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Abstract 

Microtubules are a prominent part of the cytoskeletal network in eukaryotic cells. They are involved in nearly 

all cellular processes, e.g. in vesicular trafficking, signal transduction, locomotion, or cell morphogenesis. To 

discharge that many functions, precise regulation of microtubule dynamics and architecture is essential. Such 

regulation is maintained by various microtubule-associated proteins, which usually bind from the outside. 

However, several proteins were found to bind in the lumen of microtubules. These microtubule inner pro-

teins were shown to function either as post-translational modifiers of tubulin or stabilizers in time-persistent 

microtubular structures. A few inner proteins were identified, but our understanding of their attributes is 

still incomplete. 

This thesis summarizes current knowledge of microtubule inner proteins. The scope is focused on their en-

zymatic and structural features. Tubulin acetyltransferase represents the enzymatic MIPs. Possible ways of 

lumen entry and impact on the tubulin lattice are described. Next, the structural roles of proteins inside 

microtubules, most prominent in the axoneme, are outlined. The relevance of microtubule inner proteins for 

cytoskeletal functions, flagellar motility, and future perspectives are discussed at the end. 

Keywords 

microtubules, microtubule-associated proteins, microtubule inner proteins, axoneme, microtubule doublets, 

α-tubulin acetyltransferase 1 

Abstrakt 

Mikrotubuly jsou jednou z hlavních složek cytoskeletu eukaryotických buněk. Podílí se na mnoha buněč-

ných funkcích – řídí dopravu váčků, zapojují se do přenosu signálů, umožňují pohyb bičíků či spoluvytváří 

celkový tvar buňky. Při všech těchto dějích je nezbytná přesná regulace struktury a dynamiky mikrotubu-

lární sítě. Za tu do značné míry zodpovídají proteiny asociované s mikrotubuly, které se váží na vnější stranu 

mikrotubulů. Jiné mohou ovšem vstupovat do mikrotubulů a vázat se k jejich vnitřnímu povrchu. Tyto 

vnitřní mikrotubulární proteiny posttranslačně modifikují tubulin, v jiných případech fungují jako vnitřní 

výztuha. Některé proteiny se již podařilo identifikovat, o jejich vlastnostech však mnoho nevíme. 

Tato práce shrnuje dosavadní poznatky o proteinech uvnitř mikrotubulů – jejich enzymatické aktivity a vý-

znam jakožto strukturní opory. Jedním z mála známých enzymů vstupujících do mikrotubulů je tubulin ace-

tyltrasferáza; práce shrnuje dopady jejího působení na vlastnosti mikrotubulů a popisuje cesty, kterými do 

nich může vstupovat. Dále jsou přiblíženy strukturní role vnitřních proteinů v axonemě. V závěru je disku-

tován význam vnitřních mikrotubulárních proteinů pro buněčnou fyziologii a pohyb. Nastíněno je také 

možné budoucí směřování výzkumu tohoto fenoménu. 

Klíčová slova 

mikrotubuly, proteiny asociované s mikrotubuly, vnitřní mikrotubulární proteiny, axonema, mikrotubulární 

dublety, α-tubulin acetyltransferáza 1  
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1. Introduction 

Microtubules (MTs) are key cytoskeletal structures organizing cytosolic content of eukaryotic cells. These 

complex polymers of tubulin serve as a scaffold for a plethora of cellular functions, e.g. vesicular trafficking 

(Rowning et al. 1997), organelles positioning (Fu et al. 2011), segregation of chromosomes during cell division 

(Esau and Gill 1965), or motility of cilia and flagella (Satir 1965). Thus, much attention has been paid to MTs 

since their discovery in half of the 20th century. 

Microtubules are often referred to as hollow tubes or cylinders. They are described as such also in recent 

world-established textbooks, for instance, Molecular Biology of the Cell, 6th edition 2015, page 891, despite 

early electron microscopy (EM) micrographs clearly captured densities in their lumen (Bassot and Martoja 

1966; Behnke 1967; Peters, Proskauer, and Kaiserman-Abramof 1968). Many other authors confirmed these 

observations, e.g. (Rodríguez Echandía, Piezzi, and Rodríguez 1968; Stanley et al. 1972; Burton 1984; Linck 

1976). Since then, understanding of proteins inside MT inner space has been gradually improving. The spatial 

arrangement of microtubule inner proteins (MIPs) resolved with < 1 nm precision is available today and 

some MIPs are already identified. This was possible thanks to the recent development of structure-imaging 

techniques like cryo-EM (Maheshwari et al. 2015; Ichikawa et al. 2017). 

In this bachelor thesis, I aim to delineate the current knowledge of structural and enzymatic features of MIPs. 

I divide the topic into three chapters: General description of MIPs, MIPs linked to post-translational modifi-

cations of microtubules (acetylation of tubulin), and MIPs serving as structural components of MTs (involved 

in lattice stabilization). 
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1.1 The microtubule 

Microtubules are formed in the cytosol of all eukaryotic cells as prolonged 

tubes (Fig. 1). The outer diameter is 23–27 nmi (Gall 1966; Beese, Stubbs, and 

Cohen 1987; Ledbetter and Porter 1963), the inner diameter is 15 nm (Nogales 

et al. 1999). MTs are composed of two formsii of the highly conserved protein 

tubulin, α-tubulin and β-tubulin (Bryan and Wilson 1971; Feit, Slusarek, and 

Shelanski 1971). More forms of tubulin exist, termed γ-, δ-, ε-tubulin, and so 

on (Oakley and Oakley 1989; Chang and Stearns 2000)). A particular form of 

tubulin consists of more isotypes – eight genes for α-tubulin and nine for β-tu-

bulin were found in human so far, as reviewed in (Roll-Mecak 2019). α- and 

β-tubulin are proteins approximately 450 residues long, depending on the iso-

form. Both have the molecular weight of about 50 kilodaltons (kDa) (Ponstingl 

et al. 1981; Krauhs et al. 1981). They associate into heterodimers (Bryan and 

Wilson 1971). Upon MT assembly, these dimers form protofilaments (PFs) by 

“head-to-tail” polarized interactions, so that α- and β-tubulins alternate in the 

lattice (Erickson 1974b). PFs, in turn, assemble into the fully-formed MTs. Re-

markably, the tubulin wall is not completely continuous – there are fenestra-

tions 1 nm in diameter between tubulin subunits (Nogales et al. 1999).  

Conserved number of 13 PFs are present in nearly all eukaryotic MT struc-

tures (Tilney et al. 1973), with several exceptions (e.g. in nematode Caenorhab-

ditis elegans, general number of PFs is 11, except for a specialized subset of 

MTs in touch receptor neurons, which have 15 (Chalfie and Thomson 1982) 

and their diameter is larger (Chalfie and Thomson 1979)). MTs contain a dis-

continuity in lateral tubulin interactions between PFs number 1 and 13, 

termed the seam (Fig. 1).  

  

                                                   

i In recent literature, the diameter of microtubules is stated as a commonly known fact with no resources cited. The 
diameter might be obtained directly from various published 3D-structure models, though, as those in (Zhang, LaFrance, 
and Nogales 2018). In this case, the resulting value 26.3 nm for a 13-PFs microtubule (Eva Nogales, personal correspond-
ence 2019) is of course in agreement with old EM data. 
ii A note on tubulin variants terms usage: “Tubulin forms” refers to gene families within tubulin gene superfamily (e.g. 
α-tubulin, γ-tubulin). “Tubulin isotypes” denotes distinct genes of one tubulin family (e.g. β2, β3-tubulin). “Tubulin 
isoforms” are alternatively spliced products of one particular tubulin isotype gene (not addressed in this thesis). 

Fig. 1: A) Schematic representation of a microtubule. The position of 
the seam is indicated. B) Schematic cross-section of a microtubule. 
Individual protofilaments are numbered. (Deng et al. 2017), modified 
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The 3D-structures of both α- and β-tubulin were resolved in 1998 with 3.7 Å spatial resolution (Nogales, 

Wolf, and Downing 1998). Both proteins share ~40 % amino acid sequence identity (Krauhs et al. 1981). They 

also have highly similar globular shape containing the Rossmann’s fold, serving for guanosine triphosphate 

(GTP) binding. GTP might by spontaneously hydrolysed to guanosine diphosphate and exchanged back 

again for GTP from the cytoplasmic pool on β-tubulin only. In the α-tubulin structure, it is buried, and thus 

non-exchangeable for free GTP (Nogales, Wolf, and Downing 1998). Nucleotides bound to β-tubulin are 

locked in position when incorporated into the tubulin lattice and may dissociate only upon microtubule dis-

assembly (Farrell, Kassis, and Wilson 1979; Margolis and Wilson 1978). 

1.2 Dynamics of MTs 

MTs are polarized structures with two distinct ends (Fig. 1). Polymerized dimers might be lost or new might 

be added at both ends in a dynamic and stochastic manner (Mitchison and Kirschner 1984a). Once in the 

lattice, however, tubulin has only a low chance of being lost or replaced (Margolis and Wilson 1978; Farrell, 

Kassis, and Wilson 1979; Soltys and Borisy 1985). The end terminated by β-tubulin is denoted as the plus 

end, the opposite end terminated by α-tubulin is being referred to as the minus end; usually, plus end grows 

more readily than minus end (Rodionov and Borisy 1997; Soltys and Borisy 1985). Simultaneous growing 

and shrinking may manifest as if the whole (unanchored) microtubule was moving, although individual 

tubulin monomers stay approximately at the same location (Rodionov and Borisy 1997). The unidirectional 

flow of tubulin throughout the tubule during such a situation is called treadmilling. A sudden massive dis-

integration of a MT by PFs peeling off and depolymerizing (Kirschner et al. 1974) is termed the catastrophe, 

which occurs when terminal β-tubulins have their GTP hydrolysed. The whole microtubule might eventually 

fall apart, or be rescued and switch back to growing phase if GTP molecules rebind terminal β-tubulins 

(Walker et al. 1988). Alternating phases of polymerization, catastrophes, and rescues are referred to as dy-

namic instability (Mitchison and Kirschner 1984a). This property enables the cell to rapidly rebuilt the whole 

microtubular network just by slight changes in interacting microtubule-associated proteins (MAPs) or tubu-

lin post-translational modifications (Mitchison and Kirschner 1984a). 

MTs are rarely constituted de novo in cytosol from free dimers, but rather origin from partially assembled 

curved or ring-shaped PFs seeds (Erickson 1974a). A nucleation primer, such as γ-tubulin rings on centro-

somes, is required (Moritz et al. 1995). The γ-tubulin ring stabilizes the associated minus end of a tubule so 

that it does not depolymerize over time. By anchoring to microtubule organizing centres, e.g. centrosomes 

(Soltys and Borisy 1985), basal bodies, or other structures (Rodionov and Borisy 1997), the radial pattern of 

MTs in the cytoplasm is created (Mitchison and Kirschner 1984b). 

The features of dynamic instability and treadmilling might be modified by various interactions with MAPs 

(Mitchison and Kirschner 1984a), including MIPs, and post-translational modifications of tubulin. α- and 
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β-tubulin isotypes composition also affects the dynamics of MTs (Vemu et al. 2017). The dynamic subset 

typically comprises MTs spread throughout the whole cytoplasm and plays the scaffolding role for vesicular 

transport and organelles positioning via attachment of motor proteins (dyneins and kinesins). Kinetochore 

MTs exhibit dynamic qualities as well. On the other hand, stable populations of MTs set up the axoneme, 

centrioles, and other structures (e.g. bundles of axonal MTs in neurons) (Orbach and Howard 2019). 

1.3 The axoneme, centriole, and basal body 

The term axoneme refers to the microtubular scaffold in eukaryotic cilia and flagellaiii. A detailed model of 

this complex structure with ~40 Å resolution by electron tomography (ET) is available since 2006 (Nicastro 

et al. 2006), although first observations by EM were made 70 years ago (Grigg and Hodge 1949). The axoneme 

typically features a “9 + 2” arrangement: Peripheral microtubule doublets (MTDs) in 9-fold symmetry and 

two central single MTs (Fig. 2) (Nicastro et al. 2006; Afzelius 1959; Fawcett and Porter 1954). This layout is 

highly conserved among eukaryotes (Fawcett and Porter 1954), reviewed in (Mirvis, Stearns, and James 

Nelson 2018), although exceptions are reported even in mammals (e.g. 9 + 4 architecture in rabbit notochon-

dral plane (Feistel and Blum 2006), 10 + 2 or 7 + 2 doublets observed in rabbit oviductal epithelia, and so on 

(Odor and Blandau 1985)). In the concentric peripheral MTDs, two microtubules are joined together. One, 

so-called the A-tubule, is fully assembled with the usual number of 13 PFs. The second one, termed the B-tu-

bule, forms an arch attached to the A-tubule and most often consists of only 10 PFs of tubulin (11th PF is 

sometimes distinguished, but it is smaller in diameter and composed of MAPs instead of tubulin) (Nojima, 

Linck, and Egelman 1995). 

Fig. 2: The structure of the axoneme from alga Chlamydomonas. A) Cross section of the flagellar axoneme viewed by 
transmission EM. B) Schematic drawing of a cross-section of the axoneme. The distal tip (plus end of MTs) is facing 
the reader. (Molecular Biology of the Cell, 6th edition 2015, page 941) 

                                                   

iii The terms “cilia” and “flagella” are often used interchangeably (Orbach and Howard 2019). Both organelles possess 
the same axonemal architecture and differ only in the biomechanics of beating. 
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Bending and beating of cilia/flagella are carried out by attached dyneins – molecular motors exerting me-

chanical work by adenosine triphosphate hydrolysis (Gibbons and Rowe 1965; Vale and Toyoshima 1988). 

The arrangement of the flagellar cytoskeleton and the association patterns of dynein molecules and other 

neighbouring MAPs are conserved among large phylogenetic taxa (Nicastro et al. 2006). Nonmotile, or pri-

maryiv, cilia lack the central pair of single MTs in their axoneme (Sorokin 1968). Nonetheless, motile cilia with 

the 9 + 0 arrangement were reported in mammalian embryonal node and oviductal epithelium (Nonaka et 

al. 1998; Odor and Blandau 1985). Nonmotile cilia play various roles as sensory organs and cell signalling 

centres (Teilmann et al. 2005, reviewed in Pazour and Witman 2003). 

Mutations of axonemal components lead to improper cilia assembly and performance. Such conditions are 

called ciliopathies. To list some consequences of compromised cilia function: Defects in establishing lateral 

left-right body symmetry due to improper distribution of morphogens during development (manifesting as 

situs inversus in Kartagener syndrome) (Nonaka et al. 1998), polycystic kidney disease in patients with mu-

tated genes essential for intraciliary transport (Pazour et al. 2000), or degeneration of sensory epithelia, e.g. 

retina (Pazour et al. 2002). These defects clearly illustrate the importance of cilia in human physiology. 

Centrioles and basal bodies share many architectural features and are often described together. Both struc-

tures are highly stable and important organizers of MTs in cells (Byers, Shriver, and Goetsch 1978; Karsenti 

et al. 1984; Moritz et al. 1995). They typically comprise MT triplets with an additional C-tubule (10 PFs, similar 

to the B-tubule), arranged in a barrel-like manner with 9-fold symmetry (Harven and Bernhard 1956; 

Anderson 1972; Guichard et al. 2013; Li et al. 2019). Several exceptions are documented, for instance in Cae-

norhabditis, the centriole consists of 9 singlets (Wolf, Hirsh, and McIntosh 1978). A pair of centrioles consti-

tutes a membraneless organelle called the centrosome, which seeds MTs from attached γ-tubulin rings 

(Moritz et al. 1995). Centrosomes play a pivotal role also in mitotic spindle establishment during cell division 

(Byers, Shriver, and Goetsch 1978). Basal bodies anchor eukaryotic cilia and flagella at their proximal end. 

The triplets of the basal body are continuous to doublets in the axoneme, except for the C-tubules which are 

terminated before entering the cilium (Geimer and Melkonian 2004). As well as the axoneme, centrioles and 

basal bodies contain MIPs (Li et al. 2012, 2019). 

  

                                                   

iv The literature is inconsistent in the usage of term “primary cilia“: Its meaning could be restricted to a) immobile 
structures with 9 + 0 architecture (used in such way e.g. by (Nonaka et al. 1998)), or b) 9 + 0 cilia regardless of their 
actual ability to move. Here, the term is used in the former sense, same as the definition in review of (Satir and 
Christensen 2007). 
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2. Luminal content of MTs 

Even though MTs might appear hollow, their lumen does not contain only equilibrated cytoplasm solution: 

Some proteins or other molecules localize there specifically. For instance, microtubule-stabilizing drug taxol 

has its binding site inside MTs (Nogales, Wolf, and Downing 1998). There were many EM observations of 

dense-core MTs from numerous structures and species, like spermatid axoneme of Drosophila (Stanley et al. 

1972), microtubule singlets in the neurites of frog olfactory neurons (Burton 1984), touch sensory neurons in 

Caenorhabditis (Chalfie and Thomson 1979), or toad neurons and glial cells of adrenal gland and hypothala-

mus (Rodríguez Echandía, Piezzi, and Rodríguez 1968). These luminal patterns were proven not to be arte-

facts of heavy metal salts staining procedure (Stanley et al. 1972; Burton 1984). Burton showed that most of 

the dense cores disappear after depolymerizing the frog axonal microtubules and re-establishing them from 

free tubulin dimers in isolated nerves. Also, in vitro assembled MTs are devoid of luminal content (Garvalov 

et al. 2006). Initially, there were little data on what the spatial arrangement of the luminal material is. The 

authors just mentioned dots or dot-like density (Behnke 1967; Rodríguez Echandía, Piezzi, and Rodríguez 

1968; Stanley et al. 1972); others proposed filamentous structure (Peters, Proskauer, and Kaiserman-Abramof 

1968). Burton observed bead-like structures with a diameter of ~4.5 nm in oblique transections, but also elon-

gated clusters, located either in the middle of the lumen, or attached to the inner MT surface (Burton 1984).  

The collocation “microtubule inner proteins” was first used by Nicastro et al. in 2006 when studying the 

axonemes of Chlamydomonas and sea urchin by cryo-ET (Nicastro et al. 2006). Generally speaking, the occur-

rence of MIPs appears to be positively correlated with the stability of the microtubular structure – there are 

only rare reports from dynamic cytoplasmic tubules, e.g. from hepatoma cells (Garvalov et al. 2006) or fibro-

blasts (Koning et al. 2008). Such MTs probably do not require strong stabilization from the inner side 

(Stoddard et al. 2018). On the other hand, partially or completely stabilized microtubules, as are found in 

axons and dendrites (Baas et al. 1993), in the axoneme (Redeker et al. 1994), or in the centrioles and basal 

bodies (Bobinnec et al. 1998), are documented to routinely contain bound proteins in their lumen (Bouchet-

Marquis et al. 2007; Li et al. 2012; Maheshwari et al. 2015).  

MIPs are now thought to play a crucial structural role in axonemal MTDs and other persistent MT structures 

for assembling and enhancing the stability (Nicastro et al. 2006; Owa et al. 2019). Such MIPs could be conven-

iently explored by structural approaches – single particle cryo-EM and cryo-ET performed on ex vivo isolates 

of cilia/flagella from a ciliate Tetrahymena thermophila, biflagellate green alga Chlamydomonas, and sea urchin 

sperm (Nicastro et al. 2006; Ichikawa et al. 2017; Maheshwari et al. 2015; Stoddard et al. 2018). Moreover, MIPs 

can also be enzymatically active, like α-tubulin acetyltransferase 1 (αTAT1). Studies regarding this enzyme 

cannot exploit the techniques mentioned above since it is associating with the inner surface in a less affinitive 

and symmetrical manner, compared to structure-building MIPs in stable MTs. 
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3. MIPs with enzymatic activity 

Tubulins are subject to many post-translational function-tuning modifications, e.g. polyglutamylation, dety-

rosination, or acetylation, summarized in (Y. Song and Brady 2015). Acetylation is of high interest since tu-

bulin (de)acetylase can enter the lumen of polymerized MTs and perform there (Shida et al. 2010). α-tubulin 

acetyltransferase 1 (αTAT1) and its concomitant antagonist histone deacetylase 6 are the only two MIPs with 

enzymatic activity found so far. 

The fact that α-tubulin might be post-translationally acetylated on lysine 40 is long-known (L’Hernault and 

Rosenbaum 1985; LeDizet and Piperno 1987). Lysine 40 is not conserved in β-tubulin (Krauhs et al. 1981), so 

β-tubulin cannot be modified at this position. Both tubulins can be acetylated by different enzymes than 

αTAT1 on other residues, too, but the relevance is mostly unknown (Choudhary et al. 2009). Flagellar or 

ciliary axonemes are heavily acetylated in both central singlets and MTDs (Orbach and Howard 2019). Con-

versely, α-tubulin in cytoplasmic MTs has its lysine 40 modified to a much lower extent (Piperno and Fuller 

1985). Defined MT structures like axonal bundles (Lin et al. 2017), the mitotic spindle and midbody (a transi-

ent microtubular structure within daughter cell interface after cytokinesis) are acetylated as well (Piperno, 

LeDizet, and Chang 1987). Treatment by MT-stabilizing drug taxol induced reversible acetylation of whole 

MT net in mammalian cells (Piperno, LeDizet, and Chang 1987). From this observation, Piperno concluded 

that acetylation follows the stabilization and not the other way round, although more recent data support 

the stabilizing role of acetylation, not just being a passive mark of stability (Akella et al. 2010). (Xu et al. 2017) 

published convincing results indicating that acetylation confers local mechanical resistance to MTs. Interest-

ingly, there is no difference in the tubulin lattice structure in both acetylated and non-acetylated MTs. Un-

known MIP(s) were proposed to function as reporters of acetylation towards outer MAPs (Howes et al. 2014). 

Moreover, no MAPs binding specifically to acetylated regions were described (Howes et al. 2014), although 

kinesins show some preference for acetylated MTs (Reed et al. 2006). Overall, the relationship between acet-

ylation, its readout, and mechanical/dynamic stability of MTs is still unclear, as reviewed by (Y. Song and 

Brady 2015).  

3.1 α-tubulin acetyltransferase 1 

αTAT1 is the only known enzyme catalysing the acetylation of α-tubulin and was discovered relatively re-

cently – after identification of both lysine 40 tubulin deacetylases (Hubbert et al. 2002; Shida et al. 2010; Akella 

et al. 2010). Additional paralog named αTAT2 with different spatial expression was found in Caenorhabditis; 

this paralog is absent from the human genome. Aside from the acetylation of lysine 40 in α-tubulin using 

acetyl-coenzyme A as an acetyl donor, αTAT1 displays no other activity towards α- or β-tubulin or any other 

substrate (including histones). Both polymerized and free tubulin are acetylated, assembled MTs are  
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however highly preferred (Shida et al. 2010; Coombes et al. 2016). Disruption of α-tubulin acetylation either 

by mutating lysine 40 to arginine or by altering the active site of αTAT1 leads to lowered MT stability in 

Tetrahymena and touch insensitivity in Caenorhabditis (Akella et al. 2010).  

Three-dimensional structure of αTAT1 is known (Kormendi et al. 2012; Taschner, Vetter, and Lorentzen 

2012). αTAT1 possesses a conserved catalytic domain common for histone acetyltransferases, yet αTAT1 is 

specific for tubulin instead of histones and utilizes different catalytic mechanism (Shida et al. 2010). Tubulin 

variable loop containing lysine 40 is rather acidic and fits a positively charged groove on the αTAT1 surface; 

the amino acid charges are opposite for histone acetylases (Taschner, Vetter, and Lorentzen 2012). Approxi-

mately first half at the N terminus of the 421-residue-long protein accounts for the catalytic domain. The 

C-terminal half, which is partially missing in some isoforms, is probably unstructured. One can speculate 

whether it plays a role in the inner surface binding. A short sequence at the N-terminus also lacks a stable 

fold, yet it is important for the catalytic function. This intrinsically disordered protein might require MT 

lattice as a “chaperone” for adopting its active conformation (Kormendi et al. 2012). αTAT1 occurs as a mon-

omer in physiological concentrations. Importantly, dimensions of αTAT1 (30 × 62 × 30 Å3) can account for 

observed densities in cytosolic MTs with a diameter 4–7 nm (Burton 1984; Garvalov et al. 2006; Kormendi et 

al. 2012). 

3.2 αTAT1 lumen entry 

Lysine 40 was surprisingly found facing the lumen of MTs, as revealed from the tubulin structure (Nogales 

et al. 1995). A possible explanation that this residue is acetylated when the tubulin is depolymerized was 

disproved – αTAT1 acetylates MTs much faster than free tubulin (Piperno, LeDizet, and Chang 1987). It was 

concluded that αTAT1 must enter the lumen of MTs. Aside from the luminal surface, αTAT1 interacts with 

the outer side as well. The probability of entering the lumen is thus increased (Ly et al. 2016; Howes et al. 

2014). Considering the size of αTAT1, it is highly unlikely that the enzyme enters MT lumen via lattice fen-

estrations. Rather, the terminal openings or large lattice defects must be utilized (Taschner, Vetter, and 

Lorentzen 2012; Coombes et al. 2016). The patches of acetylation should be then located nearby entry points, 

which was confirmed (Akella et al. 2010; Ly et al. 2016). Additionally, transient lattice openings (so-called 

“breathing” of MTs) were also suggested to enable lumen entry (Shida et al. 2010), this seems to be just a mi-

nor way of entry. When a MT grows, previously terminally-located patches are buried under newly pol-

ymerized tubulin (Ly et al. 2016). In other words, αTAT1 diffuses in lumen extremely inefficiently because of 

perpetual binding to the walls. Non-terminal patches are thus either remnant of previous terminal acetyla-

tions, results of activity of αTAT1 molecules buried by treadmilling, or sites with lattice defects serving as 

entry points. This model was challenged by Szyk who observed rapid αTAT1 diffusion and continuous acet-

ylation in MTs (Szyk et al. 2014). Notwithstanding, their data were based on in vitro assembled MTs, which 

possess numerous lattice defects (e.g. changed PFs number by taxol stabilization (Howes et al. 2014)) and 



9 

lack MAPs, which could limit the access to the lattice. This may explain the discrepancy between in vitro and 

in vivo experiments. Apparently, in vitro experiments should be interpreted cautiously (Ly et al. 2016).  

In luminal space, the concentration of binding sites for αTAT1 is high (17 mM), so the enzyme rebinds rapidly 

after dissociation with estimated rebind time of 6 × 10−5 s−1. This hinders free spreading alongside the MT 

and accounts for observed slow diffusion (under 1 µm2 s−1) and acetylation in patches. Length of acetylated 

spots increased when binding affinity was lowered by higher concentrations of salts. That means that not the 

steric hindrance, but the high binding rate is the cause of low αTAT1 mobility (Coombes et al. 2016). The 

authors further hypothesize that short-lived MTs probably do not survive long enough for αTAT1 to enter 

them whereas long-lived stabilized MTs have higher acetylation probability because of accumulated lattice 

defects (serving as secondary entry points) over time. Indeed, older microtubules tend to curve (Xu et al. 

2017), which leads to lattice defects. As acetylated MTs gain breakage resistance, αTAT1 is thought to prevent 

defect spreading by local acetylation in mechanically stressed MTs (Xu et al. 2017). αTAT1 itself does not 

prefer acetylated patches for binding, though (Howes et al. 2014). In conclusion, various findings suggest 

there is positive feedback between stabilization and acetylation of MTs and acetylation could be used as 

a marker for MT age, as concisely reviewed in (Janke and Montagnac 2017). 

3.3 Tubulin deacetylation 

The predominant α-tubulin deacetylase (at lysine 40 residue) is histone deacetylase 6 (HDAC6) (Hubbert et 

al. 2002). HDAC6 can deacetylate both free dimers and MTs from the inner side. However, it strongly prefers 

dimers (Skultetyova et al. 2017), although the first report claimed the opposite (Hubbert et al. 2002). This is 

probably due to the structural context nearby the lysine 40 loop, not the inaccessibility of this loop when 

hidden inside MTs. The enzyme binds to the external surface of MTs with no preference for ends (Skultetyova 

et al. 2017). HDAC6 is enriched at the leading edge of moving cells, where acetylated MTs are scarce (Hubbert 

et al. 2002). Second known deacetylase acting on α-tubulin lysine 40 position is sirtuin 2 (North et al. 2003). It 

was proven to interact with HDAC6. Sirtuin 2 can handle both free dimers and assembled MTs in vitro, alt-

hough no work confirmed that it really accesses the lumen. HDAC5 is a third identified enzyme deacetylat-

ing α-tubulin at lysine 40 (Cho and Cavalli 2012). It can perform on axonal MTs (Lin et al. 2017), evidence for 

lumen entry is again missing. 
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4. Structural MIPs  

MIPs with structural functions are predominantly found in stabilized MTs, as reviewed in (Ichikawa and Bui 

2018). Oppositely to the enzymes involved in tubulin (de)acetylation, none of the structural MIPs has been 

studied to such a broad extent. Thus, the precise mechanisms of action of structural MIPs are mostly still to 

be revealed (Kirima and Oiwa 2018). The lack of structures resolved at the atomic level hinders the research 

of MIPs-tubulin interactions, even though some progress has been already made. 

4.1 MIPs in the axonemal doublets 

 More is known about the axonemal MIPs in comparison to the centrioles and basal bodies. However, because 

of broad architectural similarity, some findings might be applicable for all these structures. An early ap-

proach to study the axoneme was to reveal the organization inside cilia and flagella by EM. Among these 

pioneering works, several authors noticed densities located in the MTDs lumen. Witman described constant 

“beak-like structure” in MTDs of Chlamydomonas (Witman et al. 1972), also dealt with in (Hoops and Witman 

1983). These densities appear constantly inside B-tubules of MTDs number 1, 5, and 6, suggesting that MTDs 

of the axoneme are not all identical. Similarly, individual PFs in MTDs differ in their mechanical properties 

(Witman et al. 1972). Stanley and colleagues (Stanley et al. 1972) precisely followed the developmental stages 

of spermatids maturation in Drosophila; they referred to an accumulation of dense material in the A-tubule 

near the part of the wall which is shared with the B-tubule. Central microtubule density was clearly visible 

in many EM micrographs in this paper. The appearance of such dense cores in axonemal MTDs was even 

used as a diagnostic trait for one of the spermatid developmental stages. The authors also speculated that 

since early axonemal structures were more often deformed, the axoneme may gain rigidity during its matu-

ration. This conclusion is in concordance with recent data showing the role of MIPs for microtubule stability 

(Stanley et al. 1972; Owa et al. 2019). Axonemal MTs still undergo dynamic instability but to a much lower 

extent than cytoplasmic MTs (Orbach and Howard 2019). 

As a complex structure, MTDs (in contrast to cytoplasmic microtubules) are hard to assemble in vitro. MTDs 

reconstitution from free tubulin was achieved recently for the first time (Schmidt-Cernohorska et al. 2019). 

This might render highly useful for future biomechanical and compositional studies. The preceding approach 

was to isolate MTDs ex vivo from ciliated organisms (Maheshwari et al. 2015; Ichikawa et al. 2017; Stoddard 

et al. 2018). A first thorough report on MIPs was the structure of the axoneme from Chlamydomonas and sea 

urchin sperm by cryo-ET (Nicastro et al. 2006). The achieved resolution was mere 40 Å so that only three 

luminal structures (denoted MIP1–3) were discerned, with no subunits. These MIPs were later proven to be 

multi-subunit complexes rather than individual peptides (Maheshwari et al. 2015; Ichikawa et al. 2017).  

Anyway, by recognizing MIPs as a consistent and periodical feature of MTDs, this experiment established 
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a framework for a novel research topic. The authors even stated: “Many proteins associate with the outer 

surfaces of doublet MTs, but we did not expect to find periodic densities on the inner surfaces of A- and 

B-tubules in both sea urchin and Chlamydomonas axonemes.” Reaching resolution of ~19 Å, an article by 

(Maheshwari et al. 2015) described the spatial distribution of MIPs in MTDs in relation to assigned α- and 

β-tubulin subunits in the lattice by utilizing β-tubulin-specific kinesin decorations in Tetrahymena.  

Today, even better-resolved structure (~5.7 Å) based on Chlamydomonas cilia is available, again from single 

particle cryo-EM analysis (Ichikawa et al. 2017). This latest model coined many additional subunits of MIPs. 

In this high-resolution model, 29 putative MIPs (including subunits) were detected. Their spatial distribution 

and the naming convention are depicted in Fig. 3. A more detailed model is still needed, though, since the 

overall resolution of 5.7 Å does not permit full discerning which densities are independent polypeptides. 

Henceforth, new MIPs have been added, e.g. by (Stoddard et al. 2018), indicating these numbers not to be 

final. It is now unequivocal that nearly the whole luminal surface of axonemal MTDs is covered in MIPs 

(evident in Fig. 4). Their identity (summarized in Table 1) is mostly unknown, as well as their function 

(Stoddard et al. 2018; Kirima and Oiwa 2018). Loops in the tubulin structure which are thought to interact 

with MIPs (practically whole luminal surface of tubulin) are more conserved in ciliated organisms than in 

cilia-lacking species. This observation suggests that correct interactions between MIPs and tubulin lattice are 

necessary for proper flagella motility (Ichikawa et al. 2017). On top of that, a similar pattern of MIPs arrange-

ment was found in Tetrahymena, Chlamydomonas and sea urchin sperm, further validating this hypothesis 

(Maheshwari et al. 2015). 

 
Fig. 3: Naming convention and schematic localization of globular MIPs (various shapes) and fMIPs (small circles) in a 
flagellar MTD. Tubulin PFs of A- and B-tubules are numbered; OJ, outer junction (formed by closed tubulin lattice), IJ, 
inner junction (formed by MIPs). Reprinted from (Ichikawa et al. 2017), modified. 
 

Aside from MIPs with common globular protein shapes, filamentous MIPs (fMIPs) were observed in ax-

onemal MTDs (Ichikawa et al. 2017). MIPs of both morphologies show various interactions with surrounding 

proteins; some fMIPs in B-tubule were not detected to have other contacts besides those with tubulin, though. 

The observed shapes and thickness of these fMIPs lead to the conclusion that they are mostly made of  
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extended α-helices or coiled-coil motifs. Even though the term fMIPs was coined in recently (Ichikawa et al. 

2017), outer filamentous MAPs in the axoneme were observed before (Nicastro et al. 2006). Surprisingly, some 

of the MIPs partially penetrate the holes between tubulins of adjacent PFs. Cryo-EM revealed contacts span-

ning through the tubulin lattice: MIP2a and MIP4c, located in A-tubule, interact with MIP7, located in the 

B-tubule (Ichikawa et al. 2017) (Fig. 4). Stoddard then suggested that MIPs can regulate the binding of dynein 

and other structural components of cilia to the external surface of MTDs. Thus, MIPs might control ciliary 

motility, frequency of beating, and shape changes during the stroke cycle (Stoddard et al. 2018). 

 
Fig. 4: Structure of an axonemal MTD from cryo-EM. MIPs are in colour, tubulin in white. The black arrowhead marks 
the tubulin trans-lattice MIPs interaction. A, B – A-tubule and B-tubule, respectively. Doublet outer part and inner part 
(facing to the centre of the axoneme) is denoted. Reprinted from (Ichikawa et al. 2017), modified. 
 

There is a tight structural relation between the tubulin lattice and bound MAPs. The axoneme has 96-nm- re-

peating architecture (Oda et al. 2014), which is transferred to all MTDs associated complexes, like MIPs (Ta-

ble 1), dynein or nexin arms. The elemental repeating unit is the αβ-tubulin dimer with a repeat length of 

8.0 nm (Linck 1976; Nogales et al. 1999). MIPs bind either to a single PF, two adjacent PFs, or two non-neigh-

bouring PFs (Maheshwari et al. 2015). Also, all possibilities of tubulin units binding (α-tubulin only, β-tubulin 

only, both subunits of the same dimer, two subunits of adjacent dimers of the same PF) were detected 

(Maheshwari et al. 2015; Ichikawa et al. 2017). 
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Regarding stability, the PFs in a MTD are heterogeneous. This was illustratively documented by solubiliza-

tion of axonemal components by increasing concentrations of detergent sarkosyl (N-lauroylsarcosine) 

(Witman et al. 1972); same order of fractions was obtained with NaNO3 extraction (Orbach and Howard 

2019). Central singlets are dissolved first (singlet of higher and lower stability can be distinguished). Next, 

B-tubule is partially disassembled together with the second central singlet, but PF B1 remains attached to 

A-tubule. Eventually, the A-tubule disaggregates into individual PFs and so-called ribbon region (Witman 

et al. 1972). Ribbon region is the most stable MT structure in the axoneme; it is composed of PFs A11, A12, 

and A13, but sometimes, additional PFs were present (Linck and Langevin 1982). Such endurance is caused 

by several MIPs binding to that region (Linck 1976; Hinchcliffe and Linck 1998). Low stability of central 

singlets, on the other hand, could be linked to the lack of MIPs in them. 

There are almost no data on lumen entry for structural MIPs. Findings which are valid for αTAT1 do not 

necessarily apply to stably bound MIPs. MT structure, dynamicity, and lattice defects determine which ways 

of lumen entry are possible and what will be the turnover of MIPs. Stabilized axonemal MTs differ markedly 

from cytoplasmic in these parameters (Orbach and Howard 2019), although even axonemes do treadmill 

(Stephens 1999; L. Song and Dentler 2001). Some proteins of the axoneme appear to have negligible turnover. 

For instance, flagellar associated protein (FAP) 20 is not transported via intraflagellar transport. It enters the 

cilium during formation period probably just by diffusion and incorporates into the MTDs from proximal to 

the distal part of the axoneme. Newly synthesized FAP20 would not incorporate into previously assembled 

axoneme (Yanagisawa et al. 2014). On the other hand, more than 80 polypeptides of the axoneme are being 

exchanged with cytoplasmic pool. Among these, ribbon-associated protein (RIB) 43a and other ribbon com-

ponents were replaced to a low extent, but tektin, a component of the ribbon region, turns over rapidly 

(Stephens 2000). Importantly, tubulin turnover occurs independently of exchange of other axonemal compo-

nents (L. Song and Dentler 2001). This claim argues against MIPs being incorporated into MTDs by associat-

ing to treadmilling tubulin. 

4.2 Identified MIPs  

4.2.1 Flagellar associated protein FAP20 

FAP20 constitutes the inner junction structure between PFs A1 and B10 in the axoneme and basal body 

(Yanagisawa et al. 2014). Other proteins must colocalize to this structure since FAP20 alone is not large 

enough to account for the whole density. FAP20 is a very basic protein – positively charged residues could 

plausibly interact with the acidic tails of tubulin facing outwards. This interaction is possible since the inner 

junction structure is partially accessible from the outside. The protein contains a domain of unknown func-

tion 667 (DUF667), which was found in other proteins possibly linked to cilia (Yanagisawa et al. 2014).  
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No turnover of FAP20 was observed, suggesting immensely slow dynamics in axonemal MIPs. The human 

homolog of FAP20 localizes to primary cilia (Mendes Maia et al. 2014) and has 89 % amino acids sequence 

identity with Chlamydomonas. Zebrafish FAP20 knock-down showed phenotypes linked to ciliopathies, such 

as defects in heart-looping (Yanagisawa et al. 2014). Drosophila FAP20 mutant males produced immotile sper-

matozoa. Mutant strains of Chlamydomonas were unable to swim and their axonemes were less stable. Along-

side with inner junction structure, “beak-like structures” were also lost, although FAP20 is not their direct 

component. FAP20 likely connects to these structures via other MIPs of the B-tubule. Other roles of FAP20 

outside MT lumen are also possible because the protein is enriched in the nucleus and nucleolus in Drosophila, 

too (Mendes Maia et al. 2014). 

4.2.2 Flagellar associated proteins FAP45 and FAP52 

FAP45 was linked to MIP3c density in B-tubule (Owa et al. 2019). FAP52 was identified as large MIP3a, which 

bridges the inner junction and, together with FAP20, connects to the outside of the A-tubule (Fig. 3). MIP3a 

interacts with MIP3c, too. Both FAP45 and 52 are conserved proteins among eukaryotes with motile cilia. 

Predicted tertiary structures of both proteins fit into observed densities – FAP45 possesses coiled-coil struc-

ture; the human ortholog is accordingly called coiled-coil domain-containing protein 19 (CCDC19) (Owa et 

al. 2019). CCDC19 is expressed preferentially in the human nasopharyngeal epithelium and was linked to 

inhibition of nasopharyngeal carcinoma growth (Liu et al. 2012). FAP52 human ortholog is WD40 repeat 

domain 16 (WDR16) (Owa et al. 2019), which was shown to be associated with laterality disorders in human, 

caused erroneous nodal cilia beating (Ta-Shma et al. 2015). Tetrahymena FAP45 and 52 single knock-out strains 

exhibited only mild or insignificant perturbations in swimming speed. The double mutant, however, swam 

significantly more slowly with decreased beating frequency (Owa et al. 2019). Expectedly, B-tubules were 

more labile in mutants compared to wild-type. 

4.2.3 Flagellar associated protein FAP85 

FAP85 constitutes part of the MIP1a density (Kirima and Oiwa 2018). In several identified MIPs (FAP85 is 

among them), the EF-hand motif was found (Kirima and Oiwa 2018; Stoddard et al. 2018). This motif serves 

for Ca2+ binding (Kretsinger and Nockolds 1973) and probably regulates the beating of whole flagella 

(DiPetrillo and Smith 2010). No apparent homolog of FAP85 was found in human. There are no data on 

FAP85 mutant phenotypes. 

4.2.4 Tektins 

Several proteins associated with the ribbon region of axonemal A-tubules were detected using polyacryla-

mide gel electrophoresis and thoroughly studied by R. Linck (Linck 1976; Linck, Amos, and Amos 1985). 

These proteins, present in axonemal doublets, centrioles, and basal bodies but missing from cytoplasmic MTs 
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(Amos, Amos, and Linck 1985), reviewed in (Linck 1990), were named tektins (Linck et al. 1982). They con-

stitute filaments 3-nm-wide, more resistant to solubilization than tubulin PFs of ribbon region, and with 

remarkably high helical content. They closely resemble intermediary filaments by their α-helical segments 

forming coiled-coil structure, interrupted by a short linker (Linck and Langevin 1982; Amos, Amos, and 

Linck 1986; Norrander et al. 1996). The tektin filament is composed of tektin-A and B heterodimers and tek-

tin-C homodimers in equimolar ratios (Linck and Stephens 1987; Pirner and Linck 1994; Norrander et al. 

1996). Tektins were even believed by some (Nojima, Linck, and Egelman 1995) to make up one of the 13 PFs 

of the A-tubule instead of tubulin. 

Tektins contain specific 9-residue-long signature motif (Norrander et al. 1996) and are used in phylogenetic 

studies (Whinnett et al. 2006). A recent article assessed the evolution of tektin genes among eukaryotes – they 

are surprisingly missing in many lineages with flagella (e.g. the ciliates or placozoans) (Bastin and Schneider 

2019). At least five tektin genes are present in human, some of them are expressed exclusively in cilia/fla-

gella-bearing cells, e.g. sperm cells (Bastin and Schneider 2019; reviewed by Amos 2008). Despite great effort, 

the detailed structure of tektin polymers was not revealed. Linck suggested that tektin might play a role as 

a “ruler” (mentioned in a review Linck and Norrander 2003), but this was ruled out by Oda and collaborators, 

who identified FAP59/129 to be the 96-repeat imposing component in MTDs (Oda et al. 2014). Mutation in 

tektin leads to impaired tracheal epithelium and sperm cells motility in mice, rendering the males infertile 

and lowering tracheal debris clearance capacity (Tanaka et al. 2004). 

4.2.5 Ribbon-associated protein RIB43a 

A component of stable ribbon region of basal body and axoneme with molecular weight 43 kDa was isolated 

in Chlamydomonas and named as RIB43a (Norrander et al. 2000). Although predicted to possess coiled-coil 

structure and forming thin fibrils, RIB43a homology to tektins is low. Expression of a murine homolog is 

restricted to testes (Arango et al. 2004). No research has been conducted on human homolog and no ciliopa-

thies have been linked to RIB43a mutation so far. 

4.2.6 Ribbon-associated protein RIB72 

When RIB72A and B (72 kDa) are missing in mutant strains of Chlamydomonas, MIP1, 4 and, 6 are partially or 

completely depleted from the A-tubule lumen. Specifically, RIB72B constitutes the MIP4e density in the A-tu-

bule (Stoddard et al. 2018). The attempt to assign RIB72A to a density in MTDs lumen was unsuccessful. In 

Chlamydomonas, association of RIB72 to the ribbon region was shown by (Ikeda et al. 2003). RIB72A/B prob-

ably interact with other ribbon region MIPs, tektin, and RIB43a. RIB72 presumable homologs from sea urchin 

(termed Sp77 and Sp83) were found to localize to basal bodies and ribbon regions of axonemal MTDs. Sp83 

antibody also stained centrioles and partially astral tubules, even in human cells (Hinchcliffe and Linck 1998). 

Intriguingly, Sp83 antibody seemed to additionally stain central pair in the axoneme, too. RIB72A and B both 



17 

localize to basal bodies and cilia in Tetrahymena (Stoddard et al. 2018), but only in cilia and not basal bodies 

in Chlamydomonas (Ikeda et al. 2003). RIB72 conserved homologs in other species typically contain three DM10 

domains, which are needed for proper ciliary localization. Human RIB72 homolog hsEFHC1 is however ex-

pressed widely in soma and dendrites of neurons (Suzuki et al. 2004), suggesting that RIB72 might have 

gained new roles and cellular localization in vertebrates. Another common but not universal feature of the 

RIB72 protein family is the EF-hand motif – it is present in RIB72A, but not in RIB72B (Ikeda et al. 2003; 

Stoddard et al. 2018).  

RIB72A knock-out Tetrahymena strain manifests no change in the localization pattern of RIB72B, and vice 

versa (Stoddard et al. 2018). Double knock-out strain for both these proteins reached only half of the maxi-

mum swimming speed compared to the wild-type strain, also the beating frequency of cilia was lowered. 

Furthermore, cilia of mutant Tetrahymena strain were abnormally curved and desynchronized. Mutation of 

human homolog hsEFHC1 was shown to result in juvenile myoclonic epilepsy by increasing calcium current 

in neurons (Suzuki et al. 2004).Parkin-coregulated gene product protein (PACRG) is a potential interacting 

partner of RIB72 (Ikeda et al. 2007). It localizes alongside the whole axoneme and basal body. It could be 

extracted only in higher sarkosyl concentrations, therefore it is probably buried inside MTDs lattice, presum-

ably nearby the ribbon region. More robust evidence is missing, though. 

4.2.7 Tau 

Neuronal axon-specific (Binder, Frankfurter, and Rebhun 1985) protein tau was identified as a MAP long 

time ago (Witman et al. 1976). Tau stabilizes MTs and promotes their nucleation (Drechsel et al. 1992; Brandt 

et al. 1994). Tau is intrinsically disordered (von Bergen et al. 2005) and retains such properties even when 

bound to MTs (Kadavath et al. 2015). In contrast, insoluble plaque-forming misfolded tau triggering Alz-

heimer’s disease contains highly structured β-sheets (von Bergen et al. 2005), reviewed in (Ittner and Götz 

2011). 

Tau can bind either MTs or free tubulin dimers (Kadavath et al. 2015). Binding is facilitated, aside from other 

parts, by three or four sequence repeats, but they render nonefficient when isolated from the rest of the pro-

tein. Rigid stoichiometry of one tau molecule per two tubulin dimers was observed, confirming that it incor-

porates in the MT lattice (Witman et al. 1976; Gustke et al. 1994). Tau protein binds from the exterior of MTs 

but possibly protrudes through the lattice fenestrations. Inside, tau reaches taxol-binding pocket on β-tubu-

lin, as shown by immunogold cryo-EM assay. The loop on tau which binds to the taxol-pocket on tubulin is 

sequentially similar to a loop on α-tubulin which interacts with the pocket when neither tau or taxol is present 

(Kar et al. 2003). Inaba and colleagues designed a tau-derived peptide which interfered with binding kinetics 

of taxol (Inaba et al. 2018). Contradict data were published, though, reporting tau to bind at the interface of 

tubulin heterodimers and not interfering with the taxol pocket (Kadavath et al. 2015). Tau knock-out mice 
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are viable and without severe pathologies; neuronal aberrations arise in older animals, summarized in (Ke et 

al. 2012). 

4.3 MIPs in basal bodies and centrioles 

Cryo-ET structures from Chlamydomonas basal bodies showed that the arrangement of basal body MIPs is 

similar to that of axonemes (Fig. 5) (Li et al. 2012). Some differences in reported repeat patterns might be 

attributed to overall low resolution – a more detailed structure is needed to carefully evaluate repeat dis-

tances. The density corresponding to MIP3 which connects A- and B-tubule had a 4-nm repeat: That means 

two molecules of this MIP are bound to one tubulin dimer PFs A13 and B8. Nearby, a complex filling the 

inner junction of A/B-tubule interface is visible. This density called the inner junction complex and identified 

as FAP20 in the axoneme (Yanagisawa et al. 2014) lead to misinterpretations of old EM micrographs and 

claims that B-tubule is composed of 11 PFs (Tilney et al. 1973; Linck 1976). Besides the aforementioned simi-

larities, some MIPs and MAPs are unique for the basal body. Intriguingly, there was a sudden change of 

elemental tubulin monomer repeat length alongside the PF C1 from 4 nm (proximally) to 8 nm (distally). 

New densities emerged behind this transition, one of them was a crescent-shaped MIP in the C-tubule, con-

necting PF C3 to C6 and C7 (Li et al. 2012). The authors attribute this phenomenon to the presence of δ-tubulin 

in C-tubule. Apparently, there are zones with distinct architecture alongside the basal body – axoneme con-

tinuum. 

Recently published work dealing with procentrioles – precursors of centrioles – from Chlamydomonas 

achieved resolution of 2.1 nm and discerned 11 MIPs total, distributed in all three tubules (Fig. 6) (Li et al. 

2019). They all had a periodicity of 8 nm except for MIP2, which had 4 nm. These data are in striking contrast 

with what is published from the axoneme; again, missing details in low resolution might be the cause. 7 of 

11 identified MIPs are located nearby the inner junctions; MIP9 closely resembles 11th tubulin PF with its 

8-nm periodicity. In mammalian and Drosophila mature centrioles, 4 MIPs were distinguished. MIP1, other-

wise constantly present in structures, was not among them (Greenan et al. 2018). 

In conclusion, some MIPs are common in all structures observed, others are missing from several, some seem 

to be unique to a certain structure. For instance, MIP2, associated with PF A9, is constantly seen in the ax-

oneme, basal body and procentriole of several species including mammals (Greenan et al. 2018; Ichikawa et 

al. 2017; Li et al. 2012, 2019). Precise naming convention should be developed to prevent confusion among 

centriolar, basal body and axonemal MIPs. Interspecific differences could further complicate the situation. 

A recent observation of MIPs arranged into an interrupted helix in human spermatozoa distal tip illustrates 

this problem (Zabeo et al. 2018) – such architecture of MIPs was not previously observed in any model or-

ganism.  
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Fig. 5: MIPs associated with basal body microtubule triplet of Chlamydomonas, cryo-ET data. Microtubule lattice in 

purple, MIPs densities in yellow. Several PFs are labelled. * marks density similar to axonemal MIP1, arrow points to 
density bridging PFs B8 and A13 in inner junction, similar to MIP3. Reprinted from (Li et al. 2012), modified. 

 

 

Fig. 6: MIPs associated with procentriole triplet of Chlamydomonas, cryo-ET data. A) A-tubule. B) B-tubule. C) C-tubule. 

Reprinted from (Li et al. 2019), modified. 
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5. Conclusions 

First direct observation of MIPs in the microtubule lumen is dated more than 50 years back (Bassot and 

Martoja 1966). MIPs have attracted the attention of scientists since then, but only with recent tools, we are 

able to truly appreciate the structural and functional importance. There were considerable breakthroughs in 

the last two decades – the revelation of αTAT1 residence inside MTs and three-dimensional reconstruction 

of MIPs in axonemal doublets. These findings triggered many following discoveries on MIPs. 

Some light was already shed on the roles which MIPs play in the inner microtubular space. Two main pur-

poses emerged so far – involvement in tubulin post-translational (de)acetylation and enhancing the resilience 

of axonemal MTDs. Future work will likely restate these two categories and add more functions we are not 

aware of yet. Interestingly, dense luminal material was initially proposed to be transported via microtubules 

like in “pipes” (Rodríguez Echandía, Piezzi, and Rodríguez 1968). Burton, too, supported such a notion 

(Burton 1984). (Garvalov et al. 2006) concluded the same. This hypothesis has never had many proponents 

and no rigorous proof has been ever presented. 

There is an obvious dichotomy between the two classes of MIPs. Structural regularly repeating MIPs have 

not been reported in unstable cytoplasmic microtubules, with an alleged exception of tau. One can simply 

justify this lack of structural components in dynamic MTs by the predominant stabilizing effect of these MIPs 

which is undesirable in general cytoplasmic microtubular net. On the other hand, αTAT1, an active enzyme, 

targets all kinds of MTs (although linked mostly to stable ones) with stochastic probability and without reg-

ular repeating. No models on how αTAT1 makes its way through the densely packed lumen of axonemal 

MTDs to access the acetylation site have been presented. Also, the acetylation pattern (e.g. PFs preference) is 

not known. 

One may speculate whether the lumen of MTs could be considered as an independent cellular compartment. 

The relevance of MT compartment for cell physiology is elusive. Observed protrusions through MT lattice 

support MIPs–MAPs theoretical interactions and signal transduction from lumen to the outside. MTD wall 

arrangement may reflect changes in MIPs bound inside, thus enabling interactions with different MAPs from 

the outside. On the contrary, MTs inner binding capacity, volume, and potential to transport material are 

probably negligible compared to the bulk mass of cytoplasm. Either way, the inner binding capacity of mi-

crotubules might be utilized for drug delivery, slowly releasing the luminal content (e.g. bound taxol) via 

the two relatively small terminal opening (Odde 1998). This idea was recently elaborated further using a tau-

derived peptide (Inaba et al. 2018). 

Future research of inner MT components is of high importance. Not only it could elucidate more about the 

nature of the microtubular scaffold itself, it might also help to diagnose and cure some of the numerous 
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ciliopathies in human. Some of the newly discovered MIPs could account e.g. for α-tubulin acetylation 

readout since this modification does not induce any measurable change in the lattice distinguishable from 

the outside (Howes et al. 2014). That way, MIPs would be a crucial factor for interpreting the code of tubulin 

structural and signal properties (Cross 2019). Additionally, MIPs are likely indispensable elements in cilia 

assembly steps which are now poorly understood. Hopefully, an atomic-level structure of the axoneme and 

its MIPs will be obtained soon – it will immensely boost the pace of microtubule inner proteins research. 

I plan to use the insight gained during writing this thesis in my master’s project. I will focus on unstable 

cytoplasmic subset of MTs and try to identify candidates for MIPs residing in them. Conveniently, I can take 

advantage of αTAT1 being identified as a MIP and use it as a positive control during the proteomic analysis 

of MAPs in microtubular fraction. 
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