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Abstract: A family of Natural Language Processing (NLP) tasks such as part-of-

speech (PoS) tagging, Named Entity Recognition (NER), and Multiword Expression 

(MWE) identification all involve assigning labels to sequences of words in text 

(sequence labeling).  Most modern machine learning approaches to sequence labeling 

utilize word embeddings, learned representations of text, in which words with similar 

meanings have similar representations. Quite recently, contextualized word 

embeddings have garnered much attention because, unlike pretrained context-

insensitive embeddings such as word2vec, they are able to capture word meaning in 

context. In this thesis, I evaluate the performance of different embedding setups 

(context-sensitive, context-insensitive word, as well as task-specific word, character, 

lemma, and PoS) on the three abovementioned sequence labeling tasks using a deep 

learning model (BiLSTM) and Portuguese datasets.
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PREFACE 

The  major  contribution  of  this  thesis  is  its  thorough  exploration  into  the  use  of 

different experimental  setups with embeddings applied to sequence labeling tasks 

(the  assigning of labels to sequences of words in text) using deep learning1. Three 

tasks are carried out using Portuguese datasets: part-of-speech (PoS) tagging, named 

entity recognition (NER), and verbal multiword expression (VMWE) identification. 

Secondary contributions are in the advancement of the state of the art in PoS tagging 

for Portuguese and near state of the art results without the use of handcrafted features 

for Portuguese NER and VMWE identification. 

The structure of this work is as follows. 

Chapter 1 opens with a light introduction to deep learning methods and architectures, 

word embeddings, and language models. 

In Chapter 2, we explore the use of character language models (CharLMs) in state-

of-the-art sequence taggers. 

Chapter 3 describes the deep learning architecture of the sequence tagger model used 

for all tasks as well as the different experimental setups.

Chapters  4,  5,  and  6  present  the  tasks  of  PoS  tagging,  NER,  and  VMWE 

identification respectively, as well as the Portuguese data, the state of the art,  the 

parameters of the tagging model, and the results of the experimental setups. 

Chapter 7 concludes this thesis with final remarks.

1. All code and data is freely available at https://github.com/ericlief/sequence-tagger.git
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CHAPTER 1

Introduction

In this introductory chapter, I present an overview of sequence labeling tasks and a 

brief introduction to popular current deep learning architectures, embeddings,  and 

language models.

1.1. Sequence Tagging

Sequence  tagging  or  labeling  commonly  refers  to  a  group  of  related  Natural 

Language  Processing  (NLP)  tasks  such  as  part-of-speech  (PoS)  tagging,  Named 

Entity  Recognition  (NER),  Multiword  Expression  (MWE),  chunking/shallow 

parsing, and semantic role labeling/semantic slot filling. All of these tasks can be 

treated as cases of supervised multinomial classification, in which a tag or label is 

assigned to some linguistic construction, be it a word (PoS tagging) or a grouping of 

words referring to some unique entity (NER) such as the Czech Republic.

When neural networks are employed to solve these sequence labeling tasks, it 

is essential that each input, whether a character or a word, maps to a target label. In 

order to achieve this, usually some variation of the BIO (Beginning, Inside, Outside) 

annotation scheme is used. Below in (1), the tag for Location can be assigned to 

either a single or a multiword entity:

(1) Prague is the capital of the  Czech Republic  

B-LOC O O O O B-LOC I-LOC I-LOC

The presence of the multiword entity  is  thus  signaled by the Inside (I)  LOC tag 

following a same Beginning (B) tag, and all words that do not span any entity are 

marked  as  Outside  (O).  As  we  will  see  below  in  the  discussion  of  multiword 
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expressions (MWEs), there are slight variations of this annotation scheme, but the 

idea is for the most part the same: every word form in a string of words (text)—

instead of some larger linguistic entity2– gets its own tag or label.

Current state of the art  approaches to sequence labeling use some type of 

language model (LM), possibly combined with pretrained word embeddings, and for 

the  labeling  task,  a  bidirectional  recurrent  neural  network  (BiRNN),  such  as  the 

LSTM variety,  with  a  conditional-random field  (CRF),  henceforth  BiLSTM-CRF 

(Akbik et al 2018, Peters et al 2018).  Before discussing these architectures, I first 

present some basic machine learning and neural network concepts.

1.1.1  Conditional Random Fields for Sequence Labeling

Most current SOA approaches to sequence labeling employ a conditional random 

field  (CRF) to decode the output label sequence. CRFs are much more powerful than 

generative models such as Hidden Markov Models (HMMs) and do not suffer from 

the label bias problem (Lafferty et al. 2001). The label bias problem refers to the fact 

that finite state transitions from one state to the next are evaluated locally rather than 

globally. In other words, the best transition (i.e. the argmax) is only the best leaving 

the current state, but may not be the best one overall. For some sequence labeling 

tasks, we may be able to make certain independence assumptions when assigning one 

label after  another,  e.g.  if  we are classifying a stream of images or the like.  For 

linguistic data, however, we are not always able to assume such independence. PoS 

tagging, for example, reflects hard linguistic constraints, e.g. in English a determiner 

cannot follow a noun, *NOUN + DET. Thus when assigning DET, it would benefit 

the model to have access to the previous tag.  A CRF, in effect,  achieves this but 

looking at the whole sequence when assigning labels.

CRFs are a log-linear model much like logistic regression, and are formally 

represented as weighted feature functions. A feature function  fj takes as arguments 

the label of the preceding segment yi-1, the current label yi, and the current sequential 

position, and assigns a binary score of 0 or 1 if the condition is true. For instance if 

the preceding label is a determiner and the current label is noun. Next, a positive or 

2. Some recent deep learning approaches assign a label to some larger chunk, e.g. Zhai et al (2017).
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negative weight  is associated with a feature function, reflecting how favored the 

feature is.  Below in (2), for a sentence of length n, there are m features functions:

(2)    

Thus sequence labeling is not done for each token in isolation; rather, the best tag 

sequence is computed on the basis of the probabilities of all labels assigned in the 

surrounding context. 

1.2. Deep Learning

Deep learning refers  to  a  family  of  machine  learning methods  and architectures, 

which typically use many hierarchical layers of non-linear processing  (Deng and Yu 

2014).  According  to  Deng  et.  al  (2014),  there  are  three  basic  classes  of  deep 

networks:

1.  Unsupervised or generative deep networks, with the goal of gaining 
insight into the correlation of observed data, in the absence of target 
labels

2.   Unsupervised  learning or  discriminative  deep networks,  with  the 
goal of classing data in the presence of target labels

3.  Hybrid  deep  networks,  which  are  a  combination  of  supervised  
classification, aided by the outcomes of unsupervised generative nets.

In this thesis focusing on sequence labeling (i.e. classification), we will be concerned 

only with supervised learning. In the next section, an overview of the most popular 

and successful deep learning architectures is presented. 
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1.2.1 Recurrent Neural Networks (RNNs)

Recurrent  Neural  Networks  (RNNs)  are  a  type  of  artificial  neural  network 

specialized for  processing sequential  data  such as  text,  which  can send feedback 

signals (Chen, 2016). Normal vanilla flavored neural networks suffer from two major 

problems. First they cannot be fed variable length inputs, whether characters, words, 

or sentences.  There are nevertheless workarounds, such as padding the sequence 

with zeros up to some fixed maximum length. Second, they do not share features 

learned across different sequential positions. In NLP, a word like Prague occurring 

initially bears no relation to the same word occurring word medially or finally. RNNs 

can handle  sequences  of  different  lengths,  and parameter  sharing  allows them to 

generalize across different textual positions  (Ian Goodfellow, Bengio, & Courville, 

2016). Thus they would need separate parameters for each sequential position  t  in 

order to recognize that the named entity President Trump (Person) is the same in the 

following two sentences.

(3) President Trump promises to make America great again.

(4) During his election campaign, President Trump promised to make America

great again.

As  the  name  suggests,  RNNs  compute  the  current  state  recursively.  The 

previous state serves as input to the current state, yielding a recurrence such as the 

following ht = f(xt, ht-1; θ). We thus see that each state contains information (features)). We thus see that each state contains information (features) 

from all  previous  states.  We can  visualize  this  recurrence  better  by  unfolding  it 

(image to the right) in Figure 1 below.
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RNNs are thus capable of capturing longer range dependencies than a vanilla 

flavored neural network, e.g. a multilayer perceptron (MLP).  For instance, an RNN 

maps a sequence  x1,  x2,...xt to  a state  ht+1,  which depending on the length of the 

sequence, may be lossy  (Ian Goodfellow et al.,  2016).  A language model, which 

models the distribution of words in a language and can predict the next word (or 

character)  based  on previous  words,  begins  to  lose information beyond a  certain 

window size.  

1.2.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), along with Gated Recurrent Units (GRUs), are 

gated  RNNs,  which  employ  this  specialized  gated  architecture  to  control  what 

information is allowed to pass through.  As illustrated in the figure below, an LSTM 

contains a memory cell (ct) which hold the state, an input gate (it) which controls 

what  new input  features  are  incorporated  into  the  state,  a  forget  gate  (ft)  which 

controls which information from the state at the previous time step (ct-1) recursively 

passes into the state, and an output gate (ot) which can selectively shut off the output 

of the cell.
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The computations of these gates and cell state are given below in (5). 

(5) LSTM gate computations

Note  that  in  the  standard  LSTM, each  gates  receives  to  inputs,  the  input  xt and 

previous state ht-1, and  that the activation of the gates is normally sigmoid σ, but that 

the activation of the external input gate (gt), which by element-wise multiplication 

(*) controls what input enters the state, is tanh, as is the final state output by the cell.
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1.3 Embeddings

A word embedding (Collobert et  al. 2011, Mikolov et  al. 2013c), also known as a 

distributed word representation, is a learned representation of text, in which words 

with similar meanings have similar representations  (Bengio, Ducharme, Vincent, & 

Janvin, 2001). This differs from merely representing a word as a vector containing no 

semantic features, an idea which has been around for some time.  If we are dealing 

with true word embedding vectors, the representation of vec(Prague) can be obtained 

arithmetically  by  vec(Rome)  -  vec(Italy)  +  vec(The Czech  Republic).  One  of  the 

advantages of using word embeddings is that they in effect project a discrete high 

dimensional space of a magnitude of the number of words in the vocabulary to a 

much more manageable continuous lower dimensional space. Thus a word with a 

discrete one-hot encoding of dimensionality in the tens of thousands is mapped to a 

continuous  representation  encoding  normally  only  in  the  hundreds.  Word 

embeddings are one of the breakthroughs in NLP in the last fifty years. 

1.3.1 Context-Insensitive Word Embeddings

There are two basic techniques to embed words: continuous bag of words (CBOW) 

and skip gram (Zheng, Shi, Guo, Li, & Zhu, 2017). In the CBOW model, a word is 

predicted by its context of surrounding words, while in the skip gram model, the 

process is reversed and the context of a given word is predicted.
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Word2vec can create embeddings using either one of these techniques, and it has 

been shown that of the two methods the skip gram is the best at capturing word 

similarity (Mikolov et al.  2013 d). Although pretrained distributed word embeddings 

such as  word2vec,  FASTTEXT,  and GloVe have proven quite useful in modeling the 

latent semantic and syntactic similarities of words, they suffer the drawback that they 

do not model how words very frequently have different meanings (polysemy).  This 

is  the case because different meanings and representations are collapsed into one 

final representation. Schütze (1998) is one of the first to identify what he called the 

meaning conflation deficiency. One of obvious outcome of this is that an Natural 

Language Understanding (NLU) system would be less likely at distinguishing these 

senses. Another perhaps less obvious one is that often unrelated words are pulled 

toward each other in vector space. For instance, the unrelated word rat and screen are 

pulled toward one another due to one of the senses of  mouse and its closeness to 

screen (Camacho-Collados & Pilehvar, 2018).  

1.3.2 Contextualized Word Embeddings

One obvious solution to the meaning conflation deficiency described in §1.3.1 is to 

have  embeddings  for  every  meaning  of  a  word.  Such  sense  representations  or 

embeddings can be produced either in an unsupervised fashion or with the help of a 

knowledge base (KB). Unsupervised approaches are favorable because of the lack of 

KBs and make use of clustering,  which can lead to unclear semantic mappings and 

consequently  difficult  integration  into  downstream models  (Camacho-Collados  & 

Pilehvar,  2018).   Recently an emerging field of research has sought to integrate 

unsupervised context-sensitive embeddings into downstream tasks. While pretrained 

word  embeddings  like  word2vec  yield  one  single  static  representation  per  word, 

these  contextualized  word  embeddings  are  sensitive  to  context  and  their 

representation  is  dynamic,  changing according to  the  context  in  which  the  word 

appears  (Cassani,  Tomadoni,  Ponce,  Agüero,  &  Moreira,  2017;  Melamud, 

Goldberger, & Dagan, 2016; Peters, Ammar, Bhagavatula, & Power, 2017; Akbik, 

Blythe, and Vollgraf 2018)
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1.3.2.1 Context2vec

Like word2vec, context2vec  (Melamud et al., 2016) learns both target word 

and context representations simultaneously, but with a much more robust sentential 

context. As in Figure 5 below, the model uses two separate LSTMs, one for the left-

to-right context and one for the right-to-left, with separate parameters and context 

embeddings. The outputs of each one are then concatenated and thus encapsulate the 

context, in much the same way as the averaging over context vectors in the word2vec 

model.  This  context  vector  is  next  fed  to  a  Multilayer  Perceptron  (MLP)  which 

outputs a representation of the entire sentential context.  (Melamud et al., 2016)

Context2vec shares  a  lot  in  common with Language Models  (LMs).  Both 

generally use bidirectional LSTMs (BiLSTMs) such as that described above, with the 

objective of predicting the target word based on its context. While LMs, however, are 

mainly concerned with predicting conditional probabilities of target words based on 

their  histories,  the  main  goal  of  context2vec  is  to  produce  useful  context 

representations of target words.  However, as we will soon see, character language 

models (CharLMs) also often share this goal. In the next section we discuss LMs in 

more detail.

1.4 Language Models

A statistical language model (LM) is formally a probability distribution over words. 

Using a LM, one can estimate the probability of observing a particular sequence of 

words, whether a sentence or a whole document e.g. 

(6)                                
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Language  modeling  has  applications  in  speech  recognition,  machine 

translation, part of speech tagging, text generation, and information retrieval, among 

others. Due to the data sparsity problem, the Markov assumption, limiting the history 

to  n-terms,  is  usually  employed  in  practice,  and  n-gram  probabilities  are  often 

computed by maximum likelihood estimation (i.e. counting), followed by smoothing 

to counteract out of vocabulary (OOV) words. Therefore, by an nth order Markov 

property, the probability distribution, which is a product of terms predicting the next 

word given the history, can be approximated by a product of conditional probabilities 

confined to a window of size n.                            

(7)
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In order to accurately estimate the likelihood of sequences of words, LMs 

must be trained on a huge amount of data. Nevertheless, a sentence at test time may 

still be different from those seen during training, and with more data comes a larger 

vocabulary size, more possible sentences, and greater data sparsity, a phenomenon 

known as the ‘curse of dimensionality’ (Bengio et al., 2001).   Traditional approaches 

overcame this problem by stringing together n-grams to build the sentence. 

In the last decade, neural LMs (NLMs) have gained popularity because of 

their ability to alleviate the curse of dimensionality via their use of continuous word 

representations  (embeddings).  As discussed in  §1.3,  the use of  word embeddings 

leads to dimensionality reduction. In an NLM, word embeddings are learned during 

training. One simply initializes a lookup table randomly and embeds the sequences 

using this table. The lookup table is a parameter of the network and gets updated like 

the  other  parameters  during  backpropagation.  The goal  of  a  NLM is  to  learn  an 

optimal model .   This process is illustrated below 

in Figure 6. After encoding the input as a word vector (embedding) using the lookup 

table C, the model maps the input sequence to a conditional probability distribution 

over all words in the vocabulary for the next word given its history. 
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Although as  we will  see  below the  classical  model  of  (Bengio  et  al.,  2001) has 

evolved, its basic components have remained the same, consisting of the following 

layers:

1. Embedding or projection layer, which makes use of a lookup table to  

vectorize the input

2. Hidden or encoding layer, which internalizes the context around the target  

word

3. Output or softmax layer,  which outputs a normalized probability over all  

words in the vocabulary.
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The  way  a  NLM  computes  the  final  probability  distribution 

 is also fundamentally the same.  The output of the 

hidden layers, whether classic MLP or the BiLSTM of a modern NLM (see below) 

approximates the Maximum Likelihood Estimation of an n-gram model

(8)                       

via the softmax layer, which computes the following normalized probability.

(9)  

The unnormalized log-probability (logit) of the final fully connected output layer is 

,  which  is  the  inner  product  of  the  context  vector  h and  computed 

embedding of wt, the row of the weight matrix E of this output layer. This in practice 

is really a matrix-matrix multiplication of the  weight matrix E of the output later,  

which contains the embeddings of all words in the vocabulary, and the batch outputs 

14



H of the previous hidden layer(s) (for a given time step in the case of an RNN), i.e.  

. The softmax squashes this logit  z into a probability for word  wt, given the 

context 

Using softmax,  it  is  then possible  to compute the loss of  the LM, whose 

objective  it  is  to  maximize  probability  of  the  whole  training  data.  This  can  be 

formalized by maximizing the averaged log probability of the data.

(10)                

In practice, this is searching for the parameters  which maximize the log likelihood 

(Bengio et al., 2001) :

(11)                        

Recall that the function  f is the model output (i.e. the conditional probability of a 

word as calculated by the softmax layer) and n is the number of previous time steps 

(window size) seen so far.  (Bengio et al., 2001) identifies that the bottleneck of the 

network is, in fact, the softmax layer, since even with efficient matrix multiplication 

and powerful GPUs, the major computational cost is the inner product which needs 

to be computed for the whole vocabulary, often in the hundreds of thousands.  

Because  of  this,  LMs  are  notoriously  hard  to  train,  often  requiring  huge 

computational  power and sometimes  months  of  training  time.  This  is  one of  the 

appeals of character LMs (explored in §2.4 below).
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CHAPTER 2

Sequence taggers

2.1 LM-Fueled Sequence Taggers

The classical LM architecture just discussed can be implemented by MLPs or RNNs. 

Current  RNN LMs, both LSTM and GRU, outperform  n-gram LMs by virtue of 

their ability to encode long-range dependencies in their hidden states (Graves 2013) 

In this chapter, several recent NLM architectures and their applications to sequence 

labeling tasks are discussed.  

  

2.2 TagLM, Peters et al. (2017)

  

Peters et al. (2017), leveraging a pretrained bidirectional LM, improved on the state 

of the art for several sequence labeling tasks, NER and Chunking. Their Language 

Model  Augmented Sequence Tagger  (TagLM) embeds an input  sequence using a 

combination  of  pretrained  LM  embeddings,  pretrained  context  insensitive  word 

(token) embeddings, and in task character embeddings.

16



As is depicted above for the task of NER, the model contains several layers or 

components. In the embedding layer, embeddings over characters are obtained via a 

RNN or a Convolutional Neural Network (CNN). Using a character-level RNN for 

illustration, a character sequence for a word such as cat [‘c’, ‘a’, ‘t’] is fed to a RNN, 

usually bidirectional (BiRNN), which embeds the context to the left of each character 

(forward) and to the right (backward). A backward RNN is like the forward variant 

described above, but from right to left, encoding the word in reverse. The forward 

and backward outputs representing each word are then concatenated.

17



These  character-level  embeddings  are  then  concatenated  with  pretrained  word 

embeddings  such  as  word2vec.   For  instance,  York is  now  represented  by  the 

embedding .

The  LM  component  of  the  model  predicts  the  probability  of  the  input 

sequence  ,  using  one  or  more  layers  of  BiRNN,  whether  BiLSTM or 

BiGRU.  

(12)                 , 
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In the forward pass, the history of each token is embedded in the internal state which 

is output at each step t, until reaching the end of the sequence at which point  is 

output as the final state representing the whole history. If this is the top layer, this is 

the  forward  embedding,  and  a  prediction  can  be  made  for  token  wt+1.  Next,  the 

process in repeated but in the opposite direction  for the reverse sequence  , 

yielding the backward embedding .  

 

(13)                 

These top layer representations are then concatenated . 

In  the  next  step,  these  embeddings  are  combined  with  representations 

obtained  from  the  sequence  labeling  task  BiLSTMs.  The  authors  chose  to 

concatenate the LM with outputs from the first BiRNN layer,  , which is fed to 

the second BiRNN. This stacked representation is as follows:

(14)                 

The outputs of this layer are input to a final dense layer, which is decoded by a CRF. 

Analogous to the forward only LM, the objective of a biLM is to maximize 

the probabilities in each direction. The parameters for each BiLSTM LM are separate 

( ),  but  the  remaining  parameters  are  shared,  e.g.  those  of  the  input  and 

output,  and softmax layers, here simplified to .

(15)

 

The above model is evaluated using CoNLL 2003 NER and CoNLL 2000 

Chunking tasks.
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Parameter Value

Character-level embedding (CLE) dimension
BiGRU X 2 state size for CLE
BiGRU X 2 state size for tagger
Dropout for each GRU input

25
80  
300
.25

Table 1: Hyperparameters for NER 

Parameter Value

Character-level embedding (CLE) dimension
Number of CNN filters
CNN kernel size
Tagger BiLSTM X 2 state size  
Dropout for CLE, each LSTM input and final layer

30
30  
3
200
.50

Table 2: Hyperparameters  for Chunking

For both of these tasks, the LM employed was a publicly released pretrained best 

model of  Jozefowicz et al. (2016), trained on around 800,000 tokens from the One 

Billion Word Benchmark (Chelba et al., 2014), a data set designed for LMs, for three 

weeks on 32 GPUs. This LM achieved a test perplexity of 30.0. The hyperparameters 

of this LM, referred to as CNN-BIG-LSTM, are given below.

Parameter Value

Number of CNN filters (character-level)
CNN kernel size
BiLM layers
BiLSTM state size  
Projection dimension (BiLM)
Dropout before & after every LSTM layer

4096  
?
2
8192
1024
?

Table 3: CNN-BIG-LSTM LM

Note that kernel size and dropout parameters were not published. The results of for 

these two tasks are also given below: 
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MODEL NER CHUNKING

PREVIOUS SOA 91.62 95.28

BASELINE (NO LM) 90.87 95.00

TAGLM 91.93 96.37

Table 4: Task results for TagLM

There are several task-independent results which are worth mentioning here. 

First  as  mentioned,  it  was  found  that  the  best  results  were  obtained  when  the 

embeddings were concatenated after the first LSTM layer. Second, the addition of a 

backward LM boosts F1 scores .22-.27%. Third, the authors experimented with other 

sizes of BiLSTM for the LM and found that the best result were obtained from the 

largest model (CNN-BIG-LSTM), with gains of .26-.32 over a smaller LSTM-2048-

512. Thus size matters. Fourth, the LM was trained on a smaller task-specific data 

set, which resulted in much higher perplexities, which reflects the necessity of seeing 

a wide range of contexts during training, i.e. RNN LMs learn composition functions 

(Peters  et  al.  2017).  Another  interesting  experiment  included  removing  the  task 

specific RNN and just using the LM embeddings followed by a dense and CRF layer. 

This also resulted in inferior results, which confirms the importance of a supervised 

task specific architecture. 

2.3 ELMo, Peters et al. (2018)

  

Embeddings  from Language Models  (ELMo) build  on the  just  presented  TagLM 

model  of  Peters  et  al.  (2017).  There  are  some  differences  which  will  now  be 

explained. The ELMo model is also a biLM, with an objective the same as that of 

above, namely to optimize model parameters so as to maximize the probabilities of 

the data:

(16)
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Like  TagLM,  the  BiLM  component  of  ELMo  also  follows  the  architecture  of 

(Jozefowicz,  Schuster,  Wu,  Com,  &  Brain,  2015),  with  the  exception  of 

modifications  to  allow training  in  both  directions  and the  addition  of  a  residual 

connection  between  LSTM layers.  Unlike  TagLM, which  utilizes  the  CNN-BIG-

LSTM, ELMo halves the size of embeddings and dimension of hidden units. The 

hyperparameters are given  below

Parameter Value

Number of CNN filters (character-level)
CNN kernel size
BiLM layers
BiLSTM state size  
Projection dimension (BiLM)
Dropout before & after every LSTM layer

2048
?
2
4096
512
?

Table 5: ELMo BiLM

The smaller hyperparameters lead to a rise in perplexity to 39.7 (averaged in 

both  directions),  cf.  30.0  for  the  CNN-BIG-LSTM. However,  this  is  justified  as 

balancing performance and computational requirements. The model can also be fine-

tuned with domain-specific data, leading to lower perplexity and better performance 

on downstream tasks.

In  contrast  to  TagLM, the  authors  mention  that  some parameters  of  each 

direction  of  the  LM are  shared.  For  each token an  L-layer  BiLM computes  two 

representations, one in the forward and another in the reverse direction. Since for 

layer j = 0, the token layer x, only one representation is computed, there are 2L + 1 

total computations:

(17)

Note  that  the  first  member  of  the  set  here  is  the  context-independent  token 

embedding (e.g. pretrained word embedding or character-level embedding, or both). 

Given  that  there  are  two  layers  used  in  the  model,  there  are  thus  three  total 

representations per token. Recall that for TagLM, the top (final) layer of the BiLM 
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 is used as the embedding for downstream tasks. ELMo, however, uses a task-

specific weighting of all layers.

(18)

 

In the equation above, stask are softmax normalized weights and   is for scaling 

the final embedding vector. These parameters can be used to improve the task model. 

The representations from all BiLM layers are fed to the task model, which learns a 

linear combination of them.

 

2.4 Flair, Akbik et al. (2018)

The character language model of Akbik et al. (2018), Flair, like TagLM and ELMo, 

is a BiLM, with the major difference that it is over characters rather than words. This 

model has the following properties:

1. It can be pretrained in an unsupervised fashion on large unlabeled corpora.
2.  It  yields  contextualized  embeddings  (referred  to  as  contextual  string 
embeddings).
3. It models words in their context as sequences of characters.

Properties (1) and (2) are the same as those of a word LM such as ELMo. Property 

(3), however, is unique to a character LM, hence CharLM, and is perhaps the biggest 

benefit  of  using  one  over  a  word LM. When a word  not  in  the  training  data  is 

encountered, a normal LM, much like a pretrained embedding, is forced to assign the 

representation of an unknown symbol (<UNK>). Although it  has been noted that 

CharLMs  often  perform  somewhat  worse  than  word  LMs,  reflected  in  higher 

perplexity (Graves 2014), we will see that Flair, in fact, performs better than LM-

fueled sequence taggers such as ELMo.
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There is a growing body of research demonstrating that neural models trained 

to  predict  the  following character  given a  preceding  character  history  internalize 

morphosyntactic and semantic knowledge (Akbik et al. 2018; Graves 2013). This is 

most surprising since these networks are trained without any grammatical data, or 

even explicit  notion of word or sentence boundaries,  yet are perfectly capable of 

generating grammatically correct sentences.

A CharLM works in an analogous fashion to a word LM, except that now the 

task is to predict the probability of an input character sequence , using one 

or more layers of BiRNN, whether BiLSTM or BiGRU. 

(19)  , 

The forward LM internalizes the history of characters seen so far in its internal states, 

which are output at each step t, until reaching the end of the sequence. Like in a word 

LM, a  prediction can be made for the next  character  at  any point  ct+1.  Next,  we 

reverse the process for  , yielding the backward states. 
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(20)

In the case of the word model, recall that   and  represented the 

word embedding. In the case of a stream of characters with no word markers, the 

initial  and final  states  need to  be extracted,  but  can be  done easily  with offsets, 

analogously to extracting a word from a sentence embedded in a word LM.

 

As  in  ELMo,  these  word  representations  are  then  concatenated 

. These embeddings are computed not just on the characters 

of a word, but on a window of characters surrounding the word and thus reflect much 

larger context which captures all of the meanings a word may have (polysemy).

The sequence labeling architecture of the Flair model is similar to other state-

of-the-art  systems  like  ELMo,  making  use  of  a  BiLSTM  and  CRF  decoder.  In 

contrast to ELMo, there is only one LSTM layer, and the CharLM embeddings can 

thus only be concatenated as input to this layer.  For instance,  one can stack the 

CharLM  embedding  with  a  pretrained  context  insensitive  embedding  such  as 

word2vec.

 

(21)
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These word embeddings are next fed to the BiLSTM where forward and backward 

states for each token are concatenated, representing a longer range sentential context 

around each token wt. 

(22)

This representation can then be input to a final softmax layer for a prediction, similar 

to the classical LM described above.

(23)

Recall  from  §1.1.1  that  in  CRFs  weight  s  are  associated  with  feature 

functions. 

(24)

Applying this to a neural sequence model, we have 

(25) , where 

 

The best  Flair  model performance on downstream tasks is  achieved when 

CharLM embeddings are trained and stacked with pretrained word embeddings, and 

potentially in task character-level embeddings as well, and then fed to a sequence 

model with a CRF decoder. The Flair language model for all published tasks was 

trained with the following hyperparameters:
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Parameter Value

Character window size 
Learning rate before annealing
BiLM layers
BiLSTM state size  
Gradient clipping
Dropout  
Batch size

250
20
1
2048
.25
.5
100

Table 6: Flair CharLM

 For sequencing tasks, the following hyperparameters were used:

Parameter Value

Character window size 
BiLM layers
BiLSTM state size  
Variational dropout  
Learning rate model selection
Batch size model selection

250
1
256
.5
{.01, .05, .1}
{8, 16, 32}

Table 7: Flair sequence model

The  results  for  NER  and  Chunking  in  English,  for  the  Flair  model  leveraging 

pretrained word embeddings (PWE) and character-level embeddings is given below, 

along with the results for ELMo and TagLM. 

  

  
  ARCHITECTURE

  NER   CHUNKING

  F1   F1

  FLAIRPWE+CLE   93.09   96.72

  ELMO   92.22   -------

  TAGLM   97.42   96.37

  Table 8: Results for Flair vis-à-vis Peters et al. (2017, 2018)

  

These state-of-the-art results are what led me to choose to train a Flair CharLM for 

the Portuguese sequence labeling experiments which are explored in the next chapter.
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CHAPTER 3

Models

In this section, I describe the experimental utilized for the chosen sequence labeling 

tasks (PoS tagging, NER, and VMWE identification) outlined in chapters 4, 5, and 6.

  

3.1 Character Language Models (CharLMs)

To obtain effective character language models (CharLMs) it is necessary to train for 

around two or  more  weeks with  sufficient  data.   I  chose  to  train  Flair  language 

models because of the phenomenal results reported by Akbik et al. (2018) for several 

sequence labeling tasks (§2,4), combined with the relative ease of training, both in 

terms of  computational  resources  and time.  I  was  interested  in  training  LMs for 

Portuguese because of my passion for and knowledge of this language for which 

resources are lacking. The authors of Flair also indicated to me that contributions for 

this  language were in demand and welcomed3.  In the next section,  I describe the 

training of these CharLMs, as well as the sequence model I implemented in detail.

3.1.1 Training data

CharLMs were trained on .9B words of Portuguese CommonCrawl text4.  Chelba et 

al. (2014)  describes the preparation of benchmark training data for language models 

(One  Billion  Word  Benchmark5).  The  standards  established  in  this  work  were 

followed whenever possible. 

(26) Preprocessing of CommonCrawl data

3.Models contributed here: https://github.com/zalandoresearch/flair/blob/master/resources/docs
4. https://www.statmt.org/ngrams/
5. http://www.statmt.org/lm-benchmark/
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Normalization and tokenization was performed

Duplication was performed6

Data was split into 100 disjoint partitions (shards)

1% of the data was chosen as heldout

Heldout was split equally into heldout and test sets7

In addition, since much of the CommonCrawl data were messy, containing 

short  or  incomplete  sentences,  sentences  less  than  3 words  or  20 characters  and 

greater than 100 words were removed, the latter  because of concerns of required 

memory  for  training.  Tokenization  was  performed  with  a  Portuguese  regular 

expression  tokenizer  which  I  implemented  in  Python.  However,  this  step  was 

probably unnecessary because the CharLM treats the text as a string of tokens. 

3.1.2 Training

Both  forward  and  backward  CharLMs were  trained  for  a  little  over  two  weeks, 

reaching  development  perplexity  of  2.78  and  2.81  respectively.  The  following 

hyperparameters, recommended in Akbik et al. (2018), were used:

Parameter Value

Character window size 
Learning rate before annealing
BiLM layers
BiLSTM state size  
Gradient clipping
Dropout  
Batch size

250
20
1
2048
.25
.5
100

Table 9: Hyperparameters for CharLMs

6.The CommonCrawl data used was deduped.
7. This differs from the specified split of heldout into 50 partitions, taking one for test (2%) of total  
data.
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3.2 Sequence Model

 

Although Flair includes an out-of-the-box sequence tagger implemented in PyTorch8, 

I chose to implement my own in TensorFlow9. This decision was based in part on my 

already  having  implemented  an—albeit  simple—sequence  tagger  in  TensorFlow. 

Furthermore,  I  wanted  to  extend the  features  of  the  Flair  tagger,  a  task which  I 

deemed  would  be  easier  for  me  in  TensorFlow than  in  PyTorch.  The  following 

features either not present or not readily adaptable (character embeddings) in Flair 

were added in my implementation:

(27) Features implemented in addition to those present in Flair

1. Trainable in task word embeddings

2. Trainable in task lemma embeddings

3. Trainable in task PoS embeddings

4. Trainable in task character-level embeddings

5. Several types of dropout applicable in different layers

6. Batch normalization applicable in different layers

7. Verbal Multiword Expression (VMWE) specific evaluation using BIOSE 

tags

 Often it is useful to train word embeddings specific to the task at hand. This is 

particularly useful when the overlap of pretrained vocabulary and in task vocabulary 

is far from perfect. Trainable lemmas and PoS embeddings are useful when one has 

such training data at one’s disposable. Lemmas help to capture semantic meaning 

often lost in highly inflected languages where the total meaning of a word is often 

distributed over  dozens of  related forms. PoS features  encapsulate  morphological 

meaning which  for  some tasks  like  NER or  VMWE identification  are  extremely 

useful. Like any other embedding, all of these in task embeddings are updated during 

training and can be concatenated with other embeddings such as pretrained word and 

CharLM embeddings.  In the next section, the experimental setups are described.

8. https://github.com/zalandoresearch/flair
9. https://github.com/ericlief/sequence-tagger.git
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3.3 Experiments

In order to assess the performance of the variety of embeddings at one’s disposal for 

a particular sequence labeling task, I conducted a series of task-specific experiments. 

It was also my aim to gain a better understanding of the inherent semantics of such 

embeddings. 

3.3.1 Tasks

I evaluated three classic sequence labeling tasks using available Portuguese datasets, 

namely Part of Speech (PoS) tagging using the MacMorpho corpus and CoNLL-2003 

evaluation scripts , Named Entity Recognition (NER) using the HAREM corpus and 

CoNLL-2003  evaluation  scripts,  and  Verbal  Multiword  Expression  (VMWE) 

identification  using  the  Portuguese  PARSEME  data  and  evaluation  scripts.  PoS 

tagging was chosen in  order  to  evaluate  the  effectiveness  of  the  embeddings for 

shallow syntactic tasks, and NER and VMWE in order to assess the embeddings for 

shallow semantic tasks (Akibik et al. 2018). 

3.3.2 Experimental Setup

For baselines, I chose to evaluate setups utilizing only pretrained word embeddings10. 

These are essentially reimplementations of earlier state of the art approaches within a 

BiLSTM-CRF  sequence  labeling  architecture  (Akibik  et  al.  2018).  Experimental 

evaluation of these setups will determine how well the CharLM and other in task 

embeddings perform over earlier approaches. 

The baseline setups are: 

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

10. 300-dim fastText embeddings were used for all experiments  https://s3-us-west-1.amazonaws.com/
fasttext-vectors/word-vectors-v2/cc.pt.300.vec.gz

31



LAMPLE:  A hierarchical  BiLSTM-CRF  setup  with  pretrained  word 
embeddings  and  in  task  character-level  embeddings—a 
reimplementation of Lample et al. (2016)

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model 
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup  with  pretrained character  language 
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and pretrained word embeddings (PWE) and in task 
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF  setup  with  with  pretrained  character 
language model  (CharLM) and both  in  task word  (WE) and in  task 
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup  with  pretrained  character  language 
model  (CharLM)  and  with  pretrained  word  embeddings  (PWE)  and 
both  in  task  word  (WE)  and  in  task  character  character-level 
embeddings (CLE)

There  are  three  additional  experimental  setups  for  the  task  of  Verbal 

Multiword Expression (VMWE) identification:

FLAIR+ALL+LEMMA: A  BiLSTM-CRF  setup  with  pretrained  character 
language  model  (CharLM)  and  with  pretrained  word  embeddings 
(PWE) and in task word (WE),  character  character-level  (CLE),  and 
lemma (LEMMA) embeddings

FLAIR+ALL+TAG: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and with pretrained word embeddings (PWE) and in 
task  word  (WE),  character  character-level  (CLE),  and  tag  (TAG) 
embeddings
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FLAIR+ALL+LEMMA+TAG: A BiLSTM-CRF  setup  with  pretrained  character 
language  model  (CharLM)  and  with  pretrained  word  embeddings 
(PWE)  and  in  task  word  (WE),  character-level  (CLE),  lemma 
(LEMMA), and tag (TAG)  embeddings.

In the next chapter, we explore the task of PoS tagging.
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CHAPTER 4

Part of Speech (PoS) Tagging 

Part  of  Speech  tagging  (PoS)  consists  in  classifying  a  token  with  respect  to  a 

morphosyntactic category such as Noun, Verb, Adposition, etc. (i.e. part of speech). 

Although not so difficult and interesting a task in itself, PoS tagging is an important 

lower-level task necessary for higher-ones such as chunking and parsing. Although 

not required for other tasks such as Named Entity Recognition (NER) and MultiWord 

Expressions (MWEs), as we will see in the next section, training with PoS features 

usually improves performance. Though there are universal grammatical categories 

such as  Noun,  Verb,  or  Adjective,  most  corpora are  annotated with finer-grained 

language-specific grammatical categories. As a consequence, there is quite a degree 

of  divergence  in  both  the  types  of  tags  found  and  the  size  of  the  tagsets.   For 

instance,   the  Prague  Dependency  Treebank  (PDT)  tagset  for  Czech,  a  highly 

inflected East Slavic language, contains 1547 distinct tags, while the Penn Treebank 

English tagset contains only 36. 

Portuguese possesses a rich morphology, but like all Romance languages its 

verbs  inflect  more  than  its  nouns.  The most  popular  tagsets  for  Portuguese only 

identify Verb or Verbal Auxiliary—and the handful of nominal tags, unlike the PDT 

tagset,  do  not  reflect  gender  or  number.  We are  thus  left  with  a  diminished and 

somewhat biased set of tags which seems to be modeled on lesser inflected English.

4.1 Data

For the PoS task, although there are several available corpora annotated with PoS 

tags (e.g. Bosque, see Afonso et  al.  2002), I chose Mac-Morpho (Aluísio 2003)11, 

which is currently the largest one with the most reported task results. Mac-Morpho is 

around one million words and is composed of 109 files from the newspaper Folha de 

São Paulo, divided into 10 sections such as politics, sports, agriculture, etc.  There 

are  two  three  versions  of  Mac-Morpho  and  it  appears  that  most  of  the  recent 

11. http://nilc.icmc.usp.br/macmorpho/
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published results use the first version (e.g. dos Santos et al. 2014). For comparability, 

I chose to use this version. Below are some corpus statistics

SENTENCES TOKENS

TRAIN 42,022 957,439

DEV 2,211 50,232

TEST 9,141 213,794

53,374 1,221,465

Table 10: Mac-Morpho v.1

At somewhat over 1.2 million words, the corpus is one of the largest for PoS 

tagging. Its format is simple, providing only form and tag and no other features such 

as lemma for training. Its tagset contains 41 tags, 22 PoS tags and 19 punctuation 

tags. In later versions of the corpus, all punctuation is subsumed under the PUN tag. 

Below is an sample from the data set.

(28) Mac-Morpho (v. 1) format

"_"  Ao_PREP  lançar_V  as_ART  sementes_N  em_PREP  a_ART  terra_N  

o_ART produtor_N já_ADV deve_VAUX ter_V em_PREP mente_N a_ART  

etapa_N de_PREP a_ART colheita_N ._.

4.2 Evaluation

Following dos Santos et al. (2014), the CONLL-2003 evaluation script was used to 

evaluate the NER task.  Accuracy is  the most used metric for PoS tagging. Since 

every token must receive a tag and all tags are included in the calculation, evaluation 

is thus per token, rather than per entity, as we will see for the tasks of NER and 

MWE identification. Note that true positive (tp) are correctly identified tags, true 

negative (tn) are correctly not identified tags, false positive (fp) are misidentified 

tags, and (fn) tags missed that should have been identified.

35



(29) Evaluation metric

Accuracy is the number of correct tags (tp and tn) divided by the total tagged 

tokens (tp + tn + fp + fn):

 

 

 

4.3 Recent Neural models for Portuguese PoS tagging

In this  section,  we review the model which advanced the state of the art  in  PoS 

tagging  for  Portuguese  (dos  Santos  and  Zadrozny  2014) using  the  Mac-Morpho 

corpus.  

4.3.1 CharWNN, dos Santos and Zadrozny (2014)

The deep neural network of dos Santos and Zadrozny (2014) is based on Collobert et 

al.’s  (2011) Window Approach Network. This neural architecture was one of the first 

of its kind to automate the feature engineering process, instead of relying entirely on 

hand-crafted  features.  In  each  layer  of  the  model,  a  different  set  of  features  is 

extracted12. One of the novelties of this type of network is that it is one of the earlier 

approaches to use the concept of window for sequence labeling. The context of a 

word is represented by concatenating surrounding words to the input. Tag prediction 

thus takes into account not just  the input token, but also the words around it,  its 

context. This is summarized below.

12. Some variants of this network allow the manual introduction of features such as capitalization and 
suffix information.
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As figure 12 illustrates, the network consists of several layers: embedding 

layer  (lookup  table),  classification  layer  (two  linear  layers  with  a  HardTanh 

sandwiched in between, and a decoding layer (viterbi).  A lookup table is used to 

embed the words in the sentence, with the central word in the window being the one 

we wish to classify (the word of interest). These words are concatenated into one 

long vector, which is then passed to the remaining layers for classification.

Dos  Santos  et  al.  (2014)  modifies  this  architecture  slightly,  adding  a 

character-level  representation.  Character-level  embeddings  are  obtained  with  a 

convolutional  neural  network  (CNN).  CNNs (LeCun 1998)  are  a  special  type  of 

network for processing data with a grid-like topology such as images, time-series 
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data,  etc.  (Goodfellow  et  al.  2016).  Like  RNNs,  CNNs  are  especially  good  at 

contextualizing data, as convolution is a linear operation like matrix multiplication 

that maps surrounding input features to an output or feature map. Usually, in another 

layer, a pooling function replaces output at one location with a summary statistic of 

nearby output. Max pooling and average pooling are the most frequent functions. 

In  NLP,  since  sequences  are  normally  1-D,  or  2-D  when  dealing  with 

embeddings, 1-D convolution is applied over each input. We can visualize this below 

in Figure 13 with the sentence I like this movie very much! The convolution will be 

applied over the 2-D sentence matrix using 3 filter (or kernel) sizes, 2 x 2, 2 x 3, and 

2 x 4, with 2 of each filter, yielding 2 feature maps for each size. The way this works  

is that the filter slides over the sentence from start to finish, and an element-wise 

matrix multiplication (convolution) is applied in each region, across all channels or 

dimensions, yielding a scalar output or map. Next, for each map size, max pooling 

takes the maximum value, thus normalizing the dimensionality of outputs (here size 

two or the number of filters per size). Finally, the outputs are concatenated and this 

vector is passed to the next layer, here a softmax layer with which the sentence is 

classified, for instance as being of positive or negative sentiment (polarity).
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CNNs  are  quite  effective  for  forming  context-sensitive  character-level 

embeddings,  in  an  analogous fashion as  that  depicted above,  but  over  characters 

rather than words.  After getting a representation for all  unique words in a mini-

batch, these features can be used as a lookup table that can be indexed by the ids of 

words in the batch sentences, yielding character embeddings. 

For the task of PoS tagging, dos Santos et  al. (2014) uses the Mac-Morpho 

corpus (v. 1). Below are the hyperparameters of the network. 
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Parameter Value

Word embedding dimension
Character embedding dimension
Word and character content window size 
CNN filters 
Hidden units  
Learning rate

100
10
5
50
300
.0075

Table 11: CharWNN sequence tagging model, dos Santos et al. (2014) 

Dos Santos et al. (2014) achieved state of the art results for Portuguese, slightly more 

than earlier results which did not utilize neural networks and which relied on feature 

engineering.  Below  are  the  results  of  CharWNN  and  some  of  the  different 

architectures also experimented with which utilize only word embeddings (WNN) in 

combination with manually added features such as capitalization and suffixes.

ARCHITECTURE FEATURES ACCURACY

CHARWNN – 97.47

WNN – 96.19

WNN CAPS+SUF3 97.42

WNN CAPS 97.27

WNN SUF3 86.35

Table 12: Results (dos Santos et al. 2014)

The addition of character embeddings improves performance. Dos Santos et 

al. (2014) reports an error reduction of 58% in out of vocabulary (OOV) words. This 

is because character-level representations can be constructed for words not seen in 

the training data. The addition of capitalization and suffix features, however, shows 

mixed results13. 

We  have  seen  how  successful  deep  neural  models  perform  in  sequence 

tagging tasks such as PoS tagging. Incorporating word embeddings in combination 

with character-level word embeddings such as dos Santos et al. (2014) leads to state 

of the art results. This suggests that character features reduce the OOV error rate are 

better  at  representing  morphological  or  subword  features  than  word  embeddings 

13. It is not clear to me why the addition of suffix features by themselves worsens performance, while 

the combination of both features slightly improves accuracy. 
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alone are. In the next section, we will see how the use of a character LM (CharLM) 

leads to state-of-the-art results for PoS tagging.

 

4.4 Model

The  sequence  labeling  model  introduced  in  §3.2,  leveraging  character  language 

models  (CharLMs),  was  utilized  for  the  PoS  tagging  task.  Below I  describe  the 

tuning  of  the  hyperparameters  and  several  distinct  combinations  of  input 

representations (features) that were evaluated.

4.4.1 Setups

The  baseline  and  experimental  setups  described  in  §3.3.2  (presented  below  for 

convenience) were applied to the PoS tagging task.

The baseline setups are: 

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

LAMPLE:  A hierarchical  BiLSTM-CRF  setup  with  pretrained  word 
embeddings  and  in  task  character-level  embeddings—a 
reimplementation of Lample et al. (2016)

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model 
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup  with  pretrained character  language 
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task character-level embeddings (CLE)
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FLAIR+WE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and pretrained word embeddings (PWE) and in task 
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF  setup  with  with  pretrained  character 
language model  (CharLM) and both  in  task word  (WE) and in  task 
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup  with  pretrained  character  language 
model  (CharLM)  and  with  pretrained  word  embeddings  (PWE)  and 
both  in  task  word  (WE)  and  in  task  character  character-level 
embeddings (CLE)

The two baseline setups  HUANG and  LAMPLE are essentially reimplementations of 

Huang and Yu (2015) and Lample et al. (2016) respectively.    These two setups do 

not utilize a language model and serve to establish the usefulness of adding character 

LM embeddings. The remaining setups are all combinations of different embeddings 

with  the basic FLAIR model and in a similar fashion will give us insight into the gain 

associated with adding each of these features to the basic configuration.

 

4.4.2 Hyperparameters

I  experimented with character  embeddings extracted from an RNN (BiLSTM) as 

well  as from a CNN, like that  utilized by dos Santos et  al.  (2014).  A variety of 

different setups with varying number of filters and kernel sizes were experimented 

with. As it turns out, the CNN performs on a par with the RNN for character-level 

embeddings.  Furthermore,  batch  normalization  versus  dropout  was  tested  with 

several different configurations for the CNN:
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(30) CNN block configurations
1. Conv [no activation] – Norm – Pooling
2. Conv [+ ReLU] – Pooling – Norm 
3. Conv  – Norm –  ReLU – Pooling

Configuration (1) consistently outperformed the others and was thus selected as the

default for the the setups involving character embeddings for the tasks carried out for 

this thesis. Table 13 below show the results for these parameters with the  FLAIR+ALL 

setup, vis-à-vis the same model with RNN character embeddings, with hidden state 

size  of  256.  Note  that  the  notation  used  is  #filters-max_kernel_size, e.g.  300-3 

denotes 300 filters, with kernels of size 2 and 3. All of the results are quite similar 

and it appears that minimally 200 filters with kernel sizes 2, 3, and possibly 4 are 

adequate to extract features at the character level for words.

MODEL ACCURACY

200-3 97.46

200-4 97.49

300-3 97.49

300-4 97.48

400-3 97.46

400-4 97.49

500-3 97.46

500-4 97.44

 RNN char. emb. 97.49  

Table 13: CNN versus RNN for Character Embeddings (PoS Tagging)

Given  the  equal  performance,  I  selected  the  RNN  (BiLSTM)  character 

embeddings  for  this  task.  256  hidden  units  were  found  to  be  optimal  for  the 

embeddings.  A  number  of  experiments  were  next  run  with  differing  batch 

normalization and dropout schemes, and the best results  were obtained with only 
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dropout before the character-level LSTM and dropout using a different mask (non-

variational) at each time step of the sentence-level LSTM14. Dropping out at other 

layers (input, output) yielded worse results. Batch normalization was also found to be 

most beneficial when applied before the sentence-level LSTM. The reason dropout 

was advantageous for  the  in  task  character  embeddings  was  most  likely  because 

character embeddings in combination with the CharLM were somewhat redundant 

and applying dropout hindered overfitting and allowed the model to generalize more 

within the input representation. Varying RNN sizes were tested, and 512 hidden units 

was found to be optimal. These hyperparameters are summarized in Table 14 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word embedding dimension
Character BiLSTM state size
BiLSTM state size
Optimizer
Gradient clipping
Dropout before character BiLSTM
Locked dropout BiLSTMs
batch normalization before sentence-level BiLSTM
Initial learning rate 
Annealing rate
Patience
Batch size
Epochs

300
512
256
512
SGD
.25
.5
.5
True
.1
.5
5
32
50

  Table 14:  Hyperparameters of PoS sequence tagger 

4.5 Results

The results for the baselines, setups, and best published result for the PoS task are 

summarized below in Table 14. 

14.  In  TensorFlow  DropoutWrapper  was  used,  with  variational  set  to  false.  Using  the  recurrent  
variational options consistently degraded performance.
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MODEL ACCURACY

baselines 

HUANG 85.88

LAMPLE 89.15

FLAIR 97.20

FLAIR+PWE 97.24

FLAIR+CLE 97.32

FLAIR+WE 97.44

FLAIR+PWE+CLE 97.08

FLAIR+PWE+WE 97.30

FLAIR+WE+CLE 97.10

FLAIR+ALL 97.49  

best published      

dos Santos et al. (2014) 97.47

Table 15: Model Results (PoS Tagging)

The best model is FLAIR+ALL, which surpasses dos Santos et al. (2014) by .02 

pp. (.8% error reduction). It is not clear to the author why higher gains were not 

observed here. As mentioned above, numerous hyperparameters were tested and all 

led  to  results  capped  at  97.49.  In  addition  to  CNN  in  task  character-level 

embeddings, the window-based model of dos Santos et al. (2014) utilized pretrained 

embeddings  and  in  task  word  and  character  windows,  perhaps  approximating  a 

context-sensitive CharLM with added in task character embeddings, i.e. FLAIR+PWE+CLE. 

In  terms  of  the  other  setups,  it  is  interesting  that  adding  in  task  word 

embeddings (FLAIR+WE) shows performance almost as good as the best full ensemble. 

When either pretrained word or in task character embeddings are added to the base 

setup (FLAIR+PWE,  FLAIR+CLE), slight gains are observed. Of all embeddings, the in task 

word embeddings fair the best. This is because we have plenty of training data and 

learning task-specific semantic features is not an issue. For the opposite trend, see the 

NER results (§5.6.3)  However, performance is worse than FLAIR+WE when either one 

is added in combination with in task word embeddings  (FLAIR+PWE+WE, FLAIR+WE+CLE). 

45



There may be some degree of redundancy here, as the pretrained CharLM and in task 

word embeddings may effectively represent  the word and character-level  features 

necessary  for  this  task.  In  other  words,  when  more  information  is  added,  these 

extraneous features confound learning and lead to slight overfitting.  To remedy this 

dropout was applied before the character BiLSTM.

The performance of the baseline setups underscores the gains achieved by 

adding CharLM embeddings. This is most likely due to the shallow morphosyntactic 

features  (i.e.  suffixes),  as  well  as  orthographic  features  such  as  capitalization, 

important for PoS tagging, which are encoded in the character-based LM. The high 

margin in the performance of  FLAIR,  with context-sensitive embeddings versus the 

LAMPLE reimplementation,  with  context-insensitive  in  task  character-level 

embeddings (74% error reduction), also demonstrates the importance of context in 

this task, i.e. the same word form may have differing PoS tags in different contexts,  

cf. English miss (Noun) vs. vs. miss (Verb).  

4.6 Conclusions

In this chapter, we have explored the task of PoS tagging and seen how the use of a  

character language model (CharLM) greatly improves the results for this task. When 

a pretrained CharLM is used in conjunction with in  task word embeddings more 

gains are observed. It is believed that this is because the size of the data is sufficient 

for training these task-specific semantic representations. When all of the embeddings 

are combined in the full setup, even greater gains are achieved (F-score of 97.49), 

surpassing the published state of the art. This underscores the importance of utilizing 

both precomputed contextualized and non-contextualized word representations in an 

ensemble with task-specific word features. 
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CHAPTER 5

Named Entity Recognition (NER)
   

  

The task of named entity recognition (NER) is concerned with finding named entity 

mentions in unstructured text and classifying them into predefined categories such as 

person, location, or organization. NER has many applications in machine translation, 

information retrieval, question answering,  etc. Traditionally rule-based approaches 

were  quite  popular.  Like  most  rule-based  approaches  the  process  was  time 

consuming. In the last ten to fifteen years, machine learning approaches have been 

quite successful and for the most part supplanted rule-based approaches. Early ML 

NER models included Hidden Markov Models (Zhao 2004; Todorovic et al 2008). In 

the last few years deep learning models have been extremely successful (Akbik et al. 

2018, Peters et al. 2018). 

Since the MUC-7 (Chinchor 1998) and CoNLL-2002 (Sang & De Meulder, 

2003) shared tasks and the 2004 HAREM contest for Portuguese (dos Santos et al. 

2006), NER has received much attention. In this chapter, we will first examine the 

Portuguese HAREM data set. Next, the most prominent neural approach to this task 

(dos  Santos  and  Guimarães  2015). Finally,  I  present  experimental  setups  and 

hyperparameters used for this task.
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5.1 Toward a Definition of Named Entity

  

The term named entity was first introduced in the MUC-6 conference, whose 

goal it was to define PERSON, ORGANIZATION and LOCATION textual mentions 

(Grishman  et  al.  1996).  In  addition  to  these  three  classes  for  named  entity 

expressions (ENAMEX), there were also numerical expressions, e.g time, money and 

dates (NUMEX). The CoNLL-2003 and CoNLL-2003 shared tasks brought further 

recognition to NER. These tasks identify four classes: PERSON, ORGANIZATION, 

LOCATION, MISCELLANEOUS.  

Named entities are sometimes loosely referred to as proper nouns, which in 

philosophical  circles  are  often  defined  as  rigid  designators  (Kripke  1971).  In 

Kripke’s theory, a proper noun refers to the same referent in every possible world, 

whereas a description in another world or reality could potentially refer to some other 

object. For instance, the description the oil company founded by John D. Rockefeller  

in 1870 originally referred to Standard Oil.  Whereas the description could plausibly 

refer to another object in another world—and even in this world to any one of the 34 

entities  that  the  company  was  broken  up  into  by  the  U.S.  Supreme  Court 

(ExxonMobil, Chevron, etc.) —the proper noun Standard Oil can refer only to the 

original organization and is thereby rigid.  In some cases, however, some entities are 

not strictly rigid. For instance, the President of the United States could refer to more 

than one entity (Domingues-Fernandes 2018).

The task of NER is sometimes not  as  easy as  it  may seem. Consider  the 

following example.

(31) [Paris Hilton]PERS  flew to [Paris]LOC  on the [25th of August]DATE .

The noun Paris can refer to an individual or a place. If we wish to automate this task, 

it is clear that the whole context as well as perhaps other features such as PoS may be 

necessary to disambiguate these named entities.  However, just as we saw with PoS 

tagging,  the  tagsets  for  NER are  also  often  task or  language-specific.  Dates  and 

numbers, which are not usually considered proper nouns, are sometimes considered 
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entities because they may in fact be rigid, e.g. the 25th of August of a given year. 

However, the year is above implied. 

Although  there  is  much  task-specific  variation  as  regards  tagsets,  the 

annotation scheme used to identify the start and end of a named entity sequence is 

usually  BIO (Beginning, Inside,  Outside)  and less commonly BIOSE (Beginning, 

Inside,  Outside,  Single,  Ending).  Using  the  BIO scheme,  again  for  the  previous 

sentence, we have:

(32) Paris       Hilton    flew   to Paris  on  the 

B-PERS  I-PERS   O O  B-LOC O   O  

25th          of August .    

B-DATE   I-DATE I-DATE  O

The outside (O) tag guarantees that all input words have a label, allowing the entire 

sentence to be processed by a neural network. The classification task in an abstract 

sense here is thus one of first identifying entity ~ non-entity (O) and then classifying 

the entity.

5.2 Data

There are few Portuguese NER datasets. The largest corpus, produced originally for 

the HAREM contest (dos Santos et al. 2006), is quite small, containing a little more 

than  150K  words,  nearly  13%  of  the  Mac-Morpho15.   Below  are  some  corpus 

statistics.

15. There are two versions. The first HAREM was used: https://www.linguateca.pt/HAREM

49



SENTENCES TOKENS

TRAIN 3,480 87,643

DEV 202 4,589

TEST 2,590 62,440

6,272 154,672

Table 16: HAREM V. 1 Corpus Statistics

The  HAREM  corpus  is  actually  comprised  of  two  datasets,  HAREM  and 

miniHAREM,  containing  10  named  entity  categories:  Person  (PESSOA), 

organization  (ORGANIZACAO),  Location  (LOCAL),  Value  (VALOR),  Time 

(TEMPO),  Abstraction  (ABSTRACCAO),  Title/Work  (OBRA),  Event 

(ACONTECIMENTO), Thing (COISA), and Other (OUTRO). 

For the data used in my experiments, I followed the standard used by  (dos 

Santos  and  Guimarães  2015),  which  splits  HAREM-I  into  training  (95%)  and 

development (5%) sets, and uses miniHAREM for the test set. Because splitting was 

done randomly, however, tag distribution of my data is somewhat different from this 

author’s. Below in Table 17 is the breakdown for tags. Note that there are 8594 total 

entities and that Location followed by Person are the most  frequent tags.

TRAIN DEV TEST

PESSOA 918 (.20) 115 (.28) 830 (.23) 1863

ORGANIZACAO 858 (.19) 65 (.16) 599 (.17) 1522

LOCAL 1151 (.25) 71 (.17) 875 (.24) 2097

VALOR 404 (.09) 59 (.14) 325 (.09) 788

TEMPO 401 (.09) 34 (.08) 360 (.10) 795

ABSTRACCAO 375 (.08) 25 (.06) 203 (.06) 603

OBRA 189 (.04) 7 (.02) 191 (.05) 387

ACONTECIMENTO 94 (.02) 34 (.08) 57 (.02) 185

COISA 130 (.03) 1 (0) 170 (.05) 301

OUTRO 36 (0) 3 (.01) 14 (0) 53

4556 414 3624 8594

Table 17: HAREM Tag Distribution 
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The HAREM data are in XML format. I used scripts prepared by Domingues-

Fernandes (2018) to convert this format into CoNLL column format16.  Unlike the 

CoNLL datasets with available PoS tags,  HAREM only contains word form and 

NER tag column features. For instance, for the sentence Benvindos à página Web do  

Aeroclube  de  Torres  Vedras  ‘Welcome  to  the  webpage  of  the  flight  club  Torres 

Vedras’ we have:

(33) Benvindos O

à O
página O
Web B-LOCAL
do O
Aeroclube B-ORGANIZACAO
de I-ORGANIZACAO
Torres I-ORGANIZACAO
Vedras I-ORGANIZACAO
. O

In  addition,  to  the  standard  HAREM  with  ten  classes,  there  is  another 

available transformed dataset (selective HAREM) with only four categories similar 

to  the  CoNLL  standard,  with  Person  (PER),  Organization  (ORG),  Abstraction 

(MISC), Location (LOC) tags17. The tag distribution is given below.

TRAIN DEV TEST

PERSON 1024 (.30)  9 (.08 )  830 (.33) 1863

ORG 896 (.26)  27 (.23) 599 (.24) 1522

LOC 1165 (.34) 57 (.48) 875 (.35) 2097

MISC 373 (.10) 27 (.23) 203 (.08) 603

3458 120 2507 6085

Table 18: Selective HAREM Tag Distribution 

16. https://github.com/ivoadf/PT_NER_DL

17. https://www.linguateca.pt/aval_conjunta/HAREM/CDSegundoHAREM.xml
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Although the HAREM dataset is small in size, it is nevertheless important, since it is 

one of the few available for NER in Portuguese. In the next section, CRFs are briefly 

discussed.

5.3 CRFs for NER

Unlike for PoS tagging, where often the neural model perform fairly well merely 

using  hidden  states  as  features  to  make  tagging  decisions  independently  of 

surrounding context, NER is a task where even stronger dependencies between tags 

hold, leading to quite poor performance when using softmax decoding (Lample et al. 

2016). CRF’s have proven quite useful for this task.  The nature of the BIO or BIOSE 

annotation commonly used leads to constraints against I-Y following B-X, which are 

quite general, a generalization missed in the absence of a CRF.

5.4 Evaluation

Following dos Santos et al. (2015), the CONLL-2003 evaluation script was used to 

evaluate the NER task. Although this same script script was used to evaluate the PoS 

task, the computation used is different. For the PoS task, a raw score can be used, 

since there are no outside (O) tags. In the case of NER, however, not every token is 

inside the span. In other words, only named entity spans (in the predicted and gold 

tags) are part of the computation, everything else is outside. Furthermore, in addition 

to  accuracy,  precision,  recall  and  F1  metrics  are  also  reported  here.  Note  that 

accuracy is not reported since it included non-entities in its calculation and therefore 

is not a reliable indicator of performance.

(34) Evaluation metrics

Precision is the number of correctly identified named entities (tp) divided by 

the total retrieved entities (tp + fp):
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Recall is the number of correctly identified named entities (tp) divided by the 

total true entities (tp + fn):

 
F1 is the harmonic mean precision and recall:

Only complete matches are included in the count and not partial matches. Thus if the 

system misses one or more items in the entity span, this does not constitute correct 

identification.

5.5 State of the Art for NER in Portuguese

In this  section,  we discuss two neural  models  (Dos Santos and Guimarães 2015; 

Domingues-Fernandes 2018) with state-of-the-art results for NER using the HAREM 

corpus.

5.5.1 CharWNN, dos Santos and Guimarães (2015)

Dos Santos and Guimarães (2015) uses the same architecture as that of dos 

Santos and Zadrozny (2014), referred to as the CharWNN model. CharWNN is a 

feedforward  model  which  includes  pretrained  word  and  in  task  character 

embeddings. For more details refer to section §4.21. Dos Santos et al. (2015) in this 

article focuses on the NER task, using the CoNLL-2002 corpus for Spanish and the 

HAREM-I  corpus  for  Portuguese.  The  same  hyperparameters  are  used  for  both 

datasets  and are  almost  identical  to  those  of   dos  Santos  et  al.  (2014),  with  the 

exception of more convolutional units.
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Parameter Value

Word embedding dimension
Character embedding dimension
Word and character content window size 
CNN filters 
Hidden units  
Learning rate

100
10
5
200
300
.0075

Table 19: CharWNN NER tagging model, dos Santos et al. (2014) 

In the same vein of Santos et al. (2014), dos Santos et al. (2015) also compare 

the  effect  of  using  different  embedding  setups,  all  combinations  of  word  and 

character, plus the use of the handcrafted features of capitalization and suffixation 

with the word embeddings.  The results in Table 20 below were obtained using the 

CoNLL 2003 evaluation script18. 

 

MODEL FEATURES TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

CHARWNN word, char 67.16 63.74 65.41 73.93 68.68 71.23

WNN word,  cap, 
suffix

68.52 63.16 65.73 75.05 68.35 71.54

WNN word,  cap, 
suffix

63.32 52.23 57.84 68.91 58.77 63.44

WNN word,  cap, 
suffix

57.10 50.65 53.68 66.30 54.54 59.85

Table 20: Results (dos Santos et al. 2015)19  

Except for recall,  the CharWNN setup does not completely outperform the WNN 

system  which  lacks  character  embeddings  and  utilizes  suffix  and  capitalization 

features. Dos Santos et al. (2015) hypothesizes that this may be due to the small size 

of the dataset20. See §5.4 below for more regarding this. Dos Santos et al. (2015) also 

used a different selective dataset than that described above containing five rather than 

ten categories: Person, Organization, Location,  Date, Value. This selective scenario 

18. These results were evaluated using the CoNLL-2002 evaluation script 
https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt
19. Selective Scenario refers to the HAREM selective dataset.
20. The evaluation script from HAREM-I yielded higher scores for dos Santos (2015) et. al.’s model, 
but this evaluation was based on criteria other than purely complete span matches
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yielded more favorable results due to the collapsing of  problematic categories into 

O. We will discuss this more in §5.6 below. 

5.5.2 Domingues-Fernandes (2018)

Domingues-Fernandes’ (2018)  master’s  thesis  deals  with  NER in Portuguese.  He 

implements  several  architectures for the task:  the window-based approach of  dos 

Santos et al.  (2015), including extra feature engineering, and several bidirectional 

RNN models (BiLSTM with and without in-task character embeddings.  
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As we have seen in our discussion of PoS tagging in the previous chapter, 

RNNs are especially adept for sequence labeling. As a consequence, both PoS and 

NER tasks can share the same architecture. Domingues-Fernandes (2018) achieves 

his best results for the HAREM total dataset using a BiLSTM with character CNN 

embeddings  (BiLSTM_CNN),  based  on  (Ma  &  Hovy,  2016).  Figure  14  above 

illustrates NER with a  BiLSTM with character  CNN embeddings.   Once a  word 

representation is  obtained with the character  level  embeddings,  these features are 

concatenated with pretrained word embeddings such as  word2vec and fed  to  the 

BiLSTM, which at each timestep outputs a hidden state ht representing the best tag 

class  given  the  history.  These  outputs  are  then  fed  to  a  CRF  which  outputs  a 

probability distribution for all output classes for the input sentence.

For  the selective scenario,  Domingues-Fernandes  (2018) achieves  his  best 

results using Lample et al. (2016)’s Theano implementation of a BiLSTM21, referred 

to as BiLSTMChar. This model is similar to that of Ma et al. (2016), but uses in-task 

character embeddings from a BiLSTM rather than a CNN. Dropout is applied to 

concatenated word and character-level representations before the BiLSTM layer. The 

forward and backward outputs are concatenated and fed to another tanh dense layer 

the same size of the original dimension, thus downsizing the concatenated outputs of 

the BiLSTM. The final later is decoded with a CRF. The hyperparameters as well as 

results of the model are given below in Tables 21-22.

21.  https://github.com/glample/tagger
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Parameter Value

Character CNN kernel size
Number of CNN filters
Word embedding dimension
Character embedding dimension
BiLSTM state size  
Learning rate
Decay rate 
Dropout
Batch size

3
30
64
25
256
.1
.05
.5
16

Table  21:  Hyperparameters  of  BiLSTM  with  Character  CNN  [BiLSTM_CNN] 
(Domingues-Fernandes 2018)

Parameter Value

Word embedding dimension
Character embedding dimension
Character BiLSTM state size  
BiLSTM state size
Learning rate
Dropout
Batch size

100
25
25
100
25
.5

Table  22:  Hyperparameters  of  BiLSTM  with  BiRNN  Character  Embeddings 
[BiLSTMChar] (Domingues-Fernandes 2018)

The results for both of these models obtained using the CoNLL-2003 script are given 

below:

MODEL TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

WNN (dos Santos et al 2015) 68.52 63.16 65.73 75.05 68.35 71.54

BILSTMCHAR 68.94 65.84 67.35 71.90 68.49 70.15

BILSTMCNN 72.64 67.50 69.97 70.67 66.35 68.44

Table 23: Best Results for Domingues-Fernandes (2018)

For  the  total  scenario   (10  tags)  the  BiLSTM with  CNN-based  character 

embeddings outperforms the window-based network with capitalization and suffix 
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features. For the sake of comparison, dos Santos et al (2015)’s selective results are 

given here as well, but it should be noted that the datasets used differ in the tagsets 

used. In any case, the windows-based approach performs better in this task for the 

selective dataset, perhaps suggesting that the usefulness of character-level features 

are not as important for NER in the selective scenario. However, the results in §5.5.2 

speak in favor of character-level features here, and it seems more likely that what we 

are  observing  here  is  the  impact  of  the  window-based  model  with  its  feature 

engineering. There, however, is a clear performance gain for the model leveraging 

CNN character embeddings in the total scenario. Why the CNN performs better than 

the BilSTM for extracting character features is not clear. In the next section, I present 

the model and results for the setups I experimented with for this task.

5.6 Model

The  sequence  labeling  model  introduced  in  §3.2,  leveraging  character  language 

model (CharLMs) embeddings, which was used in the PoS task (§4.3), was utilized 

for the NER tagging task with only fine tuning of the hyperparameters.  Below I 

describe the hyperparameters found to be optimal and several distinct combinations 

of input representations (features) that were evaluated.

5.6.1 Setups

The  baseline  and  experimental  setups  described  in  §3.3.2  (presented  below  for 

convenience) were applied to the NER tagging task.

The baseline setups are: 

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

LAMPLE:  A hierarchical  BiLSTM-CRF  setup  with  pretrained  word 
embeddings  and  in  task  character-level  embeddings—a 
reimplementation of Lample et al. (2016)
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The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model 
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup  with  pretrained character  language 
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and pretrained word embeddings (PWE) and in task 
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF  setup  with  with  pretrained  character 
language model  (CharLM) and both  in  task word  (WE) and in  task 
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup  with  pretrained  character  language 
model  (CharLM)  and  with  pretrained  word  embeddings  (PWE)  and 
both  in  task  word  (WE)  and  in  task  character  character-level 
embeddings (CLE)

5.6.2 Hyperparameters

A handful of experiments were carried out with differing batch normalization and 

dropout schemes, and it was found that neither normal nor locked dropout before 

either the character-level or sentence-level BiLSTM was favored. Dropping out at 

consistently yielded worse results. This contrasts with the PoS tagging task, in which 

dropout before LSTMs improved performance. As with PoS tagging, however, batch 

normalization before the sentence-level LSTMs helped with overfitting. The reason 

dropout did not help with overfitting is not clear. 
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As mentioned, the HAREM dataset was small, and there was a huge margin 

in the performance of training and development sets indicative of overfitting. The 

dimensionality of the CharLM embeddings alone were 4096, and in each BiLSTM 

there are 8 weight matrices, leading to a huge amount of parameters in the setup. 

During  experimentation  a  linear  layer  was added,  projecting  this  high  dimension 

space to a lower dimension space in the range of 96 to 2048. It turned out that this 

worsened  performance.  Another  hyperbolic  tangent  (tanh)  layer  was  also  added 

between  the  BiLSTM  and  output  layer  similar  to  Lample  et  al.  (2016)’s 

implementation,  but  this  was  also  not  favorable.   The  optimal  state  size  for  the 

BiLSTM tagger was found to be 256, half the size of that of the PoS tagger. This was 

most likely due to the small size of the HAREM dataset. 

I  carried  out  another  experiment  with  character  embeddings  from a  CNN 

rather than an RNN (BiLSTM), similarly to was done for PoS tagging, using the 

basic  FLAIR setup.  The motivation for this  was that  Domingues-Fernandes (2018) 

achieved  his  best  results  for  the  HAREM  total  dataset  using  a  BiLSTM  with 

character CNN embeddings (BiLSTM_CNN). The results of this setup based on Ma 

and Hovy (2016) are given in Table 24, along with RNN character-level embeddings 

(CLE). The notation is #filters-max_kernel_size, e.g. 300-3 denotes 300 filters, with 

kernels of size 2 and 3. Despite the number of filters and kernel sizes experimented 

with, however, RNN CLE consistently outperformed CNN CLE for both the total 

and selective data sets. 
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MODEL- TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

200-3 65.63 62.39 63.97 69.32 64.34 66.74

200-4 65.41 61.89 63.60 67.96 64.74 66.31

300-3 65.17 61.59 63.33 69.12 64.18 66.56

300-4 64.00 62.00 62.99 67.97 65.10 66.50

400-3 65.93 62.75 64.30 68.23 65.78 66.98

400-4 65.04 61.81 63.38 66.01 63.90 64.94

500-3 65.45 63.08 64.24 67.85 65.34 66.57

500-4 64.79 61.48 63.09 68.16 66.02 67.07

RNN CLE 67.13 63.16 65.08 69.75 65.86 67.75

Table 24: Results NER task comparing RNN versus CNN character embeddings

These hyperparameters are summarized in Table 25 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word embedding dimension
Character BiLSTM state size
BiLSTM state size
Optimizer
Gradient clipping
Batch normalization before sentence-level BiLSTM
Initial learning rate 
Annealing rate
Patience
Batch size
Epochs

300
256
256
256
SGD
.25
True
.1
.5
5
32
35

Table 25:  Hyperparameters for sequence tagger (NER)
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5.7 Results

In this section I present the models used in experiments with the HAREM dataset. 

For the sake of comparability, I used similar datasets as those of dos Santos et al.  

(2015) and Domingues-Fernandes (2018), with the only difference being that I used 

my own split of training and development sets, following dos Santos et al (2015) and 

like both of these authors took the test data from the miniHAREM. For the selective 

scenario, I used the same data as Domingues-Fernandes (2018).

 In Table 26 below, the results of these baselines and  setups are presented, 

vis-à-vis  the best published results to my knowledge, dos  Santos et al. (2015) and 

DOMINGUES-FERNANDES (2018).

MODEL TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

baselines

HUANG 63.11 55.24 58.92 68.20 58.68 63.08

LAMPLE 58.51 55.77 57.11 66.94 60.83 63.74

models

FLAIR 60.41 56.93 58.62 70.05 65.86 67.89

FLAIR+PWE 67.17 62.83 64.93 70.52 65.38 67.85

FLAIR+CLE 65.62 61.84 63.67 71.15 65.19 68.42

FLAIR+WE 65.45 60.95 63.12 69.66 65.94 67.75

FLAIR+PWE+CLE 66.43 62.75 64.54 70.16 65.18 67.58

FLAIR+PWE+WE 65.21 61.09 63.09 70.05 66.53 68.25

FLAIR+WE+CLE 65.42 62.53 63.94 68.53 64.62 66.52

FLAIR+ALL 67.13 63.16 65.08 69.75 65.86 67.75

best published

dos Santos et al. (2015) 68.52 63.16 65.73 75.05 68.35 71.54

Domingues-Fernandes (2018) 72.64 67.50 69.97 71.90 68.49 70.15

Table 26: Results NER task
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 In  the  total  scenario,  it  is  surprising  that  the  basic  FLAIR configuration 

performs slightly worse than the one of the baselines,  HUANG, with only pretrained 

embeddings,  and  only  somewhat  better  than  LAMPLE,  with  added  character 

embeddings.  Recall that for PoS tagging, the addition of the CharLM to the setup led 

to  significant  error  reduction.  Addition  of  pretrained  word  embeddings  to  this 

configuration leads to a sharp rise in performance, slightly more than that of in task 

character or word embeddings. This is the case because of the paucity of training 

data. Pretrained word embeddings outperform in task ones when there is not enough 

training  data  for  task-specific  semantic  features  to  be learned.  We have seen the 

opposite trend with PoS tagging (§4.4.3), where data was sufficient to learn task-

specific word representations.

When two embeddings of any type are combined, we observe a surprising 

drop in performance. This was the case for PoS tagging, such that the performance of 

FLAIR+PWE is better. This suggests that this may be overkill for such datasets of small to 

medium sizes. However, if this is the case, it is then quite surprising that for the total 

scenario combination of all  of the embeddings (FLAIR+ALL) leads to the best result 

among the setups. More expected would be preference for a simpler model. In light 

of the decent performance of baseline  HUANG,  I  hypothesize that although decent 

performance is possible with just pretrained word embeddings, the addition of the 

LM allows the model to learn shallow semantic structure more than just the word 

embeddings by themselves. Similarly, adding character embeddings to this mix, leads 

to  more  favorable  results  because  these  in  task  context-insensitive  character 

embeddings combined with both pretrained and in task word embeddings lead to 

better word semantics than either the context-sensitive LM or  context-insensitive 

character embeddings in isolation. 

In the selective scenario, we observe somewhat different results. Among the 

baselines, character-enhanced  LAMPLE performs that best, and similarly among the 

experimental setups,  FLAIR+CLE is the winner. As mentioned in 5.4, the capitalization 

and suffix features of dos Santos et al. (2015) seem to be favored here. It is not clear 

to me why the CNN-based character embeddings of Domingues-Fernandes (2018) 
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outperforms the LM setups. Perhaps the smaller number of parameters of this simpler 

model avoided the mentioned overfitting problem encountered by these experimental 

setups.

5.7.1 Errors

In both the total and  selective dataset system results, there were some confusions of 

Person  and  Organization,  e.g.  alunos  do  1o Ciclo  do  Ensino  Básico  da  Escola  

Codeçoso  (Person) ‘students  from  the  first  Cycle  of  the  Elementary  School 

Codeçoso’.  In  the  total  dataset  there  is  a  combination  of  Value,  Event,  and 

Abstraction tags for this entity, which should be all Person.  For the selective dataset, 

the system labeled the first part of the entity as O (rather than wrong entity classes) 

and the last  part  (Escola Codeçoso)  as an Organization,  the same as  in  the total 

dataset. Thus it appears that having less tags may have led to less confusion but still  

resulted in a missed correct entity.  Similarly, feira do Soajo is correctly a Location in 

the total dataset, yet labeled as a Person in the selective dataset. 

There are some apparent inconsistencies in the annotation that led to very 

frequent  errors.  Titles  such  as  senhor ‘Mr.’ and  professor ‘Professor’,  which  in 

Portuguese are not capitalized, are not part of the entity, yet grandmother (avó) and 

grandfather (avô) before a noun is included as the entity. In both datasets, often the 

title  was  labeled  as  Person,  and  less  frequently  it  was  correctly  marked  as  O. 

‘Grandmother/grandfather’ was always O. Titles (Obra) were problematic in the total 

dataset,  and  their  elimination  in  the  selective  dataset  seems  to  have  helped. 

Abstraction  (Misc  in  the  selective  dataset)  was  often  missed,  e.g.  HISTÓRIA 

‘history’ or labeled as Organization, e.g.  (ministro da) Agricultura (both datasets). 

Numerals are often confused, particularly when they are ordinals (i.e. number + o ) in 

an  entity.  However,  the  selective  dataset  has  changed  this  notation,  somewhat 

inconsistently,  to  the  fully  spelled  (non-numeric)  ordinal,  cf.  1o Ciclo  (selective 

Primeiro Ciclo) for the above entity, and 1o Cabo ‘first head’ (Person), the same in 

both datasets, in which the number is labeled as Value in the total dataset and O in 

the selective. In cases like these, both changing spelling and removing the VALUE 

tag also has led to better results. 
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5.8 Conclusions

In this chapter, we have focused on the task of NER. In contrast to what we observed 

for PoS tagging in Chapter 4, the addition of a character language model (CharLM) 

did  not  lead  to  immediate  improvement  over  the  baselines  for  this  task.  It  was 

speculated  that  this  was because of  the  paucity of  training  data.  This  hypothesis 

seems  to  have  been  confirmed,  because  when  pretrained  word  embeddings, 

independent of the task at hand, were added to the base CharLM, significant gains 

were achieved. Thus the precomputed fastText  embeddings allowed the model to 

learn  word  representations  that  were  not  possible  with  task-specific  word  and 

character-level embeddings alone. When all of the embeddings are combined in the 

full setup, slightly more gains were achieved, again demonstrating the usefulness of 

using both precomputed contextualized and non-contextualized word representations 

in an ensemble with task-specific word features. 
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CHAPTER 6

Verbal Multiword Expression (VMWE) 

Identification
   

  

The task of verbal multiword expression (VMWE) identification is similar to NER, 

in that it involves detecting a specific type of linguistic construction in unstructured 

text and then classifying it into a fine grained category such as verbal idiom (take a 

nap,  fly  off  one’s  rocker) or  light  verb  construction  (make  a  decision,  do  some 

thinking).  Multiword expressions are idiosyncratic and typically non-compositional 

in meaning and are long considered a ‘pain in the neck’ for NLP (Sag et al. 2012).

MWE identification  is  often  a  necessary  step  in  machine  translation  and 

parsing.  The international research community PARSEME is devoted to the task and 

organizes regular workshops (the first  MWE workshop in 2008) and multilingual 

shared tasks since 2017 (Savary et  al.  2018).  In this  chapter,  we will  first  define 

MWEs and then examine some of the published results for the PARSEME shared 

task. Finally, I present experimental setups and hyperparameters I used for this task.

6.1 Toward a Definition of MWE

  

Consider the following examples:

(35) Benvindos O
à O
página O
Web B-LOCAL
do O
Aeroclube B-ORGANIZACAO
de I-ORGANIZACAO
Torres I-ORGANIZACAO
Vedras I-ORGANIZACAO
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(36) After much frustration at work, John called it a day.

(37) Ela tocou no assunto.

She touched.3.SG on-the matter.

She discussed the matter.

(38) Gabriela quer se fazer médica

Gabriela want-3.SG REFL.3.SG make doctor

 Gabriela wants to be a doctor.

(39) Estende-se por uma área de 29,34 km2.

Extends.REFL.3.SG through an area of 29,34 km2. 

 It extends for an area of 29,34 km2.

The meaning of the idiom call it a day ‘finish’ in (36) is not derivable from its parts 

and  is  thus  non-compositional.  While  the  Portuguese  idiom  tocar  no  assunto 

‘discuss, comment’ in (37) may be partially compositional, since to touch something 

is metaphorically to elaborate on it, to a nonnative speaker, this construction would 

most likely need to be learned by special rule. The reflexive constructions in (38-39) 

are also problematic. In (38) fazer-se is not strictly to make oneself, and extender-se 

in (39) is not really to extend oneself. The reflexive clitic pronoun here intransitivizes 

the verb,  adding a nuanced meaning in (38) but not in (39), which is thus not a 

VMWE. Typically VMWEs such as (35-38) are fully to partially non-compositional 

on the scale of compositionality.

 The following properties are among the most typical of VMWEs (Savary et 

al. 2018):

1.  Semantic  non-compositionality:  The  meaning  of  VMWEs  cannot  be 
inferred in a grammatically regular way from their parts.

2.  Lexical  and  grammatical  rigidity:  VMWEs  are  subject  to  lexico-
grammatical constraints. When words in an idiom are replaced by related 
words, the expression loses its  idiomatic meaning, e.g.  call it  a day → 
*denominate  it  a  day,  tocar  no  assunto  → *apalpar  o  assunto.  If  the 
expression is modified syntactically, it may lose its meaning in the case of 
an idiom—e.g. *call it a long day.

3.   Grammatical variability: In spite of (2), VMWEs still inflect and undergo
passivization and those that are light verbs can accept modifiers, e.g. John 
takes (took, etc.) a long nap.
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4. Discontinuity:  The  variability  in  (3)  often  leads  to  discontinuous 
components of the VMWE., e.g.  John takes a  long nap, Naps  are often 
taken after heavy meals.

 

These properties  make task of VMWE identification challenging,  more so 

than NER, since named entities by their  vary definition are rigid designators and 

quite easy to detect. In the next section, we explore the VMWE categories of the 

PARSEME shared task.       

 

6.2 PARSEME Shared Task

The  PARSEME  (Savary  et  al.  2018)  multilingual  shared  task  on  VMWE 

identification, organized by the European PARSEME community, is the largest of its 

kind. There have been open and closed track competitions in 2017 and 2018. The 

2017 event (Savary et al. 2017) included 18 languages. The 2018 (Savary et al. 2018) 

event involved some changes in the categories, data format, and languages. I chose to 

work only with the Portuguese data since I have only trained language models for 

this  language and it  was  my goal  to  utilize  experimental  setups  similar  to  those 

presented in §4.3.2 and §5.5.2. I also chose to work with the 2017 PARSEME data in 

order to compare my results to those of previous neural implementations. 

6.2.1 VMWE typology

The 2017 PARSEME shared task identifies both language-agnostic (universal) and 

language-specific VMWE types. Among language-agnostic types, which are shared 

by all languages in the task, are:

1. Light Verb Constructions (LVCs) in which the verb has lost its meaning (i.e is 
bleached), taking on the meaning of its nominal complement

Eu dei uma caminada.
I gave a walk.
I took a walk.
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Isso me dá dor de cabeça.
 That me give.3.SG pain of head.
 That gives me a headache.

2. Idioms (ID):
   Ele sempre faz das suas.

 He always do.3.SG of his own.
 He always does stupid things.

Among the language-specific types, which characterize some but not all languages, 

are:

3. Inherently Reflexive Verbs (IReflVs): Frequent in Romance and languages,
    where the pronoun changes the meaning or subcategorization frame of the   

             verb 
O  professor se enganou.   
The professor 3.SG.REFL deceived.
The professor made a mistake.

 
4. Verb Particle Constructions (VPCs): Pervasive in Germanic and Hungarian,
    rare in Romance and Slavic. The particle completely alters the meaning of 
    the verb, e.g. to do in ‘kill’ or adds a predictable non spatial meaning to the 
    verb (Ramisch et al. 2018),  e.g. to eat up 

 
5. Other: Not belonging to (1-4), e.g. to drink and drive, to short-circuit

 

No  category  is  present  in  all  languages,  but  ID  and  LVC  are  used  in  almost 

languages, while the most frequent category in all the corpora is IReflV due to its 

pervasiveness in Slavic and Romance (Savary et al. 2017).

6.2.2 Corpora

The entire PARSEME corpora contain 230,062 sentences (4,5 M tokens) for training 

and  44,314  sentences  (900K  tokens)  for  testing.  There  are  3947  MWEs  in  the 

Portuguese corpus. The distribution of tags is given in Table 25. Note that the most 

frequent category for Portuguese in LVC, followed by ID, and IReflV. There are no 

VPCs,  and  the  other  category  is  extremely  rare  and  does  not  appear  in  the  test 

dataset. 
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LVC ID IREFLV OTHER

TRAIN 2110 (.61) 820 (.24) 515 (.15) 2 (0)

TEST 329 (.66) 90 (.18) 81 (.16) 0 (0)

2439 (.62) 910 (.23) 596 (.15) 2 (0)

Table 27: PARSEME Tag Distribution (Portuguese)

The Portuguese training data was split (95% ~ 5%) into training and development 

sets respectively. Below are some corpus statistics.

SENTENCES TOKENS

TRAIN 18,559 341,349

DEV 1081 17,996

TEST 2600 54,675

Table 28: PARSEME Corpus Statistics (Portuguese)

Each  dataset  contains  two  files.  The  first  file  is  in  CONLL-U column  format, 

containing  10  columns  with  morphosyntactic  annotations:  index,  form,  lemma, 

universal PoS (upos), language-specific PoS (xpos), 

(40) CONLL  -U format

1 Você você PRON PRON Case=Nom|...|PronType=Prs 2  nsubj  _  _
2  sabia sabia VERB VERB Mood=Ind|...|Tense=Imp|VerbForm=Fin 0  root  _  _
3 ? ? PUNCT . _ 2 punct _ _

The second file  is  in  PARSEMETSV format,  containing index, form, no_space (for 

printing in  which punctuation should not  be preceded by a  space)  and the target 

MWE label, which are enumerated in the following form ID:MWE-TYPE. More than 

one MWE associated with a word are separated by semicolons, such as ter below in 

(40)  which  heads  three  separate  light  verb  constructions  (LVCs).  Every  MWE 

instance after the first is annotated with the ID rather than MWE type.
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(41) PARSEMETSV format

1 É _ _
2 necessário _ _
3 ter _ 1:LVC;2:LVC;3:LVC
4 ensino _ 1
5 médio ns 1
6 , _ _  
7 experiência _ 2
8 em _ _
9 vendas _ _
10 e _ _
11 disponibilidade _ 3
12 de _ _
13 horário nsp _
14 .  _  _

As this annotation scheme is not amenable to neural classification, preprocessing was 

performed in such as way as to allow classification of subsequent occurrences of the 

MWE. A variant of the BIOSE (Beginning Inside Outside Single End) scheme with 

an additional  – label  instead of O for all  outside tags was chosen since it  easily 

allowed the identification of discontinuous MWEs. Thus all IDS were replaced by 

the full MWE-TYPE. However, multiple tags on single tokens as well as embedded 

MWEs such as 1:LVC and 2:LVC above are problematic for such a system. These 

cases were dealt with by eliminating all tags other then the first and erasing any ID 

chains. After preprocessing (40) appears as (41) below:

(42) PARSEMETSV format

1 É _ _
2 necessário _ _
3 ter _ B-LVC  
4 ensino _ I-LVC
5 médio ns F-LVC
6 , _ _  
7 experiência _ _
8 em _ _
9 vendas _ _
10 e _ _
11 disponibilidade _ _
12 de _ _
13 horário nsp _
14 .  _  _
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These two files were joined into one input file consisting of 11 columns in a 

modified  CoNLL-U format  identical  to  that  used  by  the  2018  PARSEME 

task22 .  The script used for this is included in the attached source code. 

 

6.2.3 Evaluation

As we saw for NER tagging §5.4, precision, recall, and F1 score were used for the 

MWE task. The 2017 PARSEME scripts were used, providing per MWE (full match) 

as well as per token (partial match) results.  

6.3  Neural Models for MWE (PARSEME Task)

In this section, we review one neural model MUMULS, which participated in the 

2017  PARSEME shared  task  (Klyueva,  Doucet,  and  Straka  2017).  Although  not 

scoring the highest in the 2017 PARSEME task, MUMULS, achieved quite good 

results for the majority of languages without using feature engineering and a shift-

reduce parsing setup. Next I present a later modification of this model (Variš and 

Klyueva 2017),  which,  although it  did not compete in the task, has improved on 

MUMULS and published results using the PARSEME corpora.

6.3.1 MUMULS, Klyueva, Doucet, and Straka (2017)

The MUMULS system  (Klyueva, Doucet, and Straka 2017) was the only neural 

model  to  participate  in  the  2017  PARSEME  task.  It  is  a  bidirectional  GRU 

22. The NO_SPACE column was eliminated since it was not used for evaluation purposes.
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(BiGRU),  which  is  quite  similar  to  the  BiLSTM  model  used  in  this  thesis23. 

Although the gating is distinct to that of the LSTM, the recurrent connections allow 

the GRU to encode long range dependencies  (history)  in  a similar  fashion.  The 

BiGRU was also implemented in TensorFlow and, as is discussed below, is a variant 

of my model and is one of the setups which I have reimplemented. Below are the 

hyperparameters.

PARAMETER VALUE

Word, lemma, PoS embedding dim
BiGRU state size
Optimizer
Decoder
Learning rate 
Batch size
Epochs

100
100
Adam
Softmax
.001
64
14

Table 29:  Hyperparameters (MUMULS)

MUMULS uses in task word, lemma, and PoS embeddings, which are concatenated 

and fed to the RNN. The outputs are then concatenated and passed to a final dense 

layer upon which softmax classification is finally performed. 

Data preprocessing although not identical to that used by me for this task, 

was similar,  using a CONT for all  subsequent MWE tags rather than the BIOSE 

scheme.  Multiple  tags  for  a  tag other  than  the first  were  also thrown away.  The 

PARSEME evaluation script was used, giving the following results for Portuguese:

MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

MUMULS 53.58 37.40 44.05 82.47 47.17 60.01

Al Saied et al. (2017) 75.43 60.80 67.33 80.05 63.70 70.94

Table 30: Results for Portuguese (MUMULS)

23. https://github.com/natalink/mwe_sharedtask/blob/master/mwe_tagger.py
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The results for Portuguese were were somewhat lower than those of other languages. 

In §6.8 I comment on this more.

6.3.2 Variš and Klyueva (2017)

Variš and Klyueva (2017) improved upon MUMULS. I will refer to those version as 

MUMULS+.  In  task  character-level  embeddings  (CLE)  are  added  to  MUMULS. 

Experimental setups are run with CNN as well as RNN-based CLE. Similarly to my 

experiments,  the  CNN-based  CLE feared  the  better  of  the  two.  Several  encoder 

architectures for the classification task are also experimented with, a BiLSTM (like 

MUMULS), a deep convolutional encoder, and a self-attentive multihead encoder. 

The  BiLSTM  encoder  is  identical  to  what  was  used  in  MUMULS.  The  deep 

convolutional  encoder   (Gehring   et  al.  2017)  works  like  the  CNN architectures 

which have been discussed,  with the exception that  positional  embeddings which 

encode the index of inputs, residual connections, and a gating mechanism are used 

here. Self-attention (Vaswani et al.  2017) is used instead of a BiLSTM to encode 

long-distance  dependencies.  As  all  pairs  of  words  in  an  input  are  mapped,  this 

reduces the path length that gradients must propagate to one. If the sentence is long, 

self-attention is more effective than a BiLSTM, which has trouble such long range 

dependencies. In addition to these different encoders, two decoder setups are also 

used: softmax (like in MUMULS) and a CRF (like in my system). 

Experiments were carried out with the Czech PARSEME dataset. The best 

embedding  results  were  obtained  via  the  CNN.  With  regard  to  decoders,  self-

attention and BiLSTM yielded similar results followed by the deep convolutional 

decoder. As is expected for this task, the CRF fared better than softmax. The self-

attention encoder with CNN CLE and CRF was chosen for the PARSEME task. The 

hyperparameters of this setup are summarized below.
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PARAMETER VALUE

Character CNN filters
Character CNN max kernel size
Word, lemma, PoS embedding dim
Self-attentive layers
Self-attentive encoder heads per layer
Fully connected layer hidden units
Dropout
Decoder
Optimizer
Learning rate 
Batch size
Epochs

?
6
100
3
10
450
.8
CRF
?
?
?
14

Table 31:  Hyperparameters (MUMULS+)

The results for the Portuguese VMWE identification task are given below:

MODEL PER MWE PER TOKEN

F1 F1

MUMULS 44.05 60.01

MUMULS+ 40.00 52.00

Al Saied et al. (2017) 67.33 70.94

Table 32: Results for Portuguese (MUMULS)

 

For most of the languages other than Portuguese, the MUMULS+ setup performed 

better than its predecessor. Both MUMULs and MUMULS+ had some difficulties 

with Portuguese. We will discuss this more in  §6.8.

6.4 Model

The model used for the task of VMWE identification is identical to that used for the 

tasks of PoS tagging and NER, with only minor changes in the hyperparameters, 

described below.
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6.4.1 Setups

The setups are identical to those used for PoS tagging and NER, with the exception 

that the three additional setups with in task lemma, PoS, and both lemma and PoS 

embeddings were also used.  For this task, I slightly altered the baselines from the 

those  used  for  NER,  since  for  this  task  the  setups  involve  lemma  and  tag 

embeddings,  in  addition  to  those  for  the  other  two  tasks.  The  baselines  are 

MUMULS  and  MUMULS+  (the  improved  version  presented  in  §6.3.2  with  a 

BiLSTM in lieu of self-attention).

The baseline setups are: 

MUMULS: a BiLSTM-SOFTMAX setup with in task word, lemma, and 
tag embeddings—a reimplementation of  (Klyueva, Doucet, and Straka 
2017)

MUMULS+: A BiLSTM-CRF setup with in task word, lemma, and tag 
embeddings,  as  well  as  character-level  embeddings—a 
reimplementation of Variš and Klyueva (2017) 

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model 
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup  with  pretrained character  language 
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup  with  pretrained  character  language 
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and pretrained word embeddings (PWE) and in task 
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and both pretrained and in task word embeddings
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FLAIR+WE+CLE: A BiLSTM-CRF  setup  with  with  pretrained  character 
language model  (CharLM) and both  in  task word  (WE) and in  task 
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup  with  pretrained  character  language 
model  (CharLM)  and  with  pretrained  word  embeddings  (PWE)  and 
both  in  task  word  (WE)  and  in  task  character  character-level 
embeddings (CLE)

There  are  three  additional  experimental  setups  for  the  task  of  Verbal 

Multiword Expression (VMWE) identification:

FLAIR+ALL+LEMMA: A  BiLSTM-CRF  setup  with  pretrained  character 
language  model  (CharLM)  and  with  pretrained  word  embeddings 
(PWE) and in task word (WE),  character  character-level  (CLE),  and 
lemma (LEMMA) embeddings

FLAIR+ALL+TAG: A BiLSTM-CRF setup with pretrained character language 
model (CharLM) and with pretrained word embeddings (PWE) and in 
task  word  (WE),  character  character-level  (CLE),  and  tag  (TAG) 
embeddings

FLAIR+ALL+LEMMA+TAG: A BiLSTM-CRF  setup  with  pretrained  character 
language  model  (CharLM)  and  with  pretrained  word  embeddings 
(PWE)  and  in  task  word  (WE),  character-level  (CLE),  lemma 
(LEMMA), and tag (TAG)  embeddings.

6.4.2 Hyperparameters

A number of experiments were carried out to tune the hyperparameters for the 

model. First, I tested several setups with CNN versus RNN character embeddings for 

the FLAIR+ALL+LEMMA+TAG full setup. In contrast to what was observed for PoS tagging and 

NER. it  was found that CNN character embeddings outperformed RNN character 

embeddings. In Table 33 below these results are summarized. Note that the setup 

notation is  #filters-max_kernel_size, e.g. 300-3 denotes 300 filters, with kernels of 

size 2 and 3.
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MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

200-3 66.88 62.60 64.67 78.72 67.32 72.57

200-4 69.81 51.80 59.47 85.55 56.64 68.16

300-3 66.23 61.20 63.62 80.90 66.48 72.99

300-4 68.79 64.80 66.74 80.50 68.25 73.87

400-3 68.25 54.60 60.67 84.60 60.17 70.32

400-4 73.52 42.20 53.62 90.79 46.70 61.68

500-3 67.83 54.40 60.38 84.18 59.80 69.92

500-4 66.45 60.20 63.17 82.03 65.27 72.70

RNN CLE

Table 33: Different CNN Character Hyperparameter Results

Subsequently I varied the size of the RNN, from 128 up to 1024 hidden units. The 

best results were obtained with 512. These hyperparameters are summarized in Table 

34 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word/lemma/PoS embedding dimension
Character CNN units
Character CNN max filter size
BiLSTM state size
Optimizer
Gradient clipping
Batch normalization before sentence-level BiLSTM
Batch normalization Character CNN
Initial learning rate 
Annealing rate
Patience
Batch size
Epochs

300
512
300
4
512
SGD
.25
True
True
.1
.5
5
32
20

  Table 34:  Hyperparameters for sequence tagger (MWE)
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6.5 Results

In Table 6.5, I present the results of the setups used with the PARSEME dataset. The 

best  results  were  obtained  with  the  full  setup  leveraging  all  embeddings 

FLAIR+ALL+LEMMA+TAG ,  with an F-score of 66.74, slightly under that of the winner of the 

majority of the PARSEME languages, the transition-based system ATILF-LLF, with 

an F-score of 67.33. However, since only closed results (with no allowed pretraining) 

were reported for this event, in reality it is not fair to compare any of the setups other 

than the baselines to this system, since all of the other setups make use of pretrained 

character  language  model  embeddings.  Thus  the  best  ‘open’  system  is  really 

MUMULS+, with identical hyperparameters to the other setups, with an F-score of 

57.72. Although this result is significantly lower than ATILF-LLF, it does require the 

feature-engineering (feature tuning phase) of the transition system. It should also be 

pointed out that this baseline reimplementation performs somewhat better than Variš 

and  Klyueva  (2017),  with  MWE  F-score  of  .40,  slightly  lower  than  original 

MUMULS (.44). It is not clear why the baselines deviate from the original systems, 

unless  it  has  to  do  with  the  way  the  data  were  preprocessed  and  perhaps  the 

hyperparameters and normalization used. 
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MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

baselines

MUMULS 63.69 45.60 53.15 87.23 52.65 65.66

MUMULS+ 66.15 51.20 57.72 83.65 56.55 67.48

models

FLAIR 67.16 45.00 53.89 84.54 49.77 62.65

FLAIR+PWE 64.32 47.60 54.71 82.16 53.02 64.45

FLAIR+CLE 57.40 62.80 59.98 72.29 69.27 70.74

FLAIR+WE 62.91 54.00 59.81 77.62 62.49 69.24

FLAIR+PWE+CLE 56.62 62.40 59.37 72.56 68.99 70.73

FLAIR+PWE+WE 64.86 50.20 56.60 83.54 56.55 67.44

FLAIR+WE+CLE 64.95 55.60 59.91 81.52 60.63 69.54

FLAIR+ALL 66.67 46.00 54.44 84.62 51.07 63.69

FLAIR+ALL+LEMMA 61.20 59.00 60.08 78.01 65.55 71.24

FLAIR+ALL+TAG 68.13 46.60 55.34 86.00 51.90 64.74

FLAIR+ALL+LEMMA+TAG 68.79 64.80 66.74 80.50 68.25 73.87

Al Saied et al. (2017) 75.43 60.80 67.33 80.05 63.70 70.94

Table 35: Results VMWE task

Several generalizations emerge from the results of the experimental setups. It 

is surprising that addition of the character language model (CharLM) only leads to 

slight improvements over the MUMULS baseline. Recall that this setup used only in 

task  word,  lemma,  and  PoS  embeddings,  without  a  CRF.   However,  we  cannot 

attribute this to paucity of training data as was the case for the NER task. Instead it 

appears that this task depends on more than precomputed contextualized character-

level features.   Adding either word or character embeddings improves the result of 

the base  FLAIR model, but the CLE yield the best results, followed by the in task 

word embeddings. Why there is such a marked difference between the pretrained and 

in task word embeddings is most likely due to the fact that pretrained embeddings are 
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most useful when there is little training data available. This is the case because, as we 

saw in §1.3.1 , they are context-insensitive and thus reflect generic semantic features. 

When there is sufficient data available, as is the case here, in task word embeddings 

can be learned which are better representatives of the task in hand. The PARSEME 

data is  magnitudes larger than the NER dataset,  and it  is  for this  reason that the 

results here are different from those observed for NER (§5.6.3), where the opposite 

trend was observed, namely that pretrained word embeddings outperformed the rest. 

The reason the CLE embeddings fair the best is principally due to two factors. First, 

these  embeddings  represent  subword  features  (i.e.  character  n-grams)  which 

generalize  better  across  related  words  (e.g.  paradigms).  These  embeddings  are 

capable of representing idiosyncratic aspects of training data such as spelling and 

capitalization  (Liang  and  Zhao  2017).  These  features  are  important  for  MWE 

identification. Second, because of this, CLE help to combat the data sparsity problem 

and reduce the out of vocabulary (OOV) rate. 

Combining pretrained word embeddings and CLE lead to lower results than 

FLAIR+CLE.   A similar   result  was  observed  for  PoS  tagging.  It  appears  that  the 

pretrained embeddings are not so favorable when non-generic in task embeddings are 

available. All the other embeddings seem to combine well.  The  FLAIR+ALL setup is 

also unusually low, perhaps because it  also contains both of these two seemingly 

incompatible embeddings. Adding tag and lemma embeddings improves this result, 

however, and the best result is obtained with the full setup with all embeddings. In an 

additional  experiment,  I  ran  the  full  setup  without  each  of  the  character  and 

pretrained word embeddings together in the full setup in order to see if better results 

were obtained than with either of these together, and worse results were obtained. 

Thus it seems that lemma, followed by tag, embeddings greatly improve the lower 

gains  of  the  FLAIR+ALL setup.  Lemma  embeddings  contribute  an  in  task  semantic 

genericness  shared  across  morphologically  related  forms  which  aids  the  task  of 

MWE identification.  Tag embeddings contribute shallow morphosyntactic features 

which help in this task,  yet which are not as important as lemma semantic features.
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6.5.1 Errors

 

Table 36 presents the results for the best setup per tag. In the detailed analysis section 

of Klyueva et al.  (2017), several patterns were discerned with regard to mistakes 

made by the MUMULS tagger for Portuguese. These observations as well as some of 

my own are given in the sections to follow.

LVC ID IREFLV OTHER

PR 66.6 64.3 67.1  -

REC 67.2 60.0 68.1  -

F1 66.9 64.3 67.6  - 

Table 36: Results per Tag (FLAIR+ALL+LEMMA+TAG)

6.5.1.1 LVC

LVCs were the most frequent tag in Portuguese. Savary et al. (2018) identify LVC 

candidates  as  those  constructions  containing  a  verb  and  nominal  complement, 

possibly preceded by a preposition. These candidates must pass several tests to be 

considered bonafide LVCs:

(43) LVC Tests

1. Does the Noun denote a state or event?
2. Does the Noun maintain one of its original senses?
3. Does the Verb only provide morphological features?

            4. Can a nominal periphrasis be used to denote the same meaning as that with 
                 the verb, e.g. John had a long walk → John’s long walk?
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It is tricky to identify LVCs and correct identification was confounded by several 

additional factors. 

(44) Difficulties (LVCs)
1. Discontinuity
2. Inverted syntax (V...N - > N..V)

As was the case with MUMULS (Klyueva, Doucet, and Straka 2017), my system had 

some trouble with discontinuous LVCs in which several elements intervene between 

the  verb  and  noun,  e.g.  fazer hoje  uma  comemoração ‘(lit.)  to  make  today  a 

celebration’  When  a  noun  was  fronted,  my  model  also  missed  some  LVCs, 

particularly when they were discontinuous, e.g. concurso da Mega - Sena que , será  

realizado... ‘contest, which will be carried out...’.  There were a few cases of false 

positives such as  dá um  beijo  ‘give a kiss’, which does not pass tests 1, 3 and 4 

above. At least two false positives  faz um escândalo ‘give a kiss’,  tem deficiência 

mental ‘have a mental deficiency’, which seem to pass all of the tests, seem to be an 

annotation error, cf. teve orgasmo ‘had an orgasm’ which is a LVC.

          

6.5.1.2 IReflV

There are eight litmus tests to determine if we are dealing with an IReflV, but the 

following  three are usually sufficient (Savary et al. 2018) :

(45) IReflV Tests
1. Does the verb always occur with the clitic?
2. Does its sense change?
3. Does the subcategorization frame change?

  

If one can answer yes to any of these tests, it appears we’re dealing with IReflV. It 

should  be  noted  that  non-inherent  reflexive-like  constructions  such  as  non-

idiosyncratic  reflexives  (e.g.  se  transforma ‘transform  oneself  →  turn  into’), 

impersonal  constructions  (e.g.  aqui  se  fala  Português  ‘One  speaks/Portuguese  is 

spoken here’), passive constructions (e.g. se construiu uma casa ‘a house was built’, 
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and reciprocal constructions (se beijam ‘they kiss each other’) have identical forms 

as the IReflVs, yet do not pass the above tests.  It is unclear how a neural network 

learns to distinguish all of these formally identical constructions. 

Affecting  the  identification  of  IReflVs  is  clitic  syntax  in  Portuguese. 

Brazilian Portuguese utilizes two different positions, proclisis (before the verb) and 

enclisis  (after  the  verb),  the  latter  to  a  much  lesser  extent  than  in  European 

Portuguese.  The PARSEME corpus appears to be mostly Brazilian. However, I can 

find no information regarding the source texts24.  Unfortunately,  the corpus is  not 

consistent  in  its  annotation  and  some cases  of  enclitic  pronouns  attached with  a 

hyphen are separated while others are not. 

(46) Examples of proclisis (no hyphen)

1 Se _ 1:IReflV
2 meterão _ 1

(47) Examples of enclisis (hyphen)

1 Corresponder- _ 1:IReflV
 2 se _ 1

but

1 refiro-me _ 1:IReflV

Like MUMULS (Klyueva, Doucet, and Straka 2017), my system had trouble with 

unbroken cases like refiro-me ‘I am referring to’, vingar-se ‘to take revenge’,  while 

the separated clitic gave an unambiguous indication of the reflexive construction. In 

some cases,  however,  the  broken construction  was  sometimes  not  identified,  cf.. 

casa- se ‘is getting married’, which may have been confused with casa ‘house’.

24. The PARSEME 2018 literature reveals that this corpus is Brazilian (Ramisch et al. 2018).
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6.5.1.3 ID

One would expect idioms to be problematic for any ML system. Unlike the case of 

LVCs and IReflVs,  we do not want  the system to generalize with IDs  (Klyueva, 

Doucet, and Straka 2017). The performance of my system for IDs was not so much 

lower than the other categories. The most typical were false negatives, e.g. segue o  

baile ‘the dance continues’, chamando atenção  ‘call attention’, which were simply 

not  in  the  training  data  and  thus  not  learned.   There  were  some  cases  of  false 

positives,  such as  literal estender  a mão ‘(lit.)  extend one’s  hand’,  in  which  the 

system undesirably has overgeneralized. The only way to prevent overgeneralization 

is controlling for overfitting with batch normalization or dropout as has been done.

6.6 Conclusions

In this chapter, we have focused on the task of VMWE identification. Similarly to 

what was observed for NER in Chapter 5, the addition of a character language model 

(CharLM) did not lead to immediate improvement over the baselines for this task. 

However, in contrast to NER, this was not due to a lack of training data, since when 

pretrained word embeddings, independent of the task at hand, were added to the base 

CharLM, results only slightly improved, indicating that task-specific word features 

are needed. Gains are observed when in task word and character embeddings are 

used, ideally separately or together. When lemma and tag embeddings are combined 

in the full setup, significant gains were observed (F-score 66.74), underscoring the 

usefulness of lemmas for capturing general word meaning and part-of-speech (PoS) 

tags for representing shallow syntactic features.
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CHAPTER 7

Conclusions

The goal of this thesis was to examine the effect of using different embedding setups 

in  various  sequence  labeling  tasks.  The  results  of  these  experiments  were  quite 

favorable  and  advanced  the  state  of  the  art  for  Portuguese  part  of  speech (PoS) 

tagging and achieved near state of the art results for the tasks of Portuguese NER and 

VMWE identification. 

In  Chapter  1,  the  reader  was  introduced  to  deep  learning  methods  and 

architectures, as well as word embeddings and language models. In Chapter 2, we 

explored  the  use  of  character  language  models  (CharLMs)  in  state-of-the-art 

sequence taggers. In Chapter 3, the deep learning architecture of my sequence tagger 

model was described, along with the experiments embedding setups to be used in the 

sequence labeling tasks. Chapter 4 presented the task of part of speech (PoS) tagging, 

the Portuguese data, the state of the art, the parameters of the tagging model, and the 

results of the experimental setups. We likewise did the same for the task of NER in 

Chapter 5 and VMWE identification in Chapter 6.

In all three tasks we have observed similar as well as distinct effects of using 

different  embedding setups.  For  PoS tagging (Chapter  4),  the  use  of  a  character 

language  model  (CharLM)  by  itself  led  to  significant  improvements  over  the 

baselines. This seems to be motivated by the ease of learning these shallow syntactic 

features,  greatly  aided   by  the  presence  of  contextualized  word  representations 

extracted  via  a  CharLM.   When  pretrained  CharLM  embeddings  were  used  in 

conjunction  with  task-specific  word  embeddings  state-of-the-art  results  were 

achieved for PoS tagging (F-score of 97.49).

The task of NER (Chapter 5) posed significant challenges, particularly due to 

the  lack  of  training  data.   In  contrast  to  what  was  observed  for  PoS  tagging, 

leveraging a character language model (CharLM) by itself did not lead to immediate 

improvement  over the baselines  for NER. Here more was needed,  i.e.  pretrained 
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word embeddings,  which  when combined with  contextualized  embeddings led  to 

significant gains. It was hypothesized that using pretrained embeddings allowed the 

model  to  learn  word  representations  not  possible  with  task-specific  word  and 

character-level embeddings by themselves.  

Similarly  to  in  NER,  in  the  task  of  VMWE  identification,  the  use  of  a 

character language model (CharLM) also did not lead to immediate improvement 

over the baselines. In contrast to NER, however, this cause of this was not lack of 

training  data.  Here  sufficient  data  allowed  task-specific  word  and  character 

embeddings to be learned. The presence of lemma and tag features for this dataset 

also made it possible to train task-specific lemma and tag embeddings, whose use led 

to close to state-of-the-art results for Portuguese (F-score 66.74). This underscores 

the importance of lemmas for capturing general word semantics and part-of-speech 

(PoS) tags for representing shallow syntactic features.

To conclude, the major contribution of this thesis is its thorough exploration 

of  the use of  different  experimental  setups  with embeddings applied to  sequence 

labeling tasks. Secondary contributions are in the advancement of the state of the art 

in PoS tagging for Portuguese and near state of the art results without the use of 

handcrafted features for Portuguese NER and VMWE identification.
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