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1 Introduction

In [4] the authors present a classification of 3-forms on a 7-dimensional vector
space V and derive some of their properties. In fact A3V consists of 14 orbits
under the GL(7)-action. Two of them are open and represent important
forms :

e type 8 - the stabilizer of this form is the compact real form of the
exceptional Lie group Gb.

e type 5 - the stabilizer of this form is the noncompact real form of the
exceptional Lie group G5, we denote it Gbs.

Manifolds carrying forms of these types has recently attracted some attention
in physics and the exceptional Gs-geometry is being studied.

In this work we are concerned with the existence of such forms on 7-
manifolds. Moreover we study the existence problem for the form of type
3.

The first step is to consider the continuous case only. We apply the meth-
ods of the obstruction theory as developped in [11], namely we reformulate
the existence problem to a lifting problem and then we attempt to construct
a partial lift through the Postnikov tower of the fibration in question. This
is very straightforward, but requires hardly accesible information - comput-
ing homotopy groups of the fibers and cohomologies of the classifying spaces
and namely of succesive stages of the Postnikov tower may turn out to be a
problem.

We are able to solve only G5 case completely. This result is known since
1967 due to Gray, see [7].

For G, we have obtained only some fibrations which are however not
sufficient even to solve the existence problem partially.

For the case of type 3 form on an orientable manifold, we obtain suffi-
cient condition and under certain simplifying hypotheses we obtain necessary
condition. These results follow from the sufficient and necessary conditions
for the existence of an almost complex structure on a 6-dimensional vector
bundle over a 7-manifold which we derive.

On the way we also obtain some classical results on the existence of certain
structures on manifolds expressed in terms of characteristic classes, namely
orientability and nowhere vanishing vetor field. Few more, e.g. Stiefel theo-
rem on parallelizability of orientable 3-manifolds or existence of Riemannian
metric, are easily accesible by the methods used, but they are of no immediate
importance for this work and we ommit them.



Substantial part of the paper concerns the algebra of octonions @ and its
split-partner Q. This is necessary to get some understanding of the group
(G5, since it consists of the algebra automorphisms of Q. Especially to get the
identification SO(7)/Gy = RP7 takes some effort. There is an alternative
approach via Spin groups (see e.g. [1]), but we prefer to avoid it here and
exploit the knowledge of the octonions as much as possible. From the very
beginning we develop the theory for O and @ parallely, since the proofs are
usually formally identical.

With facts gathered in the first 2 chapters we attack the topological ex-
istence problems in the last 2 chapters.

2 Octonions and split-octonions

2.1 x-Algebras

Here we collect necessary definitions and basic properties of x-algebras. From
the very beginning we restrict our attention to good algebras (see 2.1). We
discuss various types of associativity in some details. We first derive an
important associator lemma 2.9 and its consequences : a theorem 2.12 char-
acterising alternativity and an useful formula 2.11 relating scalar product
and multiplication. These 2 results are going to be used frequently.

2.1 Definition. Through the text, algebra is always a real algebra with unit
(not necessarily associative or commutative). An algebra morphism is a linear
map f: A — B satisfying

flab) = f(a)f(b) and f(14) =1 foralla,be A

where 14,15 denote the units in the corresponding algebras.
A is called alternative iff every subalgebra generated by any 2 elements
is associative. A is called flexible iff

(ab)a = a(ba)

for all a,b € A.

A is called division algebra iff A has no zero divisors.

We say A has multiplicative inverses if for every a € A — {0} there
exists b € A such that ab = ba = 1.

x-algebra (a.k.a. algebra with conjugation) is an algebra A equipped

with a map
x:A— A

called conjugation satisfying
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1. *is linear
2. x(ab) = x(b) * (a)
3. xk =1id

*(a) is usually denoted a* and it is a straightforward generalisation of the
notion of complex conjugation.
An algebra morphism f : A — B is called *-algebra morphism iff

f(a*) = f(a)* forallaec A

x-algebra A is called real iff «* = a for all a € A.

Notice that every algebra comes with the canonical inclusion R — A via
r — rl, where 1 is the unit in A. This justifies the following definition : *-
algebra A is called good iff a+a* € R. Notice that this implies aa*, a*a € R

for alla € A : indeed aa* = %(aa* + (aa*)*) € R. In case A is good we define

2
the real part Re(a) = $(a+a*) and the imaginary part Im(a) = 3(a—a*)
of a € A. Denote Im(A) := {a € A : Im(a) = a} the subspace of imaginary

elements. Notice that a € Im(A) is equivalent to a* = —a.

2.2 Lemma. Let A be a good algebra. Then
{a,b) := %(ab* + ba™) = Re(ab") (1)
for a,b € A defines a symmetric bilinear form on A. Define *
lal|? := {(a,a) = aa* = a*a

Proof. Because A is good we have (a,b) = $(ab*+(ab*)*) € R. The symmetry
is obvious.

To verify aa* = a*a let r be real and 7 imaginary part of a. Then aa* =
(r+i)(r—i)=r>—i2=(r—1i)(r+1i) = a*a. O

2.3 Definition. Let A be a good algebra. We say A has signature (a+,b—, ¢)
iff the bilinear form (1) has the signature. We call A nondegenerate (resp.
positive definite) iff ¢ = 0 (resp. moreover b = 0).

!The following expression is formal - generally ||a||? doesn’t have to be nonnegative
and therefore ||a]| is not even defined. On the other hand if A is positive definite, we use

llal] :== +/]|a]|? in the usual sense.
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2.4 Lemma. Let A be a positive definite algebra. Then (1) defines a positive
definite scalar product, hence ||| := +/]|||> is a norm. A has multiplicative
inverses explicitly given by

*

-1, a

a =
lal”

2.5 Remark. In the nonassociative case, strange things may occur. For
example the existence of multiplicative inverses no longer implies the nonex-
istence of zero divisors. We give example of such an algebra later in 2.32.
Not even the converse implication is true - there is a division algebra
without multiplicative inverses. A simple example can be found in [3].

2.6 Definition. Let A be an algebra. The commutator is the (obviously
bilinear) map A% — A given by

la,b] == ab—ba for all a,be A
The associator is the (obviously trilinear) map A®> — A given by
(a,b,c) := (ab)c — a(bc) for all a,b,c € A
2.7 Lemma. Let A be a good algebra. For a,b € Im(A) we have
ab+ ba = —2(a, b)
Namely a* = —|jal|? € R.
Proof. ab+ ba = —ab* — ba* = —2(a, b). O
2.8 Lemma. Let A be a good algebra. For a,b,c € A we have
1. |a,b] = —[a*,b] = —la, b¥]
2. (a,b,c) = —(a*,b,c) = —(a,b*,c) = —(a,b,c*)
Proof. 1. If one of a, b is real then obviously [a,b] = 0. Hence
a,8] = [Re(a), t] + [Im(a), }] = [Im(a), )
and therefore
0", 8] = [Im(a"), b] = [~ Tm(a), 5] = —[a, ]
and similarly for the other variable.
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2. This is very similar to the previous case of the commutator. If one of
a, b, ¢ is real then obviously (a, b, c) = 0. Hence

(a*,b,¢) = (Im(a*),b,c) = (—Im(a),b,c) = —(a,b,c)

2.9 Lemma. Let A be a good algebra. For a,b,c € A we have
1. Re(la,b]) =0
2. Re((a,b,c)) =0 iff A is flexible.
Proof. 1. By 2.8 we get
2Re([a,b]) = ab — ba + b*a* — a*b* = [a,b] + [b*,a*] = [a,b] + [b,a] =0

2. By 2.8 we get

2Re((a,b,c)) = (ab)c — a(bc) 4+ c*(b*a™) — (¢"b")a™ =
= (a,b,c) — (c*,b*,a*) = (a,b,¢) + (¢,b,a) =0

where the flexibility is equivalent to the last equality via polarization
(see the proof of 2.12). O

2.10 Remark. Let A be a good algebra and a € A. Then a,a*, Re(a), Im(a)
all lie in the subalgebra generated by a (or ¢* or Im(a)).

2.11 Theorem. Let A be a good alternative algebra. For a,b,u € A we

have
(ua, ub) = {au, bu) = ||ul|*(a, b)
and
(ua,b) = (a,u"db)
(au,b) = (au™,b)
Proof.

(au,b) = Re((au)b*) = Re(a(ub™)) = (a, bu™)
by 2.9, 2. Hence
(au, bu) = (a, (bu)u”) = (a,b(uu”)) = ||lul[*(a, b)
by the previous remark. Next
(ua, by = Re((ua)b*) = Re(u(ab*)) = Re((ab*)u) = Re(a(b*u)) = (a,u™d)
by 2.9, 1. and 2. We get (ua,ub) = ||u||*(a,b) as before. O
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2.12 Theorem. For a good algebra A the following statements are equiva-
lent :

1. A is alternative.

2. The associator on A is skew-symmetric.

3. The following formulas hold for all a,b € A

(aa)b = a(ab)
(ab)a = a(ba)
(ba)a = b(aa)

I~

4. Any two of the previous formulas hold.

Proof. We first discuss a simple trick called polarization. Suppose (aa)b =
a(ab). Then

0=(a+b,a+b,c)=(a,b,c)+(b,a,c)+(a,a,c)+ (b,b,c) = (a,b,c)+(b,a,c)

Similarly (ab)a = a(ba) implies 0 = (a,b,c) + (¢,b,a) and (ba)a = b(aa)
implies 0 = (a, b, ¢) + (a, ¢, b). The converse implications are trivial.

o'l = 2« 3= 4" 1is obvious.

e "4 = 3" If only two of the identities hold, say (a,b,c) + (b,a,c) = 0

and (a, b, c) + (¢, b,a) = 0, we get the third as follows
(a’a ¢, b) = _(Ca a, b) = (ba a, C) = _(a’a b: C)

e ... = 17 Let S be a subalgebra spanned by a’,0/ € A and de-
note a,b their imaginary parts. We claim that S is the linear span
L of the elements 1,a,b,ab. Obviously 1,a,b together with all pos-
sible "multiplicative combinations” of a,b (this means for example
ab, ba, a(ba), (ab)a, b(ab), (ba)b,a(b(ab)),a((ba)b), (ab)(ab),...) linearly
span S. To prove the claim it obviously suffices to check (using 2.7)
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ba, a(ab), b(ab), (ab)?, (ab)a, (ab)b € L :
ba = —ab — 2{(a,b)
a(ab) = a®b = —||al|*b
b(ab) = b(—ba — 2(a, b)) = —b(ba) — 2(a,b)b =
= —b%a — 2(a, b)b = ||b||*a — 2(a, b)b
(ab)? = (ab)(—ba — 2{a,b)) = —(ab)(b*a*) — 2(a, b)ab =
= —||ab||* — 2{a, b)ab
(ab)a = (—ba — 2{(a,b))a = —(ba)a — 2{a,b)a =
= —ba* — 2(a,b)a = ||al|*b — 2(a, b)a
(ab)b = ab® = —||b||*a

To show that S is associative we verify vanishing of the associator on all
the spanning elements 1, a, b, ab. If any of the entries of the associator
is 1 then the associator is clearly 0. Now the skew-symmetry implies
that the only nontrivial case is

(a,b,ab) =0
But we already have
Im((ab)?) = —2{a, b) Im(ab)
and further

Im(a(b(ab))) = Im(a(b(—ba — 2{a,b)))) = Im(a(—b*a)) — 2(a, b) Im(ab) =
= Im(||b]|?a®) — 2(a, b) Im(ab) = —2(a, b) Im(ab)

SO

Im(a, b, ab) =0
and by 2.9 the conclusion follows. O

2.13 Lemma. If A is a good alternative algebra, then
labll* = [lall*[[b]]*
holds for a,b € A. Thus if A is positive definite then it is a division algebra.

Proof. ||ab]|* = (ab)(ab)* = (ab)(b*a*) = a(bb*)a* = [[b]*aa”™ = [|b]*||al*
where the third equality is due to alternativity and the previous theorem.[]
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2.2 Cayley-Dickson construction

We define the Cayley-Dickson (CD) construction and show that the famil-
iar algebras R, C,H fit into the general scheme. Finally we construct the
octonions. The central theorem 2.18 enables us to get information about a
succesor in the CD construction. We use it to derive basic properties of Q.
It also explains the interesting loss of nice properties for CD constructs.

2.14 Definition. Let A be a x-algebra. We are going to construct an -
algebra €O (A). Let B := A ® A as vector spaces. Now equip B with a
multiplication

(a,b)(c,d) := (ac — d*b, bc* + da) (2)

and a conjugation
(a,b)* := (a*, =b)

where we use the same symbol for the conjugation on both A and B. This
makes B into a x-algebra denoted €®(A), where the abbreviation CD stays
for Cayley-Dickson.

2.15 Claim. ¢€®(A) is indeed a x-algebra. There is a canonical monomor-
phism A — €D (A) given by i : a — (a,0).

Proof. The multiplication on €D(A) is indeed linear and distributive and
the unit is the element (1,0) € A @ A. The conjugation * is linear with
x? = id and ((a,b)(c,d))* = (c,d)*(a,b)* follows from a short computation.
So €D(A) is a *-algebra.

It remains to verify that ¢ is injective x-algebra-morphism, which is straight-
forward. O]

2.16 Example. Starting with the 1-dimensional algebra R with a* := a, we
apply the CD-construction repeatedly.

Obviously
¢D(R)=C
with the usual complex conjugation.
Next

¢D(C) =H=Ra®Ri ®Rj &Rk

is the algebra of quaternions with the usual relations i? = j? = k? = —1,ij =
k,jk = i,ki = j. Moreover, H is (by the CD-construction) equipped with
the standard quaternionic conjugation (a + bi + ¢j + dk)* = a — bi — ¢j — dk.

The next iteration of CD-construction yields the desired algebra of octo-
nions. Since we don’t assume familiarity with the octonions, we define them
in this way :
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2.17 Definition. The x-algebra

0 := ¢O(H)

is called the algebra of octonions.

2.18 Theorem. Let A be a nonzero *-algebra.

1.

A T o

¢D(A) is never real.

A is real iff €D(A) is commutative.

A is commutative and associative iff €D(A) is associative.

A is good (positive definite) iff €D(A) is good (positive definite).
A is associative and good iff €D (A) is alternative and good.

A is flexible and good iff €D(A) is flexible and good.

Proof. 1. (a,b)* = (a*,—b) = (a,b) implies b = 0 so it cannot hold for

2.

every element of €D(A).

Let A be real. First note that if a x-algebra is real then it is commu-
tative since ab = (ab)* = b*a* = ba. Now (a,b)(c,d) = (ac — d*b, bc* +
da) = (ca — b*d,da* + bc) = (¢,d)(a,b), i.e. €D(A) is commutative.
Conversly suppose that €9 (A) is commutative, i.e. (ac—d*b, bc*+da) =
(ca — b*d,da* 4+ bc). For a = ¢ = 0, d = 1 and b arbitrary we get
(=b,0) = (=b*,0), s0 b = b*.

. We have

((a,b)(c, d)) (e, f) = (ac — d"b,be" + da)(e, ) =
= ((ac)e = (@b — £ (be") = f*(da),
(be)e" + (da)e” + f(ac) — f(d'D))

(a,b)((c, d)(e, f)) = (a,b)(ce — frd,de” + fc) =
— (alee) = a(f*d) = (ed")b — (¢ ),
b(e*c*) — b(d* f) + (de*)a + ( fc)a)

If A is associative and commutative, then the associativity of €D(A)
follows immediately. Conversly if €D(A) is associative, then the choice
b=d=f =0 gives ((ac)e,0) = (a(ce),0), i.e. the associativity of
A, and the choice a = ¢ = f = 0,d = 1 gives (—be,0) = (—eb,0) the
commutativity.
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. The equalities
(a,b) + (a*, —=b) = (a + a*,0)
(a,b)(a*, —b) = (aa™ 4+ b*b,ba — ba) = (a*a + b*b,0)
prove all the implications.

. Let A be good and associative. The previous claim implies that €D (A)
is good. Due to the theorem 2.12 it suffices to verify

We prove only the first equality, the second one being analogous.

(a.b)(a,b)(c,d) = ((aa)e — (b"b)e — d"(ba") — d" (ba),

(ba*)e* + (ba)c* + d(aa) — d(b*b))
(a,b)((a,b)(c,d)) = ( (ac) — a(d™b) — (cb*)b— (a*d")b,

b(c*a*) — b(b*d) + (be*)a + (da)a> (3)

Now (bb*)c = (¢b*)b because of associativity and goodness - recall bb* €
R so it commutes with everything! Next d*(ba*) + d*(ba) = a(d*b) +
(a*d*)b because of associativity and goodness - this time recall a* +a €
R. The remaining terms are treated similarly as well as the other

equality ((c,d)(a,b))(a,b) = (c,d)((a,b)(a,b)).
Now suppose €D (A) is alternative and good. (3) holds, so put ¢ = 0
to obtain

d*(ba™) + d*(ba) = a(d*b) + (a*d*)b
and further

d*(b(a” + a)) = a(d’b) + a”(d"D) + (a”, d", b)
d*(b(a® + a)) = (a + a")(d"b) + (a”, d", b)
0= (a*,d",b)

By the previous claim A is good and therefore we use 2.8 to get 0 =
(a,d,b) for every a,b,d € A.
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6. We have
((a,b)(¢c,d))(a,b) = ((ac)a — (d*b)a — b*(be) — b*(da),
(be")a* + (da)a* + blac) — b(d*b))
(a,b)((c,d)(a,b)) = (a(ca) —a(b*d) — (ad*)b — (c"b")b,
b(a'c") = b(d'D) + (da')a+ (be)a)  (4)
Suppose A is good and flexible. First we observe that
(d*b)a + b*(da) = a(b*d) + (ad*)b for all a,b,d € A (5)
Indeed we have equivalently

(d*b)a + (b*d)a — (b",d,a) = a(b*d) + a(d*b) + (a,d", D)
(d*b+b*d)a — (b*,d,a) = a(b*d + d*b) + (a,d*,b)
(b,d,a) = —(a,d,b)
where we used 2.8 and d*b + b*d € R. The last equality follows from
the flexibility via polarization (see the proof of 2.12).
We see that (5) implies

b*(bc*) = (¢*b*)b for all b,c € A (6)

simply by setting d = b in (5) and using goodness.

So flexibility and (5) and (6) imply equality of the first slots in (4). For
the second slots we observe

(bc*)a* + b(ac) = b(a*c*) + (bc)a
Indeed

LHS = (bc)a — (be)2 Re(a) — (ba)2 Re(c) + b4 Re(a) Re(c) + b(ac)
RHS = b(ac) — (ba)2 Re(c) — (bc)2 Re(a) + b4 Re(a) Re(c) + (be)a
Finally
(da)a™ = (da*)a
by similar computations. So (4) holds.

To prove the converse implication of the theorem, set b = d = 0 in (4)
and again use the claim 4 to obtain goodness. O]
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As a consequence of 2.18,2.13 and 2.4 we have

2.19 Theorem. O is 8-dimensional noncommutative, nonassociative, alter-
native, division and positive definite *-algebra with multiplicative inverses.[]

We postpone giving relations of generators for this moment, because we
will treat them together with split-octonions later.

2.3 2-dimensional x-algebras

We enrich our collection of good algebras by some indefinite examples - C
and Cy. To motivate our choice of starting points of the CD construction
we prove a classification theorem 2.22 on 2-dimensional x-algebras asserting
that we miss only certain degenerate algebras.

2.20 Example. Consider .
C:=R®&Re

with multiplication uniquely given by e? = 1. This algebra is called algebra of
paracomplex numbers. We will later treat C as a %-algebra with standard
conjugation (a + be)* = a — be for a,b € R. Note that for x = a + be the
formula zz* = 2*x = a® — b* no longer defines the square of a norm, but
only a quadratic form of signature (1,1). Obviously C contains zero divisors
:(1+e)(1—e)=0.

Since C is clearly commutative, the identity is a conjugation too.

2.21 Example. Exactly as in the previous example but with e = 0, we
obtain another example of 2-dimensional algebra denoted Cy. This is not
even nondegenerate algebra.

2.22 Theorem. Let A be a 2-dimensional *-algebra. Then A is *-algebra-
isomophic to exactly one of C,C or Cy with either identity conjugation or
the standard conjugation (a + be)* = a — be for a,b € R.

Proof. We begin by 2 observations :

1. Every ideal I of an algebra® A is a vector subspace of A.
This follows immediately from the invariance of I under multiplication

by Al for A € R.

2. Every 2-dimensional algebra is commutative.
Indeed we can always choose a basis containing 1 and it suffices to
verify the commutativity for the basis.

2The existence of the unit is essential here!
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We first classify the algebras without conjugation by discussing ideals in

A

1. A has trivial ideals only.
Therefore A is a field. Let 1,7 span A. There are a,b € R such that

i’ =a+bi

We have

Denote ¢ := a + %. Suppose ¢ > 0. Then we have the factorization
(i—2+e)(i—%—\/c)=0. But then i — 2+ \/c # 0 is a zero divisor
which contradicts the assumption that A is a field. Therefore ¢ < 0.
Set j := ——=(i — %) to get j> = —1. Now the algebra-isomorphism

lel
A — C (for C = R ® Re with €2 = —1) is given by
1—1

Jjre

2. There is a 1-dimensional ideal I C A.
I is necessarily a principal ideal (i) generated by some i € A. Obviously
i € R and 2 = ai for some a € R.

Let’s discuss a :
If @ = 0 then the algebra-isomorphism A — C, is given by

1—1

Obviously the 3 algebras C, C and Cy are not isomorphic.
To finish the proof it now suffices to show that C, C and Cy admit only the
conjugations mentioned in the theorem. Let A be one of the above algebras.
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We have A = R @ Re with e? € R. The properties of the conjugation imply
*(a) = a for any a € R. Let *(e) = a + be.

e =x*x (e) = *(a+be) = a+ ba+ be

and therefore a(b+1) = 0 and b* = 1. Now b = 1 implies a = 0 and so * = id
which is indeed a conjugation. For the second case b = —1 we have

x(e?) = *(e) * (€) = (a — e)(a — e) = a® + e* — 2ae

Since e? € R we get €? = x(e?) = a® + €? — 2ae, so a = 0 and *(a + Be) =
a — Pe. O

2.4 Twisting of Z5

We construct split-analogues of H and @ and derive their basic properties.
We introduce the notion of twisted group algebra and in 2.27 we show how
this fits into the CD construction. This enables us to get explicit description
of the multiplication in @ and O with little effort. We exploit this method
to investigate an interesting example 2.32 of sedenions which demonstrates
some aspects of the behaviour of the CD construction.

2.23 Definition. Applying the CD-construction starting with C, we define

¢D(C) =:H split-quaternions
CO(H) =: O split-octonions

The assertion about the signature in the following theorem will be proved
a moment later.

2.24 Theorem. O is 8-dimensional good, noncommutative, nonassociative,
alternative *-algebra of signature (4+4,4—). O

2.25 Remark. The split-octonions are considerably uglier than the octo-
nions. O is not division algebra (because C lacks this property and C— Q).
Therefore O can’t have even multiplicative inverses.

To get an effective tool for working with (split-)octonions, we introduce
the notion of twisted group algebra.
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2.26 Definition. Let G be a group and R[G] its group algebra 3. Let « :

G x G — {£1} be an arbitrary map. Now consider A := R[G] equipped with
the multiplication x given by

g*h:=a(g,h)gh forg,hed
A with * multiplication is called a-twisted group algebra R|G].

Looking back at the complex numbers as an algebra with generators 1,4
we see that C is in fact a-twisted group algebra R[Z,], where the twisting

function is given by the table 1 where a(i, j) is in the i*" row and j* column
and +, — stand for +1, —1.

0
+ [+
_'_

Table 1: Twisting of R[Zs] to obtain C

We easily check that the quaternions are the twisted group algebra R[Z3].
Here and further on Z2 = Z, x Zs is the product of groups (a.k.a. direct
sum), i.e. the group operation is done componentwise. If we're writing the

elements of ZJ explicitly, we ommit the brackets, e.g. (0,0,1) =: 001 or
011 + 101 = 110 etc.

00 |01]10] 11
o+ [+ [+ ]+
o[+ - [+~
0]+ -[-]+
n[++]-1-

Table 2: Twisting of R[Z3] to obtain H

The elements 00,01,10,11 correspond to the standard generators 1,1, 7, k of
H.

The following theorem clarifies the situation.

3Group algebra R[G] is a real vector space with the base G and with multiplicative

structure given by
(D" agg)(D_buh) = > anby-149

geG heG g,heG

i.e. polynomial multiplication or so called convolution. Note that all the sums are well
defined because only finitely many a4, b;,’s are nonzero.
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2.27 Theorem. Let G be a commutative group. Let A be a a-twisted group
algebra R|G| with conjugation given by g* = ¢(g)g for g € G and some map
c¢: G — {£1}. Then €D(A) is f-twisted group algebra R[Z, x G] with
given by the following formulas for g, h € G

B({0} x g,{0} x h) = a(g,h)
B0} x g,{1} x h) = a(h, g)
B{1} x g,{0} x h) = c(h)a(g, h)
B{1} x g, {1} x h) = =c(h)a(h, g)

or in the form of the table

(et i)

where the operation C' multiplies the column of its argument matrix indexed
g by c(g).

Proof. There are bijections
CD(A)=AdA={0,1} x A =17y x RG] ZR[Zy x G]

suggesting the obvious isomorphism €9 (A) = R[Z; x G] of vector spaces.
In this proof we denote by x the twisted multiplication on a given algebra
while we ommit the symbol for the untwisted multiplication. A@® A has basis
{(9,0) :a € G} U{(0,9) : g € G}. The multiplication in twisted R[Zs x G]
is given by the formula (2), so

(9,0) * (h,0) = (g x h,0) = (g, h )

(9,0)x(0,h) = (0,h x g) = a(h, g ) = a(h, g)({1} x (hg))

(0,9)  (h,0) = (0,9 % c(h)h) = c(h)a(g, h)(0, gh) = c(h)a(g, h)({1} x (gh))
(0,9) x (0,h) = (=c(h)h x g,0) = —c(h)a(h, g)(hg,0) = —c(h)a(h, g)({0} x (hg))

Recall that the multiplication in untwisted R[Z, x G] is given* by

(9,0)(h, 0) = ({0} x g)({0} x h) = {0} x (gh)
(9,0)(0,h) = ({0} x g)({1} x h) = {1} x (gh)
(0,9)(h,0) = ({1} x g)({0} x h) = {1} x (gh)
(0,9)(0,h) = ({1} x g)({1} x h) = {0} x (gh)
By the commutativity of G we see the x-algebra-isomorphism €D(A)
R[Zs, x G] and we also get the desired relations between « and /.

)(gh,0) = a(g, h)({0} x (gh)
)(0, hg

I 1R

4To avoid any confusion we remind that Zs means additive group {0, 1}.
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2.28 Remark. One can think of many generalisations of the previous theo-
rem. The restriction on the form of the conjugation on A is essential, because
generally it can happen that €D (A) is no longer twisted R[Zy x G] but rather
something more complicated. This situation occurs for example in dimension
4 - just take A := R[Z2] with (indeed) conjugation

(a00 4 b01 + 01 + d11)* := a00 + 01 4 601 + d11

Now €D (A) is no longer twisted R[Z3] since the conjugation mixes the coor-
dinates in an unpleasant way.

However the restrictive assumption of the theorem is not severe, because
we are interested in algebras comming from the CD-construction starting at
dimension 2 and in this case the conjugation takes (and continues to have)
the desired form due to theorem 2.22.

The theorem 2.27 allows us to quickly recover the twisting for @ and O,
see tables 3 and 4.

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
oo + [+ 1+ 1+ +T+1T+1+
ol + | -+ -1 +1-1-1+
oo + | - - T+ ++1]-1-
ot + |+ | - - +1-1+1-
0]+ -] -7 -T-T+]+7]+
01 + [+ - [+ -1T-1-71+
| + [+ [+ -1 -1T+1-1-
mi+ [ - [+ +[-1T-1T+71-

Table 3: Twisting of R[Z3] to obtain octonions Q

The connection with standard formalism is as follows : ey = eggo := 000,

€1 = €po1 -— 0017 €y = €p10 — 010, €3 = €p11 -— 011, €4 = €100 ‘— 100,
es = eigr = 101, eg = €119 := 110, e7 = €31 := 111. Im(Q) is the linear span
of e1,ey,...,e7. We use the same symbols for Q.

We can now easily identify H with the %-algebra My(R) of real 2 x 2
matrices :

d —Cc a

2.29 Claim. Let the conjugation on Ms(R) be given by <(Cl b) = < d _b>.
Define f : H — M,(R) by

= 2)- 0= ). (Y
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000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
oo + [+ 1+ 1+ +1T+1T+1+
oot [ + [+ 1+ 1+ +1+1-1-
o[ + [ -1 -T+[+1+1-1-
ot + | - -+ +1+1+1+
w [+ [ - -T-T-T+[+7[+
i + [ - - -1 -T1T+71-71-
ol + [+ [+ -1 -T+1-1-
mi+ [+ [+ -1 -T+1+]+

Table 4: Twisting of R[Z3] to obtain split-octonions O

Then f is a x-algebra isomorphism. 0

2.30 Claim. For the scalar product on @ given by (1) we get (e;, e;) = d; ;.
The scalar product on O given by the same formula satisfies |(e;, e;)| = d;;
and (e;, e;) is —1 for ey, e3, e5,e7 and is +1 for the other basis vector, i.e. it
has signature (4+,4—). O

2.31 Example. We give a very simple example of the twisted computation
in basis to clarify the notation : Let 7,7 € Z3. Then

€;€; = Oé(i>j)€i+j

which is the same as
i-j=afi,j)i+])

We are now able to give the example of an algebra with multiplicative
inverses and zero divisors at the same time, recall 2.5.

2.32 Example. We go bravely one step further in the CD-construction and
consider

S := ¢D(0)

This algebra is called the algebra of sedenions. The theorems 2.4 and 2.18
inform us about the properties of sedenions : S is 16-dimensional noncom-
mutative, nonalternative, flexible and positive definite x-algebra with multi-
plicative inverses. We notice that the nonassociativity of S can’t be worse.
However our concern are the zero divisors. To be able to compute something
we use the twisting formulas of the theorem 2.27. We claim

(e1+e10)(—es+e15) =0 or equivalently (0001+1010)(—0100+1111) =0
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Indeed

(0001 + 1010)(—0100 + 1111) =
= —5(0001,0100)0101 + £(0001,1111)1110+
—3(1010,0100)1110 + 3(1010,1111)0101 =
= (—a(001,100) — ¢(111)a(111,010))0101+
+((111,001) — ¢(100)(010, 100))1110 =
=0

by a careful inspection of the twisting table 3 for O.

2.5 Uniqueness theorem

We prove the well known Hurewicz theorem 2.36 asserting a uniqueness of
R,C,H, O in a certain sense. We also obtain an analogous theorem 2.37 for
the split case. We will later use these theorems to simplify certain computa-
tions in the chapter on Gs-structures on manifolds.

2.33 Theorem. Let A be a nondegenerate algebra. Then A satisfies ||ab||* =
l|la||?||b||* iff A is alternative.

Proof. If A is alternative, this is 2.13. Let A satisfy ||ab||* = ||a||?||0]|>. We
first prove that the formula

(ua, ub) = ||ul|*(a,b) for u,a,bc A

from 2.11 is valid even under our current assumptions. First observe
1
(a,0) = 5 (lla +bII* = [lall* = [12II")

Then indeed (ua,ub) = (|lu(a + b)||* — |Jual|* — |Jubl|?) = ||ul|*(a,b) using
the assumption.

Hence we have ((u + v)a, (u +v)b) = |Ju + v[|*(a,b). It means (ua, ub) +
(ua,vb) + (va,ub) + (va,vb) = (||ul|* + ||[v||* + 2(u, v))2(a, b) and so

{(ua, vb) + (ub,va) = 2(u,v){a,b)

We just remark that we will also obtain this formula later in 3.20 under
different assumptions.
Set v =1 to get (ua,b) + (ub,a) = (u, 1){a,b) and so (ua,b) = (a, (—u +
(u,1))b). We get
(ua,b) = {(a,u"db)
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and similarly
(au,b) = {a, bu")

Finally we prove a(ab) = a®b and ba® = (ba)a. Notice 2(a,1) = a* + a.

{a(ab),t) = (ab,a*t) = {(ab, (—a + 2{a, 1))t) = —(ab, at) + 2{a, 1){ab, t) =
= ((—|la||* + 2a{a, 1))b,t) = ((—aa* + a* + aa*)b,t) = (a®b, 1)
((ba)a,t) = (ba,ta*) = —{(ba,ta) + 2{a, 1){ba,t) =
= (b(—||al|* + 2a{a,1)),t) = (b(—aa* + a* + aa*),t) = (ba®,t)

2.34 Lemma. Let A be a nondegenerate x-algebra satisfying ||ab||? = ||a||?||b||*.
Let B C A be a proper *subalgebra such that B+ := {z € A : (x,b) =

0 for all b € B} contains an element i € B+ with ||i]|> = 1. Then A contains
€D (B) as a x-subalgebra.

2.35 Remark. Note that for positive definite algebras the condition on the
existence of norm one i € B+ is automatically satisfied for any subalgebra.

Proof (of 2.34). Let b € B. We have ib* + bi* = 0. Especially for b = 1 we
get i +¢* = 0 and therefore
ib* =bi

We use this observation in the further computations. A is alternative by 2.33.
We also use various formulas from the proof of 2.33 (we could alternativly
deduce those from the alternativity, e.g. see 3.20). We claim

(a+ bi)(c+ di) = (ac — d*b) + (bc" + da)i for all a,b,c,d € A
We have to verify 3 things :

1. (bi)c = (be*)i?
Let t € A be arbitrary.

{(bi)e,t) = (bi,tc"y = —(bc", ti) + 2(b,t)(i,c*) = . ..
Now i € B+ and ¢ € B imply (i, c*) = 0.
a(di) = (da)i?
(a(di), £) = (di, a*t) = (id", a") = —(it, a*d") + 200, a"}{d",£) = . .
Now i € B+ and a € B imply (i, a*) = 0.

= —{it,a*d") = (t,i(a’d")) = (t,i(da)") = {t, (da)i)
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3. (bi)(di) = —d*b?

((bi)(di), t) = (bi,t(i*d")) = (ib", t(i*d")) = —(i(¢"d"), tb*")+2(i, t) (b, i"d") = . ..

Now (b*,i*d*) = (b*d,i*) = 0 by the condition i € B+. Use alternativ-
ity in the first slot of the first scalar product.

= —(dF by = —(d"D, 1)

So we finally see that B@® Bi is indeed €9 (B), because (a+bi)* = a*+1*b* =
a* —ib* = a* — hi. 0]

2.36 Theorem (Hurewicz). Let A be a positive definite *-algebra satisfy-
ing ||ab|| = ||a||||b]|]. Then A is isomorphic to one of R, C, H, O.

Proof. A contains R as x-subalgebra. By the previous lemma A contains a
chain R € By C ... C B, = A, where B; = €D(R) and B;;; = €D(By).
By 2.18 and 2.33 we see that n < 3 - By = C is not real, By = H is not
commutative, B3 = O is not associative and therefore B, is not alternative,
i.e. equivalently doesn’t satisfy ||abl| = ||a||||]|- O

2.37 Theorem. Let A be a 8-dimensional x-algebra of signature (p+,q—)
with p > 3 and ¢ > 1 satisfying [|ab||* = ||a[|?||b][*>. Then A is isomorphic to
0.

Proof. By the assumptions there is a element ¢ € A — R with |le]|* = —1,
therefore e = 1. Since 1, e are linearly independent, they span a *-algebra
which is obviously isomorphic to C. Now apply the same argument as in
the proof of the Hurewicz theorem, this time starting with B; = C, which
is not real. By the assumption about the signature, there is i, € Bi with
|i1]|2 = 1 as required by 2.34 and therefore By, = €9 (B;) = H is contained
in A. The signature of H is obviously (2+, 2—) and so again there is i, € B
with ||iz]|* = 1 and consequently Bs = O is contained in A. But Bj is already

8-dimensional, so A = Q. 0
2.38 Remark. By considering a modification of the CD-construction, in

8] one obtains that there are no nondegenerate algebras satisfying [lab||* =
lla|/?||b||* other than R, C, H, O, C, H, Q.
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3 The groups G- and G5

3.1 Definitions

We define G and G5 as the groups consisting of algebra automorphisms of the
(split-)octonions. We show that these automorphisms are in fact orthogonal
and preserve the subspace spanned by the unit element. We also present Lie
algebras as derivations of the (split-)octonions.

3.1 Definition. G5 (resp. G~2) is the group of algebra-automorphisms of the
octonions O (resp. split-octonions Q).

Go = Aut,,(0)
Gy = Autalg(@)

As a subgroup of GL(8), Gy (Gs) inherits the topology.

3.2 Lemma. G, (Gs) is closed in GL(8). Thus it inherits the smooth struc-
ture making it a Lie group.

Proof. Let a sequence {X,} C Gy has a limit X € GL(8). We have
X(ab) = lim,,_, o X, (ab) = lim, . X, (a)X,(b) = X(a)X(b) since the octo-
nionic multiplication is linear and therefore continuous. The final assertion
is a well known theorem - see for example [2], page 17. OJ

3.3 Theorem. Lie algebra g, of G5 is the Lie algebra of derivations of O,
ie.

g2 = Der(0) :={Y € End(O) : Y(ab) = Y(a)b+ aY (b)}

with Lie bracket the usual commutator. Similarly®

g2 = Der(0) := {Y € End(Q) : Y(ab) = Y (a)b+ aY (b)}
Proof. Let t — X; be a smooth curve in (G5 such that X, = id and Xo =

limt_,o Xt;XO =Y € TeGQ = fgo.

(lim M)(ab) — Im Xi(a)X(b) — ab _
t—0 t 50 p
i @)~ Q)(Xi(0) ) + (Xi(@) — )b+ a(X() ~b) _
t—0 n
=Y (a)b+ aY ()

One easily verifies that all the operations are correct. As easily seen, any
algebra is closed under the commutator, therefore forms a Lie algebra. The
result for GG, is completely analogous. O

°End(0) denotes the vector space endomorphisms, not algebra-endomorphisms.
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3.4 Lemma. Every X € G, (resp. G3) preserves the splitting
O0=R1eImO

of the vector space. Consequently
X(a)" = X(a")

Proof. We have X (1) = 1 by the definition of algebra-homomorphism. Now
we proceed to verify X(a) € Im O for every a € ImQ. Set R := Re(X(a))
and [ :=Im(X(a)). Recall 2.7.

X(a) = X(a®) = —=X([|al]*) = ~|lal?
On the other hand
X(a)?=(R+1)*=R*+1*+ 2RI = R* — ||I||* + 2RI

and we obtain
—2RI = R* — ||I|* + ||a|®

I # 0 for otherwise X(a) = R = X(R) would contradict the injectivity of
X. Hence R = 0 and consequently X (a) € Im Q. O

3.5 Lemma. G, C O(7), G5 C O(3,4)

Proof. o Let X € Go, then
1 1

(X(a), X (1)) = 5(X(@)X ()" + X (0)X(a)") = 5(X(a) X(0") + X (0)X(a"))

2
1 1
= §(X(ab* +ba*)) = 5(@6* + ba*) = (a, b)
where we used 3.4.

e The lemma 3.4 implies that X, viewed as a matrix, has the block

decomposition
1 0
= (5 win)

for some matrix M(X) € GL(7,R). Then M(X) € O(7) since X €
O(8). Now the map

Gy 5 0(7)

is obviously an injective smooth group-homomorphism.
Analogous proof works for Gs. 0

From now on we will consider G5 as subgroup of O(7) or O(8) as will be
convenient at the moment.
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3.2 Associated 3-forms

We define certain 3-forms associated to the algebra of (split-)octonions and
show that these forms are of type 5 and 8 as defined in [4]. In 3.6 and 3.8
we compute the stabilizer of these forms under the G'L(7)-action.

GL(7,R) acts via the matrix multiplication on V := R". This induces
a natural action on all tensor powers of V. Namely for w € ®3V* and
g € GL(7) we have

(9 - w)(a,b,c) = w(ga, gb, gc)

3.6 Theorem. Consider a trilinear map w : Im(0)? — R (i.e. w € ®3Im(0)*)
given by
w(a,b,c):= {ab,c) for a,b,c € Im(O)

where (,) is the inner product (1) on @. Then w is skew-symmetric and
Staber7r)(w) = Go. In basis {e',...,e"} of Im(Q), we have

w = 6123 4 6145 . 6167 4 6246 4 6257 4 6347 . 6356 (7)

Proof. First we prove the skew-symmetry. (ab,c) = (—ba — 2{(a,b), c) is by
2.7. Then ((a,b),c) = 0 immediately implies

(ab, cy = —(ba, c)

Next
(ac, by = {(a,bc*y = —(a,bc) = {a, cb) = (ab*,c) = —(ab, c)

where the first and the fourth equality comes from 2.11. Finally
<Cb7 a’) = —<bC, a’) = <ba7 C) = _<aba C)

by the previous computations.
Let X € G5 and a,b,c € Im(0). We have

(X -w)(a,b,c) = (X(a)X(b), X (c)) = (X(ab), X(c)) = (ab,c) = w(a,b,c)

because X € Gy C O(8) by 3.5. Thus G2 stabilizes w.

On the other hand let X € GL(7,R) in the sense that X is a vector
space automorphism of Im(Q). We can extend X to a vector space auto-
morphism of the whole @ by setting X(eq) = eg. Suppose X stabilizes w,
ie. (X(a)X(b),X(c)) = (ab,c). We want to show that X € G5, i.e. prove
that X is an algebra automorphism of Q. Since X(ey) = ep by definition,
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only X (ab) = X (a)X (b) for a,b € Im(Q) remains to be proved. It suffices to
verify this for a basis. Clearly {X(e1),..., X (e7)} is a basis of Im(Q).

X(ewes) = X () (e en)er) = ) (eies, en) X (ex) =

0 k=0

The coordinate formula is obtained by a simple computation. O

3.7 Remark. The skew-symmetry was proved by an elegant coordinatefree
computation. We could have avoided using the formula 2.11 and proceeded
by straightforward twisted Z3 computations in basis :

Let 1,7,k € Z3 — {000}. {e;e;,er) = (i, 7)0iv;x so it suffices to restrict
to the case i +j = k. Now (e;ex, e;) = (i, i+ j) and (exe;j, e;) = a(i+ j,7).
So all we have to verify is

a(i,j) = —a(i,i+j) fori,j e Z3—{000},i# j

This is just a simple though unpleasant verification of certain symmetries in
the twisting table for O.

3.8 Theorem. Consider w € ®3Im(Q)* given by

w(a,b,c) := {ab,c) for a,b,c € Im(Q)

Then w is skew-symmetric and Stabgrrg)(w) = Go. In basis {e!,...,e"} of

Im(Q), we have
W= 23 U5 | 16T | 246 25T _ 347 | 356 (8)
Proof. Copy the proof of 3.6, change @ to Q, G5 to Gy and O(8) to O(4, 4).00

3.9 Lemma. Let u,v € Im(0) (resp. Im(Q)) and w € A*Im(Q) (resp.

A3 Im(Q)) as defined in 3.6 (resp. 3.8). Then

WA (1) A (tow) = —2(u, v) 234567
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Proof. Obviously there is a bilinear form B : Im(0)* — Im(Q) such that
WA (Lyw) A (Lw) = B(u, v)e'?31%7 We have

Blei, ej) = (WA (te,w) A (Le;w))(e1, ... €7) =

1
= 312121 Z Sgﬂ(O’)(w ® (Leiw) & (LejW))(eg(l), cey 60(7)) =
Rt
1
Y Z s81(0){€a(1)€0(2), €o(3)) (€i€o(4), €o(5)) (€j€0(6) €o(T))
o€S7

Consider the indexes of the standard basis vectors as elements of Z3, recall the
twisted computations. By properties of the scalar product, the permutations
o € S7 for which the summand is nonzero are those satisfying

o(1)+o(2) + o(3)

i+o(4)+0(5)
j+o(6)+a(7)

0
0 9)
0

Summing all these equations we obtain ¢ = j since obviously > gezi—{000} 9 =
000. This proves
B(e;,e;) =0 fori#j

We proceed to the case © = j. It is easy to convince yourself that for any
i € Z3—{000} there is a o € Sy satisfying the system (9). Moreover i = o(1)
without loss of generality. Swapping o(2) with ¢(3) provides a new solution
and similarly for the pairs o(4),0(5) and o(6),0(7). Yet another solutions
arise from swapping these whole pairs. This is altogether 233! = 48 solutions
and one easily sees that these are exactly all the solutions. Inspecting the
signs, one verifies that all the 48 summands are equal (sgn(o) and skew-
symmetry of the scalar product cooperate). It remains to decide whether all
the summands are equal to +1 or —1. By the above reasoning, it suffices
to compute the triple scalar product for one of the 48 permutations only for
each 7. We eventually find that the result for the octonions is indeed —1 for
each i. This yields finally B(e;, ;) = 5;48(—1) = —2. For the split octonions
we have the corresponding result. O

3.3 Basic properties

Now we obtain basic topological properties of Gy and Gs. Namely we show
how these group sit in the corresponding special orthogonal group (3.10) and
then we construct certain principal bundles (3.15,3.16 and 3.18). To prove
these theorems we introduce the useful notion of basic triples and we also
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prove a nice interpretation of the 3-forms associated to the groups. For G5 we
later exploit the bundle structures to compute its first 5 homotopy groups.

3.10 Theorem. There are canonical inclusions

Gy C SO(7)
Gay C SO(3,4)

Proof. We want to prove that X € Gy C O(7) preserves a volume form.
Choose v € Im(Q) such that ||u|| = 1. Then by 3.9 we have e!#47 —
—2w A (L) A (Lw).

1
X . 1234567 _ _an A (Lx-1) X W) A (tx-1 Xw) =

1 —
= =5 A (@) A (ex1w) = | X ()P0 =

— ||u||2€1234567 — 61234567

since X - (t,w) = tx-1(,»X - w and we also used 3.5. Thus

®

Gy — SO(7)
where ¢ is as in 3.5. The proof for G, is once again completely analogous.[]
3.11 Claim. G5 is not normal in SO(7).
Proof. 1t is well known that SO(7) contains no normal subgroup. OJ

3.12 Definition. A triple a,b,c¢ € Im(Q) of imaginary octonions is called
basic triple iff a, b, ¢ are pairwise orthogonal of norm 1 and (ab, c) = 0.

A triple a, b, c € Im(@) of imaginary split-octonions is called basic triple
iff a, b, c are pairwise orthogonal, ||a||* = —1, ||b||* = ||c||* = 1 and (ab, c) = 0.
3.13 Lemma. Fix a basic triple a, b, ¢ € Im(Q) (resp. Im(0)). Any X € G,
(resp. G) maps a,b,c to a basic triple. Conversly given a mapping f of
a,b,c to a basic triple f(a), f(b), f(c), there is exactly one X € Gy (Gs)
such that X|(epcy = f. Thus Gy acts transitively on the sphere S® = {v €
Im(0) : ||v|]| = 1} and on the Stiefel manifold V7. Gy acts transitively on

the hyperboloid H** = {v € Im(Q) : ||v||* = 1}.
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Proof. Let X € Go. Then X (a), X(b), X(c) are pairwise orthogonal because
X preserves the scalar product. Finally (X (a)X (b), X(c¢)) = (X (ab), X(c)) =
{ab,c) =0, so X(a), X (b), X(c) is a basic triple.

Now we claim that elements of B = {a, b, ab, ¢, ac, bc, (ab)c} are pairwise
orthogonal, thus form a basis of Im(Q). The verification involves a long
but straightforward computation using 2.7, 2.11 and the alternativity of the
octonions. For example

(b, (ab)c) = (bc*, ab) = —(be, ab) = (cb,ab) = (c,a) =0

Suppose we are given f as in the theorem and we are to construct X. The
claim implies that X is given uniquely by values on B. We have X(a) =
fla), X (b) = f(b),X(c) = f(c). In order to have X € G5 we must define
X(ab) = X(a)X(b) = f(a)f(b) and similarly for the other elements of B. It
remains to verify X € G,. Because X (a), X(b), X(c) is a basic triple we see
that X € GL(7). Finally X (kl) = X (k)X () holds for the basis vectors by
definition of X and thus holds for all of Im(Q).

For Gs we just mention the following general fact: Let V be a vector
space of signature (p+,q—,0), S C V any linearly independent subset. Let
u € V with [Jul|* # 0. Then (u,S) = 0 implies that v U S is a linearly inde-
pendent set. This justifies proving the linear independence via orthogonality.
Otherwise the proof is formally the same. O

3.14 Remark. We have even proved that G, acts transitively on basic
triples with null stabilizer. Space of basic triples is a topological subspace of
V3 7. This establishes the inclusion Gy C Vs 7.

Consider the basic triple e!,e? e € Im(Q). In the formula (7) for the
Go-form we notice the exceptional position of e4. This motivates the follow-
ing : We can define a complex structure on the vector space V' with basis
e, €, €3, €5, €6, €7 by J(x) = zes. Indeed J*(z) = (zeq)es = —x. Obviously
J(er) = exyq. Then denote 2¥ := eF +ieft* and 2% := ek —iek T for k = 1,2,3
the complex coordinates. We have the holomorphic volume form

Qs = 2% = (e! +ie®) A (€2 +ie®) A (2 +ie")
and Kahler form

(. _ .
ws 1= §(z121 + 2222 4+ 2%2%) = P - ¥ 4 7

The point is that
w = Re(3) —e* Aws
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Recall that the complex determinant of X € GL(V,C) satisfies
det(c X = Qg(X(Gl), X(eg), X(Gg))

This is clear by the basis representation of X as an element of GL(V,R) and
by recalling the action of J on ¢;’s. Finally recall that V' is equipped with a
canonical hermitean form ()¢ defined by

(,y)c = (z,y) + iz, Jy)
Now we are prepared to prove the following :

3.15 Theorem. There is a diffeomorphism
Gy/SU(3) = S°
thus a principal SU(3)-bundle
SU(3) = Gy — S°

Proof. We already know - 3.13 - that G acts transitively on S Let u €
S8 = S"NIm(0) and we want to see what is Stabg, u. Without any loss of
generality assume u = e4. As in the introduction, consider V' := Im(Q) N
(Ru)t = R{ey, ey, €3, €5, €, €7} with the complex structure J(a) := au. Let
X e StabG2 (u)

JX(a) = X(a)u = X(a)X(u) = X(au) = XJ(a)
thus X € GL(V,C).

(X(a), X(b))c = (X(a), X (b)) + (X (a), JX(b)) = (a,b) +i(X(a), X J(b)) =
= <CL, b)C

thus X € U(3).

Re(detc X) = Re(23(X (e1), X(e2), X(e3))) =
= (w+e* Aws)(X(er), X(es), X(e3)) =
= w(X(e1), X(ea), X(es)) + (" 4 ™+ eP7) (X (e1), X (e2), X (e3))

Now use invariance of w under the Ga-action and (X (e;),e4) = (X (e1), X(e4)) =
(e1,e4) = 0 and analogous (X (e2),eq) = (X(e3),eq) = 0. Thus

Re(dete X) = w(ey, es,e3) =1
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Because X € U(3) implies | detc X| = 1, we get detc X = 1 and consequently
Stabg, (u) C SU(3).

Now we are going to prove the converse inclusion SU(3) C Stabg,(u). Let
X' € SU(3) where we view SU(3) as acting on V' = R{ey, eq, €3, €5, €6, €7}
with a complex structure J(a) = aey. Extend X' to X € O(Im(Q)) by setting
X(eq) = e4 and X (e;) = X'(e;) for i # 4. We easily see that all we have to
verify in order to prove X € G5 is X(e1)X(e2) = X(e3). Indeed look how
X maps the basis {e1, 2,3 = €169, 64,65 = €164, 66 = €e4,67 = (€162)e4} :
es = e1ey is mapped onto X J(ey) = JX(e1) = X(ey)es = X(e1) X (e4) which
is OK and similarly eg, e7, the only unclear case being X (e;)X (e2) = X(e3).
But we have

1 = Re(detc X) = w(X(e1), X(eq), X(e3)) = (X (e1) X (e2), X(e3))

the second equality being proved as in the previous case. But X (e;)X(ez)
and X (e3) are of norm 1, thus the desired equality. O

3.16 Theorem. There is a diffeomorphism
G2/SU(2) = Vas

Proof. This is analogous to the previous theorem. The determinant condition
is managable by a direct basis computation. Since we don’t use this theorem
any further, we ommit details. O

3.17 Theorem. G, is compact, connected 14-dimensional Lie group.

Proof. Connectedness, dimension and compactness follows immediately from
the principal bundle structure on Gs. O

Now we mimic the previous procedure for G,. We have an interpretation
of the G5 form w (see (3.8)) similar as before : Denote

Q3 := (e' +ie®) A (€2 +ie®) A (e +ie")
Wl = —el® e 3
Then
w = —Re(Q3) — e* Awj

Let’s define
SU(1,2)

to be the group of complex 3 x 3 matrices of complex determinant 1 which
preserve a fixed hermitean form A given by

h(z,y) == +2191 — 227z — x3y3 for all ,y € C
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In our case this group SU(1, 2) will arise from a 6-dimensional vector space V
with a metric () of signature (2+,4—) with a complex structure J satisfying
|J(v)]|* = ||v||*. Then the familiar formula

(x,9)c := (@, y) +i(x, Jy)
defines the desired hermitean metric.

3.18 Theorem. There is a diffeomorphism
Go/SU(1,2) = H?!

Proof. This is analogous to the lemma 3.15 for G5. In fact only the very
last argument concerning the equality X (e;)X(e2) = X(e3) requires a dif-
ferent reasoning due to the indefinite signature : || X (e;)X (es)]]> = —1 and
we consider its projections to the basis X(e;),...,X(e7). We show that
(X(e1)X(e2), X(e;)) =0 for i =2,4,6, so X(e1)X(ez2) lies in a subspace of
negative signature. By 1 = (X (e1)X(e2), X(e3)) the conclusion follows. So
for i = 2 the equality (X (e;)X (e2), X(e1)) = 0 is obvious. For i = 4 we have

<X(€1)X(62),X(€4)> (X(e1)X(e2), e4) = —(X(e2), X(er)ea) =
—(X(e2), JX(e1)) = —(X(e2), X(e5)) = 0

since X preserves the metric.

(X(e1)X (e2), X(es)) = (X(e1)X(e2), X(e2) X (€a)) =
= —(X(e1) X (e2), X ()X (e3)) =
= —(X(e1), X(e4)) = (X (1) X (e4),1) =

= (X(e1)es, 1) = (JX(e1),1) = (X(e5),1) =0

3.19 Theorem. G, is noncompact connected 14-dimensional Lie group.

Proof. H*>* is obviously noncompact and connected, so the claim follows
from 3.18. O

3.4 More on octonions - Triality

We obtain some deeper results on (split-)octonions. Namely we prove the
Moufang identities 3.21 which are useful substitutes for the missing associa-
tivity. Finally we obtain the triality principle 3.25. The exposition in this
section is adapted from [5].
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3.20 Lemma. Let A be a good alternative® algebra and a, b, c,d € A. Then
(ab, cd) + (ad, cb) = 2(a, c)(b, d)
Proof.

(ab, cd) + (ad, cb) = ((ab)d*, c) + ((ad)b*,c) =
= (a(bd*) + (a,b,d") + a(db*) + (a,d,b"),c) = ...

Now use 2.8 and the alternativity to get (a, b, d*) + (a,d,b*) = 0. Thus
= (a(bd” + db"), c) = (a2(b,d), ¢) = 2{a, c)(b, d)

3.21 Theorem (Moufang identities). Let A be a nondegenerate alterna-
tive algebra. For all z,y, 2 € A we have

L. z(yz)z = (vy)(z2)

2. 2(yz) = (aya)(a'2)

3. (zy)z = (x27")(2y2)
Proof. We use 2.11 and 3.20.

1. Let t € A be arbitrary.

((zy)(zx), 1) = (zy, " 2")) = —(@(z"2"), ty) + 2(x, 1) {y, 2"2") =
= —|ll*(2", ty) + 2(z, t){zy, ) =
= |zl (z*y", t) + 2{a, t)(z, 2*y") =
= —||sv||2<(y2) L)+ 2(z, t) (2, (y2)")
This proves
(zy)(22) = —||x[|*(y2)" + 2(z, (y2)")z (10)

We see that (zy)(zx) depends only on x and on the product yz. So
changing the pair y, z to another one with the same product leaves the
result unchanged. Replace y by yz and z by 1 to get

(zy)(27) = (x(yz)) (1)

6Tn fact we need only skew-symmetry of the associator in the second and third variable.
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2. Let t € A be arbitrary.

((wya)(@™"2),t) = (a(ya), t(z"(z71))) = ...

Observe that (z71)* = =%

E
ce= ||g;1||2<x(z*x)at(y$)> + ﬁ@vt)(yl‘,z*m) _
- ||:c1||2<2*’$*<t<yw>>x*> R

Now we apply the Moufang identity we have already proved to get
a*(t(yz))a* = (2*t)(yaa*) = [lz[*(z"t)y :

o= =2 (2" )y) + 2(x, t)(yz, 1) = —((y2)", 2"t) + 2(z, t)(yz, 1)
Thus

(zyz)(z~'2) = —x(y2)*+2(Re(y2))x = —x(yz) +a(yz+(yz)*) = z(yz)

3. This is similar to the previous case. ]

3.22 Lemma. If
(zy)z = x(yz)
holds for all z,z € O (resp. Q), then y € R.

Proof. Let a,b,c € Im(Q) be such that ||a]|* = ||c/|* = 1 and
(ab)e = —a(bc) (11)

Then

{y,b) = ((ay)c, (ab)c)
Now use the assumption of the lemma to swap brackets in the first slot and
use (11) to swap brackets in the second slot :

(y,0) = {a(yc), —a(bc)) = —(yc, be) = —(y, )

Thus (11) implies (y,b) = 0. For every j =1,...,7 we have (y, e;) = 0 since
for every e; we can find e;, e, satisfying (11). For example for e; the triple is
ea, €1, €4 since (eger)ey = —ea(erey).

For the split octonions the proof is analogous, we also permit |lal|? =
|6]|* = —1 and then find the triples. O
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3.23 Lemma. Let a € O (resp. 0). Denote r(a) the reflection along a
hyperplane orthogonal” to a. Then there is a € O (Q) such that

r(a)r(1)(z) = Wama

r(D)r(a)(z) = Walxa1

for all z € O (0).

Proof. We have r(1)(x) = x—2(x,1) = —z* and r(a)(—2*) = —x*—Q%a.
Thus
lali*r(a)r(1)(z) = —lal*z" + 2(2", a)a

and by the equality (10) we have
lall*r(a)r(1)(z) = aza
The second equality is analogous. O]

3.24 Lemma. Let A, B,C € SO(8) (resp. SO(4,4)). Then A(zxy) =
B(x)C(y) for all z,y € O (resp. Q) iff there are b,c € @ (Q) such that
A(zy) = (A(x)b)(cA(x)). The (split-)octonions b, ¢ are called the compan-
ions of A. The companions uniquely determine and are uniquely determined

by B, C' via the following relations :

Proof. Put y = 1 to obtain A(z) = B(z)C(1) and set b := C(1)~!. Putz =1
to obtain A(y) = B(1)C(y) and set ¢ := B(1)~!. The converse is obvious.

For split octonions we have to check whether the inverses are defined, i.e.
whether ||B(1)]|?> and ||C(1)||* are nonzero. But we have

(A(z), A(y)) = (B(x)C(1), By)C(1)) = [CI*(B(x), B(y)) = [IC1)|[*(z,y)

hence ||C(1)]|* = 1 and similarly for B(1). O

"Orthogonality is meant with respect to the scalar product (). For the split octonions
this lacks the usual geometric sense.

42



3.25 Theorem (Triality). For every A € SO(8) (resp. SO(4,4)) there are
B,C € SO(8) (SO(4,4)) such that

A(zy) = B(x)C(y) forall z,y € O (0)

The only other pair of elements of SO(8) (SO(4,4)) with this property is
—B,—C. Equivalently, A € SO(8) (SO(4,4)) has companions b,c € S7
(resp. € H** the hyperboloid) and the only other pair of companions of A
is —b, —c.

Proof. 1. Existence of B,C :
By the Cartan-Dieudonné theorem ([8]) there is even number of re-
flections 7(a;) (i = 1,...,2n) such that A = r(ay)---r(az,). We can
suppose ||a;|| = 1. Write

A=r(a)r(D)r(Dr(az)---r(ag_1)r(1)r(1)r(az,)
By lemma 3.23 we have r(a:)r(1)(zy) = (@) (yai) and r(1)r(a;)(zy) =
(a; ') (ya; ') because of the Moufang identity.
A(zy) = (a1(az ' (- (azn-1(az, @) -+ ) (-~ (Yazy )aza—1) - - - a3 " ar)
Thus
A(wy) = (La Ly Loy, Lyt ) @) (Ray Ryt -+ Rug, R

a2n—1 a;w

()

Ao,

B(x) == (Lo Lyzr -+ L L,-1)(z) is in SO(8) since a;’s are of norm

Ao — —
a 2n—1 Qg

1. And for C(y) similarly.

2. Uniqueness property :
Let A € SO(8) and let both 7, s and r/, ¢" are its companions. We have

(A(z)r)(sA(y)) = (A(z)r')(s'Aly))

Choose t € O such that ' = rt. Choose x € O such that A(z) = r~!
(we are going to abbreviate this by saying "let A(z) = r=”) and let
A(y) = 1 to obtain

s=ts, ie. s =tts

So we have

(A(2)r)(sAly)) = (Al2)(rt))((t™"s)A(y))
Let A(x) = (rt)~! so that we get

t ' (sA(y)) = (t's)A(y)
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Let A(y) = (t7's)~! so that we get

This yields
(A(2)r)(sA(y)) = (A@x)r)t) (™ (sA(y)))
Finally let X = A(x)r and let tY = sA(y) to get
X(tY) = (Xt)Y

Since X,Y can be arbitrary elements of O, we can apply lemma 3.22
to get r € R.

Now since B, C' € SO(8), the norm of the companions r = C(1)7!, s =
B(1)~! must be equal to 1. Therefore the ¢ € R from the previous
discussion must be equal either 4+1 or —1.

3. For split-octonions the proof is formally same, we just ocassionally
check correctness of inverses. O]

3.5 Homogenenous spaces SO(7)/Gy and SO(3,4)/Gs

Now we exploit the results of the previous section to obtain identifications
of the homogeneous spaces mentioned.

3.26 Lemma ([5]). If a,b are the companions of A and ¢,d are the com-
panions of B, then (ab)(A(c)a), (bA(d))(ab) are the companions of AB.

Proof.

AB(zy) = A((B(x)c)(dB(y))) = (A(B(x)c)a)(bA(dB(y))) =
= [((AB(z)a)(bA(c)))al[b((A(d)a) (bAB(y)))] =

by the definition of the companions. Further by the Moufang identities 3.21
we obtain

.. = [((AB(z)a)a™")(a(bA(c))a)][(b(A(d)a)b) (b™" (bAB(y)))] =
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3.27 Example. The companions of L, are a,a 2. This is a direct con-

sequence of the Moufang law 3.21, 2. and uniqueness of the companions.
Analogously, the companions of R, are a2, a. By the previous lemma 3.26,
we get the companions for L,R,-1, namely a®,a=2. Thus

a(zy)at = (awva®)(aPza™t) for all 2,y € O (O) (12)

3.28 Lemma. Let A € SO(8) = SO(0) be such that A(1) = 1, s0 A €
SO(7). Then there is r(A) € S” € O, determined uniquely up to sign,
satisfying

A(zy) = (A(z)r(A)(r(A)tA(y)) for all 2,y € O
The map
SO(7) S RPT
is well defined, surjective and Ker(r) := {4 € SO(7) : r(A) = £1 € RP"} =
Go.

Proof. By the triality principle 3.25 we have some r, s € S” such that A(zy) =
(A(z)r)(sA(y)) for all z,y € O. Put x =y =1 to get 1 = rs. Thus A has
companions 7,7~ 1. ||r|| = 1 because A € SO(8). Uniqueness also follows from
the triality. Ker(r) = Gy is obvious. To prove surjectivity let &2 € RPT.
There is w € S7 such that w? = 2. Indeed, we can choose an unit octonion
orthogonal to z, then the algebra generated by this element and by z is
obviously isomorphic to the complex numbers. There we are able to solve
the equation w?® = z. Surely |Jw| = 1. Set

A(x) == wrw ™! = LyRy1(2)
We are to check w(zy)w™! = ((wz)w?)(w=3(yw™")), but this is (12). O
3.29 Theorem. There is a homeomorphism
SO(7)/Gy = RP7
Proof. Use the map r from the previous lemma to define

SO(7) /Gy ZRPT
[A] = r(A4)

where [A] denotes a class modulo Gs. First we observe that R is well defined :
let [A] = [B], i.e. B = AG for some G € (G5. By lemma 3.26 we have r(A) =
r(AG). Obviousy R is surjective and is easily seen to be even injective.
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The continuity of R depends on the choice of the reflections in the proof
of the triality principle 3.25. But this refers back to the Cartan-Dieudonné
theorem, so we would have to analyze the proof of this theorem. We don’t
give any formal proof and we just rely on reader’s geometric intuition. Tak-
ing the continuity of R granted, the continuity of the inverse follows from
compactness. [

Rewriting the proof of the previous 2 claims for @ we obtain :
3.30 Theorem. There is a homeomorphism
SO(3,4)/Gy = PH*
where PH** is the projectivization of the hyperboloid H**. O

There are very useful tables of homotopy groups in [6]. We use these
without mentioning throughout the paper. Namely we consider known low
homotopy groups of the following spaces (at least for small dimensions) :
spheres, SU(n), Spin(n) and real Stiefel manifolds.

3.31 Theorem. The first five homotopy groups of G5 are as follows :

7 112131415
m(G2) |00 |Z 0|0

Proof. Use 3.15 and homotopy long exact sequence (HLES) to compute
71(G2) = 0. Then use 3.29 and HLES to obtain the rest. O

4 (9-structures on manifolds

4.1 Basic properties

In this section we introduce the well known notion of G's-manifold. We give 4
definitions of (G, manifolds : via reduction of the frame bundle, via existence
of the 3-form associated to G5, via cross product and finally via octonionic
structure which formalizes the intuitive idea of identifying the tangent bundle
with the imaginary octonions. In 4.9 and 4.10 we prove equivalence of all the
definitions.

Through this text, M? denotes a smooth manifold® of dimension d.

4.1 Definition. Let G be a Lie subgroup of GL(d,R). A G-structure on a
manifold M9 is a principal G-subbundle of the frame bundle of M.

8We consider hausdorff and second countable manifolds only.
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Equivalently, a G-structure is a reduction of the structure group of the
tangent bundle TM to the group G. It’s well known that there is a G-
structure on the manifold M iff M admits an oper cover trivializing T'M
such that its transition functions take their values in G C GL(d).

4.2 Theorem. A 7-manifold M admits a Gs-structure iff there is a global
form w € A3T*M and an open cover U of M trivializing the tangent bundle
TM such that w is given by

W= 23 4 L5 _ 16T | 246 | 257 4 34T _ 336 (13)
on arbitrary U € U.

Proof. e Suppose there is an open cover U with Go-valued transition
functions of the tangent bundle. On every U € U define wy by the
local formula (7). Choose any two U,V € U be such that U NV # (.
Let ¥y be the transition function of the tangent bundle, we have
Yyy € Ga. So w transforms as wy (a, b, c¢) = wy(Yyvua, Yyub, Yyuc) =
(Yyu -wy)(a, b, c). Since Gy is the stabilizer of w (by 3.6) and U,V are
arbitrary, the form w is defined globally on M.

e Conversly, if there is an open cover such that (13) defines a global form
w, then the differentials of the transition functions of the manifold take
their values in the stabilizer of w, i.e. in Gb. 0

4.3 Theorem. A 7-manifold M admits a Gy-structure iff there is a global
form w € A3T*M and an open cover U of M trivializing the tangent bundle
TM such that w is given by

W= 2 5y 16T | 246 25T _ 347 | 336
on arbitrary U € U.

Proof. This is analogous to the previous statement - use 3.8. O

4.4 Theorem. Let M admit a G5 (G,) structure given by w € A3T*M.
Then

1. M is orientable.

2. Let Q € A"T*M be the volume corresponding to a choice of orientation.
There is a metric ¢ on M canonically associated to w and 2 by

WA Lyw A Lyw = —2g(u, v)
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Proof. 1. Gy C SO(7) by 3.10, so the transition functions of T'M with
the Gy-reduction preserve the orientation. Thus we can define a global
7-form on M. The same proof goes for Gs.

2. This is essentially 3.9. 0

4.5 Definition. Let (M, g) be a 7-dimensional (pseudo-)riemannian mani-
fold. Let
pweET"MTMRTM

For every m € M we define a x-algebra O,, as follows :
On =Rl1T, M
as a vector space. The multiplication on O,, is given by

1. 1 is the unit of O,,

2. For x,y € T,, M define
2y = [ (2,y) = gm(2, y)1
The conjugation is defined by
(ri+az) :=rl—a forreRazecT,M

€ T*M®T*M @ TM is called the (split-)octonionic structure iff for
every m € M the *-algebra O,, is isomorphic to the (split-)octonions O (resp.
0).

Therefore fi,,(z,y) corresponds to Im(zy) for 2,y € Im(Q) (resp. Im(0)).
Observe that in fact u € A*(T*M) @ TM.

4.6 Remark. There would be a more natural definition of the octonionic
structure for 8-dimensional manifolds. However it turns out that in this case
the 1-dimensional trivial bundle comming from 1 € O splits off the tangent
bundle.

4.7 Definition. Let (M, g) be a pseudoriemannian manifold. r-fold cross
product structure on (M, g) is a T'M-valued skew-symmetric global r-form
Pon M,ie.

PeNT"M®@TM

subject to axioms
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LolP(or, vl = [lor A A = det(g(vi, v7))i
2. g(P(vy,...,v.),v5) =0for 1 <j<r.
See [7] for more details.
4.8 Lemma. For a,b € Im(Q) we have
(Im(ab), Im(ab)) = [[al|*||bl|* — {a, )"

Proof. Use 2.7 and 2.11 :
1
(Im(ab), Im(ab)) = Z(ab —ba,ab — ba) =

1
= Z(Qabjt 2(a, by, 2ab+ 2(a, b)) =

= (ab, ab) + 2(a, b)(1, ab) + (a,b)* =
— alPUBI? + 2{a, B 0} + {0, B =
= [lal*[o]]* — {a,b)*

4.9 Theorem. The following conditions are equivalent for a 7-manifold M:
1. M admits a Ga-structure.

2. There is a global form w € A3T*M and an open cover U of M trivial-
izing the tangent bundle T'M such that w is given by

W= 23 4 45 _ 16T | 246 | 25T | 84T _ 336
on arbitrary U € U.

3. There is a riemannian metric g on M and an octonionic structure g
associated to this metric.

4. There is a riemannian metric g on M and a cross product structure P
associated to this metric.

Proof. e "(1) & (2)” is 4.2

e "(2) = (3)” There is the riemannian metric g by 4.4. Define p €
T*M @ T*M @ T M by

9(u(z,y),2) = w(@,y, 2) (14)
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We immediately see that p is skew-symmetric. We want to verify that
the x-algebra O (subscript m ommited) is isomorphic to Q. By the
Hurewicz theorem 2.36, it suffices to show O is positive definite (which
is immediate from the definition of O and the signature of g) and sat-
isfies ||ab||> = |lal]?||b||* for a,b € O (with ||a||* = aa*). Denote the
real part of @ € O by a, and the imaginary part by a;. Abbreviate
g(x) = g(z,x). We have

lal* = a7 = af = a7 — plai, a;) + glai) = a7 + g(a;)

ab = a,b, + a,b; + a;b. + p(a;, b;) — g(a;, b;)

Using these formulas and definition of y one easily computes

labll* = (arbr — g(ai, b:)* + a7g(bi) + 2a,b,9(ai, b;) + b7g(a:) + g(pu(ai, bi))
lal*16l* = (arbr)* + a7g(bi) + b7g(as) + g(ai)g(b:) (15)

So we are to verify

g(u(ai, b)) = g(ai)g(b;) — glai, b;)? (16)

It suffices to prove this in the octonionic formalism, since p(a;, b;) has
the same definition (14) as the imaginary part of the octonionic multi-
plication of two imaginary octonions. But it has been done in advance
in the previous lemma.

”(3) = (2)” Define
w(z,y, 2) = g(u(z,y), 2)
By the definition of O = O we have
p(z,y) = Im(zy) and g(z,y) = (2,y)
Therefore w(x,y, z) = (Im(xy), z) = (xy, z) and use 3.6.
”(3) = (4)” Define the cross product P € A*(T*M) @ TM by
P, y) = p(x,y)
Let’s verify the axioms of the cross product :
1. g(P(z,y)) = g(x)g(y) — g(x,y)*? Switch to octonions by the

definition of x and then this is again the previous lemma.
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o "(4) = (3

2. g(P(z,y),y) = g(P(z,y),y) = 07 We have (Im(zy), y) = (zy,y) =
lly|[*(x, 1) = 0 and the other equality is analogous.

_

” Define the octonionic structure p by

ple,y) = P(x,y)
The idea is very similar to that of ”(2) = (3)” - we use the Hurewicz
theorem to prove O = (. All the computations go the same way
(vanishing of certain terms of (15) is because of the second axiom of
the scalar product) until we end up with verifying (16) again. This
time it holds thanks to the first axiom of the cross product. O

4.10 Theorem. The following conditions are equivalent for a 7-manifold M:

1.
2.

M admits a ég—structure.

There is a global form w € A3T*M and an open cover U of M trivial-
izing the tangent bundle T'M such that w is given by (8) on arbitrary
Uel.

. There is a pseudoriemannian metric g of signature (3+,4—) on M and

an split-octonionic structure p associated to this metric.

. There is a pseudoriemannian metric g of signature (3+,4—) on M and

a cross product structure associated to this metric.

Proof. 1t is analogous to 4.9 using the corresponding results, namely 2.37
instead of the Hurewicz theorem. 0

4.2

Topological toolbox

The purpose of this section is mainly to set the notation. We collect some
well known topological facts. We ommit any proofs here.

4.11 Theorem. Let G C GL(n,R) and M™ be a manifold with the frame
bundle F'(M) considered as a principal GL(n,R)-bundle. Denote ¢ the clas-
sifying map M -% BGL(n) of the frame bundle. Then there is a G-structure
on M iff there is a lift ¢ of ¢ from BGL(n) to BG such that the following
diagram commutes :




4.12 Theorem (Moore-Postnikov decomposition). Let E % B be a fi-
bration with B connected. Then there are fibrations E"t1 2% Flnl and maps
E % EM for n > 0 such that the following diagram commutes.

Y
/ P2
q1

E i
%
b1
gl
Moreover the following holds :
il g plnl

K (Tpir (FIY, 0 4 1) — BRI Bl
E%.=pB, FO.=F
and

me(E) S mp(EM) for k< n

An#
7Tn+1(E) a“ :’;# 7Tn+1(E[n])
Ofork<n
[n]\ o~ —
() = { i (F) for k > n

4.13 Theorem. Let X be a CW-complex with dim(X) < n and ELBa
fibration. Then the lift f exists iff f,, exists :

E Il
2 p & R p
X / B X / B
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4.14 Theorem ([6]). Let R be a ring. Denote R[z1,...,x,] a polynomial
algebra over R generated by elements x4, ..., z, with degrees specified.

1. Stiefel-Whitney classes

H*(BO(n),Zy) = Zs|wy, ws, . .., w,| with degw; =i
H*(BSO(n),Zs) = Zs|ws, ws, . .., w,| with w; as above

2. Chern classes
H*(BU(n),Z) = Zlc1,ca . .., cy) with dege; = 2i
4.15 Lemma. Let E % B be a pullback of a path fibration PK (7, n) — K (m,n)
via a map w: B — K(m,n).

E— PK(m,n)

|
.
B—"1 K(r,n)

~

Denote ¢ € H"(K(w,n),7) the fundamental class. Then the lift f of f exists
iff (wf)*(¢) =0, where (wf)* is the map induced by the composite wf on
cohomology.

4.3 Existence

We finally solve the problem of the existence of the Gs-structure on a 7-
manifold. We rely on some knowledge of BG5 and SO(7)/G5 from the pre-
vious sections. We briefly discuss the difficulties we face if we try to use the
same method for @2.

4.16 Theorem. M is orientable iff the first Stiefel-Whitney class wq (M)
vanishes.

Proof. Denote f the classifying map of the frame bundle of M. Orientability
is equivalent to the existence of a lift of f from BO(n) to BSO(n). There is
a fibration

Zs = O(n)/SO(n) — BSO(n) 2 BO(n)
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Let BO(n) % K(Zy,1) be a map to be specified later. Let Fy 5 K(Z,, 1) be
a pullback of the path fibration PK(Zs,1) — K(Zs,1) via w. Consider the
following diagram, the map ¢ is to be defined later :

Z Z
BSOMm) -t -+ B, —+ PK(Zs,1)
p P1

BO(n) —— BO(n) —v K(Zs,1)

From the homotopy exact sequence we see that p;4x induces isomorphism
Bl = mBO(n) for all k£ > 2. We want to choose w so that p; induces
isomorphism even on 7; and moreover ¢ exists and makes the diagram com-
mutative. For m; we have the following commutative diagram :

7T1E1 WlpK(ZQ,l) =0

| |

P1#

w
Zy = mBO(n) —» m K (Zs,1) = Zy
P14 is mono so we get mFE; = 0 iff wy # 0. By the Hurewicz isomorphism
we have wy # 0 iff HY(K(Z,1),7Z,) ng(BO(n),Zg) is nonzero. So the
desired w is the unique one satisfying w*(+) = wy, the first Stiefel-Whitney
class.
Since w; pulls back to 0 via p*, by 4.15 we get the existence of ¢ lifting p.

Applying homotopy exact sequences to the left square we find that g4 induces
isomorphism on 7’s for £ > 1. The case k = 1 is trivial since 7 BSO(n) =

mE; = 0. So gy is a weak equivalence, hence [X, BSO(n)] %X, By is
bijection. Thus f lifts to BSO(n). O

4.17 Example. Using the long exact sequence for the fibration
Zy — S" — RP"
for n > 2 we find that

n\ ZQ for k=1
m(RP") = { me(S™) for k # 1
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In particular, the only nontrivial homotopy group of RP7 up to the sixth is
1 (RP7) = ZQ.

4.18 Theorem. M admits a Go-structure iff the first two Stiefel-Whitney
classes wy (M), we(M) vanish.

Proof. By 4.4, the necessary condition for the existence of Ga-structure is
the orientability of M. By 4.16 this implies w;(M) = 0. Thus it suffices to
restrict to orientable manifolds and consider the lifting problem from BSO(7)
to BG5 only. As seen in 3.29, the fibration

SO(7)/Gy — BGy — BSO(T)

has in fact fiber RP7 and by the computation of the homotopy groups of RP”
the only obstruction lies in H?(BSO(7),Zs) = Zows, wy being the second
Stiefel-Whitney class.

Fl— SO(7)/Gy > K(Zy,1)

12

E,

BSO(T) — BSO(7) ) K(Z,,2)

By the Serre exact sequence we have
HY(BG,,7;) — HY(RP",Zy) = H*(BSO(7),Zy) — H*(BGs,Zs)

By 3.31 we have H'(BGy,7Z;) = H*(BGs,Z;) = 0. Therefore 7 is an
isomorphism and 7(¢) = wy for the fundamental class ¢, the generator of
HY(RP7,Z). Thus the lift exists iff wqo(M) = 0. O

For G, the analogous attack is far more complicated. We need some
information on H*(BG5) and H*(BSO(3,4)), but we don’t have any. Further
we need to know the first six homotopy groups of SO(3,4)/Gs. Even though
we have the identification of this homogeneous space with the projectivized
hyperboloid PH3* (which deformation retracts to RP?), we are not able
to compute a single homotopy group using the homotopy exact sequence
without further knowledge of the homomorphisms.
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5 One more 3-form

5.1 Formulation

In this short section we show that the problem of the existence of 3-form w of
type 3 on a 7-manifold M is, under some simplifying conditions, equivalent
to the existence of an almost complex structure on certain 6-dimensional
subbundle of T'M.

The multisymplectic 3-form of type 3 (see [4]) is the one which has local
coordinates expression

w=-e" A (T — % + ) (17)

which means that there is an open cover U trivializing T'M such that w is
given by (17) on each U € U.

5.1 Lemma. Let M be a 7-manifold admitting a 3-form w of type 3. Denote

Zy ={aeTM": a Nw =0}
D,:={veTM:al)=0foral aecZ,}

Then D, is 6-dimensional vector subbundle of T'M, thus
T™M =D, C
for an 1-dimensional complement bundle C' to D,,.

Proof. The dimension of D, is easily seen from the local formula (17). We
just remark that in the local coordinates Z, is spanned by e' and D, is
spanned by es, es, ..., er. O

5.2 Lemma. If C of 5.1 is trivial, i.e. there is a nowhere vanishing vector
field v on M spanning C, then t,w is a nondegenerate 2-form on the bundle
D,.

Proof. Again, this follows directly from (17). OJ

5.3 Theorem. There exists a nondegenerate 2-form on a vector bundle & iff
there exists an almost complex structure on &.

Proof. We perform the constructions locally on a vector space V.
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e Assume there is a complex structure J on V. Take a metric § on V.
Define

9(x,y) = gz, y) + g(Jz, Jy)
g is indeed a metric and we easily see that g(Jx, Jy) = g(x,y). Define

w(x, y) = g(Jl’, y)

Then w(z,y) = g(Jz,y) = g(J’z, Jr) = —g(z, Jy) = —g(Jy,z) =
—w(y, ) shows the skew-symmetry of w. The nondegeneracy follows
from regularity of .J.

e Assume there is a nondegenerate 2-form w on V. Let g be an arbitrary

metric on V. By nondegeneracy of w there is unique automorphism A
of V such that

9(Az,y) = w(z,y)

A is skew-symmetric : g(Azx,y) = w(x,y) = —w(y,x) = —g(Ay,z) =
—g(z, Ay). Hence for  # 0 we have g(—A%z,x) = g(Az, Az) > 0, i.e.
—A? is positive. By the well known spectral theorem we find a positive
B such that —A? = B?. We claim that

J:=B'A

is a complex structure on V. To see this we have to show AB = BA
because then

(B'A? =B 'AB'A=B?A*= 1

First we observe that ABA™! is positive : Let v be an eigenvector of
B with eigenvalue A > 0. Then ABA™'(Av) = AB(v) = AA(v) hence

B and ABA~! have the same eigenvalues - all positive.

Now recall that for any positive automorphism there is its uniquely
determined positive square root. We find two positive square roots
for the positive automorphism —A? : We have B? = —A? and also
(ABA™Y)2 = AB2A™! = A(—A*)A~1 = — A% Hence

B=ABA™!
as required.

The standard arguments allow us to do everything pointwise and continu-
ously. We just remark that A and B above are determined uniquely. 0
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5.2 Existence

We prove the theorem 5.5 on the existence of an almost complex structure
on a 6-dimensional vector bundle over an oriented 7-manifold and use it to
partially solve the problem of the previous section.

5.4 Lemma. The first six homotopy groups of SO(6)/U(3) are as follows :

1 11213456
m(S06)/UBY |0z |0[0]00

Proof. For k = 1,...,5 this is taken from [9]. For £k = 6 we apply the
homotopy exact sequence :

76(SO(6)) — m6(SO(6)/U(3)) % m5(U (3)) 2 75 (SO(6)) — 75(SO(6)/U(3))

SO

0 — 16(SO6)/UB) 5257 — 0
We see that (3 is epi and thus iso and this implies a = 0, thus the result. [

5.5 Theorem. There is an almost complex structure on an orientable 6-
dimensional vector bundle £ over a 7-manifold M iff fwsy(€) = 0, B being the
Bockenstein homomorphism and ws the second Stiefel-Whitney class.

Proof. The existence of an almost complex structure on £ is equivalent to
the lifting of the classifying map from BSO(6) to BU(3). In the previous
lemma we have obtained the homotopy groups of the fiber of the fibration

SO(6)/U(3) — BU(3) — BSO(6)

up to the sixth. This implies that there is only one obstruction.

Fl — S0(6)/U(3) ——~ K(Z,2)

12

BU(3)

BSO(6) ——» BSO(6) ) K(Z.3)
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At first we compute the first three integral cohomology groups of BSO(6).
We have

Zy = mSO(6) = 1, BSO(6) = Hy(BSO(6), Z)
0 = mS0(6) = 73 BSO(6) — H3(BSO(6), Z)

by the Hurewicz theorem. By UCT we get
0 — Ext(H,(BSO(6),7Z),7Z) — H*(BSO(6),Z) — Hom(Hy(BSO(6),Z),Z) — 0

hence
H?*(BSO(6)) = Hom(Zy,Z) = 0

Similarly
H?*(BSO(6)) = Ext(Z, Z) = 7

Consider the coefficient exact sequence
0—Z37 =7 —0
and the associated cohomology exact sequence applied to BSO(6) :
0= HX(BSO(6),Z) — HX(BSO(6),Z,) > H¥(BSO(6),Z) = Zs

So 3 is mono and therefore it maps 0 # wy, € H*(BSO(6),Z,) to a nonzero
element of H3(BSO(6),Z), hence (3 is iso. Concluding, H*(BSO(6)) is gen-
erated by [(ws) of order 2.

Serre sequence for the fibration BU(3) % BSO(6) gives

H*(K(Zy)) = H*(BSO(6)) — H*(BU(3)) = 0

Hence 7 is surjective and therefore 7(:) = B(ws).
Thus the lift exists iff 5(w2(€)) = 0. O

5.6 Theorem. There is a nowhere vanishing vector field on an orientable
manifold M iff the Euler class e(M) vanishes.

Proof ([11]). Let M be n-dimensional. The existence problem is equivalent
to lifting the classifying map of TM from BSO(n) to BSO(n — 1). The
fibration

S"t 2>~ S0(n)/SO(n — 1) — BSO(n — 1) — BSO(n)
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has fiber S™~! so the only obstruction for the lifting is in dimension n.

F L5l L K(Zon—1)

12

BSO(n) ——— BSOMm) — k(2. n)

By the Serre sequence we get
H (5" I HMBSO(n)) 5 HM(BSO(n — 1))
We compute Im 7 = Ker p* using the Gysin sequence :
71 = HY(BSO(n)) % H*(BSO(n)) & H*(BSO(n — 1))

We see Ker p* = Ze, where e is the Euler class. Recall that e is a nontorsion
element vanishing for n odd.

The generator ¢ € H"'(S™™!) maps onto a generator of Im 7, i.e. 7(¢) =
+e. Thus the lift exists iff e(M) = 0. O

5.7 Theorem. Let M be an orientable 7-manifold. If S(wy(M)) = 0, then
TM admits a 3-form of type 3. Conversly if M admits a 3-form of type 3
such that C of 5.1 is trivial, then S(wy(M)) = 0.

Proof. e Let M admit w and C be trivial, i.e. spanned by nowhere
vanishing vector field v. By 5.2 there is a nondegenerate 2-form on D,,,.
Since T'M is orientable so is D,,. By 5.5 we obtain G(ws(D,,)) = 0. But
wa (M) = we(TM) = we(D,, ® C) = we(D,,) since C is trivial.

e Let B(wy(M)) = 0. Because e(M) = 0 for odd dimensional manifolds,
by 5.6 we have a nowhere vanishing vector field v on T'M. Denote C'
the trivial line bundle spanned by v. We have

TM=C®D
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for some 6-dimensional vector bundle D over M. As before we have
B(wy(D)) = 0 and by 5.5 and 5.3 there is a nondegenerate 2-form @ on
D. Choose v* € T*M dual to v and define

wi=v"A®

w is indeed a multisymplectic form of type 3 as seen by using the
classification of [4] - r(w) = 0. O
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