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ABSTRAKT 

CRISPR/Cas9 systém je nástroj genového inženýrství umožňující sekvenčně 

specifické editace genomu. Tato technologie byla využita za účelem studia funkce 

transkripčních faktorů s DNA vazebnou TALE homeodoménou (TALE - three amino acids 

loop extension) v průběhu vývoje buněk neurální lišty a její derivátů. Hlavními proteiny 

zájmu této práce jsou Meis1 transkripční faktory, které se v genomu Dania vyskytují 

v podobě dvou paralogních genů meis1a a meis1b. Funkce jednotlivých proteinů byla 

analyzována prostřednictvím mutageneze TALE homeodomény za účelem narušení 

schopnosti transkripčního faktoru vázat DNA a tím narušit regulaci podřízených genů. 

Tvorba a následná analýza fenotypu mutantních ryby by mohla odhalit potenciální roli 

Meis1 proteinů v regulaci vývoje buněk neurální lišty, popřípadě poukázat na důležitost 

homeodomény v regulační funkci těchto proteinů. Současně byl proveden knock-down 

experiment pomocí morpholino oligonucleotidů k předběžné analýze funkce jednotlivých 

meis1 genů a odhadu vzájemné funkční komplementarity. Předběžné výsledky poukazují 

na důležitost Meis1b proteinu v regulaci vývoje buněk neurální lišty a funkční důležitost 

jeho DNA vazebné domény. Snížení exprese Meis1a ukázalo, že i tento protein má podíl na 

regulaci kraniofaciálního vývoje, přičemž detailní popis jeho funkce bude určen až po 

analýze genetických mutantů metodou CRISPR/Cas9.  
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ABSTRACT 

CRISPR/Cas9 technology is currently one of the most important tools of genome 

engineering. This technology allows a precise site-specific gene editing and such ability was 

applied to study the role of TALE (TALE - three amino acids loop extension) homeodomain 

transcription factors during neural crest cells development. The main genes of interest, 

belonging to sub-family of TALE proteins, are Meis1 transcription factors that are present 

in the zebrafish genome as two paralogous genes, meis1a and meis1b. Their function was 

assessed by mutating their DNA-binding domain – homeodomain to abrogate the ability of 

transcription factor to bind DNA and by that disturb regulatory network, in which Meis1 

proteins operate in. Phenotype analysis of mutant fish would reveal a potential role of 

Meis1 proteins in regulation of neural crest cells development and outline the functional 

significance of the homeodomain in regulatory operations. To determine the regulatory 

relationship between meis1a and meis1b genes morpholino-based knock-down of the 

genes was performed. Preliminary results suggest a dominant role of Meis1b in neural crest 

cells regulation and importance of its homeodomain. Furthermore, knock-down of Meis1a 

indicates its contribution to regulation of craniofacial development. However, a detailed 

description of factors will be completed after thorough analysis of genetic mutants 

generated by CRISPR/Cas9 system.  

 

KEY WORDS 

CRISPR/Cas9, transcription factor, neural crest, Danio rerio, Meis, mutagenesis, 

development 
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1 LIST OF ABBREVIATIONS  
aa - amino acid 
AAV – adeno-associated virus 
ABS – Alcian Blue staining 
AP – anteroposterior 
BMP – bone morphogenic protein 
Cas – CRISPR associated protein 
CRISPR - clustered regularly interspaced short palindromic repeats 
crRNA - CRISPR RNA 
dCas9 – dead Cas9 
DSB – double strand break 
dsDNA – double stranded DNA 
DV - dorsoventral 
Exd – Extradenticle 
FGF – fibroblast growth factor 
FS – frame shift 
GFP – green fluorescent protein 
HD – homeodomain 
HDR – homology directed repair 
HMA – heteroduplex mobility assay 
hpf – hours post fertilization 
hpf –hours post fertilization 
Hth – Homothorax 
IHC – immunohistochemical staining 
indel – insertion/deletion 
IVF – in vitro fertilization 
KD – knock down 
KO – knock out 
MEIS – myeloid ecotropic interation site 
MO – morpholinos 
mpf – months post fertilization 
NC – neural crest 
NCC – neural crest cells 
NHEJ – non-homologous ends joining 
NUC – nuclease lobe 
PAM – protospacer adjacent motif 
PI – PAM interacting domain 
RA – retinoic acid 
RBP – RNA binding protein 
RE - restriction endonuclease 
REC - recognition lobe 
RNAi – RNA interference 
RT-PCR – reverse transcription PCR 
RVD – repeat-variable residue 
sgRNA/gRNA – single guide RNA/guide RNA 
SpCas9 – streptococcus pyogenes Cas9 protein 
ssDNA – single stranded DNA 
SSN – site-specific nuclease 
ssRNA – single stranded RNA 
TALE – three amino acids loop extension 
TALE – transcription activator-like effector 
TALEN – transcription activator-like effector nuclease 
TF – transcription factor 
tracrRNA – trans-activating RNA 
WISH – whole-mount in situ RNA hybridization 
ZFN – zinc finger nuclease 
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2 THESIS INTRODUCTION 

 This diploma thesis is focused on application of CRISPR technology to elucidate 

developmental essence of TALE homeodomain (TALE - three amino acids loop extension) 

in context of neural crest. 

The neural crest represents transiently occurring population of multipotent cells. 

Those cells migrate during development and settle down in their target destination, where 

differentiate into a wide range of cell types. The neural crest give rise to craniofacial bones, 

cartilage and neurons, melanocytes, enteric ganglia and contribute to septation of heart 

(Simoes-Costa et Bronner, 2015). Any disruption of neural crest development can have 

pathological consequences, such as neuroblastoma (Colon et Chung, 2011), intestinal 

agangliosis (Sullivan 1996), neurofibromatosis (Choe et Crump, 2014), cleft palate (Louw et 

al. 2015) or truncus arteriosus (impaired septation of pulmonary outflow; Machon et al. 

2015; Lin et al. 2012). 

TALE homeodomain transcription factors are sub-family of protein participating in 

processes involving hindbrain development (Stedman et al. 2009), haematopoiesis (Cvejic 

et al. 2011) or tumorigenesis (Dardaei, Longobardi et Blasi, 2014). This sub-family includes 

proteins, such as Prep, Pbx and Meis. This work focuses on proteins within Meis proteins 

group, because it has been reported that TALE homeodomain transcription factors, such as 

Meis2 may play a role in regulatory network during neural crest cells development (Machon 

et al. 2015). Furthermore, other publications imply connection of Meis1 proteins to neural 

crest development (Maeda et al. 2001) . Therefore, this work studies the function of Meis1 

proteins, specifically zebrafish orthologues, Meis1a and Meis1b, during neural crest cells 

development.   

      The experimental part of the work aims for generation of meia1 and meis1b 

mutant zebrafish lines and determine the contribution of those genes in neural crest cells 

regulation. Mutant lines were generated by introducing frame shifting mutation in 

homeobox region of meis1 genes to abrogate the ability of the protein to bind DNA. 

Furthermore, morpholino mediated knock-down was performed to determine the 

contribution of each meis1 gene. Preliminary data analysis suggests that meis1b 

contributes more to neural crest cells development and that homeodomain is an important 

part of the gene product while the function of meis1a in the process remains unclear.  
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3 THEORETICAL INTRODUCTION 

3.1 Genetic studies in the zebrafish model 

The zebrafish (Danio rerio) is widely used model organism due to its rapid 

development, short generation time, high fecundity, embryo transparency, genetics and 

small size in adulthood. Those are key features for research in developmental biology and 

its branches, such as embryology, neurobiology, cardiology or regenerative medicine. 

Mentioned disciplines benefit from an emerging tool for research of gene function, 

CRISPR/Cas9 system. A new technology capable of editing a fish genome by introducing a 

mutation in specific locus. The mutation could lead to a change of gene function or 

complete loss of the function. The loss usually sheds a light on a role of the gene in the 

organism.  

3.1.1 General properties of the zebrafish model 

The zebrafish is tropical fresh water bonefish that belongs to the Cyprinidae family. 

In nature, the species can be found in waters of Indian rivers, Ganga and Brahmaputra. 

General visual characteristics of the fish are small size (4-5 cm), distinct blue and black 

striped pattern (Spence et al. 2007), and sexual dimorphism: males are slender and have 

golden bright stripes on body and fins. Adult females are rounded and silvery in the ventral 

part. The most apparent sexual dimorphism is in the period of spawning. In the wild, a 

single female can spawn every 2-3 days and a single spawning usually contains dozens of 

eggs (Gerlai et al. 2000).   

The embryogenesis in zebrafish is analogous to the early development in higher 

vertebrates including humans. The main developmental difference, between higher 

vertebrates and the fish, is external fertilization as well as development. Moreover, the egg 

and embryo themselves are transparent first couple of days after fertilization (Wixon 2000). 

Development of zebrafish embryo after fertilization is very fast. In the first 24 hours all 

essential organs are developed and the third day the fish hatches. The fry grows rapidly 

and reaches sexual maturity in 3-4 months (Fig.1; Stern and Zon 2003).  

In 2013, after the first zebrafish genome sequences were published, Howe and 

colleagues compared human and zebrafish genomes. Surprisingly, the results showed more 

pronounced complexity in the fish genome compared to the human, 70% of human genes 

have at least one specific orthologue in zebrafish genome (Howe et al. 2013).  Even though 

the zebrafish genome is smaller than the human genome. The complexity was generated 

by genome duplication that occurred approximately 300 million years ago (Fig.2). An 

additional genome duplication had initiated evolution of almost 25 000 Teleostei fish 

species that were specified by genome transforming processes, such as gene loss, sub-

functionalization and neo-functionalization of genes. Gene loss led to elimination of 

redundant duplicated genes, sub-functionalization contributed to complementary 

functional separation and specification, and the process of neo-functionalization generated 
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new properties and functionally separated duplicated genes (Fig.3; Furutani-Seiki et 

Wittbrodt, 2004).  

 

Figure 1: Scheme of zebrafish development from the moment of fertilization to adulthood. The first cell 
cleavage occurs within 30 minutes after fertilization. The multiple cell cleavage is followed by cell migration 
culminating into gastrulation and organogenesis. Body plan and all major organs are developed during the 
first 24 hours. Following day, a larva continues to develop, grow, and gains a pigment in the eyes and skin. On 
the second day, larvae hatch and become free swimming. The zebrafish reaches adulthood in 90 days 

(adapted from Pennonen et Leinonen, 2017).    

A range of physiological structures is similar to human, such as central nervous 

system, muscles, cardiovascular system, skeletal system and hematopoietic cells (Lieschke 

et Currie, 2007). Furthermore, the similarities between genomes and molecular processes 

allow study of human diseases in the zebrafish model. The injection of the zebrafish with 

the gene causing disease in human, can lead to development of the same disease in the 

fish. That is one of the reasons why the species has been widely used in research of genetic 

disorders, such as schizophrenia, Alzheimer’s disease, Parkinson’s disease (Best et 

alderton, 2008), and muscular dystrophy (Bassett et Currie, 2003).   

Figure 2: Evolutionary relationship between four organism lineages and three hypothetical genome 
duplications events (red dots). While, the last one occurred in Teleost lineage 300 million years ago (adapted 
from Inoue et al., 2015).   
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Figure 3: Cladogram showing evolutionary relationship between teleost fish zebrafish, fugu fish, and medaka 
that are frequently used as model systems. Figure demonstrates hypothetical consequences of genome 
duplication after the point of species division.  On the left side is depicted how the duplication of a gene or a 
whole genome can lead to gene loss, sub-functionalization or neo-functionalization of a new paralogous gene. 
Processes of sub- and neo-functionalization does not occur only in non-coding regions (coloured symbols), but 
they can affect the coding region (orange line, differences in red). The schematic gene representation suggests 
that the duplication at the basis of teleost species radiation led to different gene functions throughout teleost 
model organisms (adapted from Furutani-Seiki et Wittbrodt, 2004).  
 

3.1.2. Gene function analysis methods in zebrafish model system 

In the pre-genomic era, “forward genetics” experiments were based on random 

mutagenesis induced by ionizing radiation or mutagenic chemicals, e.g. N-ethyl N-

nitrosourea. Generated phenotypes were then evaluated and the gene responsible for such 

phenotype was found by cytogenetic techniques, cloning into plasmid and backcrossing. 

Forward genetics approaches have been done in larger scale and it has been very time-

consuming and financially demanding process. Nowadays, in the post-genomic era, life 

science offers cheaper and more precise techniques for studying gene function, such as 

gene knock-down methods or site-specific nucleases.  

3.1.2.1 Morpholinos 

Morpholino is one of the gene knocking-down techniques based on artificial single-

stranded uncharged thermostable DNA, resistant to nucleases (Fig.3). Morpholino 

oligonucleotides (MO) bind target mRNA by Watson-Crick base pairing and prevent the 

mRNA from being translated into a protein. The gene expression inhibition is achieved by 

an injection of a zebrafish egg with morpholino complementary to ribosome recognition 

sequence or exon-intron boundary region of target mRNA (Fig.4). Interactions in these 

regions cause disruption of mRNA processing mechanisms, such as intron splicing, or the 

mRNA is not recognized by ribosome, therefore is not translated. Impaired intron splicing 

leads to production of non-functional protein, while the blockage of ribosome binding site 

prevents production of the protein (Fig.4). Due to the effect on the gene expression, 

morpholino can mediate generation of a specific phenotype at the early stages of zebrafish 

development (Corey et Abrams, 2001).    
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Morpholino based knock-down approach 

offers fast and inexpensive functional analysis of gene 

expression. However, the reliability of this technique 

has been questioned. Kok and collective have pointed 

out a discrepancy between phenotypes of morphants 

(MO treated organisms) and mutants (Kok et al. 2015). 

One reason of false phenotype might be non-specific 

interaction with other mRNAs, which is more severe 

on the level of RNA than off-target activity of site-

specific nuclease on the level of DNA. Mutant 

phenotype can be compensated by second non-

mutated allele and be milder due to the compensation 

(Rossi et al. 2015). Off-target effects can be prevented 

by using at least two morpholinos, a translation 

blocker and a splice-inhibitor (Fig.4). At first, both 

mentioned MOs ought to be tested separately and 

then simultaneously to verify their ability to generate 

similar phenotype (Eisen et Smith, 2008).       

 

 

Figure 4: Morpholino oligonucleotides interacting with mRNA and inhibiting the mRNA processing. (A) 
Translation blocking. Natural process of translation in the absence of a MO (left) and translation initiation 
blocked by a MO (right). MO blockage prevents the small ribosomal subunit from scanning the 5’UTR, thus 
the large ribosomal subunit can’t be recruited and assembled with the small ribosomal subunit at the start 
codon (AUG), and translation does not occur. (B) Splice inhibition. Normal pre-mRNA splicing (left). The 
hybridization of the MO causes skipping of the exon (orange) in the splicing process because it is not 
recognized (adapted from Hardy et al., 2010).  

The other reason for phenotype differences is presence of maternal mRNA in 

mutant embryo. This maternal mRNA enables partial gene expression rescue in comparison 

to morphant embryo where maternal mRNA expression is blocked by MO. Furthermore, 

Figure 3: Structure of DNA (left) and 
morpholino (right) oligomers. 
Morpholino is single-stranded usually 
25-bases long oligonucleotide, 
analogous to DNA. Its chemical 
structure is built of bases bound to 
methylenemorpholino rings. The rings 
are connected to each other by 
fosfodiamidate linkages and all 
together form a backbone of the 
oligomer. MO binds ssRNA or ssDNA, 
i.j. mRNA according to Watson-Crick 
base pairing. MO is synthetic 
compound with no charge, thus it is not 
recognized by any type of nuclease or 
other proteins. R and R‘ mark 
continuation of oligomers (adapted 
from Koller et al., 2000). 
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morpholino oligonucleotides mediate only transient gene knock-down. Injected MOs are 

diluted during embryo’s development by cell proliferation and mRNA production, therefore 

they are less and less potent in time. At the end, morphant phenotype is caused by 

transient gene expression inhibition at early stages of development. Later, the proper gene 

expression is resumed. The time of resumption is dependent on the concentration of 

injected MOs and the mRNA turnover. To avoid misinterpretation of the results from MO 

experiments, it is important to analyse generated phenotypes by additional experiments 

proving the specificity of used morpholino oligonucleotides. 

The issues of the non-specific effects of MOs can be solved by following approaches. 

If an animal with mutated gene of interest is available, it is possible to compare phenotypes 

of a mutated and a knock-down fish. In case no mutant fish has been generate yet, 

following alternative experiments can determine and improve MO specificity. Loss of 

protein can be examined by in situ antibody staining or by Western blot. Incorrectly spliced 

pre-mRNA might be verified by RT-PCR (reverse transcription PCR) with consecutive 

electrophoresis or sequencing. Other relevant experiment would be whole-mount mRNA 

in situ hybridization to determine whether the mRNA is detained in the nucleus or not. Also, 

the important part of morpholino experiments must be the use of controls. Possible 

controls may be morpholinos, affecting the gene that is not expressed in the cells of 

interest, mismatched MO or inverted MO. Most suitable are five-base mismatch MOs due 

to their similarity to experimental MOs (Eisen et Smith, 2008). 

Alternative control experiment can be RNA rescue, consisting of co-injection of MOs 

and mRNA of targeted gene that is not interacting with MOs. The endogenous mRNA is 

affected by MOs and co-injected mRNA shall rescue the expression, therefore any possible 

off-target effects are identified by such experiment (Eisen et Smith, 2008). 

In the past, random mutagenesis experiments allowed generation of mutations in 

wide range of genes, but the process of such approach was un-cheap and very time 

consuming. Nowadays, emerging methods of site-specific mutagenesis enable relatively 

cheap generation of concrete mutants. Those methods are discovering biological functions 

of genes and uncover false-positive phenotypes that were generated by MO-based 

approaches.        

3.1.2.2. Site-specific nucleases  

 Targeted gene disruption using site-specific nucleases (SSNs) is an emerging 

approach of deciphering a gene function. A toolkit of genome engineering involves SSN, 

such as zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) or 

CRISPR/Cas9 system (Clustered Regulatory Interspaced Short Palindromic Repeats/CRISPR 

associated protein 9). SSNs are artificially generated proteins (ZFN and TALEN) or modified 

ribonucleoprotein complexes (Cas9) designed to cut DNA in a sequence specific manner 

(Govindan et Ramalingam, 2016). The first nuclease of the group is ZFN which is an artificial 
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restriction enzyme composed of zinc finger transcription factor DNA binding domains and 

DNA cleavage domain of bacterial restriction endonuclease (RE) FokI (Fig.5; Kim, Cha et 

Chandrasegaran, 1996). TALEN was generated equivalently. It is also a fusion of DNA 

cleavage domain derived from FokI RE and DNA binding domain (Fig.5). In the case of 

TALEN, transcription activator-like effector proteins (TALE) are used as a part of DNA 

binding domain. It is a common protein in Xanthomonas bacteria ensuring initiation of an 

infection by regulation of gene expression in host plant cells (Christian et al. 2010).  

CRISPR/Cas9 system has been established on significantly different basis. The 

system comprises of Cas9 protein, responsible for DNA cleavage, and single guide RNA, 

navigating the Cas9 to target sequence where the protein binds and cleaves (Fig.5; 

Gasiunas et al., 2012; Jinek et al., 2012).  

 

Figure 5: The structure of site-specific nucleases interacting with specific DNA sequence. (A) Zinc finger 

nucleases are fused zinc finger proteins ZFP to the cleavage domain of FokI restriction enzyme. Each ZFP has 
a ZF motif which recognizes specific triplet (3 bp) and interacts with DNA by introducing the α-helix into the 
major groove of dsDNA. DSB is then mediated by two ZFN monomers facing each other and forming active 
catalytic site for FokI domains. (B) TALENs are fused TALEs to the cleavage domain of FokI restriction enzyme. 
TALEs have a central DNA-binding motif of 13 to 28 monomers, consisting of 34 aa. Each monomer is formed 
by highly conserved aa sequence, except for two hypervariable residues at position 12 and 13. These 
hypervariable residues are also called repeat-variable residues (RVDs), because each repeat can have a 
different pair of amino acids in these positions. The pair determines a specificity and affinity of repeat to the 
nucleotide. (C) CRISPR/Cas9 system functions as an RNA-protein complex using sgRNA to bind a specific DNA 
sequence via Watson-Crick base pairing. As soon as the sgRNA/Cas9 complex binds PAM (protospacer 
adjacent motif, NGG) and recognizes the target, Cas9 cleaves DNA (adapted from Govindan et Ramalingam, 
2016). 

 SSNs have been widely used to generate a variety of genomic alterations including 

small deletions or insertions (Hwang et al. 2013), correction of deleterious mutations 

(Howden et al. 2016) and insertion of exogenous DNA molecules (Hisano et al. 2015). Such 

alterations can be achieved by SSN-mediated DSB within a target sequence. The break can 

initiate DNA reparation via non-homologous end joining, which often leads to introduction 

A B 

C 
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of insertion or deletion (indels), and within a coding sequence can cause reading frame shift 

(Fig.6). Also, indels can disrupt integrity of gene regulatory elements, such as enhancer, 

promoter or intron splicing signal that can affect gene expression. However, SSN have been 

also used for gene correction that often occurs in presence of donor dsDNA (Hisano et al. 

2015) or ssDNA molecule (Yoshimi et al. 2016) with partial or full homology to the site 

where DSB was generated. Therefore, a correct form of the gene can be inserted through 

homology directed repair (HDR) and restore its function (Fig.6.). Furthermore, a transgene 

(e.g. GFP, Cre, LacZ, etc.) with exogenous regulatory elements (promoter, terminator, 

enhancer) and appropriate homology arms, flanking the transgene, can be also inserted in 

a site-specific manner into the genome (Fig.6; Kimura et al., 2014).   

 

Figure 6: Sequence specific genome editing using programmable SSNs. NHEJ: Non-homologous end joining 
repair (left) is error-prone mechanism of DNA damage reparation that often results in indels. HDR:  Homology 
directed repair (in the middle) requires dsDNA or ssDNA donor molecule to use it as a template for reparation.  
Homology directed insertion of transgene (right), a donor molecule contains a transgene, flanked by homology 
arms that mediate an insertion to the locus of interest (adopted from Govindan and Ramalingam, 2016).    

To edit genomic sequence, nucleases must be delivered into the nucleus of the host 

cell. Nucleases are delivered in form of a protein or expression vector. Additional HDR 

donor is co-delivered as a circular or linearized molecule. Delivery can be performed via 

non-viral or viral approaches, where common non-viral approach includes cationic lipid-

mediated transfection, electroporation, hydrodynamic injection and microinjection. The 

last option is most common in the zebrafish model. The most broadly used viral vectors are 

adenoviruses, lentiviruses and adeno-associated viruses (AAV). However, the obstacle for 

direct in vivo applications is the inability to deliver nuclease in cell or tissue-specific manner 

(Liu et Shui, 2016). 

The application of site-specific editing systems is not flawless and has potential off-

target effects. The reduction of non-specific cleavage of ZFN includes a design of FokI 

domains with opposite charges that only dimerize while correct pairing of ZFNs occurs 

(Doyon et al., 2011; Miller et al., 2007) or delivery of ZFN as proteins to shorten the time of 
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exposure of nuclease to the genome (Gaj et al. 2012; Liu et al. 2015). Modularity of ZFN 

and TALEN enables intuitive design and synthesis. However, ZFP interactions with DNA are 

dependent on the modular context within a molecule and that is limiting factor in the 

process of ZFN assembly (Gersbach, Gaj et Barbas, 2014). Therefore, it sometimes requires 

optimization to find a functional ZFN. In case of TALEN, the approach of modular assembly 

appears to be more effective in gene targeting, thus extensive engineering and 

optimization is not required. Furthermore, TALEN have been proven to be more specific 

and less cytotoxic than ZFN (Mussolino et al. 2014). 

 In comparison to ZFN and TALEN, CRISPR/Cas9 system functions differently. It 

recognizes the target sequence via RNA-DNA interaction based on Watson-Crick base 

pairing. The system requires two components, an invariant Cas9 protein and 

programmable single guide RNA. The only Cas9 nuclease limitation is a requirement of 

conserved protospacer-adjacent motif (PAM) which is crucial for DNA-protein interaction. 

Although, this limitation appears to be overcome by modification of the Cas9 PAM 

interacting domain (Kleinstiver et al., 2015). Alternatively, it is possible to use Cas9 

orthologues from different bacterial species with distinct PAM pattern recognition (Hou et 

al. 2013; Ran et al. 2015a). In spite of the seemingly high specificity given by base-pairing 

and DNA-protein interaction, off-target cleavages have been reported even during 

application of this system (Fu et al. 2014). However, CRISPR technology is flexible enough 

to address this issue, for instance the use of Cas9 orthologues with more complex PAM 

requirements. Other possibility is to use Cas9/sgRNA complex in a limited amount (Hsu et 

al. 2013) or to use short-lived Cas9 protein (S. Kim et al. 2014), inducible Cas9 expression 

system (Zetsche, Volz et Zhang, 2015), two Cas9 nickases (Mali et al. 2013), inactive Cas9 

fused to FokI cleavage domain (Guilinger, Thompson et Liu, 2014) or Cas9 fused to DNA-

binding domain (Bolukbasi et al. 2015). The robustness of CRISPR technology, 

programmability and a direct usage make the technology the most flexible genome editing 

tool at the moment. 

3.1.2.3 CRISPR/Cas9 system 

CRISPR is a locus in prokaryotic genome containing DNA fragments derived from 

viruses or invasive plasmids. The fragments were incorporated into bacterial genome 

during infection. Bacteria keeps the viral genetic information and builds simple prokaryotic 

immune system to prevent subsequent viral infection (Barrangou, 2015). An essential part 

of the immunity are Cas proteins which play an important role in  capture and incorporation 

of a viral fragment to the genome. Also, they contribute to primary transcript processing 

where the result is crRNA. At the final stage, processed crRNA interacts with tracrRNA and 

Cas9 protein and together they form ribonucleoprotein complex which is able to recognize 

exogenous DNA (Fig. 7; Marraffini, 2015). Described CRISPR system is specific for 

Streptococcus pyogenes. All bacterial CRISPR systems are not the same and their 

composition is species-specific.  
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Figure 7: The stages of CRISPR prokaryotic antiviral defence mechanism. Acquisition stage is characteristic for 
recognition of invading DNA by Cas proteins, its cleavage and integration as a protospacer into the prokaryotic 
genome. crRNA biogenesis is initiated during infection by a virus that has been already recognized and 
adapted as an DNA fragment in CRISPR locus. A long primary transcript is transcribed and processed by Cas 
proteins to produce crRNAs, then crRNAs and tracrRNA form dsRNA secondary structure which is further 
processed by Cas9 and RNaseIII. crRNA-tracrRNA duplex molecule activates Cas9 and navigates it to the target 
sequence. After PAM recognition by the Cas9, the RNA-DNA interaction based on base pairing is made and 
that leads to cleavage and degradation of invading DNA (adapted from Pampel, 2016). 

 

The genome editing tool, programmable nuclease Cas9, was derived from the 

prokaryotic immune system (Fig.7). The understanding of a crRNA-tracrRNA function in 

wild type Cas9/RNA complex led to production of chimeric sgRNA, which was essential step 

towards programmability of Cas9 (Fig.8). The sgRNA is a crucial component, mediating 

specific navigation of the Cas9 within the genome. Currently, the field of genome 

engineering provides a wide range of sgRNA designing tools such as CRISPOR, CCTop, 

ChopChop, CRISPR Design etc. Those tools are open-access programs predicting potential 

targets for sgRNA and Cas9, or Cas9 orthologues recognizing different PAM pattern (Nowak 

et al. 2016).  

The sgRNA is functionally and structurally flexible element. It contains several 

secondary structures essential for its function, such as the nexus, stem loop, tetraloop, 

bulge and 3´end hairpins. It has been reported that the bulge and nexus (Fig.8) are the most 

sensitive structures and play an important part in the DNA cleavage. Surprisingly, large 

deletion mutations in the upper stem of sgRNA (Fig.8) do not abolish Cas9 cleavage activity 

(Nishimasu et al. 2014; Briner et al. 2014; Jinek et al. 2012).  Alternations of upper stem 

structures and alternatively extensions of the stem loop (Fig.8) can even increase sgRNA 

stability and enhanced complexation with dSpCas9 (dead SpCas9, catalytically inactive 

SpCas9; Chen et al., 2013; Ma et al., 2016; Shao et al., 2016). Activity and off-target 

cleavage of the SpCas9/sgRNA complex depends on factors such as sgRNA design (Yang et 
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al. 2013), chromatin accessibility (Wu et al. 2014), nucleotide composition (Doench et al. 

2014) or length of the sgRNA (Moreno-Mateos et al. 2015).  

 

Figure 8: Secondary structure of RNA in complex with SpCas9 (Streptococcus pyogenes Cas9 protein).(A) 

Endogenous and wild type crRNA, comprised of 20 nucleotides long spacer (target recognizing sequence; 

orange) and 22 nucleotides long repeat (green), interacts with complementary region of tracrRNA (blue). The 

tracrRNA 3´ region (purple) forms a functionally significant structure that is essential for recognition by 

SpCas9. (B/C) The synthetic sgRNA was produced by fusion of tracrRNA and crRNA via tetraloop (yellow). (C) 

Anatomy of the sgRNA molecule. The spacer sequence (orange) navigates SpCas9 to the target locus. The 

lower stem (cyan) is formed by hybridization of CRISPR repeat sequence of crRNA and complementary region 

of the 5´end of tracrRNA. The protein interacts with lower stem (cyan) and upper stem (green) regardless of 

their sequence. In contrast, interaction with bulge (dark pink) is sequence dependent. The nexus (pink) is a 

central part of the sgRNA that has sequential and structural properties important for DNA cleavage. The nexus 

is essential for formation of a junction between the sgRNA, SpCas9 and DNA. The terminal hairpins enable 

stabilization of the sgRNA and formation of sgRNA/SpCas9 complex. Hairpins are flexible structures and 

despite large deleterious mutations in the region the Cas9/sgRNA complex, it is still able to cleave DNA 

(adapted from Nowak et al., 2016). 

Indeed, sgRNA engineering proved that deletions introduced into its sequence can 

be beneficial in terms of stabilization or decrease of off-target effects. It has been shown 

that truncation of the 5´end of the sgRNA to 17 or 18 nucleotides long spacer decreases 

potential off-target cleavage (Fu et al. 2014). Larger truncations, down to 15 nucleotides, 

abrogate SpCas9 ability to cleave DNA but the complex is still able to target complementary 

sequence. The truncated sgRNAs are useful in complex with catalytically active Cas9 fused 

to transactivating domain, because Cas9 with truncated sgRNA (≤16 nt) has similar 

properties as a dCas9. It binds DNA without cleavage (Dahlman et al. 2015; Fu et al. 2014). 

Therefore, the complex with truncated sgRNA might be used for the same purposes as the 

dCas9  (Kiani et al. 2015). Moreover, the SpCas9/truncated sgRNA complex can be utilized 

for genomic imaging (Chen et al. 2013; Ma et al. 2016).  

Additionally, more advanced modifications of sgRNA have been invented. 

Modifications such as an incorporation of functional secondary RNA structures known as 

RNA aptamers that can be recognized and bound by RNA binding proteins (Peabody, 1993; 

Bertrand et al. 1998). Adapter-recognizing proteins can be fused to transcription activators, 

repressors or epigenetic modifiers (Esvelt et al. 2013; Kiani et al. 2014; Konermann et al. 

2015; Zalatan et al. 2015; Xu et al. 2016; Nishimasu et al. 2014; Mali et al. 2013; Dahlman 
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et al. 2015) or fluorescent proteins (Ma et al. 2016) which allows to study a gene function 

or genome topology not only by sequence-specific cleavage.  

The CRISPRainbow system is multiplex labelling approach based on RNA aptamers 

within the sgRNA in complex with dCas9, where a set of multiple fluorescent proteins is 

attached to distinct RNA aptamer-binding protein. RNA aptamers are incorporated into 

sgRNA secondary structures such as tetraloop, the first hairpin or the 3´ end. The 

CRISPRainbow system allows to perform a multiplex imaging of genomic loci with up to 

seven different sgRNA molecules (Ma et al. 2016). As has been already noted, advanced 

secondary structure engineering opens new possibilities for CRISPR technology 

applications (Chavez et al. 2015).                   

The SpCas9 endonuclease is a key element of prokaryotic adaptive immune system. 

It was adapted to function in eukaryotic organisms and now it is broadly used as a genome 

engineering tool (Jinek et al., 2012). In general, the protein is activated by interaction with 

crRNA-tracrRA duplex or sgRNA that leads to stochastic search for target DNA by scanning 

DNA molecules for PAM sequence. As soon as PAM is found, SpCas9/RNA complex forms 

an interaction with target sequence via sgRNA-DNA base pairing and upon formation of 

interaction, it induces a DSB in target locus (Sternberg et al. 2014).   

The process of Cas9 activation and cleavage is tightly linked with conformational 

changes (Fig.9). The Cas9 protein consists of six domains, REC I, REC II, Bridge Helix, PAM 

Interacting Domain (PI), HNH and RuvC, which altogether form two lobes, REC (recognition 

lobe) and NUC (nuclease lobe). The REC lobe contains the largest domain REC I, domain 

responsible for binding the guide RNA, and REC II domain that is also involved in binding 

the guide RNA, but the mechanism is not properly described. The bridge helix is arginine-

rich structure, important for initiation of DNA cleavage. The NUC lobe consists of the PI 

domain that determines PAM specificity of the Cas9. Its function is to initiate binding to 

target sequence. The HNH and RuvC are nuclease domains where each of them cleaves 

ssDNA (Fig.9; Nishimasu et al., 2014).  

The REC I domain is responsible for Cas9 activity because of its stabilization of 

repeat/anti-repeat stem loop (Fig. 8A). The PI and RuvC domains bind the nexus and 3´ end 

hairpins. The activation is followed by a conformation change upon binding of sgRNA 

(Nishimasu et al. 2014). The recognition of target sequence by Cas9/sgRNA is mediated by 

the initial binding of Cas9 to PAM. The protein stochastically scans a DNA molecule until it 

finds PAM to interact with. When PAM is detected, the protein tests a complementarity of 

potential target to its sgRNA by unwinding the remaining target DNA. If the tested 

sequence is complementary to sgRNA, the Cas9 reaches a conformational state that allows 

the nuclease domains to cleave DNA (Sternberg et al., 2014).  

 
 
 

A 



20 

 
Figure 9: Schematic picture conformational change of Cas9 protein during formation of sgRNA/Cas9 complex 
(adapted from Jinek et al., 2014). 

The DNA strand complementary to sgRNA is cleaved by the HNH domain. This 

domain is inactivated in Cas9 nickase or dCas9 by H840A mutation. Histidine-840 is 

essential for activation of water molecule. A consecutive electrophilic attack of water 

molecule is coordinated by magnesium ion and results in cleavage of 3´-5´ phosphate bond. 

The other strand, not complementary to the sgRNA, is cleaved by RuvC nuclease domain. 

The RuvC catalysed ssDNA cleavage in the manner similar to the two-metal cleavage 

mechanism of RuvC Holiday junction resolvase (Górecka, Komorowska et Nowotny, 2013; 

Nishimasu et al., 2014).  Mutations in one of the major catalytic residues His983, Asp986, 

Asp10 and Glu762 causes a total inhibition of nuclease activity, thus production of Cas9 

nickase or dCas9, in case of functional disruption of both nuclease domains (Nishimasu et 

al. 2014). 

The CRISPR/Cas9 system is a versatile genome editing tool due to its 

programmability and flexibility of usage at many levels of gene expression. The field of 

genome engineering expands its toolkit by discovering new Cas9 orthologues (Friedland et 

al. 2015; Hou et al. 2013; Ran et al. 2015b) but also by the re-engineered Cas9 (Kleinstiver 

et al., 2015). All that has been done in order to reduce the size of Cas9, increase Cas9 

specificity and expand the number of targets (Kleinstiver et al., 2015).  The size of naturally 

occurring Cas9 is a limiting factor in the process of packaging and delivering into cells via 

viral systems, hence there has been attempts to reduce Cas9, but it had a limited outcome. 

In contrast, the targeting scope was broadened by the discovery (Esvelt et al. 2013) and 

engineering of new Cas9 protein variants with less complex demand for PAM (Hirano et al. 

2016). Besides, the specificity Cas/sgRNA complex is dependent on PAM recognition patter, 

the more complex PAM is, more specifically the Cas9 protein interacts with DNA (E. Kim et 

al. 2017). The field of genome engineering faces a difficult challenge to produce an ideal 
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Cas9 protein. It has been shown that smaller orthologues of Cas9 often requires more 

complex PAM, which means a higher fidelity of the protein and reduction of potential off-

targets, but also narrowing of the targeting range (Friedland et al., 2015; Ran et al., 2015; 

Kim et al., 2017).  However, this obstacle is overcome by modified versions of Cas9 protein 

or sgRNA (Hirano et al. 2016). 

The wild-type SpCas9 and engineered sgRNA provide a solid base for advanced 

modifications. Apart from mentioned sgRNA secondary structure, engineering the Cas9 

protein can be also adjusted for a wide range of purposes. At first, the Cas9 protein was 

used as easily programmable nuclease introducing DSB likewise ZFN or TALEN (Jinek et al., 

2012). But, its versality gave a rise to a new tool used for more than changing a DNA 

sequence. The variety of applications is shown in Fig. 10 and Fig. 11, demonstrating what 

is possible to study by using this tool and how significant role CRISPR/Cas9 system plays in 

current genome research. 

 
Figure 10: Advanced modification and applications of CRISPR technology (adapted from Adli 2018). Apart from 
genome editing with wild-type Cas9 by introduction of DSB (A), here several modifications of the technology 
are presented. For instance, (B) the Cas9 fused to trans-effector to regulate a promoter activity (Thakore et 
al. 2015); (C) the Cas9 fused to epigenetic modulator to modify histones or DNA (Groner et al. 2010); (D) the 
Cas9 activated by sgRNA with aptamers binding MS2 proteins labelled with fluorescent protein (Qin et al. 
2017); (E) base editing performed with nickase Cas9 fused to ABOBEC1 (deaminase enzyme) and Uracyl 
Glycosylase inhibitor (UGI),)the protein multicomplex is able to convert cytosine into thymine (Komor et al. 
2016); (F) CRISPR technology enables RNA targeting by using Cas13 (Abudayyeh et al. 2017); (G)Chromatin 
topology approach can change proximity of enhancer and promoter and can pull the enhancer from silent 
region of chromatin to active chromatin (Morgan et al. 2017); (H) technique of chromatin imaging is based on 
dCas9 fused to fluorescent protein and it is used to label the location of target loci (Shao et al. 2016).  
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Figure 11: Advanced modifications and applications using sgRNA scaffold or fused proteins (adapted from Adli 

2018). This figure shows a targeting capacity of Cas9 and its modularity in terms of additional components 

such as fusion to effector protein via peptide linker (J), connecting effector and Cas9, or via sgRNA scaffold 

which is sgRNA with functional aptamers that interact with RNA binding proteins (RBP; K). Effector protein 

can be fused to RBP and assemble to a multiprotein complex localized in the genome in the sequence-specific 

manner (K). (L) Tripartate approach is based on recruitment of multiple different effectors attached to dCas9 

through peptide linker and sgRNA scaffold (Chavez et al. 2015). (M) Suntag strategy uses a repeating peptide 

chain as a scaffold linked to dCas9, to bind an array of antibody-fused effector proteins (Tanenbaum et al. 

2014). Due to a different fashion of attachment to the Cas9/sgRNA complex, Tipartate and Suntag strategies 

can be combined to produce Multipartate (N; Adli, 2018). The Cas9 activity can be chemically inducible to 

enable the control of the Cas9 activity in time. Here are depicted two approaches (O,P): Inducible intein-Cas9 

system is activated by a chemical which ensures detachment of Cas9 inhibiting molecules (P; intein; Lu et al., 

2017). The second system uses Cas9 protein split in halves, where each half has chemical-dependent assembly 

domain. The Cas9 is brought together in the presence of the chemical connecting assembled domains (O; 

Zetsche, Volz et Zhang, 2015).  

3.2 The role of Meis transcription factors during neural crest cells 

development 

The thesis is focused on mutagenesis of meis1 genes in the zebrafish to study their 

impact on development of neural crest cells (NCCs). This chapter explains what are Meis 

transcription factors and neural crest cells and what is the role of Meis transcription factors 

in context of development.    

3.2.1 Neural crest cells 

Neural crest cells are population of migratory multipotent embryonic cells that are 

formed transiently to give rise to a vast variety of structures, including craniofacial cartilage 

and bone, melanocytes, glia and peripheral and enteric neurons (Bronner et LeDouarin, 

2012; Dupin et Sommer, 2012). 

 The neural crest is temporarily formed structure, unique for vertebrates. In early 

stages of its development, after gastrulation, it specifies as a structure called the neural 

I J K L M 
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plate border, localized between the neural plate and the non-neural ectoderm (Fig.12B). 

Subsequently, during neurulation, neural plate borders converge along the neural plate and 

connect at the dorsal midline to build the neural tube (Fig.12C-D). After the neural tube is 

formed, neural crest cells undergo and an epithelial to mesenchymal transition. They 

delaminate and migrate from neuroepithelium to the periphery, differentiating into 

distinct cell types (Fig.12E; Huang et Saint-Jeannet, 2004). 

Figure 12: The early stages of neural crest development and list of NCCs derivatives. (A) Scheme of a 10-somite 

chick embryo from dorsal view with highlighted neural crest (green) and lines showing location of cross-

sections B-E. (B) The specification of NCC in the neural plate border. (C) The closure of neural tube and the 

specification of neural crest progenitors in neural folds. (D) Epithelial to mesenchymal transition and 

delamination of neural crest cells. (E) The migration of NCC to diverse destinations to generate distinct 

derivatives. (F) The list of cell types derived from NCC (adapted from Simoes-Costa et Bronner, 2015).    

The NCCs differentiation is largely dependent on their migration and their final 

destination. Four populations of neural crest cells (NCCs) are distinguished along the 

anterior-posterior axis with respect to their differentiation. The cranial (cephalic) neural 

crest, the trunk neural crest, the vagal and sacral neural crest and cardiac neural crest 

(Gilbert 2000).  

The cranial neural crest involves cells that migrate dorsolaterally to produce 

craniofacial mesenchyme that differentiates into craniofacial cartilage, bone, neurons, glia 

and connective tissue. Also, these cells differentiate into thymic cells, odontoblasts of the 

tooth primordia, the bones of middle ear and jaw (Gilbert 2000).  

The trunk neural crest cells take two major pathways. One of them leads 

dorsolaterally to give rise to pigment-synthetizing melanocytes that continue migrating 

towards the ventral midline of the belly. The second pathway navigates the trunk NCCs 
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ventrolaterally through sclerotomes. Some 

NCC remain in sclerotome and form the 

dorsal root ganglia that integrate the sensory 

neurons. The NCC that do not remain in 

sclerotomes follow the pathway more 

ventrally and contribute to formation of 

sympathetic ganglia, the adrenal medulla and 

the nerve clusters surrounding the aorta 

(Gilbert 2000).  

The vagal and sacral neural crest 

differentiate into the parasympathetic 

(enteric) ganglia of the gut (Le Douarin et 

Teillet, 1974; Pomeranz, Rothman et 

Gershon, 1991). The vagal (neck) neural crest 

is situated near somite 1-7 and the sacral 

neural crest is located posteriorly from 

somite 28 (Fig.13; Gilbert, 2000).  

The cardiac neural crest is positioned 

between the cranial and trunk neural crest. 

Those cells occupy the region of somite 1-3 

thus overlying the region occupied by the 

vagal neural crest (Kirby et Waldo, 1990; 

Kirby et Hutson, 2010). This type of neural 

crest can differentiate into melanocytes, 

neurons, cartilage and connective tissue of 

pharyngeal arches 3, 4 and 6. Furthermore, 

the cardiac neural crest generates the arterial 

musculoconnective tissue and partially builds 

up the septum, separating the pulmonary 

outflow from the aorta (Le Lièvre et Le Douarin, 1975).  

The NCCs are a transient population of cells, therefore they cannot be observed in 

adult vertebrates. The only evidence of their presence are cell types that were 

differentiated from them. Any disruption of specification, migration or differentiation of 

NCCs can lead to impaired developmental of those derivatives, and furthermore to 

developmental defects, such as cleft lip or palate (Trainor 2010), absence of peristaltic 

movement of bowels, truncus arteriosus (Machon et al. 2015) or ocular anomalies 

(Williams et Bohnsack, 2015).     

            

Figure 13: Schematic description of the neural 
crest of chick embryo. The cranial crest cells 
migrate into pharyngeal arches and the head to 
build up the bones and cartilage of the neck and 
face. The cranial NC also differentiates into 
melanocytes and forms cranial nerves. The vagal 
NC (region of somites 1-7) and the sacral NC 
(posterior region to somite 28) gave rise to the gut 
parasympathetic nerves. The cardiac NC is formed 
from NCC in the region somite 1-3; they are 
essential for separation of the aorta and the 
pulmonary artery. The trunk NCC localize in 
regions of somite 6 through the tail and form 
sympathetic neurons. The region of somite 18-24 
contains NCCs, forming the medulla portion of the 
adrenal gland (adapted from Le Douarin et Teillet, 
1974).       
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3.2.2 MEIS proteins 

The Meis proteins belong to the class of TALE (three amino acids loop extension) 

homeodomain transcription factors (TFs), involving Meis, Prep and Pbx proteins. It has 

been shown that TALE transcription factors are important regulatory elements in processes 

of development and adult physiology maintainance. Therefore, their disruption can lead to 

development of various pathological defects. 

 MEIS is the acronym for myeloid ecotropic interation site. This acronym was stated 

after the discovery of connection between myeloid leukemia and mutations in these genes 

(Moskow et al. 1995). There are three MEIS genes (MEIS1, MEIS2, MEIS3) in mouse and 

human but in the zebrafish, five meis genes are present (meis1a, meis1b, meis2a, meis2b 

and meis3). It is due to the genome duplication the species went through during evolution 

(Fig.2; Furutani-Seiki et Wittbrodt, 2004). However, the difference in the biological function 

of meis1a and meis1b has not been fully understood yet.    

It has been reported that proteins among the class of TALE transcription factors are 

often a part of regulatory multimer. Their structure allows them to interact with each other, 

but also, with other transcription factors. TALE transcription factors have two domains 

mediating those interactions. In case of Pbx, such domains are PBC-A and PBC-B. Prep and 

Meis proteins have MEIS-A and MEIS-B domains. TALE TFs share highly conserved 

homeodomain (HD) which is essential for DNA binding and transport to the nucleus due to 

localization of NLS within the domain (Fig.14). Additionally, HD is important for 

dimerization with HOX proteins (Longobardi et al. 2014).   

Figure 14: Scheme of the TALE proteins anatomy. The homeodomain (HD) is conserve throughout the TALE 
proteins class.  PBC-A/B are interacting domains found only in the PBX family. On the N-terminal of the Pbx 
are located nuclear export signals (NES1, NES2) and within HD and nuclear localization signals (NLS1, NLS2). 
The Prep/Meis sub-families proteins contain MEIS-A and MEIS-B interacting domains and HD with NLS 
(adapted from Longobardi et al., 2014).  

 The TALE transcription factors can interact with each other but also with a vast 

variety of other transcription factors to prevent tumorigenesis (Dardaei, Longobardi et 

Blasi, 2013) HOX proteins to regulate quiescence of hematopoietic stem cells or the cell 

cycle of cardiomyocytes (Yuan et Braun, 2013). 
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3.2.3 Regulation of neural crest cells development 

The specification of NC is orchestrated by signals coming from the future neural and 

non-neural ectoderm. This process is coupled with signal molecules, such as Wnt, bone 

morphogenic protein (BMP) or fibroblast growth factor (FGF). These molecules stimulate 

signalling pathways, regulating the specification of the neural plate border, and induce 

expression of early specifiers Msx1, Msx2, Pax7 and Zic1. Transcription factors Pax7 and 

Zic7 are controlled by Wnt and FGF pathways and operate synergistically to turn up 

expression of NC specific genes, involving Snail, FoxD3 and SoxE transcription factors in 

emerging neural folds (Sauka-Spengler et Bronner-Fraser, 2008). The key element in 

processes of cell cycle control and multipotency maintenance is expression of c-Myc, which 

functions as a switch between those processes (Bellmeyer et al. 2003). The segregation of 

NCCs from dorsal neuroepithelium is then controlled by Sox9 that upregulates Snail, an 

anti-apoptotic factor, preventing apoptosis of the trunk NCC (Cheung et al. 2005). 

At the beginning of the stage of epithelial to mesenchymal transition (EMT), the NC 

specifiers, such as Sox9, Snail and c-Myc, regulate cell proliferation and delamination 

(Cheung et al., 2005; Sauka-Spengler et Bronner-Fraser, 2008). Moreover, the FoxD3 and 

Sox10 remain to be expressed in delaminating and migrating NCCs and influence expression 

of their subordinate effector genes, involving cadherin type II, cadherin-7, matrix 

metalloproteases, integrins, neuropilins, Eph and other receptors (Fig. 15; Nakagawa et 

Takeichi, 1995, 1998; Hadeball, Borchers et Wedlich, 1998; Cheung et al., 2005) 

After migration of NCCs to the target destination, the process of differentiation 

begins. Differentiation is controlled by small regulatory modules, often dependent on 

expression of NC specifiers. Major determinants are SoxE transcription factors. These TFs, 

together with other TFs, control differentiation of NCCs into distinct cell types and 

derivatives by regulating their downstream effector genes. Moreover, expression of SoxE 

genes remains active in the specific derivatives, where they play an important role in 

terminal differentiation (Lefebvre et al. 1997; Kelsh 2006). 
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Figure 15: Regulatory machinery of the neural crest development. The NC specification starts at the neural 
plate border. It is induced by fibroblast grow factor (FGF) and Wnt signalling molecules from underlying 
paraxial mesoderm (grey) and the surrounding non-neural ectoderm (yellow). Both or only one signal can 
positively influence the expression of NC specifiers (Pax3, Zic1). In this case, the FGF and Wnt signalling is 
dependent on the level of bone morphogenic protein (BMP). Pax3 and Zic1 activate expression of downstream 
effector genes, other NC specifiers Snail and FoxD3, in the neural fold and dorsal neural tube. The c-Myc and 
Id (Inhibitor of DNA binding/differentiation) proteins function as a switch controlling the cell-fate decision by 
proofreading cell cycle and, at the same time, maintain the NC progenitors in a multipotent state. Sox9 is 
essential for survival of trunk NCC. It upregulates expression of Snail, an anti-apoptotic factor. Expression of 
the early NC specifiers controls cell behaviour, specifically cell proliferation, delamination and migration 
during EMT (adapted from Sauka-Spengler et Bronner-Fraser, 2008).          

 Development of neural tube is followed by its segmentation alongside 

anteroposterior (AP) axis. This segmentation is dependent on expression of homeodomain 

transcription factors (Hox) genes. Early Hox expression is initiated in the neural tube and is 

coordinated by gradients of molecules, for instance retinoic acid (RA), FGFs and Wnt 

proteins (Dupé et Lumsden, 2001; Kiecker et Niehrs, 2001; Paige et al., 2012). Members of 

Hox gene family are responsible for specification of AP identity of progenitor 

compartments known as rhombomeres (R1-R7; Lumsden et Krumlauf, 1996; Rijli, Gavalas 

et Chambon, 1998; Schneider-Maunoury, Gilardi-Hebenstreit et Charnay, 1998). Localized 

expression of homeodomain transcription factors along the AP and dorsoventral (DV) axes 

characterizes developmental programme of progenitor cells. Equivalently, the cranial 

NCCs, migrating to pharyngeal arches, are responsive to signals determining spatial 
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information and therefore their fate. In general, the cranial NC development is dependent 

on the expression of Hox genes (Lumsden, Sprawson et Graham, 1991; Serbedzija, Bronner-

Fraser et Fraser, 1992; Sechrist et al., 1993). However, it has been reported that in context 

of the NCCs, Hox proteins form multimeric complexes with other co-factors to regulate 

expression of downstream effector genes. One of the major co-factor classes are TALE 

homeodomain transcription factors, including Meis, Prep and Pbx proteins (Choe, Vlachakis 

et Sagerström, 2001). 

Figure 16: Contribution of SoxE transcription factors in the process of neural crest cells differentiation (adapted 
from Sauka-Spengler et Bronner-Fraser, 2008). First expression of SoxE genes can be observed during NC 
specification (pre-migratory specifier - Sox9, Fig.14), then during early delamination and migration (Sox10) of 
NCCs. Later, the SOX9 is responsible for differentiation of NCC-derived cartilage by binding and activating the 
collagen type IIα1 promoter (Lefebvre et al. 1997), meanwhile SOX10 regulates subordinate effector genes in 
cells of neural system and melanocytes (Kelsh, 2006).  

 The study of homeodomain-

containing Hox proteins in Drosophila 

revealed that Hox proteins act in concert with 

other partners, for instance proteins 

Extradenticle (Exd) and Homothorax (Hth). 

Vertebrate orthologs of such partners are 

known as Pbx and Meis, respectively. These 

partners mutually influence their expression 

and stability, and control intrinsic specificity 

of Hox protein in their regulatory activity. 

Experiments done in the zebrafish suggest the 

TALE-homeodomain proteins, specifically 

Meis proteins, bind Hox proteins and 

contribute to development of proper 

segmental identity (Fig. 17; Waskiewicz et al., 

2001). The Hox proteins bind a rather 

nonspecific DNA sequence - TAAT (Beachy et 

al., 1988; Ekker et al., 1991; Catron, Iler et 

Abate, 1993), therefore they require 

cofactors, increasing their DNA binding 

Figure 17: The interaction between Hox and TALE 
proteins during regulation of gene expression. Hox 
proteins contain HX (hexapeptide) motif which is 
essential for binding interacting partners. Meis 
protein interacts with PBC (Pbx proteins) via MEIS-
A and PBC-A domains. This interaction allows 
translocation of PBC to the nucleus. Final 
association of Hox/TALE complex and DNA binding 
occurs in the nucleus (adapted from Merabet et 
Galliot, 2015) .  
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specificity. It has been reported that TALE homeodomain proteins are important in 

development of hindbrain, specifically in identification of rhombomeres 2-4. In the 

rhombomeres, Meis proteins cooperate with Hox protein and other TALE transcription 

factors. Together, they form a vast variety of complexes regulating downstream effector 

genes to identify and determine the fate of specific rhombomere (Salzberg et al., 1999; 

Dibner, Elias et Frank, 2001; Vlachakis, Choe et Sagerstrom, 2001; Waskiewicz et al., 2001; 

Deflorian et al., 2004).  

 Meis1 transcription factors are not only essential in hindbrain development but 

they are also involved in other regulatory pathways. They happened to be important in 

primitive haematopoiesis and regulation of quiescence of hematopoietic stem cells in the 

mouse (Kocabas et al. 2012), proliferation of cardiomyocytes derived from ES cells 

(Buggisch et al. 2007) and development of craniofacial structures derived from NC (Melvin 

et al. 2013). The mouse, lacking Meis1 protein, can suffer from liver hypoplasia (Hisa et al. 

2004), congenital heart disease (Stankunas et al. 2008), impaired haematopoiesis, leukemia 

and eye defects (Hisa et al. 2004). The role of Meis1 protein in context of NC has been partly 

elucidated by specific mutation of the gene in the mouse, and additionally by knock-down 

experiments based on morpholinos in the zebrafish. However, a comprehensive view of 

the Meis1 role in NC development is still missing. In contrast, the developmental function 

of Meis2 has been more profoundly understood due to phenotype assessment of Meis2 KO 

mouse (Machon et al. 2015) and Meis2b KO zebrafish (Guerra et al. 2018).  

The experiments, studying Meis1 in the zebrafish mentioned above, are often based 

on knock-down approach which has been proven to be less reliable than gene knock-out 

done by SSNs (Kok et al. 2015). Therefore, it is required to generate knock-out fish and 

compare its phenotype with morphant phenotype. Furthermore, the zebrafish went 

through genome duplication during evolution which means the presence of meis1 

paralogues in the genome (Furutani-Seiki et Wittbrodt, 2004), therefore their function 

should be also studied collectively. This thesis focuses on generation of mutant fish with 

both meis1 paralogues knocked-out, in order to elucidate regulatory potential of Meis1 

proteins in the zebrafish model.                           
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4 THE GOAL OF THESIS 
 

I. To establish mutant zebrafish lines of meis1a and meis1b genes using CRISPR 

technology, in order to study their importance during neural crest cells 

development. 

 

II. To determine a relationship between meis1 genes in regulation of neural crest cells 

in the zebrafish by using morpholino based knock down and compare phenotype of 

morphant and crispant fish.  
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5 MATERIAL 

5.1 Reagents and chemicals 
10X Saline sodium citrate (SSC), Sigma-Aldrich (cat.no. 6132-04-3)  

1X NEBuffer™ 3.1; NEB 

1X T4 DNA Ligase Reaction Buffer, NEB (cat.no. B0202S) 

25mM MgCl2, Thermo Fisher Scientific  

2X DreamTaq Master Mix, Thermo Fisher Scientific (cat.no. K1081) 

4% Paraformaldehyde (PFA), Sigma -Aldrich (cat.no. 30525-89-4) 

40% Acrylamide/Bis Solution, 29:1 (3.3% C), Bio Rad (cat.no. 161-0146)   

50X TAE (2M Tris Base, 1M Acetic acid, 50mM EDTA) 

Absolute ethanol, Penta (cat.no. 64-17-5) 

Acetone, Penta (cat.no. 67-64-1) 

Alcian Blue Solution (80% Ethanol, 20% Acetic acid, 0,1% Alcian Blue) 

Ampicillin, Roche (cat.no. 10835242001) 

Anti-DIG alkaline phosphatase, Roche (cat.no. 11093274910) 

APS, Ammonium persulfate 10%; Thermo Fisher Scientific (cat.no. 17874)  

BamHI restriction endonuclease, NEB (cat.no. R0136) 

Bovine serum albumin – BSA, Sigma-Aldrich (cat.no. 9048-46-8) 

BsmBI restriction endonuclease, NEB (cat.no. R0580) 

Citric acid, Sigma-Aldrich (77-92-9) 

DEPC water 

Dlx1a probe labelled with DIG 

Formamide, Sigma-Aldrich (cat.no. 75-12-7) 

FoxD3 probe labelled with DIG 

GeneRulerTM 100 bp Plus DNA Ladder 

Glycerol, Sigma-Aldrich (cat.no. 56-81-5) 

Heparin, Sigma-Aldrich (cat.no. 9041-08-1) 

Isopropanol; Penta (cat.no. 67-63-0) 

KCl, Serva (cat.no. 7447-40-7) 
KOH, Sigma-Aldrich (cat.no. 1310-58-3) 

Levamisol, Sigma-Aldrich (cat.no. 16595-80-5) 

Lugol solution (10 g KI and 5g I2 in water) 

Luria-Bertani (LB) medium - 1% tryptone,  0,5% yeast extract, 1% NaCl, dH2O 

NaCl, Serva (cat.no. 7647-14-5) 

NBT/BCIP, Thermo Fisher Scientific (cat.no.  34042) 

PBS - Phosphate Buffer Saline (1liter: 80g NaCl, 2 g KCl, 14.4g Na2HPO4, 2.4g KH2PO4, dH2O Ph 7,4) 

PBST (1% Triton 100 in 1XPBS) 

PBT (0.1% Tween in 1X PBS) 

Phenol Red Dye, Sigma-Aldrich (cat.no. 143-74-8) 

Phosphotungstic acid – PTA (1%PTA in water) 

Primary antibody anti-Meis1a (rabbit) - homemade 

Pronase, Roche (cat.no. 10165921001) 

Proteinase K and buffer, Roche (cat.no. 3115836001) 

pT7-gRNA, Addgene (plasmid no. 46759) 

Secondary antibody anti-rabbit IgG (Alexa Fluor® 594), Thermo Fisher Scientific (cat.no. A-21207)  

Sheep serum, Merck (cat.no. S3772) 

T4 DNA ligase, NEB (cat.no. M0202) 

TBE (1M Tris base, 1M boric acid, 0.02M EDTA) 
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TEMED, Fluka (cat.no. 87689) 

Tris-Cl, Sigma (cat.no. 77-86-1) 

tRNA, Roche (cat.no. 10109517001) 

Tween 20, Sigma-Aldrich (cat.no. 9005-64-5) 

 

Miniprep plasmid DNA isolation: 

P1 buffer: 25mM TRIS, 10mM EDTA, 1% glucose   

                   to 500ml - 10ml 0,5M EDTA     

                                     - 12,5ml 1M TRIS     

                                     - 4,5g glucose     

P2 buffer:  0,2M NaOH, 1% SDS   

     to 200ml - 4ml 10M NaOH   

                                    - 20ml 10% SDS   

P3 buffer: final conc. 5M Ac   

                   to 500ml - 147,1g KAC   

                                    - 75ml HAC    

5.1.1 Kits 
QIAEX II Gel Extraction Kit, Qiagen (cat.no. 20021) 

MEGAscript™ T7 Transcription Kit, Invitrogen (cat.no. AM1334) 

Trizol, Thermofisher Scientific (cat.no. 15596026) 

5.1.2 Primers, sgRNA and morpholinos (5´->3´) 
Meis1aMO- CCAGATCCTCGTACCGTTGCGCCAT 

Meis1bMO- TATATCTTCGTACCTCTGCGCCATC 

FP1-CATGTCTTTGGACTTTGTGG 
RP1-CATTAGCAACTACAGCAGGG 
FP2-GCTATTAGTGACCAGGTCC 

RP2-CTTACGATCAGGCTGAAATATC 

M13 reverse-CAGGAAACAGCTATGAC 

Tyrosinase sgRNA- 5´-UGACCUCCUGAAGACCCCCAAAAUCUCGAUCUUUAUCGUUCAAUUUUAUUCC 

GAUCAGGCAAUAGUUGAACUUUUUCACCGUGGCUCAGCCACGC-3´ 

5.2 Equipment 
Microinjector (FemtoJet 4i Eppendorf, 5252000013) 

Microscope, Olympus SZX9 with camera, Olympus DP72 

PCR cycler (Biometra TAdvanced, 2070211) 

SKYSCAN 1272 High-Resolution Micro CT 

Spectrophotometer, Nanodrop 1000  

Zeiss Axiozoom.v16;Apotom 2  

5.3 Biological material 
Escherichia coli - TOP10 chemically competent cells  
Zebrafish, wild-type AB strain 
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6 METHODS  

CRISPR/ Cas9 system was used to generate Meis1a and Meis1b mutant zebrafish. 

The experiment included design of sgRNAs and their in vitro production with T7 RNA 

polymerase. The sgRNAs were altogether injected into 1-2 cell stage embryo.  Injected 

embryos (F0 generation) were after 6 weeks genotyped by using PCR and heteroduplex 

mobility assay (HMA). Selected F0 fish were crossed to wild type fish to obtain 

heterozygotes with mutation in the target locus. Heterozygotes were crossed to each other 

to give rise to a generation with mutant fish. The generation containing mutants was 

genotyped and analysed by staining techniques including whole mount RNA in situ 

hybridization (WISH), Alcian Blue cartilage staining (ABS), immunohistochemical staining 

(IHC) and scanning with micro computed tomography (microCT). Phenotypes of mutant fish 

were compared to meis1a and meis1b morphants phenotypes.   

6.1 CRISPR/Cas9 guide RNAs design  

Homeobox regions of meis1a and meis1b have been analysed with online CRISPR 

target prediction program, CRISPOR (http://crispor.tefor.net/). Program has generated a 

map of potential single guide RNAs targets by criteria, such as GC content, predicted 

efficiency, specificity: score (calculated by previously stated criteria)/off-targets and 

probability of out-of-frame mutation, sgRNAs have been designed. 

6.2 Cas9/sgRNA complex preparation and injection of zebrafish embryos  

6.2.1 Annealing of complementary singe stranded oligonucleotides, coding for 
sgRNAs 

Oligonucleotide were annealed in the PCR cycler under conditions in Tab.1. Reaction 

was prepared by mixing 5 µl of each complementary oligonucleotide, concentration of each 

oligonucleotide solution was 25µM. 

Table 1: Complementary single stranded oligonucleotides annealing program. 

Temperature Time 

95 °C 5 min 

cool down to 25 °C decrease by 5 °C every 1 minute  

4 °C hold 

 

6.2.2 Cloning of prepared double stranded oligonucleotides into the pT7 vector 

Vector pT7 was linearized with restriction endonuclease (RE) BsmBI at conditions 

described in Tab.2. The reaction was incubated in the cycler for 1 hour at 55 °C, and was 

stopped by incubation at 80°C for 20 min. The digested vector was purified with agarose 

gel electrophoresis. The digestion mixture was mixed with 6 µl 6x Loading Dye and pipetted 

into well, GeneRulerTM 100 bp Plus DNA Ladder was used as a molecular-length size marker. 

Electrophoretic separation ran in 1% agarose gel with 1xTAE buffer, and lasted 30 min. 

After separation, a band with digested vector was dissected from the gel. The piece of gel 

http://crispor.tefor.net/
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was melted, and DNA extracted by using QIAquick Gel Extraction Kit (QIAGEN). The ligation 

reaction of the linearized vector and the annealed oligonucleotides was performed at 

conditions as shown in Tab.3 and incubated in room temperature (RT) for 1 hour.  

Table 2: Reaction mixture for pT7 vector digestion by BsmBI enzyme. 

Reagent Volume [μ] 

pT7 vector (0.8 μg/μl) 2 

10x NEBuffer™ 3.1 3 

BsmBI RE (10 000 U/ml) 1 

water (deionized and nuclease free) 24 

 
Table 3: Reaction mixture for cloning of oligonucleotides in pT7 vector.  

Reagent Volume [μl] 

pT7 vector (linearized) 1 

10x T4 DNA Ligase Reaction Buffer 1 

T4 DNA ligase 0,5 

Hybridized oligonucleotides 1 

water (deionized and nuclease free) 6,5 

6.2.3 Transformation of chemically competent bacteria and plasmid DNA isolation  

The ligation reaction was used for transformation of bacteria (TOP 10 strain) 
according to Protocol 1. The vector was isolated from transformed bacteria by Protocol 2. 

Protocol 1, Transformation of chemically competent bacteria: 
1. Unfreeze a bacteria aliquot on ice. 

2. Add whole volume of the ligation reaction to a bacteria suspension and mix with pipette 

tip. 

3. Incubate on ice for 30 min. 

4. Do a heat-shock transformation by putting a tube with bacteria suspension in a heat block, 

warmed up to 42°C for 40 s. 

5. Put the tube back on ice, add 200 µl of LB medium and place the tube in a shaking heat 

block, incubate for 1 hour at 37°C, horizontally shaking (250 rpm).  

6. Apply the bacteria suspension on a Petri’s dish with agar and antibiotics (Ampicilin/Amp) 

for cultivation.  

7. Cultivate the Petri’s dish bottom up, overnight (13-16 h) at 37 °C. 

8. Liquid culture: Prepare a cultivation tube and fill it with 2 ml of LB medium with 2 µl 

antibiotics (Amp,50ng/µl). Pick up a single bacteria colony by a pipette tip and throw the 

tip into prepared cultivation tube, cultivate at 37°C, for 13-16h, vertically shaking (250 rpm). 

The plasmid vector was isolated from the liquid culture by following Protocol 2. 

Protocol 2, Isolation of plasmid DNA from bacteria liquid culture: 

1. Pipette 1,5ml of liquid culture into 1,5ml tube. 

2. Centrifuge for 5 min, 5 000 rpm. 

3. Discard supernatant a resuspend pellet in 300μl of P1 solution. 
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4. Add 300μl of P2 solution and mix by inverting the tube, incubate 5 min at RT, then add P3 

solution, mix by inverting the tube and incubate 5 min at RT.  

5. Centrifuge for 10 min, 13 000 rpm, at 4 °C. 

6. Meanwhile, prepare a new 1,5ml tube for each sample and pipette 600 µl of isopropanol 

into prepared tubes. Pipette a supernatant from centrifuged samples into tubes with 

isopropanol and mix by vortexing. 

7. Centrifuge for 10 min, use 13 000 rpm at 4 °C. 

8. Discard a supernatant and wash a pellet in 75% ethanol. 

9. Centrifuge for 3 min with 13 000 rpm, discard the supernatant, and dry the pellet by leaving 

the tube with pellet at RT for approx. 15 min. 

10. Resuspend dried pellet in 20μl of DEPC water. 

6.2.4 Verification of the insert presence with sequencing and in vitro transcription 

The insertion of the oligonucleotides into pT7 vector, coding for gRNAs, was 

analysed with Sanger sequencing using M13 reverse primer. Sequencing reaction was 

prepared by requirements of A Eurofins Genomics Company/GATC Biotech 

(www.eurofinsgenomics.eu). Samples of vector, containing inserts of interest, were 

linearized with BamHI RE at conditions specified in Tab.4. The reaction was incubated for 2 

hours at 37 °C. The product of linearization was purified via electrophoretic separation and 

subsequent extraction from the gel with Qiagen Sephadex Gel Extraction Kit. Next step was 

in vitro transcription of linearized pT7 plasmid at conditions specified in Tab. 5, the reaction 

was incubated for 2 hours at 37°C. The products of transcription were purified by using 

Trizol Reagent and by following Trizol Reagent user guide (Pub. No. MAN0001271).   

Table 4: Reaction mixture for selected plasmids linearization. 

Reagent Volume [µl] 

BamHI (20 000U/ml) 2 

10X NEBuffer™ 3.1 4  

pT7 plasmid (1000 ng/ µl) 5  

water (deionized and nuclease free) 29 

 
Table 5: Reaction mixture for in vitro transcription of pT7 plasmid. 

Reagent Volume [μl] 

T7 enzyme mix 2 

10X T7 reaction buffer 2 

T7 ATP (75 mM)  2 

T7 CTP (75mM) 2 

T7 GTP (75 mM) 2 

T7 UTP (75 mM) 2 

linearized pT7 plasmid (100 ng/µl) 8 

 

6.2.5 Injection of zebrafish egg with gene editing mixture 

1-2 cell stage embryos were injected with 5-10nl of CRISPR cocktail (Tab.6), each 

meis1 gene was targeted separately. All components of the cocktail are listed in Tab 6. The 

http://www.eurofinsgenomics.eu/
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mixture was prepared on ice, and then incubated for 3 min at 37°C. As a control was used 

mixture with sgRNA targeting gene, coding for tyrosinase (Materials, 5.1.2), an enzyme 

essential for pigment biosynthesis, to assess the Cas9 activity. 

Table 6: Components of injection mixture editing meis1a and meis1b genes. 

Reagent Volume [μl] 

Cas9 (1000 ng/µl) 2 

sgRNA (500 ng/µl) 0.6 

KCl (2M) 0.5 

10X NEBuffer™ 3.1 0.5 

Phenol Red Dye 0.5 

water (deionized nuclease/RNase free) 0.9 

6.3 F0 and F1 generation genotyping and analysis of mutant phenotype 

At the age of 6 weeks, injected (F0) fish were genotyped by using PCR and set of 

primers FP1, RP1 (meis1a locus) and FP2 and RP2 (meis1b locus), each locus was amplified 

separately. PCR products were analysed with heteroduplex mobility assay (HMA). Potential 

founder fish were selected and crossed to wild type fish to generate F1 generation. F1 

heterozygotes were analysed with PCR, using the same set of primers as previously, native 

PAGE and sequenced by A Eurofins Genomics Company. Heterozygous fish with frame 

shifting mutation in meis1 loci, were crossed to each other to give rise to homozygotes. 

Phenotype of meis1 mutants was assessed with WISH, ABS, IHC and microCT imaging.  

6.3.1 Genotyping of a F0 and F1 generation 

A part of tail fin of 6 weeks old fish was cut and processed by proteinase K. Produced 

lysate was used as DNA template for amplification. PCR reaction was prepared and set by 

Tab.7 and Tab.8, respectively. PCR product separation was performed in polyacrylamide 

gel (40% acrylamide/bis-acrylamide, 29:1), in 1X TBE buffer for 1 hour at 80V. Three fish 

and one wt fish from F0 generation, and all found heterozygotes were sequenced. The 

result of sequencing was analysed with CRISP-ID, online open-access software that is able 

to detect indels in raw sequencing data. 

Table 7: Reaction mixture for genotyping PCR. 

Reagent Volume [μl] 

2X DreamTaq PCR Master Mix  10 

DNA template 2 

FP1(meis1a) or FP2(meis1b) 1 

RP1(meis1a) or RP2(meis1b 1 

water (deionized and nuclease free) 6 
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Table 8: Genotyping PCR program profile of meis1a and meis1b loci amplification. 

Temperature  Time 

95°C 5:00 

95°C 1:00 

35X 61.2°C (meis1a)/60°C (meis1b) 0:30 

72°C 0:30 

72°C 5:00 

12°C ∞ 

6.3.2 In vitro fertilization 

Due to health problems and inability to reproduce of one F1 mutant fish, with large 

deletion in exon 8 of meis1a gene (fish 27), in vitro fertilization (IVF) had to be performed.  

The procedure was done by following protocols from manual available on zebrafish.org, 

ZIRC E400/RMMB SPERM CRYOPRESERVATION & IVF PROTOCOL by J. Matthews, J. Murphy, 

C. Carmichael and Z. Varga (v.1.2, 07/01/2017 JLM) protocols 1.8 (Protocol for Collecting 

Sperm by Testis Dissection) and 4 (Introduction to Sperm Thawing and In Vitro Fertilization) 

6.3.3 Analysis of mutant and morphant phenotype 

To analyse mutant and morphant phenotype four techniques were used: whole 

mount in situ RNA hybridization of NCC specifiers (Protocol 3, adapted from 

https://wiki.zfin.org/display/prot/Thisse+Lab+-+In+Situ+Hybridization+Protocol+-

+2010+update), Alcian Blue Staining for craniofacial cartilage (Protocol 4), 

Immunohistochemical staining (Protocol 5) and MicroCT imaging to prove whether the 

technique can be apply to assess morphological changes in mutant fish. 

Protocol 3, Whole mount in situ mRNA hybridization: 

1) Dechorionation: Place 24 hpf embryos in Petri´s dish and remove water. Pour 50 µl Pronase 
(warmed to 28 °C) into the dish and incubate for 5 min. Gently wash eggs 3 times with E3 
water and remove digested chorions. Then, incubate embryos in the Petri´s dish at 28,5 °C 
until desired developmental stage. 

2) Fixation: Fix dechorionated embryos in 4% (wt/vol) paraformaldehyde with 1X PBS overnight 
at 4°C. 

Day 1  

3) Dehydration of the embryos: 

PBS                        …2 x 5 min 

25% MeOH/PBS  …5 min 

50% MeOH/PBS  …5 min 

75% MeOH/PBS  …5 min 

100% MeOH/PBS…5 min 

4) Rehydration: 

75% MeOH/PBS  …5 min 

https://wiki.zfin.org/display/prot/Thisse+Lab+-+In+Situ+Hybridization+Protocol+-+2010+update
https://wiki.zfin.org/display/prot/Thisse+Lab+-+In+Situ+Hybridization+Protocol+-+2010+update
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50% MeOH/PBS  …5 min 

25% MeOH/PBS  …5 min 

PBS                        …4 x 5 min 

5) Proteinase treatment: Pipette 500 µl of proteinase K solution (Proteinase K in PBT,1:1000), 
24hpf embryos incubate for 10 min. 

6) Refix samples in 4% PFA, 800µl/sample, for 20 min at RT, then wash the samples in PBT 5 
times for 5 min at RT. 

7) Prehybridization: Prepare Hybe+ solution by Tab. 9. Do not mix Hybe+ at once, take 8 ml of 
Hybe- solution and mix it with 8µl Heparin and 400 µl tRNA. Use 500 µl of the prepared Hybe+ 
per sample and prehybridize samples at 70°C, for 2 hours, do not shake.   

Table 9: The composition of Hybe+ solution. 

Reagents Volume [ml] Final solution 

Formamide 25 50% formamide 

20X SSC 12.5 5X SSC 

Herparin (100 ng/ml) 0.5 50 µg/ml 

tRNA (10 mg/ml) 0.5 500 µg/ml 

Tween 20 (20%) 0.25 0.1% 

Citric acid (1M, pH 6) 0.46 pH 6 

H2O to 50 ml   
Note: Hybe-: Hybe+ without tRNA and heparin 

8) Hybridization: Denaturate probe in a PCR cycler at 80°C for 5 min and then place the probe 
on ice. Dilute probe 1:250 in pre-heated Hybe+ at 70°C and apply 500 µl of hybridization 
solution on samples. Incubate hybridization reaction over night at 70°C. 

Day 2 

9) Wash: 
a) 1x quickly in Hybe- 70°C 
b) 75% Hybe- /25% 2X SSC             … 15 min/70°C   
c) 50% Hybe- /50% 2X SSC             … 15 min/70°C   
d) 25% Hybe- /75% 2X SSC             … 15 min/70°C   
e) 100% 2X SSC                                … 15 min/70°C 
f) 100% 0.2X SSC                             … 2 x 30 min/70°C 
g) 75% 0.2X SSC/25% PBT              … 10 min/RT 
h) 50% 0.2X SSC/50% PBT              … 10 min/RT 
i) 25% 0.2X SSC/75% PBT              … 10 min/RT 
j) PBT (PBS + Tween) 

10) Blocking: Mix a blocking solution by Tab. 10. Use 500 µl of blocking solution per sample and 
incubate for 3 hours at RT with agitation. 

Table 10: The composition of blocking solution. 

Reagent Volume [µl] 

Sheep serum (50X) 20 

BSA (100mg/ml,50X) 20 

Levamisol (1M, 1000X) 1 

PBT 959 

Total volume  1 ml 
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11) Dilute anti-DIG Alkaline Phosphatase in blocking solution (1:3000) and treat samples with 
the solution and incubate O/N at 4°C agitating. 

Day 3 

12) Wash the samples in PBT 6 times for 15 min. 

13) Staining: Prepare AP buffer according to Tab. 11. Wash the samples in 1 ml of AP buffer 3 
times for 5 min. After 2nd wash transfer samples into 12-well plate and do 3rd wash. Then, 
remove AP buffer and add NBT/BCIP solution (50X stock), 600 µl per sample and incubate in 
dark at RT. Check every approx. 15 min if the samples are stained enough.  

Table 11: The composition of AP buffer. 

Reagent Volume [ml] Final concentration 

Tris HCl (1M, pH 9.5) 10  100 mM 

MgCl2 (1M) 5  50 mM 

NaCl (5M) 2 100 mM 

Tween 20 (20%) 0.5 0,1% 

H2O to 100  - 

14) Wash: Prepare stop solution by mixing 1X PBS and EDTA (1mM) and wash the samples by 1 
ml of stop solution twice for 5 min. Place the samples to 100% MetOH or 4% PFA for few 
minutes to clear out background and rinse the samples in methylcellulose. High density of 
methylcellulose enables better manipulation with the samples while analysing the result of 
staining.    

Protocol 4, Alcian Blue cartilage staining: 

1) Fixing embryos (5 dpf) with 96% ethanol for 1 day.  

2) Staining: Completely immerse the sample in a solution of 0.1% Alcian Blue (7:3 absolute 

ethanol: acid acetic anhydride) O/N. 

3) Rehydration: Place the sample in the bath 95% ethanol, twice for 15 min. After, place each 

sample in gradually decreasing baths 75%, 40% and 15% ethanol, 5 min for each solution. 

4) Wash:  Immerse the sample in several changes of distilled water 3 times for 5 min. 

5) Depigmentation: Place samples in solution of 1% H2O2 and 1% KOH until the pigment is 

bleached.   

6) Clearing: Leave the samples in 1% potassium hydroxide until the skeletal system of the embryo 

is exposed. 

7) Treat the samples with ascending series of glycerol in 1% potassium hydroxide, 15 min for each 

step (first step is 1% KOH and 25% glycerol). The ascending series: 1%KOH; 1% and 25% 

glycerol; 1% KOH and 50% glycerol; 1% KOH and 75% glycerol; 100% glycerol (storage).  

8) Place the sample in pure glycerol for permanent storage. 

Fish generated by crossing F2 heterozygous fish were immunohistochemically 

stained with rabbit antibody (Ab) to the mouse Meis1 protein (Ab binds first 16 aa of mouse 

Meis1 protein) and Goat polyclonal Secondary antibody anti-rabbit IgG (Alexa Fluor® 594). 

Images were taken with Zeiss Axiozoom v.16 with Apotom 2 analysed by ZEN program.  

Protocol 5: The zebrafish whole mount immunohistochemistry 

1. Dechorionate embryos by using Pronase, 5 min at 28 °C and fix 24 hpf embryos in 4% PFA. 

2. Place approximately 25 embryos in a micro tube and rock 1,5 hours at RT. 

3. Rinse embryos 3 X in 1 ml PBST at RT for 5 min shaking. Remove 1X PBST. 
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4. Add 1 ml methanol, invert to mix and let embryos settle to the bottom. Remove methanol 

and replace with fresh methanol, incubate O/N at -20 °C. 

5. Store in methanol at -20 °C until ready to use or rehydrate in gradual MeOH/1X PBST 

progression: 95% MeOH, 75% MeOH, 50% MeOH, and 25% MeOH in 1X PBST. 

6. Wash 4 X 5 min in 1 ml 1X PBST. 

7. Permeabilize embryos in 1 ml ice-cold acetone (-20 °C) for 8 min. 

8. Wash 4 X 5 min in 1 ml 1X PBST. 

9. Incubate embryos in 1 ml block (10% BSA/PBS) for 3-4 hours. 

10. Remove block and add primary antibody in block solution (1:500). 

11. Incubate O/N with gentle rocking at 4 °C. 

12. Wash embryos 5 X 5 min in 1ml block solution at RT. 

13. Add secondary fluorescent antibody (1:750). 

14. Wrap in foil and incubate for 2,5 hours at RT with gentle rocking. 

15. Wash embryos 5 X 5 min in 1 ml 1X PBST.  

6.4 Morpholino based knock-down of meis1a and meis1b genes 

Zebrafish eggs were injected with morpholinos targeting start codon of meis1 

mRNAs. Each meis1 (meis1a and meis1b) gene was knocked down (KD) separately. Injection 

mixture was prepared by Tab. 12. Generated phenotypes were evaluated by using WISH of 

NCC specifiers (foxD3 and dlx1a; Protocol 3), and Alcian Blue staining for cartilage (Protocol 

4). 

Table 12: The composition of morpholino cocktail for single gene knock-down. 

Reagent Volume [μl] 

Morpholino oligonucleotide (100 mM) 1   

Phenol Red (0.5%) 1 

water (deionized and nuclease free) 8  

 

6.5 Sample preparation for Microcomputed Tomography Imaging 

The microCT imaging was mediated by Czech Center for Phenogenomics, IMG. Wild 

type and mutant fish were fixed for 5 days in 4% PFA, then rinsed for 14 days in 1% PTA and 

then for 2 days in 25% Lugol solution. Then fish were embedded in agarose gel and scanned 

with SKYSCAN 1272 High-Resolution Micro CT, Bruker. 
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7 RESULTS 

7.1 Designed guide RNAs and their synthesis 

The most optimal target sequence for editing with Cas9 protein were found (Tab.13 

and Tab.14). To navigate Cas9 protein to target loci specific sgRNAs were designed (Tab.15). 

Oligonucleotides coding for sgRNAs (sgDNA) were ordered, inserted into pT7 vector and 

transcribed. The preparation of vector with specific insert included linearization of the 

vector (Fig.19), insertion of sgDNA and linearization before in vitro transcription (Fig.22), 

the oligonucleotides are shown at Tab. 16.  The single guide RNA consists of unique 20 

ribonucleotides (crRNA, Tab. 15) at the 5´end and universal downstream part, tracrRNA 

that serves for the formation of optimal secondary RNA structure to interact with Cas9 

protein. The target sequences are in the exon 8 of both meis1 genes, in both cases the exon 

8 is a part of gene, coding for DNA binding domain (Fig. 18), therefore this part was picked 

to abrogate the ability of transcription factor to bind DNA. All used sequences were found 

in the zebrafish genome (alignment GRCz11) and annotated according to ensembl.org. 

The complementary sgDNA oligonucleotides were hybridized and cloned in pT7-

sgRNA vector. Sanger sequencing proved an insertion of oligonucleotides into the vector 

(Fig.20 and 21).  After, the presence of needed insert in the vector was proven, the vector 

was used for in vitro transcription. Agarose gel electrophoresis of sgRNAs showed a good 

quality of transcribed sgRNAs, but also showed a formation of sgRNAs dimers (Fig.23) 

therefore sgRNAs had to be denaturate and slowly renaturated to form only monomers.  

Table 13: meis1a target sequences of splice variants 201 and 204. 

PAM sequence in red 

Table 14: meis1b target sequences of splice variants 201 and 203. 

PAM sequence in red 

Table 15: sgRNAs navigating Cas9 to homeobox sequence of meis1a and meis1b gene.  

No. guide RNA (5´->3´) 

8a CAGAGACGUGUUUUACCGUG* 

9a CAGCCAUGCUCUCAUGAUAU* 

10a CAACCAAUAUCAUGAGAGCA* 

1b ACGCGGAAUCUUUCCUAAAG* 

2b AGATGATGACGACCCTGACA* 

3b AGTGTGGCATCACCTAGCAC* 
    *tracrRNA–5´ AAATCTCGATCTTTATCGTTCAATTTTATTCCGATCAGGCAATAGTTGAACTTTTTCACCGTGGCTCAGCCACGCCTAG 

No. Target sequence (5´->3´) 

8a CAGAGACGTGTTTTACCGTGAGG 

9a CAGCCATGCTCTCATGATATTGG 

10a CAACCAATATCATGAGAGCATGG 

No. Target sequence (5´->3´) 

1b ACGCGGAATCTTTCCTAAAGTGG 

2b AGATGATGACGACCCTGACAAGG 

3b AGTGTGGCATCACCTAGCACAGG 
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Table 16: Complementary oligonucleotides coding for sgRNA targeted on meis1a and meis1b genes. 

No. Forward Reverse 

8a TAGGCAGAGACGTGTTTTACCGTG AAACCACGGTAAAACACGTCTCTG 

9a TAGGCAGCCATGCTCTCATGATAT AAACATATCATGAGAGCATGGCTG 

10a TAGGCAACCAATATCATGAGAGCA AAACTGCTCTCATGATATTGGTTG 

1b TAGGACGCGGAATCTTTCCTAAAG AAACCTTTAGGAAAGATTCCGCGT 

2b TAGGAGATGATGACGACCCTGACA AAACTGTCAGGGTCGTCATCATCT 

3b TAGGAGTGTGGCATCACCTAGCAC AAACGTGCTAGGTGATGCCACACT 

 

Figure 18:  Binding of Cas9/sgRNA complexes in exon 8 of meis1 genes. meis1a (splice variant 201), orientation 

of target sequences in meis1a gene that are common for splice variants 201 and 204; meis1b (splice variant 

201), orientation of target sequences in meis1b gene that are common for splice variants 201 and 203. 

Cas9/gRNA complexes 9 and 8 interact with meis1 gene coding strand, and complexes 10, 3, 2 and 1 with non-

coding strand.   

 
Figure 19: Agarose gel electrophoretogram linearized pT7 plasmid with BsmBI restriction endonuclease. Four 
clones of pT7 plasmid linearized with BsmBI. Arrow marks 3000 bp long DNA fragment of the marker.    
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Figure 20: Chromatograms showing the results of the pT7 vector sequencing to check a presence of needed 
insert  
  
 

 
Figure 21: Alignment of the sequences generated by Sanger sequencing of pT7 vector 
 

 
Figure 22: Agarose gel electrophoretogram pT7 plasmid, containing sgDNA insert, linearized with BamHI 
restriction endonuclease. Arrow marks 3000 bp long DNA fragment of the marker.  
 

 
Figure 23: Agarose gel electrophoretogram showing the separation of transcribed sgRNAs   

7.2 Genotype of F0 and F1 generation 
Genotyping of F0 generation revealed that almost a half of injected fish with editing 

complexes targeting meis1a and meis1b genes, were mosaics (Tab.17, Fig. 24 and 26). The 

fish whose sample showed presence of heteroduplexes was selected for following crossing 

to wild type fish. Some heteroduplex-positive samples were picked for sequencing to 

analyse occurrence of mutation in locus of interest (Fig. 25).  The sequence analysis of 

meis1a locus showed that the most active Cas9/sgRNA complex is complex with sgRNA 8a 

(Fig.25). 
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The comparison of uninjected fish (wt), injected fish with Cas9/sgRNA complex 

targeting meis1a locus (meis1a mut) and complex cleaving the tyrosinase gene showed 

change in pigmentation pattern of the fish injected with tyrosinase gene editing cocktail. 

The test of Cas9 activity confirmed ability of Cas9 to form complex with sgRNA, cleave 

sequence of interest and generate and potentially introduce frame shifting mutation to the 

locus, causing change in phenotype as shown in Fig. 27. The pigmentation pattern of F0 

meis1b mutant fish was not changed (not shown).  

 Crossing of F0 fish (meis1a and meis1b mutants) to wild type fish gave a rise to F1 

generation. Among the F1 generation, several heterozygotes were identified in both 

studied loci with native PAGE as shown in Fig. 28 and Fig. 29. Potentially heterozygous 

samples were sequenced and analysed with CRISP-ID software. The results of sequencing 

are listed in Fig. 30A and 30B. In meis1a locus, analysed sequences were mostly changed 

with small deletions (3-10 bp) but also large deletions were detected (Fig. 30A). Despite the 

low number of heterozygous fish bearing mutation in meis1b locus, most of mutation were 

large (Fig. 30B) and frame shifting (Fig. 31D). For further work two fish with different and 

easily to genotype mutation were picked to establish mutant lines.  

In case of meis1a mutants, fish 9, 10, 12 and 27 (Fig. 30A) were selected for 

establishment of mutant lines. For the same purpose, fish 26 and 54 were used for meis1b 

mutant line (Fig. 30B). As shown in electrophoretogram in Fig. 32 establishment of meis1a 

mutant line with 37 bp deletion was successful. The only complication while establishing 

second mutant line with 270 bp deletion was inability of fish 27 (Fig. 30A) to reproduce on 

its own due to health problems. The reproduction was mediated by using IVF. The obtained 

generation, involving 32 fish, has not been genotyped yet due to small size of the fish. In 

contrast, meis1b mutants had no difficulty with reproduction, therefore two heterozygous 

mutant lines were established (Fig. 33 and 34).  

Efficiency of mutagenesis and frequency of mutation transfer to the subsequent 

generation was quantified in Tab.17. The data shows that 37.6% of injected meis1a F0 

mutant and 52.8% meis1b F0 fish were mutated but number of transferred mutations to 

the next generation did not exceed ten in both studied genes. The sequence analysis of F1 

meis1a mutant revealed that only 7 out of 10 analysed fish have some frame shifting 

mutation, despite the low number of F1 meis1b mutants all mutated fish had frame shifting 

mutation in the locus. 
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Figure 24: Genotyping F0 generation with heteroduplex mobility assay of meis1a locus.  Heteroduplexes were 
detected in samples 1, 2, 4, 6, 7, 9, 10 and 11. The results indicate that analysed fish are mosaics. These fish 
were chosen for following crossing. Samples marked with asterisk were sequenced, analysed sequences are 
shown in Fig.12 
 

 
Figure 25: The results of sequence analysis of meis1a locus in selected samples. The only active Cas9/sgRNA 
complex appears to be Cas9/sgRNA 8a complex. Red line shows the position in which given Cas9/sgRNA 
complex interacts with DNA, arrows mark the site of perspective DSB. The line below sequences indicates the 
quality of sequence reading, red = low quality; yellow = medium quality, green = high quality.      
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Figure 26: Genotyping F0 generation with heteroduplex mobility assay of meis1b locus. Heteroduplexes were 
detected in samples 1, 6, 10, 11, 12 and 13. The results indicate that analysed fish are mosaics. These fish 
were chosen for following crossing. F0 meis1b mutants were not sequenced. 

 

 

Figure 27: Injected fish with meis1a and tyrosinase gene editing mixture, and uninjected wild type control. 
(wt) wild type, (meis1a mut) meis1a fish showed no change in pigmentation pattern or morphology. In 
contrast, the fish injected with Cas9 and sgRNA targeting tyrosinase gene (tyr mut) showed a significant 
change in pigmentation. 
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Figure 28: Polyacrylamide gel electrophoresis analysis of meis1a locus and detected heterozygotes in F1 
generation. Only 10 heterozygous fish were found. Fish with distinct mutations were selected for sequencing. 
Asterisk marks sequenced sample, the sequence is listed in the Fig. 30A, the arrow corresponds to 500 bp long 

DNA fragment of the marker (M).  
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Figure 29: Polyacrylamide gel electrophoresis analysis of meis1b locus and detected heterozygotes in F1 

generation. Four heterozygotes were found and each one of them was sequenced. Asterisk marks sequenced 
sample, the sequence is listed in the Fig. 30B, the arrow corresponds to 200 bp long DNA fragment of the 
marker (M).   
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Table 17: Quantification of genotyping and evaluation of mutagenesis. 

 

 

7.3 Genotyping of F2 generation  

 

Figure 32: Genotyping of F2 generation after crossing two heterozygotes (9 and 12) with 37 bp deletion in 
meis1a homeobox locus. The electrophoretogram confirms presence of homozygotes in the F2 generation, 
wells: 9, 13, 14, 18, 21. The arrow points at 500 bp long DNA fragment of the ladder.  

 

 

Figure 33: Genotyping of F2 generation after crossing heterozygote (54) with 50 bp deletion in meis1b 
homeobox locus and wild type fish. The electrophoretogram confirms presence of heterozygotes in the F2. The 
arrow points at 200 bp long DNA fragment of the ladder.  
  

 

Figure 34: Agarose gel electrophoresis analysis of F2 generation after crossing heterozygote (26) with 22 bp 
deletion in meis1b homeobox locus and wild type fish. The electrophoretogram confirms presence of 
heterozygotes in the F2. The arrow points at 200 bp long DNA fragment of the ladder. The arrow points at 200 
bp long DNA fragment of the ladder.  

7.4 Phenotype analysis of meis1a and meis1b mutant and morphant fish 

7.4.1 Whole-mount in situ RNA hybridization and cartilage staining  

The morpholino based knock-down was performed to determine whether a 

relationship between meis1 genes is complementary or only one of the studied genes plays 

dominant role in development. The WISH of neural crest cells specifiers was performed.   

Specifiers, such as dlx1a, marker for craniofacial structures derived from NCC and foxD3, 

neural plate border marker, expressed during neurulation in neural crest cells and located 

Gene 

Total 
number of 
genotyped 

F0 fish 

Number 
of F0 

mutants 

Mutagenesi
s efficiency 

[%] 

Total number 
of genotyped 

F1 fish 

Number 
of F1 

mutants 

Number of F1 
fish with frame 

shifting 
mutation 

meis1a 117 44 37.6 108 10 7 

meis1b 53 28 52.8 137 4 4 
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along the neural plate. According to the results of WISH meis1b is dominant gene playing a 

significant role in NCC development in both studied locations, in craniofacial structures as 

well as in neural plate border (Fig. 35E). No changes were seen in phenotype of meis1a 

morphant, and additionally no phenotype was seen in meis1a mutant as well. However, 

more NCC specifiers must be examined.    

Also, cartilage staining confirmed the importance of meis1b gene in craniofacial 

cartilage development. Craniofacial cartilage in all meis1b morphants was highly 

underdeveloped (Fig. 35G). Similar effect but with less severity was observed in meis1b 

mutant with mutated homeodomain (meis1bΔHD). However, meis1a morphants showed a 

moderate phenotype in mandible structures such as Meckel´s, ceratohyal and 

palatoquadrate cartilage. Nevertheless, none of those structures were changed or 

underdeveloped in meis1a mutants (Fig. 35G).   

 

 



53 

7.4.2 Immunohistochemical staining 

The imaging of immunohistochemical staining has shown the efficiency of used 

antibody to bind Meis1 proteins in fish, further it determined specific location of studied 

proteins in 24 hpf fish. A strong immunofluorescent signal of Meis1 proteins was detected 

in circulating hematopoietic cells in the posterior cardinal veins. The studied generation of 

zebrafish was composed of wild type fish, homozygotes and heterozygotes, with mutated 

homeobox of meis1a (Fig.36) or meis1b (Fig.37) genes. In all groups (Meis1a, Meis1b and 

wt fish) was observed a change in signal intensity. Therefore, groups were divided to two 

sub-groups, a sub-group showing high intensity signal and a sub-group with low intensity 

signal. Five samples of each sub-group were taken and genotyped. The intensity of signal 

was assessed by signal histogram (Fig.36, shown below the figure). The histograms show 

distribution of pixels in the interval of intensity from black to white colour, more intense 

signal higher the count of more white pixels, thus wider scale.  The intensity range of low 

intensity group was often smaller by half than high intensity group. Genotyping revealed 

that intensity of fluorescent signal does not correlate with genotype of the fish in Meis1a 

mutants. Interestingly. 4 out of 5 Meis1b animals with low histogram intensity were 

genotyped to be mutants. These results suggest that mouse antibody is able to bind 

zebrafish Meis1 proteins and, in case of Meis1b, whole mount immunofluorescent staining 

revealed a decrease of Meis1b in circulating blood of 1-day old embryo.  
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Figure 36: Immunohistochemical staining and genotyping of meis1aΔHD mutants. Representatives of each 
sub-group high and low intensity signal. The genotyping proves that low intensity of signal does not correlate 
with homozygous genotype of the fish. High intensity fish corresponds to 1H sample which is homozygote  
(-/-). Low intensity fish corresponds to 1L sample which is also homozygote (-/-). Number in the left corner 
show time of exposure in seconds, histograms show quantitative representation of signal, 
electrophoretogram: arrowhead marks 500 bp long fragment of the marker, nc = negative control, wt = wild 
type.        
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Figure 37: Immunohistochemical staining and genotyping of meis1bΔHD mutants. Representatives of each 
sub-group high and low intensity signal. The genotyping proves that low intensity of signal may correlate with 
homozygous genotype of the fish. High intensity fish corresponds to 1H sample, which is heterozygote (+/-). 
Low intensity fish corresponds to 2L sample which is homozygote (-/-). Number in the left corner shows time 
of exposure in seconds, histograms show quantitative representation of signal, electrophoretogram: 
arrowhead marks 500 bp long fragment of the marker, nc = negative control, wt = wild type.      

 

 

 

 

 

 

 



56 

 

Figure 38: Immunohistochemical staining of wild type fish. Representatives of each sub-group high and low 
intensity signal. The imaging showed that division of stained fish to two sub-groups by signal intensity was 
observed even in wild type group. Number in the left corner shows time of exposure in seconds, histograms 
show quantitative representation of signal. 
 

7.4.3 Microcomputed Tomography (MicroCT) Imaging 

In F2 generation were found viable adult mutants with both meis1a alleles mutated 

to meis1aΔHD (37 bp deletion). MicroCT imaging allowed to look at structures that might 

be changed due to the mutation. Figures below show specific sections of adult fish where 

a morphological change is expected. However, the structures derived or influenced by 

neural crest cells involving craniofacial structures, such as palatoquadrate (Fig. 39 and 41), 

basihyal (Fig. 39), interhyal (Fig. 39), dentary (Fig. 40), bones of olfactory apparatus (Fig. 39 

and 41), and eye (Fig. 39) and heart (Fig. 40) did not show significant changes, therefore 

ablated homeodomain of meis1a had no impact on regulation of morphogenesis of NC 

derivatives.  
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Figure 39: Transverse section of zebrafish head of wild type fish (WT) and mutant fish with mutated 
homeodomain of meis1a (meis1a ΔHD). Fish were 2 months old (2mpf). Arrows mark structures, such as PQ-
palatoquadrate, L-lens, BH-basihyal, IH-interhyal. No significant morphological difference between wild type 
fish and mutant were observed.    
 

 

Figure 40: Sagittal section of zebrafish (2mpf) of wild type fish (WT) and mutant fish with mutated 
homeodomain of meis1a (meis1a ΔHD).  Arrows mark structures, such as: MA-maxilla, OA-bones of olfactory 
apparatus, A-atrium, CV-cardiac ventricle, D-dentary. No significant morphological difference between wild 
type fish and mutant were observed.   
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Figure 41: Coronal section of zebrafish (2mpf) of wild type fish (WT) and mutant fish with mutated 
homeodomain of meis1a (meis1a ΔHD).  Arrows mark structures, such as: OA-bones of olfactory apparatus 
PQ-palatoquadrate. No significant morphological difference between wild type fish and mutant were 
observed. 
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8 DISCUSSION 

   The neural crest is often referred to as the fourth germ layer due to its 

multipotency, migratory behaviour and ability to give rise to plethora of cell types. This 

transient population of cells is unique for vertebrates which suggest its complexity in terms 

regulation. Any disruptions of neural crest integrity can negatively influence development 

of essential organs or functional structures of the body. 

Although, the model of main regulatory network of neural crest developmental 

involving stages, such as NC specification, segregation, epithelial to mesenchymal 

transition, delamination, migration and differentiation, is understood (Sauka-Spengler et 

Bronner-Fraser, 2008), not all factors, playing crucial parts, are included in the model. One 

group of potential non-included factors are TALE homeodomain transcription factors, and 

specifically Meis protein. It has been reported in the mouse and zebrafish models that 

impaired expression of Meis genes during neural crest development leads to 

developmental defects and malformations (Machon et al., 2015). However, the specific 

role of Meis transcription factors in regulatory hierarchy remains unrevealed. The main 

goal of this thesis is to contribute to the research of Meis proteins and attempt to elucidate 

their function in the zebrafish.  

   Most functional researches done in the zebrafish model are based on knock-down 

approach, using morpholino oligonucleotides. However, fish phenotypes, generated by 

employing this RNA targeting approach, often did not correlate with phenotypes achieved 

by DNA editing with site-specific nucleases (Kok et al. 2015). Therefore, this theses aims for 

using the CRISPR/Cas9 system as a tool to disrupt gene of interest, because it has been 

proven to be more reliable approach of studying the gene function (Kok et al. 2015). 

Nonetheless, morpholino mediated gene knock-down was used in this work, in order to 

determine the relationship between two studied paralogous genes. 

The main interest of the thesis was meis1 genes which are present in zebrafish 

genome as two paralogues, meis1a and meis1b, where each of them can be during mRNA 

processing alternatively spliced and produce distinct splice variants. Zebrafish meis1a have 

four known splice variants and meis1b tree. Human and mouse possess only one MEIS1, 

but RNA of the gene can be alternatively spliced and give rise to 17 and 9 splice variant, 

respectively. The question is, whether the duplication of zebrafish genome caused only 

functional division of meis1 genes (sub-functionalization) or also development of a novel 

different function (neo-functionalization). Other question might be, whether the function 

of each single splice variants of MEIS1 in human or mouse is complementary to meis1 splice 

variants in zebrafish. It is relevant to study Meis1 proteins importance in zebrafish 

development to find congeniality in development of regulatory systems in higher 

vertebrates, mouse and human. In addition, the zebrafish is an appropriate model for 

studying development of any cell population in vivo, due to small size, external and fast 

development, transparency, high fecundity and a rich toolkit of genome editing systems. 
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Meis1 proteins are transcription factors, thus they contain DNA binding domain – 

homeodomain, which is essential not only for recognition and binding to specific DNA 

sequence but also for interaction with other proteins. It has been shown that 

homeodomain might mediated the interaction with Hox proteins and any disruption in this 

domain can lead to abrogation of ability to bind DNA. To study a functional significance of 

homeodomain the CRISPR/Cas9 technology was used to edit the region of Meis1 genes, 

coding for homeodomain was targeted, and by that generate functional knock-out.  

Two knock-out zebrafish lines of each meis1 gene were generated by injecting 1-2 

cells stage embryos with SpCas9 protein and mixture of sgRNAs, targeting meis1a and 

meis1b homeobox locus. Mutated fish were repeatedly crossed to obtain fish with both 

mutated alleles of the gene. Consecutively, phenotypes of mutant and fish treated with 

morpholinos were examined with multiple staining techniques, including WISH, ABS, IHC 

and adult meis1aΔHD mutants were scanned with MicroCT imaging system. The results of 

knock-down experiment showed that meis1b is a dominant gene, contributing the most to 

early specification of NC and formation of craniofacial structures. In contrast, meis1a does 

not contributes to early specification nor craniofacial cartilage formation. Cartilage staining 

(ABS) of mutant fish also suggests that meis1b plays more significant role in development 

of craniofacial structures despite the phenotype of meis1b mutant was less severe than in 

meis1b morphant.   

Immunohistochemical staining was performed to determine affinity of used 

antibody and therefore its specificity, and to observe whether expression of mutated genes 

is changed or not. This analysis of mutants did not confirm decreased amount of the Meis1a 

protein, but we observed a strong correlation between Meis1b protein intensity and 

respective genotype. We also confirmed the ability of anti-mouse Meis1 antibody to bind 

zebrafish Meis1 proteins which means the antibody can be used for future experiments, 

such as Western blotting. 

Microcomputed tomography was employed to evaluate this technique as a 

substitute for histology analysis of male adult fish and to investigate morphology of 2 

months old mutant fish. Even though, the mutant fish meis1a had no visible malformations 

of craniofacial structure in early stages of life. The microCT imaging was used to see 

whether the fish developed growth anomalies equivalent to cleft palate, impaired 

septation of heart or optical defects, basically malformation of structures derived from 

NCC. The scanning of the adult meis1aΔHD mutant did not reveal any significant 

morphological deviations but it has proven to be decent alternative to histological 

sectioning.  

In conclusion, the main goal of this thesis was accomplished. Two mutant zebrafish 

lines were generated, with mutations abrogating function of DNA binding domain of 

meis1a and meis1b genes. Secondly, the dominant meis1 gene, contributing to 

development of NCC derivatives, was determined as meis1b by using morpholino based 

knock-down approach. Additional phenotype assessment of generated mutants confirms 
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dominancy meis1b gene in NCC development in zebrafish model. However, more 

experiments need to be done to verify total abrogation of homeodomain function in both 

studied genes and to affirm the hypothesis that homeodomain is essential for regulatory 

function of the protein.   

Following chapters are dedicated to discussion of the results with literature and 

proposes the hypothesis that illustrates the importance of meis1 genes in NCC 

development. 

8.1 Design and synthesis of sgRNAs 

SgRNAs were designed to navigate Cas9 protein to 5´end of homeobox region of 

meis1a and meis1b genes (Fig.18). Homeobox region codes for homeodomain, DNA-

binding domain. This region was targeted due to the function of homeodomain mediate 

the interaction with DNA and through that interaction stabilize MEIS/PREP-PBX complex or 

form complexes with Hox proteins, as stated Longobardi et al., 2014, and Merabet et 

Galliot,  2015, respectively.  

Target sequences within homeobox region analysed with CRISPOR online software 

and selected by algorithm based on Moreno-Mateos and collective, 2017 high-throughput 

screens. Other criteria for selection were specificity score, number of potential off-target 

cleavages and probability of introduction of frame shifting deletion. In the Tab. 18 (suppl. 

data) are listed features of used sgRNAs. The Moreno-Mateos algorithm, also called 

CrisprScan, is predicated on linear regression model, trained on data from 1000 guides 

targeting about 100 genes, from zebrafish 1-cell stage embryos injected with Cas9 mRNA 

and single guide RNAs transcribed in-vitro with T7 RNA polymerase an it is rated form 0 

(lowest) to 100 (highest). Specificity column shows the uniqueness of the target within the 

genome (The higher the specificity score, the lower are off-target effects in the genome). 

Probability of out-of-frame mutation shows a percentage of clones that will carry out-of-

frame deletions, based on the micro-homology in the sequence flanking the target site. 

This prediction is adapted from Bae et al. 2014. Off-targets column shows all potential 

target sites within the zebrafish genome (GRCz11). The CRISPRscan algorithm was used due 

to similar approach, on which the algorithm was based, to conditions of experiments 

conducted in this work.   

The presence and integrity of sgRNAs after transcription were assessed by 

separation in agarose gel (Fig.23, results). The electrophoretogram showed formation of 

sgRNA dimers which is common phenomena after purification of sgRNA with phenol-

chloroform (Low, Kutny et Wiles, 2016). 

8.2 Genotype of F0 and F1 generation    

Genotyping of F0 revealed the efficiency of used Cas9/sgRNA complex, targeting 

meis1a locus, was below predicted efficiency. The number was close to predicted efficiency 

of Cas9/sgRNA10a complex (Tab.18), however, sequencing data of meis1a locus imply that 

the most active was the complex targeting 3´ end of exon 8, Cas9/sgRNA8a (Fig.25 and 
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30A). The claim, Cas9/sgRNA8a complex, being the most efficient, confirms the character 

of transferred mutation in meis1a locus to next generation. In case of meis1b locus, the 

efficiency of sgRNAs was than average of predicted efficiency. Especially, sgRNA2b and 

sgRNA3b in complex with Cas9 protein introduced most of mutation to the locus according 

to analysed alleles of F1 generation listed in Fig. 30B.  

Nonetheless, this efficiency evaluation is only illustrative due to combinatorial use 

of sgRNAs. All three sgRNA, targeting one of meis1 genes were injected into embryo 

together, therefore their activity or efficiency is dependent on many factors preventing an 

objective evaluation. Factors, such as preparation of injection mixture. The mixture is 

prepared by mixing microliter volumes which is prone to pipetting error. It can lead to 

unbalanced concentration ratio of sgRNA in the mixture. Other factor might affinity of 

Cas9/sgRNA complex to DNA. The composition of spacer sequence can influence activity of 

Cas9/sgRNA complex (Moreno-Mateos et al. 2015; Doench et al. 2014). Eventually, the 

overlap of sgRNA target sites can negatively influence activity of both involved complexes 

as in the case of sgRNA9a and sgRNA10a, although in literature, such association often 

enhances the mutagenesis (Fig.25; Jang et al., 2018).  

 The results of sequence analysis of mutated alleles in Fig.30 were translated to 

protein sequences listed in Fig. 31. Mere translation to protein sequence does not provide 

an evidence that in silico predicted protein is expressed in the cell. Therefore, other protein 

analysing techniques need to be used, specifically Western blotting or whole-mount 

immunohistochemical staining. 

8.3 Genotyping of F2   

 Heterozygous fish selected by occurrence of frame shifting mutation were crossed 

to each other or to wild type fish. Heterozygous and homozygous progeny of the crossing 

was kept as a mutant line. Genotyping of the second meis1a mutant line (progeny of fish 

27 with 270 bp deletion) is not shown due to health problem of the fish. To generate such 

mutant line in vitro fertilization was performed. The fertilization was successful, but 

progeny fish were not grown enough for genotyping on publishing date of this thesis. All 

generated heterozygotes were subsequently crossed to each other to give rise 

homozygotes (meis1aΔ -/- and meis1bΔ -/-) and double-heterozygotes (meis1aΔ +/-, 

meis1bΔ +/-). Phenotype of double heterozygote was not assessed due to small size of fish 

on publishing date of the thesis. 

8.4 meis1b is dominant gene in development of NCCs and NC derivatives 

 The knock-down of meis1 genes revealed dominant contribution to development of 

neural crest and its derivatives Fig. 35E and G. This contribution, specifically in craniofacial 

morphogenesis, was also confirmed in mutant fish. The possible explanations of difference 

between morphant and mutant phenotype are following: morpholino, targeting meis1b 

mRNA also targets mRNA of meis1a because of it has a certain level of homology to the 

start codon region of meis1a, which is the level of homology for some interaction as stated 
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in (Moulton, 2006). The combinatorial activity affecting both meis1 genes expression can 

lead to development of sever phenotype, such as in meis1b morphant. Other possible 

explanation of phenotype discrepancy is the fact that meis1b morpholino targets start 

codon of mRNA and both translated splice variants of the gene are affected by the 

morpholino, therefore expression of the protein is highly reduced. In case of meis1bΔHD 

mutant the expression is not reduced the protein is translated but it is missing 

homeodomain. Although, it has been proven that homeodomain is important for DNA-

protein and interaction with other partners (Longobardi et al. 2014), it has been also 

demonstrated the role of N-terminus of meis1 proteins, particularly interaction domains, 

as a part of regulatory complexes independent of DNA binding (Singh et Kango-Singh, 

2013). The N-terminus fragment can remain some regulatory function, reducing severity of 

the phenotype. 

 Whole mount RNA in situ hybridization of NCC specifiers, dlx1a and foxD3, detected 

no change of their expression pattern in meis1a morphants nor in mutants. This absence 

of changed phenotype may have several explanations: meis1a does not participate in the 

process of NC specification and determination of cranial NCCs. meis1a targeting 

morpholino binds the start codon region of the larges meis1a splice variant 201 (380 aa) 

but meis1a gene has two more splice variant (203, 204; suppl. data-Fig.42) that do not 

share the start codon region with splice variant 201. Therefore, shorter splice variants can 

compensate lack of variant 201 and rescue the phenotype.  

Morphological abnormalities of craniofacial structures in meis1a morphants can be 

apparent due to the importance of meis1a gene, specifically splice variant 201, during late 

development of craniofacial cartilage. Furthermore, meis1a morpholinos can partially 

affect meis1b mRNA in late stages of craniofacial development. Nonetheless, phenotype of 

meis1aΔHD fish suggest that homeodomain is not essential part of the protein contributing 

to regulation of NCCs in the region, or Meis1a protein is not involved in regulation of 

craniofacial development. 

However, to make solid hypothesis of regulatory function of meis1 genes more NCCs 

specifiers need to be analysed to elucidate the position of meis1 gene in regulatory 

hierarchy. Also, function of homeodomain in NCCs regulation needs to be tested. Broader 

analysis of NCCs specifiers can be performed with WISH in mutant fish or with IHC staining 

of meis1a splice variant products in fish, lacking some of those variant and observe with 

combinatorial IHC staining changes in patterns or signal. 

8.5 IHC did not confirm reduced expression of meis1 genes 

 The mutation in homeobox region of meis1 genes did not influenced expression 

their product nor behaviour of the Meis1 expressing cells. Meis1 protein shown their 

expression in hematopoietic progenitors around the yolk (Fig. 36-38) and along the neural 

tube (not shown; Murayama et al., 2006). Among all groups of analyse fish were observed 

a difference in intensity of signal, therefore every group of mutant and wild type fish was 
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divided to sub-groups according to intensity of signal and genotyped. Genotyping showed 

no correlation between intensity of signal and genotype of the fish in Meis1aΔHD fish. 

Although, in case of Meis1bΔHD correlation was observable.    

The experiment was conducted to test the antibody against mouse MEIS1 and its 

ability to bind zebrafish Meis1 epitope, which consist of first 16 aa on the N-terminus. The 

antibody binds both zebrafish Meis1, therefore the expression pattern in Fig. 36-38 belongs 

to Meis1a as well as Meis1b proteins. This experiment would be more quantitatively and 

qualitatively informative, if it was done with antibody binding any epitope on the C-

terminus. Because the C-terminus supposed to be disrupted, thus the antibody would not 

be able to bind it and fluorescent signal would be less intense or absent. This would also 

decrease a probability of binding gene splice variants lacking homeodomain. The most 

optimal option would be the usage of Meis1a or Meis1b specific antibody, binding C-

terminal epitope. This approach would prevent false positive signal caused by 

compensation mediated by the paralogue. The compensation process has been reported 

in Blasi et al., 2017. However, the applicated mouse Meis1 antibody is convenient to be 

used for Western blotting to test a presence of Meis1 protein with missing homeodomain 

in the fish. 

The quantitative assessment based on number of pixels with specific intensity from 

black to white, as shown in Fig.36 and 37, might have a higher significance if the number of 

samples was higher and the data were more statistically processed. 

8.6 No morphological abnormalities were observed in an adult meis1aΔHD 

fish  

   Two months old Meis1aΔHD fish and wild-type fish were scanned (Fig.39-41). 

Morphological analysis did not reveal any abnormalities of craniofacial structures, heart or 

eyes. No structural changes can be evidence of: meis1a does not contribute to 

development of any studied structures. Meis1a can fulfil its regulatory function in 

homeodomain independent manner. Furthermore, Meis1b protein compensates for 

impaired Meis1a, a similar phenomenon was observed between MEIS1 and MEIS2 in 

myeloid leukemia cells (Lai et al. 2017). Eventually, the 37 bp long deletion in exon 8 of 

meis1a, involving exon-intron junction, does not causes reading frame shift. Therefore, the 

mutant fish from second meis1a mutant line, with 270 bp deletion (Fig.30A27), should be 

used to test this hypothesis. 

8.7 Summary 

To conclude, Meis1aΔHD and Meis1bΔHD mutant lines were generated by using 

CRISPR technology and mutations were confirmed at the level of DNA by sequencing. 

However, expression of mutated protein can be tested with other protein analysing 

techniques to prove production of aberrant protein, e.g. Western blotting. Collected data, 

compared with literature, suggest that meis1b plays dominant role in development of NC 

derivatives and requires DNA-domain for proper function in this process. In case of meis1a, 
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the contribution of the gene to NCCs development remains unclear due to possible 

functional compensation by meis1b or by its splice variants. Other explanation could be 

unnecessity of homeodomain in meis1a regulatory function. Rational future steps would 

be phenotype assessment of double-mutant line (Meis1aΔHD/Meis1bΔHD) or generation 

and phenotyping of meis1a and meis1b null knockout lines.  
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9 CONCLUSION 
This work was dedicated to study of TALE transcription factors, specifically Meis1a 

and Meis1b, and their significance during development of neural crest cells in the zebrafish 

model. The neural crest is figuratively called fourth germ layer due to its potency to 

participate in production of a broad range of cell types. Meis1 transcription factors are 

known as regulators or co-regulators involved in development of hindbrain, eye, heart and 

other structures. The main goal of the work was to establish zebrafish mutant lines of 

Meis1a and Meis1b with deleted DNA-binding domain – homeodomain and outline their 

regulatory function in neural crest cells by assessment of mutant phenotypes. 

Mutant zebrafish lines were generated by using CRISPR technology and potential 

relationship between studied transcription factors was determined via morpholinos based 

knock-down. Analysis of mutant and morphant phenotypes revealed significant 

contribution of meis1b to regulation of craniofacial morphogenesis. In contrast, meis1a 

mutant and morphant phenotypes have not disclosed any participation in regulatory 

network of NCC development.  

Nevertheless,  more experiments are needed to be performed for detailed 

understanding of the function of these transcription factors. Experiment, such as 

generation of double mutant fish to prevent functional compensation which is a common 

phenomenon in this class transcription factors or complete knock-out of meis1a and 

meis1b genes, optionally combinatorial knock-out of both meis1 genes. 
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Table 18: Feature profile of designed and selected single guide RNAs by CRISPRscan. 

Single-guide RNA Specificity score Predicted 

efficiency 

Probability of out-of-

frame mutation [%] 

Off-targets 

sgRNA8a 92 71 74 0-0-0-5-32 

sgRNA9a 91 59 65 0-0-0-8-43 

sgRNA10a 87 38 80 0-0-0-2-49 

sgRNA1b 99 53 74 0-0-0-0-6 

sgRNA2b 94 26 75 0-0-1-2-45 

sgRNA3b 96 38 70 0-0-0-2-24 

Off-targets:  1-2-3-4-5 means 1 off-target with 0 mismatches, 2 off-targets with 1 mismatch, 3 off-targets 
with 2 mismatches and so on. 


