching the left term to N (µ1|2, Σ1|2) up to
the normalization constant we are left with only

exp
{

-1
2yT

2 Σ-1
22y2

}
.

Together with the definition of conditional probability p(x1, x2) = p(x1|x2)p(x2),
and the fact that both p(x1, x2) and p(x1|x2) are multivariate Gaussians, we
conclude that p(x2) must also be a multivariate Gaussian, using the same argument
with a density being defined up to a normalization constant. The quadratic form
in Subsection 3.3.2 immediately tells us the parameters of p(x2), specifically

p(x2) ∼ N (µ2, Σ2).

Intuitively, the marginal distribution of a multivariate Gaussian is obtained by
simply ignoring all of the dimensions over which we are marginalizing, and only
considering the parameters we are interested in.

3.4 Gaussian Processes
Gaussian Process is a stochastic process (a collection of random variables),
such that every subset of those random variables has a multivariate Gaussian
distribution. It is defined by a mean function m(x) and a covariance function
κ(x, x ′). Formally, we write

p(x) ∼ GP(m(x), κ(x, x ′)). (3.40)

Any finite subset x = (x1, . . . , xn) is jointly Gaussian with mean vector m(x)
and covariance matrix Σ(x), where Σ(x)ij = κ(xi , xj), with κ being any positive
definite kernel function [Murphy and Bach, 2012].

The GP defines a prior distribution over functions f , which when combined
with data x can be converted into a posterior distribution over functions p(f |x).
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3.4.1 GP Regression with Noise-free Observations
Consider the case when we are predicting a function f based on a few observations
D = {(x1, y1), . . . , (xn , yn)}, and we are interested in predicting the value of
y⋆ = f (x⋆) at a new point x⋆.

Using the definition of a GP, we know that all yi and y⋆ are jointly Gaussian.
Furthermore, these are the only points we are interested in. Even though the
GP is a distribution over functions, that is over infinitely dimensional vectors, we
only need to consider finitely many points and we can ignore the rest. This is a
crucial property of a GP and essentially makes everything we are interested in
performing possible.

By assuming a GP, we get all of the properties of a multivariate Gaussian
automatically, including a closed form solution to the conditional and marginal
distribution parameters. Let us now write the joint distribution of y and y⋆ in a
partitioned form (

y
y⋆

)
∼ N

((
µ
µ⋆

)
,
(

K K⋆

KT
⋆ K⋆⋆

))
where K = κ(X , X), K⋆ = κ(X , X⋆), and K⋆⋆ = κ(X⋆, X⋆) [Williams and
Rasmussen, 2006]. Note that y and y⋆ can be either single points or vectors, as we
might be interested in computing the posterior over multiple points at once given
an existing dataset. Because the posterior is just a multivariate Gaussian, we can
make use of the conditioning formula and compute the posterior p(y⋆|X⋆, X , y)
exactly as

p(y⋆|X⋆, X , y) = N (y⋆|µ⋆, Σ⋆) (3.41)
µ⋆ = µ(X⋆) + KT

⋆ K -1(y - µ(X)) (3.42)
Σ⋆ = K⋆⋆ - KT

⋆ K -1K⋆, (3.43)

where µ⋆ is the mean and Σ⋆ is the covariance of the multivariate Gaussian on y⋆.

3.4.2 GP Regression with Noisy Observations
Consider the case when f is not a deterministic function, but rather a stochastic
function returning a noisy output y given some fixed input x (in other words, f (x)
is a random variable). GP regression is flexible enough to model Gaussian noise in
the output directly. For now, let us consider the noise having a fixed variance σ2.

In practice, the noise becomes a baseline for the variance of each point of the
posterior, as the variance can never be lower than the noise. Since the variance
is represented on the diagonal of the covariance matrix computed by the kernel
function κ, we can model the noise directly by simply adding a diagonal matrix
to the output of the kernel, that is

cov(y) = κ(X , X) + σ2I .

See Figure 3.1 for a comparison of noise-less and noisy regression. It should
also be noted that in principle nothing prevents us from specifying a different noise
value for each element of the diagonal. This could be useful if we had additional
prior information about the function f . It could, for example, be an output of a
measurement for which we know exactly the amount of noise for each x.
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Figure 3.1: GP regression without noise on the left, and with a constant amount
of noise added on the right.

3.4.3 Kernels
So far we have considered the covariance function κ to be an arbitrary positive-
definite kernel. Even though in theory there are no restrictions on what kernel we
can choose, there are a few popular choices that are commonly used.

A prototypical example is the squared exponential (SE) kernel, also called the
radial-basis function (RBF) kernel

κ(x1, x2) = σ2
k exp

{
- 1
2l (x1 - x2)2

}
.

This kernel, among many others, falls under the category of stationary kernels.
A stationary kernel is a kernel which is shift-invariant, which means its value
does not depend on the absolute values of x1 and x2, but only on their distance
d = |x1 - x2|. We can thus write the kernel as

κ(x1, x2) = σ2
k exp

{
- 1
2l d2

}
.

The values σk and l are called the variance and the lengthscale, and control
the behavior of the kernel, where σk changes the vertical scale of the function,
and l changes the horizontal scale. Changing the lengthscale essentially allows
the kernel to re-normalize the data. If x is a vector, we can define a lengthscale
parameter li for each of the components. Such component-specific lengthscale
becomes very useful in the context of hyperparameters where each hyperparameter
can have quite a different scale, and the individual lengthscales per component
allow the kernel to capture the phenomenon.

Figure 3.2 shows how the behavior of the kernel changes based on the value
of the lengthscale l. When the lengthscale is set too low, the values of y become
essentially uncorrelated, leading to a function with many spikes. On the other
hand, a larger value for the lengthscale yields a much smoother function.

A popular kernel in the context of Bayesian optimization is the Matérn kernel

κ(d) = 21-ν

Γ(ν)

(√
2νd
l

)ν

Kν

(√
2νd
l

)

where ν and l are the parameters and Kν is a modified Bessel function [Williams
and Rasmussen, 2006]. In practice, we restrict ourselves to a half-integer variant
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Figure 3.2: Lengthscale l = 0.2 on the left, and l = 2 on the right.

of the Matérn kernel, that is when ν = p + 1/2, with p being a non-negative
integer. In this case the Matérn kernel has a simplified form – for example for
ν = 5/2, which is popular choice in ML, the covariance function simplifies to

κ(d) =
(

1 +
√

5d
l + 5d2

3l2

)
exp

(
-
√

5d
l

)
,

which ends causing the GP posterior to be 2 times differentiable [Williams and
Rasmussen, 2006], as compared to the RBF kernel shown above, which is infinitely
differentiable. As a side note, the Matérn kernel converges to the RBF kernel as
ν → ∞.

In a general setting it could prove useful to examine many different kernel
functions and use one that works best in a particular domain. However, in the
case of Bayesian optimization, which should be sample-efficient, we consider only
the kernels shown above, which have been shown to perform well in related work,
especially the 5/2 Matérn kernel [Snoek et al., 2012].

3.4.4 Optimizing GP Hyperparameters
So far we have considered the noise, variance and lengthscale parameters to be
fixed, but in this section we show how their value can be determined automatically
form the data using maximum likelihood estimation.

Since the GP is a probabilistic model, we can query it directly about the
likelihood of the data. Using the definition of a GP, we know that the likelihood is
a multivariate Gaussian, that is p(y|X) = N (y|0, K), giving us a log likelihood
of

log p(y|X) = -1
2yK -1y - 1

2 log det K - N
2 log(2π). (3.44)

We leave out the technical details (see Williams and Rasmussen [2006] for a
detailed treatment) including the gradient of the marginal likelihood with respect
to the kernel parameters, because they do not provide any useful insights.

One important detail we want to stress out is that computing K -1 takes O(N 3),
which puts a serious restriction on the size of the data we can fit with exact GP
regression. This does not concern us in the context of hyperparameter optimization,
where we prefer to stay within low hundreds of evaluations anyway, but for other
tasks it becomes a serious limitation. Understandably, many workarounds for
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Figure 3.3: GP regression without optimizing kernel parameters on the left, and
after optimizing using maximum likelihood on the right. Notice that the noise
parameter is also optimized, as the regression model does not pass directly through
the data points, but instead considers the small variation as due to noise.

approximate inference were developed [Williams and Rasmussen, 2006], which
again we omit from this text, because they are not relevant for hyperparameter
optimization.

Implementing the kernel parameter optimization is simple in practice. One can
simply implement the marginal likelihood formula shown in Equation 3.44 and
use a package for automatic differentiation with an SGD or L-BFGS optimizer to
fit the parameters. Since the objective is non-linear, a common practice [GPy,
since 2012] is to optimize with multiple restarts. Figure 3.3 shows the effect
of optimizing kernel parameters using maximum likelihood. More details on
optimizing the kernel parameters can be found in Section 4.6.
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4. Technical Details of
Bayesian Optimization
This chapter provides a more technical insight into Bayesian optimization. We
begin by considering acquisition functions from a mathematical perspective, be-
cause they form the basis of Bayesian optimization. Next, we show how to extend
Bayesian optimization to perform parallel evaluations, work with integer and
discrete hyperparameters, and optimize parameters on a logarithmic scale. Finally,
we explore the Bayesian optimization algorithm in detail, including some of its
numerical properties and issues that can arise when implementing it.

The contents of this chapter deals largely with implementation details and is
not necessary to use Bayesian optimization in practice. However, understanding
the behavior of integer based hyperparameters, in addition to the overview in
Section 2.2, can prove useful when deciding if a certain hyperparameter makes for
a good candidate for automatic tuning using Bayesian optimization.

4.1 Acquisition Functions
An acquisition function is a key component of Bayesian optimization. Together
with the Gaussian Process regression it allows for balancing the exploration-
exploitation dilemma in search. The only limitation we impose on the acquisition
function is tractability, and possibly continuity, because we need to optimize it.
The tractability requirement is mandatory, since without being able to compute
the function we could hardly find its maximum. But the continuity requirement
is useful given the fact that an acquisition function is often optimized using
stochastic gradient optimizers such as L-BFGS.

An intuitive choice for an acquisition function is to maximize the probability of
improving over our currently best achieved value, which is called the probability
of improvement. This can be computed in closed form as

PI(x) = Φ
(

µ(x) - ymax
σ(x)

)
,

where ymax is the maximum value achieved by sampling f (x).
A natural extension is the expected improvement (EI) acquisition function,

which is simply the expected improvement over the currently achieved maximum.
We define it as

EI(x) = E[max(0, f (x) - ymax)].
At first it might seem that the expectation would be an intractable integral, but
fortunately even this equation can be computed in closed form as

EI(x) = ∆(x) + σ(x)φ
(

∆(x)
σ(x)

)
- |∆(x)|Φ

(
∆(x)
σ(x)

)
,

where ∆(x) = µ(x) - ymax. In practice, the expected improvement shows better
results than the probability of improvement. For more examples of acquisition
functions see Frazier [2018].
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In both of these cases, the next sampling point would be chosen by maximizing
the acquisition function, that is

xnext = arg max
x

EI(x)

for the case of expected improvement. This can be performed by utilizing any
stochastic optimizer, such as the commonly chosen L-BFGS with restarts.

4.2 Parallel Evaluations
In practice we might have the means of evaluating f (x) at multiple points in
parallel, but the framework we have shown so far only allows for sequential
optimization. A natural extension would be not to optimize with respect to
a single xnext, but rather with respect to multiple points. An extension of
EI allowing for optimization with respect to multiple points is called parallel
expected improvement.

Unfortunately, maximizing parallel expected improvement has no simple so-
lution [Frazier, 2018]. A common solution is the so called Constant Liar ap-
proximation, which chooses xi+1 assuming xi was already chosen, and has the
corresponding value yi equal to a constant, often chosen to be the expected value
of f (xi) under the GP posterior.

The Constant Liar approximation enables parallel evaluations by simply con-
sidering the µ prediction for unfinished evaluations as their y value and consider
them part of the dataset D.

4.3 Integer Hyperparameters
GP regression by itself does not have the ability to model integer values in X
directly as some other models do (e.g. random forests Chapter 2). A common
solution, used by [Group, 2014] and the one we also adopt in this thesis, is to
consider all parameters to be real valued and only round after the GP.

In recently published work Garrido-Merchán and Hernández-Lobato [2017]
the authors show a more principled approach. The effect of rounding causes the
model to consider variation and relationships even inside constant-valued regions.
A possible downside is that the model could predict values different enough so
that the acquisition function would obtain a maximum within a constant region
which was already sampled, thus wasting an evaluation. A proposed solution to
this problem is to round the appropriate values right before they are processed by
the kernel function, such as

κ′(x1, x2) = κ(T (x1), T (x2)),

where T (x) is an identity for real valued elements and a rounding function for
integers.

Our implementation however does not use this approach. Instead, we handle the
problem explicitly by detecting the pathological cases, as described in Chapter 5.
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4.4 Logarithmic Scaling of Hyperparameters
When optimizing hyperparameters we might want to distinguish not only real
and integer valued ones, but also their scale. Optimizing the number of training
epochs or layers is well modelled by a linear scale, but a learning rate is better
modelled using a logarithmic scale.

We adopt a simple solution working independently on Bayesian optimization,
by simply transforming all of the appropriate values to logarithmic scale before
inputting them into the model, and then transforming them back after we get
the next sample proposal x . Given this approach is completely transparent from
the point of the GP regression model, we could just as well perform an arbitrary
bijection.

4.5 Implementation Details of Bayesian Optimiza-
tion

We now present the algorithm for Bayesian optimization in greater detail compared
to Algorithm 1. Let Dn = {(xi , yi), i ∈ 1 : n} denote a set of n samples
(evaluations) of the objective function f , with yi = f (xi). Our goal is to pick the
next xn+1 to maximize our chance of finding the optimum quickly, assuming that
already enough points were evaluated for us to fit the GP. Algorithm 2 shows one
iteration of Bayesian optimization as it proposes xn+1.

Let X be the matrix of all xi , and y be a column vector of all yi .
Maximize the kernel log-likelihood

p(X) = -1
2yK -1y - 1

2 log det K - N
2 log(2π),

where K = κ(X , X), by tuning the kernel hyperparameters.
Maximize the acquisition function A(X , y, GP) as a function of the GP
using the kernel hyperparameters obtained in the previous step.

Sample yn+1 = f (x), where x = arg max A(X , y, GP).
Add yn+1 to the dataset as Di+1 = Di ∪ (xi+1, yi+1).
Algorithm 2: Bayesian Optimization with implementation details.

While this algorithm explains how Bayesian optimization works, there are a
few cases where numerical issues can arise, and we point them out next.

Firstly, the quadratic form yK -1y does not need to be computed using a
matrix inversion procedure, which can be numerically unstable and requires more
intermediate computation (see Krishnamoorthy and Menon [2013] for details). In
general, consider the equation Ax = b. We can rewrite it to x = A-1b for an
invertible matrix A. A naive solution would compute the inverse and then the
multiplication to get inv(A)b, but because we do not actually need the inverse
itself, we can solve for A-1b directly using a solve procedure [van der Walt et al.,
2011].

Because the K matrix is a covariance matrix, we also know it is positive
definite. This allows us to compute its Cholesky factorization L = chol(K),
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and then apply a procedure for solve directly on the factorized matrix L (in
TensorFlow available as tf.linalg.cholesky solve).

Having just computed the Cholesky factorization we can re-use it in the second
expression of the marginal log-likelihood, that is the log det K , since

log det K = log det(LT L) = log(det(LT ) · det(L)) = (4.1)
= 2 · log det L = 2 · log

∏
diag L = 2 ·

∑
log diag L. (4.2)

This form allows computing the determinant, which usually takes O(n3), in
just linear time, by re-using the work already performed during the Cholesky
factorization produced in the previous step.

Another interesting note, discovered by our initial custom implementation,
and confirmed in the implementation of the GPy [GPy, since 2012] library, is that
when computing a Cholesky factorization of a covariance matrix computed on
real world data, it often fails for numerical reasons, and requires additional noise
to be added to the diagonal to improve stability. What GPy does internally is to
iteratively increase the amount of noise, up until some threshold, to make sure
the factorization succeeds, while not adding excessive noise when not needed.

Lastly, the optimization procedures themselves used for maximizing the kernel
log-likelihood and acquisition function can be sensitive. Our initial implementation
in SciPy and TensorFlow demonstrated quite different results based on the type
of the optimizer (SGD, Adam, L-BFGS), and its meta-parameters, such as the
number of restarts, stop tolerance criterion, learning rates, etc. These problems,
along with many numerical issues encountered along the way, contributed to the
choice of using GPy for the final implementation. We outline a few more reasons
in Section 5.2.

4.6 Priors on Kernel Parameters
One of the benefits of the GP regression model is that it is very flexible. Unlike
parametric models, such as linear regression, it can fit arbitrarily complex predic-
tions of the data. This flexibility is dictated by the choice of a kernel function,
which determines individual covariances between every pair of points. As we have
shown earlier (see Subsection 3.4.3), the kernels themselves have hyperparameters
which greatly affect the behavior of the model. Even though it is theoretically
possible to set the kernel parameters by hand, as it could be done if we knew
some properties of the objective function, we cannot take this approach when
fitting arbitrary samples from the loss landscape of a neural network. Instead, we
take a principled approach using statistics and optimize the kernel parameters
to maximize the likelihood of the data, specifically by using maximum likelihood
estimation (MLE).

Unfortunately, because MLE is a point estimate, it is prone to overfitting.
In our particular case of using a flexible non-parametric model we can run into
severe case of overfitting. In theory, some argue (see [Williams and Rasmussen,
2006]) that when the likelihood function is multi-modal, there are usually multiple
interpretations to the data, and each mode maps to an intuitive interpretation.
We have not found this to be true on more complex datasets, as those sampled
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Figure 4.1: GP regression with a very low value for the lengthscale kernel parameter.
Since the scale parameter is low, the x axis ends up being stretched out, and each
data point becomes independent, that is their covariance is low. As a result, the
model is free to try to fit almost every data point independently on the others,
and its predictions become uninformative.

from the objective function of neural networks models, and very often the MLE
ends up choosing a model with extremely high capacity, as shown in Figure 4.1.

A common solution to the overfitting problem of MLE is to introduce a
prior distribution p(w) on the parameters w, and then instead of maximizing
the likelihood p(x|w) we would maximize the posterior distribution p(w|x) ∝
p(x|w)p(w). This approach is commonly called the maximum a posteriori (MAP)
estimate, and is frequently employed in machine learning models as a way of
reducing overfitting. For example, in the case of linear regression, the standard
least squares solution corresponds to maximizing the likelihood of the data using
MLE, or equivalently minimizing the mean squared error between the predictions
and the labels. A probabilistic extension of linear regression, which introduces a
Gaussian prior on the weights, is called a Ridge regression (or L2 regularization),
and corresponds to computing the MAP estimate of the parameters, or equivalently
minimizing the mean squared error with an additional weight decay term.

In the ideal case, we would either marginalize over the parameters, or take
a fully Bayesian approach and compute the posterior p(w|x). Unfortunately, in
many cases including ours, the marginalization becomes intractable due to the
normalization constant given by the evidence term p(x). The MAP estimate is a
practical compromise between the frequentist point estimate using MLE, and a
fully Bayesian treatment. Because we only need to compute the arg max of the
posterior, we can optimize it without computing the normalization term p(x),
given arg max being invariant to scaling by a constant. The MAP estimate is then

27



Figure 4.2: An example of a prior distribution defined as Gamma(1.0, 0.001) with
support over positive real numbers.

simply computed as
arg max

w
p(x|w)p(w),

where in our case w represents the kernel parameters, as well as the constant for
Gaussian noise in each sample.

As with any Bayesian method, the choice of a prior is of great importance.
If we were to choose a uniform prior, computing the MAP estimate would be
equivalent to computing the MLE with constrained optimization on the support of
the uniform distribution. In practice, we could take a conservative step and choose
a non-informative prior, which would still act as regularization, and possibly help
with overfitting as compared to computing a bare MLE estimate. An example of
such prior is the Gamma(1.0, 0.001) distribution shown in Figure 4.2, because its
support are positive real numbers, and both the variance and the lengthscale of
the kernel are also defined only for positive real numbers.

In our experiments described in Chapter 6, we show a few cases where the
choice of an uninformative prior leads to poor model behavior. The common cause
if the model choosing a small lengthscale for hyperparameters with high range
of values, as shown previously in Figure 4.1. Because the process of Bayesian
optimization is built on top of the regression model, it can become problematic
when the model considers most of the search space as constant regions with only
a few peaks at the sampled data points.

A possible solution to this problem is to abandon the idea of non-informative
priors and instead adopt the approach often called Empirical Bayes [Murphy and
Bach, 2012], where the parameters of the prior distribution are estimated from
the data themselves. Choosing between a non-informative prior and estimating
the parameters from data is a principal problem that does not have a definitive
answer.

With our motivations being largely driven by practical applications rather
than theoretical purity, we do estimate the prior parameters from data in some
visualizations (see Section 5.5) to avoid pathological cases and provide more
useful user experience. We also show comparisons between the non-informative
priors and the Empirical Bayes approach in the GP regression model used when
computing the acquisition function, as compared to only in visualizations, in
Section 6.2. Unfortunately, because some experiments were very computationally
intensive (some over a thousand GPU-hours), we do not provide a full ablation
analysis.
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5. Software
This chapter describes the implementation part of this thesis. While we do not
provide any theoretical extensions to Bayesian optimization, we instead provide a
modular and fully working implementation tested on multiple experiments. The
implementation is provided as a Python [van Rossum, 1995] package called bopt
(short for Bayesian optimization).

The main features of the package are:

• A robust implementation of Bayesian optimization.

• Flexible experiment configuration with random search and GP backends.

• Parallel execution of evaluations, both on a local machine and on a cluster.

• Robust error handling with duplicate/similar sample detection.

• Command line interface for controlling experiment evaluations, including
running a manual evaluation with user specified hyperparameters.

• Simple filesystem based storage with user-readable and editable serialization
format based on YAML.

• Web based visualizations of the whole optimization process, including 1D
and 2D slices and marginal plots at all points during the evaluation.

• An ability to add manual samples either from another (already executed)
experiment, or manually by running an appropriate command with user-
provided hyperparameters and objective function value.

5.1 Architecture
In this section we explore the high level architecture of bopt. Everything is
structured around a central class Experiment, which represents a single objective
function together with a configuration of its hyperparameters, and configuration of
the Bayesian optimization itself. The Experiment can contain multiple Samples,
where each sample represents a single evaluation of the objective function.

We assume the function being optimized can be evaluated by running a script
file. The hyperparameters are passed as command line arguments (see Section 5.4),
and the standard output of the script is parsed using a regular expression provided
by the user. This provides the user with maximum flexibility with regards how
the actual function is being executed, because bopt will simply spawn the process,
pass the command line arguments, and then wait for it to terminate to collect
the output and parse the result. If the result is not found in the output, or the
process exists with an exit code different than 0, bopt marks the evaluation as
failed. We do not put any restrictions on the type of script the user might want
to provide. It is solely at the discretion of the Runner (see Subsection 5.1.2) to
figure out how to run the provided command.
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Each bopt experiment is located in its own directory on the filesystem (called
the meta dir), where it stores all of the information in a single meta.yml file,
along with output files for each job. This makes it easy for the user to manually
inspect and edit if needed, or even backup when performing more complicated
operations, such as deleting specific samples, or manually adding samples from
a different experiment. Since Bayesian optimization is stateless (always starting
from scratch), the user can easily combine evaluations from multiple different
experiments by hand, or even delete samples which were created by an accident,
such as when using manual evaluations.

5.1.1 Samples, Result Collection, and Locking
Each evaluation of the objective function is split into two parts. One being the
Sample, which contains the specific hyperparameter values for x , kernel parameters
of the GP model, which were used to compute the sample, a posterior prediction
of its mean and variance, and then the second part, which is an optional Job
instance, which represents the actual running evaluation. The Job simply wraps
the running process with its process ID (PID) and runner-specific information on
how to get its status, kill it, etc.

Every time a bopt command is executed, or whenever a new state is required,
a result collection procedure is be called, checking the status of all running jobs,
and updating their respective samples with new results or failure information.
The collection procedure is performed mainly to avoid race conditions, given that
the evaluations themselves are running asynchronously from the main program
flow in bopt. Apart from the collection procedure and a few exceptions, such as
starting a new job, the main data structure is considered read only.

It is also worth mentioning that since multiple instances of bopt could be
running at any given time, we have employed a file locking mechanism. When the
experiment directory is being accessed, a .lockfile file is created in it, and any
other bopt instance detects the lock file and waits until it is released (removed).
This enables the user to use the command line utilities while an experiment is
running without worrying about data corruption.

5.1.2 Runners
Training neural networks is a computationally intensive task, and tuning hyperpa-
rameters makes it an order of magnitude more expensive. As a result, running
an experiment on a local computer might not be an option. The package was
designed with different evaluation environments in mind and provides a flexible
concept of a Runner class, which abstracts away the procedure of starting a new
evaluation, that is figuring out how and where to run the script file representing
the objective function.

We provide two different runners out of the box:

Local runs the process on the same machine as bopt.

SGE submits a job to the Son of Grid Engine [SGE].

All runners support job parallelism using the Constant Liar approximation
(see Section 4.2), which is part of the reason why each Sample stores a mean
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prediction. This value is being used as y whenever a new evaluation point needs
to be chosen during parallel evaluations.

When a job is started, its stdout and stderr are redirected to a file within the
output directory in the meta dir. The file will be named with a PID in case of a
local job, and with a job ID in case of an SGE job. In case of the local runner
we have to employ a minor trick, because when popen is being called with stdout
redirection, it already requires a file handle, but at that time the process ID is
unknown. We work around this problem by creating a temporary file, redirecting
the output to that file, and then after popen returns a PID we rename the opened
temporary file to a new name with the PID. Since UNIX systems can handle
renaming of open files, this workaround causes no issues, but the behavior on
Microsoft Windows is unclear. If the user needs to support Microsoft Windows,
they might have to provide their own runner which does not use PIDs, but rather
generates the ID based on some other procedure which makes the ID available
before the child process is spawned. The SGE runner does not run into this issue,
because we only specify the filename as a parameter to qsub, which then handles
the process scheduling, creation, redirection, and names the output file accordingly
using the new job ID.

To implement a custom runner, the user only needs to subclass two classes,
namely the Job class and the Runner class. The Job class needs to mainly
implement an is finished method (among a few other ones described in the
abstract interface), which returns the status of the evaluation based on the
implementation details specified in the runner. To implement the Runner, the user
needs to provide a start method, which accepts the values of all hyperparameters,
and returns a new Job, which will later be evaluated. An additional requirement
is that a Job needs to store its result in an appropriately named file, specifically
job.o$ID in the outputs directory. We adopted this approach mainly to avoid
issues with process IDs as described earlier in this section.

Lastly, it is worth mentioning that bopt supports the UNIX time command
for measuring the runtime of an evaluation. Because we allow running jobs on an
SGE cluster, we can not simply take the start time and end time and subtract
them to get the total run time, because the job can wait in a queue for an arbitrary
amount of time.

5.2 GPy
Our library of choice for GP regression is the GPy [since 2012] library, because we
consider it the most stable and robust package available, and it is still being actively
developed. We are mainly interested in the GPy.models.GPRegression class,
which implements the regression model itself, and the GPy.kern module, which
implements kernel functions. We initially used our own custom implementation of
GP regression (partly shown in Section 4.5) in TensorFlow [Abadi et al., 2015]
and SciPy [Jones et al., 2001], but despite the seemingly short and simple numeric
algorithm for computing the regression, getting all the details right proved to
be an exceedingly difficult task. Even simple numerical methods like Cholesky
decomposition are often wrapped with layers of numerical stability tricks, that
one does not get out of the box with libraries like NumPy [van der Walt et al.,
2011].
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For these reasons, we ended up utilizing the GPy library, which apart from a
numerically stable implementation provides many additional benefits. Being built
upon a general purpose parameter optimization library paramz, GPy allows the
user to both put arbitrary constraints on each of the parameters, as well a specify
a prior distribution, which is then used when optimizing the kernel marginal
likelihood.

5.3 Random Search
The core optimization loop has the ability to generate samples randomly, which is
useful for two reasons. It allows creating a comparative baseline, where all the
samples are generated using random search, allowing us to measure the benefits
and improvements of Bayesian optimization. But it also serves to bootstrap the
Bayesian optimization driven search. When choosing an initial first point of
evaluation, we do not have any data to fit the model to. We could optimize the
acquisition function on the prior, but since our prior has zero mean, it would simply
be a uniform distribution. What we do instead is sampling each hyperparameter
randomly, until we have enough data to fit the probabilistic model.

The number of random samples can increase if we are using parallel evaluations,
simply because if we need to start N jobs at the same time, with no prior data,
we cannot even calculate a mean prediction. As a result, we start the first N
evaluations using random search in such case.

5.4 Command Line Interface
Since larger experiments will be most likely executed on a computational cluster
we opted for a flexible command line interface, which can be easily used over an
SSH connection. The available subcommands of bopt are:

init Creates a new experiment with a given script, configuration of hyperparame-
ters, and runner options.

exp Prints out the current status of the experiment, showing metadata of all
evaluations.

web Starts the web interface for evaluation visualization.

run Starts a run loop, which tracks how many jobs are currently running, spawn-
ing new jobs as needed to fulfill the parallelism requirements, and collecting
the results.

run-single Runs a single evaluation, regardless of how many jobs are currently
running.

manual-run Runs a single evaluation with hyperparameters provided by the
user. This does not utilize Bayesian optimization and simply serves as an
interface to manually start requested tasks.
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suggest Prints a suggestion for the next evaluation without running it, as well
as an already formatted command for manual-run, so that the user can
inspect the hyperparameter values and run the command immediately if
they see fit.

debug Starts a Python debugger with the given experiment loaded in, which can
be useful both for diagnosing issues as well as exploring the internal data
structures.

clean Kills all running jobs and removes all evaluations from the experiment,
while keeping the initialization metadata. This command is basically just a
shortcut for re-starting an experiment from scratch.

All commands are executed as bopt COMMAND and support the conventional
--help command line argument, which prints out all available options, as well as
their descriptions.

5.4.1 Meta Directory, Data Corruption, and -C
When an experiment is initialized, all of its information are stored in its own
directory. This includes both the meta information about hyperparameters, run
configurations and evaluations, as well as the job outputs themselves.

The bopt command was designed such that it always tries to acquire an
exclusive lock on the directory using a .lockfile, which is to prevent any race
conditions and possible data corruption from running multiple instances of bopt at
the same time. Such a scenario could easily occur when the user would start a long
running bopt run command, while also exploring the results, and possibly starting
a few more evaluations manually using bopt run-single, bopt manual-run, or
even another bopt run. Because of the locking behavior, it is completely safe to
run as many instances of bopt as needed, and the user does not need to concern
themselves with causing any data corruption via the command line interface. We
also make sure to always serialize the data into a new file, and then atomically
move over the existing one, in order to minimize possible data corruption when
the bopt process is killed.

It is important to note that bopt was designed with manual user intervention in
mind. As such, the meta.yml file, which contains all of the experiment information,
was created to be easily human editable. However, because bopt does not use the
UNIX flock mechanism (as editors do not obey it), the user has to be wary of
editing the file by hand while other instances of bopt are running. Because the
meta.yml file is overwritten atomically, the user can even edit the file while bopt
is running, but they have to make sure to save at the appropriate time, e.g. not to
discard the changes that were just written after the file was loaded in the editor.
This problem is unlikely to occur in editors like Vim, which notifies the user of
the file being changed after it was read, but it still does not prevent the user from
overwriting it. If there are no existing bopt processes running, it is completely
safe to alter the meta.yml file.

All of the bopt commands also accepts a -C command line argument, which
specifies a directory to cd into before any of the main code is executed (similarly
as a Makefile would behave). This behavior allows bopt to always assume it is
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being executed from within the meta dir and simplify handling paths stored in
the experiment configuration files. While this behavior is unlikely to affect the
user in a negative way, it is still useful to know the semantics of the program.

We now explore two of the most important commands in more detail, bopt
init and bopt run.

5.4.2 The bopt init Command
Initializing experiments is an important feature and as such the command line
interface has been streamlined to allow the user to input the arguments without
complicated configuration files. An example of a common bopt init call could
look like the following:

bopt init \
--param "batch_size:int:4:128" \
--param "gamma:logscale_float:0.5:1.0" \
--param "lr:logscale_float:1e-6:1e-1" \
--param "dropout:float:0.1:0.6"
-C experiments/reinforce \
--runner sge \
--ard=1 --gamma-prior=1 \
--gamma-a=1.0 --gamma-b=0.001 \
$PWD/reinforce.sh

The first four arguments specify four different hyperparameters of the RE-
INFORCE algorithm, namely batch size, gamma, lr and dropout, each with
a different type and range. The general format is NAME:TYPE:MIN:MAX, where
NAME can be an arbitrary name, TYPE can be one of int, float, logscale int,
logscale float, and discrete, and MIN:MAX are simply the bounds of the hyper-
parameter. If the type of discrete is specified, instead of providing the bounds
the user provides a colon separated list of possible values, which would then be
encoded as ordinal integers. An example of such discrete hyperparameter could
be an activation function defined as activation:discrete:tanh:relu:sigmoid.
However, as mentioned in Section 2.2, we do not recommend using bopt for
architecture search, which discourages from most uses of the discrete type.

The next argument -C experiments/reinforce defines the meta dir, where
the experiment data will be stored. Next we define the runner type, which can be
one of local or sge.

After the runner is defined, we configure the GP regression itself, in this case
by specifying the ard flag, which allows using a separate lengthscale parameter for
each component of x (more details can be found in the ? documentation). Next
we specify that we want to utilize a Gamma prior on the kernel hyperparameters,
and its shape and scale parameters. A complete list of all flags for configuring the
GP regression, acquisition function, kernel, and the optimizer can be found using
the help flag as bopt init --help.

Lastly, we provide bopt with the script to run, in this case it is reinforce.sh,
which encapsulates our objective function. We also specify it as an absolute path
using the PWD environment variable, but this is shown mainly as an interesting
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trick that can be useful if the PATH is not configured in the environment, where
the runner will execute the job.

After the command exists, it creates a directory experiments/reinforce
with a meta.yml file inside. The following listing shows the contents of the file:

gp_config: !!python/object:bopt.gp_config.GPConfig
acq_n_restarts: 25
acq_xi: 0.001
acquisition_fn: ei
ard: true
gamma_a: 1.0
gamma_b: 0.001
gamma_prior: true
kernel: Mat52
num_optimize_restarts: 10
random_search_only: false

hyperparameters:
batch_size:

high: 128
low: 4
type: int

gamma:
high: 1.0
low: 0.5
type: logscale_float

hidden_layer:
high: 128
low: 2
type: int

learning_rate:
high: 0.1
low: 1.0e-06
type: logscale_float

result_regex: RESULT=(.*)
runner:

arguments: []
manual_arg_fnames: []
qsub_arguments: []
runner_type: sge_runner
script_path: ./reinforce.sh

samples: []

Apart from the command line arguments we have provided, some unspecified
options were filled in with the defaults. For example, the kernel function was
chosen to be the default Matérn 5/2 kernel, which was shown to perform the best
on many hyperparameter tuning tasks [Snoek et al., 2012]. We have tried to make
the optimization procedure as configurable as possible in case the user has any
additional prior knowledge, which might help them to optimize better.
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In general, there are no significant requirements on the script, which we just
execute as a subprocess. We only require that it takes the hyperparameter values
as command line arguments in the format of --NAME=VALUE, and outputs the
objective function on its standard output. By default, bopt parses the standard
output with a regular expression RESULT=(.*), but the user is free to specify
an arbitrary value in the meta.yml file. If the user wishes to run an existing
software not accepting command line arguments in this form, they have to wrap
the program in a script, which pre-process the arguments given by bopt, and pass
them through in the format they require. This approach allows for maximum
flexibility without having to spend large effort on building a general argument
passing system. In our experiments with existing software, we only found a few
cases where minor argument processing was necessary.

5.4.3 The bopt run Command
After the experiment is initialized, the user can start running evaluations. Since
everything is already configured in the meta.yml file, the user only needs to
run bopt run -C experiments/reinforce, or cd into the directory and execute
bopt run. Both of these alternatives are equivalent.

By default, this will run 20 evaluations in total with no parallelism. The
number of evaluations can be controlled with the --n iter switch, while the
number of jobs running in parallel is controlled by the --n parallel option.

To track the number of running jobs, bopt run checks the meta.yml file for
the job IDs, queries status of jobs, and counts how many of them are running.
This allows bopt run to correctly identify running jobs, even if the jobs were not
started by bopt run itself. For example, if the user first started say 5 evaluations
by hand (e.g. using bopt run-single) and then ran bopt run --n parallel=5
while the first 5 jobs were still running, the instance of bopt run would correctly
identify the running jobs and wait for some of them to finish before launching
new ones.

5.5 Visualizations
Given the complex nature of tuning hyperparameters, one might be tempted to
simply run a grid search and examine the results. Ignoring the computational
aspects for a moment, let us focus on the manual inspection of the results. As
the number of hyperparameters grows beyond 5 – 10, it becomes very difficult
to infer relationships among hyperparameters from a flat list of evaluations.
Figure 5.1 shows an example of a table with 6 different hyperparameters. To
model a 6-dimensional space, at least 15 – 20 evaluations are needed to get enough
information to infer relationships among the dimensions. But as the number of
evaluations grow, it becomes increasingly difficult to directly infer relationships
among the hyperparameters from tabular data itself.

We provide a practical solution of plotting 1D and 2D marginal GP fits for all
hyperparameters and all pairs of them. In Figure 5.2 we show the relationship
between two of the hyperparameters as measured in one of our experiments (more
details in Chapter 6). We can also show each 1D marginal in order to visualize
how each hyperparameter affects the fitness irrespective of the others, as shown
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Figure 5.1: A table showing the results of multiple objective function evaluations.

in Figure 5.3. The 1D figures can also plot the acquisition function, which also
serves as a useful debugging tool, e.g. to diagnose possible overfitting of the GP.
Lastly, we allow the user to view these visualizations at any point in time during
the optimization process, as shown in Figure 5.4. This provides exploring the GP
regression when multiple parallel evaluations were spawned.

The benefit of a GP regression model is that the marginal distribution on any
combination of the hyperparameters simply follows the marginalization property
(see Subsection 3.3.2), meaning we can only consider the mean and covariance of the
parameters we are interested in. All other hyperparameters get marginalized out,
that is p(x2) ∼ N (x2|µ2, Σ22), where p(x2) =

∫
p(x1, x2) dx1 and a partitioned

matrix Σ as described in Chapter 3. Utilizing this property, we can compute
the 1D marginal projection by fitting a model to the coordinate corresponding to
the hyperparameter of interest. As the goal of the marginal plots is to quickly
spot trends in the data, we employ the Empirical Bayes approach described in
Section 4.6 to bias the prior distribution on kernel parameters towards smoother
kernel functions, to avoid pathological cases of overfitting as shown in Figure 4.1.

Similarly, we might be interested in plotting slices through the GP regression
model, that is fixing a value of some hyperparameters, and examining how
the objective changes when interpolating through the remaining ones. Such
computation is again simple to achieve with a GP, because by slicing we are
simply conditioning on the values of some elements of x, while leaving the others
free. Using the conditioning formula shown in Equation 3.39, we can compute
the posterior parameters in closed form, and then simply plot the predicted mean
and variance. We do not show this case in the figures since the plots look exactly
the same as the marginal ones, except of course for the specific values. The user
can toggle between the two modes when browsing the experiment visualisation in
bopt.

The kernel parameters for the conditioned GP are set to the exact values used
when a sample was chosen for evaluation. This way we can explore the progress
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Figure 5.2: 2D marginal plot showing the dependence between β2 and label
smoothing in one of our experiments when training a larger tagger and lemmatizer
network on a Czech treebank.

Figure 5.3: 1D marginal plot showing the effect of batch size on the objective
function on the same model as shown in Figure 5.2. The red line shows the value
of the acquisition function.
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Figure 5.4: A timeline showing all of the evaluated experiments, together with
their objective value, model type (shown in color), and the hyperparameters used
for evaluation. The user can select any of the evaluations on the timeline and all
of the plots will be shown from the perspective of that evaluation, i.e. what the
model saw when choosing the hyperparameters of that specific evaluation.

of the optimization process through time and inspect the state of the model at
each point, understanding why it chose the hyperparameters it did.

5.5.1 Kernel Parameter Visualization
As a method of debugging possible issues in the model, as well as just general high
level inspection of the quality of the fit, we provide a visualization of the kernel
parameters as they change over time of the Bayesian optimization, as shown in
Figure 5.5.

The kernel hyperparameters roughly determine the general properties of the
regression curve and confidence intervals. A large lengthscale results in smooth
functions, while small lengthscale results in many spikes without larger continuous
regions. Plotting the value of each kernel parameter as the optimization progresses
allows us to judge how much does the regression model’s view of the objective
function change over time.

Intuitively, after we have sampled enough data points, we would expect that
adding one additional sample would have an effect on the regression curve itself,
but not as much on its quality, such as smoothness. A large change in the kernel
parameters signifies that the objective function is now modelled substantially
differently than before. We would of course expect the parameters to change
over time, as the model refines itself to more data, but there should be a visible
trend. In Figure 5.5 we show an example where for most of the samples the
kernel parameters do not change by much, but there are two visible drops (around
samples 50 and 70) in the high freq lengthscale, which signify a possible issue in
the GP regression at that point. Based on our experience with the model, we
would still consider the example to be quite stable, compared to another example
presented in Figure 5.6, where until around 50 samples the model was not sure
how to scale individual hyperparameters, and only stabilized afterwards. In this
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Figure 5.5: Visualization of the kernel parameters over time as the Bayesian
optimization progresses. In this case the model was allowed one lengthscale ↕
parameter for each element of x , in essence allowing it to normalize each column
independently. Since there are 9 different hyperparameters, the search space is
9-dimensional, and as a result it takes the model up to 20 samples to find a good fit
in the data. Afterwards, it automatically determines the scale of each parameter,
such as the high freq parameter, which was optimized on the scale of 1000 – 8000.
We can see the model clearly adapting its lengthscale to a similar range. As a
general rule of thumb, when the lengthscale parameter is on the same order as the
hyperparameter range, the model will scale that parameter to roughly unit range.

Figure 5.6: Visualization of a less stable model with kernel parameters rapidly
changing, until around 50 samples are evaluated. In this case we attribute the
instability to a very noisy objective function, where the model took a long time
to fit the right value of variance to counteract the effect of the noise.
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Figure 5.7: Visualization of the overall convergence of the optimization process.
The x axis labels time as new samples of are evaluated, and y axis labels the
objective function. We show both the intermediate results (blue), as well as the
cumulative maximum (orange).

case we attribute the problem to a much noisier model.

5.5.2 Convergence
Analyzing results in a table does not always explain how well is the Bayesian
optimization process doing. We add a convergence plot, which shows both the
intermediate values of the objective, as well as a cumulative maximum.

In some cases the model might be achieving steady increase in the objective,
as shown in Figure 5.7, while in others it might fail to improve in a significant
way. The following Chapter 6 shows experiments where even though the model
showed some improvement over the baseline, it clearly did not converge as more
evaluations were computed, which becomes clearly visible in its convergence plot
as shown in Figure 5.8.

5.6 Inspecting Attached Experiments
We provide results for some of the experiments as an attachment to this work.
Because of the design described in Subsection 5.4.1, we only need to store the
meta.yml file after the results have been collected, as the collection copies all of
the results from job output files to meta.yml.

Inspecting the results is then simply a matter of running either bopt web -C
dir for the web interface, or bopt exp -C dir for the command line inspector,
where dir is a directory containing the meta.yml file.
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Figure 5.8: Convergence plot of a long running experiment where no significant
improvement over the baseline is found. In this particular case the objective was
measured as an improvement over an existing model.
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6. Experiments
This chapter presents experiments we have conducted to evaluate the viability
of Bayesian optimization. All but the first of the experiments are examples of
optimizing neural networks, because that is the area of interest of this work.

In the first experiment we chose the Eggholder function [Vanaret et al., 2014],
commonly used to measure the performance of optimizers, and use it as an
additional baseline for comparison with random search. The Eggholder function
is an interesting optimization target, because it has only one global minimum, but
many local minima with an unpredictable landscape.

Next we present one experiment from reinforcement learning, specifically the
REINFORCE algorithm [Richard et al., 2018], as an example of a smaller and
simpler network. In this setting, we also compare Bayesian optimization with a
random search. Next we show a larger experiment where we train a recurrent
neural network [Goodfellow et al., 2016], specifically a tagger, on a SIGMORPHON
2019 shared task [SIG2019T2], where the network is trained on a significantly
larger dataset in multiple languages. Lastly, we show two more experiments, one
of a tokenizer written in C++, and second a network for speech recognition.

6.1 The Eggholder Function
As our first experiment, we evaluate the Eggholder function Vanaret et al. [2014]
due to its popularity as a test function for evaluating optimizer performance. A
visualization of the Eggholder function is presented in Figure 6.1.

Figure 6.1: The Eggholder objective function defined on (x , y) ∈ R2 analytically
as f (x, y) = -(y + 47) sin

√
|x
2 + (y + 47)| - x sin

√
|x - (y + 47)|. It has one global

minimum at (512, 404.23) with y = -959.64. When optimizing the function we
instead optimize -f (x , y) as our implementation always maximizes the objective.

We ran 50 repetitions of the experiment with Bayesian optimization and
random search each, and display the results in Figure 6.2. The average rank on
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Figure 6.2: A plot comparing the results of Bayesian optimization (blue) and
random search (red) when optimizing the Eggholder function.

the total 100 experiments is 25.5 for Bayesian optimization, and 75.5 for random
search.

While a toy example, this experiment shows a first evidence of Bayesian
optimization outperforming random search when optimizing a non-convex function.

6.2 REINFORCE
In order to evaluate the effectiveness of Bayesian optimization and compare it
to random search, we chose the REINFORCE algorithm on a simple task in
reinforcement learning, because the network is small and fast to train, but at the
same time sensitive to hyperparameters. The goal of the agent is to balance a
pole on top of a cart by moving either left or right, as shown in Figure 6.3. For
each time step when the pole has not fallen over the agent receives +1 reward, up
to a maximum of 500. Because an episode can end rather quickly when the agent
performs a few bad actions, some combinations of hyperparameters results in very
low values of the objective function (e.g., < 50). On the other hand, reaching the
perfect 500 reward is not very difficult after some exploration of the search space.
Out of our 60 different runs of the experiment, only one was not able to find the
perfect score in the allotted 50 evaluations of the objective function.

Overall, we repeated the experiment three times. Once purely with a random
search, once with a non-informative prior, and once with an informative prior,
where the mean was set to the mean of the hyperparameter range (per hyperpa-
rameter) and standard deviation to a quarter of the range. Each of these setups
was then executed 20 times, each with 50 evaluations of the objective function.
Because of the noisy aspect of reinforcement learning, we modified the objective
function so that instead of training and evaluating the network once, we trained
it yet another 20 times from scratch, evaluated each separately, and reported the
average objective achieved. Therefore, if the optimizer receives an objective value
of 500, then all 20 of the sub-evaluations managed to reach that score.

We show the numeric results in Table 6.1. The AUC column measures the
area under the convergence plot (see Figure 5.7), specifically the area under the
cumulative maximum. The value was then normalized so that it would be 1
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Figure 6.3: The objective of the task is to balance the pole on top of a cart moving
along a track. A failure occurs if the pole falls beyond a certain angle, and the
agent is rewarded +1 for every time step when the pole has not fallen over.

Optimizer AUC µtime to max σtime to max

Random Search 0.89 19.35 15.73
Non-informative Prior 0.91 12.75 10.73

Informative Prior 0.90 12.25 9.74

Table 6.1: Results of a random search and Bayesian optimization with a non-
informative and informative priors on the cart-pole balancing task.

exactly when a score of 500 was achieved on the first sample. We also report the
mean µtime to max and standard deviation σtime to max of the time (number of
evaluations) it take the optimizer to achieve the score of 500.

Intuitively, the µtime to max shows how fast the optimizer is able to find the
maximum of the objective function, and σtime to max measures its consistency.
The results clearly show that Bayesian optimization as compared to a random
search is almost twice as fast at finding the maximum, and also achieves lower
variance.

The informative prior also achieves slightly lower variance than the non-
informative one, which matches our intuition of guiding the GP regression model
into a more stable area of the kernel parameter space. We confirm this with a
kernel parameter visualization as shown in Figure 6.4, where we can clearly see
the parameters to be more stable, than in the case of non-informative priors as
shown in Figure 6.5.

As a side note, this experiment provided an interesting technical dilemma.
Evaluating noisy objective functions is an interesting problem from the practical
perspective. Even though the GP regression model is able to model noise in the
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Figure 6.4: Kernel parameters over time in the case of informative priors, where
the prior is set based on the hyperparameter range. Parameters almost never
rapidly change their value after the initial few samples.

Figure 6.5: Kernel parameters over time in the case of non-informative priors,
where the prior does not depend on the hyperparameter range. Some hyperparam-
eters do not stabilize over time and their scale changes by orders of magnitude.
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Figure 6.6: Marginal regression on the label smoothing and dropout hyperparame-
ters for the SIGMORPHON 2019 shared task when training on a single Czech
treebank. A correlation between the two parameters is clearly visible, showing
that setting only one of them to the correct value is not enough to achieve a high
value of the objective function.

objective function directly, it can only do so after it is given enough data points
which show the noisy trend. But in the context of Bayesian optimization we need
to use the model to make decisions about the next evaluation point, even when the
number of data points is low. We could run a larger number of evaluations using
random search initially, so that the GP could fit the noise in the data. Because of
some of the problems with overfitting shown earlier in Chapter 4, we chose not to
model the noise with the model directly, because that could lead to more potential
failure points. Instead, we took a practical approach and simply reduced the noise
by performing multiple (specifically 20) evaluations of the REINFORCE model
for each set of hyperparameters, and averaged the result. Since this method is a
Monte Carlo approximation of the true objective function, its variance decreases
as such (roughly as 1√

N
), the GP will be able to fit the objective function with

almost an order of magnitude lower noise parameter.

6.3 Tagger on a Single Treebank
Contrary to the experiment shown in Section 6.4 in this experiment we train
the same model but only on a single treebank at a time. We tried one of our
largest treebanks, specifically for the Czech language. We chose a larger treebank
because it provides a more consistent evaluation metric, with the smaller ones
being several orders of magnitude smaller, which may result in overfitting even on
the validation set.

While the next experiment (see Section 6.4) did not find any trends in the
hyperparameters, the one we present here did find a clear trend in most, as shown
for example in Figure 6.8, where larger batch size is better. In some cases we also

47



Figure 6.7: Convergence plot showing the process of Bayesian optimization with
a cumulative maximum shown in orange.

found clear relationships between two hyperparameters, such as in the case of
label smoothing and dropout shown in Figure 6.6.

The experiment used five parallel evaluations, the first of which were seeded
with random search. The baseline model achieved 97.4% accuracy, while the
random search achieved only 97.32%, and the remaining search with Bayesian
optimization surpassed the baseline with final 97.44% (see Figure 6.7).

6.4 Tuning on Multiple Treebanks Simultane-
ously

In this larger experiment we tried to tune hyperparameters for a single model
on multiple different datasets at once. Specifically, the model was trained for
the SIGMORPHON 2019 shared task 2 [SIG2019T2] on 105 different treebanks,
most of which are different languages.1 Our goal was to ideally find one set of
hyperparameters that would work well across all of these treebanks. Even though
this experiment was not ultimately successful, we still include it in the text as the
problem being solved poses interesting technical challenges from the perspective
of hyperparameter tuning.

As a fundamental problem of this task, each treebank is of different size, and
the difficulty of different languages varies a lot. To give a few specific examples,
on Tamil the model achieves around 95% accuracy in tagging, while on Sanskrit it
achieves only 65%. This makes it nearly impossible to set the objective function
to simply be the accuracy of the model, as the same value of hyperparameters
could result in the objective varying by 30%.

1The shared task training data consists of 107 treebanks, but we did not consider the two
largest in the Bayesian optimization for performance reasons.
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Figure 6.8: Marginal regression on the batch size, dropout and β2 hyperparameters
for the SIGMORPHON 2019 shared task when training on a single Czech treebank.
All three cases show a visible increasing trend.
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Figure 6.9: Convergence plot for a model trained on the SIGMORPHON 2019
shared task. No significant improvement over the baseline was found when training
on all 105 treebanks simultaneously.

We work around this problem by computing a baseline accuracy using an
existing, hand tuned, model on the same task, pre-computing its score for each
treebank with a fixed set of hyperparameters, and then subtracting its value from
the accuracy of our tuned model. The objective function then explicitly becomes
the improvement over an existing fixed model.

A second problem we had to solve was how to incorporate the 105 treebanks
into the optimization procedure. Because training the model takes multiple GPU
hours even for the smaller treebanks, we realistically cannot perform more than a
few hundred evaluations total. Instead of training the model on all treebanks for
each set of hyperparameters, we only train the model on one treebank for each
hyperparameter configuration chosen by Bayesian optimization.

This introduces an interesting choice. In theory, we could treat the treebank as
a hyperparameter treated explicitly by Bayesian optimization. As the algorithm
balances the exploration-exploitation trade-off, it should be able to pick treebanks
as needed to better explore the space. But because of the different sizes and
difficulties of each treebank, and the inability of Bayesian optimization to treat
categorical hyperparameters well, we decided to not take this approach.

Instead, we omit the treebank from the list of hyperparameters, so that the
optimizer has no way of modeling it, and provide it as an explicit parameter outside
of the scope of the optimizer. In theory, we could also provide the optimizer with
a treebank that was used with each evaluation, not allowing it to optimize the
treebank when choosing a next point by overriding its choice, but this approach
would most likely yield sub-optimal choices by the optimizer, as the samples would
be chosen based on a different criteria than what the optimizer considers. Instead,
our way of completely removing the treebank parameter from the optimization
process will be seen by the optimizer as noise on the output. If it were to evaluate
the same hyperparameters multiple times, the evaluation itself would receive a
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Figure 6.10: Marginal regression on the dropout hyperparameter for the SIGMOR-
PHON 2019 shared task when training on all 105 treebanks.

different treebank, and the improvement over the baseline would be different. In
effect this captures our desire to find a unique set of hyperparameters that works
well across all treebanks.

Unfortunately, our experimental results did not find a significant improvement
over the hyperparameters found by hand-tuning the network (see Figure 6.9).
One of the reasons is that the size of the treebank affects which hyperparameter
combinations result in value of the objective function. An example of using tuning
the same model on a larger treebank is shown in Section 6.3.

To give a specific example, when the batch size hyperparameter is set to a
larger value, it works well on a larger treebank, but the opposite is true for a
smaller treebank, where a smaller batch size acts as a regularizer. This means
our samples at the same batch size will be spread as far as is the objective on
all treebanks. Unfortunately, this spread ends up being so large that all of the
hyperparameter end up having no visible trend, as no value is clearly better than
the others, as shown in Figure 6.10.

We tried splitting the treebanks into two groups, one with the largest 25% and
one with the smallest 25% (based on number of words in the treebank). Then we
ran the same optimization procedure on the same hyperparameters, and confirmed
our earlier theory about smaller batch size working better for smaller treebanks
and vice versa. Figure 6.11 shows the marginal plot on the smaller treebanks,
while Figure 6.12 shows the same on larger treebanks.

While we did not find any improvement over the baseline on the larger tree-
banks, the smaller treebanks yielded a 3.56% increase over the baseline on the
Akkadian treebank. Unfortunately, that is the only treebank on which we managed
to improve over the baseline by more than 0.1%. This experiment shows how
noise can negatively affect the underlying probabilistic model, since training on
multiple larger treebanks did not yield any improvement, but training on a larger
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Figure 6.11: Marginal regression on the batch size hyperparameter when trained
on the smallest 25% treebanks.

treebank in isolation in the previous experiment did (see Section 6.3).
We also compare the convergence plots on both the smaller (see Figure 6.13)

and larger (see Figure 6.14) subsets of treebanks. The size difference between
the largest and smallest treebank is over three orders of magnitude, specifically
1, 207, 922 words for Czech and 230 words for Tagalog.
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Figure 6.12: Marginal regression on the batch size hyperparameter when trained
on the largest 25% treebanks.

Figure 6.13: Convergence plot when training on the smallest 25% treebanks,
showing maximum improvement of 4% accuracy over the baseline model.
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Figure 6.14: Convergence plot when training on the largest 25% treebanks with
no improvement over the baseline model.

Figure 6.15: GP regression overfitting on the marginal distribution of batch size.
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Figure 6.16: Convergence plot for the segmentation experiment showing the
progress of Bayesian optimization.

6.5 Segmentation
In this experiment we optimize hyperparameters of UDPipe [Straka and Straková,
2017] on tokenization of Czech.

Some of the interesting result in this case are the failure cases of the GP
regression, particularly how it can overfit on seemingly uninformative dataset, as
shown in Figure 6.15. These examples nicely show the high capacity of a GP,
which, even when we set informative priors, is able to find a surprising way to fit
the data with high likelihood. Despite these problems, the Bayesian optimization
approach still managed to find hyperparameter values with an objective very close
to that find by an exhaustive grid search. Because of the acquisition function,
even if the model overfits and picks a bad sample, it will be able to correct itself
right afterwards, as the area that was previously receiving high value of acquisition
function was explored.

As a result, the model still might end up wasting computation time by eval-
uating incorrect areas by overfitting on the data, but we have not observed it
to get stuck in a local optima. Because Bayesian optimization explicitly models
exploration into its decision making it quite often ends up doing a decent job of
exploring most of the search space, as is visible in all of the figures shown in this
chapter.

In this case the result tuned with Bayesian optimization did not surpass the
hand-tuned baseline, although an upward trend is visible in the convergence plot
shown in Figure 6.16. We intentionally limited the number of evaluations to 50 to
make comparisons with the hand-tuned baselines, because the goal of Bayesian
optimization is to find the optimum quickly.

We compare our achieved accuracy over 10 runs of Bayesian optimization with
10 runs of random search in Figure 6.17. The average rank is 5.5 for Bayesian
optimization, and 15.5 for random search. In Figure 6.18 we also compare the
same 10 runs of Bayesian optimization to 72 evaluations of grid search. Only one
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Figure 6.17: Comparison between Bayesian optimization (blue) and random search
(red) on 10 different runs of the segmentation experiment.

Figure 6.18: Comparison between Bayesian optimization (blue) and grid search
(red) on 10 different runs of Bayesian optimization versus 72 evaluations of grid
search.
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Figure 6.19: Marginal 2D regression on the high freq and input dropout hyperpa-
rameters. The range of the hyperparameters was coincidentally chosen so that
only values at the very edge end up with a low value of the objective function,
and are indifferent in most of the range.

of the grid search results managed to achieve a superior value of the objective
function, with the remaining values being significantly worse. The overall rank is
5.5 for Bayesian optimization, and 46.5 for grid search (out of total 82 evaluations).

Despite grid search achieving a maximum in one sample, we believe the overall
ranking shows how Bayesian optimization consistently out-performs grid search
using fewer evaluations.

6.6 Speech Recognition
In the last experiment we trained a speech recognition model on a single dataset.
The hyperparameters in this case are however not only the parameters of the
model itself, but of a pre-processing step that takes place right before the network
is trained, with the capacity of the model kept fixed. We only optimize the ones
that have a high chance of being influenced by the preprocessing without changing
the model capacity, such as batch size and dropout.

Figure 6.19 shows an example where we coincidentally chose the hyperparame-
ter ranges such that only the values at the very edge have some influence over the
objective function. If we were to set them only a little differently the regression
could end up showing no relationship between the two hyperparameters. Setting
the bounds on hyperparameters is an important but non-trivial effort. If we set
the bounds too large, we end up wasting lots of computation time, as the volume
of an n-dimensional hypercube grows exponentially. On the other hand, if we set
the bounds too tight, the optimizer might only find flat regions of the objective
function.

Similarly to the previous experiments the speech recognition model also has
a steady convergence curve as shown in Figure 6.20. The best achieved value of
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Figure 6.20: Convergence plot for the speech recognition experiment. The objective
is shown in negative numbers because it is set to the negative normalized edit
distance between the target and prediction, that is we are maximizing a negative
loss.

the objective function was -26.81, which surpassed the hand-tuned baseline model
achieving -30.2.

58



7. Conclusion
The goal of this thesis was to implement a practical tool for optimizing hyper-
parameters of neural networks using Bayesian optimization. We showed the
theoretical foundations of Bayesian optimization, including the necessary mathe-
matical background for Gaussian Process regression, and some of the extensions
to Bayesian optimization such as parallel evaluations, as well as an architectural
overview of our implementation. We also performed multiple experiments to
evaluate the performance on different neural network architectures and tasks.

In our comparison to a random search (see Section 6.2), Bayesian optimization
usually obtained a higher objective function value, and achieved lower variance
in repeated experiments. Furthermore, in three out of four experiments, the
hyperparameters discovered by Bayesian optimization outperformed the manually
designed ones. In the largest experiment, where we tried to train a network on
multiple different datasets at once (see Section 6.4), Bayesian optimization did
not improve over the baseline. We hypothesize that Bayesian optimization was
influenced by the introduced noise, and that the ability of directly modelling the
noise does not mean, that the model will be immune to the noise and the noise
will not affect its performance.

Furthermore, the underlying Gaussian Process regression offers a useful tool
for visualizing the effects of each hyperparameter on the fitness function.

7.1 Future Work
Bayesian optimization is a broad area of research with many possibilities to be tried.
In this thesis, we concentrated Gaussian processes as the probabilistic model of
the objective function, mainly for limit the scope of the work. Other probabilistic
models, like random forests, could be beneficial in the context of neural network
hyperparameter optimization, having the ability to naturally capture categorical
parameters, and perhaps blurring the lines between hyperparameter tuning and
architecture search.

In the context of a GP regression, we also restricted ourselves to simple
Gamma priors and point estimates for kernel parameter inference. Perhaps using
Hamiltonian Monte Carlo for full Bayesian posterior inference, as implemented
in GPy [since 2012], could alleviate some of our problems with unstable kernel
parameters.

A GP regression could be further improved to properly handle integer and
categorical variables (see Section 4.3), which even though would be useful in
practice, would most likely not affect the experiments we performed, given that
the scale of our integer hyperparameters (mainly batch size) was large.
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