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Abstract

This bachelor thesis concerns itself with multiple objectives. First, to compare

two apparently contradictory frameworks, namely the Log-periodic Power Law

model and the Critical Slowing Down, suggested as being able to detect the end

of financial bubbles. Second, to enrich current literature dedicated to the Log-

periodic Power Law model with a comprehensible description of the non-linear

optimization methods in one piece of work. This work, furthermore, aims to com-

pare the performance and the robustness of two versions of this model. Regarding

the Critical Slowing down, the correlation across the world market over time prior

to a crash is investigated as an addition to two already studied indicators, 1-lag

serial correlation and standard deviation of detrended fluctuations. Eventually,

both the Log-periodic Power Law models were proved to be able to identify the

time of the burst of the financial bubble, while the modified version of the model

was found to be more proficient over the initial one in terms of computational

efficiency and robustness. In the case of the Critical Slowing Down, obeying auto-

correlation of residuals and cross-correlation of intermarket residuals came out to

be misleading, and only variance was supported as an appropriate indicator of an

imminent tumble, and it was proposed as an aspirant for a potential completion

of the Log-periodic Power Law model framework.
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Abstrakt

Tato bakalářská práce si klade několik ćıl̊u. Zaprvé, snahu porovnat dva zdánlivě

protich̊udné koncepty, konkrétně model log-periodického mocninného zákonu a

kritické zpomalováńı, kdy oba jsou předpokládány býti schopny detekovat konec

finančńı bubliny. Dále práce usiluje o doplněńı současné literatury věnované mod-

elu log-periodického mocninného zákonu o srozumitelný popis metod použ́ıvaných

k nelineárńı optimalizaci, a přitom shrnout vše v jedné práci. Krom již zmı́něného

v textu dále porovnáváme výkon a robustnost obou verźı daného modelu. Co se

týče kritického zpomalováńı, korelace např́ıč světovými trhy je zkoumána jakožto

dodatek ke dvěma již studovaným indikátor̊um, jimiž jsou autokorelace a stan-

dardizovaná odchylka detrendované fluktuace. Ve výsledku, oba modely log-

periodické mocninného zákonu prokázaly schopnost detekovat čas prasknut́ı fi-

nančńı bubliny, přičemž modifikovaná verze daného modelu se ukázala býti ro-

bustněǰśı a komputačně efektivněǰśı metodou. V př́ıpadě kritického zpomalováńı,

pozorováńı autokorelace residúı a korelace residúı např́ıč trhy vyšly jako klamné

indikátory bĺıž́ıćıho se krachu, a pouze rozptyl je podpořen jako validńı ukazatel,

který mimo jiné, byl v práci navrhnut jako vhodné doplněńı schématu modelu

log-periodického mocninného zákonu.

Kĺıčová slova

Finančńı trhy, Kritické body, Přechod fáźı, Log-periodická oscilace, Kritické zpo-

malováńı, Metody nelineárńı optimalizace
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Research question and motiation

As there is still an occurrence of financial market crashes following from devi-

ation of security prices from their fundamental values and subsequent significant

drop, a lot of questions have arisen whether and how these unpleasant events are

predictable. Since the classic theory is not able to explain plummeting prices,

many models from different scientific fields have been adopted.

Contribution

Since large amounts of money are invested in stock portfolios, the presence of

crisis and related risk of imprecise recognition represents a true issue. Hence, my

overall contribution should be to calibrate these models, apply them on real-life

situations and determine their appropriatness of utilization.

In 2003, Sornette et al., proposed the log-periodic power law fitting the stock

index prices during pre-crisis phases. Then, in 2009, Scheffer et al., studied the

originally biological phenomena Critical Slowing Down describing a period of in-

creasing variance, autocorrelation and slowing recovery of a system preceding the

transition phase when the whole environment collapses and thus it can be applied

to predict such downfalls.



Methodology

I will conduct time series analysis of important world stock indices such as Stan-

dard & Poor’s 500, Dow Jones Industrial Average, Nikkei 225 or Europe Stoxx

600. In the case of Critical Slowing Down I will try to control specific charac-

teristics, regarding Log-Periodic Power Law I will test the precision of the model

proposed by Sornette, or Brée and Joseph.

Outline

1. Introduction to market crashes, their prediction and basic description of our

models

2. Literature review

3. Dataset - choosing data and their description

4. Metodology - Building prediction models, fitting models on dataset

5. Results

6. Discussion and comparing the performance of both models

7. Conclusion
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1 Introduction

Nowadays, trillions of dollars in total are invested1 in stocks, real estate, and

other assets and are managed by various funds, investment banks, and other

institutions, or by sole investors. All of them have the very same desire. They

want to be able to predict as precisely as possible the future state of an economy,

stock market movements, future evolution of real estate prices, and thereby to

adjust their investment strategies and appropriately diversify in order to make a

profit.

Notwithstanding the efficient market hypothesis, deeply studied by Eugene

Fama in his semantic work Fama (1970), which postulates that no investor can

beat the market as the stock price movements follow a random walk which is a

consequence of market efficiency, financial crashes are of great importance as a

lot of endeavour has been devoted to the issue whether there is a possibility to

anticipate these events Cecchetti et al. (2009).

Since commonly used methods are often insufficient for predicting drastic shifts

in an economy from a tranquil phase Bussiere and Fratzscher (2006), practices

from other scientific fields have been adopted, for example from various branches

of natural sciences. A vast contribution has been made by the French physicist

Didier Sornette whose approach to forecasting financial crashes is comprehensively

described in his book Why Stock Markets Crash: Critical Events in Complex

Financial Systems Sornette (2003). There, the author stressed that huge price

drops seen during these events are outliers, and thus may potentially carry a kind

of predictability. To tackle this issue Sornette applied the power law enriched by

the logarithmically periodic oscillation, formerly rather known from geophysics

Saleur et al. (1996).

We try to verify the applicability of two versions of a Log-Periodic Power

Law (LPPL) equation, one introduced by Sornette et al. (1996), and the other

described by Filimonov and Sornette (2013). An advantage of the latter model

suggested by authors of this study is the behaviour of cost function that tends to be

dramatically smoother in comparison with the original model, which should signif-

1Data underpinning this claim are available on the website of the World bank:
https://data.worldbank.org/indicator/cm.mkt.lcap.cd
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icantly decrease the complexity of a fitting process Filimonov and Sornette (2013).

Nonlinear, and linear parameters are mostly fitted separately in two stages. Here,

for fitting nonlinear parameters, the Levenberg-Marquardt algorithm (LMA) is

used for the modified model. In the case of the initial model, a heuristic algo-

rithm Taboo Search (TS), described by Cvijović and Klinowski (1995), precedes

the LMA due the peculiarity of a loss function. Then for optimization of linear

parameters, OLS are to be utilized.

While the LPPL model bets on an accelerating progress towards the crash,

there is a conceptually different set of warning indicators of the looming risk of

market collapse introduced in the publication by Scheffer et al. (2009), where

the Dutch biologist Marten Scheffer followed up on his previous work Van Nes

and Scheffer (2007) that shows critical slowing down (CSD) is an appropriate

candidate to become a gauge of an imminent phase transition. A phenomenon

of CSD stands for a notion of gradual exacerbating system health captured by a

progressively more and more sluggish recovery from perturbations to the previous

state as a system approaches a critical threshold, usually called a tipping point,

when even a very little disturbance may ignite a sudden phase transition. These

signs deterioration are suggested to be detectable by increasing variance and 1-lag

autocorrelation Scheffer et al. (2009).

Among the major objectives of this thesis is to provide a concise description

of the two different aforementioned concepts used for detecting financial bubbles

followed by significant tumbles. For this purpose, I also want to provide a theory

for both the TS and the LMA to thus obtain appropriate platforms usable for

potential future researches. The idea to closely elaborate these methods came to

my mind because I had lacked sufficient amount of information precisely describing

parts of a nonlinear optimization of the LPPL model in detail (namely details

behind TS and LMA) in an economic literature. Hence this work should make

this process more palatable and more easily reproducible for beginner economists

like me.

Another motivation to compose this text is to compare these two different

frameworks for predicting financial market crashes since both of them are based

on a little bit different assumptions. Whereas the LPPL model wagers on an accel-
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erating, faster-than-exponential growth decorated by periodic oscillations, thereby

an observed system should reach prior peaks in shorter and shorter intervals, the

latter concept relies on a continuously vanishing restoration capability. Moreover,

the importance of this work is emphasized mainly by the fact there is only a very

limited amount of literature, if any, devoted to this comparison.

The rest of this thesis looks as follows. The literature dedicated to these

two concepts is reviewed in the following Section 2. Section 3 is devoted to the

methodology. In this section, the theory behind crashes and modelling them is

outlined. Furthermore, the intuition behind the LPPL model, its derivation and

the complex fitting process are described along with the theory underlying the

critical slowing down. Data observed in this thesis are enlisted and described in

Section 4. Finally, Section 5 evaluates the empirical results, and a brief discussion

of examined topics is contained in Section 6.

3



2 Literature Review

This section is divided into two parts. The first one deals with the literature

dedicated to the LPPL model and the other one focuses on the existing endeav-

ours around the phenomenon of CSD. Both the theory and empirical studies are

presented.

2.1 Log-periodic Power Law Model

The initial notion of a possible application of the LPPL model was proposed by

Sornette et al. (1996) as a reaction to the struggling to explain the large financial

crash in October 1987 by a single theory. In those times, the valuation of major

market indices in the USA dropped more than 30% during a mere one week. They

pointed to self-organization present within the market, the concept inspired by

the phenomenon of self-similarity which was proved to be a precursor of extreme

events in complex natural systems, such as earthquakes. In the beginning, they

suggested a simple model based on a pure power law grasping the acceleration of

soaring prices

F (t) = A+B(tc − t)m, (1)

where tc denotes the moment where the probability of an occurrence of a crash

is the highest. Furthermore, in order to explain periodically repeating deviations

of the price from the fitted model, they, subsequently, developed the following

equation

F (t) = A+B(tc − t)m + C(tc − t)m cos(ω log(tc − t)− ϕ), (2)

where tc again presents the critical time, and the last term of equation (2) grasps

oscillations. This newly developed function contains three linear variables A,B,

and C and four nonlinear variables tc,m, ω, and ϕ. This model is then also studied

by a group around Sornette Johansen et al. (1999), and nowadays this approach

usually referred to as the Johansen-Ledoit-Sornette (JLS) model after the authors

of the latter study. Both an after-crash behaviour and log-periodicity for ”anti-

bubbles” are analyzed in of the cited studies.

While the latter model provides us with a good representation of price move-
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ments, it suffers from the overwhelming complexity of a fitting process and multi-

ple local minima of cost function because of interdependence between parameters

phase ϕ, and log-frequency ω. Inasmuch as another enhancement of the JLS

model through throwing away the aforementioned interdependence so that to di-

minish an intricacy of the optimization was desired, a further transformation of

the then framework was suggested by Filimonov and Sornette (2013). After their

modification, they received the following LPPL expression

F (t) = A+B(tc − t)m + C1(tc − t)m cos(ω log(tc − t))+

C2(tc − t)m sin(ω log(tc − t)). (3)

Eventually, the currently presented model features only three nonlinear param-

eters tc,m, and ω. This change makes the first step of the fitting procedure,

which is described in Section 3, noticeably simpler. On the other hand, there are

four linear parameters A,B,C1, and C2, but the complexity of the whole fitting

process remains still quite lower since the cost function of this new version of

the LPPL model promises a smoother surface, therefore, finding a global minima

should become less tricky.

Another evidence of imitative actions of investor resulting in a bubble was

suggested during the Nasdaq’s crash on April 14, 2000, by Johansen and Sornette

(2000). In this study, Johansen and Sornette also emphasized that the exact time

of bursting a bubble is not purely deterministic and rather allows for stochastic

influences, which creates a possible window spanning approximately a month for

a crash occurrence. In this paper, they also discussed speculative bubbles which

could land smoothly. For example, when Dow Jones index dropped significantly

on October 15, 1999, after Alan Greenspan’s speech, the market subsequently

quickly recovered and, therefore, we do not consider that event a crash. Albeit this

may seem to be in a contradiction with the hypothesis of successfully predicting

crashes using the LPPL model, as Johansen and Sornette admitted, this does not

any violate the rational expectations of investors, as one of the key assumptions

of this theory, who are willing to undergo the risk of a possible crash since it

is not the only outcome of striving markets Johansen et al. (1999). Also, other
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empirical pieces of evidence of a presence of the pattern in the evolution of share

prices preceding to crashes, as described above, not only in the US, but also in

Latin-American, and small Asian stock markets as well as in Chinese stock market

were detected and summarized in Johansen and Sornette (2001a), and Jiang et al.

(2010) respectively.

A critical perspective on the validity of the LPPL model was brought by

Bree and Joseph (2010). In their analysis, Bree and Joseph focused on the Hang

Seng market between 1970 and 2008 and identified 11 crashes. They concluded

the parameters of the model (2) do not fully satisfy the hypothesis of Johansen

and Sornette (2001a) that states values of these parameters should range within

confined intervals, and actually this condition was met only in seven out of those 11

cases specified above. Furthermore, they suggested that mechanism proposed by

Johansen et al. (2000) ”must be incorrect as it requires the price to be increasing

throughout the bubble”, though ”the index (or its log) decreases at some point

during the bubble” Bree and Joseph (2010).

More concerns regarding the precision of the model were expressed by Laloux

et al. (1999) which, in their words, works approximately in one trial out of two.

They, moreover, criticized the overwhelming complexity of the model arising from

the fitting as many as seven parameters, which eventually can lead to overfitting.

Liberatore (2010) paid attention to the computational efficiency of fitting the

LPPL model and stressed the fact that the practical usefulness of an algorithm

strongly hinges on its accurate and efficient fitting. Primarily, he further developed

the problem-solving methods based on the commonly used LMA that was initially

proposed by Levenberg (1944).

A concise summary devoted to the optimization procedure of the LPPL model

was published by Pele et al. (2012). In this thesis, Pele provides useful, but quite

a brief description of Johansen et al. (2000)’s 2-step nonlinear optimization, which

is then applied in the empirical study on Bucharest Stock Exchange. Further in-

spiration such as utilization of genetic algorithm for nonlinear tasks or considering

an application of maximum likelihood approach instead of ordinary least squares

in the latter part of tuning the model might be also drawn from this work.

Nowadays, more advanced versions of the LPPL model are still sprung, such
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as the volatility-confined LPPL model with mean-reverting residuals proposed by

Lin et al. (2014) allowing for stochastic conditional expectations of returns and,

furthermore, testing residuals for a unit root, which aids to confirm the validity

of the model. Filimonov et al. (2017) highly elaborated the application of the

modified profile likelihood to estimate the interval for the critical time tc, and

claimed this methods is more suitable compared to OLS as probabilistic nature

of crash occurrence hence estimating time intervals is more sensible than single

points in time. Both the latter two topics are quite much advanced and they are

not to be studied in this thesis.

2.2 Critical Slowing Down

As it was stated in the introduction of this thesis, both concepts have been

adopted from natural sciences. Especially, in the case of the CSD, works devoted

to this interesting topic in finance started emerging in the last 15 years at the

most and not in bulk indeed. Until then, it was earnestly studied by physicists,

biologists and other scientists from related fields.

Presence of a slowing recovery in the vicinity of tipping points was shown, for

example, on the Ising model Fisher (1986), which is a simplified mathematical rep-

resentation of ferromagnetism used for identification of a phase transition Salinas

(2001). Scholz et al. (1987) found this trait a pivotal feature of phase transitions

in complex biological systems. More recently, Dai et al. (2012) conducted a re-

producible laboratory experiment to study possible warning indicators of looming

population collapse, and proved a CSD to reliably signal a loss of resilience.

Scheffer et al. (2009), finally, described that there are many different complex

systems ranging from ecological ones such as ocean circulation, or in medicine

there are utterly convoluted systems embodied by human beings where one can

observe, for example, epileptic seizures, to financial markets. In all these areas,

there might be critical points at which sudden shift from one state to another oc-

curs. Although these systems might look completely different at the first glance,

similar patterns prior to tipping points in different cases can actually be observed

and, for example, ”the collapse of an overharvested population and ancient cli-

matic transitions could be indicated by similar signals” Scheffer et al. (2009). In
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this cited study, the CSD is defined as a phenomenon when a vector of recovery

rate gradually approaches zero after each perturbation till the point where the

norm of the regeneration vector equals zero. As soon as this state arrives, a catas-

trophic bifurcation point is reached and there is a risk of a complete system shift.

Furthermore, increased autocorrelation and variance are suggested to be appro-

priate indicators of this phenomenon and should be observable in time-series data.

Nonetheless, this team of scientists admits detection of these pattern in real data

is quite challenging and this process may lead to both false positives and false

negatives because of their complex nature.

Robustness of foregoing indicators, namely increased serial correlation and ele-

vated variance, were, for example, tested on ecosystem data by Dakos et al. (2012).

It has been shown that variance can either increase or decrease when an imminent

critical transition is being approached. This inconsistency with an underlying the-

ory was mainly caused by the presence of stochastic behaviour resulting in a state

when a system becomes less sensitive to the monitored environmental factors. On

the other hand, the validity of rising serial correlation prior to extreme events was

successfully confirmed.

Whereas there are solid amounts of theoretical background and mathematical

equations behind the bifurcation theory, we are pretty short of real-world clues

whether and how a set of early-warning patterns signalizes the critical shifts in

an economy. Since financial crashes are outliers Sornette (2003), their occurrence

is (fortunately) poor, and therefore, the amount of data to be analyzed is rather

insufficient. As a result, there is a lack of financial literature devoted to this

topic. However, as Scheffer et al. (2009) emphasised, the similar behaviour close

to a critical point is exhibited by different systems regardless of differences among

them, therefore, we hopefully can rely, for example, on purely ecological or physical

literature as in these research areas, a lot of endeavours to ponder this issue has

been dedicated.

During our study, it is important to consider conclusions from thesiss like Gut-

tal et al. (2016) where authors analyzed three major US and two European stock

markets, and revealed these financial markets did not exhibit the CSD features

prior to crashes over the last century. They further suggested those meltdowns

8



were rather an illustration of stochastic transitions, thereby proposed crashes may

occur almost whenever far away from a tipping point if stochastic perturbations

amass. This study, however, confirmed a rising variance as a precursor of financial

drops albeit researchers must be aware of potential false positives.
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3 Methodology

In the first part of this section, we show that crashes are outliers, and thus

it is worthwhile to study them independently. Furthermore, we try to reveal

any hidden structure in single-trader behaviour and imitative patterns which are

triggers of bifurcations.

Then, we focus on the underlying theory behind the LPPL model and provide

examples supporting the validity of usage of this scheme. Then, the derivation

of the LPPL models utilized in this thesis is conducted. Subsequently, particular

elements of our LPPL model are described together with value ranges recom-

mended for individual parameters. All of this is complemented by a description

of a complex fitting process of the LPPL model, and both non-linear methods, TS

and LMA, are elaborated. Moreover, pseudocode for TS is provided in the main

text because there is no in-built function in R or Python which could be directly

exploitable.

Another part is dedicated to the major components of the theory of the CSD.

This part is accompanied by necessary mathematical foundations and several

pieces of intuition in order for the whole concept to be well-understandable.

Finally, this section is concluded by a short review of test methodology followed

in this thesis.

3.1 Crashes and Drawdowns

When we want to try to predict an event of some type, then, in the beginning,

it is necessary to realize financial crashes and corresponding rebounds are outliers,

and they are statistically completely unlikely.

To present this fact, we can simply derive the probability of an occurrence of

rebound of +9.7% on October 21, 1987, or even the largest drop ever happened on

October 19, 1987, when prices tumbled by 22.6% during one trading day Sornette

(2003).

For this purpose, we can rely on a likely obsolete and simplified model assuming

daily stock returns follow the Gaussian distribution which was originally used by

Louis Bachelier in his pioneering PhD thesis Bachelier (1900).

Considering the time period from January 2, 1986, to February 27, 2018, we
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obtain a dataset of 8,105 daily returns of the Dow Jones Industrial Average2. The

mean value is 0.04% with standard deviation equal to 1.10%.

The probability of normal distribution is defined as

p(x) =
1√
2πσ2

· e−
(x−µ)2

2σ2 , x ∈ R, (4)

µ denotes mean, and σ2 captures the variance Bartoszynski and Niewiadomska-

Bugaj (2007).

Combining everything together, one can derive the following representation of

stock returns and their approximation by the Gaussian distribution.

Figure 1: Histogram of daily returns on DJIA and density function of the Gaussian
distribution with corresponding parameters

Although the real returns are more concentrated around zero in comparison with gener-
ated data, random normal variable may be considered as a relatively good approximation.

We can now reveal probabilities of these monumental events in October 1987.

The probability of a rebound of 9.7% is p(x = +9.7%) ≈ 1.93 · 10−14. In other

words, assuming one year consists of 250 trading days in average, we obtain that

such an event should occur once in 772 billion years, which is roughly 170 times of

the age of the Earth Patterson (1956). It is easy to realize the occurrence of the

preceding price drop is more or less inconceivable under this assumption, though

2All the data for these observations is collected through an R package quantmod
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such events still occur.

There is, however, another component behind the largest drops in history that

cannot be simply captured by the frequency distribution of daily returns. If we

focus on fourteen largest catastrophes on the DJIA in the twentieth century, only

three of them lasted two days or less, whereas, the others stretched out for between

four and eleven days Sornette (2003).

We, therefore, need to introduce another concept - drawdowns. ”A drawdown

is defined as a persistent decrease in the price over consecutive days” Sornette

(2003). Therefore, drawdowns can be directly considered as the cumulative loss

from a local peak to the next minimum and they also represent how much an

investor can potentially lose. A short-lasting correlation can be observed during

these events, and these occurrences must be studied solely because they can be

neither identified by simple frequency statistics nor detected by two-point corre-

lation which measures an average linear relationship over the whole time period,

thereby, these bursts of correlation are to be demeaned. Hence, it is worthwhile

to study them independently and ask ourselves whether finding any patterns in

the distribution of drawdowns is possible.

It can be again shown that the assumption of fleeting correlation is completely

valid. For this empirical proof, we compare distribution of drawdowns derived

from historical data of the DJIA3 in the twentieth century and the beginning of

the twenty-first century (more specifically from January 2, 1901, to December

31, 20154; 31,191 stock returns are amassed at total.) with artificially gener-

ated drawdowns took as a random sample of the very same size from a random

variable X ∼ N(µDJIA, σ
2
DJIA), where µDJIA denotes the average daily returns,

and σ2
DJIA represents volatility of the DJIA in a given time period measured by

variance. We assume X is i.i.d., hence Corr(xt, xt+1) = 0, for any t ∈ N.

Below (Figure 2 and Figure 3), we show the cumulative distribution of draw-

downs for returns generated by our random variable X follows exponential distri-

bution. Thus using a logarithmic transformation we obtain a linear relationship.

3All data for this example are downloaded from www.quandl.com through the R package
Quandl and the function of the same name.

4Time period is rather arbitrary and time frame is constrained by the availability of data from
one resource. Furthermore, the observed period is intended to be maximized in order to exploit
the Law of Large Number thus to obtain the best possible approximation of true distribution.
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This exponential distribution is a consequence of the independence of successive

price variations. There is a lot of evidence this assumption holds for the ma-

jority of trading days Campbell et al. (1997). Nevertheless, the distribution of

drawdowns obtained from real data disobeys the outlined relation as soon as the

magnitude of price drops becomes statistically less likely.

Figure 2: Distribution of drawdowns
from i.i.d. normal distribution

Perfectly obeys exponential distribution
with decay rate equalling 0.65, which
proves independent returns.

Figure 3: Distribution of drawdowns
from DJIA returns

Significantly deviates from proposed ex-
ponential distribution (decay rate is 0.65)
suggesting transient correlation.

Even though the representation depicted above is simplified and it has been

shown the drawdown distribution on stock markets actually rather fits stretched

exponential function defined as

f(x) =

⎧⎨⎩ cx
c−1

xc
0

exp
[
−
(

x
x0

)c]
x ≥ 0

0 x < 0,
(5)

instead of the simple exponential function, the conclusion remains same as about

only 98% of drawdowns are well-represented by this function Johansen and Sor-

nette (2002).

3.2 Crash modelling

To understand what happens inside financial markets during times preceding

tremendous price drops, we shed light on two interconnected pieces of this mech-

anism. Financial crashes are macroscopic phenomenons, but to fathom out how
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these events spring up, it is necessary to discern decision making of an individual

investor who is lured by close counterparts within its network, so a scheme in-

spired by one historically developed in physics or biology is adopted Liggett et al.

(1997). Building on this microworld, a macro model explaining sudden changes

in complex systems is derived. Moreover, the hazard rate, a cornerstone for the

LPPL model, is introduced as a follow-up to the macroscopic modelling.

3.2.1 Microscopic modelling

Consider a network of agents where each agent is indexed by an integer i =

1, . . . , I, I ∈ N. Let us define N(i) to be the neighbourhood of agent i denoting

those agents who are directly connected to agent i. The agents in N(i) influence

each other, and for greater comprehensibility, we can assume they tend to imitate

themselves. For simplicity, we further suppose that agent i can take only two

possible stands, either to buy, si = 1, or to sell, si = −1.

The sum of all agents’ states determines a price movement, i.e.

∆p =

I∑
i=1

si, (6)

If the sum in equation (6) is negative, the best decision is to sell as price goes down,

an opposite scenario is applicable for positive summation. An equal number of

selling and buying orders occurs provided that the sum is zero. However, equation

(6) is not known for a single trader, therefore, a given trader must rely on an

imitation of its nearest neighbours in hope this sample well represents the whole

population.

We can posit the optimal trader’s decision is given by

si(t+ 1) = sign

⎛⎝K
∑

j∈N(i)

sj(t) + σϵi

⎞⎠ , (7)

where K is a positive constant measuring the tendency towards imitation, which

is determined by the relative imbalance between buyers and sellers presented in

the market and it is inversely proportional to the market depth Sornette (2003).

ϵi ∼ N(0, 1) represents an idiosyncratic error, and the tendency to the irrational
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behaviour is governed by σ that resolves imbalance between order and disorder

Johansen et al. (2000).

3.2.2 Macroscopic modelling

Since this section will turn around the mass imitative behaviour, let us intro-

duce a useful definition of the term used in the text below.

Definition 3.1 (Self-organization). ”In self-organizing systems, pattern formula-

tion occurs through interactions internal to the system, without intervention by

extertnal directing influences.” Camazine et al. (2003)

The concept of a single agent introduced in Subsection 3.2.1, and its network

of neighbours need to be conveyed to the realm of the whole market, which is our

representation of the complex system. Most of the time, agents are in disagree-

ments with the others implying the similar numbers of buyers and sellers, thus

the market is more or less balanced. Therefore, in those times, no crash occurs.

However, at some point in time, i.e. when a burst of the bubble is being

approached, agents starts to be somehow self-organized, and order emanating from

imitative behaviour begins to prevail over disorder. One way how to describe this

pattern capturing a looming critical transition (it has been shown in various areas

the self-organization is a precursor of bifurcations, for example, look at Rietkerk

et al. (2004), or Sornette (2006)), is recalling the parameter K from equation

(7), and consider the critical value Kc. Then, once a K gets closer to Kc, the

probability of crash increases. This relation can be described using a simple power

law

χ = A(Kc −K)−γ , (8)

where A denotes a positive constant, and γ > 0 is called the critical exponent

Johansen et al. (2000). (There is evidence suggesting a behaviour of complex

systems following the simple power law or truncated power are valid, e.g. Kéfi

et al. (2007).)

Specifically just for the LPPL model, assuming the dynamics of parameter

system K evolves smoothly, we can posit an approximation

Kc −K ≈ ω × (tc − t), ω ∈ R (9)
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and eventually, suggest that the hazard rate delineating the crash probability

tends to behave similarly in the vicinity of a crash for t < tc. This consideration

yields the following relationship

h(t) ≈ B × (tc − t)−α, (10)

where B is a positive constant and α ∈ (0, 1) for reassuring the price does not go

to infinity in case a crash does not occur Johansen et al. (2000).

Integrating expression (10), the probability of crash at time tc might be de-

rived. However, it is always important to bear in mind, that this value is never

equal to one as there exists a non-zero chance of a bubble landing smoothly, i.e.

1−
∫ tc

t0

h(t) > 0 (11)

because the time tc is not deterministic, but rather stochastic Johansen et al.

(1999).

3.3 LPPL Model

To build a reliable framework for an application of the LPPL model, we firstly

derive an equation from the hazard rate introduced in Subsection 3.2, that exhibits

the desired characteristics of this model. Then, a transformation for this model is

proposed in order to obtain a model featuring more robust results. Subsequently,

appropriate values for particular parameters of the LPPL model that satisfy its

characteristics with further recommendations are presented. At the end of this

sections, individual methods incorporated in a fitting procedure, which are more

complicated and are not so familiar in the world of economists, are gone through.

3.3.1 Price dynamics

In real markets, there are many factors influencing agents’ behaviour encom-

passing, for example, interest rate, information asymmetry or market clearing

conditions which are ignored in our analysis in purpose of a greater simplicity.

Further, to streamline our consideration even more, we consider a clearly specu-

lative asset paying out zero dividends and rational expectations are supposed to
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be held Johansen et al. (2000).

In this setting, agents are assumed to try to maximize their well-being based

upon all revealed information. Under the efficient market hypothesis, rational

expectations are captured by a well-know martingale condition

Et

[
p(t′)

]
= p(t), ∀t′ > t, (12)

where p(t) denotes the price of an asset at time t, and Et [p(t
′)] states an expected

value of asset price at time t′ derived from all available information up to time t.

Abandoning price fluctuations elicited by any noise, the solution of an equation

(12) is given by p(t) = p(t0), whereas t0 indicates some initial time point. Recalling

one of our assumptions emphasizing a consideration of a zero-dividend asset, which

suggests p(t0) = 0, we finally obtain a relationship expressing that the asset

fundamental value is p(t) = p(t0) = 0. Therefore, any positive deviations of p(t)

from 0 indicates a speculative bubble Johansen et al. (2000).

Loosening a zero fundamental value premise and instead allowing for any real

fundamental value, an observed stock price can be rewritten as a linear combina-

tion

p = p0 + p∗, (13)

where p0 and p∗ express a fundamental value, and a bubble component respec-

tively. The JLS model, which is a base of ours utilized in this thesis, assumes the

bubble component behaves independently of dynamics of the fundamental price.

The latter one, p∗, is portrayed by a log-periodic power law structure determined

by a mean-reverting behaviour of p0, and all together work as a robust calibration

of an observing price p Ren et al. (2009).

An application of the JLS model requires bubble component dynamics to

follow a simple stochastic differential equation with drift and jump

dp

p
= µ(t)dt+ σdW − κdj, (14)

where p denotes stock price, µ(t) presents a drift term at time t, dW embod-

ies an increment of Wiener process with zero mean and unit variance, with σ

corresponding to a tendency towards idiosyncratic behaviour of traders Bree and
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Joseph (2010). Furthermore, dj is a jump, with j taking values from a two-element

set {0, 1}, such that j = 0 prior to a crash occurrence and j = 1 after the crash.

The proportion amplitude of a price drop, whose presence is indicated by the value

of j, is determined by a parameter κ Sornette et al. (2013). Dynamics of those

jumps are dictated by a hazard rate h(t) which captures the probability of a crash

occurrence in the region [t, t + dt] assuming it has not happened yet. Therefore,

this conditional expectation of dj is defined as Et[dj] = 1×h(t)dt+0×(1− h(t)dt),

hence it holds

Et[dj] = h(t)dt. (15)

Under the assumptions of the JLS model, the aggregate impact of a herding

behaviour of noise traders is captured by the crash hazard rate in the following

form

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos
(
ω log(tc − t)− ϕ′) . (16)

In this extension of the hazard rate, the positive feedbacks of agents, driving price

above its intrinsic value with growth ending at finite-time singularity Johansen

and Sornette (2001b), are captured by the equation (16). The cosine term stated

in the right-hand side (RHS) of the given equation is then able to grasp the

hierarchical cascades of spurring panic Sornette and Johansen (1997) punctuating

price growth, arising in the market due to the pre-existing organization in noise

trader sizes Zhou et al. (2005).

The non-arbitrage condition, as a consequence of market efficiency, implies

Et(dp) = 0, therefore, using the knowledge from equation (15), and plugging it in

equation (14), the following expression for the drift term is obtained

µ(t)dt = E

[
dp

p

]
= κh(t)dt ⇐⇒ µ(t) = E

[
dp/dt

p

]
= κh(t). (17)

Finally, using equation (17) and substituting the left-hand side (LHS) in equation

(16), and taking an integration with respect to t (plus using a chain rule) yields

the following equation
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∫
E

[
dp/dt

p

]
dt =

∫ [
κB′(tc − t)m−1+

κC ′(tc − t)m−1 cos
(
ω log(tc − t)− ϕ′) ]dt (18)

which gives

logE [p(t)] = A− κB′

m
(tc − t)m − κC ′

m2 + ω2
(tc − t)m×(

m cos(ϕ′ − ω log(tc − t))− ω sin(ϕ′ − ω log(tc − t))
)
. (19)

Further incorporating a trigonometric identity cos(−x) = cos(x), ∀x ∈ R Hájková

et al. (2012), and some approximation, the ultimate result is a representation of

the characteristic LPPL equation for detecting financial bubbles

logE [p(t)] ≈ A− κB′

m
(tc − t)m − κC ′

m2 + ω2
(tc − t)m cos (ω(tc − t)− ϕ) , (20)

By rewriting B = −κB′

m and C = − κC′

m2+ω2 , we finally obtain

logE [p(t)] ≈ A+B(tc − t)m + C(tc − t)m cos (ω(tc − t)− ϕ) . (21)

where A,B, and C are linear parameters and tc,m, ω, and ϕ are nonlinear ones.

The model expressed in equation (20) will be referred in the text below as LPPL1.

The last important information worth to be mentioned is the JLS model does

not forecast behaviour after the bursting bubble. For this reason, it is important to

realize, that termination time ttruec is predicted with some amount of uncertainty,

and its precise value is not exactly known. This point in time may be rather

expressed as

testimated
c = ttruec + ϵ, (22)

where testimated
c is a time returned by our prediction framework and ϵ captures

an error term drawn from some distribution Sornette et al. (2013). Generally, it

should be considered the time of a crash to lay in a month interval around the

predicted critical time tc Sornette (2003).
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Beyond the scope of the thesis, for interested readers, Johansen et al. (1999)

suggested after-bubble behaviour can be also described with the LPPL equation,

namely it should hold

logE [p(t)] ≈ A−B|tc − t|m − C|tc − t|m cos (ω|tc − t| − ϕ) . (23)

3.3.2 Derivation of modified LPPL model

Due to obstacles in the course of the fitting process, the method suggesting to

cut the number of nonlinear parameters by one and to substitute the eliminated

term by adding a linear parameter, and more importantly, at the same to dispose

an interdependence between the phase ϕ and angular log-frequency ω is proposed.

For this purpose, the trigonometry identity, cos(x−y) = cosx cos y+sinx sin y,

∀x, y ∈ R, Hájková et al. (2012), is put to use to expand the cosine term in the

equation (21) as follows

logE [p(t)] = A+B(tc − t)m + C(tc − t)m cos (ω log(tc − t)) cosϕ +

C(tc − t)m sin (ω log(tc − t)) sinϕ. (24)

Now, by introducing two new parameters

C1 = C cosϕ, C2 = C sinϕ (25)

and plugging (25) to equation (24), we obtain the new form of the LPPL model

as

logE [p(t)] = A+B(tc − t)m + C1(tc − t)m cos (ω log(tc − t))+

C2(tc − t)m sin (ω log(tc − t)) . (26)

The newly formulated function thus features only three nonlinear parameters

tc,m, ω and four linear ones A,B,C1, C2 with C1 and C2 absorbing the phase

ϕ. This realization of the LPPL model should be more easily and more robustly

optimizable as suggested in Filimonov and Sornette (2013). In the text below, we

will refer to the model given by equation (26) as LPPL2.
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3.3.3 Recommended range of the parameters

The last foregoing cornerstone before we fully impend on the optimization

process is to impose reasonable constraints on ranges of individual parameters.

There are both logical rationale satisfying general economic concepts, as they are

presented below, and another set of reasons based on past experience offering

additional specification. The importance of the latter one is emphasized by the

necessity of usage of grid search for TS in course of optimization the LPPL1

model to be optimally fitted. Approximate time complexity of the whole process,

provided that each of four parameters tc,m, ω, ϕ, which generate inputs to our

grid in the first stage of the optimization, is incremented by the same portion,

the running time requirements are estimated roughly in terms of O(4n) hence the

smaller parameter network, the better.

The parameter A in the equation (24) represents logarithm of an observed

index price hence there is only one reasonable constraint so that A > 0, and it

should be mirrored with the current price of an observed asset. Acceleration of the

hazard rate is required as time t approaches the critical point tc thus with respect

to equation (16), B always tends to be lower than 0 Filimonov and Sornette

(2013). Bothmer and Meister (2003) suggested |C| < 1, where C determines the

proportion magnitude of price fluctuations about the exponential growth so that

the hazard rate remains always positive. This limitation in combination with a

shift parameter ϕ belonging to the interval (0, 2π) gives us both |C1| < 1 and

|C2| < 1.

Generally, it holds that tc > 0, and we further consider tc is greater than the

last available time point t. Besides, Huang et al. (2000) proposed a recommended

range for ω to be [6, 13] so that the log-periodic oscillation is neither too fast

(as the risk of an arbitrary fitting of the model on a random component looms)

nor too slow (otherwise these fluctuations would only contribute to a soaring

trend). Subsequently, this boundary was even further narrowed, and it has been

shown it is reasonable to consider ω ≈ 6.36 ± 1.56 Johansen (2003). Last but

not least, the base condition for the parameter m, which is an exponent of the

power law, is m < 1 so that an integration of the hazard rate from equation

(16) over time up to tc, determining the probability of a crash occurrence at time
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tc, is to be bounded by 1 (this follows from the basic probability rule, P (x) ≤

1, ∀x ∈ {set of all conceivable events}, Bartoszynski and Niewiadomska-Bugaj

(2007)). On the other hand, the log-price in (21) and (24) is aimed to be finite

for all t < tc, hence another condition, m > 0 is imposed in order this assumption

to be satisfied Filimonov and Sornette (2013). An appropriate interval (0, 1) for

a parameter m were then further thinned based on various observations, so now

is supposed m ≈ 0.33± 0.18 Bree and Joseph (2010). We will review in Section 5

whether more confined intervals seems to be appropriate or not.

3.3.4 Fitting procedure of modified LPPL Model

The fitting complexity of the LPPL model and robustness of predictions re-

main still a large issue. In this research thesis, the fitting procedure is mainly

based on the one introduced by Filimonov and Sornette (2013) through mini-

mization of the following cost function

F (tc,m, ω,A,B,C1, C2) =
n∑

i=1

[
log(pti)−

(
A+B(tc − ti)

m+

C1(tc − ti)
m cos(ω log(tc − ti)) + C2(tc − ti)

m sin(ω log(tc − ti)
)]2

(27)

in two subsequent steps.

In the first step of the fitting process, we need to solve the non-linear opti-

mization problem

{t̂c, m̂, ω̂} = arg min
tc,m,ω

F1(tc,m, ω), (28)

where F1(tc,m, ω) represents the following cost function (29) with parameters

A,B,C1, and C2 are to be given

F1(tc,m, ω) = min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2). (29)

Different starting values through a grid search are used in an optimization in order

to find various local minima, out of them the best one is supposed to be an almost

optimal global minimum.

Sometimes, it does not have to be convenient this task to be solved using first-

order optimization methods (however, they might be and are put to use) such as
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gradient descent because ∂F1(tc,m,ω)
∂tc

is well defined (i.e. in real numbers) if and

only if tc > ti for any i ∈ {1, . . . , n}. This tool, therefore, would be inapplicable in

situations when tc is considered within a region [t1, tn]. (As the latter-mentioned

situation is not among objective of this thesis, we do not further comment on

this.) Here, the LMA exploiting first partial derivatives is used, and it is covered

in Subsection 3.3.7.

As determining the critical time tc is crucial in analyses of this type, special

treatment for finding an optimal value of tc has been developed by Filimonov

and Sornette (2013). In this thesis, therefore, after solving the problem given by

equation (28), parameters m and ω are subordinated to the critical time tc. From

this, another optimization problem arises in the form

t̂c = argmin
tc

F2(tc), (30)

where F2 is an expression for the following cost function

F2(tc) = min
m,ω

F1(tc,m, ω). (31)

In this problem, again different starting values of parameters m and ω altogether

with suitable values of linear parameters from (28) are used to find the best

solution. This additionally created function, determined by equations (30) and

(31), provides an insight that choices of m and ω are dependent on tc,

m̂(tc), ω̂(tc) = argmin
m,ω

F1(tc,m, ω). (32)

When the first phase of the optimization is completed, only the best values

of non-linear parameters are utilized, alternatively a small set of the best fitted

parameters can be used, in the second stage of optimization to solve the linear

problem defined by the equation

{Â, B̂, Ĉ1, Ĉ2} = arg min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2). (33)

In this thesis, the method of ordinary least squares (OLS) is utilized, where a

unique solution is retrieved from satisfying the first-order condition in the follow-
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ing matrix equation

⎛⎜⎜⎜⎜⎜⎜⎝
n

∑
fi

∑
gi

∑
hi∑

fi
∑

f2
i

∑
figi

∑
fihi∑

gi
∑

figi
∑

g2i
∑

gihi∑
hi

∑
fihi

∑
gihi

∑
h2i

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
Â

B̂

Ĉ1

Ĉ2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

∑
yi∑
yifi∑
yigi∑
yihi

⎞⎟⎟⎟⎟⎟⎟⎠ , (34)

where yi is the notation for logarithm of an observed price, and

fi = |tc − t|m, (35)

gi = |tc − t|m cos(ω log |tc − t|), (36)

hi = |tc − t|m, (37)

gi = |tc − t|m sin(ω log |tc − t|). (38)

3.3.5 Fitting procedure of standard LPPL Model

The optimization process of the LPPL1 model is in the structure more or less

identical to the scheme described in Section 3.3.4, therefore, only distinctions are

to be mentioned here.

One difference arises in the form of loss function which must be logically

rewritten as

F (tc,m, ω, ϕ,A,B,C) =
n∑

i=1

[
log(pti)−

(
A+B(tc − ti)

m+

C(tc − ti)
m cos(ω log(tc − ti) + ϕ)

)]2
(39)

It is also necessary to modify the non-linear optimization problem given by equa-

tion (28) to the form

{t̂c, m̂, ω̂, ϕ̂} = arg min
tc,m,ω,ϕ

F1(tc,m, ω, ϕ), (40)

Another distinction can be found in the first part of the fitting process. Here, due

to the much more peculiar surface of the loss function, which is investigated and

well-described by Filimonov and Sornette (2013), the TS must be applied before

the utilization of the LMA in order to find the optimal solution. One potential
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drawback can be that the execution of TS might be very lengthy.5 The different

starting values are used in accord with the description in Section 3.3.4. For this

method, we also omit the corresponding optimization problem given by equation

(31) not to further increase the problem complexity.

The linear problem is then defined by the following equation

{Â, B̂, Ĉ} = arg min
A,B,C

F (tc,m, ω, ϕ,A,B,C), (41)

and is also solved by OLS.

3.3.6 Taboo Search

There are more than one heuristic methods applicable to a global minimization

problem. Genetic algorithm (GA) described by Holland (1992), and Simulated

annealing (SA) introduced by Kirkpatrick et al. (1983) are to be mentioned. In

this thesis, nonetheless, TS is chosen to be used. TS has been proved to be

superior in time consumed for obtaining a solution for different tasks, moreover,

results returned by TS are also better in quality compared with SA Hertz and

de Werra (1987), Skorin-Kapov (1990), and Zheng et al. (2005). Besides, TS is

conceptually simpler than SA and GA Cvijović and Klinowski (1995), and it has

been shown to outperform GA in computational efficiency too Teh and Rangaiah

(2003).

TS used for optimization problems in continuous spaces is based on the origi-

nal work published by Glover (1990) who developed this ”higher level” heuristic

procedure to find near-optimum global maximum/minimum in complex combina-

torial tasks with an ambition to escape the trap of a local extreme. With the rising

popularity of TS in discrete space problems Moscato (1993), TS methods applica-

ble for continuous optimization were later introduced by Cvijović and Klinowski

(1995).

In general, define the global minimization problem as

minL(x) : x ∈ X ⊂ Rn, (42)

5This finding is based on own observation conducted during the research. In spite of the
function is well vectorized, an execution takes a long time to be completed due to a large number
of starting points.
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where L is a loss function, and x is a point from X defining the solution space,

which is a subspace of an n-dimensional hypercube. TS begins from some staring

point and attempts to find a better solution measured by a given loss function.

These steps, usually called moves in heuristic procedures Van Laarhoven and Aarts

(1987), are defined as a transition from x to x′ and further, we specify the move

value as a difference L(x′)− L(x) thus only moves with negative move values are

improving Cvijović and Klinowski (1995).

Before going through individual parts of our procedure, let us introduce some

useful definitions.

Definition 3.2 (Interval partitioning). Let m ∈ N, and z1, z2 ∈ R, z1 < z2.

Partitioning of an interval [z1, z2] on m cells is considered to be

z1 = zp0 < zp1 < · · · < zpm = z2, (43)

and zpj − zpj−1 = c ∈ R+ for all j = 1, . . . ,m.

Definition 3.3 (Taboo move, Cvijović and Klinowski (1995)). Let X ⊂ Rn, and

x, x′ ∈ X, and L ∈ N. The move x → x′ is said to be taboo if at least one the

following two conditions is met:

i) the move produces a solution, which has been reached in L preceeding steps,

ii) the move results in deterioration greater than allowed by a predefined value.

This definition, however, may be simplified by dropping the first condition.

This adjustment makes good sense because from equation (27) we scrutinize the

loss function L : R4 → R, where input variables are taken with at least three-

decimal-place precision. Then, if parameter bandwidths were arbitrarily 0.16,

the probability the same values are to be hit and selected at least twice in 10

iterations7 is rather negligible, only about 9 ·10−12. Hence, we bring the following

modified definition of a taboo move.

Definition 3.4 (Taboo move - modified version). Let X ⊂ Rn, and x, x′ ∈ X.

The move x→ x′ is said to be taboo if

6In our application, ranges are actually a little bit greater in average.
7This is a similar value to those one applied in research done by Cvijović and Klinowski

(1995).
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• the move results in deterioration greater than allowed by a predefined value.

The moves going into consideration in each iterative step of TS are drawn

from non-taboo moves from a neighbourhood of a current solution. To define a

neighbourhood, let us recall our optimization problem (40) aiming to minimize a

loss function (39). In this case, all the linear parameters are given, while ns ∈ N

different points for each non-linear parameter tc,m, ω, and ϕ, are separately drawn

from a uniform distribution from nc ∈ N cells. The latter four points define a

neighbourhood of the current solution x of the size ncns. At the end of each

iterative step, the move with the lowest move value is picked to be the next

solution. Iterations are executed as long as improvements are being obtained

within a limited number of rounds Cvijović and Klinowski (1995).

The whole procedure is summarized by the pseudocode written below. The

code in full extent is attached in the Appendix.

Algorithm 1 Taboo Search

1: parameters ← list()
2: elite list ← list()
3: losses ← list()
4: parameters ← runif(n=30)
5: losses ← loss function(parameters)
6: elite list ← parameters(argmin(losses, 10))
7: taboo condition ← elite lost[10, ’loss’]
8: if min(losses) < 200 then
9: while iter without improvement < 100 do

10: neighbourhood ← getNeighbourhood()
11: non taboo solutions ← getNonTaboo(neighbourhood)
12: best sol ← non taboo solutions[argmin(self ), ]
13: if best sol < elite list[10, ’loss’] then
14: elite list[10] ← best sol
15: elite list ← sort(elite list)
16: iter without improvement ← 0
17: else
18: iter without improvement += 1

19: best solution ← elite list[1]

20: return best solution

3.3.7 Levenberg-Marquardt algorithm

Another method used for solving the non-linear problem is the LMA that was

in past independently studied by Levenberg (1944) and Marquardt (1963). The
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LMA can be considered a blend of the gradient descent algorithm (GD), invented

by the French mathematician L. A. Cauchy (1847), and the Gauss-Newton algo-

rithm (GNA) firstly appeared in Gauss (1809). The choice of the LMA stems from

a quicker convergence in comparison with GD which is mainly due to a constant

step size in case of GD that needs to be set apriori rather small in order for the

algorithm to successfully converge to a local minimum. In areas of a small slope,

therefore, this algorithm tends to trudge very slowly to an optimum. Another

source of hurdles faced by GD cramping speed efficiency is varying curvature of

error function surface in different directions. The latter problem can be mostly

overcome by the GNA exploiting the second-order derivatives to set a proper step

size, however, this algorithm is prone to divergence in situations when the pres-

ence of a quadratic approximation of error function is not reasonable. Hence,

the LMA sort of combines these two tools together such as in areas featuring

perplexing curvature, LMA exploits GD, and as soon as the function curvature

begins to behave more smoothly, a quadratic approximation is wielded to hasten

convergence Yu and Wilamowski (2011).

Comprehensive thought of the LMA is not in the scope of this text, and for

interested readers that can be found, for example, in Moré (1978), Nocedal and

Wright (2006), Kelley (1999), Yu and Wilamowski (2011). We, instead, focus on a

brief description of the LMA in order to grasp the substance of the mathematical

theory behind this method necessary for a practical implementation.

Same, as in the case of TS, the LMA requires to be fed by an initial solution x0.

Furthermore, grid search is also used to identify different local minima, and the

identical minimization problem (42) needs to be figured out. We further suppose

to have a point p ∈ Rn such that ||p|| < ∆ ∈ R+, i.e. a point x + p should be

in a close vicinity of a current solution x. Then, an application of Taylor Series

expansion leads to the approximation

L(x+ p) ≈ L(x) + Jp, (44)

where J is a Jacobian matrix (Jacobian matrix is defined as a matrix of first

partial derivatives, i.e. J = ∂f(x)
∂x , Hájková et al. (2012)), J ∈ Rm×n, of some

loss function L : Rn → Rm. In our case, we are endowed by loss function from a
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three/four-dimensional real space to a one-dimensional thus for simplicity L will

be restricted only on L such that L : Rn → R.

In each iterative step, we look for a point p, such that L(x)+ Jp is minimized,

which is yielded from a normal equation

JT Jp = JTL(x), (45)

where JT J is an approximation of the Hessian (Hessian matrix is defined as a

matrix of second-order partial derivatives, i.e. an element in the ith row and the

jth column is Hij = ∂f(x)
∂xi∂xj

, Hájková et al. (2012)). The LMA slightly adjusts

the LHS of equation (45) to secure an invertibility of the Hessian by adding

combination coefficient µ > 0 that

H = JT J+ µIn, (46)

where In is an identity matrix of size n and thus actually the following statement

needs to be solved

Hp = JTL. (47)

.

The validity of this assumed property (invertibility) flows from that in the

proximity of any local minimum we always consider a function with a convex

surface (this logic stems from a sufficient condition for a local minimum Hájková

et al. (2012)). From the field of mathematical analysis, we know the Hessian

matrix of such a function is positive semi-definite, which has non-negative elements

on a diagonal, hence by adding a non-zero element µ > 0, we are assured to obtain

a full-rank Hessian matrix of size n which is by definition invertible. Otherwise,

i.e. far from any local minima, the surface of loss function does not have to be

convex hence positive semi-definition is not guaranteed. Nevertheless, from the

essence of the LMA, µ will be determined such that µ ≫ 0, therefore, even in

those cases it should hold for H to be a positive definite matrix.

Now, approaching the theory of the GNA and its update rule that states

xk+1 = xk −
(
JT J

)−1 JTL, (48)
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k denotes the current round of optimization process, and by combining equations

(46) with (48), an update rule for the LMA can be derived as

xk+1 = xk −
(
JT J+ µIn

)−1 JTL. (49)

In equation (49), depending on the magnitude of the combination coefficient µ,

the LMA switches between the GNA and GD. If µ is very small (i.e. close to

zero), an approach very similar to GNA is applied. In the opposite scenario, the

LMA is an approximation of the GD where each step is defined as

xk+1 = xk − αg, (50)

α is a learning rate and g denotes the gradient of a utilized loss function.

In each iterative step, a solution obtained from equation (49) is either accepted,

which happens when xk+1 brings an improvement, i.e. L(xk+1) ≤ L(xk), then the

procedure continues with a decreased damping term, otherwise µ is enlarged and

the changing step k + 1 is repeated in an attempt to find an enhancing solution.

The LMA terminates as soon as one of the following criterion is met:

i) the magnitude of the update step size defined as JTL drops below a pre-

specified value ϵ1,

ii) the relative change in p between two consecutive steps dips below a pre-

defined value ϵ2,

iii) sufficient accuracy has been reached, i.e. L(xk) < ϵ3,

iv) maximum number of iterations has been done,

Yu and Wilamowski (2011), Lourakis et al. (2005), and convergence of the LMA

is briefly justified in Moré (1978).

3.3.8 Test methodology

The non-negligible pitfall of the LPPL model is the fact that this model is al-

ways somehow fitted on time series data regardless of the presence of log-periodic

oscillations in them. Therefore, looking at values of R2 is not generally suffi-

cient. Beside R2, we also focus on another measurement - root mean-squared

30



error (RMSE). This statistics is an example of an absolute value of errors, which

can provide us with a clearer inside into whether the model is truly fitted or not.

RMSE is defined as

RMSE =

√∑T
t=1(ŷt − yt)2

T
(51)

and it will be denoted by a sign χ in the remain of this thesis.

We further monitor all parameters to be in recommended confined intervals.

Besides, we drop fittings with critical time tc predicted such as tc is almost equal

to tn, which is a habit also applied in Sornette (2003).8

Moreover, as mentioned above, a crash occurrence is not a purely deterministic

event, therefore, in Subsection 5.3 where out-of-sample analysis is to be conducted

all results obtained in the particular windows will be taken into consideration and

evaluated together. If more than one local minimum with the same goodness-of-fit

are found, all of them will be further discussed.

3.4 Critical Slowing Down

Notwithstanding the fact that prediction of critical shifts in various systems

is very cumbersome because systems may exhibit only little change before such

a transition, it has been shown there exist certain generic symptoms which are

detectable in different systems regardless of distinctions of particular systems

Schroeder (2009). In the concept of mathematical models, this catastrophic phase

transitions are related to bifurcations which have already been heavily studied in

mathematics. This topic is quite broad, and deals with various kinds of bifurca-

tion. Nevertheless, in the text below, we always refer only to the ones where a

shift from one state of the system to another one suddenly occurs with dramati-

cally changed state conditions. For further study, books like Kuznetsov (2013) or

Chow and Hale (2012) can be recommended, though such a theory is beyond the

scope of our text.

The CSD has been suggested as one of the most promising barometers of

the nearing critical point Wissel (1984). The most direct implication of CSD is

gradually slowing recovery rate in the observed system as it approaches the critical

8It is a good tactic since these fits would be likely to converge to time smaller than tc hence
they should not be considered as a valid solution.
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point Van Nes and Scheffer (2007). Nevertheless, due to the large amount of noise

present in data obtained, for example, from financial markets, it may be futile to

try to detect this feature. Fortunately, three patterns have been suggested as an

indicator of occurrence of CSD in the systems. There are two time-series signals,

an increased autocorrelation Dakos et al. (2012), elevated variance Carpenter

and Brock (2006), and one cross-sectional change Schroeder (2009) which are

detectable. Those three characteristics are elaborated in sections 3.4.2 and 3.4.3,

where both intuition and mathematical reasoning are provided.

The distinction in an application in comparison with the LPPL model is that

whereas the LPPL model ”consumes” the price (or logarithm of the price) of an

asset itself, the CSD looks at residuals obtained from detrending.

3.4.1 Detrending

To conduct a proper statistical analysis, it is necessary to obtain a mean-

stationary data. The stock price or logarithm of that price generally violates this

property due to long-term trends. Detrending is thus necessary and subtracting

moving averages from the observed index price is a relatively widely used method

Dakos et al. (2008). Here, we modify this scheme by allowing the data nearer to

the given time point to have larger weights through the Gaussian kernel smoothing

thus we follow the framework applied in Diks et al. (2015).

Consider the case where we always want to probe the last T trading days

before the edge of the crisis. Then, the weighted moving average at time t is

defined as

MAt =

∑T
r=1G(r − t)yr∑T
r=1G(r − t)

, t = 1, . . . , T (52)

where G(·) denotes a Gaussian kernel function

G(s) =
1√
2πσ

exp−
s2

2σ2 , (53)

and yt represents logarithm of index price at time t.

The residual fluctuations, which are then inspected, are obtained by subtract-

ing MAt from yt,

zt = yt −MAt, t = 1, . . . , T. (54)
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These residuals fluctuate around 0 by their construction thus mean-stationarity

is to be satisfied. Further in the text, zt is referred as residuals or detrended

fluctuations.

There is the one parameter needing to be a priori determined, the size of

bandwidth σ (here, this parameter can be interpreted in the number of trading

days). We face a standard bias-variance trade-off as by choosing σ too high, the

resulting time series is over-smoothed and a lot of information is missed. On

the other hand, too small bandwidth causes the noisiness of the data not to be

sufficiently eliminated and it results in persisting high variance. Therefore, we

aim to determine the choice of σ so that the long-term trends are curtailed and

at the same time, daily fluctuations around some equilibrium value remain in

satisfactory details Diks et al. (2015).

3.4.2 Time-series patterns

Autocorrelation

Generally, an important intuition behind the rise in autocorrelation is that

systemic slowing down should imply a gain in serial correlation in an observed

data. Intuitively, this can be understood in a way that as an internal speed of

regeneration goes down, the state of the system at time t + 1 is more and more

similar to conditions at time t. Mathematically, this fact can grasped by 1-lag

autocorrelation as Dakos et al. (2012) pointed out as follows.

For simplicity, consider such a system with one equilibrium state x̄ where after

each period ∆t white noise is present. Furthermore, assume a given system’s

recovery from perturbations is roughly exponential with some speed λ. All of this

can be expressed as

xt+1 = exp−λ∆t xt + σϵt, (55)

where ϵ ∼ N(0, 1), and σ denotes an amplitude of disturbances. Subtracting x̄

from equation (55), deviation of x from the equilibrium is given as

xt+1 − x̄ = exp−λ∆t(xt − x̄) + σϵt (56)
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and by rewriting xt − x = yt, we obtain

yt+1 = exp−λ∆t yt + σϵt, (57)

Assuming independence of λ and ∆t of yt for all t ∈ N, and restricting λ from

being negative, the relationship described by equation (57) can be rewritten as an

AR(1) process, i.e. exp−λ∆t = α, such as

yt+1 = αyt + σϵt (58)

This is both mathematically valid and it also corresponds with the hypothesis

because we have

lim
λ→∞

exp−λ∆t = 0, lim
λ→0

exp−λ∆t = 1, (59)

Scheffer et al. (2009).

This distinguishable increase in autocorrelation that develops long before the

phase transition occurs has been proven to hold both in simple models Dakos

et al. (2012) and much more complex and realistic systems Lenton et al. (2008).

Variance

The other distinct time-series pattern in fluctuations of system state is a rise

in variance. This can be again reasoned using intuition. Consider equation (57),

and suppose a system approaching a critical point with slowing speed of recovery.

As an eigenvalue of regeneration approaches zero, the system becomes unable to

diminish the impact of disturbances. Therefore, the effect of particular perturba-

tions tend to accumulate, which eventually results in a higher variance, as it has

been shown, for example, by Carpenter and Brock (2006).

Mathematically, this characteristics can be easily derived using the knowledge

from equation of the AR(1) process such as (58). Assuming deviation of a system

at some initial time t0 is equal to zero, i.e. yt0 = 0, we can simply compute the

variance of this process at time t ∈ N. For this purpose, recall that E(αy) =

αE(y), E(ϵ) = 0 for white noise ϵ, and from linearity of expectation we further
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have E(αx+ βy) = αE(x) + βE(y). Then the first moment is

E(yt) = αE(yt−1) + σE(ϵt1) = · · · = αtE(yt0) = αtyt0 = 0 (60)

hence, assuming ∆t is small enough such as V ar(yt) − V ar(yt−1) < ε for all

ε ∈ R, ε > 0, V ar(yt) is

V ar(yt) = E(y2t )− (E(yt))
2 = E(y2t ) = αE(y2t ) + σ2 =

σ2

1− α2
, (61)

provided that |α| < 1. However, the last assumption for α is directly satisfied

from equation (59) and the monotony of an exponential function.

From the information stated above, it is obvious that as recovery speed de-

creases, α approaches zero, and consequently variance rises. Therefore, it seems

reasonable to observe variance as an indicator of the CSD which is claimed to be

a precursor of various types of bifurcations Kuznetsov (2013).

3.4.3 Cross-sectional patterns

As we elaborate in Subsection 3.2.2, there is an imitative behaviour of individ-

ual agents behind financial crashes. This pattern, however, can be also considered

from different perspective as we can look at, let us say, the U.S. market, whose

condition is reflected by, for example, the S&P 500. Thus, instead of examining

individual agents we can scrutinize the performance of individual stocks. There-

fore, considering this self-organization pattern from Subsection 3.2, we should be

able to detect an increase in correlation among individual stocks, or potentially

among different financial markets which also affect each other due to high level

of globalization nowadays. Evidence of elevated correlation across different stock

returns may serve as early-warning signals was, for example, suggested by Hong

and Stein (2003).

Due to a huge number of pairwise correlation between individual stocks, we

do not investigate this measurement between them, and rather focus only on

correlation between particular markets. However, we do not throw this idea away,

because if mimic behaviour really emerges prior financial turmoils, this intuition

of correlated stocks gives us another justification for scrutinizing variance over
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time, which simply stems from the mathematical property of variance that states

V ar(yt) = V ar

(
n∑

i=1

wirit

)
=

n∑
i=1

w2
i V ar(rit) + 2

∑
1≤i<j≤n

wiwjCov(rit, rjt) (62)

Bartoszynski and Niewiadomska-Bugaj (2007), where yt denotes detrended fluc-

tuations of any stock index at some time t, rit represents remaining residuals of

stock i at time t and wi stands for a relative weight of an asset involved in an

observed gauge.

3.4.4 Test diagnostics

In order to avoid reliance only on the eye inspection when ascertaining leading

indicators behave according to patterns described in the subsection above, we

test trends over time in gauges, AR(1) and variance, for significance according to

scheme described by Dakos et al. (2008) or Diks et al. (2015).

For this purpose, we employ the Kendall rank correlation coefficient introduced

by Kendall (1955), which is a non-parametric measurement evaluating the degree

of similarity between two sets of variables, in our case between the one of time-

varying indicators, and time. Kendall’s tau is defined as

τ̂ =
C −D

N
(63)

where C is a number of concordant pairs, D denotes the number of discordant

pairs, N represents the total number of different pair combinations hence N =

n(n−1)
2 , and n is a number of observations. Kendall’s tau takes values from an

interval [−1, 1] Abdi (2007). Thus we would expect to obtain values closer to 1,

as we suppose a positive development in the observed indicators over the time.

Furthermore, we count on a standardized hypothesis testing. Generally, ac-

cepted approximation of variance of Kendall’s τ for n > 10 is

σ2
τ =

2(2N + 5)

9N(N − 1)
. (64)
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Then

Zτ =
τ

στ
=

τ√
2(2N+5)
9N(N−1)

(65)

has a normal distribution with zero mean and unit variance. After computing

a Z value, corresponding level of significance under which the null hypothesis is

rejected may be found Abdi (2007). In our case, null hypothesis represents an

insignificant relationship between observed time-varying indicators and time. As

the last thing, we will focus on two different long sliding windows, 100 days and

50 days, and accordingly we choose the number of trading days T prior to crash

as 200 and 100 days respectively.

Finally, stationarity of detrended residuals is to be scrutinized by three well-

known tests - Augmented Dickey-Fuller test9, KPSS test10, and PP test11, which

are well implemented in R and accompanied by a sufficient amount of documen-

tation.

9https://www.rdocumentation.org/packages/tseries/versions/0.10-46/topics/adf.test
10https://www.rdocumentation.org/packages/tseries/versions/0.10-46/topics/kpss.test
11https://www.rdocumentation.org/packages/tseries/versions/0.10-46/topics/pp.test
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4 Dataset description

The structure of data used in this thesis can be divided into two parts as the

in-sample (calibration) set and the out-of-sample (verification) set. The first one

is used to reveal whether two frameworks presented in this thesis are applicable

for detecting an end of a financial bubble, or as warning signals of any different

imminent crash. The other set is then considered as a way to determine how

much prone these concepts are to false positives, verify their power, and hence to

discuss their total suitability as warning indicators.

The calibration set consists of data from four past crises - Black Monday in

1987, the Mexican decay at the beginning of 1994 prior to the large national cur-

rency devaluation which, subsequently, brought contagion to the whole national

economy; Asian financial crisis in 1997, and the burst of the dot-com boom in

March 2000.

Regarding the Black Monday, we observe the S&P 500 index, which is a re-

garded stock index of the largest-cap American equities listed on the New York

Stock Exchange, the NASDAQ Stock Market or Chicago Board Options Exchange.

The S&P peaked on Friday, October 16, 1987, subsequently on Monday, October

19, a huge drop occurred.

Mexican crisis was ignited by peso devaluation in December 1994, and the

complex financial turmoil followed shortly after Sachs et al. (1996). But mea-

surable financial difficulties began even earlier and those ones are the target of

our study. We decided to observe IPC Mexico (MXX) which is a stock index

gauging the performance of 35 stocks traded on Mexican Stock Exchange. There,

we detect MXX peaked on February 8, 1994, and a day later an approximately

two-month gradual deterioration started.

To investigate the 1997 Asian financial crisis, we choose to follow the Hang

Seng Index (HSI) that contains 50 stocks listed on the Hong Kong Stock Exchange.

Multiple points can be selected as the beginning of financial meltdowns as HSI

peaked on August 7, but another local maximum was on October 3. Finally,

we decided to choose October 20 as a decisive day because then a 5-day decline

sparked and HSI dropped by 23.34%.

The dot-com boom was a speculative bubble, motivated by a tremendous rise
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in the use of the internet, that eventually burst on March 11, 2000, and affected

the world economy for more than two years. We use the NASDAQ Composite

Index, comprising of stocks and associated securities traded on the Nasdaq Stock

Exchange, as a single gauge of this famous event.

For analyzing 1-lag serial correlation and variance for the CSD, we always

use time series data consisting of 100 or 200 days (depending on the width of

the sliding window) respectively prior to the crash. Specification of time frames

utilized in the LPPL analysis is summarized in the table below. Beginning is

denoted by time t1, end is the last date from available time series data, i.e. tn.

Time frame [t1, tn] is subsequently used for a prediction of critical time tc. Finally,

only the logarithm of the price is always used.

Index Beginning End Time of crash, tc

S&P 500 1984-09-17 1987-08-13 1987-10-17

IPC Mexico (MXX) 1993-06-10 1993-12-14 1994-02-09

Hang Seng (HSI) 1995-02-13 1997-08-22 1997-10-20

NASDAQ Composite 1995-01-03 1999-12-29 2000-03-11

Table 1: LPPL: Calibration dataset

For the validation (”out-of-sample”) set, we opted to choose two financial

crashes as a benchmark for our two methods. The global financial crisis 2007-

2008 is the first occasion, the Bitcoin bubble, which burst at the end of the year

2017, is the other one.

In the case of global depression, we select fourteen points in time when predic-

tions are to be made. Time frames for the CSD analysis are conceptually in line

with those described for the calibration sets. Regarding the LPPL model, for the

seven initial predictions, March 15, 2003, as the starting date is chosen. The be-

ginning is subsequently shifted to October 25, 2005, because of market conditions

during years 2004 and 2005 which do not correspond to the bubble-developing

behaviour. The last observed trading day was on September 17, 2007. All the

time frames are clearly presented in Table 2 accompanied by visualisation.

We follow the Dow Jones Industrial Average, which is a gauge of 30 publicly

traded companies on the New York Stock Exchange, and the Nasdaq Exchange.
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Beginning Beginning End date End date

2003-03-17 2003.205 2005-03-15 2005.200

2003-03-17 2003.205 2005-06-15 2005.452

2003-03-17 2003.205 2005-09-15 2005.704

2003-03-17 2003.205 2005-12-15 2005.953

2003-03-17 2003.205 2006-03-15 2006.200

2003-03-17 2003.205 2006-06-15 2006.452

2003-03-17 2003.205 2006-09-15 2006.704

2015-10-25 2005.814 2006-12-15 2006.953

2015-10-25 2005.814 2007-03-15 2007.200

2015-10-25 2005.814 2007-05-16 2007.370

2015-10-25 2005.814 2007-06-15 2007.452

2015-10-25 2005.814 2007-07-16 2007.537

2015-10-26 2005.814 2007-08-15 2007.619

2015-10-26 2005.814 2007-09-17 2007.701

Table 2: Financial crisis 2007-2008

Figure 4: Precursor of the global financial crisis 2007-2008

Red dashed line depicts the time of bursting the bubble; two phases of given time series
data with a different beginning date are graphically distinguished.

In the case of Bitcoin, the most famous cryptocurrency which was initially

released in January 2009, we start to observe its ascending prices as of August 20,

2015, when the valuation of one coin was mere 232 dollars. Then the Bitcoin price

was soaring punctuated by a few tumbles for more than two years and, finally,

reached the valuation of 19,345 dollars on December 16, 2017. Subsequently, a

substantial depreciation kindled.
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For predicting the end of the Bitcoin bubble, we make sixteen predictions in

total, the first one was made on August 15, 2016, and the rest of them were

made during each consecutive month on the same day. The time window used for

prediction are summarized in Table 3 accomplished with a time series plot below.

Start date Start date End date End date

2015-08-20 2015.633 2016-08-15 2016.620

2015-08-20 2015.633 2016-09-15 2016.705

2015-08-20 2015.633 2016-10-15 2016.787

2015-08-20 2015.633 2016-11-15 2016.872

2015-08-20 2015.633 2016-12-15 2016.954

2015-08-20 2015.633 2017-01-15 2017.038

2015-08-20 2015.633 2017-02-15 2017.123

2015-08-20 2015.633 2017-03-15 2017.200

2015-08-20 2015.633 2017-04-15 2017.285

2015-08-20 2015.633 2017-05-15 2017.367

2015-08-20 2015.633 2017-06-15 2017.452

2015-08-20 2015.633 2017-07-15 2017.534

2015-08-20 2015.633 2017-08-15 2017.619

2015-08-20 2015.633 2017-09-15 2017.704

2015-08-20 2015.633 2017-10-15 2017.786

2015-08-20 2015.633 2017-11-15 2017.871

Table 3: Bitcoin bubble

Figure 5: Bitcoin bubble 2015-2017

Red dashed line depicts the time of bursting the bubble

All the data presented in this Section are downloaded using the R package quantmod.12

12https://cran.r-project.org/web/packages/quantmod/index.html
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5 Empirical results

This section is divided into three parts. The first two are dedicated to the

verification of the capability of both schemes, i.e. whether they are able to detect

financial bubbles. The best framework for the LPPL model, and the CSD scheme

is then utilized in the last part which concentrates on a more general application

since we go gradually through financial time series data, and we try to find out

how much each of the chosen models is prone to false alarms. All the tests of the

stationarity of detrended fluctuations exploited by the CSD are attached in the

Appendix.

5.1 Calibration: LPPL model

The performances of both versions of the model are simultaneously analyzed

and compared in the following four subsections. Thus, all of them contain two

figures and two tables compiling the quality of fit and the capability of grasping

the market dynamics.

5.1.1 Black Monday

Figure 6: LPPL1: Black Monday 1987 (S&P500)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

A B C tc m ω ϕ R2 χ

Fit 5.927 -0.328 0.020 1988.058 0.806 11.193 5.467 .9739 .0317

Table 4: LPPL1: Black Monday

42



Evaluation of the LPPL scheme on modelling the events of Black Monday can

be introduced by a survey of goodness-of-fit. Here, even though the fit measured

by R2 is pretty high, 97.39%, and the fitted curve follows the real price relatively

well, the predicted time tc is quite bad considering the real crash occurred at

time t = 1987.797. All the parameters, both linear and non-linear ones, are well

within the recommended ranges specified in Subsection 3.3.3, though we can say

the parameters m and ω are relatively close to the interval boundaries, and do not

satisfy the narrower interval proposed by Bree and Joseph (2010). An acceleration

parameter m is relatively considerably high which reflects not so explosive rise in

the price.

Significantly better work is performed by the modified LPPL model. The

figure and the table summarizing the fitting process are provided below.

Figure 7: LPPL2: Black Monday 1987 (S&P500)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

A B C1 C2 tc m ω R2 χ

Fit 5.873 -0.334 -0.020 0.008 1987.838 0.748 7.321 .9736 .0319

Table 5: LPPL2: Black Monday

Despite the slightly worse R2, the prediction of the critical time is much more

accurate in the case of the LPPL2 model. Again, the value of parameter m

is quite high, nevertheless, still well within the boundaries, however, the more

confined intervals proposed by Bree and Joseph (2010) are not sufficient. All

other parameters again lie well within broader boundaries.

The LPPL1 model and the LPPL2 model can be claimed to be able to fit on

43



the log-periodic price dynamics of the S&P500 prior to the Black Monday, but

both predictions are, unfortunately, too late. Nevertheless, the relatively high

accuracy of the LPPL2 model must be pointed out as quite promising.

5.1.2 Mexican crisis 1994

Figure 8: LPPL1: Mexican crisis 1994 (MXX)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

The Mexican market was substantially decorated by noise prior to the spark

of the long-term decline of the Mexican stock index. In spite of these hurdles,

the fit of the LPPL1 model is not far from ideal. The prediction of the tipping

point is surprisingly quite accurate with respect to a short window utilized for

this prediction. Details of fitting are provided in the table below.

A B C tc m ω ϕ R2 χ

Fit 8.070 -0.808 0.036 1994.114 0.480 11.927 3.827 .9175 .0300

Table 6: LPPL2: Mexican crisis

The value of R2 is somewhat lower as expected due to noise present, and it

flows around 0.92. On the other hand, the RMSE is comparable with the fit

on Black Monday hence this appraisal can be considered as a good one. All the

parameters, furthermore, satisfy assumptions imposed on the range of parameters.

The estimation of the critical time tc is again a little bit delayed, however, now the

prediction is imprecise only by 0.01, which is equivalent to less than four calendar

days.

Now, if we look at Figure 9, we can see that the LPPL2 model is much more
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Figure 9: LPPL2: Mexican crisis 1994 (MXX)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

proficient in tackling fluctuating prices prior to the crash in comparison with the

results obtained by the LPPL1 model. This is also mirrored by higher R2 climbing

up to 0.9553. All the parameters are again summarized in the table below.

A B C1 C2 tc m ω R2 χ

Fit 8.793 -1.519 0.006 0.046 1994.180 0.253 8.206 .9553 .0240

Table 7: LPPL2: Mexican crisis

Nevertheless, the overall performance of the model is poorer since the LPPL2

model let itself be deceived and a further steep climb in price is expected before

the drop comes. The soaring predicted price at the end of the bubble is then a

consequence of a relatively low value of the parameter m. Parameter ω is lower

in this case, but now it satisfies even the confined intervals suggested by Bree and

Joseph (2010).

5.1.3 Asian financial crisis 1997

From the eye inspection of Figure 10, the prediction of time tc can be argued

to be quite accurate, though again slightly delayed. The fit looks also quite

well except for some major drops in index price, i.e. the one around time t =

1997.25, and it is also reflected by a high value of the goodness-of-fit topping

0.95. On the other hand, the highest value of RMSE so far hints local deviations

are not captured by this model, yet this statistic does not seem problematic.

Besides, all the parameters look reliable and are summarized Table 8 which is
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also accomplished with a plot of a given time series and following predictions.

A B C tc m ω ϕ R2 χ

Fit 9.808 -0.397 0.025 1997.837 0.620 9.024 5.138 .9501 .0389

Table 8: LPPL1: Asian crisis 1997

Figure 10: LPPL1: Asian crisis 1997 (Hang Seng)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

Figure 11 depicts the prediction of the LPPL2 model whose fitted parameters

are summarized in the table below.

A B C1 C2 tc m ω R2 χ

Fit 9.744 -0.346 -0.012 -0.020 1997.780 0.735 6.630 .9502 .0386

Table 9: LPPL2: Asian crisis 1997

Figure 11: LPPL2: Asian crisis 1997 (Hang Seng)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

At first sight, the prediction of tc is much more accurate in this case. All
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the parameters again satisfy the recommended intervals. Similarly to the LPPL1

model, neither this model is able to fit the price slump around 1997.25, potentially

causing a relatively high value ofm thereby growth in a terminal phase might seem

to be too small.

Importantly, during the fitting of the LPPL2 model, two or three results were

obtained with tc very close to 1997.6, which actually pointed out that the end

of the dataset is more or less identical with the time of the burst of a bubble.

However, these predictions were dropped in alignment with the intuition provided

in Subsection 3.3.8. Generally, the solution returned by the LPPL2 should be

preferred to the LPPL1’s one.

5.1.4 The dot-com bubble

In this case, the beginning of the burst of the dot-com bubble is predicted by

the LPPL1 model quite well. The persistent trend is again well explained by this

model, nonetheless, the final acceleration prior to the turbulent outcome is not

exactly coped.

Figure 12: LPPL1: The dot-com bubble (NASDAQ)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

A B C tc m ω ϕ R2 χ

Fit 8.541 -0.753 0.020 2000.281 0.524 9.801 1.818 .9685 .0679

Table 10: LPPL1: Dot-com bubble

All the parameters respect the model specifications, and relatively high R2,

almost 97%, confirms the model is quite proficient in explanation of long-term
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market trends. RMSE, withal, is quite higher suggesting several non-marginal

discrepancies between fitted and real log-price. The critical time tc is not correctly

predicted and it is delayed by 0.09 years, which is about 30 calendar days.

On the other hand, taking a deeper look at the graph leads us to a realization

there is another peak next to the one occurred on March 10, 2000, which is referred

as the day before a burst of the bubble. Subsequently, the major slump happened

on March 28, 2010, and this date is about 15-16 calendar days before the predicted

tc, therefore, it is more or less within the 30-day window.

The prediction returned by LPPL2 model on the dot-com bubble is depicted

by Figure 13. Visually, it can be seen, there are some chunks of misspecification

at the beginning, still, this model is able to grasp the oscillation and acceleration

former the jar.

Figure 13: LPPL2: The dot-com bubble (NASDAQ)

Dotted line depicts the day of prediction, black dashed line shows the time of crash, and
the red dashed line portrays the critical time tc.

All the parameters presented in Table 11 are within the specified ranges, and

the critical time tc is predicted with high accuracy. Repeatedly, ω does not satisfy

the confined interval proposed by Bree and Joseph (2010), and therefore, these

narrower limits do not seem appropriate.

A B C1 C2 tc m ω R2 χ

Fit 8.926 -1.154 0.026 0.015 2000.262 0.373 9.504 .9670 .0695

Table 11: LPPL2: Dot-com bubble

Overall, despite the slightly lower R2 in this second case, the decisive moments

when the price accelerated in the last weeks before the burst are better captured
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by the LPPL2 model (for comparison look at Figure 12 and Figure 13). The

difference in predictions of the critical time tc is not so large, it is about 7 days,

unfortunately, both estimations are a little bit delayed with respect to the true

date of the edge of the crisis.

5.1.5 Summary of LPPL calibration

We analysed performances of both versions of the LPPL model utilized in this

thesis on four major stock tumbles in the past thirty years. From the available

results, we can conclude none of the models is distinctively superior to the other,

however, the LPPL2 seems to be slightly more powerful. Therefore, the modi-

fication of the LPPL equation proposed by Filimonov and Sornette (2013) can

be concluded to be reasonable because, besides probably higher robustness, the

time of fitting is significantly shorter thanks to omitting the application of Tabu

Search.

For the reasons stated above, we are confident to conduct further analysis in

Section 5.3 only using the LPPL2 model. This model should be able to grasp

the evolution of financial bubbles terminating by a burst because it is not any

problematic to fit the model in the way so that the parameters satisfy the bound-

aries of recommended intervals. On the other, we can conclude that the confined

ranges proposed by Bree and Joseph (2010) are often insufficient.

5.2 Calibration: Critical Slowing Down

5.2.1 Black Monday

Here, the performance of the CSD scheme is evaluated on the Black Monday

1987. As we can see from Figure 14, smoothing the time series data using our

Gaussian kernel functions provides us with residuals distributed roughly around

zero.13 First, the length of sliding windows was selected for 100 days with a 10-day

smoothing interval.

There is an apparent increase in the 1-lag autocorrelation supported by the rel-

atively high value of Kendall’s τ statistically significant at the 0.01 level. Further-

more, some gain in the standard deviation of residuals is also detectable with sta-

13The results of all unit root tests are attached in Appendix.
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tistically significant value of Kendall’s τ equalling 0.423 at the 0.01 level, though,

this fact is not greatly convincing by use of eye inspection. The spike in the

variance at the beginning is likely to be explained by worse fitted smoothing line

about 200 days before the crash.

Figure 14: CSD: Black Monday 1987 (S&P500), sliding window = 100

On the other hand, our hypothesis suggesting cross-correlation across the

world markets should rise prior to the crash cannot be well approved. Whereas

Kendall’s τ for the correlation between S&P500’s residuals and NIKKEI’s resid-

uals is 0.573***, this measurement equals -0.817*** for the correlation between

detrended fluctuations of S&P500 and FTSE. Moreover, this premise is also not

supported by time-series inference of our plot.

Second, we adjust the smoothing window to 5 trading days, and by narrowing

50



the sliding window to mere 50 days, considerably different results are obtained

as suggested by Figure 15. Values of AR(1) a few days before Monday 19, 1987,

actually tell nothing about the imminent crash, and this measurement vividly

fluctuates still around the similar values, and it is indeed slightly decreasing ac-

cording to the Kendell’s τ which is -0.241, and statistically significant at the 0.01

level. Conversely, the variance of residuals substantially ascends over time, and

on this occasion, may serve as a valid indicator. Correlation with other markets

again proves to be a kind of an impasse.

Figure 15: CSD: Black Monday 1987 (S&P500), sliding window = 50

5.2.2 Mexican crisis 1994

An investigation of the Mexican crisis around the initial months of the year
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1994 suggests AR(1) of detrended fluctuations could be doubtfully exploited as

an indicator of the nearing period of the relatively long downturn because serial

correlation was descending over time, which is, beside other things, confirmed by

significantly negative Kendall’s τ .

Figure 16: CSD: Mexican crisis 1994 (MMX), sliding window = 100

Fortunately, the development of the variance seems to be more helpful, and it

is propped up by the promising value of Kendall’s τ equalling to 0.832***. Here,

one needs to avoid being misled by a spike in variance roughly 70 days prior to

our defined beginning of a serious decline. The aforementioned bump in standard

deviation is caused by some different market perturbations deflecting the index

valuation for a few days. Eventually, correlation with other markets seems to

be rather ambiguous so far hence this gauge might be considered as the least
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appropriate indicator.14

Switching to the more microscopic point of view brings one problem to our

analysis arisen from many slumps already occurred prior to the day of a crash.

Though we can claim as turbulence in the market amasses, variance goes upward

(Kendall’s τ = 0.678***). However, the serial correlation of order one of the

residuals actually dropped before this more than 50-day decline. This gloomy fact

is justifiable by preceding turmoils curbing AR(1). It is, nevertheless, necessary

to point out the rise in variance for this microscopic view is not as obvious as for

the observation with a 100-day sliding window.

Figure 17: CSD: Mexican crisis 1994 (MMX), sliding window = 50

Finally, correlation with other markets is again very confusing, therefore, it will

14In this case, correlation with other markets is likely not to be such determinant because the
crisis had no global reach.
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not be scrutinized in the occasion of the Asian financial crisis. But this hypothesis

will undergo another battery of test in the course of the dot-com bubble since

in those times the level of globalization was significantly higher and some new

patterns could have emerged.

5.2.3 Asian financial crisis 1997

Figure 18: CSD: Asian crisis 1997 (Hang Seng), sliding window = 100

The Asian Market was quite fierce at the beginning of the second half of the

year 1997, which is well confirmed by two surges in the volatility of detrended

fluctuations. The standard deviation of residuals, interestingly, even after these

two jumps, steadily grown until October 17, 1997. Subsequently, on Monday, the

huge drop occurred. We, therefore, can claim, that this alarm was quite precise.

The Kendall’s τ equals 0.789, and this measurement is statistically significant at

the 0.01 level.

In contrast, autocorrelation of order one of detrended fluctuations was climbing

before the first remarkable drop roughly 35 trading days before the spark of the
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crisis but this development did not continue afterwards. This is also confirmed

by Kendall’s τ for serial correlation which is negative and it equals -0.339***.

Figure 19: CSD: Asian crisis 1997 (Hang Seng), sliding window = 50

Figure 19 once more confirms the ascending standard deviation of residuals

after the substantial hike approximately 30 trading days before the tumble with

Kendall’s τ equalling to 0.753***. AR(1) of remained fluctuations, unfortunately,

is not again proved to be a generic indicator of an imminent bifurcation in the

financial market since neither eye inspection nor Kendall’s statistics, which is

slightly below 0, is any convincing.

5.2.4 The dot-com bubble

Following the Figure 20, we must again be a little bit disappointed by the

behaviour of AR(1) of residuals with a 100-day sliding window because it does

not exhibit any persistent increase before the burst of the dot-com bubble peaking

on Friday, October 3, 2000. Development of a serial correlation of detrended

fluctuations is rather wild resulting in an insipid value of Kendall’s τ slightly
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below zero.

Figure 20: CSD: Burst of the dot-com bubble, sliding window = 100

On the other hand, an increasing variance of detrended fluctuations is de-

tectable before the collapse. Apparently, the variance was rather decreasing in the

period between 100 days and 60 days before the crash, nonetheless, the evolution

drastically changed approximately 50 days to the burst of the bubble. Moreover,

by restricting this measurement only on the last 60 days prior to a dawn of the

drop, the value of τ rises to 0.731***. It has been again, therefore, shown that

variance of residuals seems to be a much more propitious indicator of impending

risk.

Similar feelings are received from an inspection of Figure 21 as in the case of

examination of the previous plot. AR(1) of residuals does not exhibit any exactly

prevailing patterns before the depression. There is a rather more arbitrary spike

visible in the plot roughly 45 trading days prior to the crash that is well justifiable

by nine deviations in a row with a positive sign that are distributed around 50 days

before the plunge. The ambiguity of this statistic is emphasized by an insignificant
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Figure 21: CSD: Burst of the dot-com bubble, sliding window = 50

measurement of Kendall’s τ at even the 10% level. Generally, obeying 1-lag serial

correlation of residuals is not somehow a reliable technique due to the presence of

significant noise on financial markets prior to the collapse, probably sprung up in

a consequence of emerging panic.

Variance in this shorter period more or less confirms the hypothesis, based on

the truncated 60-day time frame obtained from the long window, thus a positive

relationship between the standard deviation of detrended fluctuations and time

is apparent. Despite a few spikes caused by two or three non-negligible drops in

a phase between 50 and 25 days prior to the burst of the bubble, the variance

of fluctuations does not subsequently decrease, and potentially indicates some

looming danger.

As we promise in Subsection 5.2.2, the correlation with other markets is also

investigated. For greater clarity, the measure is not plotted since five lines in one

plot may look confusing. Instead, rather the brief table summarizing Kendall’s

τ of the correlation between NASDAQ and other five indices is provided. We
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further restrict only on a 100-day sliding window in order to curb the amount of

information to a digestible level.

Corr(Nasdaq, X) S&P500 FTSE N225 DAX MXX

Kendall’s τ .648*** .698*** .163*** .703*** .470***

Table 12: Kendall’s τ of correlation between Nasdaq and other indices

On this occasion, a strengthening imitative behaviour across different markets

can be proposed to be measurable before the hit since all the values of Kendall’s τ

for market correlation are quite high except for the correlation between the U.S.

Nasdaq and the Japanese Nikkei 225. It is, therefore, not appropriate to reject this

hypothesis of rising correlation among the markets prior to turmoils in the current

setting of a high level of globalization so far. Hence the analysis of this kind will

be also conducted for the world depression ignited in 2007. This investigation is

to be omitted for the Bitcoin plummet as the world of cryptocurrency is a very

intriguing phenomenon deserving of isolated research.15

5.2.5 Summary of CSD calibration

In the previous parts of this subsection, we are able to show that financial

markets exhibit some generic patterns prior to the tipping points. We do not

fully support the hypothesis that focusing on peer markets can serve as a use-

ful indicator, however, so far we can confirm the rising standard deviation of

detrended fluctuations as a reasonably good leading gauge. On the other hand, 1-

lag autocorrelation of residuals provides us with rather more ambiguous marks as

this statistic gives a clear answer only for the Black Monday with a 100-day time

window. Conversely, an ascending trend in variance of remained fluctuations is

somehow detectable in all cases but the Black Monday with a same-long window.

The crash in October 1987 can be used as a reference that examination of

a shorter sliding window than one lasting 100 days may become worthy as this

zooming in reveals a climbing variance of residuals. In Subsection 5.3, therefore,

corresponding ”zoom” will be provided.16 The summary of the Kendall rank

15Furthermore, I have a lack of knowledge to be confident enough to pick suitable peer cryp-
tocoins.

16We also report the results of AR(1), though, it is obvious we cannot fully rely on them as
an indicator of looming risk.
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correlation coefficient briefly describing indicator performances is presented in

the table below.

Event Window τAR(1)τAR(1)τAR(1) τρτρτρ
Black Monday 100 .792*** .423***
Black Monday 50 -.241*** .927***

Mexican crisis 100 -.523*** .832***
Mexican crisis 50 -.585*** .678***

Asian crisis 100 -.339*** .789***
Asian crisis 50 -.086*** .753***

Dot-com bubble 100 -.061*** .419***
Dot-com bubble 50 .014 .820***

Table 13: CSD: Summary of Kendall’s τ for 1-lag serial correlation and standard de-
viance

*** denotes the statistical significance of the relationship at the 1% level; Window denotes
the length of a sliding window in days.

From Table 13, one can see all measurements except for one are highly statisti-

cally significant at the 1% level. Therefore, relying on this computation of p-value

seems a little bit unreliable. Because of this reason, some statistical techniques

such as bootstrap can be appropriate to be used in order to obtain more robust

and trustworthy estimations of statistical significance but bringing another bunch

of methodology would be necessary thus we rely only on this ”naive” measure and

focus mainly on the value of Kendall’s τ itself.

5.3 Out-of-sample predictions

In this section, we try to predict crashes on two occasions. We do not study the

discussed schemes only separately but we also consider them simultaneously and

hence try to exploit advantages of both frameworks to make as the best prediction

as possible. As a reminder, only the LPPL2, not the LPPL1, model is used.

5.3.1 Financial crisis of 2007-2008

To forecast the origin of decay of a global economy, fourteen predictions, which

are summarized in Table 14, were made. The LPPL model provides us with an

early warning for the end of the year 2006. The log-periodic signs, however, then

disappeared, and none of the four following predictions fulfilled requirements of

the LPPL model’s parameters. Then, some predictions satisfying all conditions of
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End date tctctc mmm ωωω R2 χχχ τAR(1)τAR(1)τAR(1) τστστσ τAR(1)τAR(1)τAR(1) τστστσ

2005.200 2006.968 0.243 8.130 .9281 .0197 -.207 -.414 -.313 .275

2005.452 NA NA NA NA NA .084 .397 .073 .571

2005.704 NA NA NA NA NA -.603 .056 -.787 -.659

2005.953 NA NA NA NA NA -.759 -.766 -.413 -.373

2006.200 NA NA NA NA NA -.118 -.010 .000 .799

2006.452 2006.819 0.591 10.538 .7936 .0330 .184 .187 -.413 .610

2006.704 2008.540 0.551 11.270 .8017 .0329 .179 .810 .407 -.657

2006.953* 2007.255 0.255 8.343 .8519 .0165 .019 -.819 .507 -.047

2007.200* 2007.969 0.356 8.609 .9205 .0156 .384 -.497 .420 .304

2007.370* 2007.934 0.137 10.925 .9484 .0144 -.500 .579 -.713 .080

2007.452* 2008.068 0.305 8.149 .9281 .0189 -.433 .609 -.160 -.768

2007.537* 2008.205 0.499 12.577 .9683 .0135 -.056 .626 .267 .180

2007.619* 2007.910 0.740 9.363 .9641 .0151 -.267 .639 -.107 .951

2007.701* 2007.767 0.787 8.499 .9493 .0183 -.546 .925 -.460 .847

Table 14: Forecasting of the beginning of the financial crisis 2007-2008

First column represents the date of a prediction, second to fifth columns are dedicated
to the result of LPPL model, and the last for columns shows Kendall’s tau of particular
indicator for 100-day and 50-day sliding window respectively. The graph depicting AR(1)
and standard deviation of residuals over time is attached in Appendix B.

the model emerged, however, the goodness-of-fit was quite poor thus we decided

to shift the start of the time frame to obtain more suitable time-series data as it

is explained in Section 4.

As soon as this adjustment was done, the more promising results began to

spring up. First, predictions of the critical time tc tended to move forward but

the last two forecasts exhibited an opposite trend. The last prediction made on

September 17, 2007, suggested the most likely time of the crash to be at 2007.767,

which is equivalent to October 8, 2007. The DJIA peaked on October 9, 2007,

afterwards, the index took a downward trend, therefore, this forecast can be

pronounced to be extraordinarily successful.

If we look at the results based on the scheme of CSD, we can conclude 1-lag

autocorrelation of detrended fluctuations is more or less meaningless. On the other

hand, observing the variance of residuals seems to be again much more promising.

A burst of variance during the second measurement (both with the longer and
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short sliding window) is noticeable, nonetheless, it provides us with the right clue

because the DJIA topped two trading days later, afterwards the index was falling

for six consecutive trading days and lost more than 3% (although this is not any

breathtaking slump, the six-day decline is conspicuous for sure).

Another spike in variance is detectable in the period around predictions at

2006.452 and 2006.704 when, however, no significant events occurred thus it is

appropriate these signs be considered as false alarms. Conversely, remarkable

values of Kendall’s τ of variance can be seen during the last five predictions, and

therefore, a potential crash should have been reckoned based on the theory of

CSD.

If we combine knowledge from both frameworks together and return to those

times, we would have had to be very aware of the looming risk of potential collapse,

and furthermore, we would have obtained a quite accurate estimation of a tipping

point tc, whose danger besides the predictions of the LPPL model is emphasized

by a persistent rise in standard deviation of detrended fluctuations.

Even though we do not focus on the last 200 days and 100 days respectively

as during analyses with the calibration sets, we think this analysis should be

considered as sufficient because early warning signals, in the form of a rising

variance of residuals, began to emerge quite in advance to the outbreak of the

crisis.

Table 15 summarizes results of the Kendall rank correlation coefficient map-

ping the development of correlation of the DJIA with other indices. At the begin-

ning, some flaws of this analysis need to be mentioned, namely the fact the sole

value of Kendall’s τ is not a perfect mirror of reality and a positive sign of this

measurement does not always imply a positive difference in correlation measured

at the end and at the beginning of a given period.

Although tests held during some last weeks prior to the crash are not listed in

Table 15, the hypothesis of a rise of imitative behaviour across the world markets

cannot be supported as the results do not provide any great insight.17 In spite

of the fact that the conclusion is drawn only from a brief survey, it should be

sufficient for our purposes.

17Actually, later phases were also investigated, yet no trend emerged.
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End date S&P500 N225 FTSE MXX DAX

3/15/2005 -.687* .846* .734* .617* .797*

6/15/2005 .429* -.621* .422* -.422* .341*

9/15/2005 .669* -.133 .474 -.212 -.734

12/15/2005 -.595* .509* .637* .203 .310

3/15/2006 .531* .362* -.023* -.106 -.274*

6/15/2006 -.266 .648* .526* .227* .294*

9/15/2006 -.669* .613* .477* .503* .668

12/15/2006 -.264 -.774* -.459 -.522* -.681*

3/15/2007 -.267 .905* .102* .266 -.079

5/16/2007 -.490* .785* .506* .716* .653*

6/15/2007 -.114 -.717* -.312* -.746* -.747

7/16/2007 -.544* .390* .182* .872 .255*

8/15/2007 -.030* -.198* .532* -.657 -.454*

9/17/2007 .629* -.271* .122* -.189* -.592

Table 15: Kendall’s τ of correlation of DJIA with other indices

* denotes a remarkable change in correlation coefficient at beginning and end of an ob-
served period

5.3.2 Burst of Bitcoin bubble

The results of sixteen predictions of the LPPL2 model made monthly between

August 15, 2016, and November 15, 2016 are described in Table 16. First, if we

look at values of R2, it might seem the development of the Bitcoin price is pretty

well described by our model, though this statistic can be possibly misleading be-

cause investigating the value of errors provides us with a quite different insight

as RMSE values are the very highest among other predictions conducted in the

thesis. This flaw is partially determined by higher volatility, and further caused

by the presence of some short episodes of time of rocketing prices followed by even

steeper tumbles, which simply cannot be fitted by the model of ours. Such fierce

reversals, moreover, provoke the non-linear parameter to be kind of inconsistent

as they significantly vary across particular predictions.
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End date tctctc mmm ωωω R2 χχχ τAR(1)τAR(1)τAR(1) τστστσ τAR(1)τAR(1)τAR(1) τστστσ

2016.620 2017.088 0.569 8.887 .9178 .0916 -.651 .918 -.673 -.604

2016.705 2017.155 0.312 12.248 .9335 .0833 -.500 .685 .773 -.605

2016.787 2017.313 0.569 12.326 .9298 .0865 -.600 -.276 .487 -.607

2016.872 2017.276 0.495 12.155 .9120 .0997 .264 -.819 -.660 .249

2016.954 2017.979 0.640 7.000 .9001 .1105 .226 -.763 -.293 .698

2017.038 2017.941 0.766 6.881 .9144 .1096 .409 -.082 -.100 .489

2017.123 2018.089 0.678 7.015 .9281 .1067 .254 .711 -.207 .878

2017.200 2018.093 0.716 6.273 .9418 .1038 .615 .915 .347 -.453

2017.285 2018.058 0.676 7.200 .9432 .1077 -.269 .888 -.160 .600

2017.367 2018.173 0.639 6.108 .9515 .1077 .371 .286 -.047 -.709

2017.452 2017.769 0.302 8.930 .9469 .1306 -.189 -.064 -.180 .913

2017.534 2017.691 0.484 7.249 .9538 .1342 -.466 .224 -.480 .531

2017.619 2018.102 0.358 6.926 .9565 .1435 .060 .672 -.053 .412

2017.704 2018.181 0.289 7.053 .9602 .1525 .131 .580 -.260 -.164

2017.786 2017.926 0.202 11.863 .9678 .1479 -.471 .539 -.420 -.311

2017.871 2018.078 0.523 6.158 .9687 .1590 .448 -.197 .587 -.002

Table 16: Forecasting of the burst of the bitcoin bubble in 2017

First column represents the date of a prediction, second to fifth columns are dedicated
to the result of LPPL model, and the last for columns shows Kendall’s tau of particular
indicator for 100-day and 50-day sliding window respectively. The graph depicting AR(1)
and standard deviation of residuals over time is attached in Appendix B.

Elaborating on a discrepancy between the goodness-of-fit and RMSE can serve

as a suggestion the LPPL model is capable to cope with the long-term trend ma-

terialized by gradually faster and faster, skyrocketing prices, but the real devel-

opment of the Bitcoin price is not probably decorated by log-periodic oscillations.

For this purpose, we can study the very last two fits visually in Figure 22 con-

firming our hypothesis.18

Our hypothesis that an actual fit is not as good as it seems according to

the R2 is confirmed by simple eye inspection. Here, the later prediction looks

to be a little bit more plausible approximation of the Bitcoin price prior to the

burst, however, estimation of the critical time tc is delayed as the turmoil began

on December 17, 2017, which is equivalent to 2017.959. In this perspective, the

preceding prediction is better, nevertheless, the fit does not look optimal hence it

18We decided to depict the last two predictions made by the LPPL model since they signifi-
cantly differ in non-linear parameters
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is quite unsure whether relying on this method is advisable in the case of Bitcoin.

Figure 22: LPPL2: Burst of the Bitcoin bubble

The red dotted line depicts the time of the crash; Green components are assigned to the
penultimate prediction, and the blue ones show the result of the very last forecast.

If we focus on the results of the CSD, we can see that an evolution of AR(1)

and standard deviation in time is often contradictory. Looking at the turn of years

2016 and 2017 and assuming a 100-day sliding window, a slight increase in 1-lag

serial correlation according to Kendall’s τ is detected thus correctly notifying of a

subsequent drop, however, serial correlation of order one of detrended fluctuations

does not look powerful in general.

Conversely, this tumble, which is not of any extraordinary significance in the

realm of Bitcoin, was not captured by the variance of detrended fluctuations,

which was decreasing prior to this turbulence. Unfortunately, comparing these

results with those ones received from the analysis with a 50-day sliding window,

completely contradicting results are here provided, thereby making this inference

quite doubtful.

Approaching the burst of this bubble at the end of 2017, in case of a 100-day

sliding window, the gradual rise in the standard deviation of residuals in the last

five consecutive periods but the last one is obtained hence proposing a relatively

significant warning signal. The results with a 50-day sliding window are less con-

vincing. We can again state that 1-lag serial correlation of detrended fluctuations

does not perform well in this analysis, therefore, it should be considered as an
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inappropriate indicator of an imminent crash in the analysis of this kind using

the similar strategy of obtaining residuals.

Again, even though we do not focus on the last 200 days preceding the peak,

we feel this addition is not necessary since early warning signals began to emerge

quite in advance in case of the outbreak of the last economic crisis in 2007-2008,

hence this analysis should be sufficient, and conclusion that the hypothesis stating

the rising variance of residuals is plausible, but that there is no generic pattern in

a development of serial correlation of detrended fluctuations over time, is valid.
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6 Conclusion

The purpose of the thesis was to individually study two concepts, and sub-

sequently to compare them, which are argued to be suitable frameworks for pre-

dicting crashes in financial markets, namely the LPPL model and the CSD. Both

of them were calibrated on four historical crises, and then tested for their accu-

racy, predictability and proneness to false positives. Moreover, the possibilities of

exploiting them simultaneously were also discussed.

After this study, we can support, regarding the LPPL model, the modified

version of the LPPL equation proposed by Filimonov and Sornette (2013) is ca-

pable to detect log-periodic behaviour index prices signalizing thriving bubbles.

Importantly, it is significantly computationally much more efficient in comparison

with a sort of obsolete model represented by the LPPL1 model, and furthermore,

slightly higher accuracy was also reached on the in-sample set.

Needless to say, stochastic nature of an occurrence of crashes must be always

borne in mind, thus the construction of some intervals for a possible critical time

tc is suitable. Besides, relying on a single prediction in time is not appropriate,

and repeating fitting the discussed model over time is highly recommended not to

catch in a trap of a false alarm. Checking the fits for the values of the non-linear

parameters is also necessary since the peculiar estimations suggest the violation

of an economic theory and thus such fits need to be always dropped.

In general, the world of the LPPL models is quite broad and covering all

the related upgrades is unattainable within the scope of a bachelor thesis. We,

therefore, focused on the two relatively straightforward models corresponding to

the level of a whole work, and from my perspective, studying this intriguing

concept in other stages of my study is worthy.

On the other side, the CSD scheme showed not to be so promising even though

it has been proved to be well applicable for detecting critical transitions in sys-

tems of various kinds regardless of their dissimilarities. Conceivably, the poor

performance may have been caused by the way of obtaining detrended fluctua-

tions, nevertheless, as it was discussed, filtering as noise data as stock returns

represents the question itself.

Specifically, the 1-lag serial correlation of residuals seemed useless as an indi-
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cator of an imminent collapse. Conversely, investigating the progress of variance

of detrended fluctuations provided us with promising results, however, as it can be

seen in Section 5.3, the standard deviation began to rise quite far in advance the

drop hence this theory should be used rather only as an barometer of a looming

risk and not as a determinant of the critical time.

Our additional hypothesis stating the correlation across the world markets

prior to a price slump came out to be flawed as this phenomenon has been detected

only for the dot-com bubble burst. For this purpose, scrutinizing this measure

across individual stocks representing particular industries on the same market is

proposed as another idea for a future research.

Combining these two frameworks together brought a kind of interesting ob-

servation that although these concepts are based on contradictory assumptions,

they are kind of exploitable together. In this manner, we showed on the out-of-

sample data a relevance of the estimated critical time tc can be well emphasized

by rising variance of residuals and hence making this blended scheme a little bit

more robust than they are separately.

To conclude this, further study of advances of the LPPL model is likely to be

interesting as a lot of new formulas and corresponding tests have emerged. Finally,

complementing already comprehensive framework of the fitting procedure by a

careful explanation of non-linear optimization methods packed in a single piece

of work further facilitating to take up study this area of finance, together with

suggesting an investigation of the variance of detrended residuals brought in from

a different concept can be considered as major contributions to an already existing

research.
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Acronyms

ADF Augmented Dickey-Fuller test

GA Genetic algorithm

GD Gradient/Steepest descent algorithm

GNA Gauss-Newton algorithm

KPSS Kwiatkowsi-Philipps-Schmidt-Shin test

LHS Left-hand side

LMA Levenberg-Marquardt algorithm

LPPL Log-periodic power law

MLE Maximum likelihood estimator

OLS Ordinary least squares

PP Phillips-Perron test

RHS Right-hand side

SA Simulated annealing

TS Tabu search
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Appendix A - Critical slowing down - Unit root tests

Calibration set

Event Window ADF KPSS PP

Black Monday 100 0.03 0.10 0.01
Black Monday 50 0.02 0.10 0.01

Mexican crisis 100 0.01 0.10 0.01
Mexican crisis 50 0.01 0.10 0.01

Asian crisis 100 0.01 0.10 0.01
Asian crisis 50 0.01 0.10 0.01

Dot-com bubble 100 0.01 0.10 0.01
Dot-com bubble 50 0.01 0.10 0.01

Table: Results of unit root tests

Financial crisis of 2007-2008

End date ADF KPSS PP ADF KPSS PP

2005.200 0.01 0.10 0.01 0.03 0.10 0.01

2005.452 0.01 0.10 0.01 0.01 0.10 0.01

2005.704 0.01 0.10 0.01 0.01 0.10 0.01

2005.953 0.01 0.10 0.01 0.01 0.10 0.01

2006.200 0.01 0.10 0.01 0.01 0.10 0.01

2006.452 0.01 0.10 0.01 0.01 0.10 0.01

2006.704 0.01 0.10 0.01 0.01 0.10 0.01

2006.953 0.01 0.10 0.01 0.01 0.10 0.01

2007.200 0.01 0.10 0.01 0.01 0.10 0.01

2007.370 0.01 0.10 0.01 0.01 0.10 0.01

2007.452 0.01 0.10 0.01 0.01 0.10 0.01

2007.537 0.01 0.10 0.01 0.01 0.10 0.01

2007.619 0.01 0.10 0.01 0.01 0.10 0.01

2007.701 0.01 0.10 0.01 0.01 0.10 0.01

Results of unit root tests; The left half of the table is dedicated to the analysis with a
100-day sliding window, the rest of the table then corresponds to the test conducted on
residuals from a 50-day sliding window.
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Burst of bitcoin bubble

End date ADF KPSS PP ADF KPSS PP

2016.620 0.01 0.10 0.01 0.01 0.10 0.01

2016.705 0.01 0.10 0.01 0.01 0.10 0.01

2016.787 0.01 0.10 0.01 0.01 0.10 0.01

2016.872 0.01 0.10 0.01 0.01 0.10 0.01

2016.954 0.01 0.10 0.01 0.01 0.10 0.01

2017.038 0.01 0.10 0.01 0.38 0.10 0.01

2017.123 0.01 0.10 0.01 0.08 0.10 0.01

2017.200 0.01 0.10 0.01 0.04 0.10 0.01

2017.285 0.01 0.10 0.01 0.01 0.10 0.01

2017.367 0.01 0.10 0.01 0.02 0.10 0.01

2017.452 0.01 0.10 0.01 0.01 0.10 0.01

2017.534 0.01 0.10 0.01 0.04 0.10 0.01

2017.619 0.01 0.10 0.01 0.01 0.10 0.01

2017.704 0.01 0.10 0.01 0.01 0.10 0.01

2017.786 0.01 0.10 0.01 0.01 0.10 0.01

2017.871 0.01 0.10 0.01 0.01 0.10 0.01

Results of unit root tests; The left half of the table is dedicated to the analysis with a
100-day sliding window, the rest of the table then corresponds to the test conducted on
residuals from a 50-day sliding window.
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Appendix B - Critical slowing down - Out-of-sample

predictions

Financial crisis of 2007-2008

Figure 23: CSD: Financial crisis of 2007-2008, sliding window = 100
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Burst of Bitcoin bubble

Figure 24: CSD: Burst of Bitcoin bubble, sliding window = 100
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Appendix C - Tabu Search

# Loss Function

L = function(A, B, C, t_c, m, omega, phi, price, t){

loss <- sum((price - (

A + B*abs(t_c - t)^m + (

(C*abs(t_c-t)^m)*cos(omega * log(abs(t_c - t)) - phi))))^2)

}

# Tabu Search

TabuSearch <- function(A, B, C){

S <- hash() # S represents current solution

iter_without_improvement <- 0

# Generating a set of initial 10 * 3 parameters

t_c_set <- runif(n = 40, min = max(base_data$t),

max = max(base_data$t) + 0.6)

# adding 0.6 year representing time horizon

m_set <- runif(n = 40, min = 0.1, max = 0.9)

omega_set <- runif(n = 40, min = 6, max = 13)

phi_set <- runif(n = 40, min = 0, max = 2*pi)

# Looking for the 10 elite solutions out of 30 initial points,

#the best one is then our starting point. Furthermore, we choose

#the worst solution to set the taboo condition.

elite_list <- vector()

random_solutions <- cbind(t_c_set, m_set, omega_set, phi_set)

losses <- apply(random_solutions, 1,

function(x) L(A = A, B = B, C = C,

t_c = x[1],m = x[2],

omega = x[3], phi = x[4],

price = base_data$price,t = base_data$t))

losses <- as.data.frame(cbind('loss' = losses, 't_c' = t_c_set,
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'm' = m_set, 'omega' = omega_set,

'phi' = phi_set))

losses <- losses %>%

arrange(loss)

elite_list <- losses[1:10,]

taboo_condition <- losses[nrow(losses),1]

S[['loss']] <- losses[1,'loss']

S[['t_c']] <- losses[1,'t_c']

S[['m']] <- losses[1,'m']

S[['omega']] <- losses[1,'omega']

S[['phi']] <- losses[1,'phi']

if (min(losses, na.rm = TRUE) < 200){

# Partitioning and setting parameters for the number

#of randomly drawn cells and points within them

partitions <- c(6,6,6,6)

n_c <- 2

n_s <- 6

t_c.partitions <- seq(from = max(base_data$t),

to = max(base_data$t) + 4,

length.out = partitions[1] + 1)

m.partitions <- seq(from = 0.1, to = 0.9,

length.out = partitions[2] + 1)

omega.partitions <- seq(from = 6, to = 13,

length.out = partitions[3] + 1)

phi.partitions <- seq(from = 0, to = 2*pi,

length.out = partitions[4] + 1)

partitions_matrix <- rbind(t_c.partitions, m.partitions,

omega.partitions,phi.partitions)

# Searching procedure

while (iter_without_improvement < 100){
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# Drawing n_c * n_s points for looking for new solutions

chosen_cells <- t(sapply(partitions,

function(x) sample(1:x, size = n_c,

replace = FALSE)))

drawn_points <-

sapply(1:nrow(partitions_matrix),

function(row)

sapply(chosen_cells[row,],

function(x)

as.vector(sapply(x,function(y)

runif(n = n_s,

min = partitions_matrix[row,y],

max = partitions_matrix[row,y + 1])))))

colnames(drawn_points) <- c('t_c', 'm', 'omega', 'phi')

# Computing the value of loss function for new points,

#dropping points returning losses in a taboo region

losses <- apply(drawn_points, 1,

function(x) L(A = A, B = B, C = C, t_c = x[1],

m = x[2], omega = x[3], phi = x[4],

price = base_data$price,

t = base_data$t))

drawn_points <- cbind('loss' = losses, drawn_points)

# dropping all points with non-defined loss function

drawn_points <- drawn_points[complete.cases(drawn_points),,

drop = FALSE]

losses <- losses[complete.cases(losses)]

non.taboo <- ifelse(losses < taboo_condition, TRUE, FALSE)

drawn_points <- drawn_points[non.taboo,,drop = FALSE]

# Picking the nontaboo point with the lowest move value
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if (nrow(drawn_points) > 0){

S[['loss']] <- drawn_points[

which.min(drawn_points[,'loss'] - S$loss), 'loss'

]

S[['t_c']] <- drawn_points[

which.min(drawn_points[,'loss'] - S$loss), 't_c'

]

S[['m']] <- drawn_points[

which.min(drawn_points[,'loss'] - S$loss), 'm'

]

S[['omega']] <- drawn_points[

which.min(drawn_points[,'loss'] - S$loss), 'omega'

]

S[['phi']] <- drawn_points[

which.min(drawn_points[,'loss'] - S$loss), 'phi'

]

# Executing elite_list modification in case of the loss

#of a new points is lower than the loss of the 10th element

#in the elite_list

if (S$loss < elite_list[10,'loss']){

elite_list <- rbind(elite_list[1:9,],

drawn_points[

which.min(drawn_points[,'loss'] - S$loss),

]) %>%

arrange(loss)

iter_without_improvement <- 0

} else {

iter_without_improvement <- iter_without_improvement + 1

}

} else {

iter_without_improvement <- iter_without_improvement + 1
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}

}

}

# Filling results to the Grid

grid <- grid %>%

filter(a == A, b == B, c == C) %>%

mutate(loss = elite_list[1,'loss'], t_c = elite_list[1,'t_c'],

m = elite_list[1,'m'], omega = elite_list[1,'omega'],

phi = elite_list[1,'phi'])

print(elite_list)

return(grid)

}
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Appendix D - LPPL1 model: Partial derivatives

(1)
∂y(t)

∂tc
= Bm(tc − t)m−1 + Cm(tc − t)m−1 cos (ω log(tc − t)− ϕ)−

C(tc − t)m sin (ω log(tc − t)− ϕ))
ω

tc − t

(2)
∂y(t)

∂m
= B(tc − t)m log(tc − t) + C(tc − t)m log(tc − t) cos (ω log(tc − t)− ϕ)

(3)
∂y(t)

∂ω
= −C(tc − t)m sin (ω log(tc − t)− ϕ) log(tc − t)

(4)
∂y(t)

∂ϕ
= C(tc − t)m sin (ω log(tc − t)− ϕ)
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Appendix E - LPPL2 model: Partial derivatives

(1)
∂y(t)

∂tc
= Bm(tc − t)m−1 + C1m(tc − t)m−1 cos (ω log(tc − t))−

C1(tc − t)m sin (ω log(tc − t)))
ω

tc − t
+ C2m(tc − t)m−1 sin (ω log(tc − t))+

C2(tc − t)m cos (ω log(tc − t)))
ω

tc − t

(2)
∂y(t)

∂m
= B(tc − t)m log(tc − t) + C1(tc − t)m log(tc − t) cos (ω log(tc − t))+

C2(tc − t)m log(tc − t) sin (ω log(tc − t))

(3)
∂y(t)

∂ω
= −C1(tc − t)m sin (ω log(tc − t)) log(tc − t)+

C2(tc − t)m cos (ω log(tc − t)) log(tc − t)
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