ABSTRACT
This bachelor thesis deals with the influence of microclimate on species distribution and composition of bryophyte and lichen communities. It defines the term microclimate, characterizes the specific properties of bryophytes responsible for their sensitivity to microclimatic conditions and includes a comparison of the role of individual microclimatic factors in controlling the distribution of bryophytes and lichens. The key microclimatic factors for bryophytes are humidity and air temperature, but the significance of each varies between functional groups of species and depending on the type of biome. With the available portable measuring devices with large battery capacity and memory storage, it is now possible to measure in-situ microclimate for the long-term and also with high spatial and temporal resolution. Despite that, there are currently only 12 bryological studies that provide continuously measured field microclimatic data on small spatial scales. The main part of the thesis summarizes these studies and compares the methodologies used. The paper can serve as a starting material for designing bryological microclimatic studies.