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Katedra (ústav): Katedra algebry
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Abstrakt: Nechť R je komutativńı 1-Gorenstein̊uv okruh. Hlavńım výsledkem této

práce je charakterizace všech vychyluj́ıćıch a kovychyluj́ıćıch modul̊u nad R, až na

ekvivalenci, jsou charakterizovány podmnožinami množiny všech prvoideál̊u výšky

jedna. Přesněji, každý vychyluj́ıćı (kovychyluj́ıćı) R-modul je ekvivalentńı nějakému

Bassovu vychyluj́ıćımu (kovychyluj́ıćımu) modulu. Tato charakterizace byla známa

ve speciálńım př́ıpadě Dedekindových obor̊u integrity, v kapitole 4 je uveden nový

a jednodušš́ı d̊ukaz tohoto faktu. Důkaz hlavńıho výsledku je proveden v kapi-

tole 5 a kapitola 6 zahrnuje kovychyluj́ıćı př́ıpad. V kapitole 4 je ještě uveden

d̊ukaz nepř́ılǐs známého faktu, že konečně generované vychyluj́ıćı moduly nad komu-

tativńımi okruhy jsou projektivńı.
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Abstract: Let R be a commutative 1-Gorenstein ring. Our main result character-

izes all tilting and cotilting R-modules: up to equivalence: they are parametrized

by subsets of the set of all prime ideals of height one. More precisely, every tilt-

ing (cotilting) R-module is equivalent to some Bass tilting (cotilting) module. This

characterization was known in the particular case of Dedekind domains: Chapter 4

contains a new and simpler proof of this fact. Our main result is proved in Chapter

5, while Chapter 6 deals with the cotilting case. In Chapter 4, there is also a proof of

the less well-known fact that all finitely generated tilting modules over commutative

rings are projective.
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1 List of symbols

Mod-R the class of all right R-modules

R-Mod the class of all left R-modules

P the class of all modules of finite projective dimension

Pn the class of all modules of projective dimension ≤ n

I the class of all modules of finite injective dimension

In the class of all modules of injective dimension ≤ n

F the class of all modules of finite flat dimension

Fn the class of all modules of flat dimension ≤ n

mod-R the class of all modules possesing a projective resolution consisting of

finitely generated modules

C<κ the subclass of C formed by all the modules possessing a projective

resolution consisting of < κ-generated projective modules

C<ω = C ∩ mod-R

CM the class of all cyclic modules

Add(T ) the class of all direct summands of arbitrary direct sums of copies of a

module T

Prod(C) the class of all direct summands of arbitrary direct products of copies of

a module C

C⊥ = Ker Ext1R(C,−) (= {N ∈ Mod-R | Ext1R(C,N) = 0 for all C ∈ C})
C⊥i = Ker ExtiR(C,−)

C⊥∞ =
⋂

1≤i<ω C⊥i

⊥C = Ker Ext1R(−, C) (= {N ∈ Mod-R | Ext1R(N,C) = 0 for all C ∈ C})
⊥iC = Ker ExtiR(−, C)
⊥∞C =

⋂

1≤i<ω
⊥iC

C⊺ = Ker Tor1
R(C,−) (= {N ∈ Mod-R | Tor1R(C,N) = 0 for all C ∈ C})

C⊺i = Ker ToriR(C,−)

C⊺∞ =
⋂

1≤i<ω C⊺i

Ωi(M) the class of all the i-th syzygies occurring in all projective resolutions of

a module M

Ω−i(M) the class of all the i-th cosyzygies occurring in all injective coresolutions

of a module M

mSpecR the set of all maximal ideals of a ring R

SpecR the set of all prime ideals of a commutative ring R

dim R the Krull dimension of a commutative ring R
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In the following, ring will allways mean an associative ring with a unit.

2 Basics

2.1 General case

In this subsection we will prove some basic facts from the theory of modules over

generally non-commutative rings.

Definition 2.1. Let C be a class, for each pair A,B ∈ C, let morC(A,B) be a set.

Write the elements of morC(A,B) as ’arrows’ f : A → B for which A is called the

domain and B the codomain. Finally, suppose that for each triple A,B,C ∈ C there

is a mapping

◦ : morC(B,C) × morC(A,B) → morC(A,C).

We denote the arrow assigned to a pair

g : B → C f : A→ B

by the arrow gf : A → C. The system C = (C,morC, ◦) consisting of the class C,

the mapping morC : (A,B) 7→ morC(A,B), and the partial mapping ◦ is a category

in case

(i) for every triple h : C → D, g : B → C, f : A→ B,

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

(ii) for each A ∈ C, there is a unique idA ∈ morC(A,A) such that if f : A → B

and g : C → A, then

f ◦ idA = f and idA ◦ g = g.

If C is a category, then the elements of the class C are called the objects of the

category, the ’arrows’ f : A → B are called the morphisms, the partial mapping

◦ is called the composition, and the morphisms idA are called the identities of the

category.

Example 2.2. 1. Let R be the class of all rings, let morR(R,S) be the set of all

ring homomorphisms from R to S and ◦ be the usual composition of mappings.

Then R = (R,morR, ◦) is the category of rings.

2. Let R be a ring, let MR be the class of all right R-modules, let morMR
(M,N)

be the set of all right R-module homomorphisms from M to N and ◦ be

the usual composition of mappings. Then Mod-R = (MR,morMR
, ◦) is the

category of right R-modules.
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3. Let R be a ring, let RM be the class of all left R-modules, let mor
RM (M,N) be

the set of all left R-module homomorphisms from M to N and ◦ be the usual

composition of mappings. Then R-Mod = (RM,mor
RM , ◦) is the category of

left R-modules.

Definition 2.3. A category D = (D,morD, ◦) is a subcategory of C = (C,morC, ◦)
provided D ⊆ C, morD(A,B) ⊆ morC(A,B) for each pair A,B ∈ D, ◦ in D is the

restriction of ◦ in C. If in addition morD(A,B) = morC(A,B) for each A,B ∈ D,

then D is a full subcategory of C.

Definition 2.4. Let C = (C,morC, ◦) and D = (D,morD, ◦) be two categories. A

pair of mapping (F ′, F ′′) is a covariant functor from C to D in case F ′ is a mapping

from C to D, F ′′ is a mapping from the morphisms of C to those of D such that for

all A,B,C ∈ C and all f : A→ B and g : B → C in C,

(F1) F ′′(f) : F ′(A) → F ′(B) in D,

(F2) F ′′(g ◦ f) = F ′′(g) ◦ F ′′(f),

(F3) F ′′(idA) = idF ′(A).

A contravariant functor is a pair F = (F ′, F ′′) satysfying instead of (F1) and (F2)

their duals

(F1)* F ′′(f) : F ′(B) → F ′(A) in D,

(F2)* F ′′(g ◦ f) = F ′′(f) ◦ F ′′(g),

(F3) F ′′(idA) = idF ′(A).

Remark 2.5. Given a functor F = (F ′, F ′′), we will write F (A) and F (f) instead of

F ′(A) and F ′′(f).

Definition 2.6. Let C and D be categories. Let F and G be functors from C to

D, both covariant (the ’contravariant version’ is at the end of this definition). Let

η = (ηA | A ∈ C) be a family of morphisms in D such that for each A ∈ C,

ηA ∈ morD(F (A), G(A)).

Then η is a natural transformation from F to G, denoted η : F → G, in case for

each pair, A,B ∈ C, and each f ∈ morC(A,B) the diagram

F (A)
F (f) //

ηA

��

F (B)

ηB

��
G(A)

G(f) // G(B)

12



commutes, that is ηB ◦F (f) = G(f) ◦ ηA. (If both F and G were contravariant, the

only change would be to reverse the arrows F (f) and G(f).)

Remark 2.7. Let R, S be rings. Let F,G : Mod-R → Mod-S be additive functors,

both covariant or contravariant. Let hM : F (M) → G(M), M ∈ Mod-R be a

homomorphism such that h = (hM |M ∈ Mod-R) is a natural transformation from

F to G. Then we say that hM is natural and we often write h instead of hM when

it is clear which hM is ment.

Definition 2.8. Let R,S be rings. Let C be a full subcategory of the category of

right (left) R-modules and D be a full subcategory of the category of right (left)

S-modules. Then a functor F (covariant or contravariant) from C to D is additive

in case for each M,N , modules in C, and each pair f, g : M → N in C,

F (f + g) = F (f) + F (g).

In particular, if F is additive and covariant, then the restriction

F : HomR(M,N) → HomS(F (M), F (N))

is an abelian group homomorphism, whereas if F is additive and contravariant, then

the restriction

F : HomR(M,N) → HomS(F (N), F (M)

is an abelian group homomorphism.

Definition 2.9. Let R be a ring. A non-zero element a ∈ R is called left zero-

divisor if there is a non-zero element b ∈ R such that ab = 0. A non-zero element

a ∈ R is called right zero-divisor if there is a non-zero element b ∈ R such that

ba = 0. A non-zero element a ∈ R is called zero-divisor if it is both a left and a

right zero-divisor. Note that if R is commutative then a non-zero element a ∈ R is

a left zero-divisor iff it is a right zero-divisor iff it is a zero-divisor.

A non-zero element a ∈ R is left regular if it is not a left zero-divisor. A non-zero

element a ∈ R is right regular if it is not a right zero-divisor. A non-zero element

a ∈ R is regular if it is both left and right regular.

Note that if R is commutative then a non-zero element a ∈ R is left regular iff

it is right regular iff it is regular.

Definition 2.10. Let R be a ring. A right (left) ideal m of R is maximal if the

following two conditions hold

(i) m 6= R,

(ii) there is no right (left) ideal I of R satisfying m ( I ( R.

13



The set of all maximal right (left) ideals of R is denoted by mSpecR.

Definition 2.11. Let R be a ring and M be a right (left) R-module. Then a

submodule A of M is maximal if

1. A 6= M ,

2. there is no other right (left) R-submodule A′ of M satysfying A ( A′ ( M .

And a submodule B of M is minimal if

1. B 6= 0,

2. there is no other right (left) R-submodule B′ of M satysfying 0 ( B′ ( B.

Remark 2.12. Let R be a ring, M be a right (left) R-module and N be a submodule

of M . If N 6= M then we say that N is a proper submodule of M .

Definition 2.13. Let R be a ring and let M be a right (left) R-module. Then we

define a cardinal gen(M) in the following way

gen(M) = min {|X| | X is a generating subset of M}.

If gen(M) < κ, where κ is an infinite cardinal, we say that M is < κ-generated, if

M is < ℵ1-generated we say that M is countably generated, if M is < ℵ0-generated

we say that M is finitely generated and if gen(M) = 1, we say that M is cyclic. The

class of all cyclic right (left) R-modules will be denoted CM.

Theorem 2.14. Let R be a ring and M be a finitely generated right (left) R-module.

Then every proper submodule of M is contained in a maximal submodule. In par-

ticular, M has a maximal submodule.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let K be a proper submodule of M . Then there is a finite sequence x1, x2, . . . , xn ∈
M such that

M = K + x1R+ x2R+ · · · + xnR.

So certainly among all such sequences there is one of minimal length (presumably

there are several such sequences), and so we may assume that x1, x2, . . . , xn has

minimal lenght. Then

L = K + x2R+ x3R+ · · · + xnR

is a proper submodule of M (otherwise the too short sequence x2, x3, . . . , xn would

do for x1, x2, . . . , xn). Let P be the set of all proper submodules of M that contain

L. By The Zorn’s Lemma, P has a maximal element, say N . Because N is maximal

in P any strictly larger submodule of M is not in P , and so contains x1. But then

any such submodule must contain N + x1R ⊇ L+ x1R = M . Thus N is a maximal

submodule of M . For the final statement of the Theorem let K = 0.
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Definition 2.15. Let R be a ring, M be a right (left) R-module and {Mα | α ∈ A}
be a set of submodules of M . Then we say that the set {Mα | α ∈ A} is independent

if Mα ∩ (
∑

β 6=αMβ) = 0 for all α ∈ A.

Remark 2.16. Let R be a ring, M be a right (left) R-module and {Mα | α ∈ A} be

an independent set of submodules of M . Then
∑

α∈AMα =
⊕

α∈AMα.

Definition 2.17. Let R be a ring and S be a non-zero right (left) R-module. Then

S is called simple if S has no non-zero proper submodules.

Lemma 2.18. Let R be a ring and S be a right (left) R-module. Then S is simple

iff S ≃ R/m, where m is a maximal right (left) ideal of R.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

For every m ∈ mSpecR, R/m is clearly a simple right R-module.

For the implication to the right, define an R-module homomorphism ϕ : R→ S

by ϕ(r) = mr, where m is an arbitrary non-zero element of S. By The First

Isomorphism Theorem, S ≃ R/Ann(m) and by the simplicity of S, Ann(m) is a

maximal right ideal of R.

Definition 2.19. Let R be a ring and M be a right (left) R-module. Then the socle

of M , denoted Soc(M), is defined by

Soc(M) =
∑

{S | S is a simple submodule of M},

if M has no simple submodules we set Soc(M) = 0.

Lemma 2.20. Let R be a ring, M be a right (left) R-module and let {Sα | α ∈ A} be

a set of all simple submodules of M . Then for each submodule K of Soc(M), there

is a subset B ⊆ A such that the set {Sβ | β ∈ B} is independent and Soc(M) =

K ⊕ (
⊕

β∈B Sβ).

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

By Definition 2.19, we have Soc(M) =
∑

α∈A Sα. Let K be an arbitrary submodule

of Soc(M). By the Zorn’s Lemma, there is a subset B ⊆ A maximal with respect

to the conditions that {Sβ | β ∈ B} is independent and K ∩ (
∑

β∈B Sβ) = 0. Then

the sum

N = K + (
∑

β∈B

Sβ) = K ⊕ (
⊕

β∈B

Sβ)

is direct. We claim that N = Soc(M). For let α ∈ A. Since Sα is simple, either

Sα ∩N = Sα or Sα ∩N = 0. But Sα ∩N = 0 would contradict the maximality of

B. Thus Sα ⊆ N for all α ∈ A, so N = Soc(M). So the claim is true.

Corollary 2.21. Let R be a ring and M be right (left) R-module. Then

15



1. there is a set {Sα | α ∈ A} of simple submodules of M such that Soc(M) =
⊕

α∈A Sα,

2. every submodule of Soc(M) is a direct summand in Soc(M).

Proof. (1) follows from Lemma 2.20 by setting K = 0.

(2) follows directly from Lemma 2.20.

Lemma 2.22. Let R be a ring and M , N be right (left) R-modules and f : M → N

be an R-module homomorphism. Then f(Soc(M)) ⊆ Soc(N).

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Since f(Soc(M)) is generated by it’s submodules of the form f(S), where S is a

simple submodule of M , it is enough to prove that f(S) ⊆ Soc(N) for all simple

submodules S ofM . But since S is simple we have either Ker f↾S
= 0 or Ker f↾S

= S,

so either f(S) ≃ S ⊆ Soc(N) or f(S) ≃ 0 ⊆ Soc(N). So the claim is true.

Lemma 2.23. Let R be a ring and m be a maximal right ideal of R. Then

R/m ≃ HomR(R/m,E(R/m))

as abelian groups.

Proof. Clearly Soc(R/m) = R/m and Soc(E(R/m)) ⊇ R/m. Since R/m is essential

in E(R/m), Corollary 2.21 implies that Soc(E(R/m)) = R/m. By Lemma 2.22 we

have

HomR(R/m,E(R/m)) ≃ HomR(R/m,R/m) ≃ R/m.

So the claim is true.

Lemma 2.24. Let R be a ring, M , M ′ be right (left) R-modules, N be a sub-

module of M and let δ ∈ HomR(M,M ′) be an arbitrary R-module homomor-

phism such that N ⊆ Ker δ. Then there exists a unique R-module homomorphism

δ′ ∈ HomR(M/N,M ′) such that δ′π = δ, where π is the canonical projection.

Proof. Define δ′(m+N) = δ(m).

Definition 2.25. Let R be a ring and M be a right R-module. Then the right

annihilator of an element m ∈ M , denoted Ann(m), is defined by Ann(m) = {r ∈
R | mr = 0}. The right annihilator ofM , denoted Ann(M), is defined by Ann(M) =

{r ∈ R | mr = 0 for all m ∈M} =
⋂

m∈M Ann(m).

Analogously, we can define the left annihilator of an element of a left R-module

and the left annihilator of a left R-module. If the ring R is commutative we call the

left (= right) annihilator just an annihilator.

If r ∈ Ann(m) then we say that r annihilates m and if r ∈ Ann(M) then we

say that r annihilates M .
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Lemma 2.26. Let R be a ring and M be a right (left) R-module. Then

1. right (left) annihilator of any element of M is a right (left) ideal of R,

2. right (left) annihilator of M is a two-sided ideal of R.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

The part (1) is clear.

Ann(M) is clearly a right ideal of R. But since m(sr) = (ms)r = 0 for each

r ∈ Ann(M), s ∈ R and m ∈ M , Ann(M) is also a left ideal of R. So the claim is

true.

Remark 2.27. Let R be a ring and M be a right (left) R-module. If I is a right

(left) ideal of R such that I ⊆ Ann(M), then M is a right (left) R/I-module via

scalar multiplication m(r + I) = mr ((r + I)m = rm). This is well-defined for if

r + I = s + I, then r − s ∈ I ⊆ Ann(M) and so m(r − s) = 0 ((r − s)m = 0). In

particular, we have that M is always a right (left) (R/Ann(M))-module.

Definition 2.28. Let R be a ring. Then the Jacobson radical, denoted J(R), of the

ring R is defined as the intersection of all maximal right ideals of R (in the following

we will prove that J(R) is also the intersection of all maximal left ideals of R).

Lemma 2.29. Let R be a ring. Then J(R) is the intersection of all right annihila-

tors of simple right R-modules.

Proof. Assume r ∈ J(R). If M is a simple right R-module, choose any non-zero

element m ∈ M . Analogously as in the proof of Lemma 2.18, M ≃ R/Ann(m) and

Ann(m) is a maximal right ideal of R. Thus r ∈ Ann(m) for each element m ∈ M ,

and so by Definition 2.25, r ∈ Ann(M).

If r annihilates each simple right R-module then by Lemma 2.18, r annihilates

each right R-module R/m, wherem is a maximal right ideal of R. Thus in particular

(1+m)r = 0 for each maximal right ideal m of R and it is iff r ∈ m for each maximal

right ideal m of R. So r ∈ J(R).

Corollary 2.30. Let R be a ring. Then J(R) is a two-sided ideal.

Proof. This follows from Lemmas 2.29 and 2.26.

Definition 2.31. Let R be a ring. Then an element r ∈ R is right quasi-regular,

(rqr) if 1 − r has a right inverse, left quasi-regular, (lqr) if 1 − r has a left inverse,

and quasi-regular, (qr) if 1 − r is invertible.

Lemma 2.32. Let R be a ring and r ∈ R. The the following are equivalent

1. r is rqr and lqr,

17



2. r is qr.

Proof. This follows from the fact that if (1 − r)s = t(1 − r) = 1, then t = t1 =

t(1 − r)s = 1s = s.

Lemma 2.33. Let R be a ring and I be a right ideal of R. If every element of I is

rgr, then every element of I is qr.

Proof. If r ∈ I, then we have (1 − r)s = 1 for some s ∈ R. Let t = 1 − s, so that

(1 − r)(1 − t) = 1 − r − t + rt = 1. Thus t = rt − r = r(t − 1) ∈ I. By hypotesis,

t is rqr, so (1 − t) has a right inverse. But we know that (1 − t) has a left inverse

(1 − r), so t is also lqr. By Lemma 2.32, t is qr and (1 − t) is the two-sided inverse

of (1 − r). So the claim is true.

Lemma 2.34. Let R be a ring. Then the Jacobson radical J(R) is the largest

two-sided ideal consisting entirely of quasi-regular elements.

Proof. First, J(R) is a two-sided ideal by Corollary 2.30.

We show that each r ∈ J(R) is rqr, so by Lemma 2.33, each r ∈ J(R) is qr.

If (1 − r) has no right inverse, then (1 − r)R is a proper right ideal of R, which

is contained in a maximal right ideal I by Theorem 2.14. But then r ∈ I and

(1 − r) ∈ I, and therefore 1 ∈ I, a contradiction.

Now we show that every right ideal (hence every two-sided ideal) I consistinq

entirely of quasi-regular elements is contained in J(R). If r ∈ I but r 6∈ J(R), then

for some maximal right ideal K we have r 6∈ K. By maximality of K, we have

R = I + K, so 1 = i + k for some i ∈ I, k ∈ K. But then i is quasi-regular, so

k = 1 − i has an inverse, and consequently 1 ∈ K, a contradiction.

Corollary 2.35. Let R be a ring. Then the Jacobson radical J(R) is the intersection

of all maximal left ideals of R.

Proof. We can reproduce the entire discussion beginning with Definition 2.28 with

right and left ideals interchanged, and reach exactly the same conclusion, namely

that the ’right’ Jacobson radical is the largest two-sided ideal consisting entirely of

quasi-regular elements. It follows that the ’right’ and ’left’ Jacobson radicals are

identical.

Definition 2.36. Let R be a ring. Then R is called local if R has a unique maximal

right ideal.

Lemma 2.37. Let R be a local ring. Then R has a unique maximal left ideal.
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Proof. Since R is local it has a unique maximal right ideal m, it follows that m =

J(R).

Let r ∈ R\J(R), then rR = R, otherwise rR is contained in the unique maximal

ideal J(R), but it is not possible since r 6∈ J(R). So r has a right inverse.

Suppose now that r has a right inverse and that r ∈ J(R). Then there is an

s ∈ R such that rs = 1 and since J(R) is a right ideal of R, we have that 1 ∈ J(R),

a contradiction. So r ∈ R \ J(R) iff r has a right inverse.

Suppose that r ∈ R has a left inverse, i.e. there is an s ∈ R such that sr = 1.

Then r 6∈ J(R), otherwise sr = 1 ∈ J(R) since J(R) is a left ideal of R, so by the

previous, r has a right inverse.

Suppose now that r ∈ R has a right inverse, i.e. there is an s ∈ R such that

rs = 1. So srs = s and thus (sr − 1)s = 0. Denote I = {t ∈ R | (sr − 1)t = 0}. It

is easy to see that I is a right ideal of R. We have I = R, otherwise I is contained

in the unique maximal right ideal J(R), but it is not possible since s 6∈ J(R) (s has

a left inverse, so s has a right inverse and thus s 6∈ J(R)). So (sr − 1)1 = 0 which

implies sr = 1 and thus r has a left inverse.

So r 6∈ J(R) iff R has a right inverse and by the previous, it is iff r is invertible.

Thus every proper left ideal of R is contained in J(R), so by Lemma 2.34, R has a

unique maximal left ideal J(R).

Lemma 2.38 (Nakayama). Let R be a ring, M be a right (left) R-module and I be

a subgroup of the additive group of R such that either

1. I is nilpotent (that is, In = 0 for some n ≥ 1),

or

2. I ⊆ J(R) and M is finitely generated.

Then MI = M (IM = M) implies M = 0.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

(1) is trivial for M = MI = MI2 = · · · = 0. For (2) suppose MI = M and M 6= 0.

Then let {x1, x2, . . . , xn} be a minimal set of generators of M . So x1 =
∑n

i=1 xiri
for some ri ∈ I since M = MI. But by Lemma 2.34, (1 − r1) is invertible. Thus

x1 ∈ x2R + x3R + · · · + xnR which contradicts the minimality of {x1, x2, . . . , xn}.
So the claim is true.

Definition 2.39. Let R be a ring and

E : 0 −→ A
i−→ B −→ C −→ 0
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be a short exact sequence of right (left) R-modules. We say that E is split exact

if i(A) is a direct summand of B. In this case clearly B ≃ A ⊕ C as right (left)

R-modules.

Lemma 2.40. Let R be a ring and E : 0 −→ A
i−→ B

π−→ C −→ 0 be a short exact

sequence of right (left) R-modules. Then the following conditions are equivalent

1. E is split exact,

2. there is a homomorphism f : B → A such that fi = idA,

3. there is a homomorphism g : C → B such that πg = idC ,

4. there are homomorphisms f : B → A and g : C → B such that πi = fg = 0,

fi = idA, πg = idC and if + gπ = idB.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Assume first, that the sequence E is split exact, i.e. that B = i(A) ⊕ D for some

submodule D of B. Denoting f : B → A and g : C → B the homomorphism given

by f(i(a) + d) = a and g(c) = d whenever π(b) = c, it is an easy excercise to verify,

that f is a homomorphism satisfying fi = idA. Concerning g we first note that for

each c ∈ C there is b ∈ B with π(b) = c. The element b can be uniquely expressed

in the form b = i(a) + d for some a ∈ A and d ∈ D. If b is another element with

π(b) = c and b = i(a)+d, then b−b ∈ Ker π = Im i yields that b−b = i(a′) for some

a′ ∈ A and consequently b − b = i(a) − i(a) + d − d = i(a′) yields that d = d and

the mapping g is well-defined. Moreover, it is obvious, that g is a homomorphism

and that πg = idC . Finaly, πi = 0 by the exactness of E , fg(c) = π(d) = 0 by the

definition of π and (if + gπ)(i(a) + d) = i(a) + d showing that (1) implies (2), (3)

and (4).

Assuming (2) we denote D = Ker f . For u ∈ D∩i(A) we have u = i(a) for some

a ∈ A and so 0 = f(u) = fi(a) = a. Hence u = i(a) = 0 and D∩i(a) = 0. Moreover,

for an arbitrary b ∈ B we have b = if(b)+(b−if(b)), where f(b−if(b)) = 0 showing

that B = i(A) ⊕D and so (2) implies (1).

Similarly, assuming (3), we are going to verify that B = i(A)⊕g(C). So if i(a) =

g(c) ∈ i(A) ∩ g(C) is arbitrary, then 0 = πi(a) = πg(c) = c yields i(A) ∩ g(C) = 0.

Further, if b ∈ B is arbitrary, then b − gπ(b) = i(a) for some a ∈ A in view of the

fact that π(b− gπ(b)) = 0 and Ker π = Im i. Thus b ∈ i(A) + g(C) and (3) implies

(1).

The implication (4) ⇒ (2) is obvious and the proof is complete.

Remark 2.41. If the condition (1) ((2)) from Lemma 2.40 is satisfyied for the short

exact sequence E , we say that E is left (right) split exact. It is now clear that E is

left (right) split exact iff E is split exact.
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Lemma 2.42. Let R, S be rings. Let C be a full subcategory of the category of all

right (left) R-modules and let D be a full subcategory of the category of all right (left)

S-modules. Let F and G be additive functors (both covariant or both contravariant)

from C to D and let η : F → G be a natural transformation. If

0 −→M ′ −→M −→M ′′ −→ 0

is split exact in C, then ηM is injective (surjective) iff both ηM ′ and ηM ′′ are injective

(surjective).

Proof. We will prove the ’right and covariant version’, the proof of the ’rest versions’

is analogical. By Lemma 7.1, we have the following two commutative diagrams with

split exact rows

0 // F (M ′) //

ηM′

��

F (M) //

ηM

��

F (M ′′) //

ηM′′

��

0

0 // G(M ′) // G(M) // G(M ′′) // 0

and

0 // F (M ′′) //

ηM′′

��

F (M) //

ηM

��

F (M ′) //

ηM′

��

0

0 // G(M ′′) // G(M) // G(M ′) // 0

obtained from

0 −→M ′ −→M −→M ′′ −→ 0

and

0 −→M ′′ −→M −→M ′ −→ 0.

Now, it is an easy excercise to verify that the claim is true.

Lemma 2.43. Let R be a ring, P be a right (left) R-module and κ be an infinite

cardinal. Then P is < κ-generated and projective iff P is a direct summand in

< κ-generated free right (left) R-module.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

The implication ⇐ is clear.

A right R-module P is < κ-generated iff there is a short exact sequence

0 −→ K −→ F −→ P −→ 0

with F free and < κ-generated. But since P is projective, this exact sequence is

split exact and hence by Definition 2.39, P is a direct summand in F . So the claim

is true.
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Remark 2.44. Lemma 2.42 implies that if ηM1 , ηM2 , . . . , ηMn are isomorphisms, then

so is ηM1⊕M2⊕···⊕Mn . Therefore by Lemma 2.43, if ηR is an isomorphism, then so is

ηP for every finitely generated projective right R-module P .

Lemma 2.45. Let R be a ring and M be a right (left) R-module. Then

HomR(R,M) ≃M as right (left) R-modules.

Proof. It is an easy excercise to verify that the mapping

ϕ : HomR(R,M) → M

ϕ 7→ ϕ(1)

has demanded features.

Lemma 2.46. Let R, S be rings, A be a right S-module, B be a (S,R)-bimodule

and C be a right R-module. Then

HomS(A,HomR(B,C)) ≃ HomR(A⊗S B,C)

as abelian groups.

Proof. It is an easy excercise to verify that the mapping

ϕ : HomS(A,HomR(B,C)) → HomR(A⊗S B,C)

defined by ϕ(f)(a ⊗ b) = (f(a))(b) where f ∈ HomS(A,HomR(B,C)), a ∈ A and

b ∈ B, has demanded features.

Lemma 2.47. Let R be a ring, M be a right R-module and N be a left R-module.

Then M ⊗R R ≃M as right R-modules and R⊗R N ≃ N as left R-modules.

Proof. It is an easy excercise to verify that the mappings

ϕ : M ⊗R R → M

m⊗ r 7→ mr

and

ϕ′ : R⊗R N → N

r ⊗ n 7→ rn

have demanded features.
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Lemma 2.48. Let R, S be rings and U be an (R,S)-bimodule, N be a right S-

module and P be a left R-module. Then there is an abelian group homomorphism

ν : HomS(U,N) ⊗R P → HomS(HomR(P,U), N)

defined via

ν(ϕ⊗ p) : ψ 7→ ϕ(ψ(p))

which is natural in U , N and P . Moreover, if P is finitely generated and projective,

then νUNP is an isomorphism for each (R,S)-bimodule U and each right S-module

N .

Proof. It is tedious but no difficult to check that ν is an abelian group homomor-

phism that is natural in all three variables. Now for each (R,S)-bimodule U and

each right S-module N we have by Lemmas 2.47 and 2.45 that

HomS(U,N) ⊗R R ≃ HomS(U,N) ≃ HomS(HomR(R,U), N)

as abelian groups via

ϕ⊗ r 7→ ϕr 7→ δ : ψ 7→ (ϕr)(ψ(1)) = ϕ(rψ(1)) = ϕ(ψ(r))

where ϕ ∈ HomS(U,N), r ∈ R, δ ∈ HomS(HomR(R,U), N) and ψ ∈ HomR(R,U).

Thus νUNR is the composition of previous isomorphisms, and so is itself an isomor-

phism for each (R,S)-bimodule U and each right S-module N . So by Remark 2.44,

the ’moreover’ part is also true.

Definition 2.49. Let R be a ring, M be a right (left) R-module and κ be an infinite

cardinal. Then M is < κ-presented if

(i) M is < κ-generated,

(ii) in every short exact sequence of right (left) R-modules

0 −→ K −→ F −→M −→ 0

with F free and < κ-generated, the module K is also < κ-generated.

If M is < ℵ1-presented we say that M is countably presented and if M is < ℵ0-

presented we say that M is finitely presented.

Lemma 2.50. Let R be a ring, M be a right (left) R-module and κ be an infinite

cardinal. Then M is < κ-presented iff there exists a short exact sequence of right

(left) R-modules

0 −→ K −→ F −→M −→ 0

with F free and < κ-generated and K < κ-generated.
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Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

The implication to the right is clear.

Let 0 −→ K −→ F
π−→M −→ 0 be a short exact sequence of right R-modules

with F free and < κ-generated and K < κ-generated. M is clearly < κ-generated.

In order to prove that M is < κ-presented we must show that in every short exact

sequence of right R-modules 0 −→ K ′ −→ F ′ π′

−→ M −→ 0 with F ′ free and

< κ-generated, the module K ′ is also < κ-generated. So let 0 −→ K ′ −→ F ′ π′

−→
M −→ 0 be an arbitrary short exact sequence of right R-modules with F ′ free and

< κ-generated. Denote B the pullback of π and π′. We have the following diagram

0 0

0 // K // F
π //

OO

M //

OO

0

0 // K // B

OO

// F ′

π′

OO

// 0

K ′

OO

K ′

OO

0

OO

0

OO

with exact rows and collums (the exactness is an easy excercise). The modules F

and F ′ are projective, so by Lemma 2.40, the short exact sequences 0 −→ K −→
B −→ F ′ −→ 0 and 0 −→ K ′ −→ B −→ F −→ 0 are split exact and thus by

Definition 2.39, we have

K ⊕ F ′ ≃ B ≃ K ′ ⊕ F.

Since K and F ′ are < κ-generated, so is B. And since F is < κ-generated, so is K ′.

And we are done.

Lemma 2.51. Let R, S be rings and A be a finitely presented left R-module, B be

an (R,S)-bimodule and C be an injective right S-module. Then

HomS(B,C) ⊗R A ≃ HomS(HomR(A,B), C)

as abelian groups. Where the isomorphism is given by

ν(f ⊗ a)(g) = f(g(a)).

Proof. Since A is finitely presented there is a short exact sequence of left R-modules

0 −→ K −→ F0 −→ A −→ 0 with F0 free and finitely generated and K finitely
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generated. So we can consider the exact sequence F1
ϕ−→ F0 −→ A −→ 0 of left

R-modules with F0, F1 finitely generated and free (ϕ is the composite mapping of

F1 = R(X) −→ K −→ 0 and 0 −→ K −→ F0, where X is the finite generating

subset of K). Then by Lemma 2.48, we have the following commutative diagram of

abelian groups

HomS(B,C) ⊗R F1
//

��

HomS(B,C) ⊗R F0
// //

��

HomS(B,C) ⊗R A

ν

��
HomS(HomR(F1, B), C) // HomS(HomR(F0, B), C) // // HomS(HomR(A,B), C)

with exact rows (C is injective). But by Lemma 2.48, the first two vertical mappings

are isomorphisms. So ν is also an isomorphism. So the claim is true.

Lemma 2.52. Let R be a ring, (Mi | i ∈ I) be a family of (S,R)-bimodules and N

be an (R,T )-bimodule. Then

(
⊕

i∈I

Mi) ⊗R N ≃
⊕

i∈I

(Mi ⊗R N)

as (S, T )-bimodules.

Proof. The map (
⊕

i∈IMi) × N → ⊕

i∈I(Mi ⊗R N) given by ((xi)I , y) 7→ (xi ⊗
y)I is R-balanced and so we have a unique homomorphism of abelian groups h :

(
⊕

i∈IMi)⊗RN → ⊕

i∈I(Mi⊗RN) such that h((xi)I⊗y) = (xi⊗y)I . Similarly one

gets a unique homomorphism of abelian groups h′ :
⊕

i∈I(Mi⊗RN) → (
⊕

i∈IMi)⊗R

N given by h′((xi⊗ yi)I) =
∑

i∈I(ei(xi)⊗ yi), where ei : Mi →
⊕

i∈IMi is a natural

embedding. It is easy to see that h, h′ are (S, T )-bimodule homomorphisms and

that h′ = h−1.

Lemma 2.53. Let R be a ring, M be an (S,R)-bimodule and (Mi | i ∈ I) be a

family of (R,T )-bimodules. Then

M ⊗R (
⊕

i∈I

Ni) ≃
⊕

i∈I

(M ⊗R Ni)

as (S, T )-bimodules.

Proof. It is analogical to the proof of Lemma 2.52.

Lemma 2.54. Let R be a ring, M be a right R-module and I be a left ideal of R.

Then

M ⊗R (R/I) ≃M/MI

as abelian groups.
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Let R be a ring and M be a left R-module and I be a right ideal of R. Then

(R/I) ⊗RM ≃M/IM

as abelian groups.

Proof. We will prove the ’first’ version, the proof of the ’second’ version is analogical.

We consider the short exact sequence of left R-modules 0 −→ I
µ−→ R −→ R/I −→

0. Since the covariant functor M ⊗R − is right exact and using Lemma 2.47, we

have the following exact sequence of abelian groups

M ⊗R I
ϕ◦(idM⊗µ)−→ M −→M ⊗R (R/I) −→ 0,

where ϕ is the isomorphism M⊗RR
ϕ≃M from the Lemma 2.47. But Im (ϕ◦(idM⊗

µ)) = {∑imiri | mi ∈M, ri ∈ I} = MI. Hence the result follows.

Definition 2.55. Let R be a ring. A left (right) R-module F is said to be flat if

given any exact sequence 0 −→ A −→ B of right (left) R-modules, the tensored

sequence of abelian groups 0 −→ F ⊗R A −→ F ⊗R B is exact.

Lemma 2.56. Let R be a ring. Then the direct sum
⊕

i∈I Fi of left (right) R-

modules is flat if and only if each Fi is a flat left (right) R-module.

Proof. This follows from Lemma 2.53.

Corollary 2.57. Let R be a ring. Then every projective left (right) R-module is

flat.

Proof. We will prove the ’left’ version, the proof of the ’right’ version is analogical.

Let P be a projective left R-module. Then P is a summand of a free left R-module.

But by Lemma 2.47, R is a flat left R-module and so every free left R-module is

flat by Lemma 2.56 above. Thus P is a direct summand of a flat left R-module and

hence is flat again by Lemma 2.56.

Lemma 2.58. Let R be a ring, F be a flat left R-module and I be a right ideal of

R. Then I ⊗R F ≃ IF as abelian groups.

Let R be a ring, F be a flat right R-module and I be a left ideal of R. Then

F ⊗R I ≃ FI as abelian groups.

Proof. We will prove the ’first’ version, the proof of the ’second’ version is analogical.

We consider the exact sequence 0 −→ I −→ R of right R-modules. Then 0 −→
I ⊗R F −→ F is an exact sequence of abelian groups. But the image of I ⊗R F in

F under this embedding is IF . So we are done.
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Remark 2.59. Let R
ϕ→ S be a ring homomorphism andM be a right (left) S-module.

Then M is a right (left) R-module via mr = mϕ(r) (rm = ϕ(r)m).

Lemma 2.60. Let R
ϕ→ S be a ring homomorphism and E be an injective right

(left) R-module. Then HomR(S,E) is an injective right (left) S-module.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Note that by Remark 2.59, S is an (S,R)-bimodule. Let N ⊆M be a submodule of

the right S-module M . Then by Lemmas 2.46, 2.47 and Remark 2.59,

HomS(N,HomR(S,E)) ≃ HomR(N ⊗S S,E) ≃ HomR(N,E)

and likewise for HomS(M,HomR(S,E)). So we have that

HomS(M,HomR(S,E)) −→ HomS(N,HomR(S,E)) −→ 0

is exact since by injectivity of E

HomR(M,E) −→ HomR(N,E) −→ 0

is exact. Hence HomR(S,E) is an injective right S-module.

Remark 2.61. We note that it follows from the above that HomZ(R,G) is an injective

right and left R-module for any ring R when G is a divisible (= injective) abelian

group.

Definition 2.62. Let R be a ring and E be an injective right (left) R-module.

Then E is said to be an injective cogenerator for right (left) R-modules, if for each

non-zero right (left) R-module M and each non-zero element m ∈ M , there is

ϕ ∈ HomR(M,E) such that ϕ(m) 6= 0.

This is equivalent to the condition that HomR(M,E) 6= 0 for any right (left)

R-module M 6= 0. For if m ∈ M , m 6= 0, any ϕ′ ∈ HomR(mR,E) with ϕ′ 6= 0 has

ϕ′(m) 6= 0. And since E is injective, such ϕ′ has an extension ϕ ∈ HomR(M,E).

It is well-known fact that the group Q/Z is an injective cogenerator for abelian

groups. Hence if M is a non-zero right (left) R-module, then the character module

M+ of M , defined by M+ = HomZ(M,Q/Z), is a non-zero left (right) R-module.

Remark 2.63. Let R be a ring and M be a right (left) R-module. Then by Lemma

2.46, HomR(M,R+) ≃ M+ as abelian groups. Hence R+ = HomZ(R,Q/Z) is an

injective cogenerator for right (left) R-modules since R+ is an injective right (left)

R-module by Remark 2.61. Thus there exists an injective cogenerator for right (left)

R-modules for any ring R.

Lemma 2.64. Let R be a ring and E be an injective right (left) R-module. The the

following are equivalent
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1. E is an injective cogenerator for right (left) R-modules,

2. HomR(T,E) 6= 0 for all simple right (left) R-modules T .

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

The implication (1) ⇒ (2) is clear from Definiton 2.62.

Assume that E satisfies (2). Let M be a right R-module and 0 6= m ∈M . Since

mR is cyclic, by Theorem 2.14, it contains a maximal submoduleN , so by (2) there is

a non-zero homomorphism ϕ = h ◦π : mR→ E, where π is the canonical projection

mR
π→ (mR)/N . But E is injective, so ϕ can be extended to a homomorphism

ϕ : M → E with ϕ(x) = ϕ(x) 6= 0. Thus E is an injective cogenerator for right

R-modules by Definiton 2.62.

Lemma 2.65. Let R, S be rings and E be an injective cogenerator for right (left)

R-modules. Then a sequence

0 −→ A
ϕ−→ B

ψ−→ C −→ 0

of (S,R)((R,S))-bimodules is exact iff the sequence

0 −→ HomR(C,E)
ψ∗

−→ HomR(B,E)
ϕ∗

−→ HomR(A,E) −→ 0

or right (left) S-modules is exact.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

The implication to the right is clear since E is an injective right R-module.

For the implication to the left, first we will prove that Im ϕ = Ker ψ. Suppose

that Im ϕ 6⊆ Ker ψ. Then choose b ∈ Im ϕ \ Ker ψ. So ψ(b) 6= 0. But ψ(b) ∈ C. So

there is an f ∈ HomR(C,E) such that f(ψ(b)) 6= 0 since E is an injective cogenerator

for right R-modules. But b = ϕ(a) for some a ∈ A. Thus f ◦ ψ ◦ ϕ 6= 0. But then

(ϕ∗ ◦ ψ∗)(f) 6= 0, a contradiction. So Im ϕ ⊆ Ker ψ.

Now suppose Im ϕ 6⊇ Ker ψ. Then let b ∈ Ker ψ \ Im ϕ. So b+Im ϕ is non-zero

in B/Im ϕ. Thus there is an f ∈ HomR(B/Im f,E) such that f(b + Im f) 6= 0.

Hence the composite mapping g : B
π→ B/Im ϕ

f→ E, where π is the canonical

projection, is such that g(b) 6= 0. But ϕ∗(g) = g ◦ ϕ = 0 since g(Im ϕ) = 0. So

g ∈ Ker ϕ∗ = Im ψ∗. That is g = ψ∗(h) = h ◦ ψ for some h ∈ HomR(C,E). But

b ∈ Ker ψ. So g(b) = h(ψ(b)) = 0, a contradiction since g(b) 6= 0. So Im ϕ = Ker ψ

and thus the claim is true.

Lemma 2.66. Let R be a ring and F be a left (right) R-module. If F is finitely

presented and flat then F is projective.

28



Proof. We will prove the ’left’ version, the proof of the ’right’ version is analogical.

Let F be a finitely presented flat left R-module and B −→ C −→ 0 be an exact

sequence of left R-modules. We want to show that the sequence of abelian groups

HomR(F,B) −→ HomR(F,C) −→ 0 is exact, or equivalently by Lemma 2.65, 0 −→
HomR(F,C)+ −→ HomR(F,B)+ is an exact sequence of abelian groups. But by

Lemma 2.48, we have the following commutative diagram of abelian groups

0 // C+ ⊗R F //

��

B+ ⊗R F

��
0 // HomR(F,C)+ // HomR(F,B)+

where the first row is exact since F is flat. But the vertical mappings are isomor-

phisms by Lemma 2.51 since F is finitely presented, hence the second row is also

exact and thus we are done.

Definition 2.67. Let R be a ring. A right (left) R-module M is called noetherian if

every right (left) R-submodule of M is finitely generated. This implies in particular

that M itself is finitely generated.

The ring R is right (left) noetherian if it is itself noetherian as a right (left)

R-module, that is, every right (left) ideal of R is finitely generated.

Note that a ring may be right noetherian but not left noetherian. The term

noetherian ring will mean a ring which is both left and right noetherian. It is

clear that, when R is commutative, R is left noetherian precisely when it is right

noetherian.

Remark 2.68. It is a well-know fact (see [1]) that a right (left) R-module M is

noetherian iff every ascending chain of right (left) R-submodules of M terminates

and it is iff every non-empty set of right (left) R-submodules of M has an inclusion-

maximal element.

Lemma 2.69. Let R be a ring and let

0 −→M ′ α−→M
β−→M ′′ −→ 0

be a short exact sequence of right (left) R-modules. Then M is noetherian iff both

M ′ and M ′′ are noetherian.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Suppose that M is noetherian. A submodule of M ′ is isomorphic to a submodule of

M , and so is finitely generated. A submodule N of M ′′ is the homomorphic image

of its inverse image

β−1(N) = {m ∈M | β(m) ∈ N}
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in M. Since β−1(N) is finitely generated, so is N . Thus M ′ and M ′′ are noetherian.

Conversely, consider a submodule N of M . Let N ′ = N ∩ α(M) and let N ′′ be

the β-image of N in M ′′, so that there is a short exact sequence of right R-modules

0 −→ N ′ −→ N −→ N ′′ −→ 0.

Since both N ′ and N ′′ are finitely generated, so also is N .

Corollary 2.70. Let R be a ring and let {M1, . . . ,Mk} be a finite set of noetherian

right (left) R-modules. Then the direct sum M1 ⊕ · · · ⊕Mk is a noetherian right

R-module.

In particular, every free right (left) module of finite rank over a right (left)

noetherian ring is noetherian.

Proof. This follows from Lemma 2.69.

Theorem 2.71. Let R be a right (left) noetherian ring and M be a finitely generated

right (left) R-module. Then M is noetherian.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

We have the following short exact sequence of right R-modules

0 −→ K −→ R(X) π−→M −→ 0,

where X is the finite set of generators of M and K is the kernel of π. The module

R(X) is noetherian by Corollary 2.70 and thus (using Lemma 2.69) M is noetherian.

Lemma 2.72. Let R be right (left) noetherian ring and M be a right (left) R-module.

Then M is finitely generated iff M is finitely presented.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let M be a finitely presented right R-module, then M is finitely generated by

Definition 2.49.

Let M be a finitely generated right R-module. If we have a short exact sequence

of right R-modules

0 −→ K −→ F −→M −→ 0

with F free and finitely generated, then F is noetherian by Theorem 2.71 and thus

K is finitely generated since K is isomorphic to some submodule of F . So M is

finitely presented.
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Definition 2.73. Let R be a ring and M be a right (left) R-module. Then a

projective resolution of M is an (finite or infinite) exact sequence of right (left)

R-modules

EP : . . . −→ P2
π2−→ P1

π1−→ P0
π0−→M −→ 0

with every Pi projective. For i ≥ 0, the image of πi in the previous exact sequence is

called the i-th syzygy of M in EP . We denote Ωi(M) the class of all the i-th syzygies

occurring in all projective resolutions of M .

An injective coresolution (sometimes called an injective resolution) of M is an

(finite or infinite) exact sequence of right (left) R-modules

EI : 0 −→M
ι0−→ I0

ι1−→ I1
ι2−→ I2 −→ . . .

with every Ii injective. For i ≥ 0, the image of ιi in the previous exact sequence

is called the i-th cosyzygy of M in EI . We denote Ω−i(M) the class of all the i-

th cosyzygies occurring in all injective coresolutions of M . If every Ii in EI is an

injective hull of the i-th cosyzygy of M in EI , then EI is called the minimal injective

coresolution of M (or the minimal injective resolution of M).

A flat resolution of M is an (finite or infinite) exact sequence right (left) R-

modules

EF : . . . −→ F2
π2−→ F1

π1−→ F0
π0−→M −→ 0

with every Fi projective. For i ≥ 0, the image of πi in the previous exact sequence

is called the i-th flat-syzygy of M in EF .

Lemma 2.74. Let R be a ring and M be a right (left) R-module. Then M has a

projective (therefore flat) resolution.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Clearly, M is a homomorphic image of a free (hence projective) right R-module

P0. Let K0 be the kernel of the homomorphism P0 onto M . In turn, there is a

homomorphism with kernel K1 from a free right R-module P1 onto K0, and we have

the following sequence of right R-modules

0 −→ K1 −→ P1 −→ K0 −→ P0 −→M −→ 0.

Composing the homomorphisms P1 −→ K0 and K0 −→ P0, we get

0 −→ K1 −→ P1 −→ P0 −→M −→ 0

which is an exact sequenceof right R-modules. But now we can find a free right

R-module P2 and a homomorphism with kernel K2 mapping P2 onto K1. The above

process can be iterated to produce the desired projective resolution of M .
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Lemma 2.75. Let R be a ring and M be a right (left) R-module. Then M has an

injective coresolution.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

By the classic result, M can be embedded in an injective right R-module I0. Let

C0 be the cokernel of M −→ I0, and map canonically I0 onto C0. Embed C0 in an

injective right R-module I1, and let C1 be the cokernel of the embedding map. We

have the following sequence of right R-modules

0 −→M −→ I0 −→ C0 −→ I1 −→ C1 −→ 0.

Composing the homomorphisms I0 −→ C0 and C0 −→ I1, we get

0 −→M −→ I0 −→ I1 −→ C1 −→ 0

which is an exact sequence of right R-modules. Iterate to produce the desired

injective coresolution of M .

Definition 2.76. Let R be a ring and M be a right (left) R-module. Then M is

said to have projective dimension at most n, denoted proj dimM ≤ n, if there is

a projective resolution of the form 0 −→ Pn −→ . . . −→ P1 −→ P0 −→ M −→ 0.

If n is the least, then we set proj dimM = n and if there is no such n, we set

proj dimM = ∞. The class of all right (left) R-modules of projective dimension at

most n will be denoted Pn, the class of all right (left) R-modules of finite projective

dimension will be denoted P.

Dually, M is said to have injective dimension at most n, denoted inj dimM ≤ n,

if there is an injective coresolution of the form 0 −→ M −→ I0 −→ I1 −→ . . . −→
In −→ 0. If n is the least, then we set inj dimM = n and if there is no such n, we

set inj dimM = ∞. The class of all right (left) R-modules of injective dimension at

most n will be denoted In, the class of all right (left) R-modules of finite injective

dimension will be denoted I.

Lemma 2.77. Let R be a ring, M be a right (left) R-module and 0 ≤ n < ω. Then

the following are equivalent

(i) M ∈ Pn.

(ii) Extn+k
R (M,N) = 0 for all right (left) R-modules N and every k ≥ 1,

(iii) Extn+1
R (M,N) = 0 for all right (left) R-modules N ,

(iv) every n-th syzygy of M is projective.

Proof. This is a well-known fact which can be found in [10].
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Lemma 2.78. Let R be a ring, N be a right (left) R-module and 0 ≤ n < ω. Then

the following are equivalent

(i) N ∈ In.

(ii) Extn+k
R (M,N) = 0 for all right (left) R-modules M and every k ≥ 1,

(iii) Extn+1
R (M,N) = 0 for all right (left) R-modules M ,

(iv) every n-th cosyzygy of N is injective,

(v) Extn+1
k (R/I,N) = 0 for all right (left) ideals I of R.

Proof. This is a well-known fact which can be found in [10].

Lemma 2.79. Let R be a ring, N be a left R-module and 0 ≤ n < ω. Then the

following are equivalent

(i) N ∈ Fn.

(ii) Torn+k
R (M,N) = 0 for all right R-modules M and every k ≥ 1,

(iii) Torn+1
R (M,N) = 0 for all right R-modules M ,

(iv) every n-th flat-syzygy of N is flat.

(v) Torn+1
R (R/I,N) for all right ideals I of R.

And let M be a right R-module and 0 ≤ n < ω. Then the following are equivalent

(i) M ∈ Fn.

(ii) Torn+k
R (M,N) = 0 for all left R-modules N and every k ≥ 1,

(iii) Torn+1
R (M,N) = 0 for all left R-modules N ,

(iv) every n-th flat-syzygy of M is flat.

(v) Torn+1
R (M,R/I) for all left ideals I of R.

Proof. This is a well-known fact which can be found in [10].

Lemma 2.80. Let R be a ring, M , N be right (left) R-modules, Si ∈ Ωi(M) be an

i-th syzygy of M in some projective resolution of M and C−i ∈ Ω−i(N) be an i-th

cosyzygy of N in some injective coresolution of N . Then

Ext1R(Si−1, N) ≃ ExtiR(M,N) ≃ Ext1R(M,C−i+1)

as abelian groups for all i ≥ 1.
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Proof. This is a well-known fact called dimension shifting, which can be found in

[11].

Definition 2.81. Let R be a ring and M be a right (left) R-module. Then M is

called strongly finitely presented ifM posses a projective resolution (finite or infinite)

consisting of finitely generated right (left) R-modules. That is, there exists a long

exact sequence (finite or infinite) of right (left) R-modules

. . . −→ Pn −→ . . . −→ P1 −→ P0 −→M −→ 0

with Pi projective and finitely generated for all i ≥ 0.

The class of all strongly finitely presented right (left) R-modules is denoted by

mod-R.

Lemma 2.82. Let R be a ring, M be a right (left) R-module and κ be an infinite

cardinal. If M posses a projective resolution consisting of < κ-generated projective

right (left) R-modules, then M is < κ-presented.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let

. . . −→ P1 −→ P0
π−→M −→ 0

be a projective resolution (finite or infinite) of M with each Pi < κ-generated and

projective. Denote by K the first syzygy of M in the previous projective resolution

of M . Then by Lemma 2.43, there exists a right R-module M0 such that P0 ⊕M0 is

free and < κ-generated right R-module. It is easy to see that the following sequence

of right R-modules

0 −→ K ⊕M0
i⊕idM0−→ P0 ⊕M0

π⊕0M0−→ M −→ 0,

where i is an inclusion 0 −→ K
i−→ P0, is exact. So by Lemma 2.50, M is < κ-

presented.

Lemma 2.83. Let R be a right (left) noetherian ring. Then mod-R is equal to the

class of all finitely generated right (left) R-modules.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let M be a strongly finitely presented right R-module. By Definition 2.81, we have

the following long exact sequence of right R-modules

. . . −→ Pn −→ . . . −→ P1 −→ P0 −→M −→ 0

with Pi projective and finitely generated for all i ≥ 0. Since P0 is finitely generated,

M is finitely generated.
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Let M be a finitely generated right R-module. Let X be a finite generating

subset of M . By Lemma 2.72, M is finitely presented, so in the following short

exact sequence of right R-modules

0 −→ K
µ−→ R(X) −→M −→ 0 (1)

K is finitely generated. If K is projective we are done and if K is not projective we

can use previous arguments again but now for the finitely generated right R-module

K and we get the following short exact sequence of right R-modules

0 −→ L −→ R(Y ) π−→ K −→ 0, (2)

where Y is the finite generating subset of K and L is a finitely generated.

Composing (1) and (2) together we get the following long exact sequence of

right R-modules

0 −→ L −→ R(Y ) µ◦π−→ R(X) −→M −→ 0.

If L is projective we are done and if L is not projective we can continue analogously

and we get the projective resolution (finite or infinite) of M consisting of finitely

generated projective right R-modules thus M is strongly finitely presented.

2.2 Commutative case

In this subsection we will prove some basic facts from the theory of modules over

commutative rings.

Definition 2.84. Let R be a commutative ring. An ideal p of R is prime if the

following two conditions hold

(i) p 6= R,

(ii) for all x,y ∈ R, if xy ∈ p then x ∈ p or y ∈ p.

The set of all prime ideals is denoted by SpecR.

Definition 2.85. A commutative ring R is called an integral domain (or simply a

domain) if ab = 0 implies a = 0 or b = 0.

An integral domain F is called a field if every non-zero element of F has an

inverse under multiplication.

Lemma 2.86. Let R be a commutative ring and p be an ideal of R. Then

1. p is prime iff the factor ring R/p is a domain,

2. p is maximal iff the factor ring R/m is a field.
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In particular, in any commutative ring, maximal ideals are prime.

Proof. This is a well-known fact which can be found in [6].

Definition 2.87. Let R be a commutative ring. The height (ht) of a prime ideal p

of R is the supremum of the lenghts s of strictly decreasing chains p = p0 ) p1 )

· · · ) ps−1 ) ps of prime ideals of R.

The Krull dimension of R, denoted dim R, is defined by

dim R = sup {ht p | p ∈ SpecR}.

It follows from the definition above that ht p+dim R/p ≤ dim R and ht p = dim Rp.

If dim R = 0, then every prime ideal of R is minimal, and if R is a principal

ideal domain which is not a field, then dim R = 1.

Definition 2.88. Let R be a domain. We construct a field F in which every non-

zero element r of R has an inverse 1/r, and further any element of f can be written

in the form r/s for r, s ∈ R. The field F is called the field of fractions of R. The

technique is exactly the same as that used to manufacture the rational numbers Q

from the ring of integers Z.

Let Σ = R \ {0} be the set of non-zero elements in R. We introduce a relation

∼ on the set of pairs (r, s) ∈ R× Σ by stipulating that (r, s) ∼ (r′, s′) if and only if

rs′ = r′s. It is easy to verify that this relation is an equivalence relation.

The fraction r/s is defined to be the equivalence class (r, s) under this relation

and F is the set of equivalence classes; thus r/s = r′/s′ if and only if rs′ = r′s.

We define addition by

r/s+ r′/s′ = (rs′ + r′s)/ss′,

and multiplication by

(r/s)(r′/s′) = rr′/ss′.

Another routine check shows that these rules are well-defined and make F into a

ring with zero element 0/1 and identity 1/1.

Furthermore, r/1 = 0 only if r = 0, so that we can identify R as the subring of

F consisting of all elements of the form r/1.

Then the identity r/r = 1/1 holds for all non-zero r in R, which confirms that

r has an inverse in F , and it is easy to see that F is a field.

Definition 2.89. Let R be a commutative ring. The subset S of R is called multi-

plicative in case

(i) 0 6∈ S,
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(ii) S is closed under multiplication.

Definition 2.90. Let R be a commutative ring and S be a multiplicative subset

of R. Then the localization of R with respect to S, denoted S−1R, is the set of all

equivalence classes (r, s) with r ∈ R, s ∈ S under equivalence relation (r, s) ∼ (r′, s′)

if there is an t ∈ S such that (rs′ − r′s)t = 0. It is easy to check that this relation

is indeed an equivalence relation. The equivalence class (r, s) is denoted by r/s.

We now define addition and multiplication on S−1R by

r/s+ r′/s′ = (rs′ + r′s)/ss′

(r/s)(r′/s′) = rr′/ss′.

These operations are well-defined and S−1R is then a commutative ring with identity

1/1.

Remark 2.91. The mapping ϕ : R → S−1R defined by ϕ(r) = r/1 is a ring hommo-

morphism with Ker ϕ = {r ∈ R | rs = 0 for some s ∈ S}. As a consequence, ϕ is

injective iff S is without zero-divisors. Moreover, if R is a domain and S is the set

of all non-zero elements of R, then S−1R is the field of fractions of R.

Definition 2.92. Let R be a commutative ring and T be ring. Then T is said to

be an R-algebra if there is a ring homomorphism ϕ : R → T . It is easy to see that

T is an R-module via tr = tϕ(r) for all r ∈ R and t ∈ T . For example every ring is

a Z-algebra and we have just seen that if R is a commutative ring, then S−1R is an

R-algebra for every multiplicative subset S of R.

Remark 2.93. Let R be a commutative ring, S be a multiplicative subset of R and J

be an ideal of S−1R. Define a set J ∩R as an inverse image of J under the mapping

ϕ from 2.91. Then J ∩R is an ideal of R, moreover if J is prime then J ∩R is also

such.

Definition 2.94. Let R be a commutative ring, S be a multiplicative subset of R

and M be an R-module. Then the localization of M with respect to S, denoted

S−1M , is defined as for S−1R. S−1M is an abelian group under addition and is an

S−1R-module via (r/s) · (m/s′) = rm/ss′.

Remark 2.95. Let R be a commutative ring and S be a multiplicative subset of R.

We note that an S−1R-module N is also an R-module via r · n = (r/1) · n. In

the following, the R-module structure on some S−1R-module will always mean this

R-module structure.

Lemma 2.96. Let R be a commutative ring, S be a multiplicative subset of R and

M ,N be S−1R-modules. Then ϕ : M → N is an S−1R-module homomorphism iff ϕ

is an R-module homomorphism.
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Proof. Every S−1R-module homomorphism is clearly an R-module homomorphism.

Let ϕ : M → N be an R-module homomorphism. We need to prove that

ϕ((r/s)m) = (r/s)ϕ(m), for every r ∈ R, s ∈ S. But ϕ((r/s)m) = ϕ(r(1/s)m) =

rϕ((1/s)m) = r(s/s)ϕ((1/s)m) = (r/s)sϕ((1/s)m) = (r/s)ϕ(m). So the claim is

true.

Lemma 2.97. Let R be a commutative ring and S be a multiplicative subset of R.

Then

1. If f : M → N is an R-module homomorphism, then S−1f : S−1M → S−1N

defined by (S−1f)(m/s) = f(m)/s is an S−1R-module homomorphism.

2. If M ′ −→ M −→ M ′′ is a sequence of R-modules which is exact at M , then

S−1M ′ −→ S−1M −→ S−1M ′′ is a sequence of S−1R-modules which is exact

at S−1M .

3. If N ⊆M are R-modules, then S−1(M/N) ≃ S−1(M)/S−1(N).

4. If M is an R-module, then S−1R⊗RM ≃ S−1M as S−1R-modules.

5. S−1R is a flat R-module.

Proof. (1) and (2) are easy.

(3) follows from (2) by considering the short exact sequence of R-modules 0 −→
N −→M −→M/N −→ 0.

For (4) define a map ϕ : S−1R ⊗R M → S−1M by ϕ(r/s ⊗ m) = (rm)/s.

Then ϕ is well-defined S−1R-homomorphism and ϕ is clearly onto. Now suppose

(rm)/s = 0. Then there is an s′ ∈ S such that rs′m = 0. So (r/s) ⊗ m =

(rs′/ss′) ⊗m = (1/ss′) ⊗ rs′m = 0. Thus ϕ is one-to-one.

(5) follows from parts (2) and (4).

Lemma 2.98. Let R be a commutative ring, S1 be a multiplicative subset of R and

M ,N be S−1
1 R-modules. Then

1.

M ⊗S−1
1 R N ≃M ⊗R N

as S−1
1 R-modules,

2. if moreover, S2 ⊆ S1 is a multiplicative subset of R, then

(a) M is an S−1
2 R-module via restriction of the scalar multiplication on

S−1
2 R,

(b) S−1
2 M ≃M as S−1

2 R-modules.
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Proof. (1). This follows from the fact that in M ⊗R N we have

((r/s)m) ⊗ n = (rm/s) ⊗ (sn/s) = (sm/s) ⊗ (rn/s) = m⊗ ((r/s)n)

for any m ∈M , n ∈ N , r ∈ R and s ∈ S1.

(2)(a). This is easy.

(2)(b). By (1) and (2)(a), we have

S−1
2 M ≃M ⊗R S

−1
2 R ≃M ⊗S−1

2 R S
−1
2 R ≃M

as S−1
2 R-modules.

Lemma 2.99. Let R be a commutative ring, S be a multiplicative subset of R and

M , N be R-modules. Then

S−1(M ⊗R N) ≃ S−1M ⊗S−1R S
−1N

as S−1R-modules.

Proof. By Lemmas 2.97, 2.47 and 2.98 we have

S−1(M ⊗R N) ≃ S−1R⊗R (M ⊗R N) ≃ (S−1R⊗RM) ⊗R N ≃ S−1M ⊗R N ≃
≃ (S−1M ⊗S−1R S

−1R) ⊗R N ≃ (S−1M ⊗R S
−1R) ⊗R N ≃

≃ S−1M ⊗R (S−1R⊗R N) ≃ S−1M ⊗R S
−1N ≃

≃ S−1M ⊗S−1R S
−1N.

So the claim is true.

Lemma 2.100. Let R be a commutative ring, S be a multiplicative subset of R and

M be an R-module. Then

1. if M is finitely generated, then S−1M is a finitely generated S−1R-module,

2. if M is free, then S−1M is a free S−1R-module,

3. if M is projective, then S−1M is a projective S−1R-module.

Proof. (1) is easy.

Let X be a free basis of M . Then X = {x/1 | x ∈ X} is clearly a generating

subset of an S−1R-module S−1M . Let N be an arbitrary S−1R-module and let

f : X → N be an arbitrary mapping. Define a mapping g : X → N by g(x) = f(x/1).

Since M is a free R-module, there is an R-module homomorphism ϕ : M → N

which extends g. By Lemmas 2.97 and 2.98, S−1ϕ : S−1M → N is an S−1R-module

homomorphism which extends f . So S−1M is a free S−1R-module.

(3) follows from Lemma 2.97 and (2) using the fact that M is a projective

R-module iff M is a direct summand of a free R-module.
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Lemma 2.101. Let R be a commutative ring, S be a multiplicative subset of R and

M , N be R-modules. Then

S−1(Tor1
R(M,N)) ≃ Tor1

S−1R(S−1M,S−1N)

as S−1R-modules.

Proof. Consider a short exact sequence of R-modules

0 −→ K −→ F
ϕ−→M −→ 0

where F is a free (hence projective) R-module and K is the kernel of ϕ. Applying

− ⊗R N and using Lemmas 2.57 and 2.79, we get the following exact sequence of

R-modules

0 −→ Tor1
R(M,N) −→ K ⊗R N −→ F ⊗R N −→M ⊗R N −→ 0.

Applying − ⊗R S
−1R and using Lemma 2.97, we get the following exact sequence

of R-modules

0 −→ S−1(Tor1R(M,N)) −→ K ⊗R S
−1N −→ F ⊗R S

−1N −→M ⊗R S
−1N −→ 0.

Applying S−1R ⊗R − and using Lemmas 2.98, 2.47 and 2.96, we get the following

exact sequence of S−1R-modules

0 −→ S−1(Tor1R(M,N)) −→ S−1K ⊗S−1R S
−1N −→ S−1F ⊗S−1R S

−1N −→
−→ S−1M ⊗S−1R S

−1N −→ 0.

Using Lemma 2.100, it is now easy to see that we have S−1(Tor1
R(M,N)) ≃

Tor1S−1R(S−1M,S−1N) as S−1R-modules.

Lemma 2.102. Let R be a commutative ring and S be a multiplicative subset of R.

If J is an ideal of S−1R, then J = IS−1R ≃ S−1I, where I = J ∩ R is an ideal of

R and the previous isomorphism is an isomorphism of S−1R-modules.

Proof. I is an ideal of R by Remark 2.93. Clearly IS−1R ⊆ J . Now let a = r/s ∈ J .

Then a = (r/1)(1/s). So it suffices to show that r ∈ I. For then a ∈ IS−1R. But

r/1 = a(1/s) ∈ J and so r ∈ J ∩R = I. Thus J = IS−1R. But from Lemma 2.58 it

easily follows that IS−1R ≃ S−1R ⊗R I as R-modules since by Lemma 2.97, S−1R

is a flat R-module. By Lemma 2.96, IS−1R ≃ S−1R ⊗R I as S−1R-modules. And

hence, by Lemma 2.97, IS−1R ≃ S−1I as S−1R-modules. So the claim is true.

Definition 2.103. Let R be a commutative ring and let p ∈ SpecR. Then S = R\p
is a multiplicative subset of R. In this case S−1R, S−1M and S−1f are denoted

by R(p), M(p), f(p) respectively, where M is an R-module and f is an R-module

homomorphism. We say that M(p) is the localization of M at p.
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Lemma 2.104. Let R be a commutative ring and S be a multiplicative subset of

R. Then there is ono-to-one inclusion-order preserving correspondence between the

prime ideals of S−1R and the prime ideals of R disjoint from S given by S−1p↔ p.

Proof. Let J be a prime ideal of S−1R, and let p = J ∩R. Then p is a prime ideal

of R by Remark 2.93. But then J = S−1p by Lemma 2.102. If p ∩ S 6= ∅, then

1/1 ∈ S−1p = J , a contradiction. Hence p ∩ S = ∅.
Now suppose p is a prime ideal of R disjoint from S. We claim that S−1p is a

prime ideal of S−1R. But 1 6∈ S−1p since p∩S = ∅. Moreover if (a/s) · (b/t) ∈ S−1p

with s, t ∈ S, then (a/s) · (b/t) = c/r for some c ∈ p, r ∈ S. So there is an s′ ∈ S

such that (abr − stc)s′ = 0. But stcs′ ∈ p. So abrs′ ∈ p where rs′ ∈ S. But then

ab ∈ p and so a ∈ p or b ∈ p. That is, a/s ∈ S−1p or b/s ∈ S−1p. Hence S−1p is a

prime ideal of S−1R. The rest is easy.

Theorem 2.105. Let R be a commutative ring and let p ∈ SpecR. Then there

is ono-to-one inclusion-order preserving correspondence between the prime ideals of

R(p) and the prime ideals of R contained in p.

Proof. This follows from Lemma 2.104.

Remark 2.106. Let R be a commutative ring and let p ∈ SpecR. Then pRp is a

prime ideal of R(p) from the above. But if J is an ideal of R(p), then J = IRp where

I is an ideal of R such that I ∩ (R \ p) = ∅. So I ⊆ p and hence J = IR(p) ⊆ pR(p).

Thus pR(p) is the maximal ideal of R(p), moreover it is the only one of R(p). So the

localization of a commutative ring R at a prime ideal p is a local commutative ring

with maximal ideal pRp. The field R(p)/pR(p) is called the residue field of R(p) and

it is denoted by k(p).

Definition 2.107. Let R be a commutative ring and M be an R-module. Then

a prime ideal p of R is said to be an associated prime ideal of M if p = Ann(m)

for some m ∈ M . It is easy to see that this is equivalent to M containing a cyclic

submodule isomorphic to R/p. The set of all asociated prime ideals of M is denoted

by Ass(M).

Lemma 2.108. Let R be a noetherian commutative ring and M be an R-module.

Then M = 0 iff Ass(M) = ∅.

Proof. If M = 0 then clearly Ass(M) = ∅.
Let M 6= 0 and 0 6= m ∈ M . If Ann(m) is a prime ideal of R, we are through.

If not, let rs ∈ Ann(m) with r, s 6∈ Ann(m). Then rm 6= 0 and s ∈ Ann(rm). So

Ann(m) ( Ann(rm). If Ann(rm) is not a prime ideal of R then we can repeat the

procedure. If the procedure did not stop we would contradict the fact that R is

noetherian. Hence the procedure stops and we see that Ass(M) 6= ∅.
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Lemma 2.109. Let R be a noetherian commutative ring and M be a non-zero

finitely generated R-module. Then there exists a chain 0 = M0 ( M1 ( . . . · · · (

Mn−1 ( Mn = M of submodules of M such that for each 1 ≤ i ≤ n, Mi/Mi−1 ≃
R/pi for some pi ∈ SpecR.

Proof. Let p1 ∈ Ass(M) (see Lemma 2.108). Then there is a submodule M1 of

M such that M1 ≃ R/p1. If M1 = M , then we are done. Otherwise let p2 ∈
Ass(M/M1). Then there is a submoduleM2 ofM containing M1 such that M2/M1 ≃
R/p2. One then repeats this procedure to get the required submodules noting that

the process stops since M is noetherian.

Lemma 2.110. Let R be a noetherian commutative ring, M be an R-module and p

be a prime ideal of R. Then p ∈ Ass(M) iff pR(p) ∈ AssR(p)
(M(p)).

Proof. If p ∈ Ass(M), then R/p ≃ Rm for some m ∈ M , m 6= 0. So R/p is

isomorphic to a submodule of M . Thus R(p)/pR(p) is isomorphic to a submodule of

M(p). Hence pR(p) ∈ AssR(p)
(M(p)).

If pR(p) ∈ AssR(p)
(M(p)), then pR(p) = AnnR(p)

(m/s) where m/s ∈ M(p) for

some m ∈ M and s ∈ R \ p. Since p is finitely generated, let p =< a1, a2, . . . , an >.

Then (ai/1)(m/s) = 0 for each i. So there is an ri ∈ R \ p such that riaim = 0 for

each i. Now set r = r1r2 . . . rn. Then ram = 0 for all a ∈ p. Thus p ⊆ AnnR(rm).

If t ∈ AnnR(rm), then trm = 0 and so (t/1)(m/s) = 0. But then t/1 ∈ pR(p).

Consequently t ∈ p. Thus AnnR(rm) ⊆ p. Hence p = AnnR(rm) and so p ∈
AssR(M).

Definition 2.111. Let R be a commutative ring. The support of an R-module M ,

denoted Supp(M), is the set of all prime ideals of R such that M(p) 6= 0.

Lemma 2.112. Let R be a commutative ring and M be an R-module. Then M = 0

iff Supp(M) = 0 (moreover, M = 0 iff Supp(M) ∩ mSpecR = 0).

Proof. If M = 0 then obviously Supp(M) = 0.

If M 6= 0, let m ∈ M , m 6= 0, then Ann(m) ⊆ p for p maximal ideal of R.

Obviously p is also a prime ideal of R. But m/1 6= 0 in M(p) and so p ∈ Supp(M).

Thus Supp(M) 6= 0. The ’moreover’ part follows from the previous part of the

proof.

Lemma 2.113. Let R be a noetherian commutative ring and M be an R-module.

Then

1. Ass(M) ⊆ Supp(M),

2. if p is an inclusion-minimal element in Supp(M), then p ∈ Ass(M).
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Proof. (1). If p ∈ Ass(M), then pR(p) ∈ AssR(p)
(M(p)) by Lemma 2.110. So

R(p)/pR(p) is isomorphic to a submodule of M(p). Hence M(p) 6= 0 and so

p ∈ Supp(M). Thus Ass(M) ⊆ Supp(M).

(2). Let p be a minimal element in Supp(M). By Lemma 2.110, it suffices to

prove the result for a local noetherian commutative ring R with maximal ideal p and

a non-zero R-module M (note that a localization of a noetherian ring is clearly a

noetherian ring). Since p is minimal, we further assume that M(q) = 0 for all prime

ideals q contained in p. So Supp(M) = {p}. But Ass(M) ⊆ Supp(M) by (1). So

p ∈ Ass(M) since Ass(M) 6= ∅.

Lemma 2.114. Let R be a commutative ring and M be a finitely generated R-

module. Then Supp(M) = {p ∈ SpecR | Ann(M) ⊆ p}.

Proof. If M = m1R + m2R + · · · + mnR for some m1,m2, . . . ,mn ∈ M , then p ∈
Supp(M) iff there is an i such that mi/1 6= 0 in M(p). But this means that there is

an i such that Ann(mi) ⊆ p. But this helds iff Ann(M) =
⋂n
i=1 Ann(mi) ⊆ p.

Definition 2.115. Let R be a commutative ring and I be an ideal of R. Then the

radical of I, denoted
√
I, is defined by

√
I = {r ∈ R | rn ∈ I for some n > 0}. We

note that I ⊆
√
I. If I = 0, then

√
I is called the nilradical. It is easy to see that

the nilradical is the set of all nilpotent elements of R.

Lemma 2.116. Let R be a commutative ring and I be an ideal of R. Then
√
I is

the intersection of all prime ideals p of R containing I, i.e.
√
I =

⋂

I⊆p p.

Proof. Let p be a prime ideal containing I. If r ∈
√
I, then rn ∈ I ⊆ p and so r ∈ p.

Hence
√
I ⊆ ⋂

I⊆p p.

Now let r 6∈
√
I. Then rn 6∈ I for each n ≥ 0. So S = {1, r, r2, . . . } is a

multiplicative subset of R disjoint from I. Then the set of all ideals J such that

I ⊆ J and J∩S = ∅ has a maximal element q by the Zorn’s Lemma. We claim that q

is a prime ideal. We first note that if s 6∈ q, then (q+sR)∩S 6= ∅ for otherwise q+sR

would contradict the maximality of q. So s ∈ q iff (q+sR)∩S = ∅. Thus s1 6∈ q, s2 6∈
q implies that (q+siR)∩S 6= ∅. Since S is multiplicative, ((q+s1R)(q+s2R))∩S 6= ∅.
But (q + s1R)(q + s2R) ⊆ (q + s1s2R). So (q + s1s2R) ∩ S 6= ∅ and thus s1s2 6∈ q.

So q is a prime ideal of R. Hence r 6∈ ⋂

I⊆p p. Thus
√
I =

⋂

I⊆p p.

Corollary 2.117. Let R be a commutative ring. Then the set of all nilpotent ele-

ments of R is the intersection of all prime ideals of R.

Proof. This follows from Definition 2.115 and Lemma 2.116.

Lemma 2.118. Let R be a noetherian commutative ring and I be an ideal of R.

Then (
√
I)
n ⊆ I for some n > 0.
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Proof. Since R is noetherian, let
√
I =< r1, r2, . . . , rs >. Then rni

i ∈ I for some

ni > 0. Let n = (n1 − 1) + (n2 − 1) + · · · + (ns − 1) + 1. Then (
√
I)
n

is generated

by monomials rm1
1 rm2

2 . . . rms
s where

∑s
i=1mi = n and mi ≥ ni for some i. Thus

rm1
1 rm2

2 . . . rms
s ∈ I and so (

√
I)
n ⊆ I.

Definition 2.119. Let R be a ring and M be a right (left) R-module. Then M

is indecomposable if there are no non-zero submodules M1 and M2 of M such that

M = M1 ⊕M2.

Lemma 2.120. Let R be a commutative ring and M be an injective R-module.

Then M is indecomposable iff it is the injective envelope of each of its non-zero

submodules.

Proof. Let N be a non-zero submodule of M . Then M ≃ E(N) ⊕ N ′ for some

R-module N ′. Thus N ′ = 0 since M is indecomposable. Conversely, suppose M =

M1 ⊕M2. If M1 6= 0, then M1 ⊆ M is an essential extension by assumption. But

M1 ∩M2 = 0. So M2 = 0 and we are done.

Lemma 2.121. Let R be a commutative ring and p, q ∈ SpecR. Then

1. E(R/p) is indecomposable R-module,

2. if s ∈ R\p, then the mapping multiplication by s is an R-module automorphism

on E(R/p),

3. E(R/p) ≃ E(R/q) iff p = q,

4. Ass(E(R/p)) = {p},

5. E(R/p) is an R(p)-module and it is an injective hull of (R/p)(p) = R(p)/(pR(p)),

that is

ER(R/p) = ER(p)
(R(p)/(pR(p))).

Proof. (1). Suppose there are non-zero submodules E1 and E2 of E(R/p) such that

E(R/p) = E1⊕E2. Then Ei∩R/p 6= 0 for i = 1, 2 since R/p ⊆ E(R/p) is an essential

extension. So let xi ∈ Ei ∩ R/p be a non-zero elements. (Ei ∩ R/p), i = 1, 2 are

ideals of R/p, thus x1x2 ∈ (E1∩R/p)∩(E2∩R/p). But (E1∩R/p)∩(E2∩R/p) = 0.

So x1x2 are non-zero elements in R/p such that x1x2 = 0. This contradicts the fact

that R/p is a domain (see Lemma 2.86). Hence E(R/p) is indecomposable.

(2). Let ϕ : E(R/p) → E(R/p) be the mapping multiplication by s. Since p is a

prime ideal, ϕ is injective on (R/p). So Ker ϕ ∩ (R/p) = 0. But (R/p) ⊆ E(R/p) is

an essential extension. So Ker ϕ = 0 and thus ϕ is injective. But then ϕ(E(R/p)) is

an injective submodule of E(R/p), thus ϕ(E(R/p)) is a direct summand of E(R/p).

So ϕ is an automorphism since E(R/p) is indecomposable by (1).
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(3). Suppose p 6= q. Let p 6⊆ q. Then the mapping multiplication by s ∈ p \ q
is an automorphism on E(R/q) but clearly not on E(R/p). So E(R/p) 6≃ E(R/q).

(4). First, R/p ⊆ E(R/p), thus p ∈ Ass(E(R/p)). Let q ∈ Ass(E(R/p)), then

R/q is isomorphic to a submodule of E(R/p) and since E(R/p) is indecomposable

by (1), we have that E(R/q) ≃ E(R/p). Hence p = q by (3).

(5). For each s ∈ R \ p denote ϕs : E(R/p) → E(R/p) mapping multiplication

by s. Then by (2), E(R/p) is an R(p)-module via m(r/s) = ϕ−1
s (mr), where r ∈ R,

s ∈ R \ p. Using Lemma 2.98, it is now easy to see that E(R/p) ⊇ (R/p)(p).

Since E(R/p) is an essential extension of (R/p) and E(R/p) ⊇ (R/p)(p) ⊇ (R/p),

E(R/p) is also an essential extension of an R(p)-module (R/p)(p). And since E(R/p)

is injective as R-module, it is also injective as R(p)-module by Lemma 2.96. Thus

E(R/p) is an injective hull of an R(p)-module (R/p)(p).

Lemma 2.122. Let R be a noetherian commutative ring and p, q ∈ SpecR. Then

1. if m ∈ E(R/p), then there exists an n > 0 such that mpn = 0,

2. HomR(E(R/p), E(R/q)) 6= 0 iff p ⊆ q,

3. if S is a multiplicative subset of R, then

(a) if S ∩ p = ∅ then E(R/p) is an S−1R-module,

(b)

S−1E(R/p) ≃
{

E(R/p), if S ∩ p = ∅
0, if S ∩ p 6= ∅

as S−1R-modules.

Proof. (1). Let m ∈ E(R/p), m 6= 0. Then mR ≃ R/Ann(m). But Ass(E(R/p)) =

{p} by 2.121. So Ass(mR) = {p} since Ass(mR) 6= ∅. But then by Lemma 2.113,

p is the unique minimal element in Supp(mR). But Supp(mR) = {p ∈ SpecR |
Ann(mR) ⊆ p} by Lemma 2.114. Hence p is the radical of Ann(m) (note that every

ideal of R is finitely generated). By Lemma 2.118, we have pn = (
√

Ann(m))
n ⊆

Ann(m). So (1) is true.

(2). If p ⊆ q, then we have a homomorphism R/p
ϕ→ R/q induced by the

inclusion p ⊆ q. Now embed R/q into E(R/q). Then the composition of ϕ and

the inclusion R/q ⊆ E(R/q) can be extended to a non-zero homomorphism in

HomR(E(R/p), E(R/q)) since E(R/q) is injective.

Now let ϕ ∈ HomR(E(R/p), E(R/q)) be non-zero. Then let m ∈ E(R/p) be

such that ϕ(m) 6= 0. If r ∈ p, then rnm = 0 for some n > 0 by (1) above. So

rn ∈ Ann(m). But by 2.121, Ass(ϕ(m)R) = {q} thus there is an s ∈ R such
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that Ann(ϕ(m)s) = q, it implies that Ann(ϕ(m)) ⊆ Ann(ϕ(m)s) = q. Therefore

Ann(m) ⊆ Ann(ϕ(m)) ⊆ q. So rn ∈ q and thus r ∈ q. Hence p ⊆ q.

(3)(a). If S ∩ p = ∅, then for each s ∈ R \ p denote ϕs : E(R/p) → E(R/p)

mapping multiplication by s. Then by 2.121 (2), E(R/p) is an S−1R-module via

m(r/s) = ϕ−1
s (mr) where r ∈ R, s ∈ S.

(3)(b). If S∩p = ∅, then using Lemma 2.98, we have that S−1E(R/p) ≃ E(R/p)

as S−1R-modules.

If S ∩ p 6= ∅, then let s ∈ S ∩ p, by (1) above we have that for each m ∈ E(R/p)

there is an n > 0 such that msn = 0. Thus for each m/s′ ∈ S−1E(R/p) we have

that m/s′ = (m/s′)(sn/sn) = (msn)/(s′sn) = 0. So (3) is true.

Theorem 2.123. Let R be a commutative noetherian ring. Then

1. if E is an indecomposable injective R-module, then E ≃ E(R/p) for some

p ∈ SpecR,

2. every injective R-module E is a direct summand of indecomposables R-

modules. This decomposition is unique in the sense that for each p ∈ SpecR,

the number of summands isomorphic to E(R/p) depends only on p and E.

Proof. (1). Let p ∈ Ass(E) (see Lemma 2.108). Then R/p is isomorphic to a

submodule of E. Thus E ≃ E(R/p) by Lemma 2.120.

(2). This is part of the Theorem 3.3.10. from [10].

Lemma 2.124. Let R be a commutative ring and F be an R-module. Then F is

flat iff Fp is flat as R(p)-module for all p ∈ SpecR (moreover, F is flat iff Fp is flat

as R(p)-module for all p ∈ mSpecR).

Proof. Let F be flat and let p ∈ SpecR. Let A −→ B be an injective R(p)-module

homomorphism, by Lemma 2.96, it is also an injective R-module homomorphism.

Since F is a flat R-module, the induced R-module homomorphism A ⊗R F −→
B ⊗R F is injective and since by Lemma 2.97, R(p) is a flat R-module, the induced

R-module homomorphism A⊗RF ⊗RR(p) −→ B⊗RF ⊗RR(p) is also injective. Now

using the fact that A⊗R F ⊗RR(p) ≃ A⊗R F(p) ≃ A⊗R(p)
F(p) as R(p)-modules and

analogously B ⊗R F ⊗R R(p) ≃ B ⊗R(p)
F(p) as R(p)-modules (see Lemmas 2.97 and

2.98), it is easy to see that the induced R(p)-module homomorphism A⊗R(p)
F(p) −→

B ⊗R(p)
F(p) is injective, so F(p) is a flat R(p)-module.

Let F(p) be a flat R(p)-module for all p ∈ mSpecR. Let A −→ B be an injective

R-module homomorphism. Denote K the kernel of the induced R-module homo-

morphism A⊗R F −→ B ⊗R F . So the sequence 0 −→ K −→ A⊗R F −→ B ⊗R F
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is the exact sequence of R-modules. By Lemma 2.97, the following sequence of

R(p)-modules

0 −→ K(p) −→ (A⊗R F )(p) −→ (B ⊗R F )(p)

is exact. Since by Lemma 2.99, (A ⊗R F )(p) ≃ A(p) ⊗R(p)
F(p) as R(p)-modules and

(B ⊗R F )(p) ≃ B(p) ⊗R(p)
F(p) as R(p)-modules, it follows that K(p) = 0. Thus

K(p) = 0 for all p ∈ mSpecR, so K = 0 by Lemma 2.112. So the claim is true.

Definition 2.125. A domain R is called a valuation domain if the set of all ideals

of R form a chain under inclusion.

Lemma 2.126. Let R be a valuation domain and I be a finitely generated ideal of

R. Then I is a principal ideal.

Proof. Let {x1, x2, . . . , xn} be the generating subset of I. Since the set of all ideals

of R form a chain under inclusion, there exists k ∈ {1, 2, . . . , n} such that xkR ⊇
⋃i=n
i=1 xiR. But then we have I = xnR, thus I is principal.
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3 Tilting modules

Definition 3.1. Let R be a ring and C be a class of right R-modules. We define a

right orthogonal class of C, denoted C⊥1, as

C⊥1 = {M ∈ Mod-R | Ext1R(C,M) for all C ∈ C},

and a left orthogonal class of C, denoted ⊥1C, as

⊥1C = {M ∈ Mod-R | Ext1R(M,C) for all C ∈ C}.

Let i ≥ 1, the class C⊥i is defined by

C⊥i = {M ∈ Mod-R | ExtiR(C,M) for all C ∈ C},

the class C⊥∞ is defined by

C⊥∞ =
⋂

1≤j<ω

C⊥j ,

the classes ⊥iC and ⊥∞C are defined analogicaly.

Remark 3.2. Let R be a ring and C be a class of right R-modules. Then C ⊆ ⊥1(C⊥1)

and C ⊆ (⊥1C)⊥1 . Also C1 ⊆ C2 implies ⊥1C2 ⊆ ⊥1C1 and C⊥1
2 ⊆ C⊥1

1 . From this, it

follows that (⊥1(C⊥1))
⊥1 = C⊥1 and ⊥1((⊥1C)⊥1) = ⊥1C.

We also note that each right orthogonal class is closed under extensions, direct

summands and arbitrary direct products and contains all the injective modules and

each left orthogonal class is closed under extensions, direct summands and arbitrary

direct sums and contains all the projective modules.

Definition 3.3. Let R be a ring and A,B be two classes of right R-modules. Then

the ordered pair (A,B) is called a cotorsion pair (or cotorsion theory) if A = ⊥1B
and B = A⊥1.

From Remark 3.2, it follows that (⊥1(C⊥1), C⊥1) and (⊥1C, (⊥1C)
⊥1) are cotor-

sion pairs, they are called cotorsion pairs generated and cogenerated, respectively,

by the class C.

In case when C consists of a single right R-module C, we simply write ⊥1C and

C⊥1 in place of ⊥1{C} and {C}⊥1 .

Remark 3.4. Let (A,B) be a cotorsion pair, then by Remark 3.2, we have that

1. P0 ⊆ A and A is closed under extensions, direct summands and arbitrary

direct sums,

2. I0 ⊆ B and B is closed under extensions, direct summands and arbitrary direct

products.

48



We also note that for any ring R, the cotorsion pairs of right R-modules are

partialy ordered by inclusion of their first component. The largest element under this

order is (Mod-R,Io), the least is (P0,Mod-R), these are called the trivial cotorsion

pairs (or trivial cotorsion theories).

Definition 3.5. Let R be a ring, C be a class of right R-modules and M be a

right R-module. A homomorphism f : M → C with C ∈ C is a C-preenvlope of

M if for each homomorphism f ′ : M → C ′ with C ′ ∈ C there is a homomorphism

g : C → C ′ such that f ′ = gf . The C-preenvlope f of M is a C-envlope of M if for

each g : C → C the equation f = gf implies that g is an automorphism of C. The

C-preenvlope f of M is called special if f is injective and Coker f ∈ ⊥1C
A homomorphism f : C → M with C ∈ C is a C-precover of M if for each

homomorphism f ′ : C ′ →M with C ′ ∈ C there is a homomorphism g : C ′ → C such

that f ′ = fg. The C-precover f of M is a C-cover of M if for each g : C → C the

equation f = fg implies that g is an automorphism of C. The C-precover f of M is

called special if f is surjective and Ker f ∈ C⊥1

If C is a class of right R-modules such that each right R-module has a special

preenlope (special precover) then C is called special preenvloping (special precover-

ing).

Note that both the C-preenvlope of M and the C-precover of M need not to be

unique.

Definition 3.6. Let R be a ring and (A,B) be a cotorsion pair of right R-modules.

Then (A,B) is called complete if each right R-module has a special A-precover and

each right R-module has a special B-preenvlope.

Definition 3.7. Let R be a ring and C be a class of right R-modules. Then

(i) C is called resolving if C is closed under extensions, P0 ⊆ C and A ∈ C,

whenever 0 −→ A −→ B −→ C −→ 0 is a short exact sequence such that

B,C ∈ C,

(ii) C is called coresolving if C is closed under extensions, I0 ⊆ C and C ∈ C,

whenever 0 −→ A −→ B −→ C −→ 0 is a short exact sequence such that

A,B ∈ C.

Definition 3.8. Let R be a ring and (A,B) be a cotorsion pair of right R-modules.

Then (A,B) is called hereditary if A is resolving and B is coresolving.

Definition 3.9. Let R be a ring and C be a class of right R-modules. Then C is of

finite type if there exist n < ω and a class (equivalently a set) S ⊆ P<ω
n such that

C = S⊥∞ .

Let T be a right R-module. Then T is of finite type if the class T⊥∞ is of finite

type.
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Lemma 3.10. Let R be a ring and T a right R-module of projective dimension n.

Let 0 −→ Pn −→ . . . −→ P0 −→ T −→ 0 be a projective resolution of T with syzygies

T = S0, S1, . . . , Sn−1, Sn = Pn, Sn+1 = 0, Sn+2 = 0, . . . and let S =
⊕

0≤i≤n
Si. Then

1. (⊥1(T⊥∞), T⊥∞) is the cotorsion pair generated by S,

2. ⊥1(T⊥∞) ⊆ Pn.

Proof. (1) by Lemma 2.80 we have

T⊥∞ =
⋂

1≤i<ω

{M ∈ Mod-R | ExtiR(T,M) = 0} =

=
⋂

1≤i<ω

{M ∈ Mod-R | Ext1R(Si−1,M) = 0} =

=
⋂

0≤i<n

{M ∈ Mod-R | Ext1R(Si,M) = 0} =

= {M ∈ Mod-R |
∏

0≤i≤n

Ext1R(Si,M) = 0} =

= {M ∈ Mod-R | Ext1R(
⊕

0≤i≤n

Si,M) = 0} = (
⊕

0≤i≤n

Si)
⊥1

= S⊥1.

So the (1) is true.

(2) by assumption, S ∈ Pn, so S⊥1 ⊇ Pn⊥1. By (1), Remark 3.2 and Theorem

7.10, ⊥1(T⊥∞) = ⊥1(S⊥1) ⊆ ⊥1(Pn⊥1) = Pn.

Definition 3.11. Let R be a ring. A right R-module T is tilting provided that

(T1) T has finite projective dimension (that is, T ∈ P),

(T2) ExtiR(T, T (κ)) = 0 for all 1 ≤ i < ω and all cardinals κ,

(T3) there are r ≥ 0 and a long exact sequence 0 → R → T0 → · · · → Tr → 0,

where Ti ∈ Add(T ) for all i ≤ r.

The class T⊥∞ is called tilting class induced by T and the cotorsion pair

(⊥1(T⊥∞), T⊥∞) is called tilting cotorsion pair induced by T .

If n < ω and T is tilting of projective dimension ≤ n, then T is n-tilting, the class

T⊥∞ is called n-tilting class induced by T and the cotorsion pair (⊥1(T⊥∞), T⊥∞)

is called n-tilting cotorsion pair induced by T .

If T and T ′ are tilting right R-modules, then T is said to be equivalent to T ′ if

the induced tilting classes coincide, that is, T⊥∞ = (T ′)⊥∞ .
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Definition 3.12. Let R be a ring and let µ be an ordinal. The sequence A = (Aα |
α ≤ µ) of right (left) R-modules is called a continuous chain of R-modules in case

following three conditions hold

(i) A0 = 0,

(ii) Aα ⊆ Aα+1 for all α < µ,

(iii) Aα =
⋃

β<αAβ for all limit ordinals α ≤ µ.

If µ is finite, the previous sequence is called a finite chain of R-modules.

Definition 3.13. Let R be a ring, M be a right (left) R-module, and C be a class of

right (left) R-modules. ThenM is C-filtered, provided that there are an ordinal µ and

a continuous chain of right (left) R-modules (Mα | α ≤ µ), consisting of submodules

of M such that M = Mµ, and each of the right (left) R-module Mα+1/Mα (α < µ)

is isomorphic to an element of C. The chain (Mα | α ≤ µ) is called a C-filtration of

M . If µ is finite, then M is said to be finitely C-filtered and the coresponding finite

chain of R-modules is called a finite C-filtration of M .

Now, we will prove that each tilting module over an arbitrary ring is strongly

finitely presented. We will need this result in order to prove that finitely generated

tilting modules over commutative rings are projective.

Lemma 3.14. Let R be a ring, (A,B) be a tilting cotorsion pair. Then each count-

ably generated right R-module M from A is countably presented.

Proof. By Theorem 7.14, there is a A<ℵ1-filtration M = (Mα | α ≤ σ) of M . Thus

each right R-module Mα+1/Mα (α < σ) posses a projective resolution consisting of

< ℵ1-generated projective right R-modules. Using Lemma 2.82, we see that each

Mα+1/Mα (α < σ) is < ℵ1-presented. By Theorem 7.11 (in setting κ = ℵ1, N = 0

and X be a generating subset of M of cardinality < κ), we have that M is countably

presented.

Lemma 3.15. Let R be a ring and T be a finitely generated tilting right R-module.

Then T is strongly finitely presented.

Proof. Denote (A,B) the cotorsion pair induced by T . By Lemma 3.10, T⊥∞ = S⊥1 ,

so S ∈ ⊥1(T⊥∞) and since T is a direct summand in S, we have that T ∈ ⊥1(T⊥∞).

Using Lemma 3.14 and the fact that T is finitely generated, we have the following

short exact sequence of right R-modules

0 −→ K −→ R(m) −→ T −→ 0
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where m < ω and K is countably generated. Write K =
⋃

0≤i<ωKi as the union

of the strongly increasing continuous chain of finitely generated submodules Ki of

K. Let Ei denote the injective hull of K/Ki. Define f : K → ∏

0≤i<ω Ei by

f(k) = (k+Ki)0≤i<ω. For every k ∈ K, there is an ik < ω such that k ∈ Kik , so the

image of f is contained in
⊕

0≤i<ω Ei. Using Remark 3.4 and Theorem 7.13, we have

that
⊕

0≤i<ω Ei ∈ B and since T ∈ A, there is g ∈ HomR(R(m),
⊕

0≤i<ω Ei) such

that g ↾K= f . But, the image of g is finitely generated, so there exists i < ω such

that Im f ⊆ ⊕

0≤j<iEj and hence Ki = K proving that K is finitely generated. If

K is projective we are done, otherwise repeat the previous procedure again but now

for the following short exact sequence of right R-modules

0 −→ L −→ R(n) −→ K −→ 0

where L is countably generated (see Lemma 3.10 and use the fact that K is the first

syzygy of T ). We get that L is finitely generated and if L is projective we are done,

otherwise we can repeat the previous procedure again, etc. So T is strongly finitely

presented.

The following Lemma is crucial in proving that finitely generated tilting modules

over commutative rings are projective. The technique of the proof is taken from

Proposition 2.2. from [9] and its modification is due to S. Bazzoni.

Lemma 3.16. Let R be a commutative ring and M be a strongly finitely presented

R-module such that proj dimRM ≤ n and ExtiR(M,M) = 0 for all 1 ≤ i ≤ n. Then

M is projective.

Proof. Suppose that proj dimM = k, 0 < k ≤ n. Let 0 −→ Pk −→ . . . −→ P0 −→
M −→ 0 be the projective resolution of M consisting of finitely generated projective

R-modules. Denote by S the (k−1)th syzygy of this resolution of M . We will prove

that S is projective, it will be the contradiction proving that M is projective.

Since S is strongly finitely presented, by Lemmas 2.82, 2.66 and 2.124, it is

enough to prove that for every maximal ideal I of R, S(I) is a projective R(I)-module.

Let I be a maximal ideal of R. We can assume without loss of generality, that

M(I) 6= 0, because S(I) is the (k − 1)th syzygy of the following projective reolution

of M(I) (see Lemma 2.100)

0 −→ (Pk)(I) −→ . . . −→ (P0)(I) −→M(I) −→ 0.

By Lemma 2.100, M(I) is a finitely generated R(I)-module. By Remark 2.106, R(I)

is a local ring with a maximal ideal IR(I). So by Nakayma’s Lemma 2.38, we

obtain that M(I) 6= M(I)I = (MI)(I) and hence M 6= MI. Therefore by Remark

2.27, M/(MI) is a non-zero (R/I)-vector space. So that we have an (R/I)-module
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epimorphism M/(MI)
ϕ−→ (R/I) −→ 0 (it is a projection to some of it’s one-

dimensional subspace). ϕ is clearly also an R-module epimorphism and if we define

ψ = ϕ ◦ π as a composite mapping of a canonical projection M
π→M/(MI) and ϕ,

we have the following short exact sequence

0 −→ K −→M
ψ−→ R/I −→ 0

of R-modules (K is the kernel of ψ). Applying HomR(M,−) to the previous short

exact sequence we get part of the induced long exact sequence

ExtkR(M,M) −→ ExtkR(M,R/I) −→ Extk+1
R (M,K).

Since ExtkR(M,M) = Extk+1
R (M,K) = 0 (proj dimM = k), using Lemma 2.80 we

obtain that ExtkR(M,R/I) = Ext1R(S,R/I) = 0.

Now using Lemmas 2.23 and 7.2 we get that

0 = Ext1R(S,R/I) ≃ Ext1R(S,HomR(R/I,E(R/I))) ≃
≃ HomR(Tor1R(S,R/I), E(R/I)).

Since by Lemma 2.121, ER(R/I) = ER(I)
(R(I)/(IR(I))) as R(I)-modules and there-

fore as R-modules, we obtain by Lemmas 2.45, 2.96 and 2.46 that

0 = HomR(Tor1
R(S,R/I), ER(I)

(R(I)/IR(I))) ≃
≃ HomR(Tor1

R(S,R/I),HomR(I)
(R(I), ER(I)

(R(I)/IR(I)))) ≃
≃ HomR(Tor1

R(S,R/I),HomR(R(I), ER(I)
(R(I)/IR(I)))) ≃

≃ HomR(Tor1
R(S,R/I) ⊗R R(I), ER(I)

(R(I)/IR(I))) ≃
≃ HomR(I)

(Tor1
R(S,R/I) ⊗R R(I), ER(I)

(R(I)/IR(I))).

Remark 2.106 and Lemma 2.64 imply that ER(I)
(R(I)/(IR(I))) is an injective

cogenerator for R(I)-modules, thus

Tor1R(S,R/I) ⊗R R(I) = 0.

Hence by Lemma 2.101,

Tor1R(I)
(S(I), R(I)/(IR(I))) = 0.

Therefore in view of Theorem 7.5, S(I) is a projective R(I)-module and we are done.

Corollary 3.17. Let R be a commutative ring and T be a finitely generated tilting

R-module. Then T is projective.
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Proof. This follows from Lemmas 3.15 and 3.16.

Now we will define Gorenstein rings and Bass tilting modules and we will prove

that Bass tilting modules are 1-tilting.

Definition 3.18. A ring R is called Iwanaga-Gorenstein (or simply Gorenstein) if

R is both left and right noetherian and if R has finite self-injective dimension on

both the left and the right. A Gorenstein ring with inj dimRR ≤ n (or equivalently

with inj dimRR ≤ n) is called n-Iwana-Gorenstein (or simply n-Gorenstein ring).

Lemma 3.19. Let R be a commutative noetherian ring. Then the following are

equivalent

1. R is n-Gorenstein,

2. Krull dimension of R is at most n, i.e. dim R ≤ n,

3. P = I = F = Pn = In = Fn,

4. the minimal injective coresolution of R is of the form

0 −→ R −→
⊕

ht p=0

E(R/p) −→
⊕

ht p=1

E(R/p) −→ . . . −→
⊕

ht p=n

E(R/p) −→ 0.

Proof. These are the classical results on Gorenstein rings and can be found in [12,

§18].

Definition 3.20. Let R be a commutative 1-Gorenstein ring. Let P0 and P1 denote

the sets of all prime idelas of height 0 and 1, respectively. By Lemma 3.19, the

minimal injective coresolution of R has the form

0 −→ R −→
⊕

q∈P0

E(R/q)
π−→

⊕

p∈P1

E(R/p) −→ 0.

Consider a subset P ⊆ P1. Put RP = π−1(
⊕

p∈P E(R/p)) and TP = RP ⊕
⊕

p∈P E(R/p). We define the Bass tilting module (with respect to P ⊆ P1) as

TP .

The following can also be found in [3] as Example 4.1.

Lemma 3.21. Let R be a commutative 1-Gorenstein ring. Then the Bass tilting

module TP is a 1-tilting module for any P ⊆ P1.
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Proof. Let P ⊆ P1 and consider the TP .

(T1). First note that the R-modules
⊕

p∈P1\P
E(R/p) and

⊕

p∈P E(R/p) are

injective because R is noetherian. By Definition 3.20, we have the following short

exact sequence

0 −→ RP −→ E(R) −→
⊕

p∈P1\P

E(R/p) −→ 0.

We see that RP has an injective dimension ≤ 1. Since both RP and
⊕

p∈P E(R/p)

have injective dimension ≤ 1, so does TP . By Lemma 3.19 we have that TP has also

projective dimension ≤ 1, so TP ∈ P1 and (T1) is satisfied.

(T2). First we will prove that Ext1R(E(R/p), R
(κ)
P ) = 0 for any p ∈ P and any

cardinal κ. Consider the short exact sequence

0 −→ R
(κ)
P −→ E(R)(κ) −→

⊕

p∈P1\P

E(R/p)
(κ) −→ 0.

Applying HomR(E(R/p),−), we get part of the induced long exact sequence

HomR(E(R/p),
⊕

p∈P1\P

E(R/p)
(κ)

) −→ Ext1R(E(R/p), R
(κ)
P ) −→ Ext1R(E(R/p), E(R)(κ)).

But by Lemma 2.122, HomR(E(R/p),
⊕

p∈P1\P
E(R/p)(κ)) = 0 and since E(R)(κ) is

an injective R-module, we also have Ext1R(E(R/p), E(R)(κ)) = 0. So we have just

proved that Ext1R(E(R/p), R
(κ)
P ) = 0 for any p ∈ P and any cardinal κ.

By Definition 3.20, we have the following short exact sequence

0 −→ R −→ RP −→
⊕

p∈P

E(R/p) −→ 0.

Applying HomR(−, R(κ)
P ), we get part of the induced long exact sequence

Ext1R(
⊕

p∈P

E(R/p), R(κ)
p ) −→ Ext1R(RP , R

(κ)
p ) −→ Ext1R(R,R

(κ)
P ).

We already know that Ext1R(
⊕

p∈P E(R/p), R
(κ)
p ) ≃ ∏

p∈P Ext1R(E(R/p), R
(κ)
p ) = 0

and we also have Ext1R(R,R
(κ)
p ) = 0 because R is a projective R-module, so we have

55



just proved that Ext1R(RP , R
(κ)
p ) = 0 for any κ. Now we have

Ext1R(TP , T
(κ)
P ) ≃ Ext1R(RP ⊕

⊕

p∈P

E(R/p), T
(κ)
P ) ≃

≃ Ext1R(Rp, T
(κ)
P ) ⊕

∏

p∈P

Ext1R(E(R/p), T
(κ)
P ) ≃

≃ Ext1R(RP , R
(κ)
P ) ⊕ Ext1R(RP ,

⊕

p∈P

E(R/p)(κ)) ⊕

⊕
∏

p∈P

Ext1R(E(R/p), R
(κ)
P ) ⊕ Ext1R(E(R/p),

⊕

p∈P

E(R/p)
(κ)

).

Using Ext1R(E(R/p), R
(κ)
P ) = 0 for any p ∈ P and any cardinal κ, Ext1R(RP , R

(κ)
p ) = 0

for any cardinal κ and Ext1R(M, I) = 0 for any R-module M and any injective

R-module I, we have just proved that Ext1R(TP , T
(κ)
P ) = 0 for any cardinal κ.

By the previous part, TP has projective dimension ≤ 1, so (using Lemma 2.77)

ExtiR(TP , T
(κ)
P ) = 0 for all i ≥ 1 and all cardinals κ, thus the condition (T2) is

satisfied for TP .

(T3). The short exact sequence 0 → R→ RP → ⊕

p∈P E(R/p) → 0 yields that

the condition (T3) is satisfied for TP .

Remark 3.22. Consider the short exact sequence

0 −→ R −→ RP −→
⊕

p∈P

E(R/p) −→ 0.

Applying HomR(−,M) (M is an arbitrary R-module), we get part of the induced

long exact sequence

Ext1R(
⊕

p∈P

E(R/p),M) −→ Ext1R(RP ,M) −→ Ext1R(R,M).

We have Ext1R(R,M) = 0 because R is a projective R-module and since

Ext1R(
⊕

p∈P

E(R/p),M) ≃
∏

p∈P

Ext1R(E(R/p),M),

we have that if Ext1R(E(R/p),M) = 0 for all p ∈ P then Ext1R(RP ,M) = 0.

By Definition 3.11 and Lemma 2.77 (TP is 1-tilting R-module), the 1-tilting

class induced by TP is {M ∈ Mod-R | Ext1R(TP ,M) = 0}. But we have

Ext1R(TP ,M) ≃ Ext1R(RP ⊕
⊕

p∈P

E(R/p),M) ≃

≃ Ext1R(RP ,M) ⊕
∏

p∈P

Ext1R(E(R/p),M).
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So by the previous part we get that T⊥∞

P = {M ∈ Mod-R | Ext1R(E(R/p),M) = 0

for all p ∈ P} =
⋂

p∈P (E(R/p))⊥1 .

Lemma 3.23. Let R be a ring and C a left R-module of injective dimension n.

Let 0 −→ C −→ I0 −→ I1 −→ . . . −→ In −→ 0 be an injective coresolution of

C with cosyzygies C = S0, S1, . . . , Sn−1, Sn = In, Sn+1 = 0, Sn+2 = 0, . . . and let

S =
∏

0≤i≤n
Si. Then (⊥∞C, (⊥∞C)

⊥1) is the cotorsion pair cogenerated by S.

Proof. By Lemma 2.80 we have

⊥∞C =
⋂

1≤i<ω

{M ∈ Mod-R | ExtiR(M,C) = 0} =

=
⋂

1≤i<ω

{M ∈ Mod-R | Ext1R(M,Si−1) = 0} =

=
⋂

0≤i<n

{M ∈ Mod-R | Ext1R(M,Si) = 0} =

= {M ∈ Mod-R |
∏

0≤i≤n

Ext1R(M,Si) = 0} =

= {M ∈ Mod-R | Ext1R(M,
∏

0≤i≤n

Si) = 0} = ⊥1(
∏

0≤i≤n

Si) = ⊥1S.

So the claim is true.

Definition 3.24. Let R be a ring. A left R-module C is cotilting provided that

(C1) C has finite injective dimension (that is, C ∈ I),

(C2) ExtiR(Cκ, C) = 0 for all 1 ≤ i < ω and all cardinals κ,

(C3) there are r ≥ 0 and a long exact sequence 0 → Cr → · · · → C1 → C0 →W →
0, where Ci ∈ Prod(C) for all i ≤ r and W is an injective cogenerator for

R-Mod.

The class ⊥∞C is called cotilting class induced by C and the cotorsion pair

(⊥∞C, (⊥∞C)
⊥1) is called cotilting cotorsion pair induced by C.

If n < ω and C is cotilting of injective dimension ≤ n, then C is n-cotilting,

the class ⊥∞C is called n-cotilting class induced by C and the cotorsion pair

(⊥∞C, (⊥∞C)
⊥1) is called n-cotilting cotorsion pair induced by C.

If C and C ′ are cotilting left R-modules, then C is said to be equivalent to C ′

if the induced cotilting classes coincide, that is, ⊥∞C = ⊥∞C ′.
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4 Tilting modules over Dedekind domains

In this chapter, we will prove that every tilting module over a Dedekind domain is

equivalent to some Bass tilting module.

Definition 4.1. A ring R is right (left) hereditary in case every right (left) ideal of

R is a projective right (left) R-module.

Remark 4.2. Note that a ring may be right hereditary but not left hereditary. The

term hereditary ring will mean a ring which is both left and right hereditary. It is

clear that, when R is commutative, R is left hereditary precisely when it is right

hereditary.

Lemma 4.3. Let R be a ring. Then the following are equivalent

1. R is right (left) hereditary,

2. if M is an injective right (left) R-module, then M/M ′ is injective for every

submodule M ′ ⊆M ,

3. if M is a projective right (left) R-module, then M ′ is projective for every

submodule M ′ ⊆M ,

4. Ext1R(M,N) = 0 implies Ext1R(M,N/N ′) = 0 for all right (left) R-modules M ,

N ′ ⊆ N ,

5. Ext1R(M,N) = 0 implies Ext1R(M ′, N) = 0 for all right (left) R-modules M ′ ⊆
M , N ,

6. ExtiR(M,N) = 0 for all i ≥ 2 and for all right (left) R-modules M , N ,

7. M⊥∞ = M⊥1 for all right (left) R-modules M .

Proof. This is a well-known fact which can be found in [8].

Definition 4.4. A hereditary integral domain is called a Dedekind domain.

Lemma 4.5. Let R be a Dedekind domain. Then

1. R is noetherian and inj dimR ≤ 1, in particular R is a hereditary 1-Gorenstein

domain,

2. every non-zero prime ideal p of R is maximal, i.e. ht p = 1 iff p ∈ mSpecR,

3. if p ∈ SpecR, then R(p) is a valuation domain.
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Proof. (1). It is a well-known fact that every Dedekind domain is noetherian (see

[12] or [6]) and by Lemma 4.3, the following short exact sequence

0 −→ R −→ E(R) −→ E(R)/R −→ 0

is an injective coresolution of R.

(2) and (3) are well-known facts and can be found in [12].

Lemma 4.6 (Eklof Lemma). Let R be a ring, N be a right (left) R-module, and

M be a ⊥1N -filtered right (left) R-module. Then M ∈ ⊥1N . (Or equivalently: Let

R be a ring and M , N be right (left) R-modules. If there is a continuous chain

(Mα | α ≤ µ) of submodules of M such that M = Mµ and Ext1R(Mα+1/Mα, N) = 0

for all ordinals α < µ. Then Ext1R(M,N) = 0.)

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let (Mα | α ≤ µ) be a ⊥1N -filtration of M . So by Definition 3.12, Ext1R(M0, N) = 0

and by Definition 3.13, Ext1R(Mα+1/Mα, N) = 0 for each α < µ. We will prove that

Ext1R(M,N) = 0.

By induction on α < µ we will prove that Ext1R(Mα, N) = 0. This is clear for

α = 0. Applying HomR(−, N) to the following short exact sequence

0 −→Mα −→Mα+1
πα+1−→ Mα+1/Mα −→ 0

we get a part of the induced long exact sequence

0 = Ext1R(Mα+1/Mα, N) −→ Ext1R(Mα+1, N) −→ Ext1R(Mα, N) = 0

which proves the induction step for all non-limit ordinals α+ 1 ≤ µ. Assume α ≤ µ

is a limit ordinal and let I denote the injective hull of N . We have the following

short exact sequence 0 −→ N −→ I
π−→ I/N −→ 0. In order to prove that

Ext1R(Mα, N) = 0, we show that the abelian group homomorphism HomR(Mα, π) :

HomR(Mα, I) → HomR(Mα, I/N) is surjective.

Let ϕ ∈ HomR(Mα, I/N). By induction we define homomorphisms ψβ ∈
HomR(Mβ , N), β < α, so that ϕ ↾ Mβ = πψβ and ψβ ↾ Mγ = ψγ for all

γ < β < α. First define M−1 = 0 and ψ−1 = 0. If ψβ is already defined, the

injectivity of I yields the existence of η ∈ HomR(Mβ+1, I) such that η ↾ Mβ = ψβ.

Put δ = ϕ ↾ Mβ+1 − πη ∈ HomR(Mβ+1, I/N). Then δ ↾ Mβ = 0. By Lemma

2.24, there exists a unique homomorphism δ′ ∈ HomR(Mβ+1/Mβ , I/N) such that

δ′πβ+1 = δ. Since Ext1R(Mβ+1/Mβ , N) = 0, there is an ǫ′ ∈ HomR(Mβ+1/Mβ, I)

such that πǫ′ = δ′. Now we define a homomorphism ǫ ∈ HomR(Mβ+1, I) in the

following way

ǫ(m) = ǫ′(m+Mβ)
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for all m ∈ Mβ+1, thus we have ǫ ↾ Mβ = 0 and πǫ = δ. Put ψβ+1 = η + ǫ. Then

ψβ+1 ↾ Mβ = ψβ and πψβ+1 = πη + δ = ϕ ↾ Mβ+1. For a limit ordinal β < α, put

ψβ =
⋃

γ<β ψγ . Finally, put ψα =
⋃

β<α ψβ. By the construction, πψα = ϕ.

The claim is just the case of α = µ.

Lemma 4.7. Let R be a ring and let (Xi | i < ω) be a chain of right (left) R-modules

such that for every i < ω, the module (Xi+1/Xi) is C-filtered. Then the right (left)

R-module
⋃

i<ωXi is C-filtered.

Proof. This is really easy, but very difficult to write it down in some well-arranged

way, so we only show the idea of the proof. Assume for simplicity that X1 = X1/X0

and X2/X1 are finitely C-filtered. Let (Mi | i < k), (Nj | j < l) be a finite C-

filtration of X1, X2/X1 respectively. Then the chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk =

X1 = N0 ⊆ N1 ⊆ · · · ⊆ Nl = X2 is a C-filtration of X2.

Lemma 4.8. Let R be a commutative noetherian ring and let p ∈ mSpecR. Then

the R-module E(R/p) is {R/p}-filtered.

Proof. Define a chain of submodules of E(R/p) in the following way

X0 = 0,

Xn = {x ∈ E(R/p) | xpn = 0}, 1 ≤ n < ω.

By Lemma 2.122, we have 0 = X0 ⊆ X1 ⊆ X2 . . . and
⋃

i<ωXn = E(R/p) and

p(Xn+1/Xn) = 0 for every n < ω.

Let n < ω. From the previous fact that p(Xn+1/Xn) = 0, we have that p ⊆
Ann(Xn+1/Xn), so Xn+1/Xn is an R/p-module (see Definition 2.27). Since p is a

maximal ideal, by Lemma 2.86, R/p is a field, thus Xn+1/Xn is an R/p-vector space.

Let λ = dimR/p(Xn+1/Xn). Thus we have the following isomorphism of R/p-vector

spaces

Xn+1/Xn
ϕ≃

⊕

i<λ

R/p

We would like to prove that the ϕ is also an R-module isomorphism. For this it is

enough to prove that ϕ(xr) = ϕ(x)r for all r ∈ R and all x ∈ Xn+1/Xn. From the

definition of multiplication in the factor ring R/p, we know that ϕ(x)(r+p) = ϕ(x)r

for every r ∈ R and every x ∈ Xn+1/Xn. So we have ϕ(xr) = ϕ(x(r + p)) =

ϕ(x)(r + p) = ϕ(x)r for every r ∈ R and every x ∈ Xn+1/Xn. Thus ϕ is also an

R-module isomorphism.

Now, define a continuous chain of submodules of (Xn+1/Xn) in the following

way

Y0 = 0

Yj =
⊕

i<j

R/p, 1 ≤ j ≤ λ.
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The continuous chain (Yj | j ≤ λ) is obviously an {R/p}-filtration of (Xn+1/Xn).

So (Xn+1/Xn) is {R/p}-filtered for all n < ω.

By Lemma 4.7, the R-module
⋃

i<ωXn = E(R/p) is {R/p}-filtered.

Lemma 4.9. Let R be a commutative noetherian ring and let p ∈ mSpecR. Then

the R-module R/pk is {R/p}-filtered for all k ≥ 1.

Proof. Define a finite chain of submodules of R/pk in the following way

X0 = 0,

Xn = {x ∈ R/pk | xpn = 0}, 1 ≤ n ≤ k.

We have 0 = X0 ⊆ X1 ⊆ · · · ⊆ Xk = R/pk and p(Xn+1/Xn) = 0 for all n < k.

Analogously as in the proof of Lemma 4.8, we prove that the module (Xn+1/Xn)

is {R/p}-filtered for all n < k.

By Lemma 4.7 (set Xj = R/pk for all k < j < ω), the R-module Xk = R/pk is

{R/p}-filtered.

Lemma 4.10. Let R be a noetherian hereditary commutative ring and p ∈ mSpecR.

Then Ext1R(E(R/p),M) = 0 iff Ext1R(R/p,M) = 0.

Proof. Suppose that Ext1R(E(R/p),M) = 0. Since R is hereditary, by Lemma 4.3,

we have that Ext1R(R/p,M) = 0.

Suppose that Ext1R(E(R/p),M) = 0. By Lemma 4.8, the R-module E(R/p) is

{R/p}-filtered and thus, using Eklof Lemma 4.6, we get that Ext1R(E(R/p),M) =

0.

Corollary 4.11. Let R be a commutative hereditary 1-Gorenstein ring (in particular

a Dedekind domain (see Remark 4.5)) . Then the 1-tilting class T⊥∞

P induced by the

Bass tilting module TP is equal to the class {M ∈ Mod-R | Ext1R(R/p,M) = 0 for

all p ∈ P} =
⋂

p∈P (R/p)⊥1 .

Proof. Just combine Remark 3.22 and Lemma 4.10.

Lemma 4.12. Let R be a noetherian hereditary commutative ring and p ∈ mSpecR.

Then for every M ∈ Mod-R and every k ≥ 1, we have Ext1R(R/pk,M) = 0 iff

Ext1R(R/p,M) = 0.

Proof. Assume Ext1R(R/pk,M) = 0. Since R is hereditary and R/p ⊆ R/pk, by

Lemma 4.3, we have that Ext1R(R/p,M) = 0.

Assume Ext1R(R/p,M) = 0. Since by Lemma 4.9 the module R/pk is {R/p}-
filtered, we can use Eklof Lemma 4.6 and we get that Ext1R(R/pk,M) = 0.
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The following Theorem can also be found in [5] as Theorem 5.3., but since we

know that every tilting module is of finite type (see Theorem 7.15), we can prove it

in much simpler way.

Theorem 4.13. Let R be a Dedekind domain and T be a tilting R-module. Then

there is a set P ⊆ mSpecR such that T is equivalent to TP .

Proof. By Theorem 7.15, T is of finite type, thus there exists a set S of finitely

generated R-modules such that T⊥∞ = S⊥∞ . By Theorem 7.4, an R-module M is

finitely generated iff M is of the form

M ≃ P ⊕
⊕

p∈mSpecR

Mp, (3)

where P is a finitely generated projective R-module and each R-module Mp which

is non-zero is of the form

Mp ≃ R/pδ(p,1) ⊕R/pδ(p,2) ⊕ · · · ⊕R/pδ(p,l(p)), (4)

where 0 < δ(p, 1) ≤ δ(p, 2) ≤ · · · ≤ δ(p, l(p)) are positive integers, moreover, this

decomposition is uniquely determined by M . By Lemma 4.3, we have

M⊥∞ = M⊥1 = {N ∈ Mod-R | Ext1R(M,N) = 0} =

= {N ∈ Mod-R | Ext1R(P ⊕
⊕

p∈mSpecR

Mp, N) = 0} =

= {N ∈ Mod-R | Ext1R(P,N) ⊕
∏

p∈mSpecR

Ext1R(Mp, N) = 0} =

= {N ∈ Mod-R |
∏

p∈mSpecR

Ext1R(Mp, N) = 0} =
⋂

p∈mSpecR

M⊥1
p .

Now using (4) and Lemma 4.12, we have the following for every non-zero R-module

Mp

M⊥1
p = {N ∈ Mod-R | Ext1R(Mp, N) = 0} =

= {N ∈ Mod-R | Ext1R(R/pδ(p,1) ⊕R/pδ(p,2) ⊕ · · · ⊕R/pδ(p,l(p)), N) = 0} =

= {N ∈ Mod-R |
i=l(p)
∏

i=1

Ext1R(R/pδ(p,i), N) = 0} =

= {N ∈ Mod-R | Ext1R(R/p,N) = 0) = (R/p)⊥1.

Thus M⊥∞ =
⋂

p∈mSpecRM
⊥1
p =

⋂

p∈mSpecR
Mp 6=0

M⊥1
p =

⋂

p∈mSpecR
Mp 6=0

(R/p)⊥1 .

And finally if we define P = {p ∈ mSpecR | ∃M ∈ S such that Mp 6=
0 in the decomposition (3) of M}, we have S⊥∞ =

⋂

M∈S M
⊥∞ =

⋂

p∈P (R/p)⊥1 =
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{M ∈ Mod-R | Ext1R(R/p,M) = 0 for all p ∈ P}, but by Remark 3.22, this is

exactly the T⊥∞

P .

Thus we have T⊥∞ = S⊥∞ = T⊥∞

P and we have just proved that T is equivalent

to TP .

Now we will show how the induced classes of Bass tilting modules TP look like.

They are the classes of all modules which are p-divisible for all p ∈ P .

Definition 4.14. Let R be a ring, I be a right (left) ideal of R and M be right

(left) R-module. Then M is I-divisible if Ext1R(R/I,M) = 0.

Lemma 4.15. Let R be a Dedekind domain, I be a non-zero ideal of R and M be

an R-module. Then M is I-divisible iff MI = M .

Proof. First denote E = Ext1R(R/I,M). By Lemma 2.112, the R-module E = 0 iff

E(p) = 0 for all p ∈ SpecR. Let p ∈ SpecR. By Theorem 7.3, we have

E(p) ≃ Ext1R((R/I)(p),M(p)).

as R(p)-modules. Moreover (using Lemma 2.97), (R/I)(p) ≃ R(p)/I(p) as R(p)-

modules. Since I is finitely generated (R is noetherian), so is I(p) and since R(p)

is a valuation domain (see Lemma 4.5), by Lemma 2.126, the ideal I(p) of R(p) is

principal.

We have E(p) = 0 iff a natural abelian group homomorphism

HomR(p)
(R(p),M(p))

HomR(p)
(µ,M(p))

−→ HomR(p)
(I(p),M(p))

(induced by an inclusion I(p)
µ−→ R(p)) is surjective and it is iff M(p)I(p) = M(p).

The latter says (using Lemma 2.54) that

M(p) ⊗R(p)
R(p)/I(p) = 0.

Now using previous facts and Lemmas 2.97 and 2.99 we have E(p) = 0 iff

0 = M(p) ⊗R(p)
R(p)/I(p) ≃M(p) ⊗R(p)

(R/I)(p) ≃ (M ⊗R (R/I))(p).

Altogether we have E = 0 iff E(p) = 0 for all p ∈ SpecR, iff (M ⊗R (R/I))(p) = 0

for all p ∈ SpecR, iff M ⊗R (R/I) = 0, iff MI = M .

Corollary 4.16. Let R be a Dedekind domain. Then the 1-tilting class T⊥∞

P induced

by the Bass tilting module TP is equal to the class {M ∈ Mod-R | Mp = M for all

p ∈ P}.

Proof. Just combine Corolarry 4.11 and previous Lemma 4.15.
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Theorem 4.17. Let R be a Dedekind domain and T be a tilting R-module. Then

there is a set P ⊆ mSpecR such that the tilting class induced by T is equal to the

class {M ∈ Mod-R |Mp = M for all p ∈ P}.

Proof. Just combine Theorem 4.13 and previous Corollary 4.16.

5 Tilting modules over 1-Gorenstein commutative rings

Lemma 5.1. Let R be a 1-Gorenstein commutative ring with Krull dimension 0 (or

equivalently: let R be a 0-Gorenstein commutative ring (see Lemma 3.19)). Then

each tilting R-module is projective and thus each tilting class is equal to the Mod-R

and thus each tilting R-module is equivalent to the Bass tilting R-module T∅.

Proof. By Definition 3.11, every tilting R-module T is of finite projective dimension

thus by Lemma 3.19, T is projective. The rest is clear.

5.1 Generalization of the Dedekind case

Now we will generalize Theorems 4.13 and 4.17 for finite direct products of Dedekind

domains.

Definition 5.2. Let R1, R2, . . . , Rn be rings. Define a ring R as a direct product

of rings R1, R2, . . . , Rn in the category of all rings, i.e.

R = R1 ×R2 × · · · ×Rn

Remark 5.3. Now, we will describe a structure of the ring R from Definition 5.2

more precisely. From the definition of a direct product in the category of all rings,

it is easy to see that R is a set

{(r1, r2, . . . , rn) | ri ∈ Ri}

with following operations

0 = (0, 0, . . . , 0)

1 = (1, 1, . . . , 1)

(r1, r2, . . . , rn) + (s1, s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn)

(r1, r2, . . . , rn) · (s1, s2, . . . , sn) = (r1 · s1, r2 · s2, . . . , rn · sn).

Remark 5.4. In the following in this subsection.

1. Sometimes, for better understanding, we will write subscripts to the elements

of Ri, for example (01, 02, . . . , 0n) = (0, 0, . . . , 0).
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2. The order of the rings Ri is fixed, this means, that even if Ri and Rj are the

same rings and i 6= j, then we make a difference between them.

3. R will always mean the ring from Definition 5.2.

Lemma 5.5. Let R be a ring from Definition 5.2 and M be a right R-module. Then

there are modules M1,M2, . . . ,Mn such that each Mi is a right Ri-module and if we

define a right R-module structure on each Mi in the following way

m(r1, . . . , ri, . . . , rn) = mri m ∈Mi

then M ≃M1 ⊕M2 ⊕ · · · ⊕Mn as right R-modules.

Proof. For each 1 ≤ i ≤ n define a set

Mi = {m(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n) | m ∈M}

and define the following operations on Mi

0 = 0(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n), 0 ∈M,

m(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n) +m′(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n) =

= (m+m′)(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n), m,m′ ∈M,

m(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n) · ri =

= (m(01, 02, . . . , 0i−1, ri, 0i+1, . . . , 0n))(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n),

m ∈M, ri ∈ Ri.

It is easy to see that Mi with these operations is a right Ri-module and it is easy to

see that each right Ri-module is a rightR-module via the definition from assumption.

Now define a mapping ϕ in the following way

ϕ : M → M1 ⊕M2 ⊕ · · · ⊕Mn

m 7→ (m(1, 0, 0, . . . , 0),m(0, 1, 0, 0, . . . , 0), . . . ,m(0, 0, . . . , 0, 1)).

It is easy to see that ϕ is a right R-module isomorphism.

Remark 5.6. In the following in this subsection, the right R-module structure on

some right Ri-module will mean the right R-module structure which was defined in

Lemma 5.5.
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Lemma 5.7. Let R be a ring from Definition 5.2, A,B be right Ri-modules and C be

a right Rj-module (i 6= j). Then HomR(A,B) = HomRi
(A,B) and HomR(A,C) = 0.

Proof. Let ϕ : A→ B be a right R-module homomorphism. Then

ϕ(mri) = ϕ(m(11, 12, . . . , 1i−1,ri, 1i+1, . . . , 1n)) =

= ϕ(m)(11, 12, . . . , 1i−1, ri, 1i+1, . . . , 1n) =

= ϕ(m)ri, ri ∈ Ri.

So ϕ is a right Ri-module homomorphism.

Let ϕ : A→ B be a right Ri-module homomorphism. Then

ϕ(mr) = ϕ(m(r1, r2, . . . , rn)) = ϕ(mri) = ϕ(m)ri = ϕ(m)r, r ∈ R.

So ϕ is a right R-module homomorphism.

Let ϕ : A→ C be a right R-module homomorphism. Then

ϕ(m) = ϕ(m(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n)) =

= ϕ(m)(01, 02, . . . , 0i−1, 1i, 0i+1, . . . , 0n) = 0.

So HomR(A,C) = 0.

Remark 5.8. By Lemma 5.5, for every R-module M , there are Ri-modules Mi,

1 ≤ i ≤ n such that M ≃ M1 ⊕M2 ⊕ · · · ⊕Mn as R-modules. It is now easy to

see that Mi are uniquely (up to Ri-isomorphism) determined by M . For if M ≃
M1 ⊕M2⊕· · ·⊕Mn

ϕ≃M ′
1⊕M ′

2 ⊕· · ·⊕M ′
n as R-modules, then by Lemma 5.7, ϕ↾Mi

is an Ri-module isomorphism of Mi and M ′
i .

Corollary 5.9. Let R be a ring from Definition 5.2 and let A,B ∈ Mod-R. Then

A ⊆ B iff for all 1 ≤ i ≤ n, Ai ⊆ Bi as right Ri-modules. Moreover, if A ⊆ B, then

Ai ≃ Bi ∩A as Ri-modules for all 1 ≤ i ≤ n.

Proof. This follows from Lemma 5.5 and Remark 5.8.

Corollary 5.10. Let R be a ring from Definition 5.2 and M,N ∈ Mod-R. Then

N ∈ Add(M) iff for all 1 ≤ i ≤ n, Ni ∈ Add(Mi) as right Ri-modules.

Proof. This follows from Corollary 5.9.

Corollary 5.11. Let R be a ring from Definition 5.2. Then I is a right ideal of R

iff

I = J1 ⊕ J2 ⊕ · · · ⊕ Jn,

where Ji is a right ideal of Ri for each 1 ≤ i ≤ n. Moreover, if I is a right ideal of

R, then Ji = I ∩Ri for each 1 ≤ i ≤ n.
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Proof. This follows from Corollary 5.9 .

Corollary 5.12. Let R be a ring from Definition 5.2. Then R is a right noetherian

iff each Ri is a right noetherian ring.

Proof. Let R be right noetherian. If Ji is a right ideal of Ri, then I = R1 ⊕ R2 ⊕
· · · ⊕Ri−1 ⊕ Ji⊕Ri+1 ⊕ · · · ⊕Rn is a right ideal of R, thus I is finitely generated as

a right R-module. It follows that Ji is finitely generated as a right Ri-module.

Let R1, R2, . . . , Rn be right noetherian rings. If I is a right ideal of R, then by

Corollary 5.11 I = J1 ⊕ J2 ⊕ · · · ⊕ Jn, where each Ji is a right ideal of Ri. Thus

each Ji is finitely generated as a right Ri-module. Let Xi = {x1
i , x

2
i , . . . , x

m(i)
i }

be a finite generating subset of Ji. Then the set X =
⋃n
i=1Xi, where Xi =

{(01, 02, . . . , 0i−1, x
j
i , 0i+1, . . . , 0n) | 1 ≤ j ≤ m(i)}, is a generating subset of I as

a right R-module.

Lemma 5.13. Let R be a ring from Definition 5.2 and Mi be a right Ri-module.

Then Mi is injective (projective) as a right Ri-module iff Mi is injective (projective)

as a right R-module.

Proof. We will prove the injective version, the proof of the projective version is

analogical.

The implication to the left is easy (see Lemma 5.7).

Suppose that Mi is injective as a right Ri-module. Let

0 −→ A −→ B

be an exact sequence of right R-modules and suppose that there is a right R-module

homomorphism ϕ : A→ Mi. By Lemma 5.5, we have that A ≃ A1 ⊕ A2 ⊕ · · · ⊕An
and B ≃ B1 ⊕ B2 ⊕ · · · ⊕ Bn. In order to prove that Mi is injective as a right

R-module, it is enough prove that ϕ ↾Aj
= 0 for all j 6= i. But the last follows from

Lemma 5.7. So Mi is an injective right R-module and thus the claim is true.

Corollary 5.14. Let R be a ring from Definition 5.2, A,B be right Ri-modules and

C be a right Rj-module (i 6= j). Then ExtkR(A,B) = ExtkRi
(A,B) and ExtkR(A,C) =

0 for all 0 ≤ k < ω.

Proof. This follows from the definition of an Ext, Lemma 5.13 and Lemma 5.7.

Corollary 5.15. Let R be a ring from Definition 5.2 and M be a right R-module.

Then M is injective (projective) iff each Mi is injective (projective) as a right Ri-

module.
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Proof. This follows from Lemma 5.13 and from the fact that that the class of all

injective modules over an arbitrary ring is closed under direct summands and under

finite direct sums.

Corollary 5.16. Let R be a ring from Definition 5.2. Then R is a right hereditary

ring iff each Ri is a right hereditary ring.

Proof. Let R be right hereditary. If Ji is a right ideal of Ri, then I = R1 ⊕ R2 ⊕
· · · ⊕Ri−1 ⊕ Ji⊕Ri+1 ⊕ · · · ⊕Rn is a right ideal of R, thus I is projective as a right

R-module. It follows from Corollary 5.15 that Ji is projective as a right Ri-module.

Let R1, R2, . . . , Rn be right hereditary rings. If I is a right ideal of R, then by

Corollary 5.11 I = J1 ⊕J2 ⊕· · ·⊕Jn, where Ji is a right ideal of Ri. Thus each Ji is

projective as a right Ri-module. It follows from Corollary 5.15 that I is projective

as a right R-module.

Lemma 5.17. Let R be a ring from Definition 5.2. Then

inj dimRM = max {inj dimRi
Mi | 1 ≤ i ≤ n},

where inj dimRM denotes the injective dimension of M as a right R-module.

Proof. If max {inj dimRi
Mi | 1 ≤ i ≤ n} = ∞, then clearly inj dimRM ≤

max {inj dimRi
Mi | 1 ≤ i ≤ n}, so suppose that max {inj dimRi

Mi | 1 ≤ i ≤ n} is

finte, let m = max {inj dimRi
Mi | 1 ≤ i ≤ n} and let

0 −→Mi
ϕ1

i−→ I1
i

ϕ2
i−→ I2

i −→ . . .
ϕm

i−→ Imi −→ 0

be an injective coresolution of each Mi as Ri-module. Then by Corollary 5.15

0 −→M

Ln
j=1 ϕ

1
j−→

n
⊕

j=1

I1
j

Ln
j=1 ϕ

2
j−→

n
⊕

j=1

I2
j −→ . . .

Ln
j=1 ϕ

m
j−→

n
⊕

j=1

Imj −→ 0

is an injective coresolution of M . So inj dimRM ≤ max {inj dimRi
Mi | 1 ≤ i ≤ n}.

Now suppose, that inj dimRM < max {inj dimRi
Mi | 1 ≤ i ≤ n}. Let k =

inj dimRM and let

0 −→M
ϕ1

−→ I1 ϕ2

−→ I2 −→ . . .
ϕk

−→ Ik −→ 0

be an injective coresolution of M . Then by Corollary 5.15

0 −→Mi

ϕ1↾Mi−→ I1
i

ϕ2↾
I1
i−→ I2

i −→ . . .
ϕk↾

I
k−1
i−→ Iki −→ 0

is an injective resolution of each Mi as a right Ri-module. Thus max {inj dimRi
Mi |

1 ≤ i ≤ n} ≤ k, the contradiction. So the claim is true.
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Lemma 5.18. Let R be a ring from Definition 5.2. Then

proj dimRM = max {proj dimRi
Mi | 1 ≤ i ≤ n},

where proj dimRM denotes the projective dimension of M as a right R-module.

Proof. Analogously as in the proof of Lemma 5.17.

Remark 5.19. Lemma 5.17, 5.18 follows also from Lemmas 5.14 and 2.78, 2.77 re-

spectively.

Lemma 5.20. Let 2 ≤ n < ω and let R1, R2, . . . , Rn be Dedekind domains. Define

a ring R as in 5.2, i.e.

R = R1 ×R2 × · · · ×Rn.

Then R is a commutative hereditary 1-Gorenstein ring which is not a domain.

Proof. R is obviously commutative, it is hereditary by Corollary 5.16 and it is

noetherian by Corollary 5.12. Since by Lemma 4.5, every Dedekind domain has

a self-injective dimension ≤ 1, so has R by Lemma 5.17. Thus R is commutative

hereditary 1-Gorenstein ring. In order to prove that R is not a domain, consider

two following elements of R

r1 = (1, 0, 0, . . . , 0)

r2 = (0, 1, 0, . . . , 0).

These elements are non-zero, but r1r2 is a zero element of R, thus R is not a

domain.

Lemma 5.21. Let R be a ring from Definition 5.2 and T be a right R-module. Then

T is tilting iff each Ti is a tilting right Ri-module.

Proof. (T1) (see Definition 3.11). By Lemma 5.18, T has a finite projective dimen-

sion as a right R-module iff each Ti has a finite projective dimension as a right

Ri-module.

(T2). By Corollary 5.14, we have

ExtiR(T, T (κ)) ≃ ExtiR(
n

⊕

j=1

Tj ,
n

⊕

j′=1

T
(κ)
j′ ) ≃

n
∏

j=1

n
∏

j′=1

ExtiR(Tj , T
(κ)
j′ ) ≃

≃
n

∏

j=1

ExtiR(Tj , T
(κ)
j ) ≃

n
∏

j=1

ExtiRj
(Tj , T

(κ)
j )

where κ is an arbitrary cardinal and 1 ≤ i < ω. So ExtiR(T, T (κ)) = 0 for all

cardinals κ and all 1 ≤ i < ω iff ExtiRj
(Tj , T

(κ)
j ) = 0 for all cardinals κ, all 1 ≤ i < ω

and all 1 ≤ j ≤ n.
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(T3). Let the condition (T3) be satisfied for T . Then there exist r ≥ 0 and a

long exact sequence

0 −→ R
ϕ0

−→ T 0 ϕ1

−→ T 1 −→ . . .
ϕr

−→ T r −→ 0,

where T j ∈ Add(T ) for all 0 ≤ j ≤ r. Corollary 5.10 and the long exact sequence

0 −→ Ri
ϕ0↾Ri−→ T 0

i

ϕ1↾
T0

i−→ T 1
i −→ . . .

ϕr↾
T

r−1
i−→ T ri −→ 0

prove the condition (T3) for each Ti as a right Ri-module.

Let the condition (T3) be satisfied for each Ti as a right Ri-module. Then for

each 1 ≤ i ≤ n there exist ri ≥ 0 and a long exact sequence

0 −→ Ri
ϕ0

i−→ T 0
i

ϕ1
i−→ T 1

i −→ . . .
ϕ

ri
i−→ T rii −→ 0,

where T ji ∈ Add(Ti) for all 0 < j ≤ ri. Let r = max {ri | 1 ≤ i ≤ n} and set ϕji = 0,

T ji = 0 if ri < j ≤ r. Then Corollary 5.10 and the long exact sequence

0 −→ R

Ln
i=1 ϕ

0
i−→

n
⊕

i=1

T 0
i

Ln
i=1 ϕ

1
i−→

n
⊕

i=1

T 1
i −→ . . .

Ln
i=1 ϕ

r
i−→

n
⊕

i=1

T ri −→ 0

prove the condition (T3) for T. So the claim is true.

Lemma 5.22. Let R1, R2, . . . , Rn be commutative rings, define a ring R as in 5.2,

i.e.

R = R1 ×R2 × · · · ×Rn.

Then p is a prime ideal of R iff there exist 1 ≤ i ≤ n and

p = R1 ⊕R2 ⊕ · · · ⊕Ri−1 ⊕ pi ⊕Ri+1 ⊕ · · · ⊕Rn,

where pi is a prime ideal of Ri.

Proof. Implication to the left is easy.

Suppose that p is a prime ideal of R. By Corollary 5.11, p = I1 ⊕ I2 ⊕ · · · ⊕ In
where Ii is an ideal of Ri. Suppose that there are 1 ≤ i, j ≤ n such that i 6= j,

Ii 6= Ri and Ij 6= Rj. Then ri = (01, 02, . . . , 0i−1, ri, 0i+1, . . . , 0n), where ri ∈ Ri \ Ii
and rj = (01, 02, . . . , 0j−1, rj , 0j+1, . . . , 0n), where rj ∈ Rj \ Ij are two elements of

R which are not in p, but rirj ∈ p, the contradiction. Thus there exists 1 ≤ i ≤ n

such that p = R1 ⊕ R2 ⊕ · · · ⊕ Ri−1 ⊕ pi ⊕ Ri+1 ⊕ · · · ⊕ Rn, where pi is an ideal of

Ri and pi 6= Ri (see Definition 2.84). Using Remark 5.3, it is easy to prove that pi
is a prime ideal of Ri.
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Corollary 5.23. Let R1, R2, . . . , Rn be commutative rings, define a ring R as in

5.2, i.e.

R = R1 ×R2 × · · · ×Rn.

Then p is a prime ideal of R of height 1 iff there exists 1 ≤ i ≤ n and

p = R1 ⊕R2 ⊕ · · · ⊕Ri−1 ⊕ pi ⊕Ri+1 ⊕ · · · ⊕Rn,

where pi is a prime ideal of Ri of height 1.

Proof. This follows from Lemma 5.22.

Theorem 5.24. Let 2 ≤ n < ω and let R1, R2, . . . , Rn be Dedekind domains. Define

a ring R in the following way

R = R1 ×R2 × · · · ×Rn.

Then R is a commutative hereditary 1-Gorenstein ring which is not a domain. More-

over, let T be a tilting R-module. Then there exists a subset P of the set of all prime

ideals of R of height 1 such that T is equivalent to the Bass tilting module TP .

Proof. The first part of the assertion follows from Lemma 5.20.

We will prove the ’moreover’ part. By Corollary 5.14, we have

ExtjR(T,M) ≃
n

∏

i=1

n
∏

i′=1

ExtjR(Ti,Mi′) ≃

≃
n

∏

i=1

ExtjR(Ti,Mi) ≃
n

∏

i=1

ExtjRi
(Ti,Mi)

for all 1 ≤ j < ω. Thus M ∈ T⊥∞ iff Mi ∈ T⊥∞

i for each 1 ≤ i ≤ n as Ri-module.

By Lemma 5.21 and Theorem 4.13, we have that Ti is a tilting Ri-module and there

exists a set Pi ⊂ mSpecRi such that Ti is equivalent to the Bass tilting module Ti,Pi
.

So by Corollary 4.11, Mi ∈ T⊥∞

i iff Ext1Ri
(Ri/pi,Mi) = 0 for all pi ∈ Pi and it is iff

Ext1R(R/pi,M) = 0 for all pi ∈ Pi, where Pi = {R1⊕R2⊕ . . . Ri−1⊕pi⊕Ri+1⊕· · ·⊕
Rn | pi ∈ Pi}. So M ∈ T⊥∞ iff Ext1R(R/p,M) = 0 for all p ∈ P , where P =

⋃n
i=1 Pi.

Thus by Lemma 4.5, Corollary 5.23 and Corollary 4.11, T is equivalent to the Bass

tilting module Tp. So the claim is true.

Lemma 5.25. Let R be a ring from Theorem 5.24, p be a prime ideal of R and M

be an R-module. Then M is p-divisible iff Mp = M .
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Proof. Let p ∈ SpecR. By Lemma 5.22, there is a 1 ≤ j ≤ n such that p =

R1 ⊕ R2 ⊕ · · · ⊕ Rj−1 ⊕ pj ⊕ Rj+1 ⊕ · · · ⊕ Rn, where pj is a prime ideal of Rj . By

Corollary 5.14, we have

Ext1R(R/p,M) ≃
n

∏

i=1

Ext1Ri
((R/p)i,Mi) ≃ Ext1Rj

(Rj/pj ,Mj).

So Ext1R(R/p,M) = 0 iff Ext1Rj
(Rj/pj,Mj) = 0 and by Lemma 4.15, it is iff Mjpj =

Mj and by Remark 5.3, it is iff Mp = M . So the claim is true.

Corollary 5.26. Let R be a ring from Theorem 5.24 and let P be some subset of a

set of all prime ideals of R of height 1. Then the 1-tilting class T⊥∞

P induced by the

Bass tilting module TP is equal to the class {M ∈ Mod-R |Mp = M for all p ∈ P}.

Proof. This follows from Corollary 4.11 and from Lemma 5.25.

Theorem 5.27. Let 2 ≤ n < ω and let R1, R2, . . . , Rn be Dedekind domains. Define

a ring R in the following way

R = R1 ×R2 × · · · ×Rn.

Let T be a tilting R-module. Then there exists a subset P of the set of all prime

ideal of height 1 of R such that the tilting class induced by T is equal to the class

{M ∈ Mod-R |Mp = M for all p ∈ P}.

Proof. This follows from Theorem 5.24 and from Corollary 5.26.

5.2 An important difference from the Dedekind case

In proving that every tilting module over a Dedekind domain is equivalent to some

Bass tilting module, we used Corollary 4.11, namely that (E(R/p))⊥1 = (R/p)⊥1 .

Now we will show that there exist a 1-Gorenstein rings in which the previous is not

true.

Lemma 5.28. Let R be a ring and M be a right (left) R-module. Then M is

CM-filtered.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let gen(M) = κ and let {xµ | µ < κ} be a generating subset of M . Define a sequence

(Mα | α ≤ κ) of submodules of M in the following way

M0 = 0

Mα =
∑

µ<α

xµR α ≤ κ.
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Since M0 = 0, Mα ⊆ Mα+1 (α < κ), and Mα =
⋃

β<αMβ for α a limit ordinal, the

sequence (Mα | α ≤ κ) is a continuous chain of submodules of M . In order to prove

that (Mα | α ≤ κ) is a CM-filtration of M , it remains to prove that Mκ = M and

that Mα+1/Mα ∈ CM. But Mκ =
∑

µ<κ xµR = M . And for every α < κ we have

Mα+1/Mα = (
∑

µ<α+1

xµR)/(
∑

µ<α

xµR) =

= {
∑

µ<α+1

xµrµ +
∑

µ<α

xµR | rµ ∈ R and rµ = 0 for almost all µ < α+ 1} =

= {xα+1rα+1 +
∑

µ<α

xµR | rα+1 ∈ R},

so the module Mα+1/Mα is cyclic.

Lemma 5.29 (Auslander Lemma). Let R be a ring, n < ω and M be a right (left)

R-module. Assume that M is Pn-filtered. Then M ∈ Pn.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Denote C−n = {Ω−n(N) | N ∈ Mod-R}. First note that Pn = ⊥1C−n, for this

by Lemmas 2.77 and 2.80, M ∈ Pn iff Extn+1
R (M,N) = 0 for all N ∈ Mod-R

iff Ext1R(M,Ω−n(N)) = 0 for all N ∈ Mod-R iff M ∈ ⊥1C−n. Thus M ∈ Pn iff

Ext1R(M,C) = 0 for all C ∈ C−n.
Let C ∈ C−n. Since M is (Pn = ⊥1C−n)-filtered there is a continuous chain

(Mα | α ≤ µ) of submodules of M such that Mµ = M and Ext1R(Mα+1/Mα, C
′) = 0

for all C ′ ∈ C−n and all cardinals α < µ, specially Ext1R(Mα+1/Mα, C) = 0 for

all cardinals α < µ. Using Eklof Lema 4.6, we have that Ext1R(M,C) = 0. So

Ext1R(M,C) = 0 for all C ∈ C−n and thus M ∈ ⊥1C−n = Pn. So the claim is

true.

Lemma 5.30. Let R be a 1-Gorenstein domain of Krull dimension 1 which is not

hereditary. Then there exists p ∈ SpecR such that ht p = 1 and proj dim (R/p) = ∞.

Proof. First note that since R is a domain and dim R = 1 we have the following for

every prime ideal p of R

ht p = 1 ⇔ p ∈ mSpecR⇔ p ∈ SpecR \ {0}.

Since R is not a Dedekind domain, R is not hereditary thus there exists an R-module

M such that proj dimM > 1 (see Lemma 4.3), it follows that proj dimM = ∞.

By Lemma 5.28 and Auslander Lemma 5.29, we have that there exists a finitely

generated (cyclic) R-module N such that proj dimN = ∞. Since R/0 = R ∈ P0, by

Lemma 2.109 and Auslander Lemma 5.29, we have that there exists a prime ideal p

of R such that ht p = 1 and proj dim (R/p) = ∞.
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Definition 5.31. Let R be a Gorenstein ring and M be a right or left R-module.

Then M is Gorenstein projective (Gorenstein injective), if M ∈ ⊥1P = ⊥1I (M ∈
P⊥1). Denote by GP (GI) the class of all Gorenstein projective (injective) modules.

By Lemma 3.19, Theorems 7.9 and 7.10, the pairs (GP ,P) = (GP ,I) and (P,GI)

are complete hereditary cotorsion pairs.

Lemma 5.32. Let R be a ring and C be a class of right (left) R-modules such that

C ⊆ I1. Then the class ⊥1C is closed under submodules.

Proof. We will prove the ’right’ version, the proof of the ’left’ version is analogical.

Let M ∈ ⊥1C and let N be an arbitrary submodule of M . In order to prove that

N ∈ ⊥1C, we need to prove that Ext1R(N,C) = 0 for an arbitrary C ∈ C. Let C ∈ C.

Applying HomR(−, C) to the following short exact sequence of right R-modules

0 −→ N −→M −→M/N −→ 0, we get part of the induced long exact sequence of

abelian groups

Ext1R(M,C) −→ Ext1R(N,C) −→ Ext2R(M/N,C).

Since Ext1R(M,C) = 0 by assumption and Ext2R(M/N,C) = 0 by Lemma 2.77, we

have that Ext1R(N,C) = 0. Thus N ∈ ⊥1C. So the claim is true.

Lemma 5.33. Let R be a commutative 1-Gorenstein ring and let p ∈ SpecR. Then

1. all modules from (E(R/p))⊥1 \ (R/p)⊥1 have an infinite injective (and hence

an infinite projective) dimension,

2. if proj dim (R/p) = ∞, then (E(R/p))⊥1 ) (R/p)⊥1 .

Proof. (1). We will prove that if an R-module I has a finite injective dimension

then Ext1R(E(R/p), I) = 0 implies Ext1R(R/p, I) = 0. Let I ∈ I. Then by Lemma

3.19, N ∈ I1 and by Lemma 5.32, the class ⊥1I1 is closed under submodules, thus

Ext1R(E(R/p), I) = 0 implies Ext1R(R/p, I) = 0. So the claim is true.

(2). By Definitions 3.3 and 5.31, we have two cotorsion pairs (Mod-R,I0) ⊇
(P,GI). By Lemma 4.8 and Eklof Lemma 4.6, we have that (E(R/p))⊥1 ⊇ (R/p)⊥1 .

Suppose that (E(R/p))⊥1 = (R/p)⊥1 . Since E(R/p) ∈ I1 = P we have that

(E(R/p))⊥1 ⊇ GI. And thus (R/p)⊥1 = (E(R/p))⊥1 ⊇ GI, which implies that

(R/p) ∈ P, the contradiction. Thus (E(R/p))⊥1 ) (R/p)⊥1 .

5.3 One positive result

By [2], if R is a 1-Gorenstein commutative ring of Krull dimension 1 and S is a

multiplicative subset of R which is without zero-divisors, then S−1R ⊕ S−1R/R is
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a 1-tilting module with induced class equal to the class of all S-divisible modules.

Now we are going to test whether each of these tilting modules is equivalent to some

Bass tilting R-module.

Definition 5.34. Let R be a ring, S be a subset of R and M be a right (left)

R-module. Then M is S-divisible if Ms = M (sM = M) for every s ∈ S.

Definition 5.35. Let R be a commutative ring and S be a multiplicative subset of

R. Then S is called saturated if ab ∈ S implies a ∈ S and b ∈ S.

Let R be a commutative ring and S be a multiplicative subset of R. Then the

set S′ = {t ∈ R | ∃ t′ ∈ R : tt′ ∈ S} ⊇ S is called the saturation of S.

Lemma 5.36. Let R be a commutative ring, S be a multiplicative subset of R and

S′ be a saturation of S. Then

1. if S is moreover saturated, then S′ = S,

2. S′ is a saturated multiplicative subset of R,

3. S is without zero-divisors iff S′ is without zero-divisors,

4. an R-module M is S-divisible iff it is S′-divisible,

5. if S is moreover saturated, then S = R\⋃

p∈V (S) p where V (S) = {p ∈ SpecR |
p ∩ S = ∅.

Proof. (1) is clear from Definition 5.35.

(2) clearly 0 6∈ S′. Let a, b ∈ S′, then there are a′, b′ ∈ R such that aa′ ∈ S and

bb′ ∈ S, so ab(a′b′) ∈ S, it follows that ab ∈ S′. If ab ∈ S′ then there is a c ∈ R such

that (ab)c ∈ S, thus a(bc) ∈ S and b(ac) ∈ S. So (1) is true.

(3) the implication ⇐ is trivial.

Let S be without zero-divisors. Suppose that there is a zero-divisor 0 6= a ∈ S′.

We have that there is a non-zero b ∈ R such that ab = 0 and there is a c ∈ R such

that ac ∈ S. But then (ac)b = (ab)c = 0, a contradiction with the assumption that

S is without zero-divisors.

(4) the implication ⇐ is trivial.

Suppose that M is S-divisible. Let 0 6= m ∈M and t ∈ S′. We have tt′ ∈ S for

some t′ ∈ R. Thus m = n(tt′) for some n ∈M . It follows that m = (nt′)t. So (3) is

true.

(5) clearly S ⊆ R \ ⋃

p∈V (S) p.

Let x ∈ R \ S, since S is saturated xR ∩ S = ∅. Analogicaly as in the proof

of Lemma 2.116, we show that there is a prime ideal from V (S) containing x. So

S = R \ ⋃

p∈V (S) p.
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Lemma 5.37. Let R be a commutative ring and S be a multiplicative subset of R

which is without zero-divisors. Then as an R-module

Supp(S−1R/R) = V (S)c = {p ∈ SpecR | p ∩ S 6= ∅}.

Proof. First recall that since S is without zero-divisors, we have that R ⊆ S−1R.

Let p 6∈ V (S)c. Then S ⊆ R \ p, thus by Lemms 2.97 and 2.98,

(S−1R/R)(p) ≃ (S−1R)(p)/R(p) ≃ (S−1R⊗R R(p))/R(p) ≃
≃ (R(p) ⊗R S

−1R)/R(p) ≃ (R(p) ⊗S−1R S
−1R)/R(p) ≃

≃ R(p)/R(p) ≃ 0.

Let p be a prime ideal of R such that p ∈ V (S)c. As above, we have

(S−1R/R)(p) ≃ (R(p) ⊗R S
−1R)/R(p) as R(p)-modules. Now, view R(p) as an R-

module, thus we have (R(p) ⊗R S
−1R)/R(p) ≃ S−1(R(p))/R(p) as R-modules. Alto-

gether (S−1R/R)(p) ≃ S−1(R(p))/R(p) as R-modules. Let s ∈ p∩S. Then 1/s+R(p)

is a non-zero element of S−1(R(p))/R(p), thus (S−1R/R)(p) 6= 0. So the claim is

true.

Theorem 5.38. Let R be a 1-Gorenstein commutative ring of Krull dimension

1 and S be a multiplicative subset of R which is without zero-divisors. Then the

class C = {M ∈ Mod-R | Ms = M for all s ∈ S} is a 1-tilting class. Denote

P = {p ∈ mSpecR | p ∩ S 6= ∅}. Then the 1-tilting class induced by the Bass

1-tilting R-module TP is equal C.

Proof. By 2.97, S−1R is a flat R-module and thus by Lemma 3.19, proj dimS1R ≤ 1.

By Theorem 7.18, T = S−1R ⊕ S−1R/R is a 1-tilting R-module and the 1-tilting

class induced by T is equal C. We will prove that T is isomorphic to the Bass

1-tilting R-module TP as R-modules.

Denote Σ the set of all regular elements of R. By Lemma 3.19, Σ−1R ≃
⊕

ht p=0E(R/p) as R-modules. It is an easy excercise to verify that S−1R ⊆ Σ−1R

as R-modules. So we have the following commutative diagram with exact rows

0 // R // Σ−1R
π // Σ−1R/R // 0

0 // R // S−1R

ι1

OO

π↾
S−1R// S−1R/R

ι2

OO

// 0.

where ι1 and ι2 are inclusions. By Lemma 3.19, we have that Σ−1R ≃ E(R) and

Σ−1R/R ≃ ⊕

p∈mSpecRE(R/p) as R-modules. By Lemma 7.17, we have that

S−1R/R is a direct summand of Σ−1R/R and since each E(R/p) is indecomposable,
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we have that S−1R/R ≃ ⊕

p∈P ′ E(R/p) as R-modules for some P ′ ⊆ mSpecR. It

is now easy to see that T ≃ T ′
P as R-modules.

Using Lemmas 2.52 and 2.122, we have for every maximal ideal q of R

that (
⊕

p∈P ′ E(R/p))
(q)

6= 0 iff q ∈ P ′. But for every maximal ideal q of

R, (
⊕

p∈P ′ E(R/p))
(q)

6= 0 iff q ∈ Supp(
⊕

p∈P ′ E(R/p)) ∩ mSpecR. So P ′ =

Supp(
⊕

p∈P ′ E(R/p)) ∩ mSpecR. Using the fact that
⊕

p∈P ′ E(R/p) ≃ S−1R/R as

R-modules and Lemma 5.37, we have that P ′ = {p ∈ mSpecR | p∩S 6= ∅} = P .

5.4 Another positive result, an important one

Definition 5.39. Let R be a ring and (A,B) be a cotorsion pair of right (left) R-

modules. Then (A,B) is said to be of weak-finite type if there is a class (equivalently

a set) S ⊆ mod-R of right (left) R-modules such that S⊥ = B. Note that in this

case clearly S ⊆ A<ω.

Lemma 5.40. Let R be a Gorenstein ring and (A,B) be a tilting cotorsion pair.

Then the class B (and therefore A) is uniquely determined by the class B ∩P, more

precisely B = {B ∈ Mod-R | there exists a short exaxt sequence 0 −→ G −→ C −→
B −→ 0 with G ∈ GI and C ∈ B ∩ P}.

Proof. Denote B′ = {B ∈ Mod-R | there exists a short exaxt sequence 0 −→ G −→
C −→ B −→ 0 with G ∈ GI and C ∈ B ∩ P}. Let B ∈ B. By 5.31, the class P is

special precovering so there is a short exact sequence

0 −→ G −→ C −→ B −→ 0

with G ∈ GI and C ∈ P. By Lemma 3.10, we have GI = P⊥1 ⊆ A⊥1 = B, so G ∈ B
and so C ∈ B ∩ P, thus B ∈ B′.

Let B ∈ B′. Let

0 −→ G −→ C −→ B −→ 0

be a short exact sequence with G ∈ GI and C ∈ B ∩ P. By 7.12, the class B is

coresolving and since G ∈ GI ⊆ B and C ∈ B∩P ⊆ B, we have B ∈ B. So the claim

is true.

Lemma 5.41. Let R be a noetherian commutative ring and N be an R-module.

Then the following are equivalent

1. N ∈ I0,

2. Ext1R(R/p,N) = 0 for all p ∈ SpecR.
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Proof. The implication (1) ⇒ (2) is trivial.

Let N be an R-module such that Ext1R(R/p,N) = 0 for all p ∈ SpecR. Since

R is noetherian, every ideal I of R is finitely generated. So by Lemma 2.109,

every ideal I of R is finitely {R/p | p ∈ SpecR}-filtered. So by Eklof Lemma 4.6,

Ext1R(I,N) = 0 for every ideal I of R. So by Lemma 2.78, N is injective.

Corollary 5.42. Let R be a noetherian commutative ring and N be an R-module.

Then the following are equivalent

1. N ∈ In,

2. Extn+1
R (R/p,N) = 0 for all p ∈ SpecR.

Proof. By Lemmas 2.78, 2.80 and 5.41 we have

N ∈ In ⇔ Extn+1
R (M,N) = 0 for all M ∈ Mod-R⇔

⇔ Ext1R(M,Ω−n(N)) = 0 for all M ∈ Mod-R⇔
⇔ Ω−n(N) ∈ I0 ⇔ Ext1R(R/p,Ω−n(N)) = 0 for all p ∈ SpecR⇔
⇔ Extn+1

R (R/p,N) = 0 for all p ∈ SpecR

So the claim is true.

Corollary 5.43. Let R be a noetherian commutative ring and N be an R-module.

Then N ∈ I1 iff N ∈ (SpecR)⊥1 .

Proof. By Corollary 5.42 and Lemma 2.80, we have

N ∈ I1 ⇔ Ext2R(R/p,N) = 0 for all p ∈ SpecR⇔
⇔ Ext1R(Ω1(R/p), N) = 0 for all p ∈ SpecR⇔
⇔ Ext1R(p,N) = 0 for all p ∈ SpecR⇔
⇔ N ∈ (SpecR)⊥1 .

The third equivalence follows from the fact that p is the first syzygy of R/p in the

projective resolution beginning with

. . . −→ R −→ R/p −→ 0.

So the claim is true.

Lemma 5.44. Let R be a commutative Gorenstein ring. Then Ass(R) = {p ∈
SpecR | ht p = 0}.
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Proof. Suppose that p ∈ Ass(R). Then R/p ⊆ R, so R/p ⊆ E(R) and thus

E(R/p) ⊆ E(R). By Lemmas 3.19 and 2.121, ht p = 0.

Suppose that ht p = 0. Then E(R/p) ⊆ E(R), which implies that E(R/p)∩R 6=
0. So by Lemmas 2.108 and 2.121, we have that Ass(E(R/p) ∩ R) ⊇ {p} and thus

p ∈ Ass(R).

Remark 5.45. Let (A,B) be a cotorsion pair of weak-finite type. Then the pair

(A,B) is uniquely determined by A<ω. For this, denote S the set of strongly finitely

presented modules such that S⊥1 = B. By Definition 5.39, we have that S ⊆ A<ω ⊆
A. So B = (A<ω)⊥1 and thus A = ⊥1(A<ω)⊥1.

So if if we have two cotorsion pairs (A,B), (C,D) both of weak-finite type such

that A<ω = C<ω then (A,B) = (C,D).

Lemma 5.46. Let R be a 1-Gorenstein commutative ring of Krull dimension 1 and

(A,B) be a tilting cotorsion pair of R-modules. Denote B′ = B ∩ P and A′ = ⊥1B′.

Then the pair (A′,B′) is a cotorsion pair of weak-finite type, the class A′ is closed

under submodules and A′<ω ⊇ SpecR ∪ {R/p | p ∈ SpecR ∧ ht p = 0}.

Proof. Since (A,B) is a tilting cotorsion pair (thus 1-tilting cotosion pair) and since

every tilting module is of finite type, we have that there is a set S ⊆ P<ω
1 such that

S⊥1 = S⊥∞ = B. By Corollary 5.43, we have P = I = I1 = (SpecR)⊥1 . Denote

S ′ = S∪SpecR, so S ′⊥1 = B∩P = B′. Using Lemma 2.83 we have that S ′ ⊆ mod-R

and using lemma 3.3 we have that the pair (A′,B′) is a cotorsion pair of weak-finite

type.

Since B′ = B ∩ P ⊆ P = I = I1, by Lemma 5.32, we have that A′ = ⊥1B′ is

closed under submodules.

By Definition 5.39, we know that SpecR ⊆ A′<ω. By Remark 3.4, R ∈ A′ and

by Lemma 5.44, R/p ⊆ R for each p ∈ SpecR such that ht p = 0. So since A′ is

closed under submodules, we have that A′<ω ⊇ SpecR ∪ {R/p | p ∈ SpecR,ht p =

0}.

Lemma 5.47. Let R be a 1-Gorenstein commutative ring of Krull dimension 1 and

(A,B) be a tilting cotorsion pair of R-modules. Denote A′, B′ as in Lemma 5.46

and P1 = {p ∈ SpecR | ht p = 1 ∧R/p ∈ A′}. Then

B′ = P ∩
⋂

p∈P1

(R/p)⊥1 ⇔ B =
⋂

p∈P1

(E(R/p))⊥1 .

Proof. First suppose that B′ = P ∩ ⋂

p∈P1
(R/p)⊥1 . Let B ∈ B. By Definition 5.31,

P is a special precovering class so there is a short exact sequence

E : 0 −→ G −→ P −→ B −→ 0

79



with G ∈ GI ⊆ B (see the proof of Lemma 5.40) and P ∈ P. Since B is closed under

extensions, using Lemma 5.33, we get that

P ∈ B ∩ P = B′ = P ∩
⋂

p∈P1

(R/p)⊥1 =

= P ∩
⋂

p∈P1

(E(R/p))⊥1 ⊆
⋂

p∈P1

(E(R/p))⊥1.

So we have that P ∈ ⋂

p∈P1
(E(R/p))⊥1 and it is iff Ext1R(E(R/p), P ) = 0 for all

p ∈ P1. Let p ∈ P1. Applying HomR(E(R/p),−) to the short exact sequence E we

get part of the induced long exact sequence

Ext1R(E(R/p), P ) −→ Ext1R(E(R/p), B) −→ Ext2R(E(R/p), G).

Since Ext1R(E(R/p), P ) = Ext2R(E(R/p), G) = 0 we get that Ext1R(E(R/p), B) = 0.

So B ∈ ⋂

p∈P1
(E(R/p))⊥1.

Let B ∈ ⋂

p∈P1
(E(R/p))⊥1. We have the short exact sequence E with G ∈

GI ⊆ B ⊆ ⋂

p∈P1
(E(R/p))⊥1 (by previous part) and P ∈ P. It follows that P ∈

P ∩ ⋂

p∈P1
(E(R/p))⊥1 = P ∩ ⋂

p∈P1
(R/p)⊥1 = B′ ⊆ B. By Theorem 7.12, B is

coresolving class and thus B ∈ B.

Suppose now that B =
⋂

p∈P1
(E(R/p))⊥1 . We have

B′ = P ∩ B = P ∩
⋂

p∈P1

(E(R/p))⊥1 = P ∩
⋂

p∈P1

(R/p)⊥1.

So the claim is true.

Proposition 5.48. Let R be a 1-Gorenstein commutative ring of Krull dimension

1 and M be an R-module. Then

1. if M ∈ P<ω, and E(M) ≃ ⊕

ht p=0E(R/p)αp for some αp ≥ 0, then M is

projective,

2. if R is moreover local with maximal ideal m, then

(a) P ∩ (R/m)⊥1 = I0.

(b) (⊥1R)
<ω

= (⊥1P)
<ω

= GP<ω

Proof. (1). Let

0 −→M −→ E(M) −→ E(M)/M −→ 0

be a minimal injective resolution of M . By Lemma 7.6, E(M) is a flat R-module.

Since E(M)/M ∈ I0 ⊆ I1 = F1, we have by Lemma 2.79, that M is flat and since

M is finitely generated, Lemmas 2.83 and 2.66 imply that M is projective.
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(2)(a). By Corollary 5.43, we have P ∩ (R/m)⊥1 = (SpecR)⊥1 ∩ (R/m)⊥1 =

(SpecR ∪ {R/m})⊥1 . Denote C = ⊥1(P ∩ (R/m)⊥1). Thus (C,P ∩ (R/m)⊥1) is

a cotorsion pair. Since P ∩ (R/m)⊥1 ⊆ P = I1, Lemma 5.32 implies that C is

closed under submodules. Clearly R ∈ C and thus by Lemma 5.44, we have that

{R/p | p ∈ SpecR ∧ ht p = 0} ⊆ C. So {R/p | p ∈ SpecR} ⊆ C. But by Lemma

5.41, {R/p | p ∈ SpecR}⊥1 = I0, so C⊥1 = P ∩ (R/m)⊥1 = I0.

(2)(b). Inclusion (⊥1R)
<ω ⊇ (⊥1P)

<ω
and the second equation are clear. Let

M ∈ (⊥1R)
<ω

. By Lemma 7.8, Ext1R(M,R(κ)) = 0 for every cardinal κ. Let

N ∈ P = P1. Thus there is a short exact sequence of R-modules

0 −→ K −→ R(λ) −→ N −→ 0

with K projective. Applying HomR(M,−) to the previous short exact sequence, we

get part of the induced long exact sequence of abelian groups

Ext1R(M,R(λ)) −→ Ext1R(M,N) −→ Ext2R(M,K).

Since Ext1R(M,R(λ)) = Ext2R(M,K) = 0 (K ∈ I1), we get that Ext1R(M,N) = 0.

So M ∈ (⊥1P)
<ω

.

Theorem 5.49. Let R be a 1-Gorenstein commutative local ring of Krull dimension

1 with maximal ideal m and T be a tilting R-module. Then there is a set P1 ⊆ {p ∈
SpecR | ht p = 1} such that T is equivalent to the Bass tilting R-module TP1.

Moreover if we denote (A,B) the tilting cotorsion pair induced by T and A′, as in

Lemma 5.46, then we have that

T⊥∞ = T⊥1 =

{

{M ∈ Mod-R | Ext1R(E(R/m),M) = 0}, if R/m ∈ A′

Mod-R, if R/m 6∈ A′.

Proof. Denote B′ and P1 as in Lemma 5.47. We are going to show that B = {M ∈
Mod-R | Ext1R(E(R/p),M) = 0 for all p ∈ P1} (and thus T is equivalent to the

Bass tilting R-module TP1). By Lemma 5.47, it is enough to show that B′ = P ∩
⋂

p∈P1
(R/p)⊥1. Since R is local we only need to prove following two cases

1. if R/m ∈ A′, then B′ = I0 (see Proposition 5.48),

2. if R/m 6∈ A′, then B′ = P = I (or equivalently A′ = GP).

Suppose R/m ∈ A′. By Lemma 5.46, {R/p | p ∈ SpecR ∧ ht p = 0} ⊆ A′. So

{R/p | p ∈ SpecR} ⊆ A′, thus by Lemma 5.41, B′ = I0, so the case (1) is clear.

Suppose R/m 6∈ A′. Let M ∈ A′. Suppose that E(M) ≃ (E(R/m))αm ⊕
⊕

ht p=0(E(R/p))αp for some αm ≥ 1, αp ≥ 0 (see Theorem 2.123). Then M ∩
E(R/m) 6= 0, so M ∩ R/m 6= 0 and since R/m is a simple R-module, we have
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R/m ⊆ M , thus R/m ∈ A′, a contradiction. Thus if M ∈ A′, then E(M) =
⊕

ht p=0(E(R/p))αp for some αp ≥ 0.

Now let F ∈ A′<ω. By Lemma 7.7 and Proposition 5.48, there is a short exact

sequence

0 −→ F −→ F ′ −→ G −→ 0

with F ′ ∈ P<ω and G ∈ (⊥1R)
<ω ⊆ GP . Since B′ ⊆ P = I we have that A′ ⊇ GP ,

so G ∈ A′ and thus F ′ ∈ (A′ ∩ P)<ω. By the previous part and by Proposition 5.48,

F ′ ∈ P0 and thus F ′ ∈ GP . Since GP is a resolving class, we have that F ∈ GP , so

A′<ω ⊆ GP<ω. We have already proved that A′ ⊇ GP , so A′<ω = GP<ω. By Remark

5.45 ((GP ,I) is of weak-finite type by Corollary 5.43), we have that A′ = GP . So

the claim is true.

5.5 Solution of the problem

Definition 5.50. Let R be a commutative ring, S be a multiplicative subset of R

and B be a class of R-modules. Then the class BS of S−1R-modules is defined by

BS = {N ∈ Mod-S−1R | N ≃ S−1M for some M ∈ B}. For a prime ideal p of R

and S = R \ p, we also use the notation B(p) = BS.

Proposition 5.51. Let R be a 1-Gorenstein commutative ring with Krull dimension

1 and m,m′ be maximal ideals of R and m be of height 1. Denote T{m} and R{m}

as in Definition 3.20. Then

((T{m})(m′)
)⊥1 =

{

(E(R/m))⊥1, if m′ = m

Mod-R(m′), if m′ 6= m,

where E(R/m) is taken as an R(m)-module.

Proof. First note that ((T{m})(m′)
)⊥1 = ((R{m})(m′)

⊕ (E(R/m))(m′))
⊥1, where

E(R/m) is taken as an R-module. As in Remark 3.22, we have the following short

exact sequence of R-modules

0 −→ R −→ R{m} −→ E(R/m) −→ 0.

Applying −⊗R R(m′), we get the following short exact sequence of R(m′)-modules

0 −→ R(m′) −→ (R{m})(m′)
−→ (E(R/m))(m′) −→ 0.

Applying HomR(m′)
(−,M) where M is an arbitrary R(m′)-module, we get part of

the induced long exact sequence of abelian groups

Ext1R(m′)
((E(R/m))(m′),M) −→ Ext1R(m′)

((R{m})(m′)
,M) −→ Ext1R(m′)

(R(m′),M).
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First note that Ext1R(m′)
(R(m′),M) = 0 since R(m′) is a projective R(m′)-module. By

Lemma 2.122, we have that E(R/m) is an R(m)-module and

(E(R/m))(m′) ≃
{

E(R/m), if m′ = m

0, if m′ 6= m

as R(m′)-modules. So the claim is true.

Theorem 5.52. Let R be a 1-Gorenstein commutative ring and T be a tilting R-

module. Then there is a set P ⊆ {p ∈ SpecR | ht p = 1} such that T is equivalent

to the Bass tilting R-module TP .

Proof. If dim R = 0, we can use Lemma 5.1. So suppose that dim R = 1. Denote

B the 1-tilting class induced by T . First note that Lemma 3.19 implies that R(m) is

a 1-Gorenstein commutative local ring for all m ∈ mSpecR and also note that the

Theorem 7.16 implies that B(m) is a 1-tilting class in Mod-R(m) for all m ∈ mSpecR.

Denote A′
(m) and B′

(m) as in Lemma 5.46. Let M be an arbitrary R-module. By

Theorem 7.16, we have that M ∈ B iff M(m) ∈ B(m) for all m ∈ mSpecR. Note that

if m ∈ mSpecR is such that ht m = 0, then R(m) is 0-Gorenstein and so by Lemma

5.1, Mm ∈ B(m) every time. By Theorem 5.49, we have for every maximal ideal m

of R of height 1 that

M(m) ∈ B(m) ⇔
{

Ext1R(m)
(ER(m)

(R(m)/mR(m)),M(m)) = 0, if R(m)/mR(m) ∈ A′
(m)

every time, if R(m)/mR(m) 6∈ A′
(m).

Denote P = {m ∈ mSpecR | ht m = 1 ∧R(m)/mR(m) ∈ A′
(m)}. So we have that

M ∈ B ⇔ Ext1R(m)
(ER(m)

(R(m)/mR(m)),M(m)) = 0 for all m ∈ P.

By Lemma 2.120, we have that E(R/m) is an R(m)-module and that

ER(m)
(R(m)/mR(m)) ≃ E(R/m) as R(m)-modules. So, to the claim, it is enough

to prove that

Ext1R(m)
(E(R/m),M(m)) = 0 ⇔ Ext1R(E(R/m),M) = 0

for all m ∈ {p ∈ SpecR | ht p = 1}, where E(R/m) on the left hand side is taken

as an R(m)-module and E(R/m) on the right hand side is taken as an R-module

(then we have that T is equivalent to the Bass tilting R-module TP ). The previous

statement is equivalent to the following statement

M(m) ∈ (E(R/m))⊥1 ⇔M ∈ (E(R/m))⊥1

for all m ∈ {p ∈ SpecR | ht p = 1}, where E(R/m) on the left hand side is taken

as an R(m)-module and E(R/m) on the right hand side is taken as an R-module.
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Let m ∈ {p ∈ SpecR | ht p = 1}. By Lemma 3.21 and Remark 3.22, we have that

T{m} = R{m} ⊕ E(R/m) (we use the notation from Definition 3.20) is a 1-tilting

R-module with the induced 1-tilting class equal to (E(R/m))⊥1 , where E(R/m) is

taken as an R-module. So M ∈ (E(R/m))⊥1 iff M ∈ (T{m})
⊥1 and by Theorem

7.16, it is iff M(m′) ∈ ((T{m})(m′)
)⊥1 for all m′ ∈ mSpecR. But by Proposition 5.51,

it is iff M(m) ∈ (E(R/m))⊥1, where E(R/m) is taken as an R(m)-module. So the

claim is true.

6 Cotilting modules over 1-Gorenstein commutative

rings

Definition 6.1. Let R be a ring and S be a commutative ring such that R is an S-

algebra (see Definition 2.92) and denote ϕ the ring homomorphism from S to R. Let

E be an injective cogenerator for S-Mod, which exists by Remark 2.63. Let M be an

arbitrary right R-module. Then M is clearly a left S-module via sm = mϕ(s). The

dual module Md is defined by Md = HomS(SMR, SE), it is clearly a left R-module.

Theorem 6.2. Let R be a ring and, n < ω and T be an n-tilting right R-module.

Then the dual module T d is an n-cotilting left R-module.

Proof. This is part of the Theorem 8.1.2. from [11].

Definition 6.3. Let R be a commutative 1-Gorenstein ring and let P be a subset of

the set of all prime ideals of R of height 1. By Definition 3.20 and Lemma 3.21, TP
is a 1-tilting R-module. Consider the injective cogenerator E =

⊕

p∈mSpecRE(R/p)

(see Lemma 2.64). By Theorem 6.2, CP = (TP )d = HomR(TP , E) is a 1-cotilting

R-module, called Bass cotilting R-module.

Definition 6.4. Let R be a ring and C be a class of left R-modules. Then C is of

cofinite type if there exist n < ω and a class (equivalently a set) S ⊆ P<ω
n such that

C = S⊺∞ .

Let C be a left R-module. Then C is of cofinite type if the class ⊥∞C is of

cofinite type.

Theorem 6.5. Let R be a ring and n < ω.

1. Let C be an n-cotilting left R-module. Then C is of cofinite type iff there is

an n-tilting right R-module TC such that C is equivalent to (TC)d.

2. If C and C ′ are n-cotilting left R-modules of cofinite type, then C ′ is equivalent

C iff the n-tilting right R-modules TC and TC′ are equivalent.
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Proof. This is part of the Theorem 8.1.13. from [11].

Theorem 6.6. Let R be a left noetherian ring such that F1 = P1 (in particular, let

R be a 1-Gorenstein ring). Then all 1-cotilting classes are of cofinite type.

Proof. This is part of the Theorem 8.2.8. from [11].

Theorem 6.7. Let R be a 1-Gorenstein commutative ring and C be a cotilting R-

module. Then there is a set P ⊆ {p ∈ SpecR | ht p = 1} such that C is equivalent

to the Bass cotilting R-module CP .

Proof. Firts note, that C is a 1-cotilting R-module. By Theorem 6.6, C is of cofinite

type. By Theorem 6.5, there exists a 1-tilting R-module TC such that (TC)d is

equivalent to C. By Theorem 5.52, there is a set P ⊆ {p ∈ SpecR | ht p = 1}
such that TC equivalent to the Bass tilting R-module TP . By Theorem 6.5, C is

equivalent to the Bass cotilting R-module CP .
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7 Appendix

Lemma 7.1. Let R, S be rings. Let C be a full subcategory of the category of all

right (left) R-modules and D be a full subcategory of the category of all right (left)

S-modules. Let F : C → D (G : C → D) be an additive covariant (contravariant)

functor. If

0 −→ K
f−→M

g−→ N −→ 0

is split exact in C, then both

0 −→ F (K)
F (f)−→ F (M)

F (g)−→ F (N) −→ 0,

0 −→ G(N)
G(g)−→ G(M)

G(f)−→ G(K) −→ 0

are split exact in D. In particular, if g : M → N is an isomorphism, then both F (g)

and G(g) are isomrphisms.

Proof. This is the Proposition 16.2. from [1].

Lemma 7.2. Let R, S be rings, A be a left R-module, B be an (S,R)-bimodule and

C be an injective left S-module. Then

ExtiR(A,HomS(B,C)) ≃ HomS(ToriR(B,A), C)

as abelian groups for all i ≥ 0.

Proof. This is the Theorem 3.2.1. from [10]

Theorem 7.3. Let R, S be commutative rings, S be a flat R-algebra and M , N be

R-modules. If R is noetherian and M is finitely generated, then

ExtiR(M,N) ⊗R S ≃ ExtiS(M ⊗R S,N ⊗R S)

as S-modules for all i ≥ 0.

Specially if R is noetherian and M is finitely generated, then

ExtiR(M,N)(p) ≃ ExtiR(p)
(M(p), N(p))

as R(p)-modules for all i ≥ 0.

Proof. The first part is the Theorem 3.2.5 from [10], the second part follows from

Definition 2.92.
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Theorem 7.4. Let R be a Dedekind domain and M be a finitely generated R-module.

Then

M ≃ P ⊕
⊕

p∈mSpecR

Mp,

where P is a finitely generated projective R-module and each R-module Mp which is

non-zero is of the form

Mp ≃ R/pδ(p,1) ⊕R/pδ(p,2) ⊕ · · · ⊕R/pδ(p,l(p)),

where 0 < δ(p, 1) ≤ δ(p, 2) ≤ · · · ≤ δ(p, l(p)) are positive integers. Moreover, this

decomposition is uniquely determined by M .

Proof. This is part of the Theorem 6.3.23. from [6].

Theorem 7.5. Let R be a commutative local ring with maximal ideal m and M be

a finitely generated R-module. Then M is projective iff Tor1
R(M,R/m) = 0.

Proof. This is the Corollary 2 to Proposition 5 in Chapter II, Section 3 from [7].

Lemma 7.6. Let R be a commutative noetherian ring. Then the following are

equivalent

1. R is Gorenstein

2. flat dimE(R/m) = ht m for any maximal ideal m,

3. flat dimE(R/m) <∞ for any maximal ideal m,

4. flat dimE(R/p) = ht m for any p ∈ SpecR,

5. flat dimE(R/p) =<∞ for any p ∈ SpecR.

Proof. This is the Proposition 2.1. from [13].

Lemma 7.7. Let R be a Gorenstein ring. Then for each finitely generated R-module

M , there exist short exact sequences

0 −→ AM −→ BM −→M −→ 0

with AM ∈ P<ω and BM ∈ (⊥1R)
<ω

, and

0 −→M −→ CM −→ DM −→ 0

with CM ∈ P<ω and DM ∈ (⊥1R)
<ω

.
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Proof. This is part of the Proposition 1.8. from [4].

Lemma 7.8. Let R be ring, M be a strongly finitely presented right R-module and

(Nα | α < κ) be a family of right R-modules. Then for each 0 ≤ i < ω

ExtiR(M,
⊕

α<κ

Nα) ≃
⊕

α<κ

ExtiR(M,Nα)

as abelian groups.

Proof. This is part of the Lemma 3.1.6. from [11].

Theorem 7.9. Let R be a ring and n < ω. Then (⊥1In,In) is a complete hereditary

cotorsion pair.

Proof. This is part of the Theorem 4.1.7. from [11].

Theorem 7.10. Let R be a ring and n < ω. Then (Pn,Pn⊥1) is a complete hered-

itary cotorsion pair.

Proof. This is part of the Theorem 4.1.12. from [11].

Theorem 7.11. Let R be a ring, κ be an infinite regular cardinal and C be a set

of < κ-presented right R-modules. Let M be a right R-module with a C-filtration

M = (Mα | α ≤ σ). Then there is a set F consisting of submodules of M such that

1. Mα ∈ F for all α ≤ σ,

2. let N ∈ F and let X be a subset of M of cardinality < κ. Then there is a

P ∈ F such that N ∪X ⊆ P and P/N is < κ-presented.

Proof. This is the part of the Theorem 4.2.6. (Hill Lemma) from [11].

Theorem 7.12. Let R be a ring, n < ω and C be a class of right R-modules. Then

the following are equivalent

1. C is n-tilting,

2. C is coresolving, special preenvloping, closed under direct sums and direct sum-

mands and ⊥1C ⊆ Pn.

Proof. This is the Theorem 5.1.14. from [11].

Theorem 7.13. Let R be a ring, n < ω and (A,B) be a cotorsion pair. Then the

following are equivalent

1. (A,B) is n-tilting,
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2. (A,B) is hereditary and complete, A ⊆ Pn and B is closed under direct sums.

Proof. This is the Corollary 5.1.16. from [11].

Theorem 7.14. Let R be a ring and (A,B) be a tilting cotorsion pair. Then each

right R-module A ∈ A is A<ℵ1-filtered.

Proof. This is the part of the Theorem 5.2.10. (Deconstruction to countable type)

from [11].

Theorem 7.15. Let R be a ring and T be a tilting right R-module. Then T is of

finite type.

Proof. This is the part of the Theorem 5.2.20 from [11].

Theorem 7.16. Let R be a commutative ring, n < ω, T be an n-tilting R-module

and B = T⊥∞ be the n-tilting class induced by T .

1. Let S be a multiplicative subset of R. Then S−1T is an n-tilting S−1R-module,

the corresponding n-tilting class being

BS = (S−1T )⊥∞ = B ∩ Mod-S−1R.

2. Let M ∈ Mod-R. Then M ∈ B, iff M(m) ∈ B(m) for all maximal ideals m of

R.

Proof. This is the Theorem 5.2.24. from [11].

Lemma 7.17. Let R be a 1-Gorenstein commutative ring of Krull dimension 1, S

be a multiplicative subset of R which is without zero-divisors and Σ be a set of all

regular elements of R. Then

1. Σ−1R ≃ ⊕

ht p=0E(R/p) as R-modules,

2. S−1R/R is a direct summand of Σ−1R/R as R-modules.

Proof. This is the part of the Example 7.13 from [2].

Theorem 7.18. Let R be a commutative ring and S be a multiplicative subset of R

which is without zero-divisors. Then the following conditions are equivalent

1. proj dimS−1R ≤ 1,

2. T = S−1R⊕ S−1R/R is a 1-tilting R-module.

Moreover, if T is 1-tilting then the 1-tilting class induced by T is equal {M ∈ Mod-R |
Ms = M for all s ∈ S}.
Proof. This is the part of the Theorem 6.3.16 from [11].
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