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Abstract: A labeled embedding of a planar graph G is a pair (G, g) consisting
of a planar drawing G of G and a function g assigning labels (colors) to the faces
of G. We study the problem of Embedding Restriction Satisfiability (ERS) that
investigates whether a given graph has a labeled embedding satisfying a provided
set of conditions. ERS is a relatively new problem, so not much is known about
it. Nevertheless, it has great potential. It generalizes several problems looking for
a particular drawing of a planar graph, such as the problem of Partially Embedded
Planarity. Therefore, ERS may become a focal point in the area of graph drawing.
In this thesis, we examine the computational complexity of ERS. We show that
ERS is NP-complete. After that, we look at the complexity of some specific
classes of its instances. We try to locate the boundary between the NP-complete
and the polynomial variants of the problem.
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1. Introduction
The planar graphs belong among the most studied classes of graphs. After all,
one of the oldest challenges in graph theory is to recognize whether a given graph
is planar. This problem was addressed in 1930 by Kuratowski [14], who proved
that a graph is planar if and only if it does not contain a subdivision of the
complete graph K5 or the complete bipartite graph K3,3. Kuratowski’s charac-
terization of the planar graphs is a very interesting result from the point of view of
computational complexity. The forbidden subgraphs can be found in polynomial
time, therefore planarity testing is in the complexity class P. In fact, there are
even algorithms running in linear time. The first of them was proposed in 1974
by Hopcroft and Tarjan [10]. And in 2004 Boyer and Myrvold [2] published a lin-
ear algorithm, which not only tests planarity, but it also produces a certificate
supporting its decision. It either generates a planar embedding, or it provides
a subgraph which is a subdivision of K5 or K3,3.

Hence, we have an asymptotically optimal algorithm constructing a planar
embedding of a planar graph. However, some graphs have a huge amount of
planar embeddings. When we are drawing such a graph in practice, then we
often do not want to take the first embedding we are able to construct, but we
try to select one with good properties. For instance, imagine we are designing
a CPU and we know that there are several components producing a lot of heat.
Then, we would like to place these components far apart to avoid overheating
the processor. In general, we look for an embedding satisfying some additional
conditions. This type of problems is known as constrained planarity.

Arguably the most famous problem of this category is Clustered Planarity [5].
We are given a planar graph G and a hierarchy of clusters of vertices of G. The
goal is to find a planar embedding of G where for each cluster C there is a topo-
logical cycle γC separating the vertices of C from the others and crossing every
edge of G at most once. So for each cluster, its vertices are “close” to each
other. Even though the problem has been intensively studied since its introduc-
tion in 1995, we still do not know how hard it is. It is one of the candidates
for an NP-intermediate problem, i.e. a problem that is neither in the class P nor
NP-complete.

Another example is the Partially Embedded Planarity problem [1]. Here,
the input consists of a graph G, its subgraph H and a planar embedding H
of H. The task is to extend H into an embedding of G. The problem was
proposed by Angelini et al., who also published a linear-time algorithm solving
it. However, their algorithm is quite complicated. I studied this problem in my
bachelor thesis [11] and I found an alternative linear algorithm that is easier to
implement.

In the bachelor thesis, I came up with an object I called a labeled embedding
of a graph. It is formed by a planar embedding of the graph and a function as-
signing a label to each face of the embedding. Then, I defined a structure called
embedding restriction that puts constraints on labeled embeddings. It allows us
to select for each vertex a subset of its incident edges and fix their ordering in
the embedding. Next, it enables us to prescribe labels for incident faces of each
edge. And finally, we can mark some edges as transparent. A transparent edge
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must have the same label on both sides. This leads to a problem, called Em-
bedding Restriction Satisfiability (ERS), deciding whether a graph has a labeled
embedding satisfying a given embedding restriction.

Further, I showed that each instance of Partially Embedded Planarity can be
reduced in linear time into an instance of the new problem. These very specific
instances of ERS can be then solved in linear time. Nevertheless, this is so far
the only known result about the computational complexity of the ERS problem.

The goal of the thesis is to rectify the deficiency. We thoroughly investigate
the complexity of ERS. First, we show that the problem is NP-complete in general
setting. Later, we derive several variants of ERS by placing extra conditions on
the embedding restriction structure. Our intention is to find the boundaries where
the problem stops being NP-hard and where it becomes polynomial. We want to
narrow the gap between the polynomial and NP-complete instances as much as
possible.

The thesis has three chapters. The second chapter contains the formal def-
inition of Embedding Restriction Satisfiability including the reduction from the
Partially Embedded Planarity. Also, several useful data structures such as the
SPQR-trees are described there. The third chapter covers the NP-complete vari-
ants of the problem. Finally in the fourth chapter, we look at the instances that
can be solved in polynomial time.
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2. Preliminaries
In this chapter, we formally define the problem of Embedding Restriction Satisfi-
ability. We present several of its variations and investigate their mutual relations.
We also show a few interesting techniques allowing us to recognize some unsatisfi-
able instances. And finally, we describe the SPQR decomposition of biconnected
graphs, which plays a crucial role in the polynomial algorithms of chapter 4.

Before we get into action, we need to establish some notations and agree on
several conventions. If not mentioned otherwise, all the graphs in this thesis
are undirected multigraphs without self-loops. Let G be a graph, then V (G)
denotes the set of vertices of G and E(G) is the multiset of its edges. When we
write e = {u, v} for an edge e ∈ E(G), then we mean that the edge e connects
the vertices u and v, but there can still be more parallel edges between these two
vertices.

Despite the fact that we work with undirected graphs, it is sometimes useful to
consider the edges to be oriented. For instance, it enables us to easily distinguish
the two incident faces of an edge in a planar embedding. We can refer to the
left and right incident face. So for convenience, we presume that every edge
has a fixed default orientation. And if necessary, the default direction can be
overridden. For example, by putting e = (u, v) we force the orientation from u
to v.

2.1 Cyclic sequences
The cyclic sequences are arguably the most frequently used structure of the thesis.
For example, we need them to describe the ordering of incident edges for each
vertex in a planar embedding.

Definition 1. Let X be a set and n be a non-negative integer. Further, let .= be
the equivalence on the sequences of length n containing elements of X such that
(x0, x1, . . . , xn−1) .= (x′

0, x
′
1, . . . , x

′
n−1) iff there exists k ∈ {0, 1, . . . , k − 1} such

that for each i ∈ {0, 1, . . . , k − 1} xi = x′
((i+k) mod n). The cyclic sequences of X

of length n are the equivalence classes of .=. The members of an equivalence class
ϕ of .= are called the rotations of ϕ.

Definition 2. Let ϕ and ψ be two cyclic sequences. Then, ψ is a cyclic subse-
quence of ϕ if ψ can be derived from ϕ by removing some or no elements.

For instance, (a, t, a, l) is a cyclic subsequence of (a, l, p, h, a, b, e, t), but (l, a, l)
is not.

A typical problem we encounter is verifying that a cyclic sequence ψ is a sub-
sequence of a cyclic sequence ϕ. One possible approach is to open ϕ into a linear
sequence ϕlin and then test for each rotation of ψ whether it is a subsequence of
ϕlin. The time complexity of this algorithm is O(length(ψ) · length(ϕ)). However,
we can do better for some more specific cyclic sequences.

Definition 3. Let ϕ be a cyclic sequence of elements of a set Z and let X, Y
be non-empty disjoint subsets of Z. Then, ϕ is (X, Y )-crossing if there exist
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x, x′ ∈ X and y, y′ ∈ Y such that (x, y, x′, y′) is a subsequence of ϕ. If ϕ is not
(X, Y )-crossing, then we say that ϕ is (X, Y )-non-crossing. Further, if X = {x}
and Y = {y}, then we prefer the notation (x, y)-(non-)crossing.

It is possible to check that a cyclic sequence ϕ is (x, y)-crossing in linear time
with respect to the length of ϕ because the subsequence (x, y, x, y) has a constant
length. If we want to determine whether ϕ is (X, Y )-crossing for some disjoint
sets X and Y , then we can first make a copy ϕ′ of ϕ replacing all the elements
of X by x and the elements of Y by y for some x ∈ X, y ∈ Y , and then we just
test that ϕ′ is (x, y)-crossing.

We can even check in linear time that a cyclic sequence is (x, y)-non-crossing
simultaneously for all possible pairs of distinct x and y.

Algorithm 1: An algorithm [1] verifying that a cyclic sequence is (x, y)-
non-crossing for each pair of distinct elements x, y.

input : A cyclic sequence ϕ.
1 function test non crossing(ϕ):
2 foreach x in ϕ : total[x] ← 0 ; visited[x] ← 0 ;
3 foreach x in ϕ : total[x] += 1 ;
4 stack S;
5 foreach x in ϕ, starting arbitrarily, following the cyclic sequence ϕ :
6 visited[x] += 1;
7 if visited[x] = 1 : S.push(x);
8 else if S.top() ̸= x : return false, x and S.top() are crossing;
9 if visited[x] = total[x] : S.pop();

10 return true;

Lemma 4 (Angelini et al. [1], Lemma 4.9). Let ϕ be a cyclic sequence containing
elements of a set X. The function test non crossing(ϕ) verifies in linear time
with respect to the length of ϕ that ϕ is (x, y)-non-crossing for each pair of distinct
items x, y ∈ X.

The order in which the elements of ϕ are popped from the stack S in Algorithm
1 has interesting properties. For example, it allows us to test subsequences in
linear time.

Definition 5. Let X be a set and ϕ a cyclic sequence of elements of X such that
ϕ is (x, y)-non-crossing for each pair of distinct items x, y ∈ X. A sequence ψ
of elements of X is an elimination ordering of ϕ if there exists a computation of
the function test non crossing(ϕ) such that ψ is the order in which the items
are popped from the stack S.

Lemma 6. Let ψ be an elimination ordering of a cyclic sequence ϕ and let x be an
element of ψ. Next, let ϕ′ be the cyclic sequence obtained from ϕ by removing all
the elements preceding x in ψ. Then the occurrences of x in ϕ′ form a continuous
interval.

Lemma 7. If ϕ is a cyclic sequence that is (x, y)-non-crossing for each pair of
distinct x, y, then we can test whether a cyclic sequence ψ is a subsequence of ϕ
in time O(length(ϕ)).
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Algorithm 2: An algorithm verifying that a cyclic sequence ψ is a
subsequence of a cyclic sequence ϕ which is (x, y)-non-crossing for each
pair of distinct elements x, y.

input : A cyclic sequence ψ, and a cyclic sequence ϕ which is (x, y)-non-crossing for
each distinct x and y.

1 function NC subsequence(ψ,ϕ):
2 if ψ is empty : return true;
3 if ψ is longer than ϕ : return false;
4 foreach x in ψ do count[x] ← 0;
5 foreach x in ψ do count[x] += 1;
6 β ← an elimination ordering of ϕ;
7 foreach x in β, following the ordering do
8 if count[x] ≥ 1 :
9 if the elements x in ψ do not form one continuous interval : return false;

10 ϕlin ← open ϕ in the x-interval to a linear sequence while removing all
the occurrences of x;

11 ψlin ← open ψ in the x-interval to a linear sequence while removing all
the occurrences of x;

12 if ψlin is a subsequence of ϕlin : return true;
13 return false;
14 else remove all the occurrences of x from ϕ ;
15 return false;

Proof. The function NC subsequence(ψ, ϕ) returns true iff ψ is a subsequence of
ϕ. If ψ is a subsequence of ϕ, then the first element of the elimination ordering
β appearing also in ψ must form one continuous interval in ψ. So we can use
this element as a synchronizing point between ϕ and ψ and use the greedy linear
algorithm for testing subsequences of normal (non-cyclic) sequences.

Assuming that we can afford the array count indexed by the elements of ψ,
then the algorithm can be implemented in linear time w.r.t. the length of ϕ. We
just need to represent the cyclic sequences ϕ and ψ as bidirectionally linked lists
and remember for each x in ϕ (and ψ) a vector of pointers to the occurrences of
x in ϕ (and ψ).

2.2 Drawings and embeddings
Let G be a graph. A drawing of G is a mapping assigning a unique point pv of
the plane R2 to each vertex v ∈ V (G) and a continuous curve ce to each edge
e ∈ E(G), e = {u, v}, such that pu and pv are the endpoints of ce. A drawing of
G is planar if for every edge e ∈ E(G), e = {u, v}, the curve ce avoids the points
pw for w ∈ (V (G) \ {u, v}) and the curves representing the edges do not intersect
each other outside their endpoints. A graph G is planar if it has a planar drawing.

Even though the definition of planar drawings is quite intuitive, it has several
disadvantages. It is hard to represent drawings in a discrete world, especially the
continuous curves. Also, each planar graph has infinitely many planar drawings.
We can just shift some vertices and edges by a little getting a new planar drawing
that has the same structure as the original one. We resolve these issues by
introducing an equivalence on the planar drawing of G.
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Figure 2.1: A planar drawing with a highlighted face and its directed boundary
graph.

Figure 2.2: Two equivalent planar drawings of the same graph.

Let Γ be a planar drawing of G. The rotation scheme of a vertex v ∈ V (G)
in Γ is the cyclic counter-clockwise ordering of the curves representing the edges
incident to v around the point pv.

The planar drawing Γ of G divides the plane into connected regions, called the
faces of Γ. The boundary graph of a face f is the subgraph Bf of G such that Γ
projects the vertices and edges of Bf on the boundary of f . The edges of Bf lying
inside the face f are not present in any other boundary graph. The remaining
edges of Bf are contained in exactly two boundary graphs. By orienting the edges
of Bf not lying inside f in such a way that the face f is located on the left side
of them we produce the directed boundary graph of f .

Let G = (V,E) be a graph and G its planar embedding. We let FG denote
the set of faces of G, lG (e) the left incident face of an edge e ∈ E, rG (e) the right
incident face of e, and σG (v) the rotation scheme of a vertex v ∈ V . The rotation
schemes are oriented in the counter-clockwise direction.

We say that two planar drawings of G are equivalent if they have the same
rotation schemes and the same directed boundary graphs. A class of this equiv-
alence is called a (planar) embedding of G.

The planar embeddings are much easier to represent. Moreover, each (finite)
graph has only finitely many planar embeddings.

Boyer and Myrvold [2] introduced an algorithm constructing an embedding of
a graph G in time O(|V (G)|+ |E(G)|). The embedding can be further converted
to a planar drawing. For example, Chrobak and Payne [3] presented a linear time
algorithm producing planar drawings with the vertices mapped to grid points and
the edges realized by straight lines.

Let G be a planar embedding of G. Then we use the notation FG for the set
of faces of G and σˆ︁G(v) for the rotation scheme of a vertex v ∈ V (G) in G. Next,
lG(e) and rG(e) are respectively the left and the right incident face to an edge
e ∈ E(G). If not said otherwise, then we use the default orientation of the edge
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e.
Each planar embedding has a dual planar graph. The vertices of the dual are

the faces of the embedding and there is a one-to-one correspondence between the
edges of the dual and original.

Definition 8. Let G be an embedding of a graph G. Then a multigraph DG with
self-loops is the dual planar graph to G if V (DG) = FG, and {f, f ′} ∈ E(G)
iff there is an edge e′ in G such that in one of its two orientations lG(e′) = f ,
rG(e′) = f ′.

The dual planar graph is always connected because the plane is connected.
In our problem, we look for embeddings that have their faces tagged by some

labels. This object is formally characterized in the following definition.

Definition 9. Let G be a graph and L a set of labels. The labeled embedding
of G is a pair GL = (G, g) where G is a planar embedding of G and g : FG → L
is a face-labeling function. The face-labeling function g is connected if for every
ℓ ∈ L the set of faces g−1(ℓ) induces a connected subgraph of the dual planar graph
to G. We say that a labeled embedding is connected if its face-labeling function is
connected.

2.3 Embedding restrictions
In this section, we formally define the Embedding Restriction Satisfiability prob-
lem. We start with a structure that puts some constraints on a labeled embedding.

Definition 10. Let G be a graph and L a set of labels not containing a special
token ⋆. An embedding restriction of G is a quadruplet ˆ︂R =

(︂
σˆ︁R, lˆ︁R, rˆ︁R, Tˆ︁R)︂

where

(i) for each vertex v ∈ V (G) σˆ︁R (v) is a cyclic sequence of edges incident to v,

(ii) lˆ︁R, rˆ︁R : E(G)→ L∪{⋆} are functions prescribing labels for incident faces,

(iii) Tˆ︁R ⊆ E(G) is a set of transparent edges such that lˆ︁R (e) = rˆ︁R (e) for each
transparent edge e ∈ Tˆ︁R.

Token ⋆ acts as a “wildcard” that can stand for any label. If an edge is not
transparent, then it is opaque.

Sometimes for illustration, we need to display an embedding restriction in
a figure. In that case, we highlight the end sections of the edges anchored in
rotation schemes in red. We use dashed lines for the transparent edges and we
indicate the prescribed labels by capital letters.

Definition 11. A labeled embedding GL = (G, g) of a graph G satisfies an em-
bedding restriction ˆ︂R =

(︂
σˆ︁R, lˆ︁R, rˆ︁R, Tˆ︁R)︂

if the following conditions hold:

(i) The embedding G respects the rotation schemes σˆ︁R,
(∀v ∈ V (G)) σˆ︁R (v) is a subsequence of σG (v).

(ii) The labels assigned by g comply with the conditions prescribed by lˆ︁R and rˆ︁R,
(∀e ∈ E(G)) lˆ︁R(e) ∈ {⋆, g(lG(e))} and rˆ︁R(e) ∈ {⋆, g(rG(e))}.
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(iii) The transparent edges have the same label on both sides,(︂
∀e ∈ Tˆ︁R)︂

g(lG(e)) = g(rG(e)).

We distinguish two basic problems that look for a labeled embedding satisfying
an embedding restriction.

Problem 12 (Embedding Restriction Satisfiability (ERS)).
Input: A graph G, an embedding restriction ˆ︂R of G.
Question: Is there a labeled embedding GL of G which satisfies ˆ︂R?

Problem 13 (Embedding Restriction Connected Satisfiability (ERCS)).
Input: A graph G, an embedding restriction ˆ︂R of G.
Question: Is there a connected labeled embedding GL of G satisfying ˆ︂R?

Later in chapter 3, we show that both of them are NP-complete for general
embedding restrictions. However, we can place some additional constraints on
the embedding restrictions, that affects the complexity of the problems.

Definition 14. Let G be a graph and ˆ︂R an embedding restriction of G. We say
that ˆ︂R has

(i) labeled opaque edges if no opaque edge has prescribed the token ⋆ for its
incident edges,(︂
∀e ∈ (E(G) \ Tˆ︁R)

)︂
lˆ︁R(e) ̸= ⋆ ̸= rˆ︁R(e),

(ii) anchored borders if each edge e ∈ E(G), e = {u, v}, such that lˆ︁R(u, v) ̸=
rˆ︁R(u, v) appears in both σˆ︁R(u) and σˆ︁R(v).

2.4 Partially embedded planarity
The Partial Embedded Planarity problem addresses the question of whether a
planar embedding of a subgraph can be extended to an embedding of the entire
graph. It was introduced by Angelini et al. [1], who also presented a linear time
algorithm for the problem. However, the original algorithm was quite compli-
cated. There is a bit simpler linear algorithm [11] that inspired the creation of
the ERS problem. Actually, the second algorithm transforms its inputs into a
specific type of ERCS instances and then it solves them.

Definition 15. Let G be a graph and H its subgraph. Further, let G and H be
embeddings of G and H respectively. We say that G is an extension of H if H is
obtained from G by removing the vertices and edges that are not in H.

Problem 16 (Partially Embedded Planarity (PEP) [1]).
Input: A graph G, its subgraph H, a planar embedding H of H.
Question: Is there an embedding of G that is an extension of H?

Theorem 17 (Angelini et al. [1]). PEP can be solved in linear time.

Consider an instance PEP(G,H,H) such that H has no isolated vertices. We
describe how to construct an embedding restriction ˆ︂R of an equivalent ERCS
instance. First, we employ the same rotation schemes as H. For each vertex
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Figure 2.3: On the left, there is a PEP instance. The vertices and edges of H are
black and the remaining vertices and edges of G are gray. On the right, there is
an equivalent ERCS instance. Notice that the isolated vertex of H is replaced by
a path of length one.

v ∈ V (H) we put σˆ︁R(v) = σH(v) while leaving the rotation schemes of the vertices
not in H empty. Next, we use the faces of H as labels. For each edge e ∈ E(H)
we prescribe lˆ︁R(e) = lH(e) and rˆ︁R(e) = rH(e). All the remaining edges are
transparent and we do not specify their incident labels. So, Tˆ︁R = (E(G) \E(H))
and lˆ︁R(e) = rˆ︁R(e) = ⋆ for each edge e ∈ Tˆ︁R.

Lemma 18. PEP(G,H,H) accepts iff ERCS(G, ˆ︂R) accepts.

Proof. Let G be an embedding of G that is an extension of H and let g be the
face-labeling function assigning to each face f of G the face of H in which f is
located. Realize that (G, g) is a connected labeled embedding of G satisfying ˆ︂R.

For the second implication, let us assume that (G, g) is a connected labeled
embedding of G satisfying ˆ︂R. We want to show that G is an extension of H.
So, let H′ denote the embedding of H obtained from G by removing the vertices
and edges not in H. Apparently, the rotation schemes of H′ and H are identical,
because σˆ︁R(v) = σH(v) for each v ∈ V (H). Also,H′ andH have the same number
of faces. And since we removed only transparent edges while constructingH′, then
there is a bijection between the faces of H and H′ assigning to a face f of H the
face of H′ tagged by f . The corresponding faces of H and H′ have the same
directed boundary graphs. Thus, H and H′ must be identical embeddings, and
so G is an extension of H.

If the graph H has some isolated vertices, then we can add a new incident
edge to each such vertex, effectively replacing the isolated vertices in H by paths
of length one. The modified PEP instance is equivalent to the original one and
it allows us to apply Lemma 18.

Notice that the created embedding restriction ˆ︂R has labeled opaque edges
and anchored borders.
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2.5 Augmented embedding restrictions
An embedding restriction allows us to prescribe labels for incident faces of each
edge. But what if we want to enforce that there is a face incident to a vertex v
which is tagged by a label ℓ? We can achieve this by including labels in rotation
schemes.

First, we define the augmented rotation scheme of a labeled embedding that
also contains the labels of faces incident to a vertex.

Definition 19. Let G be a graph, GL = (G, g) its labeled embedding and v a
vertex of G. Further, let σG(v) = (e1, e2, . . . , ek) be the rotation scheme of v in
G. The augmented rotation scheme of v in GL is the cyclic sequence ρGL

(v) =
(e1, g(lG(e1)), e2, g(lG(e2)), . . . , ek, g(lG(ek))).

Notice that if GL = (G, g) is a connected labeled embedding, then the aug-
mented rotation scheme ρGL

(v) of a vertex v is (x, y)-non-crossing for each pair
of distinct x, y. The edges of G do not cause any problems, because each edge
incident to v appears exactly once in ρGL

(v). And if there are two labels x, y
such that ρGL

(v) contains the subsequence (x, y, x, y), then the sets of vertices
g−1(x) and g−1(y) could not simultaneously induce connected subgraphs of the
dual planar graph to G.

The following definitions are just variations of Definitions 10, 11 and Problems
12, 13.

Definition 20. Let G be a graph and L a set of labels not containing a spe-
cial token ⋆. An augmented embedding restriction of G is a quadruplet ˆ︁A =(︂
ρ ˆ︁A, l ˆ︁A, r ˆ︁A, T ˆ︁A)︂

where

(i) for each vertex v ∈ V (G) ρ ˆ︁A (v) is a cyclic sequence of edges incident to v
and labels of L such that there are not two consecutive occurrences of the
same label,

(ii) l ˆ︁A, r ˆ︁A : E(G)→ L∪{⋆} are functions prescribing labels for incident faces,

(iii) T ˆ︁A ⊆ E(G) is a set of transparent edges such that l ˆ︁A (e) = r ˆ︁A (e) for each
transparent edge e ∈ T ˆ︁A.

Definition 21. A labeled embedding GL = (G, g) of a graph G satisfies an aug-
mented embedding restriction ˆ︁A if the following conditions hold:

(i) The labeled embedding GL respects the rotation schemes ρ ˆ︁A:
(∀v ∈ V ) ρ ˆ︁A (v) is a cyclic subsequence of ρGL

(v).

(ii) The labels assigned by g comply with the conditions prescribed by l ˆ︁A and r ˆ︁A,
(∀e ∈ E) l ˆ︁A(e) ∈ {⋆, g(lG(e))} & r ˆ︁A(e) ∈ {⋆, g(rG(e))}.

(iii) The transparent edges have the same label on both sides,(︂
∀e ∈ T ˆ︁A)︂

g(lG(e)) = g(rG(e)).

Problem 22 (Augmented ERS (AERS)).
Input: A graph G, an augmented embedding restriction ˆ︁A of G.
Question: Is there a labeled embedding GL of G satisfying ˆ︁A?

12



Problem 23 (Augmented ERCS (AERCS)).
Input: A graph G, an augmented embedding restriction ˆ︁A of G.
Question: Is there a connected labeled embedding GL of G satisfying ˆ︁A?

The ER(C)S problem is just a special case of AER(C)S. Therefore, ER(C)S
instances can be straightforwardly reduced to AER(C)S instances. However,
there is also a reduction in the opposite direction.

Lemma 24. An AER(C)S instance can be converted to an equivalent ER(C)S
instance in polynomial time.

Proof. (sketch) Let ˆ︁A be an augmented embedding restriction of a graph G. We
construct a graph H and an embedding restriction ˆ︁S such that AER(C)S(G, ˆ︂R)
is satisfiable iff ER(C)S(H, ˆ︁S) is satisfiable. We begin with H equal to G and for
every vertex v we add a new edge for each occurrence of a label in ρ ˆ︁A(v). A new
substituting edge replacing label ℓ in ρ ˆ︁A(v) is incident to v and its second vertex
appears only in this edge. The embedding restriction ˆ︁S is derived from ˆ︁A by
replacing the labels in rotation schemes by the substituting edges and prescribing
corresponding labels for the incident faces of the substituting edges.

The three subsequent lemmata are simple observations about the AERS and
AERCS problems.

Lemma 25. Let G be a graph and ˆ︁A an augmented embedding restriction of
G. AERCS(G, ˆ︁A) can be satisfied only if ERCS(G, ˆ︂R) is satisfiable, where ˆ︂R
is the embedding restriction derived from ˆ︁A by omitting labels from the rotation
schemes.

Lemma 26. Let G be a graph and ˆ︁A an augmented embedding restriction of G.
If there is a vertex v ∈ V (G) and two distinct labels x, y such that (x, y, x, y) is
a cyclic subsequence of ρ ˆ︁A(v), then AERCS(G, ˆ︁A) cannot be satisfied.

Lemma 27. Let G be a graph, v and w vertices of G, e = (v, w) an edge of G, ℓ
a label and ˆ︁A an augmented embedding restriction of G such that l ˆ︁A(e) = ℓ and
ρ ˆ︁A(v) = (e, ℓ, τ), where τ is a sequence of labels and edges incident to v. Further,
let ρ′ = (e, τ) be a cyclic sequence and ˆ︁A′ is the augmented embedding restriction
of G derived from ˆ︁A by replacing ρ ˆ︁A(v) by ρ′. Then, a labeled embedding GL of
G satisfies ˆ︁A iff it satisfies ˆ︁A′.

Proof. The label ℓ is already enforced by the edge e, so it is not necessary to put
it in the rotation scheme of vertex v.

Remark. An analogous observation can be made for r ˆ︁A(e) = ℓ, ρ ˆ︁A(v) = (ℓ, e, τ)
and ρ′ = (e, τ).

2.6 Connectivity and SPQR-trees
Some algorithms of chapter 4 are based on the SPQR decomposition of bicon-
nected graphs. The decomposition is described by a data structure called SPQR-
tree. These trees were first introduced by Di Battista and Tamassia [4], who uti-
lized them to represent the set of all planar embeddings of a biconnected graph.
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Since then, SPQR-trees were applied in many algorithms processing biconnected
graphs. We define the SPQR-trees using the same notation as Gutwenger and
Mutzel [8], who showed how to construct SPQR-trees in linear time.

A graph G is connected if for every pair of vertices u, v ∈ V (G) there exists a
path between u and v. A maximal connected subgraph of G is called a component
of G. A connected graph is biconnected if for each triplet x, y, z of distinct vertices
there is a path from x to y avoiding z.

Let G be a biconnected graph and u, v ∈ V (G) a pair of its vertices. We can
decompose E into equivalence classes E1, . . . , Ek such that two edges are in the
same class iff they lie on a common trail not containing vertices u and v except
as endpoints. The first vertex of the trail might be equal to the last one. The
classes E1, . . . , Ek are called the separation classes of G with respect to {u, v}. If
there are at least two separation classes neither of them being a single edge, or
if there are at least three separation classes and one of them is not a single edge,
then we say that {u, v} is a separation pair of G.1 The graph G is triconnected
if it contains no separation pair.

We further define four special types of biconnected graphs.

Definition 28. Let G be a graph. We say that G is

(S) an S-skeleton if it is a cycle,

(P) a P-skeleton if it is a dipole graph, i.e. a graph with 2 vertices and at least
3 edges between them,

(Q) a Q-skeleton if it is a graph with 2 vertices and at most 2 edges between
them,

(R) an R-skeleton if it is a triconnected graph without multiple edges and it is
neither an S-skeleton nor a Q-skeleton.

When we want to cover more than one type of skeletons, we put all the relevant
types inside a pair of brackets. For example, a graph is an [SR]-skeleton, if it is
either an S-skeleton or an R-skeleton.

Lemma 29. A biconnected graph has a separation pair iff it is not a [PQR]-
skeleton or C3 (i.e. a cycle with 3 vertices).

Proof. [PQR]-skeletons and C3 do not have a separation pair.
Let G be a graph that is biconnected and it is not a [PQR]-skeleton or C3. G is

not a [PQ]-skeleton, so it has at least 3 vertices. If G has multiple edges between
a pair of vertices u and v, then {u, v} is a separation pair of G. Otherwise, G is
a biconnected graph without multiple edges and it is not C3, so it has at least 4
vertices. Since G is not an R-skeleton, then G is not triconnected. It means G
must have a separation pair.

Let {u, v} be a separation pair of G and let E1, . . . , Ek be separation classes
of G w.r.t. {u, v}. Further, let I ⊂ {1, . . . , k} be an index set. We partition the
edges of G according to I into two multisets EI = ⋃︁

i∈I Ei and E ′
I = (E \ EI). If

1Gutwenger and Mutzel [8] also consider {u, v} to be a separation pair if there are at least
4 separation classes and all of them consists of a single edge.

14



R

R

P
P

S S

S

Figure 2.4: An SPQR-tree of a biconnected graph. The virtual edges are dashed
and each pair of dual virtual edges is linked together by a gray arrow.

both EI and E ′
I contain at least two edges, then we say that the pair of graphs

H = (V (EI), EI ∪ (u, v)) and H ′ = (V (E ′
I), E ′

I ∪ (u, v)) is a pair of split graphs
of G with respect to {u, v}. The extra copies of edge (u, v) added to the H
and H ′ are called virtual edges. Let evirt

G (H) denote the virtual edge of H and
evirt

G (H ′) the virtual edge of H ′. We say that evirt
G (H ′) is the dual virtual edge to

evirt
G (H) and vice versa. Notice that the edges evirt

G (H) and evirt
G (H ′) have the

same default orientation and that both H and H ′ are biconnected. If EI or E ′
I

consists of just one separation class, then we say that the pair of split graphs
(H,H ′) is simple. It can be easily observed that there is at least one simple pair
of split graphs for each separation pair.

We can continue recursively splitting H and H ′ until they have no separation
pairs. This process yields an SPQR-tree of the graph G.

Formally, we start with the set of graphs N = {G} containing only the graph
G. While there is a graph G∗ in N that has a separation pair, we find a pair of
its split graphs (H∗, H

′
∗) and replace G∗ in N by H∗ and H ′

∗. From Lemma 29, it
follows that when this algorithm stops, all the graphs in N are [SPQR]-skeletons.
(And all the S-skeletons in N are isomorphic to C3.) The skeletons in N are
linked together by pairs of virtual edges created in the same splitting operation.
These links form a tree structure. Let A ⊆

(︂
N
2

)︂
be a set such that {G1, G2} ∈ A

iff there is a virtual edge e such that e is an edge of G1 and G2 contains the
dual virtual edge to e. The graph τ = (N,A) is an SPQR-tree of the graph G.
In order to easily differentiate between the vertices and edges of a graph and its
SPQR-tree, we refer to the vertices of an SPQR-tree as nodes and to the edges
as arcs.

The opposite operation to the splitting of a graph to a pair of split graphs is
called merging. If G1 and G2 are two nodes of an SPQR-tree τ = (N,A) such that
{G1, G2} ∈ A, then we can unite the graphs G1 and G2 leaving out the two dual
virtual edges while removing the arc {G1, G2} from A. It is a common practice
to merge P-skeletons with the same set of vertices and S-skeletons sharing a pair
of dual virtual edges.
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Theorem 30 (Gutwenger and Mutzel [8]). Each biconnected graph has an SPQR-
tree and it can be constructed in linear time.

Lemma 31. For every biconnected graph G that is not an [SPQR]-skeleton, there
exists a separation pair {u, v} and a simple pair of split graphs (H,H ′) w.r.t.
{u, v} such that H is an [SPR]-skeleton.

Proof. Let G be a biconnected graph that is not an [SPQR]-skeleton and let τ be
an SPQR-tree of G. If τ has a leaf µ which is an [SR]-skeleton, then we choose
{u, v} as the vertices of the virtual edge of µ, H as µ and H ′ as the merge of
the remaining nodes. (H consists of one separation class and the virtual edge.)
Otherwise, all the leaves of τ are P-skeletons. Let us root τ in an arbitrary node.
G is not a P-skeleton, so there must be a node ξ of τ that is not a P-skeleton
and all of its descendants are P-skeletons. Let e be a virtual edge of ξ that is not
the virtual edge connecting ξ to its parent node. We choose {u, v} as the vertices
of e, H as the merge of the nodes of the sub-tree connected to ξ via the virtual
edge e and H ′ as the merge of the remaining nodes. Then H is a P-skeleton and
{u, v} is not a separation pair of H ′, so H ′ consists of one separation class and
the virtual edge e.

2.7 Eulerian Circuits
Using several known results about Eulerian circuits, we can sometimes construct
a certificate demonstrating that an embedding restriction with labeled opaque
edges is unsatisfiable. An Eulerian circuit of a graph is a walk starting and
ending in the same vertex v ∈ V (G) that visits each edge exactly once. There is
a well-known criterion for recognizing graphs with an Eulerian circuit. A directed
graph G has an Eulerian circuit iff for each vertex v the number of edges coming
to v is equal to the number of edges leaving v and G has at most one component
that is not an isolated vertex.

Let ˆ︂R be an embedding restriction with labeled opaque edges of a graph G and
let GL be a labeled embedding of G satisfying ˆ︂R. If the two faces of GL incident
to an edge e ∈ E(G) are tagged by different labels, then these labels must be
prescribed by lˆ︁R(e) and rˆ︁R(e). Therefore, the restriction ˆ︂R determines which
labels neighbor with each other. For a vertex v ∈ V (G) we can even create a
directed graph characterizing the arrangement of labels tagging the faces incident
to v.

Definition 32. Let u be a vertex of the graph G and let

Eu = {(u, v) ∈ E(G) | lˆ︁R((u, v)) ̸= rˆ︁R((u,w))}

denote the set of border edges in ˆ︂R incident to u. The edges of Eu are oriented
from u outwards. We further define the set of labels incident to u and the multiset
of ordered pairs of adjacent labels as follows:

V u
L = {lˆ︁R(e) | e ∈ Eu} ∪ {rˆ︁R(e) | e ∈ Eu},
Eu

L = {(lˆ︁R(e), rˆ︁R(e)) | e ∈ Eu}.

The directed graph Gu
L = (V u

L , E
u
L) is called the label ordering graph of u in ˆ︂R.
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Figure 2.5: The border edges incident to a vertex u in an embedding restrictionˆ︂R and the corresponding label ordering graph of u in ˆ︂R.

Lemma 33. If G has a labeled embedding satisfying ˆ︂R, then for each vertex
u ∈ V (G) the label ordering graph of u in ˆ︂R has an Eulerian circuit.

Proof. Let (G, g) be a labeled embedding of G satisfying ˆ︂R. There is a natural
bijection between the edges of Eu and the edges of the label ordering graph Gu

L.
The order of the edges of Eu in the rotation scheme σˆ︁R(u) yields an Eulerian
circuit in Gu

L.

Further, if we look only for connected labeled embeddings, then we get a
stronger condition. There must be an Eulerian circuit ε such that no two labels
alternate in ε. It is forbidden that ε first visits a label ℓ1, then it walks through
another label ℓ2, it returns to ℓ1, and finally, it comes back to ℓ2.

Definition 34. We say that an Eulerian circuit ε of G has a crossing if there
exist two vertices u, v ∈ V (G) such that (u, v, u, v) is a subsequence of ε.

Lemma 35. If G has a connected labeled embedding satisfying ˆ︂R, then for each
vertex u ∈ V (G) the label ordering graph of u in ˆ︂R has an Eulerian circuit without
crossings.

Proof. We use the same construction as in Lemma 33. If there was a crossing of
labels ℓ1 and ℓ2, then at least one of these labels cannot from a connected region
in the satisfying embedding.

Surprisingly, it is not hard to test whether a graph has an Eulerian circuit
without crossings. We can take an arbitrary Eulerian circuit ε and check it for
crossings. The following lemma shows that ε has a crossing iff every Eulerian
circuit of G has a crossing.

Lemma 36. Let G be a directed graph with an Eulerian circuit. Then the fol-
lowing statements are equivalent.

(i) G has an Eulerian circuit with a crossing.

(ii) There exist two vertices u, v ∈ V (G), u ̸= v, such that there are two directed
edge-disjoint paths from u to v in G.

(iii) Every Eulerian circuit of G has a crossing.
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Proof. The implication from (iii) to (i) is trivial.
The implication from (i) to (ii) is also easy. If an Eulerian circuit has a crossing

of vertices x and y, then there are two edge-disjoint directed paths from x to y
in the circuit.

It remains to show that (ii) yields (iii). Let us suppose that there are two
directed edge-disjoint paths p1 and p2 from u to v and let ε be an Eulerian circuit
of G. We show that ε has a crossing.

The circuit ε must visit both u and v at least twice. If ε has a crossing of u
and v then we are done. Otherwise, there is an occurrence of the vertex u in ε
such that starting from its position ε leaves u, then it does all its visits of v while
avoiding u, and then it returns to u. Without loss of generality, let us assume
that after leaving u the circuit ε uses the last edge of p1 sooner than the last edge
of p2. We partition the circuit ε into three trails α, β and γ the following way. α
starts in u, does not return there and it ends by the first visit of v. β starts with
the first visit of v and it ends with arriving in v through the last edge of p2. γ
covers the rest. Let w be the vertex on p2 such that all the edges of p2 beyond
w are on the trail β and the edge of p2 leading to w is not on β. The vertex w is
well defined, since the last edge of p2 is in β and the first edge of p2 is not there
(β avoids u). Then, the circuit ε contains a crossing of v and w.
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3. NP-complete problems
This chapter contains the hardness results about ERS and some related problems.
We prove that both ERS and ERCS in general settings are NP-complete. Later,
we inspect ERS for embedding restrictions with labeled opaque edges. Finally,
we show that even if we get a planar embedding G satisfying the rotation schemes
of an embedding restriction ˆ︂R, it is still hard to find a connected face-labeling
function g such that the labeled embedding (G, g) satisfies ˆ︂R.

But first, we present three NP-complete problems that are used to prove the
NP-hardness of our problems. Two of them are variants of the Planar 3-SAT
problem and the last one is a planar version of the Vertex-disjoint paths problem.

Definition 37. Let ϕ be a Boolean formula in 3-CNF, C the set of clauses of
ϕ and X = {x1, . . . , xn} the set of variables of ϕ. Further, let EC = {{x, c} |
x ∈ c or ¬x ∈ c, for x ∈ X, c ∈ C} be the set of edges linking each clause to its
variables, and let EX = {{x1, x2}, {x2, x3}, . . . , {xn, x1}} be the cycle on the set
of variables. Then, the graph Gs(ϕ) = (C∪X,EC) is called the simple associated
graph of ϕ and the graph G(ϕ) = (C ∪X,EC ∪EX) is the associated graph of ϕ.

Problem 38 (Simple Planar 3-SAT).
Input: A formula ϕ in 3-CNF, a planar embedding of its simple associated graph
Gs(ϕ).
Question: Is ϕ satisfiable?

Problem 39 (Separable Planar 3-SAT [15]).
Input: A formula ϕ in 3-CNF, a planar embedding Gϕ of its associated graph G(ϕ)
such that for each variable x the edges representing occurrences of the positive
literal x are separated from the edges representing the negative literal ¬x by the
edges of the cycle EX .
Question: Is ϕ satisfiable?

Theorem 40 (Lichtenstein [15]). Simple Planar 3-SAT and Separable Planar
3-SAT are NP-complete.

Problem 41 (Planar vertex-disjoint paths problem).
Input: A planar graph G = (V, S ∪D).
Question: Are there vertex-disjoint circuits C1, . . . , C|D| such that |E(Ci) ∩D| = 1
for each i ∈ {1, . . . , |D|}?

Theorem 42 (Middendorf and Pfeiffer [16]). The planar vertex-disjoint paths
problem is NP-complete.

3.1 ERS and ERCS
Theorem 43. Both ERS and ERCS are NP-complete.

Proof. Both ERS and ERCS are in NP. A labeled embedding of a graph G has
polynomial size w.r.t. G, so we can generate a satisfying embedding using a non-
deterministic algorithm, and verify its validity in polynomial time.
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Figure 3.1: The associated graph of the Boolean formula
ϕ(x1, x2, x3, x4) = (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ ¬x4).

It remains to prove that ERS and ERCS are NP-hard. We show a reduction
of Separable Planar 3-SAT (Problem 39) working simultaneously for both ERS
and ERCS.

Let ϕ be a formula in 3-CNF with variables {x1, . . . , xn} and Gϕ an embedding
of its associated graph G(ϕ) such that for each variable the edges to positive
literals are separated from edges to negative literals by the edges of the cycle
EX = {{x1, x2}, . . . , {xn, x1}}. Without loss of generality, we suppose that each
clause of ϕ has at least two literals. We describe how to construct a graph H and
an embedding restriction ˆ︂R such that H has a (connected) labeled embedding
satisfying ˆ︂R iff ϕ is satisfiable.

Let T be a label representing the value true and let F1, . . . , Fn be labels
representing the value false.

The idea behind the reduction is that we widen the edges of Gϕ. We replace
vertices in Gϕ by polygons where the number of sides of each polygon is equal
to the degree of the corresponding vertex. The edges of Gϕ are then realized
as corridors connecting these polygons. For every i ∈ {1, . . . n} the polygon Vi

representing the variable xi is further split into two faces Pi, Ni in such a way
that Pi is adjacent to the corridors leading to the clauses containing the positive
literal xi and Ni is adjacent to the corridors to the clauses containing the negative
literal ¬xi. The partition between the faces Pi and Ni connects the corridors of
the edges of the cycle EX . The embedding restriction ˆ︂R then enforces that one of
the faces is assigned the label T and the second face is tagged by Fi. However, it
does not specify which of the two faces has to be labeled by T . Both choices are
possible. The labeling of Pi by T corresponds to the assignment xi = 1 and the
tagging of Ni by T means xi = 0. Furthermore, the edges of Vi are transparent
in ˆ︂R, so that the labels assigned to the faces of Vi travels through the corridors
towards the clauses. The embedding restriction ˆ︂R then requires that for each
polygon representing a clause at least one of the incoming corridors is labeled
by T . It guarantees that the assignment given by the labeling of Pi, Ni for each
i ∈ {1, . . . , n} satisfies all the clauses.

Now, let us describe the reduction in more detail. The construction is illus-
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Figure 3.2: On the left, there is the structure representing a variable xi. In this
setting xi is assigned the value false. The structure on the right implements a
clause cj = (xa ∨ xb ∨ xc). In this setting the clause cj is satisfied by xa.

trated in Figure 3.2. Unless otherwise noted, the edges of H are opaque in ˆ︂R,
they have prescribed the token ⋆ for their incident faces and they are anchored
in the rotation schemes of their vertices. The rotation schemes of ˆ︂R are not
explicitly stated, however, they can be inferred from Figure 3.2.

Let xi be a variable that appears in k clauses as the positive literal xi and
in ℓ clauses as the negative literal ¬xi. Without loss of generality, let us assume
that the edges in the rotation scheme σGϕ(xi) are listed in the following order:
the edge to xi+1, the edges to clauses c1, . . . , ck where xi appears as the positive
literal, the edge to xi−1, the edges to clauses c′

1, . . . , c
′
ℓ where xi appears as the

negative literal. In the graph H we represent xi as the (k + ℓ + 2)-gon Vi with
vertices p0

i , p
1
i , . . . , p

k
i , n

0
i , n

1
i , . . . , n

ℓ
i . The edges {p0

i , p
1
i }, . . . , {pk

i , n
0
i }, . . . {nℓ

i , p
0
i }

are transparent in ˆ︂R.
Vi is connected to Vi+1 by a pair of edges. One of the edges is incident to

nℓ
i and the second is incident to p0

i . For j ∈ {1, . . . , k}, the connection to the
clause cj is realized by a pair of edges incident to pj−1

i and pj
i . Similarly, for

j ∈ {1, . . . , ℓ} the connection to c′
j is done by two edges incident to nj−1

i and nj
i .

The partition of Vi into faces Pi, Ni is accomplished by three vertices ai, bi, ci

and the edges {n0
i , bi}, {pk

i , bi}, {bi, ci}, {ci, ai}, {ai, p
0
i }, {ai, n

ℓ
i}. Pi is the face con-

taining vertices p0
i , . . . , p

k
i , bi, ci, ai andNi is the face containing n0

i , . . . , n
ℓ
i , ai, ci, bi.

The assignment of the labels T and Fi to the the faces Pi, Ni is done by the ad-
dition of two vertices ti, fi and two edges et

i = {ci, ti}, ef
i = {ci, fi} such that

et
i, e

f
i do not appear in the rotation scheme σˆ︁R(ci) and they have prescribed the

labels T and Fi for their incident faces, respectively. (I.e. lˆ︁R(et
i) = rˆ︁R(et

i) = T ,
lˆ︁R(ef

i ) = rˆ︁R(ef
i ) = Fi.) Notice that Vi alone has two possible labeled embeddings

satisfying ˆ︂R that differs only in the placement of the edges et
i, e

f
i .

Let cj be a clause of ϕ with h literals. Further, let x1
j , . . . , x

h
j denote the

literals of cj in the order in which they appear in the rotation scheme σGϕ(cj).
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The clause cj is then represented in H as an h-gon Cj with vertices o1
j , . . . , o

h
j .

The edges {o1
j , o

2
j}, . . . , {oh

j , o
1
j} are transparent in ˆ︂R.

For each i ∈ {1, . . . , h}, Cj is connected to the polygon representing the
variable of the literal xi

j by a pair of edges incident to vertices oi−1
j and oi

j.
Next, Cj contains a central vertex mj that is adjacent to o1

j , . . . , o
k
j . In order

to ensure that the vertex mj is incident to a face labeled by T , we add one
vertex sj and one edge es

j = {mj, sj} such that es
j does not appear in σˆ︁R(mj) and

lˆ︁R(ej) = rˆ︁R(es
j) = T .

If ϕ has a satisfying assignment ξ then we can construct a connected labeled
embedding of H satisfying ˆ︂R. For i ∈ {1, . . . , n}, if ξ assigns xi = 1 then we
put the edge et

i inside the face Pi, ef
i inside Ni, plus we label Pi by T and Ni

by Fi. Else if xi = 0 in ξ then we put et
i in Ni, ef

i in Pi, labeling Ni by T and
Pi by Fi. Since ξ is a satisfying assignment, then for each clause cj there is at
least one literal satisfying cj. Therefore, we can embed the edge es

j inside a face
belonging to a satisfying literal. Further, we label the faces ai, n

ℓ
i , p

0
i and bi, p

k
i , n

0
i

by T . We spread the assigned labels through the transparent edges. Finally, we
assign a new unique label to each face that is still unlabeled. The created labeled
embedding is connected and it satisfies ˆ︂R.

If H has a labeled embedding satisfying ˆ︂R, then for every i ∈ {1, . . . , n} it
labels one of the faces Pi, Ni by T and the other by Fi. From these labelings, we
derive an assignment ξ of variables of ϕ. We set xi = 1 in ξ iff Pi is labeled by T .
The labels of Pi and Ni travel through the transparent edges towards the clauses
and for each clause cj the edge es

j is embedded in a face tagged by T . Therefore,
the assignment ξ satisfies all the clauses of ϕ.

It is easy to observe that if ERCS(H, ˆ︂R) is satisfiable, then ERS(H, ˆ︂R) is also
satisfiable. Therefore, we showed that ϕ has a satisfying assignment if and only
if ERCS(H, ˆ︂R) is satisfiable and it happens if and only if ERS(H, ˆ︂R) satisfiable.
Moreover, the graph H and the embedding restriction ˆ︂R can be constructed in
polynomial time w.r.t. the length of ϕ, so both ERS and ERCS are NP-hard.

Notice that the construction of H and ˆ︂R would work even if we omitted
the transparent edges. In addition, the embedding restriction ˆ︂R has anchored
borders.

Corollary 44. ERS and ERCS are NP-complete even for embedding restrictions
without transparent edges and with anchored borders.

3.2 ERS with labeled opaque edges
Theorem 45. ERS for embedding restrictions with labeled opaque edges is NP-
complete.

Proof. The problem is in NP. We can use the same argument as in Theorem 43.
We describe a reduction from Simple Planar 3-SAT (Problem 38) to ERS

with labeled opaque edges. Let ϕ be a formula in 3-CNF and Gϕ an embedding
of its simple associated graph Gs(ϕ). We construct a graph H and an embedding
restriction ˆ︂R with labeled opaque edges such that ϕ is satisfiable iff H has a
labeled embedding satisfying ˆ︂R.
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Figure 3.3: On the left, there is the negative embedding of the transporter graph.
On the right, there is the negative embedding of the negator.

The embedding restriction ˆ︂R uses three labels A, B and O. All the edges of H
are opaque in ˆ︂R and they have prescribed labels for their incident faces. Thus, ˆ︂R
has labeled opaque edges. Unless otherwise noted, the edges of H are not listed
in rotation schemes and they have prescribed the label O for their incident faces.

Let ℓ be a label. Then an ℓ-pocket is a graph with two vertices u, v and two
edges el = (u, v), er = (u, v) such that lˆ︁R(el) = rˆ︁R(er) = ℓ and rˆ︁R(el) = lˆ︁R(er) =
O.

The basic building block of the construction is the transporter graph which is
illustrated in Figure 3.3. Its purpose is to transport the assignment of a variable
to a clause containing the variable. It has 2 important vertices the source s, that
corresponds to the variable, and the target t corresponding to the clause. Except
for s and t, the transporter has 7 additional vertices c, sa, sb, ta, tb, ca, cb and it
consists of:

(i) the spine formed by edges {s, c}, {c, t},

(ii) two A-pockets on vertices s, sa and t, ta,

(iii) two B-pockets on vertices s, sb and t, tb,

(iv) two ribs {{ca, sa}, {ca, tb}, {ca, c}} and {{cb, sb}, {cb, ta}, {cb, c}}.

The transporter has two possible labeled embeddings satisfying ˆ︂R. Both of them
are characterized by the rotation scheme σ(s) of the vertex s. The labeled embed-
ding where σ(s) contains the A-pocket, the spine and the B-pocket in this order
is called the positive embedding. The other embedding (σ(s) = (the B-pocket,
the spine, the A-pocket)) is called the negative embedding.

The negator is a variation of the transporter that contains the edges {ca, ta},
{cb, tb} instead of {ca, tb}, {cb, ta}.

The idea of the reduction is that we take the embedding Gϕ and we replace
its edges by transporters. An edge corresponding to an occurrence of a positive
literal is replaced by the transporter and the edge signifying a negative literal
is replaced by the negator. We place the transporters in such a way that the
variable vertex is always the source. Next, we ensure that for each variable
vertex either all of the incident transporters have the positive embedding, or all
of them have the negative one. And for each clause, we require that at least one
of the transporters brings a satisfying assignment. I.e. for each clause c there is a
transporter T such that in the rotation scheme of c the A-pocket of T , the spine
of T and the B-pocket of T are listed in this order.
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Figure 3.4: The surroundings of a vertex representing a variable x that appears
in 4 clauses. On the left, there is the positive labeled embedding corresponding
to x = 1. On the right, there is the negative embedding corresponding to x = 0.

We have to slightly modify the graph Gs(ϕ) and its embedding Gϕ. Into each
face of Gϕ we add a new ground vertex. And for each clause c′ of ϕ with k′

literals we add k′ edges from c′ to the ground vertices of the incident faces. We
add the edges in such a way that the edges to variables of c′ and the edges to the
ground vertices alternate regularly in the rotation scheme of c′. (It is possible
that multiple edges lead from c′ to the same ground vertex.) Let G∗

s(ϕ) be the
new graph containing the ground vertices and their connections to clauses and
let G∗

ϕ be its embedding.
Now, we can replace the edges between variables and clauses by transporters

in G∗
s(ϕ), as mentioned earlier. We do not substitute for the edges leading to the

ground vertices. The edges to the ground vertices ensure that in every labeled
embedding satisfying ˆ︂R there is no pair of transporters such that one is nested
inside the other one. (I.e. in the rotation scheme of a variable or a clause any two
transporters T1, T2 are ordered as follows: a pocket of T1, the spine of T1, the
second pocket of T1, a pocket of T2, the spine of T2, the second pocket of T2.)

Let x be a variable of ϕ that appears in k clauses. Let c1, . . . , ck be the
order of the clauses containing x in the rotation scheme σG∗

ϕ
(x). To synchronize

the embeddings of the transporters incident to x, we add k new edges e1 =
(x, y1), . . . , ek = (x, yk) such that lˆ︁R(ej) = rˆ︁R(ej) = A for each j ∈ {1, . . . , k}. In
addition, we prescribe the rotation scheme σˆ︁R(x) = (s1, e1, s2, e2, . . . , sk, ek) where
sj is the spine of the transporter connecting x and cj for each j ∈ {1, . . . , k}.

Notice that if the transporter to the clause cj has the positive embedding,
then the transporter to cj+1 must have the positive embedding as well. And
if the transporter to cj has the negative embedding, then the transporter to
cj−1 has also the negative embedding. From these observations, it follows that
there are two possible labeled embeddings of the edges incident to x satisfyingˆ︂R. In the first one, all the incident transporters have the positive embedding.
This embedding corresponds to the assignment x = 1. In the second one, all
the transporters have the negative embedding and it represents the assignment
x = 0. Both the situations are portrayed in Figure 3.4.
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Figure 3.5: The surroundings of a vertex representing the clause (xa ∨ xb ∨¬xc).
In this labeled embedding the clause was satisfied by literal xa.

Let d be a clause containing ℓ literals and let (x1
d, g1, x

2
d, g2, . . . x

ℓ
d, gℓ) be the

order of vertices adjacent to d in the rotation scheme σG∗
ϕ
(d) where g1, . . . gℓ are

ground vertices. We add ℓ new edges e′
1 = (d, z1), . . . , e′

ℓ = (d, zℓ) such that
lˆ︁R(e′

i) = rˆ︁R(e′
i) = A for each i ∈ {1, . . . , ℓ}. Further, we add (ℓ − 1) new

A-pockets with vertices {d, w1}, . . . , {d, wℓ−1}. And finally, we set the rotation
scheme σˆ︁R(d) = (e′

1, s
′
1, g

′
1, e

′
2, s

′
2, g

′
2, . . . , e

′
ℓ, s

′
ℓ, g

′
ℓ) where for each i ∈ {1, . . . , ℓ} s′

i

is the spine of the transporter to xi
d and g′

i is the ground edge to gi. The situation
is illustrated in Figure 3.5.

Observe that in a labeled embedding satisfying ˆ︂R the edge e′
i must be either

in the A-pocket of the transporter from variable xi
d to d or in one of the (ℓ − 1)

newly added A-pockets. However, there are only (ℓ − 1) of these new pockets,
so at least one of the edges must end up in the A-pocket of a transporter. And
since the A-pocket precedes the spine of the transporter in the rotation scheme
of d then the transporter brings a satisfying assignment to d.

If the graph H has a labeled embedding satisfying ˆ︂R, then following Figure
3.4 we can interpret the embeddings of edges incident to the variable vertices as
an assignment ξ of ϕ. And from the previous observation, we get that each clause
of ϕ is satisfied by ξ.

On the other side, if ϕ has a satisfying assignment ξ then we can embed the
variables according to Figure 3.4. And since ξ is satisfying, then for every clause
c we have a literal x∗

c satisfying c. Therefore, the A pocket of the transporter
from x∗

c to c precedes its spine in the rotation scheme of c. We put the edge e′
∗

corresponding to the literal x∗
c in c into this A-pocket and we embed the remaining

e′ edges into the newly added A-pockets. The resulting labeled embedding of H
satisfies ˆ︂R.

The construction of Theorem 45 produces ERS instances with connected
graphs, but not biconnected.

Open problem 46. Is ERS for instances with labeled opaque edges and bicon-
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nected graphs also NP-complete?

3.3 Existence of a connected face-labeling
Theorem 47. Let G be a planar embedding of a graph G and let ˆ︂R be an embed-
ding restriction of G. Then, it is NP-complete to decide whether there exists a
connected face-labeling function g such that the connected labeled embedding (G, g)
satisfies ˆ︂R.
Proof. The problem is a member of the NP complexity class. Let FG be the set
of faces of G. Apparently |FG| is polynomial w.r.t. the size of G. It makes sense
to consider only face-labeling functions assigning labels from the set A, where
A consists of the labels of ˆ︂R and |FG| new labels not appearing in ˆ︂R. Thus in
polynomial time, we can generate a satisfying face-labeling function g using a
non-deterministic algorithm, and then verify that (G, g) satisfies ˆ︂R.

We describe a reduction from the planar vertex-disjoint paths problem (Prob-
lem 41). Let H = (VH , S ∪D) be an instance of the planar vertex-disjoint paths
problem where D is the set of pairs of vertices that we want to connect by vertex-
disjoint paths in the graph H ′ = (VH , S). We construct a graph G, an embedding
G of G and an embedding restriction ˆ︂R such that the instance H is satisfiable iff
there exists a connected face-labeling function g such that the connected labeled
embedding (G, g) satisfies ˆ︂R.

H ′ is a planar graph because it is a subgraph of H. Let H′ be a planar
embedding of H ′ and let (H′, h) be a labeled embedding of H ′ that assigns a
unique label to each face of H′. Further, let d1, . . . , d|D| be the members of the
set D and let V (D) denote the set of vertices of the edges of D. We can assume
that the edges of D are disjoint (i.e. there are not two edges in D sharing a vertex).
Otherwise the instance H is trivially unsatisfiable. We introduce |D| new distinct
labels ℓ1, . . . , ℓ|D| that are also distinct from the range of the face-labeling function
h.

We create the graph G and its embedding G from H′ by widening its edges.
We replace every vertex of H ′ by a polygon such that the number of sides of the
polygon is equal to the degree of the replaced vertex. The edges are then replaced
by corridors connecting the corresponding polygons in such a way that for each
vertex v ∈ VH the cyclic order of the corridors leaving the polygon of v is the
same as the order of their corresponding edges in the rotation scheme σH′(v).

Next, we construct the embedding restriction ˆ︂R. All the edges of G are opaque
in ˆ︂R and they are listed in the rotation schemes of both of their vertices. We just
need to determine the labels of the incident faces for the edges of G. For each
face f of G we prescribe the same label to all the edges incident to f . If the face
f is incident to an edge e from the left side, then we set lˆ︁R(e), and if it is incident
from the right side, then we set rˆ︁R(e). Observe that the face f corresponds either
to a face of H′, or to a vertex of H ′, or to an edge of H ′.
(a) If f corresponds to a face fh of H′, then we prescribe for f the label h(fh).

(b) If f corresponds to an edge of H ′, then we use the token ⋆.

(c) If f corresponds to a vertex v ∈ V (H ′) and v ̸∈ V (D), then we again prescribe
the token ⋆.

26



A A

B

B

C

C

O1

O2

O3

O4

O5

Figure 3.6: An instance of the planar vertex-disjoint paths problem and an equiv-
alent instance of the connected face-labeling problem. The pairs of vertices that
should be connected are linked together by color arrows.

(d) If f corresponds to a vertex v such that v ∈ di for some i, then we use the
label ℓi.

If the instance H is satisfiable, then we can take the set of vertex-disjoint
paths {P1, . . . , P|D|} connecting the pairs of vertices d1, . . . , d|D| and for each
i ∈ {1, . . . , |D|} we can label the faces of G corresponding to Pi by the label ℓi.
Each of the remaining faces of G that are not prescribed in ˆ︂R can be labeled by
a new unique label. The described face-labeling is connected and it satisfies ˆ︂R.

If there exists a connected face-labeling function g such that (G, g) satisfiesˆ︂R, then for each i ∈ {1, . . . , |D|} we can construct a path Pi connecting the
vertices of di from the faces of G labeled by the label ℓi. The constructed paths
P1, . . . , P|D| are vertex-disjoint.

The described construction can be done in polynomial time with respect to
the size of the instance H, so the problem is NP-hard.
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4. Polynomial algorithms
In this chapter, we present a polynomial algorithm solving the ERCS instances
with labeled opaque edges. In addition, we improve the algorithm to run in linear
time for the instances that have not only labeled opaque edges but also anchored
borders.

The algorithm is derived in several stages. First, we focus on the SPQR-
skeletons and biconnected graphs. After that, we look at the AERCS problem
for biconnected graphs. And finally, we show how to process connected and
disconnected graphs.

As we proved in the previous chapter, it is NP-hard to find a satisfying con-
nected face-labeling function for a given planar embedding and an embedding
restriction. However, this is not the case for the instances with labeled opaque
edges.
Lemma 48. Let G be an embedding of a graph G and let ˆ︂R be an embedding
restriction of G. Then the following statements hold.

(i) We can decide in time O(|V (G)| + |E(G)|) whether there exists a face-
labeling function g such that the labeled embedding GL = (G, g) satisfies ˆ︂R.

(ii) If ˆ︂R has labeled opaque edges then we can decide in time O(|V (G)|+|E(G)|)
whether there exists a connected face-labeling function g such that the labeled
embedding GL = (G, g) satisfies ˆ︂R.

Proof. (i) The condition (i) of Definition 11 depends only on the embedding G
and it can be checked in linear time. Next, let Go =

(︂
V (G), E(G) \ Tˆ︁R)︂

be the
subgraph of G containing all the opaque edges and let Go be the planar embedding
of Go obtained by restricting G to Go. Each face of Go consists of several faces of
G inducing a connected subgraph of the dual planar graph to G. A face-labeling
function g satisfies the condition (iii) of Definition 11 iff for each face f of Go it
assigns the same label to all the faces of G that are contained in f . Therefore, it
is enough to check that there is no face of Go that has prescribed two different
labels in ˆ︂R. And this can be done in linear time.

(ii) If ˆ︂R has labeled opaque edges and E(G) ̸= Tˆ︁R, then every face of Go

has at least one prescribed label in ˆ︂R. Thus, there exists at most one face-
labeling function g fulfilling conditions (ii), (iii) of Definition 11. If the face-
labeling function g exists, we must verify that it is connected. The verification
can be also done in linear time. For example we can construct the graph H by
taking the dual planar graph to G and removing all its edges {f1, f2} such that
g(f1) ̸= g(f2). Then, the face-labeling function g is connected iff the number of
connected components of H is equal to the size of the range of g.

In case of E(G) = Tˆ︁R the embedding Go has only one face. It means that
every labeled embedding satisfying ˆ︂R is connected.

4.1 SPQR skeletons
[SQR]-skeletons have only a constant number of planar embeddings. Therefore,
it is relatively easy to solve ERCS instances for them. We can even solve the ERS
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problem for [SQR]-skeletons in linear time.

Lemma 49. ERCS instances for [SQR]-skeletons and embedding restrictions with
labeled opaque edges can be solved in linear time.

Proof. [SQ]-skeletons have just one planar embedding and R-skeletons either are
not planar, or they have two embeddings that are mirror images of each other
[6, 17]. Therefore, we can generate all possible embeddings of an [SQR]-skeleton
in linear time. Furthermore, following Lemma 48 we can test each of these em-
beddings for a connected face-labeling function satisfying the embedding restric-
tion.

ERCS instances with labeled opaque edges for P-skeletons can be also solved
in polynomial time. However, the algorithm is more complicated. First, we need
to define an additional problem to which we reduce the ERCS instances for P-
skeletons.

Problem 50 (Cyclic Suborders Extension (CSE)).
Input: A set D, a set C of cyclic orders of subsets of D.
Question: Is there a cyclic order δ of elements of D such that γ is a subsequence
of δ for every γ ∈ C?

The CSE problem is a generalization of the cyclic ordering problem [7]. We
just do not demand that the cyclic orders of the set C have exactly three elements.
Moreover, Galil and Megiddo [7] proved that the cyclic ordering is NP-complete,
so the CSE problem is also NP-complete. But we are still able to solve the CSE
instances with |C| ∈ O(1) in polynomial time.

Lemma 51. Let D be a set and C a set of cyclic orders of subsets of D. Then,
CSE(D, C) can be solved in time O(|C| · |D||C|).

Proof. For a cyclic order β we define Cβ as the set of directed edges such that
(b1, b2) ∈ Cβ iff b2 follows immediately after b1 in β.

We show that there exists a cyclic order δ of D containing each cyclic order
in C as a subsequence iff for each γ ∈ C we can select an edge eγ ∈ Cγ such that
the graph G = (D,⋃︁γ∈C(Cγ \ {eγ})) is a directed acyclic graph (DAG).

If there exists a cyclic ordering δ of D containing all the suborders in C as
a subsequence then we can remove an arbitrary edge e from Cδ getting a linear
ordering δlin of D. Since δ contains γ as a cyclic subsequence for every γ ∈ C, then
there is exactly one edge eγ ∈ Cγ such that δlin respects all edges of (Cγ \ {eγ}).
The graph G =

(︂
D,

⋃︁
γ∈C(Cγ \ {eγ})

)︂
has a topological ordering, so G is a DAG.

If for each γ ∈ C there is an edge eγ ∈ Cγ such that the directed graph
G = (D,⋃︁γ∈C(Cγ \ {eγ})) is a DAG, then G has a topological ordering δlin. We
can take the ordering δlin and make it cyclic by putting its first element right
behind the last one. The resulting cyclic order contains all suborders in C as a
subsequence.

Based on this characterization of the satisfiable instances, we derive an al-
gorithm running in time O(|C| · |D||C|+1). There are at most O(|D||C| possible
choices of the edges eγ. The algorithm tries all of them and for each selection it
constructs the graph G and it uses Kahn’s algorithm [13] to test whether G is a
DAG in time O(|C| · |D|).
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Realize that it is not necessary to try all the possible choices of the edges eγ.
We can take a cyclic order γ∗ ∈ C and remove an arbitrary edge eγ∗ ∈ Cγ∗ . After
that, we look for the edges eγ only in the remaining (|C| − 1) cyclic orders. This
improve the time complexity of the algorithm to O(|C| · |D||C|).

There are better algorithms solving the CSE problem than the one described
in Lemma 51. For example, if |C| ≤ 2, then CSE(D, C) can be decided in time
O(|D|). We present the idea of the linear algorithm without the technical de-
tails. Let us assume that C = {γ1, γ2} and that no element of D is repeated in
neither γ1 nor γ2. If there is no item of D appearing in both the cyclic orders
γ1 and γ2, then we can just concat γ1 and γ2 and arbitrarily fill in the other
elements of D. And if there is a non-empty intersection DI of γ1 and γ2, then
we verify that γ1 restricted to the elements of DI is equal to the restriction of
γ2 to DI . If γ1 and γ2 pass the test, then γ1 = (d1, ϕ1, d2, ϕ2, . . . , d|DI |, ϕ|DI |)
and γ2 = (d1, ψ1, . . . , d|DI |, ψ|DI |), where d1, . . . , d|DI | are the elements of DI

and ϕ1, . . . , ϕ|DI |, ψ1, . . . , ψ|DI | are possibly empty sequences of items of the set
(D\DI). The cyclic order (d1, ϕ1, ψ1, d2, ϕ2, ψ2, . . . d|DI |, ϕ|DI |, ψ|DI |) contains both
γ1 and γ2 as a subsequence and the remaining elements of D can be arbitrarily
filled in.

This leads to the question of whether a similar approach can be applied to CSE
instances with more than two cyclic suborders to improve the time complexity.
Ideally, we would like to solve the CSE problem in linear time with respect to the
size of D.

Open problem 52. Is there a function f : N → N such that CSE(D, C) can be
solved in time O (f(|C|) · |D|)?

The P-skeletons are the bottleneck of the entire polynomial algorithm for
ERCS. And since we reduce the ERCS instances for P-skeletons to the CSE prob-
lem, then any improvement here would also decrease the total time complexity
of the algorithm.

Lemma 53. ERCS instances for P-skeletons and embedding restrictions with
labeled opaque edges can be solved in polynomial time.

Proof. An embedding of a P-skeleton is characterized by the rotation scheme
around one of its vertices. Let G = ({u, v}, E) be a P-skeleton, ˆ︂R an embedding
restriction of G with labeled opaque edges and L a set of labels appearing in ˆ︂R.
Without loss of generality, we assume that all the edges in E are directed from u
to v. First, we reduce the instance ERCS(G, ˆ︂R) into a smaller one.

We say that an edge e ∈ E is a right-border edge of a label ℓ ∈ L if rˆ︁R(e) = ℓ
and lˆ︁R(e) ̸= ℓ. Similarly, e is a left-border edge of ℓ if lˆ︁R(e) = ℓ and rˆ︁R(e) ̸= ℓ.
Notice that each right-border edge is a left-border edge of a different label and
vice versa. So, it makes sense to use just the term border edge without the prefix.

Let E ′ be the subset of E containing the border edges of ˆ︂R and the edges
anchored in σˆ︁R(u) or in σˆ︁R(v). Next, let G′ = ({u, v}, E ′) be the subgraph of
G and ˆ︂R′ the restriction of ˆ︂R to edges in E ′. Then, G has a connected labeled
embedding satisfying ˆ︂R iff the two following conditions hold:

(i) G′ has a connected labeled embedding satisfying ˆ︂R′,
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(ii) if |L| ≥ 2 then there is no label appearing in ˆ︂R and not in ˆ︂R′.

The left-to-right implication is straightforward, we just have to remove edges
not in E ′. If |L| ≥ 2 and there is a label in ˆ︂R not appearing in ˆ︂R′ then this
label does not have a right-border edge, so there is no labeled embedding of G
satisfying ˆ︂R.

For the second implication we show how to insert edges from (E \ E ′) into a
connected labeled embedding G ′ of G′ satisfying ˆ︂R′. We take edges from (E \ E ′)
one by one. Every edge e ∈ (E \ E ′) satisfies that lˆ︁R(e) = rˆ︁R(e). If |L| ≥ 2 and
lˆ︁R(e) ̸= ⋆, then we insert e right in front of the right-border edge of label lˆ︁R(e).
If |L| ≤ 1 or lˆ︁R(e) = ⋆, then we insert e at an arbitrarily position. In both cases
we assign the label of the original divided face to the two newly created faces.
This process yields a connected labeled embedding of G satisfying ˆ︂R.

After checking that every label from L appears also in ˆ︂R′, we can continue
to solve the instance ERCS(G′, ˆ︂R′). We show how to reduce in polynomial time
the instance ERCS(G′, ˆ︂R′) into a set of CSE instances with a constant number
of suborders such that ERCS(G′, ˆ︂R′) accepts iff at least one of the CSE instances
accepts. The CSE instances with a constant number of suborders can be solved in
polynomial time (Lemma 51), so we can decide ERCS(G′, ˆ︂R′) also in polynomial
time.

If |L| ≤ 1 then it is enough to find an embedding G ′ of G′ that respects the
rotation schemes σ ˆ︁R′(u) and σ ˆ︁R′(v). That is equivalent to solving the instance
CSE(E ′, {σ ˆ︁R′(u), σreversedˆ︁R′ (v)}). If we find G ′, then let g′ be a face-labeling func-
tion that assigns the same label to all the faces of G ′. In case of L ̸= ∅, we choose
the label from L. The labeled embedding (G ′, g′) is connected and it satisfies ˆ︂R′.

Further, we assume that |L| ≥ 2. Then G′ has a connected labeled embedding
satisfying ˆ︂R′, only if for each label ℓ ∈ L there is exactly one right-border edge
of ℓ in E ′. Moreover, every right-border edge e ∈ E ′ is a left-border edge of a
different label ℓ′. Therefore, in every connected labeled embedding of G′ satisfyingˆ︂R′ the first right-border edge following e must be the right-border of ℓ′. These
observations imply that if G′ has a connected labeled embedding satisfying ˆ︂R′,
then there exists a cyclic order β containing all the right-border edges of ˆ︂R′

such that an edge e1 is immediately followed by an edge e2 iff l ˆ︁R′(e1) = r ˆ︁R′(e2).
Furthermore, β must be a subsequence of σG′(u) for every connected labeled
embedding G ′ satisfying ˆ︂R′, because β represents the only connected face-labeling
of G′ that can possibly satisfy ˆ︂R′.

Next, we want to ensure that for every ℓ ∈ L and every e ∈ E ′ such that
l ˆ︁R′(e) = r ˆ︁R′(e) = ℓ the edge e is located between the left-border and the right-
border edge of ℓ. Let Eu be the set containing all the edges e anchored in σ ˆ︁R′(u)
such that l ˆ︁R′(e) ̸= ⋆. And let τu be a cyclic order that is the restriction of σ ˆ︁R′(u)
to Eu. We define a set Bu of cyclic orders of some edges from E ′ such that at least
one of them is a subsequence of σG′(u) for every connected labeled embedding G ′

satisfying ˆ︂R′. If Eu = ∅ then we put Bu = {β}.
If ˆ︂R′ prescribes at least two different labels for the incident faces of the edges

of Eu, we put Bu = {βu}, where the cyclic order βu is based on τu, but for every
two consecutive edges e1, e2 in τu such that lˆ︁R(e1) ̸= rˆ︁R(e2) we insert the right-
border edge of label lˆ︁R(e1) and the left-border edge of rˆ︁R(e2) between them. (The
right-border of lˆ︁R(e1) and the left-border of rˆ︁R(e2) might be the same edge. In
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that case, we insert only one copy of the edge.) There might be an edge that
appears twice in βu, but in that case, G′ has no connected labeled embedding
satisfying ˆ︂R′.

Otherwise, ˆ︂R′ prescribes just one unique label ℓ for the edges of Eu. In this
case we put Bu = {β1

u, β
2
u, . . . , β

|Eu|
u }, where βi

u is the cyclic order τu in which we
insert the right-border and the left-border edge of ℓ just behind the i-th edge of
τu for a fixed numbering of the edges of τu.

Similarly, starting from σreversedˆ︁R′ (v) we construct the set Ev, the cyclic order
τv and the set of cyclic orders Bv.

The graph G′ has a connected labeled embedding satisfying ˆ︂R′ iff there is a
cyclic order σ of edges from E ′ such that σ ˆ︁R′(u), σreversedˆ︁R′ (v), β are subsequences
of σ and there exist βu ∈ Bu and βv ∈ Bv that are also subsequences of σ.
The left-to-right implication is straightforward. Just plug in the rotation scheme
around vertex u for σ. For the second implication, let G ′ be the embedding of G′

such that σ = σG′(u). Next, let g′ be the face-labeling function that assigns the
label ℓ to the faces between the left-border and the right-border edges of ℓ in the
counter-clockwise direction around u. g′ is connected and the labeled embedding
G ′

L = (G ′, g′) fulfills the conditions of Definition 11.
Therefore, ERCS(G′, ˆ︂R′) accepts iff there exists βu ∈ Bu, βv ∈ Bv such

that CSE(E ′, {σ ˆ︁R′(u), σreversedˆ︁R′ (v), β, βu, βv}) accepts. The cyclic orders σ ˆ︁R′(u),
σreversedˆ︁R′ (v), β and the sets Bu, Bv can be constructed in time O(|E|2). There are
O(|E|2) combinations how to select the cyclic orders βu, βv and Lemma 51 yields
that the CSE instance with five cyclic suborders are solvable in time O(|E|5).
Therefore, the total time complexity of the ERCS problem for P-skeletons and
embedding restrictions with labeled opaque edges is O(|E|7).

The upper bound of the time complexity can be further improved to O(|E|6),
if in the construction of the sets Bu and Bv we do not insert just the left-border
and the right-border of the relevant labels, but we also add the entire interval
of β clamped between these borders. Then each cyclic sequence in Bu and Bv

contains β as a subsequence, so it is unnecessary to include β in the queries for
the CSE oracle. However, this innovation may cause that the sequences of Bu

and Bv are too long. But it can be prevented by counting the number of edges
we added to τu and τv. If it is more than the length of β, then there must be a
repetitive edge, so we can reject automatically.

The time complexity O(|E|6) of the algorithm for the P-skeletons in the proof
of Lemma 53 is quite large. However, we reach this complexity only in some
marginal cases when |Bu| , |Bv| ∈ Θ(|E|). So it is very likely that there is a more
efficient algorithm. It is even possible that there is a linear time algorithm.

Open problem 54. Can the ERCS instances for P-skeletons and embedding
restrictions with labeled opaque edges be solved in linear time?

If the embedding restriction also has anchored borders, then we can upgrade
the algorithm from Lemma 53 to run in linear time.

Lemma 55. ERCS instances for P-skeletons and embedding restrictions with
labeled opaque edges and anchored borders can be solved in linear time.
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Proof. If the embedding restriction has anchored borders, then in the construction
of Lemma 53 each of the sets Bu and Bv contains only one element. Moreover,
all the elements of the sequence in Bu are also in σˆ︁R(u) and analogously for Bv

and σreversedˆ︁R (v). Similarly, β contains only the items that are both in σˆ︁R(u) and
σreversedˆ︁R (v). So we can in linear time verify that β is a subsequence of both σˆ︁R(u)
and σreversedˆ︁R (v), the sequence in Bu is a subsequence of σˆ︁R(u) and the sequence
in Bv is a subsequence of σreversedˆ︁R (v). If one of these tests fails, then we reject.
Otherwise, we produce the same answer as CSE(E ′, {σ ˆ︁R′(u), σreversedˆ︁R′ (v)}), which
can be evaluated in linear time.

4.2 ERCS of biconnected graphs
In this section, we introduce a polynomial algorithm solving ERCS instances with
labeled opaque edges and biconnected graphs. The algorithm employs the divide-
and-conquer paradigm. It finds a simple pair of split graphs and then it continues
to processes each of the split graphs independently.

Lemma 56. Let G be a biconnected graph, {u, v} a separation pair of G and
(H,H ′) a simple pair of split graphs of G with respect to {u, v}. Then in every
embedding G of G the edges of H form a circular interval in σG(u) and in σG(v).

Proof. Without loss of generality, we assume that H consists of one separation
class of G and the virtual edge evirt

G (H). For the sake of contradiction, suppose
that G has an embedding G and there exist edges e1, e2 ̸= evirt

G (H) of H incident
to u and edges e3, e4 ̸= evirt

G (H ′) of H ′ also incident to u such that (e1, e3, e2, e4) is
a subsequence of σG(u). There is a cycle C ′ in H ′ containing edges e3, e4, because
H ′ is biconnected. And since H consists of one separation class, there is a cycle
C in H containing edges e1, e2 and avoiding the vertex v. The cycles C and
C ′ cross each other at the vertex u in the embedding G, so there must be at
least one more intersection of C and C ′. The split graphs H and H ′ share only
two vertices, so the only candidate for the second intersection is the vertex v.
However, C avoids v.

The condition of Lemma 56 is equivalent to the statement that both σG(u) and
σG(v) are (E(H), E(H ′))-non-crossing. Based on this criterion we can recognize
some unsatisfiable instances of the ERCS problem.

Definition 57. Let (H,H ′) be a pair of split graphs of a graph G with respect to
a separation pair {u, v} and let ˆ︂R be an embedding restriction of G. We say that
the pair (H,H ′) is ˆ︂R-non-crossing if both σˆ︁R (u) and σˆ︁R (v) are (E(H), E(H ′))-
non-crossing.

Corollary 58. Let G be a biconnected graph, ˆ︂R an embedding restriction of G,
{u, v} a separation pair of G and (H,H ′) a simple pair of split graphs of G with
respect to {u, v}. Then G has a labeled embedding satisfying ˆ︂R, only if (H,H ′)
is ˆ︂R-non-crossing.

A non-crossing embedding restriction can be divided between the two split
graphs. The division process described in the following definition is quite intu-
itive.
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Figure 4.1: An example of a reduction of an embedding restriction ˆ︂R to split
graphs H and H ′ with parental labels (A,A).

Definition 59. Let (H,H ′) be a pair of split graphs of a graph G with respect
to a separation pair {u, v} and let ˆ︂R be an embedding restriction of G such that
(H,H ′) are ˆ︂R-non-crossing. Further, let pl, pr be labels. Then, the reduction
of ˆ︂R to H with parental labels (pl, pr) is defined as the embedding restrictionˆ︁S =

(︂
σˆ︁S , lˆ︁S , rˆ︁S , Tˆ︁S)︂

of H such that:

(i) ˆ︁S inherits the rotation schemes of ˆ︂R for all the vertices except for u and v,
(∀w ∈ (V (H) \ {u, v})) σˆ︁S (w) = σˆ︁R (w).

(ii) For w ∈ {u, v} if σˆ︁R(w) does not contain any edge of E(H ′) then σˆ︁S(w) =
σˆ︁R(w), otherwise the interval of edges of H ′ is replaced in σˆ︁S(w) by one
occurrence of evirt

G (H).

(iii) ˆ︁S inherits the functions lˆ︁R and rˆ︁R,
(∀e ∈ (E(H) \ {evirt

G (H)})) lˆ︁S (e) = lˆ︁R (e) & rˆ︁S (e) = rˆ︁R (e).

(iv) lˆ︁S (evirt
G (H)) = pl, rˆ︁S (evirt

G (H)) = pr.

(v) ˆ︁S also inherits the set of transparent edges of ˆ︂R. In addition, the virtual
edge evirt

G (H) is transparent iff there is no path between u and v in G using
only the edges of (E(H ′) \ Tˆ︁R), i.e. the opaque edges of H ′.

We use the notation ˆ︂R[H, pl, pr] for the reduction of ˆ︂R to H with parental labels
(pl, pr). ˆ︂R[H] is an abbreviation for ˆ︂R[H,⋆,⋆].

For the rest of this section, let G be a biconnected graph, ˆ︂R an embedding
restriction of G with labeled opaque edges, {u, v} a separation pair of G and
(H,H ′) a simple ˆ︂R-non-crossing pair of split graphs of G with respect to {u, v}.

If we get labeled embeddings HL and H′
L of the two split graphs, we can

merge them together forming a labeled embedding of G, provided that HL and
H′

L have assigned consistent labels around their virtual edges. Furthermore, ifHL
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L

Figure 4.2: Connected labeled embeddings HL, H′
L of the two split graphs and

the labeled embedding GL produced by merging HL and H′
L. Notice that GL is

not connected.

satisfies ˆ︂R[H] and H′
L satisfies ˆ︂R[H ′], then the labeled embedding of G satisfiesˆ︂R.

Lemma 60. G has a labeled embedding satisfying ˆ︂R iff H and H ′ have labeled
embeddings (H, h), (H′, h′) satisfying respectively ˆ︂R[H] and ˆ︂R[H ′] such that

h(lH(evirt
G (H))) = h′(rH′(evirt

G (H ′))),
h(rH(evirt

G (H))) = h′(lH′(evirt
G (H ′))).

Proof. (sketch) If H, H ′ have suitable labeled embeddings (H, h), (H′, h′), we can
replace the edge evirt

G (H) in H by the embedding H′ without the edge evirt
G (H ′)

getting an embedding G of G. The extra conditions for the face-labeling functions
h, h′ ensure that there exists a face-labeling function g of G such that (G, g)
satisfies ˆ︂R.

If G has a labeled embedding GL = (G, g) satisfying ˆ︂R then according to
Lemma 56 the edges of H ′ form a circular interval in σG(u) and in σG(v). We can
replace the edges of H ′ in GL by evirt

G (H) getting a labeled embeddingHL = (H, h)
of H. Similarly, replacing the edges of H in GL by evirt

G (H ′) we obtain a labeled
embedding H′

L = (H′, h′) of H ′. Then, HL satisfies ˆ︂R[H], H′
L satisfies ˆ︂R[H ′] and

the conditions for the labels of the virtual edges also hold.

If we want to create a connected labeled embedding of G, then it is not enough
to take connected labeled embeddings of H and H ′. We must also ensure, that
the labels around the virtual edges remain connected. For example, consider
the situation depicted in Figure 4.2. This problem is addressed by the following
definition.

Definition 61. Let ˆ︁S be an embedding restriction of the split graph H and let ℓ
be a label. We say that H is ℓ-passable in ˆ︁S if for each path p in H connecting u
and v there exists an edge e of p such that lˆ︁S(e) ∈ {ℓ,⋆} and rˆ︁S(e) ∈ {ℓ,⋆}.

If HL and H′
L are connected labeled embeddings of H and H ′ satisfying ˆ︂R[H]

and ˆ︂R[H ′] such that all the faces incident to the virtual edges evirt
G (H), evirt

G (H ′)
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are tagged by a label ℓ and both H and H ′ are not ℓ-passable, then the labeled
embedding created by merging HL and H′

L together is not connected. The faces
with label ℓ form two regions.

We are able to check that a split graph H is ℓ-passable in linear time with
respect to the size of H. For example we can use the depth first search to test
whether there is a path from u to v using only edges e with lˆ︁S(e) ̸∈ {ℓ,⋆} or
rˆ︁S(e) ̸∈ {ℓ,⋆}.

Furthermore, if there is a label ℓ present in both HL and H′
L, then ℓ must

be incident to the virtual edges. Otherwise, the regions tagged by ℓ in HL and
H′

L would not connect together. So, let L, L′ be the set of labels appearing
respectively in ˆ︂R[H] and ˆ︂R[H ′] not including the token ⋆. We differentiate five
cases based on the intersection L ∩ L′.

Lemma 62. (i) Let L = ∅ or L′ = ∅. Then G has a (connected) labeled embed-
ding satisfying ˆ︂R iff respectively H, H ′ have (connected) labeled embeddings
satisfying ˆ︂R[H], ˆ︂R[H ′].

(ii) If L,L′ ̸= ∅, L ∩ L′ = ∅, then G has no labeled embedding satisfying ˆ︂R.

(iii) Let L∩L′ = {ℓ}. Then, G has a connected labeled embedding satisfying ˆ︂R iff
respectively H, H ′ have connected labeled embeddings satisfying restrictionsˆ︂R[H, ℓ, ℓ], ˆ︂R[H ′, ℓ, ℓ] and at least one of the split graphs H, H ′ is ℓ-passable
in the corresponding reduction of ˆ︂R.

(iv) Let L ∩ L′ = {ℓ1, ℓ2}. Then G has a connected labeled embedding satisfyingˆ︂R iff H, H ′ have connected labeled embeddings satisfying either ˆ︂R[H, ℓ1, ℓ2],ˆ︂R[H ′, ℓ2, ℓ1] or ˆ︂R[H, ℓ2, ℓ1], ˆ︂R[H ′, ℓ1, ℓ2].

(v) If |L ∩ L′| ≥ 3 then G has no connected labeled embedding satisfying ˆ︂R.

Proof. (sketch) If G has a connected labeled embedding GL = (G, g), then as
in Lemma 60 we can replace the edges of H ′ in G by the virtual edge evirt

G (H)
getting a connected labeled embedding HL = (H, h) of H satisfying ˆ︂R[H]. Also,
the replacement of the edges of H in G by evirt

G (H ′) produces a connected labeled
embedding H′

L = (H′, h′) of H ′ satisfying ˆ︂R[H ′]. Furthermore, the conditions
h(lH(evirt

G (H))) = h′(rH′(evirt
G (H ′))) and h(rH(evirt

G (H))) = h′(lH′(evirt
G (H ′))) are

met. It means that if ˆ︂R has labeled opaque edges and L,L′ ̸= ∅, then the labels
assigned to the faces incident to the virtual edges must be present in both L and
L′. Next, we observe that if a label x appears in both L and L′, then it also has
to be assigned to a face incident to the virtual edge evirt

G (H). Otherwise, x cannot
form a connected region in GL. Thus under the mentioned conditions, the set of
labels assigned for the faces incident to the virtual edges evirt

G (H) and evirt
G (H ′)

must be identical to the set of labels in the intersection L ∩ L′. And since there
are only two faces incident to evirt

G (H), then |L ∩ L′| ≤ 2.
Moreover, if L ∩ L′ = {ℓ} and both H and H ′ are not ℓ-passable then there

exist a path p in H and a path p′ in H ′, forbidding the label ℓ to pass through.
These two paths form a cycle c in G separating the two faces of GL that are
simultaneously incident to the edges of H and H ′. We have already observed
that these two faces must be tagged by the label ℓ in GL. However, the label
ℓ could not pass through c, so in this case, labeled embedding GL cannot be
connected.
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(iii) If H, H ′ have connected labeled embeddings HL, H′
L satisfying ˆ︂R[H, ℓ, ℓ],ˆ︂R[H ′, ℓ, ℓ], then as in Lemma 60 we can joinHL andH′

L while omitting the virtual
edges in order to get a labeled embedding GL of G satisfying ˆ︂R. We need to show
that the labeled embedding GL is connected. For each label x ̸= ℓ the faces
tagged by x form a connected region in GL, because x is only present in one of
the split graphs and both HL and H′

L are connected. Now let us look at the label
ℓ. Although the assignment for the incident faces of the virtual edges evirt

G (H)
and evirt

G (H ′) ensures that the regions tagged by ℓ in HL and H′
L merge together,

there can still be two regions tagged by ℓ in GL. However, it is not the case if at
least one of the split graphs in ℓ-passable. If there were two regions tagged by ℓ
in GL, then the border of one of these regions would contain a path p in H and a
path p′ in H ′, both of them connecting u and v, and contradicting the ℓ-passable
property of H and H ′.

(iv) The proof of the second implication is very similar to the case (iii).
(i) Without loss of generality, L = ∅. Assume that H, H ′ have (connected)

labeled embeddings HL = (H, h), H′
L = (H′, h′) satisfying ˆ︂R[H], ˆ︂R[H ′]. Sinceˆ︂R has labeled opaque edges, then there is no opaque path between u and v in

H, and so evirt
G (H ′) is transparent in ˆ︂R[H ′]. It means that h′(lH′(evirt

G (H ′))) =
h′(rH′(evirt

G (H ′))). We can define a new face-labeling function h∗ of H assigning
the label h′(lH′(evirt

G (H ′))) to all its faces. The labeled embedding (H, h∗) satisfiesˆ︂R[H] and it is connected. In addition, we can merge it with H′
L as in case (iii)

getting a (connected) labeled embedding of G satisfying ˆ︂R.

The Lemma 62 encourages us to design a divide-and-conquer style algorithm
that distinguishes three non-trivial situations based on the intersection L∩L′. But
first, we must deal with the case |L ∩ L′|, which offers two pairs of subproblems.
Solving both the pairs would hurt the time complexity. Luckily, it is unnecessary.
We show that at most one option is viable for each pair of simple split graphs.

Lemma 63. If L ∩ L′ = {ℓ1, ℓ2} and ˆ︂R has labeled opaque edges, then at most
one of the embedding restrictions ˆ︂R[H, ℓ1, ℓ2] and ˆ︂R[H, ℓ2, ℓ1] has a satisfying
connected labeled embedding.

Proof. We utilize our observations about the relation of the Eulerian circuits and
the ERS problem.

Let ˆ︁S be an embedding restriction of H with labeled opaque edges and let Eu

be the set of the border edges of ˆ︁S incident to u.

Eu = {{u,w} ∈ E(H) | lˆ︁S(u,w) ̸= rˆ︁S(u,w)}.

Further, let us assume that all the edges of Eu are oriented from u outwards.
The edges of Eu are the only edges of ˆ︁S that are allowed to have different

labels assigned to their incident faces. Therefore, H has a labeled embedding
satisfying ˆ︁S, only if for each label ℓ⃓⃓⃓

{e ∈ Eu | lˆ︁S(e) = ℓ}
⃓⃓⃓
=

⃓⃓⃓
{e ∈ Eu | rˆ︁S(e) = ℓ}

⃓⃓⃓
.

Now we consider the restrictions ˆ︂R[H, ℓ1, ℓ2] and ˆ︂R[H, ℓ2, ℓ1]. These two re-
strictions differ only in the labels of the edge evirt

G (H). So let us count the border
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edges of the label ℓ1.⃓⃓⃓
{e ∈ Eu | lˆ︁R[H,ℓ1,ℓ2](e) = ℓ1}

⃓⃓⃓
=

⃓⃓⃓
{e ∈ Eu | lˆ︁R[H,ℓ2,ℓ1](e) = ℓ1}

⃓⃓⃓
+ 1,⃓⃓⃓

{e ∈ Eu | rˆ︁R[H,ℓ1,ℓ2](e) = ℓ1}
⃓⃓⃓
=

⃓⃓⃓
{e ∈ Eu | rˆ︁R[H,ℓ2,ℓ1](e) = ℓ1}

⃓⃓⃓
− 1.

Evidently, at most one of ˆ︂R[H, ℓ1, ℓ2] and ˆ︂R[H, ℓ2, ℓ1] can have the same num-
ber of the left and the right borders of ℓ1. So at most one of them can have a
satisfying labeled embedding.

Algorithm 3: A test that the number of the left-border edges of a label
ℓ is equal to the number of the right-border edges.

input : A graph H, an embedding restriction ˆ︁S of H with labeled opaque edges, a
vertex u ∈ V (H), a label ℓ.

1 function local Euler test(H, ˆ︁S, u, ℓ):
2 Eu ← {{u,w} ∈ E(H) | lˆ︁S(u,w) ̸= rˆ︁S(u,w)};
3 orient the edges of Eu from u outwards;
4 return

(︂⃓⃓⃓
{e ∈ Eu | lˆ︁S(e) = ℓ}

⃓⃓⃓
=

⃓⃓⃓
{e ∈ Eu | rˆ︁S(e) = ℓ}

⃓⃓⃓)︂
;

Moreover, it is possible to recognize which of the embedding restrictionsˆ︂R[H, ℓ1, ℓ2] and ˆ︂R[H, ℓ2, ℓ1] is unsatisfiable in linear time with respect to the
size of H. For instance, we can count the border edges of the label ℓ1 incident to
the vertex u as illustrated in Algorithm 3.

If the function local Euler test(H, ˆ︂R[H, ℓ1, ℓ2], u, ℓ1) returns false, thenˆ︂R[H, ℓ1, ℓ2] cannot be satisfied. And we have already observed in Lemma 63
that local Euler test fails at least one of ˆ︂R[H, ℓ1, ℓ2], ˆ︂R[H, ℓ2, ℓ1].

Therefore, we can go ahead with the divide-and-conquer notion. Algorithm
4 presents one possible implementation of this idea. It checks whether the input
graph is an [SPQR]-skeleton. If so, it uses a specialized polynomial algorithm for
the skeletons. Otherwise, it finds a simple pair of split graphs and applies Lemma
62.

The function ERCS biconnected(G, ˆ︂R) just answers whether G has a con-
nected labeled embedding satisfying ˆ︂R. It does not produce satisfying embed-
ding. Nevertheless, it can be easily extended to do so. If G is an [SPQR]-skeleton,
then we already know how to find a satisfying embedding. Otherwise, we just
merge the embeddings of the split graphs H and H ′ obtained from the recursive
calls like in Lemma 60.

Theorem 64. Let G be a biconnected graph and ˆ︂R an embedding restriction of
G with labeled opaque edges. Then ERCS(G, ˆ︂R) can be solved in polynomial time.

Proof. We show that the function ERCS biconnected(G, ˆ︂R) runs in polynomial
time with respect to the size of H. The correctness of Algorithm 4 follows imme-
diately from Lemma 62. The only thing worth noting is that in case of L = ∅ in
the instance ERCS(H, ˆ︂R[H]) the edge evirt

G (H) might be opaque and unlabeled.
However, this is not an issue, because it is the only opaque edge of H, so we can
make it transparent without consequences.
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Algorithm 4: A polynomial algorithm for ERCS of biconnected graphs.
input : A biconnected graph G, an embedding restriction ˆ︁R of G with labeled

opaque edges.
1 function ERCS biconnected(G, ˆ︁R):
2 if G is an [SPQR]-skeleton : return ERCS skeleton(G, ˆ︁R);
3 {u, v} ← a separation pair of G;
4 (H,H ′)← a simple pair of split graphs w.r.t. {u, v};
5 if (H,H ′) is not ˆ︁R-non-crossing : return false;
6 L← {lˆ︁R(e), rˆ︁R(e) | e ∈ E(H) ∩ E(G)} \ {⋆};
7 L′ ← {lˆ︁R(e), rˆ︁R(e) | e ∈ E(H ′) ∩ E(G)} \ {⋆};
8 if |L ∩ L′| ≥ 3 : return false;
9 if |L| > 0 and |L′| > 0 and |L ∩ L′| = 0 : return false;

10 if |L| = 0 or |L′| = 0 :
11 return (ERCS biconnected(H, ˆ︁R[H]) and ERCS biconnected(H ′, ˆ︁R[H ′]));
12 if |L ∩ L′| = {ℓ} :
13 if both H and H ′ are not ℓ-passable : return false;
14 return (ERCS biconnected(H, ˆ︁R[H, ℓ, ℓ]) and

ERCS biconnected(H ′, ˆ︁R[H ′, ℓ, ℓ]));
15 {ℓ1, ℓ2} ← L ∩ L′;
16 if local Euler test(H, ˆ︁R[H, ℓ1, ℓ2], u, ℓ1) :
17 return (ERCS biconnected(H, ˆ︁R[H, ℓ1, ℓ2]) and

ERCS biconnected(H ′, ˆ︁R[H ′, ℓ2, ℓ1]))
18 else if local Euler test(H, ˆ︁R[H, ℓ2, ℓ1], u, ℓ1) :
19 return (ERCS biconnected(H, ˆ︁R[H, ℓ2, ℓ1]) and

ERCS biconnected(H ′, ˆ︁R[H ′, ℓ1, ℓ2]))
20 return false;

Using clever data structures we ensure that ERCS biconnected(G, ˆ︂R) spends
time O(|V (G)|+ |E(G)|) on one recursion level except for the call of the function
ERCS skeleton.

First, we construct the SPQR-tree of G in time O(|V (G)| + |E(G)|). The
tree allows us to recognize in constant time whether G is an [SPQR]-skeleton.
Moreover, it also helps us to find the separation pair and the simple pair of split
graphs. The separation pair (H,H ′) can also be created in constant time by
editing the graph G in place.

Next, if we represent the rotation schemes as bidirectional cyclic linked lists,
then we are able to verify that (H,H ′) is ˆ︂R-non-crossing in time O(|E(H)|). We
just check that there is at most one edge of H followed by an edge of H ′ in σˆ︁R(u)
and σˆ︁R(v). It also allows us to quickly construct the reductions ˆ︂R[H] and ˆ︂R[H ′]
except for determining the opacity of the virtual edges. For that we have to make
two searches (e.g. DFS) running in O(|V (H)|+|E(H)|) and O(|V (H ′)|+|E(H ′)|)
respectively.

The last problems are the sets of labels L and L′. We assume that we can
afford one global array indexed by the labels. On each recursion level, we first
raise flags on the positions of the labels of L′. Then we do the same for the labels
of L while noticing, which labels were already in L′. Those are the labels in the
intersection. Finally, we again go through the labels of L and L′ and remove the
flags, so that the array can be used again in another recursive call. This operation
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costs us O(|V (G)|+ |E(G)|).
The depth of the recursion is O(|V (G)|), because the SPQR-tree of a split

graph has at least one node less than the SPQR-tree of the original graph. Fur-
thermore, on each recursion level the total size of the subproblems is O(|V (G)|+
|E(G)|). So except for the calls of ERCS skeleton the algorithm runs in time
O(|V (G)| · (|V (G)|+ |E(G)|)). Unfortunately, the best algorithm for P-skeletons
we have is quite slow. So the total time complexity of ERCS biconnected(G, ˆ︂R)
is O(|E(G)|6).

Theorem 65. Let G be a biconnected graph and ˆ︂R an embedding restriction for
G with labeled opaque edges and anchored borders. Then ERCS(G, ˆ︂R) can be
solved in linear time.

Proof. (sketch) If ˆ︂R has also anchored borders, then we can solve the instances for
P-skeletons in linear time. So the total time spend by ERCS biconnected(G, ˆ︂R)
in the [SPQR]-skeletons is O(|V (G)|+ |E(G)|).

In addition, we can reduce the time complexity by selecting the simple pair
of split graphs (H,H ′) such that H is an [SPR]-skeleton. Then, we just need to
spend time O(|V (H)| + |E(H)|) in each non-skeleton iteration. This time can
be charged to the skeleton H, so the total complexity is O(|V (G)| + |E(G)|).
However, it requires a few changes in the implementation.

Firstly, the SPQR-tree is constructed only once and in each non-skeleton
iteration we tear off the leaf node corresponding to the split graph H. Secondly,
we do not compute the transparency of the virtual edge evirt

G (H). If L′ = ∅,
then evirt

G (H) is transparent, otherwise, it is opaque. Thirdly, the global array
indexed by the labels contains for each label ℓ the value

⃓⃓⃓
{e ∈ E(G) | lˆ︁R(e) = ℓ}

⃓⃓⃓
+⃓⃓⃓

{e ∈ E(G) | rˆ︁R(e) = ℓ}
⃓⃓⃓
. Before solving the instance for H ′ we subtract the

contribution of H and add one for the labels of the virtual edge evirt
G (H ′). We can

still use the array to construct the intersection L ∩ L′. But, we further need one
integer that contains the total sum of the values in the array. This integer allows
us to quickly recognize when L′ is empty. Finally, we do not test that either H
or H ′ is ℓ-passable. Then, the algorithm can return some fake positive answers.
However, we filter those by fully constructing the satisfying labeled embedding
and verifying that it is really connected.

4.3 AERCS of biconnected graphs
The instances of AERCS with labeled opaque edges and biconnected graphs can
be also solved in polynomial time. The algorithm is based on the same recursive
idea we used in the ERCS problem. However, labels in the rotation schemes
bring complications that we did not encounter in the ERCS. Fortunately, these
complications occur only in instances without anchored borders.

Theorem 66. Let G be a biconnected graph and ˆ︁A an augmented embedding re-
striction of G with labeled opaque edges and anchored borders. Then, the instance
AERCS(G, ˆ︁A) can be solved in linear time.

Proof. We can remove labels from the rotation schemes of ˆ︁A creating an equiva-
lent ERCS instance, that can be solved in linear time. Let w ∈ V (G) be a vertex
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such that the rotation scheme ρ ˆ︁A(w) contains a label. If there are no border
edges incident to w, then all the faces around w must be tagged by the same
label. Therefore, after verifying that ρ ˆ︁A(w) contains at most one unique label ℓ
we remove all the occurrences of ℓ from ρ ˆ︁A(w), plus we select an edge e ∈ E(G)
incident to w and set l ˆ︁A(e) = ℓ. If ρ ˆ︁A(w) contains at least two different labels,
then we reject.

Otherwise, there are some border edges incident to w. In that case, we just
check that the labels in ρ ˆ︁A(w) are consistent with the placement of the border
edges before removing them. Let e1, e2 ∈ E(G) be border edges incident to w
such that there are no other border edges between e1 and e2 in ρ ˆ︁A(w) in the
counter-clockwise direction. Then the faces enclosed between e1 and e2 must be
tagged by the same label. So if l ˆ︁A(e1) ̸= r ˆ︁A(e2) or if there is a wrong label in
ρ ˆ︁A(w) between e1 and e2, then there is no labeled embedding of G satisfyingˆ︁A.

To simplify the situation we consider only AERCS instances where the aug-
mented embedding restriction contains at least two different labels. The cases
with at most one unique label can be solved as simple ERCS instances. If there is
no label in the augmented embedding restriction, then the reduction to ERCS is
straightforward. Else if there is just one unique label ℓ, we can ignore it, solve the
problem as an ERCS instance and then tag every face of the satisfying embedding
by ℓ.

Further, we observe that each vertex of a graph G is incident to at most |E(G)|
edges and |E(G)| faces. Therefore, for an augmented embedding restriction ˆ︁A of
G the instance AERCS(G, ˆ︁A) is satisfiable, only if there is no vertex w ∈ V (G)
such that the rotation scheme ρ ˆ︁A(w) has more than 2 · |E(G)| elements. We
automatically reject for the instances with too long rotation schemes, so we can
assume that their sizes are at most linear with respect to the number of edges.

Similarly to the ERCS problem, we first show how to solve AERCS for
[SPQR]-skeletons.

Lemma 67. AERCS instances for [SPQR]-skeletons and augmented embedding
restrictions with labeled opaque edges can be solved in polynomial time.

Proof. [SQR]-skeletons have a limited number of labeled embeddings and we can
test all of them as we did in Lemma 49. And since the augmented rotation schemes
are non-crossing, we can perform the test in linear time applying Lemma 7.

For P-skeletons we can replace each label appearing in the rotation schemes
by a new edge that has this label prescribed for both of its incident faces. After
that, we can proceed as in Lemma 53.

4.3.1 Division on a separation pair
If a biconnected graph is not an [SPQR]-skeleton then according to Lemma 29 it
has a separation pair. So, let G be a biconnected graph with a separation pair
{u, v} and let (H,H ′) be a simple pair of split graphs with respect to {u, v}.
Further, let ˆ︁A be an augmented embedding restriction of G with labeled opaque
edges containing at least two different labels.
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Figure 4.3: An augmented embedding restriction and its two possible divisions to
the split graphs H, H ′. Both of these divisions have satisfying connected labeled
embeddings.

Definition 68. Let ˆ︂R be the embedding restriction obtained from ˆ︁A by omitting
labels in the rotation schemes ρ ˆ︁A. A pair of split graphs (H,H ′) is ˆ︁A-non-crossing
if it is ˆ︂R-non-crossing.

Corollary 69. AERCS(G, ˆ︁A) can be satisfied only if (H,H ′) is ˆ︁A-non-crossing.

We proceed as we did in the ERCS problem. We derive two augmented
embedding restrictions from ˆ︁A, ˆ︁B for H and ˆ︁B′ for H ′, dividing the problem into
two subproblems.

This division of ˆ︁A has to split in two the rotation schemes ρ ˆ︁A(u) and ρ ˆ︁A(v).
However, there can be multiple options on how to do it. For instance, look at the
highlighted separation vertex of the augmented embedding restriction illustrated
in Figure 4.3.

We define a new concept that covers all the possible divisions.

Definition 70. Let (H,H ′) be a pair of split graphs of a graph G with respect
to a separation pair {u, v} and let ˆ︁A be an augmented embedding restriction of
G such that (H,H ′) are ˆ︁A-non-crossing. Further, let pL, pR be labels. Then, the
pair of augmented embedding restrictions ( ˆ︁B, ˆ︁B′) is a (pL, pR)-division of ˆ︁A with
respect to (H,H ′) if:

(i) Except for u and v the restrictions ˆ︁B and ˆ︁B′ inherit the rotation schemes ofˆ︁A,
(∀w ∈ (V (H) \ {u, v})) ρˆ︁B (w) = ρ ˆ︁A (w),
(∀w ∈ (V (H ′) \ {u, v})) ρˆ︁B′ (w) = ρ ˆ︁A (w).

(ii) For w ∈ {u, v} let ϕ, ϕ′ is a partition of ρ ˆ︁A(w) into two circular intervals
such that ϕ does not contain any edge of E(H ′) and ϕ′ does not contain any
edge of E(H). (ρ ˆ︁A(w) = (ϕ, ϕ′).)
If ϕ′ is empty then ρˆ︁B(w) = (ϕ). Otherwise, ρˆ︁B(w) = (ϕ, evirt

G (H)).
If ϕ is empty then ρˆ︁B′(w) = (ϕ′). Otherwise, ρˆ︁B′(w) = (evirt

G (H ′), ϕ′).
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(iii) ˆ︁B and ˆ︁B′ inherit the functions l ˆ︁A and r ˆ︁A for all the relevant edges,
(∀e ∈ (E(H) \ {evirt

G (H)})) lˆ︁B (e) = l ˆ︁A (e) & rˆ︁B (e) = r ˆ︁A (e),
(∀e ∈ (E(H ′) \ {evirt

G (H ′)})) lˆ︁B′ (e) = l ˆ︁A (e) & rˆ︁B′ (e) = r ˆ︁A (e).

(iv) lˆ︁B (evirt
G (H)) = pL, rˆ︁B (evirt

G (H)) = pR,
lˆ︁B′ (evirt

G (H ′)) = pR, rˆ︁B′ (evirt
G (H ′)) = pL.

(v) ˆ︁B and ˆ︁B′ also inherit the set of transparent edges of ˆ︁A. In addition, the
virtual edge evirt

G (H) is transparent iff there is no path between u and v in G
using only the edges of (E(H ′)\T ˆ︁A). And similarly, evirt

G (H ′) is transparent
iff there is no path between u and v in G using only the edges of (E(H)\T ˆ︁A).

If pL = pR, then we use a shorter notation pL-division instead of (pL, pL)-
division.

The division of an augmented embedding restriction has a function similar
to the reduction of an embedding restriction (Definition 59). But unlike the
reduction, there usually is not one unique division of ˆ︁A with respect to (H,H ′).
The cause of the ambiguity is the partition of the rotation schemes ρ ˆ︁A(u) and
ρ ˆ︁A(v) into ρˆ︁B(u), ρˆ︁B′(u) and ρˆ︁B(v), ρˆ︁B′(v). Nevertheless, an analogy of Lemma
60 still holds for AERS.

Lemma 71. The graph G has a labeled embedding satisfying ˆ︁A iff there exists a
⋆-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) such that H, H ′ have labeled embeddings
(H, h), (H′, h′) satisfying ˆ︁B, ˆ︁B′ where h(lH(evirt

G (H))) = h′(rH′(evirt
G (H ′))) and

h(rH(evirt
G (H))) = h′(lH′(evirt

G (H ′))).

Proof. (sketch) If there exists such a ⋆-division ( ˆ︁B, ˆ︁B′) and labeled embeddings
(H, h), (H′, h′), then we can merge these labeled embeddings like in Lemma 60
into a labeled embedding (G, g) of G that satisfies ˆ︁A.

On the other hand, if G has a labeled embedding (G, g) satisfying ˆ︁A, then
we can split it into labeled embeddings (H, h) and (H′, h′) of H and H ′. These
embeddings satisfies the conditions for the labels incident to the virtual edges.
The splitting operation cut the augmented rotation schemes ρ(G,g)(u) and ρ(G,g)(v)
in two. Since (G, g) satisfies ˆ︁A, we can map ρ ˆ︁A(w) on ρ(G,g)(w) for w ∈ {u, v}.
Then, we cut ρ ˆ︁A(w) at the positions corresponding to the partition of ρ(G,g)(w).
This way we produce a ⋆-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such that (H, h) satisfies ˆ︁B and
(H′, h′) satisfies ˆ︁B′.

We can also generalize Lemma 62 for the AERCS problem. However, we
have to be careful while looking for an alternative of the sets of labels L and L′

appearing in Lemma 62, because the division of ˆ︁A does not refer to one unique
object.

We utilize our assumption that ˆ︁A contains at least two different labels.

Lemma 72. AERCS(G, ˆ︁A) can be satisfied only if for every label ℓ of ˆ︁A there is
an edge e such that either l ˆ︁A(e) = ℓ ̸= r ˆ︁A(e) or l ˆ︁A(e) ̸= ℓ = r ˆ︁A(e).

Proof. Otherwise, the label ℓ cannot be separated from the other labels in a la-
beled embedding satisfying ˆ︁A.
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Let ˆ︂R be the embedding restriction obtained from ˆ︁A by omitting labels in
the rotation schemes. Further, let LE and L′

E be set of labels appearing in ˆ︂R[H]
and ˆ︂R[H ′]. They can be equivalently defined as

LE = {l ˆ︁A(e) | e ∈ E(H)} ∪ {r ˆ︁A(e) | e ∈ E(H)} \ {⋆},
L′

E = {l ˆ︁A(e) | e ∈ E(H ′)} ∪ {r ˆ︁A(e) | e ∈ E(H ′)} \ {⋆}.

Lemma 73. (i) If LE, L
′
E ̸= ∅, LE ∩L′

E = ∅, then G has no labeled embedding
satisfying ˆ︁A.

(ii) If |LE ∩ L′
E| ≥ 3, then G has no connected labeled embedding satisfying ˆ︁A.

(iii) Let LE ∩ L′
E = {ℓ}. Then, G has a connected labeled embedding satisfyingˆ︁A iff there exists an ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such that H, H ′ have connected

labeled embeddings satisfying the restrictions ˆ︁B, ˆ︁B′ and at least one of H,
H ′ is ℓ-passable in ˆ︁B, ˆ︁B′.

(iv) Let LE∩L′
E = {ℓ1, ℓ2}. Then, G has a connected labeled embedding satisfyingˆ︁A iff there exists an (ℓ1, ℓ2)-division or an (ℓ2, ℓ1)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such

that H, H ′ have connected labeled embeddings satisfying ˆ︁B, ˆ︁B′.

(v) Let LE = ∅ or L′
E = ∅. Then, G has a connected labeled embedding satisfyingˆ︁A iff there exist a label ℓ ∈ (LE ∪ L′

E) and an ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such
that H, H ′ have connected labeled embeddings satisfying the restrictions ˆ︁B,ˆ︁B′.

Proof. (sketch) The points (i), (ii) are corollary of Lemmata 25 and 62.
Connected labeled embeddings of H, H ′ satisfying ˆ︁B, ˆ︁B′ can be merged uti-

lizing Lemma 71. The resulting labeled embedding is also connected.
Further, Lemma 71 implies that a connected labeled embedding GL of G

satisfying ˆ︁A can be spit into connected labeled embeddings of H and H ′ satisfying
a ⋆-division of ˆ︁A. The faces incident to evirt

G (H) and evirt
G (H ′) has to be labeled

consistently. The only candidates are the labels from the lemma statement.

4.3.2 Universal divisions
We can design a simple recursive algorithm with exponential runtime that solves
AERCS for biconnected graphs. The pseudocode of the algorithm is presented
as Algorithm 5. It receives on its input a graph G and an augmented embedding
restriction ˆ︁A with labeled opaque edges. If G is an [SPQR]-skeleton, then the
algorithm answers based on Lemma 67 in polynomial time. Otherwise, it finds a
separation pair {u, v} and a simple pair of its split graphs (H,H ′). After that, it
applies Lemma 73 and it either rejects or it tries all the possible divisions of ˆ︁A
mentioned in the relevant case of the lemma.

There are O(|E(G)|2) possibilities how to split the rotation schemes ρ ˆ︁A(u)
and ρ ˆ︁A(v), so in total there are at most O(|E(G)|4) divisions of ˆ︁A with respect
to (H,H ′). The depth of the recursion of the function AERCS exp I(G, ˆ︁A) is
again bounded by O(|V (G)|) as in ERCS biconnected. So the time complexity
of Algorithm 5 is |E(G)|O(|V (G)|).
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Algorithm 5: An exponential algorithm for AERCS of biconnected
graphs.

input : A biconnected graph G, an augmented embedding restriction ˆ︁A of G with
labeled opaque edges.

1 function AERCS exp I(G, ˆ︁A):
2 if ˆ︁A contains at most 1 label :
3 return ERCS biconnected(G, omit labels( ˆ︁A))

4 if G is an [SPQR]-skeleton : return AERCS skeleton(G, ˆ︁A);
5 {u, v} ← a separation pair of G;
6 (H,H ′)← a simple pair of split graphs w.r.t. {u, v};
7 if (H,H ′) is not ˆ︁A-non-crossing : return false;
8 LE ← {l ˆ︁A(e), r ˆ︁A(e) | e ∈ E(H) ∩ E(G)} \ {⋆};
9 L′

E ← {l ˆ︁A(e), r ˆ︁A(e) | e ∈ E(H ′) ∩ E(G)} \ {⋆};
10 if |LE ∩ L′

E | ≥ 3 : return false;
11 if |LE | > 0 and |L′

E | > 0 and |LE ∩ L′
E | = 0 : return false;

12 if |L ∩ L′| = {ℓ} :
13 if both H and H ′ are not ℓ-passable : return false;
14 foreach ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) :
15 if AERCS exp I(H, ˆ︁B) and AERCS exp I(H ′, ˆ︁B′) :
16 return true;

17 else if |LE | = 0 or |L′
E | = 0 :

18 foreach label ℓ ∈ (LE ∪ L′
E) :

19 foreach ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) :
20 if AERCS exp I(H, ˆ︁B) and AERCS exp I(H ′, ˆ︁B′) :
21 return true;

22 else
23 {ℓ1, ℓ2} ← L ∩ L′;
24 foreach (ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) :
25 if AERCS exp I(H, ˆ︁B) and AERCS exp I(H ′, ˆ︁B′) :
26 return true;

27 foreach (ℓ2, ℓ1)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) :
28 if AERCS exp I(H, ˆ︁B) and AERCS exp I(H ′, ˆ︁B′) :
29 return true;

30 return false;

Our goal is an algorithm running in polynomial time. And a polynomial
algorithm cannot afford to try all the possible divisions ( ˆ︁B, ˆ︁B′) of ˆ︁A. Fortunately,
it is not necessary to examine all the divisions. Some of them can never be
satisfied. For example, consider the following lemma.

Lemma 74. Let X = E(H)∪ (LE \L′
E) and X ′ = E(H ′)∪ (L′

E \LE). If LE ̸= ∅,
then ˆ︁B can be satisfied only if ρˆ︁B(u) and ρˆ︁B(v) do not contain any item of X ′.
Similarly, if L′

E ̸= ∅, then ˆ︂B′ can be satisfied only if ρˆ︁B′(u) and ρˆ︁B′(v) do not
contain any item of X.

Proof. The set X contains the edges of H and the labels appearing only next to
the edges of H. Similarly X ′ consists of the edges and labels unique to H ′. The
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presence of edges of H ′ in ρˆ︁B(u) and ρˆ︁B(v) is already forbidden by the definition
of the division. If there is a label x ∈ (L′

E \ LE) present in ρˆ︁B(u), then this label
must be separated from the labels of LE in every labeled embedding satisfyingˆ︁B. But to separate the label x, there must be at least two edges e1, e2 with
lˆ︁B(e1) = x or rˆ︁B(e1) = x and lˆ︁B(e2) = x or rˆ︁B(e2) = x. This is a contradiction
with the definitions of LE and L′

E.

Together Lemmata 73 and 74 yield Corollary 75.

Corollary 75. G has a connected labeled embedding satisfying ˆ︁A, only if ρ ˆ︁A(u)
and ρ ˆ︁A(v) are (X,X ′)-non-crossing.

Further in the analysis, we assume that both ρ ˆ︁A(u) and ρ ˆ︁A(v) are (X,X ′)-
non-crossing. This condition can be checked in linear time with respect to the
size of G.

Corollary 76. For w ∈ {u, v} if the rotation scheme ρ ˆ︁A(w) contains an element
of X and also an element of X ′, then there exist unique sequences τ, τ, λ, λ′ such
that

(i) ρ ˆ︁A(w) = (τ, λ, τ ′, λ′),

(ii) τ is a non-empty sequence of elements of the set (E(H)∪LE) that does not
start and does not end with a label of (LE ∩ L′

E),

(iii) τ ′ is a non-empty sequence of elements of the set (E(H ′) ∪ L′
E) that does

not start and does not end with a label of (LE ∩ L′
E),

(iv) λ and λ′ are either empty or they are sequences of labels of (LE ∩ L′
E).

We show that there is always only a constant number of divisions of ˆ︁A which
must be considered by the algorithm.

4.3.2.1 One label in the intersection

The case LE ∩ L′
E = {ℓ} is the simplest. In this situation there exists one

universal ℓ-division which represents all the satisfiable ℓ-division of ˆ︁A with respect
to (H,H ′).

Definition 77. Let LE ∩ L′
E = {ℓ} and let X = E(H) ∪ (LE \ L′

E) and X ′ =
E(H ′) ∪ (L′

E \ LE). The universal ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A with respect to (H,H ′)
is an ℓ-division such that for each w ∈ {u, v} the rotation schemes ρˆ︁B(w) and
ρˆ︁B′(w) are defined as follows:

(i) If ρ ˆ︁A(w) does not contain any items of X and X ′,
then both ρˆ︁B(w) and ρˆ︁B′(w) are empty.

(ii) If ρ ˆ︁A(w) contains an item of X and there is no item of X ′,
then ρˆ︁B(w) = ρ ˆ︁A(w) and ρˆ︁B′(w) is empty.

(iii) If ρ ˆ︁A(w) contains an item of X ′ and there is no item of X,
then ρˆ︁B(w) is empty and ρˆ︁B′(w) = ρ ˆ︁A(w).
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(iv) Otherwise ρ ˆ︁A(w) contains an item of X and also an item of X ′. ρ ˆ︁A(w)
can be uniquely decomposed as the cyclic sequence (τ, λ, τ ′, λ′) according to
Corollary 76. Then ρˆ︁B(w) = (τ, evirt

G (H)) and ρˆ︁B′(w) = (τ ′, evirt
G (H ′)).

Remark. Note that the universal ℓ-division ( ˆ︁B, ˆ︁B′) may not form a proper division
according to Definition 70, because there might be some missing occurrences of
ℓ in the rotation schemes of vertices u and v. However, the omitted instances of
ℓ are not necessary. We can construct an equivalent proper division from ( ˆ︁B, ˆ︁B′)
by applying Lemma 27.
Remark. We abuse this definition even in cases with LE = ∅ or L′

E = ∅. When
constructing the universal ℓ-division for LE = ∅, we proceed as if LE = {ℓ}.

Lemma 78. Let LE ∩L′
E = {ℓ} and let ( ˆ︁B∗, ˆ︁B′

∗) be the universal ℓ-division of ˆ︁A
with respect to (H,H ′). If ˆ︁A has an ℓ-division ( ˆ︁B, ˆ︁B′) such that both H and H ′

have connected labeled embeddings HL, H′
L satisfying ˆ︁B, ˆ︁B′, then HL, H′

L also
satisfy ˆ︁B∗, ˆ︁B′

∗.

Proof. We need to check that HL, H′
L satisfy ρˆ︁B∗

(w), ρˆ︁B′
∗
(w) for w ∈ {u, v}. We

distinguish four cases based on ρ ˆ︁A(w).

(i) ρ ˆ︁A(w) does not contain any items of X and X ′. Then both ρˆ︁B∗
(w) and

ρˆ︁B′
∗
(w) are empty, so they are always satisfied.

(ii) ρ ˆ︁A(w) contains an item of X, but there is no item of X ′. In this case
ρˆ︁B∗

(w) = ρ ˆ︁A(w) and ρˆ︁B′
∗
(w) is empty.

ρˆ︁B′(w) can cover at most one occurrence of ℓ from ρ ˆ︁A(w). And even then
the there would be evirt

G (H) in ρˆ︁B(w) replacing the covered occurrence of ℓ,
which would enforce the presence of ℓ anyway.

(iii) ρ ˆ︁A(w) contains an item of X ′, but there is no item of X. This is symmetric
to the case (ii).

(iv) ρ ˆ︁A(w) contains an item of X and also an item of X ′. Then ρˆ︁B∗
(w) =

(τ, evirt
G (H)) and ρˆ︁B′

∗
(w) = (τ ′, evirt

G (H ′)).
Lemma 74 implies that τ is contained in ρˆ︁B(w) and τ ′ in ρˆ︁B′(w). Therefore,
the rotation schemes ρˆ︁B(w), ρˆ︁B′(w) can differ from ρˆ︁B∗

(w), ρˆ︁B′
∗
(w) only by

several appearances of ℓ next to the edges evirt
G (H), evirt

G (H ′). But these
occurrences of ℓ are not necessary (Lemma 27).

4.3.2.2 Two labels in the intersection

The situation LE ∩ L′
E = {ℓ1, ℓ2} is a bit more complicated. First, we have to

decide whether we look for an (ℓ1, ℓ2)-division or an (ℓ2, ℓ1)-division. This can be
done in linear time with respect to the size of H using Lemmata 25 and 63.

Next, we check that neither ρ ˆ︁A(u) nor ρ ˆ︁A(v) are (ℓ1, ℓ2)-crossing. Otherwise,
based on Lemma 26 there is no connected labeled embedding satisfying ˆ︁A.

After that, there can still be two nonequivalent options on how to split the
rotation scheme ρ ˆ︁A(u) so that it is not in a contradiction with Lemma 74. Thus,
in this case, we have a set of universal divisions containing at most 4 elements.
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Definition 79. Let LE ∩ L′
E = {ℓ1, ℓ2} and let X = E(H) ∪ (LE \ L′

E) and
X ′ = E(H ′)∪ (L′

E \LE). For w ∈ {u, v} we define two pairs of rotation schemes
(ρ1(w), ρ′

1(w)), (ρ2(w), ρ′
2(w)) as follows:

(i) If ρ ˆ︁A(w) does not contain any items of X and X ′,
then both ρ1(w) and ρ′

1(w) are empty.

(ii) If ρ ˆ︁A(w) contains an item of X and there is no item of X ′,
then ρ1(w) = ρ ˆ︁A(w) and ρ′

1(w) is empty.

(iii) If ρ ˆ︁A(w) contains an item of X ′ and there is no item of X,
then ρ1(w) is empty and ρ′

1(w) = ρ ˆ︁A(w).

(iv) Otherwise ρ ˆ︁A(w) contains an item of X and also an item of X ′. ρ ˆ︁A(w)
can be uniquely decomposed as the cyclic sequence (τ, λ, τ ′, λ′) according to
Corollary 76. We further distinguish several subcases based on the values of
λ and λ′. In the following enumeration we assume that w = u. For w = v
it is necessary to swap the labels ℓ1 and ℓ2.

(a) If ρ ˆ︁A(w) ∈ {(τ, τ ′), (ℓ1, τ, τ
′), (τ, ℓ2, τ

′), (ℓ1, τ, ℓ2, τ
′)},

then ρ1(w) = (τ, evirt
G (H)) and ρ′

1(w) = (evirt
G (H ′), τ ′).

(b) If ρ ˆ︁A(w) ∈ {(ℓ1, ℓ2, τ, τ
′), (ℓ1, ℓ2, τ, ℓ2, τ

′)},
then ρ1(w) = (ℓ2, τ, e

virt
G (H)) and ρ′

1(w) = (evirt
G (H ′), τ ′).

(c) If ρ ˆ︁A(w) ∈ {(ℓ2, ℓ1, τ, τ
′), (ℓ2, ℓ1, τ, ℓ2, τ

′)},
then ρ1(w) = (τ, evirt

G (H)) and ρ′
1(w) = (ℓ2, e

virt
G (H ′), τ ′).

(d) If ρ ˆ︁A(w) ∈ {(τ, ℓ2, ℓ1, τ
′), (ℓ1, τ, ℓ2, ℓ1, τ

′)},
then ρ1(w) = (τ, evirt

G (H)) and ρ′
1(w) = (evirt

G (H ′), ℓ1, τ
′).

(e) If ρ ˆ︁A(w) ∈ {(τ, ℓ1, ℓ2, τ
′), (ℓ1, τ, ℓ1, ℓ2, τ

′)},
then ρ1(w) = (τ, ℓ1, e

virt
G (H)) and ρ′

1(w) = (evirt
G (H ′), τ ′).

(f) If ρ ˆ︁A(w) ∈ {(ℓ1, ℓ2, τ, ℓ1, τ
′), (ℓ2, τ, ℓ2, ℓ1, τ

′), (ℓ1, ℓ2, τ, ℓ2, ℓ1, τ
′)},

then ρ1(w) = (ℓ2, τ, e
virt
G (H)) and ρ′

1(w) = (evirt
G (H ′), ℓ1, τ

′).
(g) If ρ ˆ︁A(w) ∈ {(ℓ2, ℓ1, τ, ℓ1, τ

′), (ℓ2, τ, ℓ1, ℓ2, τ
′), (ℓ2, ℓ1, τ, ℓ1, ℓ2, τ

′)},
then ρ1(w) = (τ, ℓ1, e

virt
G (H)) and ρ′

1(w) = (ℓ2, e
virt
G (H ′), τ ′).

(h) If ρ ˆ︁A(w) ∈ {(ℓ2, ℓ1, ℓ2, τ, τ
′), (ℓ2, ℓ1, ℓ2, τ, ℓ2, τ

′)},
then ρ1(w) = (ℓ2, τ, e

virt
G (H)) and ρ′

1(w) = (ℓ2, e
virt
G (H ′), τ ′).

(i) If ρ ˆ︁A(w) ∈ {(τ, ℓ1, ℓ2, ℓ1, τ
′), (ℓ1, τ, ℓ1, ℓ2, ℓ1, τ

′)},
then ρ1(w) = (τ, ℓ1, e

virt
G (H)) and ρ′

1(w) = (evirt
G (H ′), ℓ1, τ

′).
(j) If ρ ˆ︁A(w) ∈ {(τ, ℓ1, τ

′), (ℓ1, τ, ℓ1, τ
′)},

then ρ1(w) = (τ, ℓ1, e
virt
G (H)), ρ′

1(w) = (evirt
G (H ′), τ ′)

and ρ2(w) = (τ, evirt
G (H)), ρ′

2(w) = (evirt
G (H ′), ℓ1, τ

′).
(k) If ρ ˆ︁A(w) ∈ {(ℓ2, τ, τ

′), (ℓ2, τ, ℓ2, τ
′)},

then ρ1(w) = (ℓ2, τ, e
virt
G (H)), ρ′

1(w) = (evirt
G (H ′), τ ′)

and ρ2(w) = (τ, evirt
G (H)), ρ′

2(w) = (ℓ2, e
virt
G (H ′), τ ′).

(l) If ρ ˆ︁A(w) = (ℓ2, τ, ℓ1, τ
′),

then ρ1(w) = (ℓ2, τ, e
virt
G (H)), ρ′

1(w) = (evirt
G (H ′), ℓ1, τ

′)
and ρ2(w) = (τ, ℓ1, e

virt
G (H)), ρ′

2(w) = (ℓ2, e
virt
G (H ′), τ ′).
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If (ρ2(w), ρ′
2(w)) is not mentioned, then (ρ2(w), ρ′

2(w)) = (ρ1(w), ρ′
1(w)).

Let D be the set of (ℓ1, ℓ2)-divisions of A with respect to (H,H ′) such that for
w ∈ {u, v} (ρˆ︁B(w), ρˆ︁B′(w)) ∈ {(ρ1(w), ρ′

1(w)), (ρ2(w), ρ′
2(w))}. D is called the set

of universal (ℓ1, ℓ2)-divisions of ˆ︁A with respect to (H,H ′).

Remark. Note that the universal division may not form proper divisions according
to Definition 70, because there might be some missing occurrences of ℓ1 and ℓ2 in
the rotation schemes of vertices u and v. However, the omitted instances of ℓ1,
ℓ2 were not necessary. We can construct an equivalent proper division from each
universal division by applying Lemma 27.

Lemma 80. Let LE ∩ L′
E = {ℓ1, ℓ2} and let D be the set of universal (ℓ1, ℓ2)-

divisions of ˆ︁A with respect to (H,H ′). If ˆ︁A has a (ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A
such that both H and H ′ have connected labeled embeddings HL, H′

L satisfying ˆ︁B,ˆ︁B′, then there is ( ˆ︁B∗, ˆ︁B′
∗) ∈ D such that HL, H′

L also satisfy ˆ︁B∗, ˆ︁B′
∗.

Proof. We need to check that HL satisfies ρ1(w) or ρ2(w) and that H′
L satisfies

ρ′
1(w) or ρ′

2(w) for w ∈ {u, v}. We distinguish several cases based on ρ ˆ︁A(w).

(i) ρ ˆ︁A(w) does not contain any items of X and X ′. Then both ρ1(w) and ρ′
1(w)

are empty, so they are always satisfied.

(ii) ρ ˆ︁A(w) contains an item of X, but there is no item of X ′. In this case we
put ρ1(w) = ρ ˆ︁A(w) and ρ′

1(w) is empty.
ρˆ︁B′(w) can cover only a consecutive sequence of labels ℓ1, ℓ2 from ρ ˆ︁A(w).
More precisely, it can cover one of the sequences (ℓ1), (ℓ2), (ℓ2, ℓ1). The
sequence (ℓ1, ℓ2) together with the edge evirt

G (H ′) would create the cyclic
sequence (ℓ1, ℓ2, ℓ1, ℓ2) which is forbidden by Lemma 26.
If ρˆ︁B′(w) is not empty, then there must be evirt

G (H) in ρˆ︁B(w) replacing the
continuous subsequence covered by ρˆ︁B′(w). But, evirt

G (H) enforces the pres-
ence of ℓ2 and ℓ1 next to itself. Therefore, ρ1(w) is still a subsequence of
ρHL

(u).

(iii) ρ ˆ︁A(w) contains an item of X ′, but there is no item of X. This is symmetric
to case (ii).

(iv) ρ ˆ︁A(w) contains an item of X and also an item of X ′. Then we can exam-
ine all the feasible divisions of ρ ˆ︁A(w) that do not contain a subsequence
(ℓ1, ℓ2, ℓ1, ℓ2) even if we include the labels incident to evirt

G (H) and evirt
G (H ′).

We find out that every such division is equivalent (in the sense of Lemma
25) to (ρ1(w), ρ′

1(w)) or (ρ2(w), ρ′
2(w)).

4.3.2.3 No labels in the intersection

The last case is the situation when LE = ∅ or L′
E = ∅. We show that in this setting

there are at most two universal divisions covering all the satisfiable options.

Lemma 81. If LE = ∅ or L′
E = ∅, then there exists a set of labels LP ⊆

(LE ∪ L′
E ∪ {⋆}) such that |LP | ≤ 2 and
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(i) for each p ∈ P there exists the universal p-division ( ˆ︁Bp, ˆ︁B′
p) of ˆ︁A w.r.t.

(H,H ′),

(ii) if there exists a label ℓ ∈ (LE ∪ L′
E) such that H and H ′ have connected

labeled embeddings HL and H′
L satisfying the restrictions of an ℓ-division ofˆ︁A w.r.t. (H,H ′), then there is p ∈ LP such that HL satisfies ˆ︁Bp and H′

L

satisfies ˆ︁B′
p.

Proof. Without loss of generality, we suppose that LE = ∅. Since ˆ︁A has labeled
opaque edges, then all the edges of H except for evirt

G (H) are transparent. There-
fore, each labeled embedding of H satisfying a division of ˆ︁A must have all the
faces tagged by one common label. We investigate for which parental labels ℓ
there exists an ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such that both H and H ′ have connected
labeled embeddings satisfying ˆ︁B and ˆ︁B′.

If there is a vertex w ∈ (V (H)\{u, v}) with a label x appearing in ρ ˆ︁A(w) then
x is the only possible choice for a satisfiable division. Other labels cannot succeed.
So if there is a label present in the rotation schemes of vertices of (V (H)\{u, v}),
we get at most one candidate for the parental label.

Further, we look at the constraints induced by the rotation schemes ρ ˆ︁A(u)
and ρ ˆ︁A(v). These rotation schemes can contain edges of E(H), labels of L′

E and
edges of E(H ′). Let us consider all the possible compositions of ρ ˆ︁A(u). The
situation for vertex v is identical. We show that either ρ ˆ︁A(u) can be partitioned
to two intervals ρ and ρ′, where ρ contains the edges of E(H) and ρ′ the edges of
E(H ′) plus the labels of L′

E, or ρ ˆ︁A(u) limits us to at most two candidates for the
parental label.

(i) If ρ ˆ︁A(u) does not contain any edges of E(H), then we get the described
partition by leaving ρ empty and putting ρ′ = ρ ˆ︁A(u).

(ii) If ρ ˆ︁A(u) contains an edge of E(H) and also an edge of E(H ′), then ρ ˆ︁A(u)
can be partitioned to two intervals τ, τ ′ such that τ contains all the edges
of E(H), it starts and ends with an edge of E(H) and it does not contain
any edge of E(H ′). In every division ( ˆ︁B, ˆ︁B′) of ˆ︁A with respect to (H,H ′)
the interval τ is included in ρˆ︁B(u). Thus, if there is a label x in τ , then x is
the only possibility for the parental label.
Otherwise, we get the described partition by putting ρ = τ and ρ′ = τ ′.

(iii) If ρ ˆ︁A(u) does not contain any edges of E(H ′) and any labels of L′
E, then we

get the described partition by putting ρ = ρ ˆ︁A(u) and leaving ρ′ empty.

(iv) Otherwise ρ ˆ︁A(u) contains an edge of E(H) and a label of L′
E, but it does

not contain any edge of E(H ′). Therefore, there is t ≥ 1 such that ρ ˆ︁A(u) =
(ε1, λ1, ε2, λ2, . . . , εt, λt) where ε1, . . . , εt are intervals formed by the edges of
E(H) and λ1, . . . , λt are intervals of labels of L′

E. In every division ( ˆ︁B, ˆ︁B′)
of ˆ︁A at least (t−1) of the t intervals λ1, . . . , λt goes to ρˆ︁B(u). So in order to
satisfy ˆ︁B, there must be a label x such that at least (t− 1) of the λ1, . . . , λt

are just the 1-element interval (x). We further distinguish several options:

(a) If t = 1, then independently on the parental label we get the described
partition by putting ρ = ε1 and ρ′ = λ1.
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(b) If t ≥ 3 and there is a label x such that at least (t − 1) intervals of
λ1, . . . , λt are just 1-element interval (x), then x is the only possible
choice for the parental label.

(c) If t = 2 and there are two different labels x, y such that λ1 = (x) and
λ2 = (y), then the parental label must be x or y

(d) If t = 2 and there is a label x such that either λ1 = λ2 = (x), or one
of λ1 and λ2 is (x) and the other contains at least two labels, then x
is the only possibility for the parental label.

Analyzing the candidates for the parental label ℓ we get into one of the four
following states:

(1) We eliminated all of the labels of L′
E. It means that there is no satisfiable

division of ˆ︁A, so we can leave LP = ∅.

(2) There is just one candidate x remaining. We ruled out all the other labels of
L′

E. In this case, we put LP = {x}. If HL and H′
L satisfy an x-division of ˆ︁A,

then they must also satisfy the universal x-division of ˆ︁A.

(3) We are left with two candidates x and y. The other labels of L′
E were ex-

cluded. Then, we put LP = {x, y}.

(4) We did not exclude any candidates for the parental label. However, we have
shown that both ρ ˆ︁A(u) and ρ ˆ︁A(v) can be partitioned to an interval ρ con-
taining just the edges of E(H) and interval ρ′ containing the edges of E(H ′)
plus the labels of L′

E. It means that independently on the parental label ℓ
the universal ℓ-division ( ˆ︁Bℓ, ˆ︁B′

ℓ) of ˆ︁A w.r.t. (H,H ′) does not have labels in
the rotation schemes of ˆ︁Bℓ. The only label appearing in ˆ︁Bℓ is the parental
label at the edge evirt

G (H).

Let ( ˆ︁B⋆, ˆ︁B′
⋆) be the universal ⋆-division of ˆ︁A with respect to (H,H ′). There-

fore, if there exist a label ℓ and an ℓ-division ( ˆ︁B, ˆ︁B′) of ˆ︁A such that both H
and H ′ have connected labeled embeddings HL, H′

L satisfying ˆ︁B and ˆ︁B′, then
HL and H′

L satisfy ˆ︁B⋆ and ˆ︁B′
⋆. Hence, we can put LP = {⋆}.

We can find the set LP in linear time with respect to the size of H. In the
case (4) we get a ⋆-division that is not covered by Lemma 73. However, it does
not matter. If H and H ′ have connected labeled embeddings H⋆, H′

⋆ satisfyingˆ︁B⋆, ˆ︁B′
⋆, then we can put p = lH′

⋆
(evirt

G (H ′)) and relabel H⋆ by p, getting a pair
of connected labeled embeddings that satisfies the universal p-division of ˆ︁A w.r.t.
(H,H ′).

Also notice that if LE = ∅, then the edge evirt
G (H) in the universal ⋆-division

might be opaque with no labels for its incident edges. But in this case there
is just one opaque edge in H, so we can make it transparent and preserve the
labeled opaque edges property.
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Algorithm 6: A faster exponential algorithm for AERCS of biconnected
graphs.

input : A biconnected graph G, an augmented embedding restriction ˆ︁A of G with
labeled opaque edges.

1 function AERCS exp II(G, ˆ︁A):
2 if

⃓⃓⃓
{the labels prescribed by l ˆ︁A, r ˆ︁A}⃓⃓⃓ ≤ 1 :

3 if
⃓⃓⃓
{the labels prescribed by l ˆ︁A, r ˆ︁A, ρ ˆ︁A}⃓⃓⃓ ≥ 2 : return false;

4 else return ERCS biconnected(G, omit labels( ˆ︁A));

5 if G is an [SPQR]-skeleton : return AERCS skeleton(G, ˆ︁A);
6 {u, v} ← a separation pair of G;
7 (H,H ′)← a simple pair of split graphs w.r.t. {u, v};
8 if (H,H ′) is not ˆ︁A-non-crossing : return false;
9 LE ← {l ˆ︁A(e), r ˆ︁A(e) | e ∈ E(H) ∩ E(G)} \ {⋆};

10 L′
E ← {l ˆ︁A(e), r ˆ︁A(e) | e ∈ E(H ′) ∩ E(G)} \ {⋆};

11 X ← E(H) ∪ LE \ L′
E ; X ′ ← E(H ′) ∪ L′

E \ LE ;
12 if |LE ∩ L′

E | ≥ 3 : return false;
13 if |LE | > 0 and |L′

E | > 0 and |LE ∩ L′
E | = 0 : return false;

14 if |L ∩ L′| = {ℓ} :
15 if ρ ˆ︁A(u) or ρ ˆ︁A(v) is not (X,X ′)-non-crossing : return false;
16 if both H and H ′ are not ℓ-passable : return false;
17 ( ˆ︁B, ˆ︁B′)← the universal ℓ-division of ˆ︁A w.r.t. (H,H ′);
18 if AERCS exp II(H, ˆ︁B) and AERCS exp II(H ′, ˆ︁B′) : return true ;
19 else if |LE | = 0 or |L′

E | = 0 :
20 LP ← the set of labels from Lemma 81;
21 foreach label p ∈ LP :
22 ( ˆ︁B, ˆ︁B′)← the universal p-division of ˆ︁A w.r.t. (H,H ′);
23 if AERCS exp II(H, ˆ︁B) and AERCS exp II(H ′, ˆ︁B′) : return true ;

24 else
25 {ℓ1, ℓ2} ← LE ∩ L′

E ;
26 if ρ ˆ︁A(u) or ρ ˆ︁A(v) is not (X,X ′)-non-crossing : return false;
27 ˆ︁R ← omit labels in rotation schemes( ˆ︁A);
28 if local Euler test(H, ˆ︁R[H, ℓ1, ℓ2], u, ℓ1) : (x, y)← (ℓ1, ℓ2);
29 else (x, y)← (ℓ2, ℓ1);
30 foreach universal (x, y)-divisions ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t. (H,H ′) :
31 if AERCS exp II(H, ˆ︁B) and AERCS exp II(H ′, ˆ︁B′) :
32 return true;

33 return false;

4.3.2.4 A faster exponential algorithm

We can design a faster exponential-time algorithm utilizing Lemmata 78, 80 and
81. Algorithm 6 tries at most 4 divisions at every recursion level, so its time
complexity is |E(G)| · 4O(|V (G)|).

4.3.3 Merging restrictions
We further improve Algorithm 6, so that it runs in polynomial time. The revision
is based on two ideas.
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The first one is that we always select the separation pair {u, v} and the simple
pair of split graphs (H,H ′) in such a way that H is an [SPR]-skeleton. This allows
us to solve quickly the subproblem for H. Therefore, for each universal division
we only have to make the recursive call for H ′.

The second notion is more complicated. We show that in cases with multiple
universal divisions it is possible to process all the subproblems for H ′ simulta-
neously. Hence, the function solving AERCS(G, ˆ︁A) does not have to make more
than one recursive call.

Let us look at the cases that produce more than one universal division.

4.3.3.1 Bicolored edges

We start with the situation LE = ∅. The algorithm generates two universal
divisions ( ˆ︁Bx, ˆ︁B′

x) and ( ˆ︁By, ˆ︁B′
y) of ˆ︁A with respect to (H,H ′), only if there exists

w ∈ {u, v} such that ρ ˆ︁A(w) = (ε1, x, ε2, y), where ε1, ε2 are sequences of edges of
E(H) and x, y ∈ L′

E. The rotation scheme of the second vertex w′ of {u, v} must
be either (ε3, x, ε4, y) or (ε5, τ

′), where ε3, ε4, ε5 are sequences of edges of E(H),
ε5 might be empty, and τ ′ is a sequence of edges of E(H ′) and labels of L′

E. The
universal divisions satisfy the following conditions.

• lˆ︁Bx
(evirt

G (H)) = rˆ︁Bx
(evirt

G (H)) = lˆ︁B′
x
(evirt

G (H ′)) = rˆ︁B′
x
(evirt

G (H ′)) = x,
ρˆ︁Bx

(w) = (ε1, x, ε2, e
virt
G (H)), ρˆ︁B′

x
(w) = (evirt

G (H ′), y).

• lˆ︁By
(evirt

G (H)) = rˆ︁By
(evirt

G (H)) = lˆ︁B′
y
(evirt

G (H ′)) = rˆ︁B′
y
(evirt

G (H ′)) = y,
ρˆ︁By

(w) = (ε1, y, ε2, e
virt
G (H)), ρˆ︁B′

y
(w) = (evirt

G (H ′), x).

Notice that both ρˆ︁B′
x
(w) and ρˆ︁B′

y
(w) are equivalent to (x, y). Therefore, we can

replace ˆ︁B′
x and ˆ︁B′

y by equivalent augmented embedding restrictions ˆ︁C ′
x and ˆ︁C ′

y

that differ only in the labels of the edge evirt
G (H ′).

If ρ ˆ︁A(w′) = (ε3, x, ε4, y), then not only we have to replace ρˆ︁B′
x
(w) and ρˆ︁B′

y
(w)

by the equivalent cyclic sequence (x, y), but we must also substitute for ρˆ︁B′
x
(w′)

and ρˆ︁B′
y
(w′). Otherwise, ρˆ︁B′

x
(w′) and ρˆ︁B′

y
(w′) are already identical.

The little difference of ˆ︁C ′
x and ˆ︁C ′

y motivates us to merge these two restrictions
into a single object.

Definition 82. Let ˆ︁A be an augmented embedding restriction of a graph G. A
bicolored edge of ˆ︁A is a triplet (e, x, y), where e ∈ T ˆ︁A is an transparent edge and
x, y are labels of ˆ︁A.

Further, let Q ˆ︁A be a set of bicolored edges. An augmented embedding restric-
tion ˆ︁E is an expansion of ( ˆ︁A, Q ˆ︁A) if for each (e, x, y) ∈ Q ˆ︁A there exists a label
ℓe ∈ {x, y} such that ˆ︁E is the embedding restriction derived from ˆ︁A by setting
lˆ︁E(e) = rˆ︁E(e) = ℓe for all the bicolored edges of Q ˆ︁A.

A (connected) labeled embedding satisfies ( ˆ︁A, Q ˆ︁A) if it satisfies an expansion
of ( ˆ︁A, Q ˆ︁A).

Corollary 83. Let ˆ︁C ′ be the augmented embedding restriction obtained from ˆ︁C ′
x by

setting lˆ︁C′(evirt
G (H ′)) = rˆ︁C′(evirt

G (H ′)) = ⋆ and let Qˆ︁C′ = {(evirt
G (H ′), x, y)}. Then

a (connected) labeled embedding of H ′ satisfies ˆ︁B′
x or ˆ︁B′

y iff it satisfies ( ˆ︁C ′, Qˆ︁C′).

54



The intuition for the cases with LE = ∅, which have two universal divisions,
is to first solve AERCS(H, ˆ︁Bx) and AERCS(H, ˆ︁By). If both of them fails, then
we reject. Else if only one of them succeeds, then we can focus on the one corre-
sponding instance for H ′. Else we construct the augmented embedding restrictionˆ︁C ′ from Corollary 83 and we continue solving AERCS(H ′, ˆ︁C ′) with the bicolored
edge evirt

G (H ′).
We have a different strategy for L′

E = ∅. If we receive two universal divi-
sions ( ˆ︁Bx, ˆ︁B′

x) and ( ˆ︁By, ˆ︁B′
y) of ˆ︁A with respect to (H,H ′), then each of ˆ︁B′

x andˆ︁B′
y contains at most one unique label. Therefore, we can solve AERCS(H, ˆ︁B′

x)
and AERCS(H, ˆ︁B′

y) in polynomial time as ERCS instances without labels. And
AERCS(H, ˆ︁Bx) and AERCS(H, ˆ︁By) are already solvable in polynomial time be-
cause H is an [SPR]-skeleton. Hence, we do not have to make any recursive call
in this case.

Let b = (e, x, y) be a bicolored edge of ˆ︁A. If ˆ︁A has labeled opaque edges and
there is at least one label present in ˆ︁A, then it might be possible to exclude some
of the labels of b. If the label x does not appear in ˆ︁A, then the expansion of b
to x cannot yield a satisfiable augmented embedding restriction. Therefore, it
makes sense to regularize the bicolored edges. If we manage to exclude both of
the labels, then there is no satisfiable expansion. And if we eliminated just one of
the labels, then we can automatically perform the expansion to the second label.

4.3.3.2 Flipping anchors and paths

The last situation that needs to be investigated is LE ∩ L′
E = {ℓ1, ℓ2}. We

observe that if the set of universal divisions has more than one element, then
these universal divisions differ only in the labels appearing next to the edges
evirt

G (H), evirt
G (H ′) in the rotation schemes ρˆ︁B(u), ρˆ︁B′(u) and ρˆ︁B(v), ρˆ︁B′(v). Again

we would like to merge the relevant restrictions for H ′ into one single object.

Definition 84. Let ˆ︁A be an augmented embedding restriction of a graph G and
let e ∈ (E(G) \ T ˆ︁A), e = (w,w′), be an opaque edge of G such that l ˆ︁A(e) = x,
r ˆ︁A(e) = y, x ̸= y and e is anchored at ρ ˆ︁A(w). Next, let R ⊆ {(e), (x, e), (e, y)},
|R| ≥ 2, be the list of possible expansions. The triplet (w, e,R) is called a flipping
anchor of ˆ︁A.

Further, let O ˆ︁A be a set of flipping anchors of ˆ︁A. An augmented embedding
restriction ˆ︁E is an expansion of ( ˆ︁A, O ˆ︁A) if for each (we, e, Re) ∈ O ˆ︁A there exists
ϕe ∈ Re such that ˆ︁E is the restriction derived from ˆ︁A by replacing the edge e in
ρ ˆ︁A(we) by ϕe for all the anchors of O ˆ︁A. If the substitution produces a rotation
scheme with two consecutive occurrences of the same label, then we merge these
appearances of the same label into one.

A (connected) labeled embedding satisfies ( ˆ︁A, O ˆ︁A) if it satisfies an expansion
of ( ˆ︁A, O ˆ︁A).

Flipping anchors can be used in situations when the universal divisions differ
only in the rotation scheme of one of the separation vertices. However, the uni-
versal divisions may diverge in the rotation schemes of both vertices. These cases
can be covered by pairing two flipping anchors together.
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Figure 4.4: A flipping anchor (u, e, {(e, A), (B, e)}) of an embedding restrictionˆ︁A and its two possible expansions. Note that the expansion on the right side can
be satisfied, whereas the expansion on the left cannot.

Definition 85. Let ˆ︁A be an augmented embedding restriction of a graph G and
let a = (wa, ea, Ra), b = (wb, eb, Rb) be two flipping anchors. Next, let p be a trail
from wa to wb containing only opaque edges of G such that

(i) the first edge of p is ea, the last edge is eb,

(ii) for each edge e of p it holds that l ˆ︁A(e) ̸= r ˆ︁A(e),

(iii) for each pair of consecutive edges e, e′ of p, e = {w,w′}, e′ = {w′, w′′}, the
edges e and e′ are adjacent in ρ ˆ︁A(w′). Moreover, if we orient the edges e,
e′ from w′ outwards and ρ ˆ︁A(w′) = (ϕ, e′, e) for a possibly empty sequence ϕ,
then l ˆ︁A(e) = r ˆ︁A(e′), and in the label ordering graph of w′ in ˆ︁A there is no
directed path from r ˆ︁A(e) to l ˆ︁A(e) avoiding l ˆ︁A(e′).
If ϕ is empty, then it is enough when the condition holds for one of the
two possible directions. (I.e. if l ˆ︁A(e) = r ˆ︁A(e′), then it is not necessary that
r ˆ︁A(e) = l ˆ︁A(e′).)

Next, let R ⊆ (Ra × Rb), |R| ≥ 2. The quadruplet (a, b, p, R) is called a flipping
path of ˆ︁A.

Further, let P ˆ︁A be a set of flipping paths of ˆ︁A. An augmented embedding
restriction ˆ︁E is an expansion of ( ˆ︁A, P ˆ︁A) if for each (ap, bp, p, Rp) ∈ P ˆ︁A, ap =
(wap, eap, Rap), bp = (wbp, ebp, Rbp), there exists (ϕp, ϕ

′
p) ∈ Rp such that ˆ︁E is the

augmented embedding restriction derived from ˆ︁A by replacing the edge eap in
ρ ˆ︁A(wap) by ϕp and the edge ebp in ρ ˆ︁A(wbp) by ϕ′

p for all the flipping edges of P ˆ︁A.
If the substitution produces a rotation scheme with two consecutive occurrences
of the same label, then we merge these appearances of the same label into one.

A (connected) labeled embedding satisfies ( ˆ︁A, P ˆ︁A) if it satisfies an expansion
of ( ˆ︁A, P ˆ︁A).

A flipping path of ˆ︁A is based on a trail p, so it can visit one vertex multiple
times. However, if this is the case, then there is no connected labeled embedding
satisfying ˆ︁A. (The trail p contains a cycle C such that for each edge e of C it
holds that l ˆ︁A(e) ̸= r ˆ︁A(e). Furthermore, the conditions from the definition ensure
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Figure 4.5: An embedding restriction with a flipping path (trail). The edges of
the flipping path are highlighted in black.

that in each labeled embedding of G satisfying ˆ︁A has a label ℓ tagging a face
located inside C and a face outside C.) Therefore, it make sense to talk just
about flipping paths instead of flipping trails.

The point (iii) of Definition 85 seems very complicated. Especially, the part
about no directed path from r ˆ︁A(e) to l ˆ︁A(e) avoiding l ˆ︁A(e′) in the label ordering
graph of w′ in ˆ︁A is quite perplexing. Basically, this condition says that in each
connected labeled embedding GL of G satisfying ˆ︁A there is no face incident to the
vertex w′ and tagged by the label l ˆ︁A(e) between the edges e′ and e in the counter-
clockwise direction. If there was such a face, then (e′, l ˆ︁A(e′), l ˆ︁A(e), r ˆ︁A(e), e, l ˆ︁A(e))
would be a subsequence of the augmented rotation scheme ρGL

(w′). However,
the condition implies that, there must be another occurrence of the label l ˆ︁A(e′)
between l ˆ︁A(e) and r ˆ︁A(e). Therefore, (l ˆ︁A(e′), l ˆ︁A(e), l ˆ︁A(e′), l ˆ︁A(e)) would be a sub-
sequence of ρGL

(w′) and this is a contradiction with the connectivity of GL.

Notice that if there is a standalone flipping anchor (w, e,R) such that ϕ ∈ R,
ψ ∈ R and ϕ is a subsequence of ψ, then the expansion to ψ is redundant. If a
labeled embedding GL satisfies an expansion with (w, e,R) expanded to ψ, then
GL also satisfies the expansion to ϕ. Moreover, it means that if (e) ∈ R, then the
flipping anchor (w, e,R) is useless.

Similarly for a flipping path (a, b, p, S) such that (ϕ, ϕ′) ∈ S, (ψ, ψ′) ∈ S, ϕ
is a subsequence of ψ and ϕ′ is a subsequence of ψ′, the expansion to (ψ, ψ′) is
redundant. And if ((ea), (eb)) ∈ S then the flipping path is useless.

Further in the text, we assume that all the flipping anchors and flipping paths
do not contain redundant expansions. Otherwise, we can regularize them by
removing the unnecessary expansions. Moreover, if a flipping anchor (path) allows
only one expansion after the regularization, then we perform this expansion and
remove the anchor (path) from the set of flipping anchors (paths). And if a
flipping path (a, b, p, R) admits only one expansion of the anchor a (or b) then we
undertake the expansion and change the flipping path to a flipping anchor.

Also if a flipping anchor (w, e,R) of ˆ︁A allows the expansion of e to (x, e) for
a label x and if there already is an occurrence of x immediately preceding e in
ρ ˆ︁A(w), then the label x in the expansion (x, e) is not necessary and we can remove
it during the regularization.
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4.3.3.3 A*ERCS problem

We define a new problem by adding sets of bicolored edges, flipping anchors and
paths to an augmented embedding restriction.

Definition 86. Let ˆ︁A be an augmented embedding restriction of a graph G, O ˆ︁A
a set of flipping anchors of ˆ︁A, P ˆ︁A a set of flipping paths of ˆ︁A and Q ˆ︁A a set
of bicolored edges of ˆ︁A. An augmented embedding restriction ˆ︁E is an expansion
of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) if there exist augmented embedding restriction ˆ︁E1, ˆ︁E2 such
that ˆ︁E1 is an expansion of ( ˆ︁A, O ˆ︁A), ˆ︁E2 is an expansion of ( ˆ︁E1, P ˆ︁A) and ˆ︁E is an
expansion of ( ˆ︁E2, Q ˆ︁A). A (connected) labeled embedding satisfies ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A)
if it satisfies an expansion of ( ˆ︁A, P ˆ︁A, Q ˆ︁A).

Problem 87 (A*ERCS).
Input: A biconnected graph G, an augmented embedding restriction ˆ︁A of G with
labeled opaque edges, a set of flipping anchors O ˆ︁A, a set of edge-disjoint flipping
paths P ˆ︁A that is also disjoint with the edges of the flipping anchors of O ˆ︁A, a set
of bicolored edges Q ˆ︁A.
Question: Does there exist a connected labeled embedding GL of G satisfying
( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A)?

4.3.4 A*ERCS of biconnected graphs
We derive a polynomial algorithm solving the A*ERCS instances with a limited
number of bicolored edges. The algorithm employs the same divide-and-conquer
notion as in the ERCS problem. Again, we start with the SPQR skeletons and
later we describe how to divide the problem for a simple pair of split graphs.

Lemma 88. Let G be an [SQR]-skeleton, ˆ︁A an augmented embedding restric-
tion of G with labeled opaque edges, O ˆ︁A a set of flipping anchors, P ˆ︁A a set of
edge disjoint flipping paths and Q ˆ︁A a set of bicolored edges. Then the instance
A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) can be solved in linear time.

Proof. [SQR]-skeletons have only a constant number of planar embeddings and
all of them can be found in linear time with respect to the size of G. So we can
afford to try all of them.

Let G be a planar embedding of G. Based on Lemma 48 (ii) we distinguish
three cases.

(i) There is no connected face-labeling function g such that the connected
labeled embedding (G, g) satisfies ˆ︁A. Then apparently there is no connected
labeled embedding satisfying ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A).

(ii) There is just one connected face-labeling function g such that the labeled
embedding (G, g) satisfies ˆ︁A. We further need to check the conditions of the
flipping anchors, paths and bicolored edges. For each bicolored edge, we verify
its incident labels in constant time.

For each flipping anchor (w, e,R) ∈ O ˆ︁A we examine the surrounding of the
edge e in the augmented rotation scheme ρ(G,g)(w). We do not have to travel
beyond the neighbors of e in ρ ˆ︁A(w). Notice that even if e is adjacent to a label x
in ρ ˆ︁A(w), we can stop the investigation at the first occurrence of x in ρ(G,g)(w) we
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encounter, because g is connected and so there cannot be a subsequence (x, y, x, y)
in ρ(G,g)(u) for a label y.

We can check each flipping anchor independently on the others. If for a vertex
w there are two neighboring flipping anchors (w, e1, R1) and (w, e2, R2) in ρ ˆ︁A(w)
such that l ˆ︁A(e1) = ℓ1 and r ˆ︁A(e2) = ℓ2, then (e2, ℓ1, ℓ2, e1) cannot be a subsequence
of ρG,g(w). So if we find occurrences of the labels ℓ1 and ℓ2 between e1 and e2
that satisfy the conditions of these flipping anchors then the appearances of ℓ1
and ℓ2 cannot cross each other.

Therefore, we are able to verify the fulfillment of the conditions induced by
the flipping anchors of Q ˆ︁A in time linear with the total length of the augmented
rotation schemes of (G, g).

For a flipping path (a, b, p, R) we first independently investigate which expan-
sions of the anchors a and b are satisfied. Then in constant time, we compare the
lists of satisfied expansions with R. So the fulfillment of the flipping paths can
be also checked in linear time with the size of (G, g).

In total the test whether (G, g) satisfies ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) can be done in
O(|V (G)|+ |E(G)|+

⃓⃓⃓
Q ˆ︁A ⃓⃓⃓

).
(iii) All the edges of ˆ︁A are transparent and there is no label appearing in ˆ︁A.

Then for each label ℓ the labeled embedding (G, g) satisfies ˆ︁A where g is the face-
labeling function that assigns ℓ to all the faces of G. There are no flipping anchors
or borders, so we just need to find out whether there is a label ℓ that would satisfy
all the bicolored edges of Q ˆ︁A. And this can be done in time O(

⃓⃓⃓
Q ˆ︁A ⃓⃓⃓

).

Lemma 89. Let G be a P-skeleton, ˆ︁A an augmented embedding restriction of G
with labeled opaque edges, O ˆ︁A a set of flipping anchors, P ˆ︁A a set of edge-disjoint
flipping paths and Q ˆ︁A a set of bicolored edges such that

⃓⃓⃓
Q ˆ︁A ⃓⃓⃓
∈ O(1). Then the

instance A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) can be solved in polynomial time.

Proof. We assume that O ˆ︁A and P ˆ︁A are regularized. We show that a satisfiable in-
stance for a P-skeleton has only a constant number of flipping anchors and paths.
If the number of flipping anchors and paths exceeds this constant, then we reject.
Otherwise, we can generate all the possible expansions of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) in lin-
ear time. Then we apply Lemma 67 to process these expansions and we accept
if at least one of them is successful. The total time complexity of this algorithm
is polynomial with respect to the size of G. More precisely, the algorithm can be
implemented in time O(|E(G)|6).

Let u, v be the vertices of G and let (u, e, R) be a flipping anchor such that
l ˆ︁A(e) = x and r ˆ︁A(e) = y. Then by definition e must be anchored in ρ ˆ︁A(u). If
there is another edge e′ anchored in ρ ˆ︁A(u) such that l ˆ︁A(e′) ̸= r ˆ︁A(e′), then the
expansions of e to (x, e) and (e, y) in the rotation scheme of u do not lead to a
satisfying connected labeled embedding. The label x or y would be disconnected
because of the edge e′. So the only the expansion to (e) has a chance to succeed.

If (
⃓⃓⃓
O ˆ︁A ⃓⃓⃓

+ 2
⃓⃓⃓
P ˆ︁A ⃓⃓⃓

) ≥ 3 then without loss of generality there are at least two
flipping edges a1 = (u, e1, R1), a2 = (u, e2, R2) at vertex u including the anchors of
the flipping paths. If a1 cannot be expanded to (e1) or a2 to (e2), then the previous
observation implies that there is no connected labeled embedding of G satisfying
( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A). Otherwise, both a1 and a2 must be part of a flipping path,
since regularized flipping anchors forbid expansions without extra labels. The

59



regularized flipping paths also prohibit trivial expansions without extra labels.
Therefore, there must be another two flipping anchors that cannot be expanded
to just the anchored edge. Applying our observation on the new flipping anchors
we find out that there cannot be a connected labeled embedding of G satisfyingˆ︁A.

Open problem 90. Can be A*ERCS solved in polynomial time for P-skeletons
even if the number of bicolored edges is not bounded by a constant?

Let G be a biconnected graph with a separation pair {u, v} and a simple pair
of split graphs (H,H ′) with respect to {u, v}. Further, let ˆ︁A be an augmented
embedding restriction of G with labeled opaque edges, Q ˆ︁A a set of flipping anchors
of ˆ︁A, P ˆ︁A a set of flipping paths of ˆ︁A and Q ˆ︁A a set of bicolored edges of ˆ︁A. We
define the following sets, partitioning O ˆ︁A, P ˆ︁A, Q ˆ︁A into the parts relevant only for
H and H ′.

Definition 91.

LE = {l ˆ︁A(e) | e ∈ E(H)} ∪ {r ˆ︁A(e) | e ∈ E(H)} \ {⋆},
L′

E = {l ˆ︁A(e) | e ∈ E(H ′)} ∪ {r ˆ︁A(e) | e ∈ E(H ′)} \ {⋆},
O = {(w, e,R) ∈ O ˆ︁A | e ∈ E(H)},
O′ = {(w, e,R) ∈ O ˆ︁A | e ∈ E(H ′)},
P = {(a, b, p, R) ∈ P ˆ︁A | p uses only edges of E(H)},
P ′ = {(a, b, p, R) ∈ P ˆ︁A | p uses only edges of E(H ′)},
Pc = P ˆ︁A \ (P ∪ P ′),
Q = {(e, x, y) ∈ Q ˆ︁A | e ∈ E(H)},
Q′ = {(e, x, y) ∈ Q ˆ︁A | e ∈ E(H ′)},
X = E(H) ∪ (LE \ L′

E),
X ′ = E(H ′) ∪ (L′

E \ LE).

Similarly to the AERCS problem we can again presume that |LE ∪ L′
E| ≥ 2.

The labeled embeddings of ˆ︁G satisfying the instances with at most one label in
LE ∪ L′

E must have all the faces tagged by one common label. Furthermore, O ˆ︁A
and P ˆ︁A must be empty. Thus, we can first ignore the labels in ˆ︁A and solve it as
an ERCS instance. If it succeeds, then we verify whether there exists a common
label that is consistent with ˆ︁A and Q ˆ︁A.

4.3.4.1 One label in the intersection

We start with the easiest case LE ∩ L′
E = {ℓ}. In this setting, it is enough to

solve one A*ERCS instance for H and one for H ′.

Lemma 92. Let LE ∩ L′
E = {ℓ}, Pc = ∅ and let ( ˆ︁B, ˆ︁B′) be the universal ℓ-

division of ˆ︁A with respect to (H,H ′). Then G has a connected labeled embedding
satisfying ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) iff H, H ′ have connected labeled embeddings satisfying
( ˆ︁B, O, P,Q), ( ˆ︁B′, O′, P ′, Q′) respectively, and at least one of H and H ′ is ℓ-passable
in ˆ︁B, ˆ︁B′.
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Proof. Let us assume that there are connected labeled embeddings HL and H′
L

satisfying ( ˆ︁B, O, P,Q) and ( ˆ︁B′, O′, P ′, Q′) and that at least one of H and H ′ is
ℓ-passable. Thus there is an expansion ˆ︁D of ( ˆ︁B, O, P,Q) satisfied by HL and
an expansion ˆ︁D′ of ( ˆ︁B′, O, P ′, Q′) satisfied by H′

L. Let ˆ︁E be the expansion of
( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) that expands O ˆ︁A, P ˆ︁A and Q ˆ︁A in the same way as ˆ︁D and ˆ︁D′.
( ˆ︁D, ˆ︁D′) is equivalent to an ℓ-division of ˆ︁E w.r.t. (H,H ′). Thus, Lemma 73 implies
that there is a connected labeled embedding of G satisfying ˆ︁E . ( ˆ︁D, ˆ︁D′) is only
equivalent to a division, because some occurrences of ℓ may be absorbed by the
virtual edges evirt

G (H) and evirt
G (H ′).

The proof of the second implication follows the thought process in the opposite
direction. Let GL be a connected labeled embedding of G satisfying an expansionˆ︁E of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A). Let ( ˆ︁D, ˆ︁D′) be the universal ℓ-division of ˆ︁E w.r.t. (H,H ′).
Then Lemmata 73 and 78 imply that at least one of H and H ′ is ℓ-passable and
that there exist connected labeled embeddings of H and H ′ satisfying ˆ︁D and ˆ︁D′

respectively. Let ˆ︁D∗ and ˆ︁D′
∗ be respectively the expansions of ( ˆ︁B, O, P,Q) and

( ˆ︁B′, O′, P ′, Q′) that expand everything in the same way as ˆ︁E . We just need to
show that ˆ︁D is equivalent to ˆ︁D∗ and ˆ︁D′ to ˆ︁D′

∗.
Except for the rotation schemes of u and v, the restrictions ˆ︁D and ˆ︁D∗ are

identical. Let us investigate the rotation scheme of u. If there are no flipping
anchors in O ˆ︁A and P ˆ︁A producing a label in ˆ︁E , then ρˆ︁D(u) and ρˆ︁D∗

(u) are also
identical. And if there is an anchor b = (u, e, R) that generates a label x in ˆ︁E ,
then we distinguish two situations. If x ̸= ℓ, then the occurrence of x remains
next to the edge e in the division ( ˆ︁D, ˆ︁D′). Else if x = ℓ, then the generated
appearance of ℓ might be absorbed by the virtual edges evirt

G (H) or evirt
G (H ′)

in the division ( ˆ︁D, ˆ︁D′). However, the absorbed label can be restored following
Lemma 27. Therefore ρˆ︁D∗

(u) is equivalent to ρˆ︁D(u).

The previous lemma presumed that there are no flipping paths in Pc. Let us
look at what happens if Pc is not empty.

Lemma 93. If LE ∩ L′
E = {ℓ} and Pc ̸= ∅, then there is no connected labeled

embedding of G satisfying ˆ︁A.

Proof. Let (a, b, p, R) be a flipping path in Pc. Without loss of generality, there are
two consecutive edges e, e′ of p incident to the vertex u such that e ∈ E(H) and
e′ ∈ E(H ′). Let us orient the edges e and e′ from u outwards. We can further
assume that e follows immediately after e′ in the rotation scheme ρ ˆ︁A(u) and
l ˆ︁A(e) = r ˆ︁A(e′) = ℓ. Then the definition of the flipping paths implies that G has
no connected labeled embedding satisfying the augmented embedding restrictionˆ︁A∗, which is identical to ˆ︁A except for an occurrence of the label ℓ inserted between
e and e′ in the rotation scheme of the vertex u. However, ℓ is the only label that
can tag the two faces that are simultaneously incident to the edges of H and H ′ in
every labeled embedding of G satisfying ˆ︁A. Thus, every labeled embedding of G
satisfying ˆ︁A also satisfies ˆ︁A∗. Therefore, there is no connected labeled embedding
of G satisfying ˆ︁A.

4.3.4.2 Flipping anchors

In this section we investigate the flipping anchors incident to the separation ver-
tices in the cases with LE ∩L′

E = {ℓ1, ℓ2}. We consider both the flipping anchors
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of the set O ˆ︁A and the flipping anchors contained in the paths of the set P ˆ︁A. With-
out loss of generality, we can assume that there is no satisfiable (ℓ2, ℓ1)-division
of ˆ︁A, so we can focus only on the (ℓ1, ℓ2)-divisions.

Let b = (w, e,R) be a flipping anchor of ˆ︁A such that w ∈ {u, v}, e ∈ E(H)
and (x, e) ∈ R for a label x. Next, let ˆ︁E be an expansion of ˆ︁A where b is expanded
to (x, e) and let ( ˆ︁D, ˆ︁D′) be a universal (ℓ1, ℓ2)-division of ˆ︁E . Then the occurrence
of x generated by b either stays next to the edge e in the rotation scheme ρˆ︁D(w),
or it traverses to the rotation scheme ρˆ︁D′(w) of the second split graph, or it is
absorbed by the edge evirt

G (H). Moreover, it is possible that x traverses in one
universal (ℓ1, ℓ2)-division, but it stays next to e in another one.

Definition 94. Let b = (w, e,R) be a flipping anchor of ˆ︁A for w ∈ {u, v}, let ˆ︁E
be an expansion of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) and let ( ˆ︁D, ˆ︁D′) be a universal (ℓ1, ℓ2)-division
of ˆ︁E. The division ( ˆ︁D, ˆ︁D′) is b-traversing if the expansion of b in ˆ︁E produces a
label x and either e ∈ E(H) and the generated occurrence of x goes to ρˆ︁D′(w), or
e ∈ E(H ′) and x goes to ρˆ︁D(w).

Next, we say that the anchor b affects the (ℓ1, ℓ2)-division w.r.t. (H,H ′) if
there is a b-traversing division ( ˆ︁F , ˆ︁F ′) of an expansion of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) w.r.t.
(H,H ′) such that both H and H ′ have connected labeled embeddings satisfying ˆ︁F
and ˆ︁F ′.

Finally, we say that ϕ ∈ R is always b-traversing if ϕ contains a label and
for each expansion ˆ︁E∗ of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) where b is expanded to ϕ, only the b-
traversing (ℓ1, ℓ2)-divisions of ˆ︁E∗ has satisfying connected labeled embeddings. If
an (ℓ1, ℓ2)-division ( ˆ︁D∗, ˆ︁D′

∗) of ˆ︁E∗ is not b-traversing, then ˆ︁D∗ has no satisfying
connected labeled embedding or ˆ︁D′

∗ has none. The anchor b is always traversing
if for each ψ ∈ R, ψ ̸= (e), ψ is always b-traversing.

The flipping anchors that do not affect the division do not cause problems
during the division on the separation pair. Independently on the selected expan-
sion, the label generated by a non-affecting flipping anchor (w, e,R) can be left
next to the edge e. In some cases, the label might be absorbed by one of the edges
evirt

G (H) or evirt
G (H ′), but we are able to restore it following Lemma 27. It means

that if e ∈ E(H) then the anchor (w, e,R) can be moved to the subproblem for
H unchanged. And similarly, for e ∈ E(H ′) we can move it to the subproblem
for H ′.

It is not easy to recognize the flipping anchors affecting the division. However,
we are able to prove that the majority of the flipping anchors do not affect the
division.

Definition 95. For w ∈ {u, v} let ρ ˆ︁A(w) = (τ, λ, τ ′, λ′) be the unique decom-
position from Corollary 76. A flipping anchor (w, e,R), e is directed from w
outwards, is marginal with respect to (H,H ′) if w = u and at least one of the
following conditions holds.

(i) e is the the first element of τ ′, l ˆ︁A(e) = ℓ1 and (ℓ1, e) ∈ R,

(ii) e is the the last element of τ ′, r ˆ︁A(e) = ℓ2 and (e, ℓ2) ∈ R,

(iii) e is the the first element of τ , l ˆ︁A(e) = ℓ2 and (ℓ2, e) ∈ R,

(iv) e is the the last element of τ , r ˆ︁A(e) = ℓ1 and (e, ℓ1) ∈ R.
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The anchor is marginal for w = v if at least one of the conditions holds with ℓ1
and ℓ2 swapped.

Based on the satisfied conditions we distinguish 6 types of marginal anchors.
The types (i) through (iv) fulfill just the one corresponding condition. And then
there are two special types (i-ii) and (iii-iv) that satisfy two of the conditions.

Comparing the previous definition with the definition of the universal (ℓ1, ℓ2)-
division we get the following corollary.

Corollary 96. A flipping anchor that is not marginal w.r.t. (H,H ′) do not affect
the (ℓ1, ℓ2)-division w.r.t. (H,H ′).

It means that there are at most eight flipping anchors affecting the division.
We can further improve this bound to four.

Lemma 97. Let w ∈ {u, v} and let a1 = (w, e1, R1) and a2 = (w, e2, R2) be two
different flipping anchors of ˆ︁A such that either a1, a2 are of types (i) and (ii),
or they are of types (iii) and (iv). Then, there is no connected labeled embedding
satisfying ˆ︁A.

Proof. Without loss of generality, let a1, a2 be of types (i) and (ii). For each
(ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A the scheme ρˆ︁B′(w) contains (e1, e2, e

virt
G (H ′)) as a

subsequence. The incident labels of these edges enforce the subsequence of labels
(ℓ1, ℓ2, ℓ1, ℓ2), so there is no connected labeled embedding of H ′ satisfying ˆ︁B′.

For simplicity, the three following lemmata speak only about the marginal
flipping anchors of type (i) that are incident to the vertex u. However, similar
statements can be proven for the other marginal flipping anchors.

The marginal flipping anchors of types (i) through (iv) can have two different
expansions generating labels. One of these expansions is required by the defini-
tion, but the second is not mandatory. We show that the second expansion can
be never satisfied. So for each flipping anchor, we can remove this unsatisfiable
expansion from the list of possible expansions and regularize the flipping anchor
(path).

Lemma 98. Let b = (u, e, R) be a marginal flipping anchor of type (i), such that
r ˆ︁A(e) = x and (e, x) ∈ R. Then no connected labeled embedding of G satisfies an
expansion of ˆ︁A where b is expanded to (e, x).

Proof. Let ˆ︁E be an expansion of ˆ︁A where b is expanded to (e, x). Then in ev-
ery universal (ℓ1, ℓ2)-division ( ˆ︁D, ˆ︁D′) of ˆ︁E the rotation scheme ρˆ︁D′(u) contains
(evirt

G (H ′), e, x) as a subsequence. This holds even for x = ℓ2, because b is not of
type (i-ii). Thus, every labeled embedding satisfying ˆ︁D′ must have (ℓ1, x, ℓ1, x)
as a subsequence of the augmented rotation scheme of u. And so it cannot be
connected.

Next, we show that only a fraction of the marginal flipping anchors can affect
the division.

Lemma 99. If a marginal flipping anchor b = (u, e, R) of type (i) affects the
(ℓ1, ℓ2)-division w.r.t. (H,H ′), then the decomposition of the rotation scheme
ρ ˆ︁A(u) according to Corollary 76 must be either (τ, τ ′) or (ℓ1, τ, τ

′).
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Proof. We assume that the anchor b is regularized, so there is not an occurrence
of ℓ1 preceding τ ′ in ρ ˆ︁A(u). Let us look at all the remaining (τ, λ, τ ′, λ′) decom-
positions of ρ ˆ︁A(u).

If ρ ˆ︁A(u) matches one of (ℓ2, ℓ1, τ, ℓ2, τ
′), (ℓ2, τ, ℓ1, ℓ2, τ

′), (ℓ2, ℓ1, τ, ℓ1, ℓ2, τ
′),

(ℓ2, ℓ1, ℓ2, τ, τ
′), (ℓ2, ℓ1, ℓ2, τ, ℓ2, τ

′), then the rotation scheme ρ ˆ︁A(u) together with
the condition l ˆ︁A(e) = ℓ1 enforce the subsequence (ℓ1, ℓ2, ℓ1, ℓ2). So there cannot
be any connected labeled embedding of G satisfying ˆ︁A.

If ρ ˆ︁A(u) = (ℓ2, ℓ1, τ, τ
′) then for each universal (ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A

the rotation scheme ρˆ︁B′(u) = (ℓ2, e
virt
G (H ′), τ ′). It again enforces the subsequence

(ℓ2, ℓ1, ℓ2, ℓ1). So there also is no connected labeled embedding satisfying ˆ︁A.
If ρ ˆ︁A(u) matches one of (τ, ℓ2, τ

′), (ℓ1, τ, ℓ2, τ
′), (ℓ1, ℓ2, τ, τ

′), (ℓ1, ℓ2, τ, ℓ2, τ
′),

(τ, ℓ1, ℓ2, τ
′), (ℓ1, τ, ℓ1, ℓ2, τ

′), then the flipping anchor b does not affect the (ℓ1, ℓ2)-
division. The expanded label ℓ1 always stays next to the edge e in each universal
(ℓ1, ℓ2)-division.

If ρ ˆ︁A(u) = (ℓ2, τ, τ
′) then there are two possibilities how to divide ρ ˆ︁A(u). We

either put ρ1 = (τ, evirt
G (H)) and ρ′

1 = (ℓ2, e
virt
G (H ′), τ ′), or ρ2 = (ℓ2, τ, e

virt
G (H))

and ρ′
2 = (evirt

G (H ′), τ ′). Notice that ρ′
1 cannot be satisfied, because it enforces

the subsequence (ℓ2, ℓ1, ℓ2, ℓ1). Similarly, for an expansion ˆ︁E of ˆ︁A, that generates
the label ℓ1 next to e, we get ρˆ︁E(u) = (ℓ2, τexp, ℓ1, τ

′
exp), where τexp and τ ′

exp are the
sequences produced form τ and τ ′ by the expansion ˆ︁E . There are again up to two
possible divisions. Either ρ3 = (τexp, ℓ1, e

virt
G (H)) and ρ′

3 = (ℓ2, e
virt
G (H ′), τ ′

exp),
or ρ4 = (ℓ2, τexp, e

virt
G (H)) and ρ′

4 = (evirt
G (H ′), ℓ1, τ

′
exp). Again, ρ′

3 cannot be
satisfied, because it enforces the subsequence (ℓ2, ℓ1, ℓ2, ℓ1). Thus, it makes sense
to consider only the divisions with ρ4 and ρ′

4, where the expanded label ℓ1 stays
next to the edge e. Thus, the flipping anchor b does not affect the (ℓ1, ℓ2)-division.

Finally, if ρ ˆ︁A(u) = (ℓ2, τ, ℓ2, τ
′) then the anchor b also does not affect the

(ℓ2, ℓ1)-division. The situation is similar to the previous one, but it admits only
one possible division of the rotation scheme of u in cases when the expansion
generates ℓ1 next to e.

Let us look closer at the marginal flipping anchor b = (u, e, R) of type (i)
when ρ ˆ︁A is (τ, τ ′) or (ℓ1, τ, τ

′). We consider the two possible expansions of b.
For simplicity, we assume that there are no other flipping anchors incident to u.
If in an expansion ˆ︁E of ˆ︁A the anchor b does not produce the label ℓ1, then in
every universal (ℓ1, ℓ2)-division ( ˆ︁D, ˆ︁D′) of ˆ︁E we have ρˆ︁D(u) = (τ, evirt

G (H)) and
ρˆ︁D′(u) = (evirt

G (H ′), τ ′). However, if b generates the label ℓ1 then there are two
ways how to split the rotation scheme of u. A universal (ℓ1, ℓ2)-division uses
either the rotation schemes ρ1(u) = (τ, evirt

G (H)) and ρ′
1(u) = (evirt

G (H ′), ℓ1, τ
′), or

ρ2(u) = (τ, ℓ1, e
virt
G (H)) and ρ′

2(u) = (evirt
G (H ′), τ ′).

Lemma 100. Let b = (u, e, R) is a marginal flipping anchor of type (i) and letˆ︁E be an expansion of ˆ︁A where b is expanded to (ℓ1, e). Next, let ( ˆ︁D, ˆ︁D′) be a
universal (ℓ1, ℓ2)-division of ˆ︁E with ρˆ︁D′(u) = (evirt

G (H ′), ℓ1, τ
′). And finally, let ˆ︁D∗

be the augmented embedding restriction of H ′ that is identical to ˆ︁D′ except for
ρˆ︁D∗(u) = (evirt

G (H ′), τ ′). Then H ′ has no connected labeled embedding satisfyingˆ︂D′, or every connected labeled embedding satisfying ˆ︁D∗ also satisfies ˆ︁D′.

Proof. If r ˆ︁A(e) = ℓ2, then every labeled embedding of H ′ satisfying ˆ︁D′ has
(ℓ1, ℓ2, ℓ1, ℓ2) as a subsequence of the augmented rotation scheme of u, so it is
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not connected.
Otherwise, let r ˆ︁A(e) = x ̸= ℓ2 and let Gu

L be the label ordering graph of u inˆ︁D′ (Definition 32). If Gu
L does not have an Eulerian circuit without crossings then

there is no connected labeled embedding satisfying ˆ︁D′. So we can further assume
that Gu

L has an Eulerian circuit ε without crossings. We show that exactly one
of the following statements is true.

(i) There is a directed path from x to ℓ1 avoiding ℓ2 in Gu
L.

(ii) There is a directed path from x to ℓ2 avoiding ℓ1 in Gu
L.

The existence of the circuit ε implies that at least one of them is true. We can
fix an arbitrary occurrence of x in ε and start traversing Gu

L following the circuit
ε. If we visit ℓ1 before ℓ2, then (i) holds. Otherwise, (ii) is satisfied.

For a contradiction, let us assume that both (i) and (ii) holds. We have a
directed path p1 from x to ℓ1 avoiding ℓ2 and path p2 from x to ℓ2 avoiding ℓ1.
Let w be the last vertex of p2 that lies on p1. Then there are two directed edge-
disjoint paths from w to ℓ1 in Gu

L. The first one is the suffix of p1 starting at
w. The second is the suffix of p2 starting at w plus the edge from ℓ2 to ℓ1 that
corresponds to the edge evirt

G (H ′). Lemma 36 then implies that each Eulerian
circuit of Gu

L has a crossing, but ε does not have any.
If the statement (i) is false, then every directed path from x to ℓ1 visits ℓ2.

Therefore, for each labeled embedding of H ′ satisfying ˆ︁D′ the augmented rotation
scheme of u contains (ℓ1, ℓ2, ℓ1, ℓ2) as a subsequence. There must be ℓ2 present
between the edge e and the occurrence of ℓ1 from ρˆ︁D′(u). So in this case, there is
no connected labeled embedding satisfying ˆ︁D′.

Otherwise, each directed path from x to ℓ2 passes through ℓ1. It means that
every labeled embedding satisfying ˆ︁D∗ also satisfies ˆ︁D′.

Moreover, we are able to recognize the two possible outcomes of Lemma 100 in
linear time with respect to the length of the rotation scheme ρˆ︁D′(u) by examining
an Euler circuit of the label ordering graph of u in ˆ︁D′.

If each connected labeled embedding satisfying ˆ︁D∗ also satisfies ˆ︁D′, then the
expansion of b to (ℓ1, e) is unnecessary. In this situation, every labeled embedding
H′

L of H ′ satisfying the corresponding part of a universal (ℓ1, ℓ2)-division of ˆ︁A has
ℓ1 between the edges evirt

G (H ′) and e in the augmented rotation scheme ρH′
L
(u).

It means that we can remove (ℓ1, e) from the list of possible expansions of the
anchor b.

And if we find out that there is no connected labeled embedding of H ′ satisfy-
ing ˆ︁D′, then we do not have to consider the universal (ℓ1, ℓ2)-divisions that split
the rotation scheme of u into ρ1(u) = (τ, evirt

G (H)) and ρ′
1(u) = (evirt

G (H ′), ℓ1, τ
′).

We can solely focus on the universal divisions with ρ2(u) = (τ, ℓ1, e
virt
G (H)) and

ρ′
2(u) = (evirt

G (H ′), τ ′). Therefore, the expansion (ℓ1, e) ∈ R is always b-traversing.

Corollary 101. A marginal flipping anchor b = (u, e, R) of type (i) affects the
(ℓ1, ℓ2)-division, only if (ℓ1, e) ∈ R is always b-traversing.

As we have already mentioned, similar propositions to the last three lem-
mata plus the previous corollary can be proven about the other marginal flipping
anchors. The following definition put together our findings about the flipping
anchors affecting the division.
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Definition 102. Let b = (w, e,R), w ∈ {u, v}, be a marginal flipping anchor
and let the label ordering graph Gw

L of w in ˆ︁A have an Eulerian circuit without
crossings. For w = u we say that b is suspicious w.r.t. (H,H ′) if one of the
following conditions is true:

(i) b is of type (i), ρ ˆ︁A(w) is (τ, τ ′) or (ℓ1, τ, τ
′), and there is no directed path

from r ˆ︁A(e) to ℓ1 avoiding ℓ2 in Gw
L.

(ii) b is of type (ii), ρ ˆ︁A(w) is (τ, τ ′) or (τ, ℓ2, τ
′), and there is no directed path

from ℓ2 to l ˆ︁A(e) avoiding ℓ1 in Gw
L.

(iii) b is of type (iii), ρ ˆ︁A(w) is (τ, τ ′) or (τ, ℓ2, τ
′), and there is no directed path

from r ˆ︁A(e) to ℓ2 avoiding ℓ1 in Gw
L.

(iv) b is of type (iv), ρ ˆ︁A(w) is (τ, τ ′) or (ℓ1, τ, τ
′), and there is no directed path

from ℓ1 to l ˆ︁A(e) avoiding ℓ2 in Gw
L.

(∗) b is of type (i-ii) or (iii-iv) and ρ ˆ︁A(w) is (τ, τ ′), (ℓ1, τ, τ
′) or (τ, ℓ2, τ

′).

For w = v the flipping anchor b is suspicious w.r.t. (H,H ′) if one of the previous
conditions holds with ℓ1 and ℓ2 swapped.

Corollary 103. If a flipping anchor affects the (ℓ1, ℓ2)-division, then it is suspi-
cious.

Corollary 104. Every suspicious flipping anchor is always traversing.

The set of suspicious anchors contains all the flipping anchors affecting the
division and all the anchors in the set are always traversing. Moreover, the set
can be constructed in linear time with respect to the lengths of ρ ˆ︁A(u) and ρ ˆ︁A(v).
Therefore, the set of suspicious flipping anchors is a good approximation for the
set of flipping edges that affect the (ℓ1, ℓ2)-division.

So far we investigated which flipping anchors affect the universal division. But
how do the affecting flipping anchors interact with each other?

Lemma 105. Let w ∈ {u, v} and let a1 = (w, e1, R1), a2 = (w, e2, R2) be two sus-
picious flipping anchors of ˆ︁A. If an expansion ˆ︁E of ˆ︁A has a satisfying connected
labeled embedding, then a1 must be expanded to (e1) and a2 to (e2).

Proof. Without loss of generality, let w = u. We have already covered the case
when a1 and a2 are of types (i) and (ii), or (iii) and (iv) in Lemma 97.

Let a1 be of type (i). For a contradiction let us assume that a1 is expanded
to (ℓ1, e1). Then, the rotation scheme of u must be of form (τ, τ ′) or (ℓ1, τ, τ

′),
because a1 is always traversing. Let ( ˆ︁D, ˆ︁D′) be a a1-traversing (ℓ1, ℓ2)-division of
an expansion of ˆ︁A. Hence, ρˆ︁D(u) = (τ, ℓ1, e

virt
G (H)).

If a2 is of type (iv) or (iii-iv), then the edges e2 and evirt
G (H) together with the

label ℓ1 enforce the subsequence (ℓ1, ℓ2, ℓ1, ℓ2). Therefore, there is no connected
labeled embedding satisfying ˆ︁D.

If a2 is of type (iii), then there is also no labeled embedding satisfying ˆ︁D, be-
cause a2 is also always traversing, therefore no labeled embedding of H satisfying
the corresponding part of a universal (ℓ1, ℓ2)-division of ˆ︁A has label ℓ1 between
the edges e2 and evirt

G (H) in the augmented rotation scheme of the vertex u.
The other configurations are symmetric to the one mentioned. A marginal

flipping anchor of type (i–ii) behaves as a flipping anchor of type (i) or (ii).
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Given an instance A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A), we can modify the sets O ˆ︁A
and P ˆ︁A in linear time with respect to the lengths of ρ ˆ︁A(u) and ρ ˆ︁A(v) in such
a way that we get an equivalent instance with at most one suspicious flipping
anchor incident to u and at most one incident to v.

Another fact worth noting is that if there is a suspicious flipping anchor b
incident to a vertex w ∈ {u, v} then for each expansion of b there is only one
reasonable option how to split the rotation scheme of w in universal (ℓ1, ℓ2)-
divisions.

4.3.4.3 Two labels in the intersection

In this section, we show how to proceed in the cases where LE ∪ L′
E = {ℓ1, ℓ2}.

We still assume that there is no satisfiable (ℓ2, ℓ1)-division of ˆ︁A, so we focus on
the (ℓ1, ℓ2)-divisions. There are three different phenomena that can cause some
complications.

Firstly, the set of universal (ℓ1, ℓ2)-divisions of ˆ︁A may contain more than
one element. In this case, there is a vertex w ∈ {u, v} for which we have two
options on how to split the rotation scheme ρ ˆ︁A(w). This is the original cause that
motivated us to establish the flipping anchors and paths.

Secondly, we may encounter some flipping anchors incident to the separation
vertices affecting the universal division. The flipping anchors were analyzed in
the previous section.

And thirdly, there might be flipping paths connecting the split graphs H and
H ′. These are the paths of the set Pc. We can easily observe that there are
at most 4 paths in Pc because at most two flipping paths can pass through the
vertex u and at most two through v.

In addition, more than one of these phenomena can arise simultaneously.
Later, we demonstrate which combinations are possible and how to resolve them.
But, we start with the simplest case with no suspicious flipping anchors and
Pc = ∅.

Lemma 106. Let LE ∩ L′
E = {ℓ1, ℓ2}, Pc = ∅, let there be no suspicious flipping

anchors in O ˆ︁A and P ˆ︁A and let U be the set of universal (ℓ1, ℓ2)-divisions of ˆ︁A w.r.t.
(H,H ′). Then G has a connected labeled embedding satisfying ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A)
iff there exists a division ( ˆ︁B, ˆ︁B′) ∈ U such that H, H ′ have connected labeled
embeddings satisfying ( ˆ︁B, O, P,Q), ( ˆ︁B′, O′, P ′, Q′) respectively.

Proof. The proof utilize the same idea that was used in Lemma 92.
Let us assume that there exists ( ˆ︁B, ˆ︁B′) ∈ U such that there are two con-

nected labeled embeddings HL and H′
L satisfying ( ˆ︁B, O, P,Q) and ( ˆ︁B′, O, P,Q)

respectively. There must be an expansion ˆ︁D of ( ˆ︁B, O, P,Q) satisfied by HL and
an expansion ˆ︁D′ of ( ˆ︁B′, O′, P ′, Q′) satisfied by H′

L. Let ˆ︁E be the expansion of
( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) that expands O ˆ︁A, P ˆ︁A and Q ˆ︁A in the same way as ˆ︁D and ˆ︁D′.
( ˆ︁D, ˆ︁D′) is equivalent to a (ℓ1, ℓ2)-division of ˆ︁E w.t.r. (H,H ′). Lemma 73 then
implies that there is a connected labeled embedding of G satisfying ˆ︁E . ( ˆ︁D, ˆ︁D′) is
only equivalent to a division, because some labels may be absorbed by the virtual
edges evirt

G (H) and evirt
G (H ′)

The second implication follows a similar thought process in the opposite di-
rection. We start with a connected labeled embedding GL of G satisfying an
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expansion ˆ︁E of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A). Lemmata 73 and 80 imply that there is a uni-
versal (ℓ1, ℓ2)-division ( ˆ︁D, ˆ︁D′) of ˆ︁E w.r.t. (H,H ′) such that both ˆ︁D and ˆ︁D′ have
satisfying connected labeled embeddings. Since there are no flipping anchors af-
fecting the division, then each label in ˆ︁E produced by an expansion of an anchor
goes to the same restriction as the edge of the anchor. We can imagine that for
each anchor the edge and the generated label act together as an inseparable unit
during the division. Therefore, there exists ( ˆ︁B, ˆ︁B′) ∈ U such that ˆ︁D is equivalent
to an expansion of ( ˆ︁B, O, P,Q) and ˆ︁D′ to an expansion of ( ˆ︁B′, O′, P ′, Q′).

So if ˆ︁A has just one universal (ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′), then we can first solve
the instance A*ERCS(H, ˆ︁B, O, P,Q) in polynomial time for an [SPQR]-skeleton
H. If it fails then we reject. Otherwise, we make a recursive call for the instance
A*ERCS(H ′, ˆ︁B′, O′, P ′, Q′).

Now let us look at the more complicated cases. Our strategy for such situ-
ations is to expand the problematic elements and then consider all the relevant
universal (ℓ1, ℓ2)-divisions of these expansions with respect to (H,H ′). This pro-
cess yields a set T of pairs of A*ERCS instances where the first component of
each pair is an instance for the split graph H and the second is an instance for
H ′. From Lemma 106 it follows that the graph G has a connected labeled em-
bedding satisfying ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) iff there exists a pair t ∈ T such that both
the instances of t accept.

The size of the set T is bounded by a constant, so if H is an [SPQR]-skeleton
then we can solve in polynomial time all the instances for H in T . We start
with an empty set T ′ and for each t ∈ T we add the H ′-instance of t into T ′ iff
the H-instance of t accepts. Then, G has the desired embedding iff there is a
satisfiable instance in T ′.

We show that the instances in T ′ can be merged into one by adding a flipping
anchor or a path. Therefore, it is possible to investigate whether there is a
satisfiable instance in T ′ using just one recursive call.

It remains to show how to do the merging of the instances in T ′. First,
we define the augmented embedding restriction ˆ︁B′

∗ that is used in the instance
replacing T ′. If there is just one universal (ℓ1, ℓ2)-division ( ˆ︁B, ˆ︁B′) of ˆ︁A w.r.t.
(H,H ′), then we put ˆ︁B′

∗ = ˆ︁B′. Otherwise there are several occurrences of the
labels ℓ1 and ℓ2 in ρ ˆ︁A(u) and ρ ˆ︁A(v), that in some universal divisions go to the
restriction for H and in some to the restriction for H ′. Let ˆ︁A∗ be the augmented
embedding restriction obtained from ˆ︁A by removing these appearances of ℓ1 and
ℓ2. ˆ︁A∗ has only one universal (ℓ1, ℓ2)-division ( ˆ︁B∗, ˆ︁B′

∗) w.r.t. (H,H ′).
We examine all the possible situations that may arise. For each of them, we de-

scribe a flipping anchor or a flipping path that should be added to ( ˆ︁B′
∗, O

′, P ′, Q′).
We always consider the most general case, so it may be possible to regularize the
added flipping path or anchor. For example, if T ′ contains too few elements,
then the proposed flipping path can change just to a flipping anchor or it may
disappear completely.

First, we consider the settings with just one problematic element. We assume
that all the flipping anchor of O ˆ︁A and the paths of P ˆ︁A are regularized and that
there is at most one suspicious flipping anchor incident to u and at most one
incident to v.
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Two universal divisions There are two possibilities how to split the rotation
scheme ρ ˆ︁A(u) in the universal (ℓ1, ℓ2)-divisions. In this case we add a flipping
anchor b = (u, evirt

G (H ′), R) where R describes the differences of the universal
divisions in T ′ from ˆ︁B′

∗.

One suspicious anchor There is one suspicious flipping anchor b = (u, e, R)
incident to u. We further distinguish four cases.

If b ∈ O′, then we do not have to add anything, because the suspicious anchors
are always traversing.

If b ∈ O, then we add a flipping anchor b′ = (u, evirt
G (H ′), R′) where R′ covers

the always traversing expansions of b in restrictions of T ′.
If b is a flipping anchor of a flipping path p ∈ P ′, then let b′ = (w, e′, R′) be the

second anchor of p. We recycle the anchor b′ as the flipping anchor b′′ = (w, e′, R′′)
for a subset R′′ ⊆ R′ covering the restrictions of T ′.

Else b is a flipping anchor of a path p ∈ P . We add the flipping anchor
b′ = (u, evirt

G (H ′), R′) where R′ covers the always traversing expansions of b in
restrictions of T ′.

One flipping path There is one flipping path p ∈ Pc, going from H to H ′

through u. Let b = (w, e,R) be the flipping anchor of p in H ′. We recycle the
anchor b as the flipping anchor b′ = (w, e,R′) for a subset R′ ⊆ R covering the
restrictions of T ′.

Two complications at one vertex We have described how to react if we
encounter just one complication at one of the separation vertices. But what if
there are two different issues at the same vertex? We prove that if such a thing
happens, then there is no connected labeled embedding of G satisfying ˆ︁A.

In the section about flipping anchors, we demonstrated how to reduce the
number of suspicious flipping anchors incident to a separation vertex to one. We
also observed that if there is a suspicious anchor incident to w ∈ {u, v}, then
there is always only one relevant way how to split the rotation scheme of w in
the universal (ℓ1, ℓ2)-divisions. So we just have to investigate the cases involving
flipping paths of Pc.

There are only two possibilities of how a flipping path can pass from H to
H ′ through u. The rotation scheme ρ ˆ︁A(u) must be of form (τ, λ, τ ′, λ′) and the
flipping path must use either the first edge of τ and the last edge of τ ′, or the
last edge of τ and the first edge of τ ′. The definition further demands that every
two consecutive edges of a flipping path share a label prescribed for the incident
faces. The only two candidates that can fulfill this condition through a separation
vertex are ℓ1 and ℓ2. But that is not all. If a flipping path with the first edge of τ
and the last edge of τ ′ uses the label ℓ1 to pass through the vertex u, then there is
no successful (ℓ1, ℓ2)-division of ˆ︁A, because no connected labeled embedding of G
can tag by ℓ1 the face simultaneously incident to edges of H and H ′, between H ′

and H in the counterclockwise direction. Thus, if we look for a (ℓ1, ℓ2)-division,
then we are down to two possibilities. The first one is a path containing the first
edge of τ and using the label ℓ2. It further requires that λ′ is empty. The second
one is a path with the last edge of τ using ℓ1 and demanding that λ is empty.
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Figure 4.6: Two possibilities how a flipping path can pass from H ′ to H through
the separation vertex u. The flipping path is highlighted in black. The labels ℓ1
and ℓ2 next to the arrows do not appear in the rotation scheme ρ ˆ︁A(u), but they
are enforced by the (ℓ1, ℓ2)-division.

If we detect a flipping path going form H to H ′ through u that does not satisfy
one of the two mentioned conditions, then we reject. We can easily observe that
both of these options cannot happen simultaneously because they enforce the
subsequence (ℓ1, ℓ2, ℓ1, ℓ2) in the rotation scheme of u for both the split graphs.
Similarly, there cannot be a suspicious flipping anchor incident to u, since it
would create the same problem in the split graph containing the edge of the
anchor. Lastly, we have the complication with two possibilities for the splitting
of the rotation scheme. Notice that the flipping path with the first edge of τ allows
this extra complication only with ρ ˆ︁A(u) = (τ, ℓ1, τ

′), because λ′ must be empty.
But we are again in the same situation. The split graph receiving the problematic
occurrence of ℓ1 enforces the subsequence (ℓ1, ℓ2, ℓ1, ℓ2) for the rotation scheme of
u. Therefore, each connected labeled embedding of G satisfying ˆ︁A tolerates at
most one complication at one separation vertex. If there are at least two, then
we reject.

We described all the possible cases where only one of the separation vertices
met some complications. Now let us look what happens when there are issues
with both u and v.

Four universal divisions There are two options how to split ρ ˆ︁A(u) and ρ ˆ︁A(v).
In this case, we add a flipping path p consisting only of the edge evirt

G (H ′) such
that the expansions of p cover the restrictions in T ′.

One suspicious anchor and two universal divisions There is a suspicious
flipping anchor b = (u, e, R) incident to the vertex u and there are two ways how
to split the rotation scheme ρ ˆ︁A(v). We further distinguish four cases based on
the position of b.

If b ∈ O′, then we add just a flipping anchor b′ = (v, evirt
G (H ′), R).

If b ∈ O, then we add a flipping path p consisting only of the edge evirt
G (H ′).

If b is a flipping anchor of a flipping path p ∈ P ′, then we extend the path
p to the vertex v using the edge evirt

G (H ′). The expansions of the new extended
path cover the restrictions in T ′.
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Else b is a flipping anchor of a path p ∈ P . Then we add a flipping path p
consisting only of the edge evirt

G (H ′).

One flipping path and two universal divisions There is a flipping path
p ∈ Pc going from H to H ′ through u and there are two options how to split the
rotation scheme ρ ˆ︁A(v). In this case, we reroute the path p to the vertex v using
the edge evirt

G (H ′). We recycle the part of p in H ′. The expansions of the new
rerouted path cover the restrictions in T ′.

Two suspicious anchors There are two suspicious anchors bu = (u, eu, Ru)
and bv = (v, ev, Rv). We further distinguish several cases.

If bu ∈ O′, then we do not have to do anything for the anchor bu, because the
suspicious anchors are always traversing. We just have to resolve the anchor bv

following the directions for one suspicious anchor.
If both bu, bv ∈ O, then we add a flipping path consisting only of the edge

evirt
G (H ′).

If bu ∈ O and bv is a flipping anchor of a flipping path pv ∈ P ′, then we extend
the path pv to the vertex u using the edge evirt

G (H ′).
If bu ∈ O and bv is a flipping anchor of a flipping path pv ∈ P , then we add a

flipping path consisting only of the edge evirt
G (H ′).

If bu is a flipping anchor of a flipping path pu ∈ P ′ and bv is an anchor of a
flipping path pv ∈ P ′, then we connect the two paths using the edge evirt

G (H ′).
However, if pu = pv, then we do not add anything.

If bu is a flipping anchor of a flipping path pu ∈ P ′ and bv is an anchor of a
flipping path pv ∈ P , then we extend the path pu to the vertex v using the edge
evirt

G (H ′).
Else bu is a flipping anchor of a path pu ∈ P and bv is a flipping anchor of a

path pv ∈ P . Then we add a flipping path consisting only of the edge evirt
G (H ′).

One suspicious anchor and one flipping path There is a suspicious flipping
anchors bu = (u, eu, Ru) and there is a flipping path pv ∈ Pc going from H to
H ′ through v. We further distinguish several cases based on the position of the
anchor b. Also sometimes we react differently if b is an anchor of pv.

If bv ∈ O′, then let bv = (w, ev, Rv) be the the anchor of pv in H ′. We just
recycle the anchor bv as the flipping anchor b′ = (w, ev, R

′) for a subset R′ ⊆ Rv

covering the restrictions of T ′.
If bu ∈ O, then we reroute the path pv to the vertex u using the edge evirt

G (H ′).
We recycle the part of pv in H ′.

If bu is a flipping anchor of a flipping path pu ∈ P ′, then we connect the path
pu and the part of pv in H ′ using the edge evirt

G (H ′). However, if pu = pv, then
we do not add anything.

Else bu is a flipping anchor of a path pu ∈ P . Then we reroute the path pv to
the vertex u using the edge evirt

G (H ′). We recycle the part of pv in H ′.

Two flipping paths There is a flipping path pu ∈ Pc going from H to H ′

through u and there is a flipping path pv ∈ Pc going from H to H ′ through v.
If pu ̸= pv, then we take the parts of pu and pv in H ′ and connect them using

the edge evirt
G (H ′).

71



A

A

A

A

A

B

B

B B

B

BA

C

C

C

C

H H 0

a1 a2

u

v

b1
b2

Flipping paths of Pc

(a1; a2; pa; Ra) from a1 to a2 through u

Ra = f((ea
1
; A); (ea

2
; B));

((B; ea
1
); (C; ea

2
))g

(b1; b2; pb; Rb) from b1 to b2 through v

Rb = f((eb
1
; B); (B; eb

2
));

((A; eb
1
); (eb

2
))g

The expansions of the paths of Pc

A

A

A

A

A

B

B

B B

B

BA

C

C

C

C

H H 0

A

A

A

A

A

B

B

B B

B

BA

C

C

C

C

H H 0

b2

A

A

A

A

A

B

B

B B

B

BA

C

C

C

C

H H 0

A

A

A

A

A

B

B

B B

B

BA

C

C

C

C

H H 0

A
B

A
B

B

C

B

C

B

B

B

B

A

A

dA

Exp. (1)
Exp. (2)

Exp. (3)
Exp. (4)

Each of the expansions has one universal (B;A)-
division w.r.t. (H;H 0). However, the instance for
H is satisfiable only for Exp. (1) and Exp. (4).

A

A

A

B

B

B

A

B

A B

Exp. (1)

A

A

A

B

B

B

B

A

A B

Exp. (4)

A

A

B

B

BA

C

C

C

C

AB

a2

u

v

b2

In order to merge the corresponding instances
for H 0, we have to add a new flipping path.

(a2; a2; pc; Rc)

Rc = f((ea
2
; B); (B; eb

2
));

((C; ea
2
); (eb

2
))g

from a2 to b2 through u and v

Figure 4.7: An example of the situation with two flipping paths in the set Pc.
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Else if pu = pv and the anchors are in H ′, then we just shortcut the path
through evirt

G (H ′) without changing the expansions.
Else pu = pv and the anchors are in H. In this case we do not add anything.

We have demonstrated how to merge the instances of T ′ into one. However,
we still have to verify that the created instance satisfies all the requirements.
Especially, we have to check that the newly added flipping paths have the required
properties.

Except for evirt
G (H ′), the newly added anchors and paths recycle the edges of

the old paths. Therefore, all the flipping anchors and paths of the new instance are
edge-disjoint. Also, the newly added flipping path trivially satisfies the properties
(i) and (ii) of the Definition 85. We just have to check the point (iii) at the vertices
u and v.

We focus only on the vertex u. Let ρ ˆ︁A(u) = (τ, λ, τ ′, λ′), otherwise no new
flipping path through u is added. There are two possibilities how a new path p is
created. Either we extend a path of the set P ′ ending in u by a suspicious flipping
anchor, or we reroute a path of the set Pc to v. In both cases after coming to
u the path p continues by the edge evirt

G (H). Without loss of generality, we can
assume that p arrives at u via the first edge of the sequence τ ′ and that there are
at least two elements in τ ′.

In the first case, when we extend a path with a suspicious anchor b = (u, e, R),
then it holds that l ˆ︁A(e) = ℓ1 = r ˆ︁A(evirt

G (H ′)). And since b is suspicious, then there
is no directed path from r ˆ︁A(e) to ℓ1 = l ˆ︁A(e) avoiding ℓ2 = l ˆ︁A(evirt

G (H ′)) in the
label ordering graph Gu

L of u in ˆ︁A. The label ordering graph Ku
L of u in ˆ︂B′

∗ without
the edge evirt

G (H ′) is a subgraph of Gu
L, so the condition (iii) is also satisfied.

In the other case, we reroute a path p′, that comes to u from H ′ via an edge
e. We orient the edge e from u outwards. We did not reject in the previous
inspection of p′, so l ˆ︁A(e) = ℓ1 = r ˆ︁A(evirt

G (H ′)). The path p′ is a flipping path, so
there is no directed path from r ˆ︁A(e) to l ˆ︁A(e) = ℓ1 avoiding a label x ∈ (LE \{ℓ1})
in Gu

L. It means that each directed path from r ˆ︁A(e) to ℓ1 in Gu
L passes through

x. But it implies that each directed path from r ˆ︁A(e) to ℓ1 also passes through ℓ2.
The previous statement is trivial for x = ℓ2. If x ̸= ℓ2, then the path must visit
ℓ1 or ℓ2 before x in order to switch to a label of the set X. But a path cannot
visit ℓ1 twice. Therefore there is no directed path from r ˆ︁A(e) to ℓ1 avoiding ℓ2
in Gu

L. And since Ku
L without the edge evirt

G (H ′) is a subgraph of Gu
L, then the

condition (iii) is satisfied.

4.3.4.4 No labels in the intersection

Finally, we consider the case with LE = ∅ or L′
E = ∅. Let LP be the set of

candidates for the parental label from Lemma 81. We already know that G
has connected labeled embedding satisfying ˆ︁A iff there exists p ∈ LP such that
the split graphs H and H ′ have connected labeled embeddings satisfying the
universal p-division of ˆ︁A. However, in the A*ERCS problem, the candidates for
the parental label can be also influenced by the bicolored edges.

Definition 107. Let Z be set of bicolored edges. Then the intesection of labels
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of Z is the set

IL(Z) =

⎧⎨⎩{⋆}, if Z = ∅,⋂︁
(e,x,y)∈Z{x, y}, otherwise.

If LE = ∅, then the parental label must match at least one member of the set
IL(Q). Therefore, the parental label needs to be in the intersection of the sets
LP and IL(Q). However, the intersection must respect the special function of
the token ⋆.

Definition 108. Let A and B be sets. The ⋆-inersection of A and B is defined
as

A ∩⋆ B =

⎧⎪⎪⎨⎪⎪⎩
B, if A = {⋆},
A, else if B = {⋆},
A ∩B, otherwise.

Lemma 109. Let LE = ∅. Then, G has connected labeled embedding satisfying
( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) iff there exists p ∈ (LP ∩⋆ IL(Q)) such that respectively H and
H ′ have connected labeled embeddings satisfying ( ˆ︁B, O, P,Q) and ( ˆ︁B′, O′, P ′, Q′)
where ( ˆ︁B, ˆ︁B′) is the universal p-division of ˆ︁A w.r.t. (H,H ′).

Proof. The proof is similar to the Lemmata 92 and 106. Let LI = (LP ∩⋆IL(Q)).
Let ( ˆ︁B, ˆ︁B′) be the universal p-division of ˆ︁A for a label p ∈ LI . Further, let HL

be a connected labeled embeddings satisfying an expansion ˆ︁D of ( ˆ︁B, O, P,Q) and
H′

L a connected labeled embedding satisfying an expansion ˆ︁D′ of ( ˆ︁B′, O′, P ′, Q′).
Let ˆ︁E be the expansion of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) where everything is expanded the
same way as in ˆ︁D and ˆ︁D′. ( ˆ︁D, ˆ︁D′) is equivalent to a division of ˆ︁E . Therefore,
if p ̸= ⋆, then by Lemma 73 the graph G has the desired embedding. And if
p = ⋆, then there are no bicolored edges in Q, so we can relabel HL by the label
lH′

L
(Evirt

G (H ′)) and after that use Lemma 73.
For the second implication, we assume that G has a connected labeled embed-

ding satisfying an expansion ˆ︁E of ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A). If Q = ∅, then by applying
Lemmata 73 and 81 we get a label p ∈ LI such that the both restrictions of the
universal p-division ( ˆ︁D, ˆ︁D′) of ˆ︁E have satisfying connected labeled embeddings.
Let ( ˆ︁B, ˆ︁B′) be the universal p-division of ˆ︁A. Then, ˆ︁D is equivalent to an expansion
of ( ˆ︁B, O, P,Q) and ˆ︁D′ to an expansion of ( ˆ︁B′, O′, P ′, Q′).

Otherwise Q ̸= ∅. In this case, there is exactly one label p in the intersection
of the set of labels incident to the edges of H in ˆ︁E and the set of labels incident
to the edges of H ′ in ˆ︁E . Apparently, p ∈ IL(Q), because the edges of Q have
prescribed labels in H. In addition p ∈ LI , since the other labels cannot tag the
faces incident to the edges of H in a labeled embedding of G satisfying ˆ︁A. We
finish the proof in the same way as in Lemma 92.

Remark. A similar lemma can be proven for L′
E = ∅. We just need to replace

IL(Q) by IL(Q′) in the statement of the lemma.
Lemma 109 yields several implications about the case LE = ∅. When the in-

tersection (LP ∩⋆ IL(Q)) is empty, then there is no connected labeled embedding
of G satisfying ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A). And if (LP ∩⋆ IL(Q)) = {p}, then we just have
to solve the instances A*ERCS(H, ˆ︁Bp, O, P,Q) and A*ERCS(H ′, ˆ︁B′

p, O
′, P ′, Q′)

where ( ˆ︁Bp, ˆ︁B′
p) is the universal p-division of ˆ︁A. Lastly, if (LP∩⋆IL(Q)) = {p1, p2},
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then let ( ˆ︁B1, ˆ︁B′
1) denote the universal p1-division of ˆ︁A and ( ˆ︁B2, ˆ︁B′

2) the uni-
versal p2-division. We first solve the instances A*ERCS(H, ˆ︁B1, O, P,Q) and
A*ERCS(H, ˆ︁B2, O, P,Q). If both of them rejects, then we also reject. If just
one of them succeeds, then we proceed to solve the corresponding instance for
H ′. And if both of them succeed, then merge the instances for H ′ like in Corol-
lary 83 using the new bicolored edge (evirt

G (H ′), p1, p2). It is sometimes necessary
for the merging to replace the rotation schemes of the separation vertices by the
equivalent cyclic sequence (p1, p2). We substitute when ρˆ︁B′

1
(w) = (evirt

G (H ′), p2)
and ρˆ︁B′

2
(w) = (evirt

G (H ′), p1) for w ∈ {u, v}.
We use a different strategy when L′

E = ∅. Here we utilize the fact that
we are able to solve the A*ERCS instances with at most one unique label pre-
scribed by the functions l ˆ︁A and r ˆ︁A in polynomial time, even if the graph is not
an [SPQR]-skeleton. Therefore, for each label p ∈ (LP ∩ IL(Q′)) we can solve the
instances A*ERCS(H, ˆ︁Bp, O, P,Q) and A*ERCS(H ′, ˆ︁B′

p, O
′, P ′, Q′) in polynomial

time, where ( ˆ︁BP , ˆ︁B′
p) is the universal p-division of ˆ︁A.

4.3.4.5 The algorithm

Putting together our findings about the A*ERCS problem, we design Algorithm
7. Unfortunately, we do not know whether the algorithm runs in polynomial time.
The issue is that we are capable of solving the A*ERCS instances for P-skeletons,
only if the size of the set of bicolored edges is bounded by a constant. However,
we can prove that Algorithm 7 is polynomial if we start with no bicolored edges.
In this setting, all the generated A*ERCS instances for P-skeletons have at most
two bicolored edges.

Lemma 110. Let G be a biconnected graph and ˆ︁A an augmented embedding
restriction of G with labeled opaque edges. Further, let O ˆ︁A be a set of flipping
anchors of ˆ︁A and P ˆ︁A a set of flipping paths of ˆ︁A. Then A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅)
runs in polynomial time with respect to the size of G.

Proof. We say that an A*ERCS instance is trivial if its graph is an [SPQR]-
skeleton or if the functions l ˆ︁A and r ˆ︁A prescribe at most one unique label for the
incident faces. Observe that in each iteration, the function A*ERCS makes at
most one non-trivial recursive call. Let k denote the total number of non-trivial
recursive calls made by A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅). In each non-trivial iteration
the function A*ERCS cuts off an [SPR]-skeleton from the SPQR-tree of G, so
k ∈ O(|V (G)|). Let (G0, ˆ︁A0, O0, P0, Q0) = (G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅) be the original pa-
rameters and for each i ∈ {1, . . . , k} let (Gi, ˆ︁Ai, Oi, Pi, Qi) be the parameters of
the non-trivial call made by A*ERCS(Gi−1, ˆ︁Ai−1, Oi−1, Pi−1, Qi−1).

We already know that except for the P-skeletons the trivial A*ERCS instances
are solved in polynomial time. We show that each P-skeleton instance generated
by A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅) has at most two bicolored edges. Then, we can apply
Lemma 89 to solve it also in polynomial time.

New bicolored edges are added only on the line 31. Let (e, x, y), e = {ui, vi},
be a bicolored edge created by A*ERCS(Gi, ˆ︁Ai, Oi, Pi, Qi) for i ∈ {0, . . . , k}. Let
(Hi, H

′
i) be the simple pair of split graphs used in the i-th iteration. Then for

each edge ei ∈ (E(Hi) \ {evirt
Gi

(Hi)}) it must hold that l ˆ︁Ai
(ei) = r ˆ︁Ai

(ei) = ⋆.
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Algorithm 7: A polynomial algorithm for A*ERCS.
input : A biconnected graph G, an augmented embedding restriction ˆ︁A of G with

labeled opaque edges, a set of flipping anchors O ˆ︁A, a set of flipping paths
P ˆ︁A, a set of bicolored edges Q ˆ︁A.

1 function A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A):
2 if

⃓⃓⃓
{the labels prescribed by l ˆ︁A, r ˆ︁A}⃓⃓⃓ ≤ 1 :

3 if
⃓⃓⃓
{the labels prescribed by l ˆ︁A, r ˆ︁A, ρ ˆ︁A}⃓⃓⃓ ≥ 2 : return false;

4 else if (IL(Q ˆ︁A) ∩⋆ {the label of ˆ︁A or ⋆}) = ∅ : return false;
5 else return ERCS biconnected(G, omit labels( ˆ︁A));
6 if G is an [SPQR]-skeleton :
7 return A*ERCS skeleton(G, ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A);
8 (u, v), (H,H ′)← a separation pair of G and a simple pair of split graphs w.r.t.

{u, v} such that H is an [SPR]-skeleton;
9 if (H,H ′) is not ˆ︁A-non-crossing : return false;

10 LE , L
′
E , X,X

′, O,O′, P, P ′, Pc, Q,Q
′ as specified in Definition 91;

11 T ′ ← ∅;
12 if |LE ∩ L′

E | ≥ 3 : return false;
13 if |LE | > 0 and |L′

E | > 0 and |LE ∩ L′
E | = 0 : return false;

14 if |L ∩ L′| = {ℓ} :
15 if ρ ˆ︁A(u) or ρ ˆ︁A(v) is not (X,X ′)-non-crossing : return false;
16 if both H and H ′ are not ℓ-passable : return false;
17 if Pc ̸= ∅ : return false;
18 ( ˆ︁B, ˆ︁B′)← the universal ℓ-division of ˆ︁A w.r.t. (H,H ′);
19 return (A*ERCS(H, ˆ︁B, O, P,Q) and A*ERCS(H ′, ˆ︁B′, O′, P ′, Q′));
20 if |L′

E | = 0 :
21 foreach label p ∈ (LP ∩⋆ IL(Q′)) :
22 ( ˆ︁B, ˆ︁B′)← the universal p-division of ˆ︁A w.r.t. (H,H ′);
23 if A*ERCS(H, ˆ︁B, O, P,Q) and A*ERCS(H ′, ˆ︁B′, O′, P ′, Q′) :
24 return true;

25 return false;
26 if |LE | = 0 :
27 foreach label p ∈ (LP ∩⋆ IL(Q)) :
28 ( ˆ︁B, ˆ︁B′)← the universal p-division of ˆ︁A w.r.t. (H,H ′);
29 if A*ERCS(H, ˆ︁B, O, P,Q) : Add A*ERCS(H ′, ˆ︁B′, O′, P ′, Q′) to T ′ ;
30 if T ′ = ∅ : return false;
31 return A*ERCS(the merge of the instances of T ′);
32 {ℓ1, ℓ2} ← LE ∩ L′

E ;
33 if ρ ˆ︁A(u) or ρ ˆ︁A(v) is not (X,X ′)-non-crossing : return false;
34 ˆ︁R ← omit labels in rotation schemes( ˆ︁A);
35 if local Euler test(H, ˆ︁R[H, ℓ1, ℓ2], u, ℓ1) : (x, y)← (ℓ1, ℓ2);
36 else (x, y)← (ℓ2, ℓ1);
37 regularize the flipping anchors and the flipping paths;
38 remove elements with suspicious flipping anchors from O, O′, P and P ′;
39 if there are more than 2 complications at u or at v : return false;
40 foreach expansion ˆ︁E of just the elements with suspicious flipping anchors and the

paths of Pc in ( ˆ︁A, O ˆ︁A, P ˆ︁A, Q ˆ︁A) :
41 foreach universal (x, y)-division ( ˆ︁B, ˆ︁B′) of ˆ︁E w.r.t. (H,H ′) :
42 if A*ERCS(H, ˆ︁B, O, P,Q) : Add A*ERCS(H ′, ˆ︁B′, O′, P ′, Q′) to T ′ ;

43 return A*ERCS(the merge of the instances of T ′);
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There are two reasons why the bicolored edge (e, x, y) is produced. The first
possibility is that LP = {x, y}, Q = ∅ and there is w ∈ {ui, vi} such that
ρ ˆ︁Ai

(w) = (ε, x, ε′, y), where ε, ε′ are non-empty sequences of edges of Hi. In this
case (e, x, y) is really a new bicolored edge and we say that w is a key vertex of
(e, x, y). It holds that ρ ˆ︁Ai+1

(w) = (x, y) and for each iteration j > i the rotation
scheme ρ ˆ︁Aj

(w) contains at most two elements.
The other option is that IL(Q) = {x, y} and either LP = {⋆} or LP = {x, y}.

It means that there is already a bicolored edge in Hi which just changes its
position. Therefore, there must be an iteration j < i when a new bicolored edge
(ej, x, y), ej = {uj, vj}, is introduced in the part of the graph represented by the
split graph Hi. Let wj ∈ {uj, vj} be the key vertex of (ej, x, y). It holds that
ρ ˆ︁Aj+1

(w) = (x, y). The vertex wj must be either ui or vi. Otherwise, the labels x,
y in ρ ˆ︁Aj+1

(w) cannot disappear until the i-th iteration and they would cause that
LP = ∅. So again, there is a vertex w ∈ {ui, vi} and an iteration j′ ≤ i such that
ρ ˆ︁Ai′

(w) has at least 4 elements and for each iteration i′ > j′ the rotation scheme
ρ ˆ︁Ai′

(w) contains at most two elements. We say that w is a key vertex of (e, x, y).
Hence, each bicolored edge has a key vertex where the edge originally ap-

peared. Later, the edge might have rotated around the key vertex to its current
position. Each vertex is a key vertex for at most one bicolored edge because after
the creation of the first bicolored edge the rotation scheme is too short to produce
another one. Thus, each P-skeleton has at most two bicolored edges, since it has
only two vertices.

All the trivial A*ERCS instances generated by A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅) are
solved in polynomial time. Moreover, each non-trivial iteration of A*ERCS ex-
cept for the recursive calls also runs in polynomial time. Actually, using some
clever data structures the i-th iteration of A*ERCS can be implemented in time
O(|V (Gi)| + |E(Gi)|). The required simple pair of split graphs (H,H ′) can be
found using the SPQR- tree of Gi.

There areO(|V (G)|) non-trivial iterations, therefore the total time complexity
of A*ERCS(G, ˆ︁A, O ˆ︁A, P ˆ︁A, ∅) is polynomial with respect to the size of G. More
precisely, there is an implementation running in O(|E(G)|6).

The A*ERCS problem is just a generalization of the AERCS problem for
biconnected graphs and augmented embedding restrictions with labeled opaque
edges. Therefore, we can use Algorithm 7 to solve such AERCS instances. We
just substitute the empty set for the sets of flipping anchors, flipping paths and
bicolored edges.

Theorem 111. Let G be a biconnected graph and let ˆ︁A be an augmented em-
bedding restriction of G with labeled opaque edges. Then AERCS(G, ˆ︁A) can be
solved in polynomial time with respect to the size of G.

4.4 Connected graphs
In this section, we derive a polynomial algorithm for the ERCS instances with
connected graphs and embedding restrictions with labeled opaque edges. The
algorithm is a bit more general. It can even solve the AERCS problem. We have
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Figure 4.8: A connected labeled embedding of a connected graph with a cut
vertex u and its u-block-label tree.

already derived the functions ERCS biconnected and A*ERCS that deal with the
biconnected graphs. So now we look at the instances where the input graph has
a cut vertex.

Let G be a connected graph with a cut vertex u ∈ V (G) and let ˆ︁A be an
augmented embedding restriction of G with labeled opaque edges. For simplicity,
we assume that there are no labels in the rotation scheme ρ ˆ︁A(u). If there are
some, then we can replace each such label by a new edge e incident to u and
prescribe the label for the incident faces of e.

We decompose G into smaller blocks that share only the vertex u. Our goal is
to reduce the instance AERCS(G, ˆ︁A) into a set of independent AERCS instances
for these blocks such that G has a connected labeled embedding satisfying ˆ︁A
iff all of the block instances accept. We must further ensure that the satisfying
embeddings of the block instances can be put back together around the vertex u.

Definition 112. Let C1, . . . , Ck be the components of the graph G− u. For each
i ∈ {1, . . . , k} the subgraph of G induced by the set of vertices (V (Ci) ∪ {u}) is
called a u-block of G.

Notice that for each embedding G of G and every pair of u-blocks B1, B2 there
is at most one face of G that is incident to both B1 and B2. It means that in each
connected labeled embedding of G the blocks B1 and B2 share at most one label.
Actually, the u-blocks and the labels of a connected labeled embedding form a
tree structure.

Definition 113. Let (G, g) be a connected labeled embedding of G. The u-block-
label tree of (G, g) is the bipartite graph where the first part is the set of the
u-blocks of G, the second part is the set of the labels of (G, g), and a u-block B
and a label ℓ are connected by an edge iff there exists an edge e ∈ E(B) such that
ℓ is incident to e (formally g(l(G,g)(e)) = ℓ or g(r(G,g)(e)) = ℓ).

Lemma 114. The u-block-label tree of connected labeled embedding (G, g) is a
tree, i.e. it is connected and acyclic.

Proof. Let G∗ be the dual planar graph to the embedding G. Observe that there
is a natural bijection between the edges of G and the edges of G∗. Then, a label
ℓ and a u-block B are connected in the u-block-label tree iff there is an edge
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e ∈ E(G) of the block B such that its corresponding edge in G∗ is incident to the
vertex representing ℓ. And since the dual planar graphs are always connected,
then the u-block-label tree of (G, g) must be also connected.

It remains to show that the u-block-label tree is acyclic. Apparently, it holds
for the cases where (G, g) contains only one label. Otherwise, let ℓ1, ℓ2 be two
distinct labels of (G, g). Then, there must be a cycle C in (G, g) separating the
faces tagged by ℓ1 and by ℓ2. A cycle is a biconnected graph, therefore there
exists a u-block B such that C is a subgraph of B. Except for B, each u-block
B′ of G is either inside or outside C in G, so every path connecting ℓ1 and ℓ2 in
the u-block-label tree of (G, g) must pass through B. Thus, there is no cycle in
the u-block-label tree containing both ℓ1 and ℓ2.

Analogously, we can construct the u-block-label graph for an augmented em-
bedding restriction.

Definition 115. The u-block-label graph of the augmented embedding restrictionˆ︁A is the bipartite graph where the first part is the set if the u-blocks of G, the
second part is the set of the labels appearing ˆ︁A, and a u-block B and a label ℓ are
connected by an edge iff either there exists an edge e ∈ E(B) such that l ˆ︁A(e) = ℓ
or r ˆ︁A(e) = ℓ, or there is a vertex w ∈ (V (B) \ u) such that ℓ appears in the
rotation scheme ρ ˆ︁A(w).

Let BL ˆ︁A be the u-block-label graph of ˆ︁A. BL ˆ︁A does not have to be a tree,
but it is still close to one if AERCS(G, ˆ︁A) is satisfiable.

Lemma 116. If G has a connected labeled embedding satisfying ˆ︁A, then at most
one of the components of BL ˆ︁A is a tree and the remaining components are isolated
vertices representing u-blocks.

Proof. Let GL be a connected labeled embedding of G satisfying ˆ︁A and let BLGL

be the u-block-label tree of GL. Apparently, BL ˆ︁A must be a subgraph of BLGL
.

It means that BL ˆ︁A is acyclic.
Further, we utilize the fact that ˆ︁A has labeled opaque edges. If there is a

u-block B that is adjacent to at least two different labels in BLGL
, then B must

neighbor with the same labels in BL ˆ︁A. Therefore, all the u-blocks, that are not
leaves of BLGL

, are adjacent to the same labels in BL ˆ︁A and BLGL
. These u-blocks

and the labels of ˆ︁A form the tree component of BL ˆ︁A. The remaining vertices
are the leaves of BLGL

representing u-blocks. Each of them is either connected
to the tree component of BL ˆ︁A or an isolated vertex of BL ˆ︁A.

We further assume that at most one component of BL ˆ︁A is a tree and the
remaining are isolated vertices representing u-blocks. The isolated vertices cor-
respond to the u-blocks that must be labeled by just one label, but we do not
know which one.

First, we look at the situation when BL ˆ︁A is a tree. Let GL be a connected
labeled embedding of G satisfying ˆ︁A. Thanks to the assumption, the u-block-
label tree of GL is identical to BL ˆ︁A.

Two adjacent edges in the rotation scheme ρGL
(u) share an incident face, so

they must also share its label. Therefore, only the edges of the same u-block and
the edges of the u-blocks with a common neighbor in BL ˆ︁A can be adjacent in
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ρGL
(u). So if there are two edges e1 and e2 next to each other in the rotation

scheme ρ ˆ︁A(u), then in order to traverse from the block of the edge e1 to the block
of e2 we must go through all the blocks on the path connecting them in BL ˆ︁A.

Definition 117. The block rotation scheme of u is a cyclic sequence β ˆ︁A(u) of
u-blocks derived from ρ ˆ︁A(u) in three steps:

(i) We take ρ ˆ︁A(u) and replace each edge e by the u-block B for which e ∈ E(B).

(ii) For each pair of adjacent blocks B1, B2 we insert between B1 and B2 the
u-blocks on the path from B1 to B2 in BL ˆ︁A.

(iii) We delete consecutive duplicates. While there are two consecutive occur-
rences of the same u-block, we remove one of them.

If we replace each edge in ρGL
(u) by its u-block, then this cyclic sequence of

blocks must contain β ˆ︁A(u) as a subsequence.

Lemma 118. If there are two u-blocks B1, B2 such that βˆ︁R(u) is (B1, B2)-
crossing, then there is no connected labeled embedding of G satisfying ˆ︂R.

Proof. A presence of a u-block B in βˆ︁R(u) implies that each connected labeled
embedding of G satisfying ˆ︂R must have an edge of E(B) in this place. Either
there is an edge directly in the rotation scheme σˆ︁R(u), or an edge of B is needed
to traverse between two other blocks with edges in σˆ︁R(u). So if βˆ︁R(u) is (B1, B2)-
crossing, then in each connected labeled embedding GL satisfying ˆ︂R there must be
edges e1, e

′
1 ∈ E(B1) and e2, e

′
2 ∈ E(B2) such that (e1, e2, e

′
1, e

′
2) is a subsequence

of σˆ︁R(u). But there is a path connecting the other endpoints of e1 and e′
1 avoiding

u, and similarly there is a path connecting the other endpoints of e2 and e′
2

avoiding u. And this is in a contradiction with the planarity of GL.

Definition 119. Let T be a tree and v ∈ V (T ) its vertex. We say that v is a
twig of T if it has in T exactly one neighbor which is not a leaf.

Next, we define the augmented embedding restrictions for the AERCS in-
stances for the u-blocks. We reuse the terminology and the notation from the
section about ERCS of biconnected graphs.

Definition 120. Let B be a u-block of G. An augmented embedding restrictionˆ︁B = (ρˆ︁B, lˆ︁B, rˆ︁B, Tˆ︁B) is the reduction of ˆ︁A to B if:

(i) ˆ︁B inherits the functions l ˆ︁A and r ˆ︁A for all the edges of B,
(∀e ∈ E(B)) lˆ︁B (e) = l ˆ︁A (e) & rˆ︁B (e) = r ˆ︁A (e).

(ii) ˆ︁B also inherits the set of transparent edges, Tˆ︁B = T ˆ︁A ∩ E(B).

(iii) For each vertex w ∈ V (B) except for u the rotation scheme ρˆ︁B(w) is the
same as ρ ˆ︁A(w).

(iv) If ρ ˆ︁A(u) is not empty, then the rotation scheme ρˆ︁B(u) is derived from ρ ˆ︁A(u)
by replacing each edge e that is not in E(B) by the first label on the path
from B to the u-block of e in the BL ˆ︁A. Plus, we remove the consecutive
duplicates.
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Else if ρ ˆ︁A(u) is empty, B is a leaf of BL ˆ︁A and there is a label ℓ adjacent to
B in BL ˆ︁A, then we put ρˆ︁B(u) = (ℓ).
Else if ρ ˆ︁A(u) is empty and B is a twig of BL ˆ︁A, then we put in ρˆ︁B(u) just
the label adjacent to B that is not a leaf of BL ˆ︁A.
Otherwise, we leave ρˆ︁B(u) empty.

We use the notation ˆ︁A[B] for the reduction of ˆ︁A to B.

Lemma 121. If BL ˆ︁A is a tree, then the graph G has a connected labeled embed-
ding satisfying ˆ︁A iff the three following conditions hold:

(i) The block rotation scheme β ˆ︁A(u) is (B1, B2)-non-crossing for each pair of
distinct u-blocks B1 and B2.

(ii) Each u-block B of G has a connected labeled embedding satisfying ˆ︁A[B].

(iii) For each u-block B which is neither a leaf nor a twig of BL ˆ︁A, and for each
label ℓ adjacent to B that is not a leaf of BL ˆ︁A, there is an edge e ∈ E(B)
such that l ˆ︁A(e) = ℓ or r ˆ︁A(e) = ℓ.

Proof. Let GL be a connected labeled embedding of G satisfying ˆ︁A. Then, the
condition (i) is satisfied as we have already shown in Lemma 118. For each u-
block B the instance AERCS(B, ˆ︁A[B]) is satisfied. We can just ignore all the
other blocks in GL. The extra labels added to ρ ˆ︁A[B](u) are also present in the
augmented rotation scheme ρGL

, because they are the only option how to traverse
to the other blocks. Similarly, the condition (iii) holds, since all the relevant labels
must be incident to the shared cut vertex u. And if there are at least two different
labels around u, then there also must be some edges to separate them.

For the proof of the second implication, we assume that the conditions (i), (ii)
and (iii) are satisfied. We show how to put together the satisfying embeddings of
the u-blocks creating a connected labeled embedding GL of G satisfying ˆ︁A. We
take the satisfying embedding of one u-block and then we gradually extend it by
adding the other blocks one by one.

First, we process the blocks that are present in the block rotation scheme
β ˆ︁A(u), if there are any. Let ψ be the elimination ordering of β ˆ︁A(u) (Definition
5). We start with the satisfying embedding GL of the last block of ψ. Then
we go through the sequence ψ in the reversed direction adding the satisfying
embeddings of the blocks to GL. After that we need to process the u-blocks that
are not in β ˆ︁A(u). We do the depth-first search of the unprocessed part of BL ˆ︁A
while adding the satisfying embeddings of the newly visited u-blocks to GL. If
β ˆ︁A(u) is not empty, then the DFS starts from the set of blocks already in GL.
(The blocks in β ˆ︁A(u) and their adjacent labels induce a connected subgraph of
the tree BL ˆ︁A.) Otherwise, we start from an arbitrary block of G.

This approach guarantees that when we are adding the satisfying embedding
BL of a u-block B, then BL shares a common label with GL. Furthermore, ac-
cording to Lemma 6 we can just insert the edges of B into the rotation scheme
of u as one interval even for the blocks in β ˆ︁A(u). So in order to join the labeled
embeddings GL and BL, we just have to select positions (corners of faces) in the
augmented rotation schemes ρGL

(u) and ρBL
(u) that are tagged by the common
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label. Then we insert ρBL
(u) at the chosen position in ρBL

(u) in such a way that
from the point of view of B we put ρGL

(u) at the selected position in ρBL
(u).

It remains to determine how to chose these positions so that ρ ˆ︁A(u) is satisfied.
We utilize the block rotation scheme β ˆ︁A(u). There is a unique mapping of the
rotation scheme ρ ˆ︁A[B](u) on β ˆ︁A(u). The edges in ρ ˆ︁A[B](u) are projected to the
corresponding occurrence of B in β ˆ︁A(u) and each label ℓ in ρ ˆ︁A[B](u) represents
a maximal interval in β ˆ︁A(u) not containing B. Moreover, in the tree BL ˆ︁A, the
path from B to each of the blocks represented by ℓ leaves B through the vertex
ℓ. So if B is in β ˆ︁A(u), then we select the position of ρBL

(u) that matches the
label of ρ ˆ︁A[B](u) representing the interval of β ˆ︁A(u) containing the blocks already
in GL. Similarly for GL we maintain a mapping of the augmented rotation scheme
ρGL

(u) on β ˆ︁A(u). So there is a label in ρGL
(u) corresponding to the interval of

β ˆ︁A(u) containing B. This is the required position for the insertion of ρBL
(u).

If B is not in β ˆ︁A(u), then we can select arbitrary positions in ρBL
(u) and ρGL

(u)
that are tagged by the common label. The condition (iii) and the definition of
the ρ ˆ︁A[B](u) in cases when B is a leaf or a twig ensure that there is a face incident
to u with the correct label.

If BL ˆ︁A is not a tree, then there are some isolated vertices in BL ˆ︁A representing
u-blocks. Each isolated u-block B has only transparent edges and there are no
labels prescribed for B in ˆ︁A. It means that in every connected labeled embedding
of G satisfying ˆ︁A all the faces incident to the edges of B must be tagged by the
same label.

The isolated u-blocks may have some edges in the rotation scheme ρ ˆ︁A(u). We
first check that there are not two distinct u-block B1 and B2 such that ρ ˆ︁A(u) is
(E(B1), E(B2))-crossing. If there are some crossing blocks, then G has no labeled
embedding satisfying ˆ︁A and we reject.

Lemma 122. Let B be a u-block of G such that B is an isolated vertex in BL ˆ︁A
and either there are no edges of B in ρ ˆ︁A(u), or the edges of B in ρ ˆ︁A(u) form one
continuous interval. Next, let G′ be the graph obtained from G by removing the
edges and vertices of B except for u. Further, let ˆ︁A′ be the augmented embedding
restriction derived from ˆ︁A by removing the vertices and edges not in G′ and letˆ︁B be the restriction derived from ˆ︁A by omitting the vertices and edges not in
B. Then G has a connected labeled embedding satisfying ˆ︁A iff G′ and B have
connected labeled embeddings satisfying ˆ︁A′ and ˆ︁B respectively.

Proof. Obviously, if G has a connected labeled embedding satisfying ˆ︁A, then we
can split it to connected labeled embeddings of G′ and B that satisfy ˆ︁A′ and ˆ︁B
respectively.

For the second implication let us assume that G′ and B have connected labeled
embeddings G ′

L and BL satisfying ˆ︁A′ and ˆ︁B respectively. Then we can join the
embeddings G ′

L and BL, creating a connected labeled embedding of G satisfyingˆ︁A. If there are no edges of B in ρ ˆ︁A(u), then we insert the scheme ρBL
(u) at an

arbitrary position in ρG′
L
(u). Otherwise, the position in ρG′

L
(u) is determined by

the interval of edges of B. In both cases, we may need to relabel the embedding
BL, so that the labeling is consistent with the face of G ′

L where we insert BL.

We can repeatedly apply Lemma 122 until there is no isolated u-block B such
that B does not have any edges in ρ ˆ︁A(u) or the edges of B form one interval in
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ρ ˆ︁A(u). After that we just have to deal with the instances where for each isolated
u-block B there are at least two intervals of edges of B in ρ ˆ︁A(u). So there is
k ≥ 2 such that ρ ˆ︁A(u) = (ε1, ϕ1, ε2, ϕ2, . . . , εk, ϕk), where ε1, . . . , εk are non-
empty sequences of edges of B and ϕ1, . . . , ϕk are non-empty sequences of edges
not in B. Furthermore, since ρ ˆ︁A(u) is non-crossing for every pair of u-blocks,
then for each i ∈ {1, . . . , k} there is an edge of a u-block of the tree component
of BL ˆ︁A in ϕi. If ϕi contained only edges of the isolated u-blocks, then some of
them could be removed applying Lemma 122.

In each connected labeled embedding GL of G satisfying ˆ︁A the label tagging
the faces of B is a cut vertex in the u-block-label tree of GL. It separates the
blocks that has edges in different sequences of {ϕ1, . . . , ϕk}. The label must also
be a cut vertex in BL ˆ︁A, because each sequence in {ϕ1, . . . , ϕk} contains an edge
of a block in the tree component of BL ˆ︁A. Therefore we can construct the set of
candidates CB for the label of B. A label ℓ is in CB iff ℓ is on the path between
B1 and B2 for each pair of block B1, B2 of the tree component of BL ˆ︁A such that
B1 and B2 have edges in two different sequences of {ϕ1, . . . , ϕk}.

Only the labels of CB can be used to tag the faces of B. So if CB is empty,
then there is no connected labeled embedding of G satisfying ˆ︁A. And if CB = {ℓ},
we can just add B to the tree component of BL ˆ︁A by connecting it to the label ℓ.

Notice that if k ≥ 3, then |CB| ≤ 1, because in a tree there is at most
one vertex that lies simultaneously on the paths from x1 to x2, from x2 to x3 and
from x3 to x1 for three distinct vertices x1, x2, x3. However, there can be multiple
candidates in case of k = 2. Nevertheless, there is a path p in BL ˆ︁A containing all
the labels of CB such that the endpoints of p are also in CB. The rotation scheme
ρ ˆ︁A(u) does not contain any edges of blocks of the path p. Thus, we can choose
an arbitrary candidate c ∈ CB and connect B to the tree component of BL ˆ︁A via
c. If there is a connected labeled embedding GL of G satisfying ˆ︁A where B is
tagged by a different label, then we can rearrange the rotation scheme σGL

(u), so
that the edges of B get into a face tagged by the label c.

If there is more than one isolated u-block, then it is necessary to process them
one by one. The selection of the label to tag B can affect the set of candidates
for the other isolated blocks.

Theorem 123. Let G be a connected graph and let ˆ︁A be an augmented embedding
restriction of G with labeled opaque edges. Then AERCS(G, ˆ︁A) can be solved in
polynomial time with respect to the size of G.

Proof. The function AERCS connected(G, ˆ︁A) accepts iff G has a connected la-
beled embedding satisfying ˆ︁A. The algorithm first tries to create an equivalent
AERCS instance satisfying the assumptions of Lemma 121 and then it verifies
the three conditions of the lemma.

Except for the recursive calls, the function AERCS connected runs in poly-
nomial time with respect to the size of G. The algorithm makes at most one
recursive call for each u-block. The u-blocks have together one fewer cut ver-
tices than G. Thus, in total at most |V (G)| recursive calls are made. So the
total run time is also polynomial. There is an implementation running in time
O(|E(G)|6).

Theorem 124. Let G be a connected graph and let ˆ︁A be an augmented em-
bedding restriction of G with labeled opaque edges and anchored borders. Then
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Algorithm 8: A polynomial algorithm solving AERCS for connected
graphs.

input : A connected graph G, an augmented embedding restriction ˆ︁A with labeled
opaque edges.

1 function AERCS connected(G, ˆ︁A):
2 if G is biconnected : return A*ERCS(G, ˆ︁A, ∅, ∅, ∅) ;
3 u← a cut vertex of G;
4 if there are labels in ρ ˆ︁A(u) :
5 edit G and ˆ︁A replacing the labels of ρ ˆ︁A(u) by new edges;

6 BL ˆ︁A ← the u-block-label graph of ˆ︁A;
7 if BL ˆ︁A is not acyclic or it has at least 2 components that are not isolated u-blocks

: return false ;
8 if ρ ˆ︁A(u) is (E(B1), E(B2))-crossing for some blocks B1, B2 : return false ;
9 while there is an isolated u-block B such that B has no edges in ρ ˆ︁A(u) or the

edges of B form one continuous interval in ρ ˆ︁A(u) do
10 ˆ︁B ← the augmented embedding restriction derived from ˆ︁A by removing the

edges and vertices not in B;
11 if not AERCS connected(B, ˆ︁B) : return false ;
12 remove the edges and vertices of B except for u from G and ˆ︁A;
13 while there is an isolated u-block B do
14 CB ← the set of candidates for the label of B;
15 if CB = ∅ : return false;
16 select an arbitrary c ∈ CB and connect B to c in BL ˆ︁A;
17 β ˆ︁A(u)← the block rotation scheme of u;
18 if β ˆ︁A(u) is (B1, B2)-crossing for some u-blocks B1, B2 : return false ;
19 foreach u-block B of G that is not a leaf or a twig of BL ˆ︁A do
20 foreach label ℓ adjacent to B in BL ˆ︁A that is not a leaf do
21 if there is no edge e ∈ E(B) incident to u such that l ˆ︁A(e) = ℓ or

r ˆ︁A(e) = ℓ :
22 return false;

23 foreach u-block B of G do
24 if not AERCS connected(B, ˆ︁A[B]) : return false ;
25 return true;

AERCS(G, ˆ︁A) can be solved in linear time with respect to the size of G.

Proof. (sketch) In order to achieve linear time, we must cleverly select the cut-
vertex u. We construct the block-cut tree of G. It is a bipartite graph where the
first part is the cut-vertices of G and the second part are the maximal biconnected
subgraphs of G, which are called blocks. A cut-vertex w is linked with a block
B iff w is a vertex of B. The block-cut tree of G can be constructed in time
O(|V (G)|+ |E(G)|) [9].

We choose a cut-vertex u that is a twig of the block-cut tree, so at most one
u-block B is not a leaf of the block-cut tree. This allows us to construct the
important part of the u-block-label graph BL ˆ︁A in time linear with the sum of
the sizes of the u-blocks excluding the u-block B. We do not need to include
the labels that are incident only to B in BL ˆ︁A. (We utilize the same technique
counting the occurrences of each label as we used to construct the intersection
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Figure 4.9: A connected labeled embedding of a disconnected graph and its
component-label tree.

L ∩ L′ in ERCS for biconnected graphs.)
The anchored border edges determine the distribution of labels around the cut

vertex u. It means that we can find labels for u-blocks that are isolated in BL ˆ︁A
and have an edge in ρ ˆ︁A(u) in time O(length(ρ ˆ︁A(u))). So in total the function
AERCS connected(G, ˆ︁A) runs in time O(|V (G)|+ |E(G)|).

4.5 Disconnected graphs
The last step is to generalize the polynomial algorithm for the disconnected
graphs. The idea is very similar to the connected case. Only this time we deal
with the components of connectivity instead of the blocks.

We present an algorithm for the ERCS problem, but it can be trivially mod-
ified to solve also the AERCS instances. Let G be a graph and ˆ︂R an embedding
restriction of G with labeled opaque edges. We define an analogy to the block-
label tree and the block-label graph.

Definition 125. Let (G, g) be a connected labeled embedding of G. Then, the
component-label tree of (G, g) is the bipartite graph where the first part is the
set of the components of G, the second part is the set of the labels of (G, g),
and a component C and a label ℓ are connected by an edge iff there exists an edge
e ∈ E(C) such that ℓ is incident to e (formally g(l(G,g)(e)) = ℓ or g(r(G,g)(e)) = ℓ).

Definition 126. The component-label graph of the embedding restriction ˆ︂R is
the bipartite graph where the first part is the set of the components of G, the
second part is the set of the labels appearing ˆ︂R, and a component C and a label
ℓ are connected by an edge iff there exists an edge e ∈ E(C) such that lˆ︁R(e) = ℓ
or rˆ︁R(e) = ℓ.

Let CLˆ︁R be the component-label graph of ˆ︂R. The component-label tree and
graph have the same property as their block-label alternatives.

Lemma 127. The component-label tree of connected labeled embedding (G, g) is
a tree, i.e. it is connected and acyclic.
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Lemma 128. If G has a connected labeled embedding satisfying ˆ︂R, then at most
one of the components of CLˆ︁R is a tree and the remaining components are isolated
vertices.

Definition 129. Let C be a component of G. Then the reduction of ˆ︂R to C is the
embedding restriction ˆ︂R[C] of C that is derived from ˆ︂R by removing conditions
for vertices and edges not in C.

Lemma 130. The graph G has a connected labeled embedding satisfying ˆ︂R iff
each component C of G has a connected labeled embedding satisfying ˆ︂R[C] and
the components of CLˆ︁R consists of isolated vertices and at most one tree.

Proof. If G has a connected labeled embedding GL satisfying ˆ︂R, then for each
component C we can restrict GL to C getting a connected labeled embedding of
C satisfying ˆ︂R[C]. The condition about the components of CLˆ︁R follows from
Lemma 128.

If each component has a satisfying embedding and the components of CLˆ︁R are
isolated vertices and at most one tree, then we can put together the embeddings
of the components creating a connected labeled embedding of G satisfying ˆ︂R.
We start with a satisfying embedding of a component C of the tree component
of CLˆ︁R. Then, we do the depth-first search of CLˆ︁R placing the newly visited
components into an arbitrary face of the constructed embedding that is tagged
by the shared label. The components that are isolated in CLˆ︁R can be placed to
any face of the embedding.

Algorithm 9: A polynomial algorithm solving the ERCS problem.
input : A connected graph G, an embedding restriction ˆ︁R with labeled opaque

edges.
1 function ERCS(G, ˆ︁R):
2 if G is connected : return ERCS connected(G, ˆ︁R) ;
3 CLˆ︁R ← the component-label graph of ˆ︁R;
4 if CLˆ︁R is not acyclic or it has at least 2 components that are not isolated vertices

: return false ;
5 foreach component C of G do
6 if not ERCS connected(C, ˆ︁R[C]) : return false ;
7 return true;

Theorem 131. Let G be a connected graph and let ˆ︂R be an embedding restriction
of G with labeled opaque edges. Then ERCS(G, ˆ︂R) can be solved in polynomial
time with respect to the size of G.

Proof. The function ERCS just verifies the conditions of Lemma 130. Therefore
ERCS(G, ˆ︂R) accepts iff G has a connected labeled embedding satisfying ˆ︂R.

Except for the calls of the function ERCS connected the function ERCS(G, ˆ︂R)
runs in timeO(|V (G)|+|E(G)|) and the function ERCS connected has polynomial
time complexity. So in total ERCS(G, ˆ︂R) runs in polynomial time with respect
to the size of G. There is an implementation with time complexity O(|V (G)| +
|E(G)|6).
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Theorem 132. Let G be a connected graph and let ˆ︂R be an embedding restriction
of G with labeled opaque edges and anchored borders. Then ERCS(G, ˆ︂R) can be
solved in linear time with respect to the size of G.
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5. Conclusion
We have shown that the problem of Embedding Restriction Satisfiability (ERS)
is NP-complete. It remains NP-hard even for the instances with labeled opaque
edges or for the instances with anchored borders. On the other hand, we have
observed that ERS for [SQR]-skeletons can be solved in linear time.

We also investigated the complexity of Embedding Restriction Continuous
Satisfiability (ERCS). In this variation of the ERS problem, we require that
for each label ℓ the faces of the satisfying labeled embedding tagged by ℓ form
a connected region. ERCS is again NP-complete even for the instances with
anchored borders. However, the instances with label opaque edges can be solved
in polynomial time. We proposed an algorithm running in time O(|V (G)| +
|E(G)|6) for a graph G. In addition, there is a linear algorithm for ERCS with
labeled opaque edges and anchored borders.

The time complexity O(|V (G)|+|E(G)|6) is so big that it does not make sense
to implement the algorithm in practice. But, there is probably an asymptotically
faster algorithm. Ideally, we would like to find a linear one. The P-skeletons
would be a good place to start because they are the bottleneck of the entire
procedure.

The gap between the polynomial and NP-complete variants of the problem is
still relatively wide. For example, we do not know the complexity of ERS with
labeled opaque edges and biconnected graphs. Also, the constraint of labeled
opaque edges seems unnecessarily strong. A weaker condition may be sufficient
for a polynomial algorithm for ERCS. So, there is still a lot of space for further
research.

Another possible approach would be to look for minimal unsatisfiable in-
stances. Something similar was done for the problem of Partially Embedded
Planarity by Jeĺınek et al. [12]. These minimal structures could be used as cer-
tificates proving that an ERS instance has no satisfying labeled embedding. None
of the presented polynomial algorithms provides such negative certificates. They
can only construct a satisfying embedding that serves as a positive one.
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