
MASTER THESIS

Eric Lief

Deep Contextualized Word Embeddings from Character
Language Models for Neural Sequence Labeling

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Doc. RNDr. Pavel Pecina, Dr.

Study programme: Computer Science

Specialization: Computational Linguistics (4I3)

2019

i

ii

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

iii

I would like to express my gratitude to Pavel Pecina, without whom this thesis would
not have been possible, for his kindness and encouragement from the start.

I would also like to thank Milan Straka. His knowledge, enthusiasm, patience, and
helpfulness are truly inspiring.

I am indebted to Dušan Varis for helping me with the many technical aspects of this
thesis.

Many thanks to my colleagues at MFF for creating a positive, supportive, and
collaborative study environment.

Finally, I would like to thank my family for their love and support which have kept
me going.

iv

Title: Deep contextualized word embeddings from character language models for
neural sequence labeling

Author: Eric A. Lief

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Doc. RNDr. Pavel Pecina, Dr. Institute of Formal and
Applied Linguistics

Abstract: A family of Natural Language Processing (NLP) tasks such as part-of-

speech (PoS) tagging, Named Entity Recognition (NER), and Multiword Expression

(MWE) identification all involve assigning labels to sequences of words in text

(sequence labeling). Most modern machine learning approaches to sequence labeling

utilize word embeddings, learned representations of text, in which words with similar

meanings have similar representations. Quite recently, contextualized word

embeddings have garnered much attention because, unlike pretrained context-

insensitive embeddings such as word2vec, they are able to capture word meaning in

context. In this thesis, I evaluate the performance of different embedding setups

(context-sensitive, context-insensitive word, as well as task-specific word, character,

lemma, and PoS) on the three abovementioned sequence labeling tasks using a deep

learning model (BiLSTM) and Portuguese datasets.

Keywords: [part-of-speech tagging, named entity recognition, multiword expression,
embedding, deep learning, Portuguese]

v

Contents

Preface 1

1. Introduction 2

1.1. Sequence Tagging 2

1.2. Deep Learning 4

1.3. Embeddings 8

1.4. Language Models 10

2. Sequence Taggers 16

2.1. LM-Fueled Sequence Taggers 16

2.2. TagLM, Peters et al. (2017) 16

2.3. ELMo, Peters et al. (2018) 21

2.4. Flair, Akbik et al. (2018) 23

3. Models 28

3.1 Character Language Models (CharLMs) 28

3.2 Sequence Model 30

3.3 Experiments 31

4. Part of Speech (PoS) Tagging 34

4.1 Data 34

4.2 Evaluation 35

4.3 Recent Neural models for Portuguese PoS tagging 36

4.4 Model 41

4.5 Results 44

4.6 Conclusions 46

5. Named Entity Recognition (NER) 47

5.1 Toward a Definition of Named Entity 48

5.2 Data 49

5.3 CRFs for NER 52

5.4 Evaluation 52

5.5 State of the Art for NER in Portuguese 53

5.6 Model 58

5.7 Results 62

5.8 Conclusions 62

6. Verbal Multiword Expression (VMWE) Identification 66

6.1 Toward a Definition of MWE 66

6.2 PARSEME Shared Task 68

6.3 Neural Models for MWE (PARSEME Task) 72

6.4 Model 75

6.5 Results 78

6.6 Conclusions 84

7. Conclusions 85

Bibliography 88

List of Figures 92

List of Tables 93

List of Abbreviations 95

PREFACE

The major contribution of this thesis is its thorough exploration into the use of

different experimental setups with embeddings applied to sequence labeling tasks

(the assigning of labels to sequences of words in text) using deep learning1. Three

tasks are carried out using Portuguese datasets: part-of-speech (PoS) tagging, named

entity recognition (NER), and verbal multiword expression (VMWE) identification.

Secondary contributions are in the advancement of the state of the art in PoS tagging

for Portuguese and near state of the art results without the use of handcrafted features

for Portuguese NER and VMWE identification.

The structure of this work is as follows.

Chapter 1 opens with a light introduction to deep learning methods and architectures,

word embeddings, and language models.

In Chapter 2, we explore the use of character language models (CharLMs) in state-

of-the-art sequence taggers.

Chapter 3 describes the deep learning architecture of the sequence tagger model used

for all tasks as well as the different experimental setups.

Chapters 4, 5, and 6 present the tasks of PoS tagging, NER, and VMWE

identification respectively, as well as the Portuguese data, the state of the art, the

parameters of the tagging model, and the results of the experimental setups.

Chapter 7 concludes this thesis with final remarks.

1. All code and data is freely available at https://github.com/ericlief/sequence-tagger.git

1

CHAPTER 1

Introduction

In this introductory chapter, I present an overview of sequence labeling tasks and a

brief introduction to popular current deep learning architectures, embeddings, and

language models.

1.1. Sequence Tagging

Sequence tagging or labeling commonly refers to a group of related Natural

Language Processing (NLP) tasks such as part-of-speech (PoS) tagging, Named

Entity Recognition (NER), Multiword Expression (MWE), chunking/shallow

parsing, and semantic role labeling/semantic slot filling. All of these tasks can be

treated as cases of supervised multinomial classification, in which a tag or label is

assigned to some linguistic construction, be it a word (PoS tagging) or a grouping of

words referring to some unique entity (NER) such as the Czech Republic.

When neural networks are employed to solve these sequence labeling tasks, it

is essential that each input, whether a character or a word, maps to a target label. In

order to achieve this, usually some variation of the BIO (Beginning, Inside, Outside)

annotation scheme is used. Below in (1), the tag for Location can be assigned to

either a single or a multiword entity:

(1) Prague is the capital of the Czech Republic

B-LOC O O O O B-LOC I-LOC I-LOC

The presence of the multiword entity is thus signaled by the Inside (I) LOC tag

following a same Beginning (B) tag, and all words that do not span any entity are

marked as Outside (O). As we will see below in the discussion of multiword

2

expressions (MWEs), there are slight variations of this annotation scheme, but the

idea is for the most part the same: every word form in a string of words (text)—

instead of some larger linguistic entity2– gets its own tag or label.

Current state of the art approaches to sequence labeling use some type of

language model (LM), possibly combined with pretrained word embeddings, and for

the labeling task, a bidirectional recurrent neural network (BiRNN), such as the

LSTM variety, with a conditional-random field (CRF), henceforth BiLSTM-CRF

(Akbik et al 2018, Peters et al 2018). Before discussing these architectures, I first

present some basic machine learning and neural network concepts.

1.1.1 Conditional Random Fields for Sequence Labeling

Most current SOA approaches to sequence labeling employ a conditional random

field (CRF) to decode the output label sequence. CRFs are much more powerful than

generative models such as Hidden Markov Models (HMMs) and do not suffer from

the label bias problem (Lafferty et al. 2001). The label bias problem refers to the fact

that finite state transitions from one state to the next are evaluated locally rather than

globally. In other words, the best transition (i.e. the argmax) is only the best leaving

the current state, but may not be the best one overall. For some sequence labeling

tasks, we may be able to make certain independence assumptions when assigning one

label after another, e.g. if we are classifying a stream of images or the like. For

linguistic data, however, we are not always able to assume such independence. PoS

tagging, for example, reflects hard linguistic constraints, e.g. in English a determiner

cannot follow a noun, *NOUN + DET. Thus when assigning DET, it would benefit

the model to have access to the previous tag. A CRF, in effect, achieves this but

looking at the whole sequence when assigning labels.

CRFs are a log-linear model much like logistic regression, and are formally

represented as weighted feature functions. A feature function fj takes as arguments

the label of the preceding segment yi-1, the current label yi, and the current sequential

position, and assigns a binary score of 0 or 1 if the condition is true. For instance if

the preceding label is a determiner and the current label is noun. Next, a positive or

2. Some recent deep learning approaches assign a label to some larger chunk, e.g. Zhai et al (2017).

3

negative weight is associated with a feature function, reflecting how favored the

feature is. Below in (2), for a sentence of length n, there are m features functions:

(2)

Thus sequence labeling is not done for each token in isolation; rather, the best tag

sequence is computed on the basis of the probabilities of all labels assigned in the

surrounding context.

1.2. Deep Learning

Deep learning refers to a family of machine learning methods and architectures,

which typically use many hierarchical layers of non-linear processing (Deng and Yu

2014). According to Deng et. al (2014), there are three basic classes of deep

networks:

1. Unsupervised or generative deep networks, with the goal of gaining
insight into the correlation of observed data, in the absence of target
labels

2. Unsupervised learning or discriminative deep networks, with the
goal of classing data in the presence of target labels

3. Hybrid deep networks, which are a combination of supervised
classification, aided by the outcomes of unsupervised generative nets.

In this thesis focusing on sequence labeling (i.e. classification), we will be concerned

only with supervised learning. In the next section, an overview of the most popular

and successful deep learning architectures is presented.

4

1.2.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a type of artificial neural network

specialized for processing sequential data such as text, which can send feedback

signals (Chen, 2016). Normal vanilla flavored neural networks suffer from two major

problems. First they cannot be fed variable length inputs, whether characters, words,

or sentences. There are nevertheless workarounds, such as padding the sequence

with zeros up to some fixed maximum length. Second, they do not share features

learned across different sequential positions. In NLP, a word like Prague occurring

initially bears no relation to the same word occurring word medially or finally. RNNs

can handle sequences of different lengths, and parameter sharing allows them to

generalize across different textual positions (Ian Goodfellow, Bengio, & Courville,

2016). Thus they would need separate parameters for each sequential position t in

order to recognize that the named entity President Trump (Person) is the same in the

following two sentences.

(3) President Trump promises to make America great again.

(4) During his election campaign, President Trump promised to make America

great again.

As the name suggests, RNNs compute the current state recursively. The

previous state serves as input to the current state, yielding a recurrence such as the

following ht = f(xt, ht-1; θ). We thus see that each state contains information (features)). We thus see that each state contains information (features)

from all previous states. We can visualize this recurrence better by unfolding it

(image to the right) in Figure 1 below.

5

RNNs are thus capable of capturing longer range dependencies than a vanilla

flavored neural network, e.g. a multilayer perceptron (MLP). For instance, an RNN

maps a sequence x1, x2,...xt to a state ht+1, which depending on the length of the

sequence, may be lossy (Ian Goodfellow et al., 2016). A language model, which

models the distribution of words in a language and can predict the next word (or

character) based on previous words, begins to lose information beyond a certain

window size.

1.2.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), along with Gated Recurrent Units (GRUs), are

gated RNNs, which employ this specialized gated architecture to control what

information is allowed to pass through. As illustrated in the figure below, an LSTM

contains a memory cell (ct) which hold the state, an input gate (it) which controls

what new input features are incorporated into the state, a forget gate (ft) which

controls which information from the state at the previous time step (ct-1) recursively

passes into the state, and an output gate (ot) which can selectively shut off the output

of the cell.

6

The computations of these gates and cell state are given below in (5).

(5) LSTM gate computations

Note that in the standard LSTM, each gates receives to inputs, the input xt and

previous state ht-1, and that the activation of the gates is normally sigmoid σ, but that

the activation of the external input gate (gt), which by element-wise multiplication

(*) controls what input enters the state, is tanh, as is the final state output by the cell.

7

1.3 Embeddings

A word embedding (Collobert et al. 2011, Mikolov et al. 2013c), also known as a

distributed word representation, is a learned representation of text, in which words

with similar meanings have similar representations (Bengio, Ducharme, Vincent, &

Janvin, 2001). This differs from merely representing a word as a vector containing no

semantic features, an idea which has been around for some time. If we are dealing

with true word embedding vectors, the representation of vec(Prague) can be obtained

arithmetically by vec(Rome) - vec(Italy) + vec(The Czech Republic). One of the

advantages of using word embeddings is that they in effect project a discrete high

dimensional space of a magnitude of the number of words in the vocabulary to a

much more manageable continuous lower dimensional space. Thus a word with a

discrete one-hot encoding of dimensionality in the tens of thousands is mapped to a

continuous representation encoding normally only in the hundreds. Word

embeddings are one of the breakthroughs in NLP in the last fifty years.

1.3.1 Context-Insensitive Word Embeddings

There are two basic techniques to embed words: continuous bag of words (CBOW)

and skip gram (Zheng, Shi, Guo, Li, & Zhu, 2017). In the CBOW model, a word is

predicted by its context of surrounding words, while in the skip gram model, the

process is reversed and the context of a given word is predicted.

8

Word2vec can create embeddings using either one of these techniques, and it has

been shown that of the two methods the skip gram is the best at capturing word

similarity (Mikolov et al. 2013 d). Although pretrained distributed word embeddings

such as word2vec, FASTTEXT, and GloVe have proven quite useful in modeling the

latent semantic and syntactic similarities of words, they suffer the drawback that they

do not model how words very frequently have different meanings (polysemy). This

is the case because different meanings and representations are collapsed into one

final representation. Schütze (1998) is one of the first to identify what he called the

meaning conflation deficiency. One of obvious outcome of this is that an Natural

Language Understanding (NLU) system would be less likely at distinguishing these

senses. Another perhaps less obvious one is that often unrelated words are pulled

toward each other in vector space. For instance, the unrelated word rat and screen are

pulled toward one another due to one of the senses of mouse and its closeness to

screen (Camacho-Collados & Pilehvar, 2018).

1.3.2 Contextualized Word Embeddings

One obvious solution to the meaning conflation deficiency described in §1.3.1 is to

have embeddings for every meaning of a word. Such sense representations or

embeddings can be produced either in an unsupervised fashion or with the help of a

knowledge base (KB). Unsupervised approaches are favorable because of the lack of

KBs and make use of clustering, which can lead to unclear semantic mappings and

consequently difficult integration into downstream models (Camacho-Collados &

Pilehvar, 2018). Recently an emerging field of research has sought to integrate

unsupervised context-sensitive embeddings into downstream tasks. While pretrained

word embeddings like word2vec yield one single static representation per word,

these contextualized word embeddings are sensitive to context and their

representation is dynamic, changing according to the context in which the word

appears (Cassani, Tomadoni, Ponce, Agüero, & Moreira, 2017; Melamud,

Goldberger, & Dagan, 2016; Peters, Ammar, Bhagavatula, & Power, 2017; Akbik,

Blythe, and Vollgraf 2018)

9

1.3.2.1 Context2vec

Like word2vec, context2vec (Melamud et al., 2016) learns both target word

and context representations simultaneously, but with a much more robust sentential

context. As in Figure 5 below, the model uses two separate LSTMs, one for the left-

to-right context and one for the right-to-left, with separate parameters and context

embeddings. The outputs of each one are then concatenated and thus encapsulate the

context, in much the same way as the averaging over context vectors in the word2vec

model. This context vector is next fed to a Multilayer Perceptron (MLP) which

outputs a representation of the entire sentential context. (Melamud et al., 2016)

Context2vec shares a lot in common with Language Models (LMs). Both

generally use bidirectional LSTMs (BiLSTMs) such as that described above, with the

objective of predicting the target word based on its context. While LMs, however, are

mainly concerned with predicting conditional probabilities of target words based on

their histories, the main goal of context2vec is to produce useful context

representations of target words. However, as we will soon see, character language

models (CharLMs) also often share this goal. In the next section we discuss LMs in

more detail.

1.4 Language Models

A statistical language model (LM) is formally a probability distribution over words.

Using a LM, one can estimate the probability of observing a particular sequence of

words, whether a sentence or a whole document e.g.

(6)

10

Language modeling has applications in speech recognition, machine

translation, part of speech tagging, text generation, and information retrieval, among

others. Due to the data sparsity problem, the Markov assumption, limiting the history

to n-terms, is usually employed in practice, and n-gram probabilities are often

computed by maximum likelihood estimation (i.e. counting), followed by smoothing

to counteract out of vocabulary (OOV) words. Therefore, by an nth order Markov

property, the probability distribution, which is a product of terms predicting the next

word given the history, can be approximated by a product of conditional probabilities

confined to a window of size n.

(7)

11

In order to accurately estimate the likelihood of sequences of words, LMs

must be trained on a huge amount of data. Nevertheless, a sentence at test time may

still be different from those seen during training, and with more data comes a larger

vocabulary size, more possible sentences, and greater data sparsity, a phenomenon

known as the ‘curse of dimensionality’ (Bengio et al., 2001). Traditional approaches

overcame this problem by stringing together n-grams to build the sentence.

In the last decade, neural LMs (NLMs) have gained popularity because of

their ability to alleviate the curse of dimensionality via their use of continuous word

representations (embeddings). As discussed in §1.3, the use of word embeddings

leads to dimensionality reduction. In an NLM, word embeddings are learned during

training. One simply initializes a lookup table randomly and embeds the sequences

using this table. The lookup table is a parameter of the network and gets updated like

the other parameters during backpropagation. The goal of a NLM is to learn an

optimal model . This process is illustrated below

in Figure 6. After encoding the input as a word vector (embedding) using the lookup

table C, the model maps the input sequence to a conditional probability distribution

over all words in the vocabulary for the next word given its history.

12

Although as we will see below the classical model of (Bengio et al., 2001) has

evolved, its basic components have remained the same, consisting of the following

layers:

1. Embedding or projection layer, which makes use of a lookup table to

vectorize the input

2. Hidden or encoding layer, which internalizes the context around the target

word

3. Output or softmax layer, which outputs a normalized probability over all

words in the vocabulary.

13

The way a NLM computes the final probability distribution

 is also fundamentally the same. The output of the

hidden layers, whether classic MLP or the BiLSTM of a modern NLM (see below)

approximates the Maximum Likelihood Estimation of an n-gram model

(8)

via the softmax layer, which computes the following normalized probability.

(9)

The unnormalized log-probability (logit) of the final fully connected output layer is

, which is the inner product of the context vector h and computed

embedding of wt, the row of the weight matrix E of this output layer. This in practice

is really a matrix-matrix multiplication of the weight matrix E of the output later,

which contains the embeddings of all words in the vocabulary, and the batch outputs

14

H of the previous hidden layer(s) (for a given time step in the case of an RNN), i.e.

. The softmax squashes this logit z into a probability for word wt, given the

context

Using softmax, it is then possible to compute the loss of the LM, whose

objective it is to maximize probability of the whole training data. This can be

formalized by maximizing the averaged log probability of the data.

(10)

In practice, this is searching for the parameters which maximize the log likelihood

(Bengio et al., 2001) :

(11)

Recall that the function f is the model output (i.e. the conditional probability of a

word as calculated by the softmax layer) and n is the number of previous time steps

(window size) seen so far. (Bengio et al., 2001) identifies that the bottleneck of the

network is, in fact, the softmax layer, since even with efficient matrix multiplication

and powerful GPUs, the major computational cost is the inner product which needs

to be computed for the whole vocabulary, often in the hundreds of thousands.

Because of this, LMs are notoriously hard to train, often requiring huge

computational power and sometimes months of training time. This is one of the

appeals of character LMs (explored in §2.4 below).

15

CHAPTER 2

Sequence taggers

2.1 LM-Fueled Sequence Taggers

The classical LM architecture just discussed can be implemented by MLPs or RNNs.

Current RNN LMs, both LSTM and GRU, outperform n-gram LMs by virtue of

their ability to encode long-range dependencies in their hidden states (Graves 2013)

In this chapter, several recent NLM architectures and their applications to sequence

labeling tasks are discussed.

2.2 TagLM, Peters et al. (2017)

Peters et al. (2017), leveraging a pretrained bidirectional LM, improved on the state

of the art for several sequence labeling tasks, NER and Chunking. Their Language

Model Augmented Sequence Tagger (TagLM) embeds an input sequence using a

combination of pretrained LM embeddings, pretrained context insensitive word

(token) embeddings, and in task character embeddings.

16

As is depicted above for the task of NER, the model contains several layers or

components. In the embedding layer, embeddings over characters are obtained via a

RNN or a Convolutional Neural Network (CNN). Using a character-level RNN for

illustration, a character sequence for a word such as cat [‘c’, ‘a’, ‘t’] is fed to a RNN,

usually bidirectional (BiRNN), which embeds the context to the left of each character

(forward) and to the right (backward). A backward RNN is like the forward variant

described above, but from right to left, encoding the word in reverse. The forward

and backward outputs representing each word are then concatenated.

17

These character-level embeddings are then concatenated with pretrained word

embeddings such as word2vec. For instance, York is now represented by the

embedding .

The LM component of the model predicts the probability of the input

sequence , using one or more layers of BiRNN, whether BiLSTM or

BiGRU.

(12) ,

18

In the forward pass, the history of each token is embedded in the internal state which

is output at each step t, until reaching the end of the sequence at which point is

output as the final state representing the whole history. If this is the top layer, this is

the forward embedding, and a prediction can be made for token wt+1. Next, the

process in repeated but in the opposite direction for the reverse sequence ,

yielding the backward embedding .

(13)

These top layer representations are then concatenated .

In the next step, these embeddings are combined with representations

obtained from the sequence labeling task BiLSTMs. The authors chose to

concatenate the LM with outputs from the first BiRNN layer, , which is fed to

the second BiRNN. This stacked representation is as follows:

(14)

The outputs of this layer are input to a final dense layer, which is decoded by a CRF.

Analogous to the forward only LM, the objective of a biLM is to maximize

the probabilities in each direction. The parameters for each BiLSTM LM are separate

(), but the remaining parameters are shared, e.g. those of the input and

output, and softmax layers, here simplified to .

(15)

The above model is evaluated using CoNLL 2003 NER and CoNLL 2000

Chunking tasks.

19

Parameter Value

Character-level embedding (CLE) dimension
BiGRU X 2 state size for CLE
BiGRU X 2 state size for tagger
Dropout for each GRU input

25
80
300
.25

Table 1: Hyperparameters for NER

Parameter Value

Character-level embedding (CLE) dimension
Number of CNN filters
CNN kernel size
Tagger BiLSTM X 2 state size
Dropout for CLE, each LSTM input and final layer

30
30
3
200
.50

Table 2: Hyperparameters for Chunking

For both of these tasks, the LM employed was a publicly released pretrained best

model of Jozefowicz et al. (2016), trained on around 800,000 tokens from the One

Billion Word Benchmark (Chelba et al., 2014), a data set designed for LMs, for three

weeks on 32 GPUs. This LM achieved a test perplexity of 30.0. The hyperparameters

of this LM, referred to as CNN-BIG-LSTM, are given below.

Parameter Value

Number of CNN filters (character-level)
CNN kernel size
BiLM layers
BiLSTM state size
Projection dimension (BiLM)
Dropout before & after every LSTM layer

4096
?
2
8192
1024
?

Table 3: CNN-BIG-LSTM LM

Note that kernel size and dropout parameters were not published. The results of for

these two tasks are also given below:

20

MODEL NER CHUNKING

PREVIOUS SOA 91.62 95.28

BASELINE (NO LM) 90.87 95.00

TAGLM 91.93 96.37

Table 4: Task results for TagLM

There are several task-independent results which are worth mentioning here.

First as mentioned, it was found that the best results were obtained when the

embeddings were concatenated after the first LSTM layer. Second, the addition of a

backward LM boosts F1 scores .22-.27%. Third, the authors experimented with other

sizes of BiLSTM for the LM and found that the best result were obtained from the

largest model (CNN-BIG-LSTM), with gains of .26-.32 over a smaller LSTM-2048-

512. Thus size matters. Fourth, the LM was trained on a smaller task-specific data

set, which resulted in much higher perplexities, which reflects the necessity of seeing

a wide range of contexts during training, i.e. RNN LMs learn composition functions

(Peters et al. 2017). Another interesting experiment included removing the task

specific RNN and just using the LM embeddings followed by a dense and CRF layer.

This also resulted in inferior results, which confirms the importance of a supervised

task specific architecture.

2.3 ELMo, Peters et al. (2018)

Embeddings from Language Models (ELMo) build on the just presented TagLM

model of Peters et al. (2017). There are some differences which will now be

explained. The ELMo model is also a biLM, with an objective the same as that of

above, namely to optimize model parameters so as to maximize the probabilities of

the data:

(16)

21

Like TagLM, the BiLM component of ELMo also follows the architecture of

(Jozefowicz, Schuster, Wu, Com, & Brain, 2015), with the exception of

modifications to allow training in both directions and the addition of a residual

connection between LSTM layers. Unlike TagLM, which utilizes the CNN-BIG-

LSTM, ELMo halves the size of embeddings and dimension of hidden units. The

hyperparameters are given below

Parameter Value

Number of CNN filters (character-level)
CNN kernel size
BiLM layers
BiLSTM state size
Projection dimension (BiLM)
Dropout before & after every LSTM layer

2048
?
2
4096
512
?

Table 5: ELMo BiLM

The smaller hyperparameters lead to a rise in perplexity to 39.7 (averaged in

both directions), cf. 30.0 for the CNN-BIG-LSTM. However, this is justified as

balancing performance and computational requirements. The model can also be fine-

tuned with domain-specific data, leading to lower perplexity and better performance

on downstream tasks.

In contrast to TagLM, the authors mention that some parameters of each

direction of the LM are shared. For each token an L-layer BiLM computes two

representations, one in the forward and another in the reverse direction. Since for

layer j = 0, the token layer x, only one representation is computed, there are 2L + 1

total computations:

(17)

Note that the first member of the set here is the context-independent token

embedding (e.g. pretrained word embedding or character-level embedding, or both).

Given that there are two layers used in the model, there are thus three total

representations per token. Recall that for TagLM, the top (final) layer of the BiLM

22

 is used as the embedding for downstream tasks. ELMo, however, uses a task-

specific weighting of all layers.

(18)

In the equation above, stask are softmax normalized weights and is for scaling

the final embedding vector. These parameters can be used to improve the task model.

The representations from all BiLM layers are fed to the task model, which learns a

linear combination of them.

2.4 Flair, Akbik et al. (2018)

The character language model of Akbik et al. (2018), Flair, like TagLM and ELMo,

is a BiLM, with the major difference that it is over characters rather than words. This

model has the following properties:

1. It can be pretrained in an unsupervised fashion on large unlabeled corpora.
2. It yields contextualized embeddings (referred to as contextual string
embeddings).
3. It models words in their context as sequences of characters.

Properties (1) and (2) are the same as those of a word LM such as ELMo. Property

(3), however, is unique to a character LM, hence CharLM, and is perhaps the biggest

benefit of using one over a word LM. When a word not in the training data is

encountered, a normal LM, much like a pretrained embedding, is forced to assign the

representation of an unknown symbol (<UNK>). Although it has been noted that

CharLMs often perform somewhat worse than word LMs, reflected in higher

perplexity (Graves 2014), we will see that Flair, in fact, performs better than LM-

fueled sequence taggers such as ELMo.

23

There is a growing body of research demonstrating that neural models trained

to predict the following character given a preceding character history internalize

morphosyntactic and semantic knowledge (Akbik et al. 2018; Graves 2013). This is

most surprising since these networks are trained without any grammatical data, or

even explicit notion of word or sentence boundaries, yet are perfectly capable of

generating grammatically correct sentences.

A CharLM works in an analogous fashion to a word LM, except that now the

task is to predict the probability of an input character sequence , using one

or more layers of BiRNN, whether BiLSTM or BiGRU.

(19) ,

The forward LM internalizes the history of characters seen so far in its internal states,

which are output at each step t, until reaching the end of the sequence. Like in a word

LM, a prediction can be made for the next character at any point ct+1. Next, we

reverse the process for , yielding the backward states.

24

(20)

In the case of the word model, recall that and represented the

word embedding. In the case of a stream of characters with no word markers, the

initial and final states need to be extracted, but can be done easily with offsets,

analogously to extracting a word from a sentence embedded in a word LM.

As in ELMo, these word representations are then concatenated

. These embeddings are computed not just on the characters

of a word, but on a window of characters surrounding the word and thus reflect much

larger context which captures all of the meanings a word may have (polysemy).

The sequence labeling architecture of the Flair model is similar to other state-

of-the-art systems like ELMo, making use of a BiLSTM and CRF decoder. In

contrast to ELMo, there is only one LSTM layer, and the CharLM embeddings can

thus only be concatenated as input to this layer. For instance, one can stack the

CharLM embedding with a pretrained context insensitive embedding such as

word2vec.

(21)

25

These word embeddings are next fed to the BiLSTM where forward and backward

states for each token are concatenated, representing a longer range sentential context

around each token wt.

(22)

This representation can then be input to a final softmax layer for a prediction, similar

to the classical LM described above.

(23)

Recall from §1.1.1 that in CRFs weight s are associated with feature

functions.

(24)

Applying this to a neural sequence model, we have

(25) , where

The best Flair model performance on downstream tasks is achieved when

CharLM embeddings are trained and stacked with pretrained word embeddings, and

potentially in task character-level embeddings as well, and then fed to a sequence

model with a CRF decoder. The Flair language model for all published tasks was

trained with the following hyperparameters:

26

Parameter Value

Character window size
Learning rate before annealing
BiLM layers
BiLSTM state size
Gradient clipping
Dropout
Batch size

250
20
1
2048
.25
.5
100

Table 6: Flair CharLM

 For sequencing tasks, the following hyperparameters were used:

Parameter Value

Character window size
BiLM layers
BiLSTM state size
Variational dropout
Learning rate model selection
Batch size model selection

250
1
256
.5
{.01, .05, .1}
{8, 16, 32}

Table 7: Flair sequence model

The results for NER and Chunking in English, for the Flair model leveraging

pretrained word embeddings (PWE) and character-level embeddings is given below,

along with the results for ELMo and TagLM.

 ARCHITECTURE

 NER CHUNKING

 F1 F1

 FLAIRPWE+CLE 93.09 96.72

 ELMO 92.22 -------

 TAGLM 97.42 96.37

 Table 8: Results for Flair vis-à-vis Peters et al. (2017, 2018)

These state-of-the-art results are what led me to choose to train a Flair CharLM for

the Portuguese sequence labeling experiments which are explored in the next chapter.

27

CHAPTER 3

Models

In this section, I describe the experimental utilized for the chosen sequence labeling

tasks (PoS tagging, NER, and VMWE identification) outlined in chapters 4, 5, and 6.

3.1 Character Language Models (CharLMs)

To obtain effective character language models (CharLMs) it is necessary to train for

around two or more weeks with sufficient data. I chose to train Flair language

models because of the phenomenal results reported by Akbik et al. (2018) for several

sequence labeling tasks (§2,4), combined with the relative ease of training, both in

terms of computational resources and time. I was interested in training LMs for

Portuguese because of my passion for and knowledge of this language for which

resources are lacking. The authors of Flair also indicated to me that contributions for

this language were in demand and welcomed3. In the next section, I describe the

training of these CharLMs, as well as the sequence model I implemented in detail.

3.1.1 Training data

CharLMs were trained on .9B words of Portuguese CommonCrawl text4. Chelba et

al. (2014) describes the preparation of benchmark training data for language models

(One Billion Word Benchmark5). The standards established in this work were

followed whenever possible.

(26) Preprocessing of CommonCrawl data

3.Models contributed here: https://github.com/zalandoresearch/flair/blob/master/resources/docs
4. https://www.statmt.org/ngrams/
5. http://www.statmt.org/lm-benchmark/

28

Normalization and tokenization was performed

Duplication was performed6

Data was split into 100 disjoint partitions (shards)

1% of the data was chosen as heldout

Heldout was split equally into heldout and test sets7

In addition, since much of the CommonCrawl data were messy, containing

short or incomplete sentences, sentences less than 3 words or 20 characters and

greater than 100 words were removed, the latter because of concerns of required

memory for training. Tokenization was performed with a Portuguese regular

expression tokenizer which I implemented in Python. However, this step was

probably unnecessary because the CharLM treats the text as a string of tokens.

3.1.2 Training

Both forward and backward CharLMs were trained for a little over two weeks,

reaching development perplexity of 2.78 and 2.81 respectively. The following

hyperparameters, recommended in Akbik et al. (2018), were used:

Parameter Value

Character window size
Learning rate before annealing
BiLM layers
BiLSTM state size
Gradient clipping
Dropout
Batch size

250
20
1
2048
.25
.5
100

Table 9: Hyperparameters for CharLMs

6.The CommonCrawl data used was deduped.
7. This differs from the specified split of heldout into 50 partitions, taking one for test (2%) of total
data.

29

3.2 Sequence Model

Although Flair includes an out-of-the-box sequence tagger implemented in PyTorch8,

I chose to implement my own in TensorFlow9. This decision was based in part on my

already having implemented an—albeit simple—sequence tagger in TensorFlow.

Furthermore, I wanted to extend the features of the Flair tagger, a task which I

deemed would be easier for me in TensorFlow than in PyTorch. The following

features either not present or not readily adaptable (character embeddings) in Flair

were added in my implementation:

(27) Features implemented in addition to those present in Flair

1. Trainable in task word embeddings

2. Trainable in task lemma embeddings

3. Trainable in task PoS embeddings

4. Trainable in task character-level embeddings

5. Several types of dropout applicable in different layers

6. Batch normalization applicable in different layers

7. Verbal Multiword Expression (VMWE) specific evaluation using BIOSE

tags

 Often it is useful to train word embeddings specific to the task at hand. This is

particularly useful when the overlap of pretrained vocabulary and in task vocabulary

is far from perfect. Trainable lemmas and PoS embeddings are useful when one has

such training data at one’s disposable. Lemmas help to capture semantic meaning

often lost in highly inflected languages where the total meaning of a word is often

distributed over dozens of related forms. PoS features encapsulate morphological

meaning which for some tasks like NER or VMWE identification are extremely

useful. Like any other embedding, all of these in task embeddings are updated during

training and can be concatenated with other embeddings such as pretrained word and

CharLM embeddings. In the next section, the experimental setups are described.

8. https://github.com/zalandoresearch/flair
9. https://github.com/ericlief/sequence-tagger.git

30

3.3 Experiments

In order to assess the performance of the variety of embeddings at one’s disposal for

a particular sequence labeling task, I conducted a series of task-specific experiments.

It was also my aim to gain a better understanding of the inherent semantics of such

embeddings.

3.3.1 Tasks

I evaluated three classic sequence labeling tasks using available Portuguese datasets,

namely Part of Speech (PoS) tagging using the MacMorpho corpus and CoNLL-2003

evaluation scripts , Named Entity Recognition (NER) using the HAREM corpus and

CoNLL-2003 evaluation scripts, and Verbal Multiword Expression (VMWE)

identification using the Portuguese PARSEME data and evaluation scripts. PoS

tagging was chosen in order to evaluate the effectiveness of the embeddings for

shallow syntactic tasks, and NER and VMWE in order to assess the embeddings for

shallow semantic tasks (Akibik et al. 2018).

3.3.2 Experimental Setup

For baselines, I chose to evaluate setups utilizing only pretrained word embeddings10.

These are essentially reimplementations of earlier state of the art approaches within a

BiLSTM-CRF sequence labeling architecture (Akibik et al. 2018). Experimental

evaluation of these setups will determine how well the CharLM and other in task

embeddings perform over earlier approaches.

The baseline setups are:

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

10. 300-dim fastText embeddings were used for all experiments https://s3-us-west-1.amazonaws.com/
fasttext-vectors/word-vectors-v2/cc.pt.300.vec.gz

31

LAMPLE: A hierarchical BiLSTM-CRF setup with pretrained word
embeddings and in task character-level embeddings—a
reimplementation of Lample et al. (2016)

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE) and in task
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF setup with with pretrained character
language model (CharLM) and both in task word (WE) and in task
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and
both in task word (WE) and in task character character-level
embeddings (CLE)

There are three additional experimental setups for the task of Verbal

Multiword Expression (VMWE) identification:

FLAIR+ALL+LEMMA: A BiLSTM-CRF setup with pretrained character
language model (CharLM) and with pretrained word embeddings
(PWE) and in task word (WE), character character-level (CLE), and
lemma (LEMMA) embeddings

FLAIR+ALL+TAG: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and in
task word (WE), character character-level (CLE), and tag (TAG)
embeddings

32

FLAIR+ALL+LEMMA+TAG: A BiLSTM-CRF setup with pretrained character
language model (CharLM) and with pretrained word embeddings
(PWE) and in task word (WE), character-level (CLE), lemma
(LEMMA), and tag (TAG) embeddings.

In the next chapter, we explore the task of PoS tagging.

33

CHAPTER 4

Part of Speech (PoS) Tagging

Part of Speech tagging (PoS) consists in classifying a token with respect to a

morphosyntactic category such as Noun, Verb, Adposition, etc. (i.e. part of speech).

Although not so difficult and interesting a task in itself, PoS tagging is an important

lower-level task necessary for higher-ones such as chunking and parsing. Although

not required for other tasks such as Named Entity Recognition (NER) and MultiWord

Expressions (MWEs), as we will see in the next section, training with PoS features

usually improves performance. Though there are universal grammatical categories

such as Noun, Verb, or Adjective, most corpora are annotated with finer-grained

language-specific grammatical categories. As a consequence, there is quite a degree

of divergence in both the types of tags found and the size of the tagsets. For

instance, the Prague Dependency Treebank (PDT) tagset for Czech, a highly

inflected East Slavic language, contains 1547 distinct tags, while the Penn Treebank

English tagset contains only 36.

Portuguese possesses a rich morphology, but like all Romance languages its

verbs inflect more than its nouns. The most popular tagsets for Portuguese only

identify Verb or Verbal Auxiliary—and the handful of nominal tags, unlike the PDT

tagset, do not reflect gender or number. We are thus left with a diminished and

somewhat biased set of tags which seems to be modeled on lesser inflected English.

4.1 Data

For the PoS task, although there are several available corpora annotated with PoS

tags (e.g. Bosque, see Afonso et al. 2002), I chose Mac-Morpho (Aluísio 2003)11,

which is currently the largest one with the most reported task results. Mac-Morpho is

around one million words and is composed of 109 files from the newspaper Folha de

São Paulo, divided into 10 sections such as politics, sports, agriculture, etc. There

are two three versions of Mac-Morpho and it appears that most of the recent

11. http://nilc.icmc.usp.br/macmorpho/

34

published results use the first version (e.g. dos Santos et al. 2014). For comparability,

I chose to use this version. Below are some corpus statistics

SENTENCES TOKENS

TRAIN 42,022 957,439

DEV 2,211 50,232

TEST 9,141 213,794

53,374 1,221,465

Table 10: Mac-Morpho v.1

At somewhat over 1.2 million words, the corpus is one of the largest for PoS

tagging. Its format is simple, providing only form and tag and no other features such

as lemma for training. Its tagset contains 41 tags, 22 PoS tags and 19 punctuation

tags. In later versions of the corpus, all punctuation is subsumed under the PUN tag.

Below is an sample from the data set.

(28) Mac-Morpho (v. 1) format

"_" Ao_PREP lançar_V as_ART sementes_N em_PREP a_ART terra_N

o_ART produtor_N já_ADV deve_VAUX ter_V em_PREP mente_N a_ART

etapa_N de_PREP a_ART colheita_N ._.

4.2 Evaluation

Following dos Santos et al. (2014), the CONLL-2003 evaluation script was used to

evaluate the NER task. Accuracy is the most used metric for PoS tagging. Since

every token must receive a tag and all tags are included in the calculation, evaluation

is thus per token, rather than per entity, as we will see for the tasks of NER and

MWE identification. Note that true positive (tp) are correctly identified tags, true

negative (tn) are correctly not identified tags, false positive (fp) are misidentified

tags, and (fn) tags missed that should have been identified.

35

(29) Evaluation metric

Accuracy is the number of correct tags (tp and tn) divided by the total tagged

tokens (tp + tn + fp + fn):

4.3 Recent Neural models for Portuguese PoS tagging

In this section, we review the model which advanced the state of the art in PoS

tagging for Portuguese (dos Santos and Zadrozny 2014) using the Mac-Morpho

corpus.

4.3.1 CharWNN, dos Santos and Zadrozny (2014)

The deep neural network of dos Santos and Zadrozny (2014) is based on Collobert et

al.’s (2011) Window Approach Network. This neural architecture was one of the first

of its kind to automate the feature engineering process, instead of relying entirely on

hand-crafted features. In each layer of the model, a different set of features is

extracted12. One of the novelties of this type of network is that it is one of the earlier

approaches to use the concept of window for sequence labeling. The context of a

word is represented by concatenating surrounding words to the input. Tag prediction

thus takes into account not just the input token, but also the words around it, its

context. This is summarized below.

12. Some variants of this network allow the manual introduction of features such as capitalization and
suffix information.

36

As figure 12 illustrates, the network consists of several layers: embedding

layer (lookup table), classification layer (two linear layers with a HardTanh

sandwiched in between, and a decoding layer (viterbi). A lookup table is used to

embed the words in the sentence, with the central word in the window being the one

we wish to classify (the word of interest). These words are concatenated into one

long vector, which is then passed to the remaining layers for classification.

Dos Santos et al. (2014) modifies this architecture slightly, adding a

character-level representation. Character-level embeddings are obtained with a

convolutional neural network (CNN). CNNs (LeCun 1998) are a special type of

network for processing data with a grid-like topology such as images, time-series

37

data, etc. (Goodfellow et al. 2016). Like RNNs, CNNs are especially good at

contextualizing data, as convolution is a linear operation like matrix multiplication

that maps surrounding input features to an output or feature map. Usually, in another

layer, a pooling function replaces output at one location with a summary statistic of

nearby output. Max pooling and average pooling are the most frequent functions.

In NLP, since sequences are normally 1-D, or 2-D when dealing with

embeddings, 1-D convolution is applied over each input. We can visualize this below

in Figure 13 with the sentence I like this movie very much! The convolution will be

applied over the 2-D sentence matrix using 3 filter (or kernel) sizes, 2 x 2, 2 x 3, and

2 x 4, with 2 of each filter, yielding 2 feature maps for each size. The way this works

is that the filter slides over the sentence from start to finish, and an element-wise

matrix multiplication (convolution) is applied in each region, across all channels or

dimensions, yielding a scalar output or map. Next, for each map size, max pooling

takes the maximum value, thus normalizing the dimensionality of outputs (here size

two or the number of filters per size). Finally, the outputs are concatenated and this

vector is passed to the next layer, here a softmax layer with which the sentence is

classified, for instance as being of positive or negative sentiment (polarity).

38

CNNs are quite effective for forming context-sensitive character-level

embeddings, in an analogous fashion as that depicted above, but over characters

rather than words. After getting a representation for all unique words in a mini-

batch, these features can be used as a lookup table that can be indexed by the ids of

words in the batch sentences, yielding character embeddings.

For the task of PoS tagging, dos Santos et al. (2014) uses the Mac-Morpho

corpus (v. 1). Below are the hyperparameters of the network.

39

Parameter Value

Word embedding dimension
Character embedding dimension
Word and character content window size
CNN filters
Hidden units
Learning rate

100
10
5
50
300
.0075

Table 11: CharWNN sequence tagging model, dos Santos et al. (2014)

Dos Santos et al. (2014) achieved state of the art results for Portuguese, slightly more

than earlier results which did not utilize neural networks and which relied on feature

engineering. Below are the results of CharWNN and some of the different

architectures also experimented with which utilize only word embeddings (WNN) in

combination with manually added features such as capitalization and suffixes.

ARCHITECTURE FEATURES ACCURACY

CHARWNN – 97.47

WNN – 96.19

WNN CAPS+SUF3 97.42

WNN CAPS 97.27

WNN SUF3 86.35

Table 12: Results (dos Santos et al. 2014)

The addition of character embeddings improves performance. Dos Santos et

al. (2014) reports an error reduction of 58% in out of vocabulary (OOV) words. This

is because character-level representations can be constructed for words not seen in

the training data. The addition of capitalization and suffix features, however, shows

mixed results13.

We have seen how successful deep neural models perform in sequence

tagging tasks such as PoS tagging. Incorporating word embeddings in combination

with character-level word embeddings such as dos Santos et al. (2014) leads to state

of the art results. This suggests that character features reduce the OOV error rate are

better at representing morphological or subword features than word embeddings

13. It is not clear to me why the addition of suffix features by themselves worsens performance, while

the combination of both features slightly improves accuracy.

40

alone are. In the next section, we will see how the use of a character LM (CharLM)

leads to state-of-the-art results for PoS tagging.

4.4 Model

The sequence labeling model introduced in §3.2, leveraging character language

models (CharLMs), was utilized for the PoS tagging task. Below I describe the

tuning of the hyperparameters and several distinct combinations of input

representations (features) that were evaluated.

4.4.1 Setups

The baseline and experimental setups described in §3.3.2 (presented below for

convenience) were applied to the PoS tagging task.

The baseline setups are:

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

LAMPLE: A hierarchical BiLSTM-CRF setup with pretrained word
embeddings and in task character-level embeddings—a
reimplementation of Lample et al. (2016)

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task character-level embeddings (CLE)

41

FLAIR+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE) and in task
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF setup with with pretrained character
language model (CharLM) and both in task word (WE) and in task
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and
both in task word (WE) and in task character character-level
embeddings (CLE)

The two baseline setups HUANG and LAMPLE are essentially reimplementations of

Huang and Yu (2015) and Lample et al. (2016) respectively. These two setups do

not utilize a language model and serve to establish the usefulness of adding character

LM embeddings. The remaining setups are all combinations of different embeddings

with the basic FLAIR model and in a similar fashion will give us insight into the gain

associated with adding each of these features to the basic configuration.

4.4.2 Hyperparameters

I experimented with character embeddings extracted from an RNN (BiLSTM) as

well as from a CNN, like that utilized by dos Santos et al. (2014). A variety of

different setups with varying number of filters and kernel sizes were experimented

with. As it turns out, the CNN performs on a par with the RNN for character-level

embeddings. Furthermore, batch normalization versus dropout was tested with

several different configurations for the CNN:

42

(30) CNN block configurations
1. Conv [no activation] – Norm – Pooling
2. Conv [+ ReLU] – Pooling – Norm
3. Conv – Norm – ReLU – Pooling

Configuration (1) consistently outperformed the others and was thus selected as the

default for the the setups involving character embeddings for the tasks carried out for

this thesis. Table 13 below show the results for these parameters with the FLAIR+ALL

setup, vis-à-vis the same model with RNN character embeddings, with hidden state

size of 256. Note that the notation used is #filters-max_kernel_size, e.g. 300-3

denotes 300 filters, with kernels of size 2 and 3. All of the results are quite similar

and it appears that minimally 200 filters with kernel sizes 2, 3, and possibly 4 are

adequate to extract features at the character level for words.

MODEL ACCURACY

200-3 97.46

200-4 97.49

300-3 97.49

300-4 97.48

400-3 97.46

400-4 97.49

500-3 97.46

500-4 97.44

 RNN char. emb. 97.49

Table 13: CNN versus RNN for Character Embeddings (PoS Tagging)

Given the equal performance, I selected the RNN (BiLSTM) character

embeddings for this task. 256 hidden units were found to be optimal for the

embeddings. A number of experiments were next run with differing batch

normalization and dropout schemes, and the best results were obtained with only

43

dropout before the character-level LSTM and dropout using a different mask (non-

variational) at each time step of the sentence-level LSTM14. Dropping out at other

layers (input, output) yielded worse results. Batch normalization was also found to be

most beneficial when applied before the sentence-level LSTM. The reason dropout

was advantageous for the in task character embeddings was most likely because

character embeddings in combination with the CharLM were somewhat redundant

and applying dropout hindered overfitting and allowed the model to generalize more

within the input representation. Varying RNN sizes were tested, and 512 hidden units

was found to be optimal. These hyperparameters are summarized in Table 14 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word embedding dimension
Character BiLSTM state size
BiLSTM state size
Optimizer
Gradient clipping
Dropout before character BiLSTM
Locked dropout BiLSTMs
batch normalization before sentence-level BiLSTM
Initial learning rate
Annealing rate
Patience
Batch size
Epochs

300
512
256
512
SGD
.25
.5
.5
True
.1
.5
5
32
50

 Table 14: Hyperparameters of PoS sequence tagger

4.5 Results

The results for the baselines, setups, and best published result for the PoS task are

summarized below in Table 14.

14. In TensorFlow DropoutWrapper was used, with variational set to false. Using the recurrent
variational options consistently degraded performance.

44

MODEL ACCURACY

baselines

HUANG 85.88

LAMPLE 89.15

FLAIR 97.20

FLAIR+PWE 97.24

FLAIR+CLE 97.32

FLAIR+WE 97.44

FLAIR+PWE+CLE 97.08

FLAIR+PWE+WE 97.30

FLAIR+WE+CLE 97.10

FLAIR+ALL 97.49

best published

dos Santos et al. (2014) 97.47

Table 15: Model Results (PoS Tagging)

The best model is FLAIR+ALL, which surpasses dos Santos et al. (2014) by .02

pp. (.8% error reduction). It is not clear to the author why higher gains were not

observed here. As mentioned above, numerous hyperparameters were tested and all

led to results capped at 97.49. In addition to CNN in task character-level

embeddings, the window-based model of dos Santos et al. (2014) utilized pretrained

embeddings and in task word and character windows, perhaps approximating a

context-sensitive CharLM with added in task character embeddings, i.e. FLAIR+PWE+CLE.

In terms of the other setups, it is interesting that adding in task word

embeddings (FLAIR+WE) shows performance almost as good as the best full ensemble.

When either pretrained word or in task character embeddings are added to the base

setup (FLAIR+PWE, FLAIR+CLE), slight gains are observed. Of all embeddings, the in task

word embeddings fair the best. This is because we have plenty of training data and

learning task-specific semantic features is not an issue. For the opposite trend, see the

NER results (§5.6.3) However, performance is worse than FLAIR+WE when either one

is added in combination with in task word embeddings (FLAIR+PWE+WE, FLAIR+WE+CLE).

45

There may be some degree of redundancy here, as the pretrained CharLM and in task

word embeddings may effectively represent the word and character-level features

necessary for this task. In other words, when more information is added, these

extraneous features confound learning and lead to slight overfitting. To remedy this

dropout was applied before the character BiLSTM.

The performance of the baseline setups underscores the gains achieved by

adding CharLM embeddings. This is most likely due to the shallow morphosyntactic

features (i.e. suffixes), as well as orthographic features such as capitalization,

important for PoS tagging, which are encoded in the character-based LM. The high

margin in the performance of FLAIR, with context-sensitive embeddings versus the

LAMPLE reimplementation, with context-insensitive in task character-level

embeddings (74% error reduction), also demonstrates the importance of context in

this task, i.e. the same word form may have differing PoS tags in different contexts,

cf. English miss (Noun) vs. vs. miss (Verb).

4.6 Conclusions

In this chapter, we have explored the task of PoS tagging and seen how the use of a

character language model (CharLM) greatly improves the results for this task. When

a pretrained CharLM is used in conjunction with in task word embeddings more

gains are observed. It is believed that this is because the size of the data is sufficient

for training these task-specific semantic representations. When all of the embeddings

are combined in the full setup, even greater gains are achieved (F-score of 97.49),

surpassing the published state of the art. This underscores the importance of utilizing

both precomputed contextualized and non-contextualized word representations in an

ensemble with task-specific word features.

46

CHAPTER 5

Named Entity Recognition (NER)

The task of named entity recognition (NER) is concerned with finding named entity

mentions in unstructured text and classifying them into predefined categories such as

person, location, or organization. NER has many applications in machine translation,

information retrieval, question answering, etc. Traditionally rule-based approaches

were quite popular. Like most rule-based approaches the process was time

consuming. In the last ten to fifteen years, machine learning approaches have been

quite successful and for the most part supplanted rule-based approaches. Early ML

NER models included Hidden Markov Models (Zhao 2004; Todorovic et al 2008). In

the last few years deep learning models have been extremely successful (Akbik et al.

2018, Peters et al. 2018).

Since the MUC-7 (Chinchor 1998) and CoNLL-2002 (Sang & De Meulder,

2003) shared tasks and the 2004 HAREM contest for Portuguese (dos Santos et al.

2006), NER has received much attention. In this chapter, we will first examine the

Portuguese HAREM data set. Next, the most prominent neural approach to this task

(dos Santos and Guimarães 2015). Finally, I present experimental setups and

hyperparameters used for this task.

47

5.1 Toward a Definition of Named Entity

The term named entity was first introduced in the MUC-6 conference, whose

goal it was to define PERSON, ORGANIZATION and LOCATION textual mentions

(Grishman et al. 1996). In addition to these three classes for named entity

expressions (ENAMEX), there were also numerical expressions, e.g time, money and

dates (NUMEX). The CoNLL-2003 and CoNLL-2003 shared tasks brought further

recognition to NER. These tasks identify four classes: PERSON, ORGANIZATION,

LOCATION, MISCELLANEOUS.

Named entities are sometimes loosely referred to as proper nouns, which in

philosophical circles are often defined as rigid designators (Kripke 1971). In

Kripke’s theory, a proper noun refers to the same referent in every possible world,

whereas a description in another world or reality could potentially refer to some other

object. For instance, the description the oil company founded by John D. Rockefeller

in 1870 originally referred to Standard Oil. Whereas the description could plausibly

refer to another object in another world—and even in this world to any one of the 34

entities that the company was broken up into by the U.S. Supreme Court

(ExxonMobil, Chevron, etc.) —the proper noun Standard Oil can refer only to the

original organization and is thereby rigid. In some cases, however, some entities are

not strictly rigid. For instance, the President of the United States could refer to more

than one entity (Domingues-Fernandes 2018).

The task of NER is sometimes not as easy as it may seem. Consider the

following example.

(31) [Paris Hilton]PERS flew to [Paris]LOC on the [25th of August]DATE .

The noun Paris can refer to an individual or a place. If we wish to automate this task,

it is clear that the whole context as well as perhaps other features such as PoS may be

necessary to disambiguate these named entities. However, just as we saw with PoS

tagging, the tagsets for NER are also often task or language-specific. Dates and

numbers, which are not usually considered proper nouns, are sometimes considered

48

entities because they may in fact be rigid, e.g. the 25th of August of a given year.

However, the year is above implied.

Although there is much task-specific variation as regards tagsets, the

annotation scheme used to identify the start and end of a named entity sequence is

usually BIO (Beginning, Inside, Outside) and less commonly BIOSE (Beginning,

Inside, Outside, Single, Ending). Using the BIO scheme, again for the previous

sentence, we have:

(32) Paris Hilton flew to Paris on the

B-PERS I-PERS O O B-LOC O O

25th of August .

B-DATE I-DATE I-DATE O

The outside (O) tag guarantees that all input words have a label, allowing the entire

sentence to be processed by a neural network. The classification task in an abstract

sense here is thus one of first identifying entity ~ non-entity (O) and then classifying

the entity.

5.2 Data

There are few Portuguese NER datasets. The largest corpus, produced originally for

the HAREM contest (dos Santos et al. 2006), is quite small, containing a little more

than 150K words, nearly 13% of the Mac-Morpho15. Below are some corpus

statistics.

15. There are two versions. The first HAREM was used: https://www.linguateca.pt/HAREM

49

SENTENCES TOKENS

TRAIN 3,480 87,643

DEV 202 4,589

TEST 2,590 62,440

6,272 154,672

Table 16: HAREM V. 1 Corpus Statistics

The HAREM corpus is actually comprised of two datasets, HAREM and

miniHAREM, containing 10 named entity categories: Person (PESSOA),

organization (ORGANIZACAO), Location (LOCAL), Value (VALOR), Time

(TEMPO), Abstraction (ABSTRACCAO), Title/Work (OBRA), Event

(ACONTECIMENTO), Thing (COISA), and Other (OUTRO).

For the data used in my experiments, I followed the standard used by (dos

Santos and Guimarães 2015), which splits HAREM-I into training (95%) and

development (5%) sets, and uses miniHAREM for the test set. Because splitting was

done randomly, however, tag distribution of my data is somewhat different from this

author’s. Below in Table 17 is the breakdown for tags. Note that there are 8594 total

entities and that Location followed by Person are the most frequent tags.

TRAIN DEV TEST

PESSOA 918 (.20) 115 (.28) 830 (.23) 1863

ORGANIZACAO 858 (.19) 65 (.16) 599 (.17) 1522

LOCAL 1151 (.25) 71 (.17) 875 (.24) 2097

VALOR 404 (.09) 59 (.14) 325 (.09) 788

TEMPO 401 (.09) 34 (.08) 360 (.10) 795

ABSTRACCAO 375 (.08) 25 (.06) 203 (.06) 603

OBRA 189 (.04) 7 (.02) 191 (.05) 387

ACONTECIMENTO 94 (.02) 34 (.08) 57 (.02) 185

COISA 130 (.03) 1 (0) 170 (.05) 301

OUTRO 36 (0) 3 (.01) 14 (0) 53

4556 414 3624 8594

Table 17: HAREM Tag Distribution

50

The HAREM data are in XML format. I used scripts prepared by Domingues-

Fernandes (2018) to convert this format into CoNLL column format16. Unlike the

CoNLL datasets with available PoS tags, HAREM only contains word form and

NER tag column features. For instance, for the sentence Benvindos à página Web do

Aeroclube de Torres Vedras ‘Welcome to the webpage of the flight club Torres

Vedras’ we have:

(33) Benvindos O

à O
página O
Web B-LOCAL
do O
Aeroclube B-ORGANIZACAO
de I-ORGANIZACAO
Torres I-ORGANIZACAO
Vedras I-ORGANIZACAO
. O

In addition, to the standard HAREM with ten classes, there is another

available transformed dataset (selective HAREM) with only four categories similar

to the CoNLL standard, with Person (PER), Organization (ORG), Abstraction

(MISC), Location (LOC) tags17. The tag distribution is given below.

TRAIN DEV TEST

PERSON 1024 (.30) 9 (.08) 830 (.33) 1863

ORG 896 (.26) 27 (.23) 599 (.24) 1522

LOC 1165 (.34) 57 (.48) 875 (.35) 2097

MISC 373 (.10) 27 (.23) 203 (.08) 603

3458 120 2507 6085

Table 18: Selective HAREM Tag Distribution

16. https://github.com/ivoadf/PT_NER_DL

17. https://www.linguateca.pt/aval_conjunta/HAREM/CDSegundoHAREM.xml

51

Although the HAREM dataset is small in size, it is nevertheless important, since it is

one of the few available for NER in Portuguese. In the next section, CRFs are briefly

discussed.

5.3 CRFs for NER

Unlike for PoS tagging, where often the neural model perform fairly well merely

using hidden states as features to make tagging decisions independently of

surrounding context, NER is a task where even stronger dependencies between tags

hold, leading to quite poor performance when using softmax decoding (Lample et al.

2016). CRF’s have proven quite useful for this task. The nature of the BIO or BIOSE

annotation commonly used leads to constraints against I-Y following B-X, which are

quite general, a generalization missed in the absence of a CRF.

5.4 Evaluation

Following dos Santos et al. (2015), the CONLL-2003 evaluation script was used to

evaluate the NER task. Although this same script script was used to evaluate the PoS

task, the computation used is different. For the PoS task, a raw score can be used,

since there are no outside (O) tags. In the case of NER, however, not every token is

inside the span. In other words, only named entity spans (in the predicted and gold

tags) are part of the computation, everything else is outside. Furthermore, in addition

to accuracy, precision, recall and F1 metrics are also reported here. Note that

accuracy is not reported since it included non-entities in its calculation and therefore

is not a reliable indicator of performance.

(34) Evaluation metrics

Precision is the number of correctly identified named entities (tp) divided by

the total retrieved entities (tp + fp):

52

Recall is the number of correctly identified named entities (tp) divided by the

total true entities (tp + fn):

F1 is the harmonic mean precision and recall:

Only complete matches are included in the count and not partial matches. Thus if the

system misses one or more items in the entity span, this does not constitute correct

identification.

5.5 State of the Art for NER in Portuguese

In this section, we discuss two neural models (Dos Santos and Guimarães 2015;

Domingues-Fernandes 2018) with state-of-the-art results for NER using the HAREM

corpus.

5.5.1 CharWNN, dos Santos and Guimarães (2015)

Dos Santos and Guimarães (2015) uses the same architecture as that of dos

Santos and Zadrozny (2014), referred to as the CharWNN model. CharWNN is a

feedforward model which includes pretrained word and in task character

embeddings. For more details refer to section §4.21. Dos Santos et al. (2015) in this

article focuses on the NER task, using the CoNLL-2002 corpus for Spanish and the

HAREM-I corpus for Portuguese. The same hyperparameters are used for both

datasets and are almost identical to those of dos Santos et al. (2014), with the

exception of more convolutional units.

53

Parameter Value

Word embedding dimension
Character embedding dimension
Word and character content window size
CNN filters
Hidden units
Learning rate

100
10
5
200
300
.0075

Table 19: CharWNN NER tagging model, dos Santos et al. (2014)

In the same vein of Santos et al. (2014), dos Santos et al. (2015) also compare

the effect of using different embedding setups, all combinations of word and

character, plus the use of the handcrafted features of capitalization and suffixation

with the word embeddings. The results in Table 20 below were obtained using the

CoNLL 2003 evaluation script18.

MODEL FEATURES TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

CHARWNN word, char 67.16 63.74 65.41 73.93 68.68 71.23

WNN word, cap,
suffix

68.52 63.16 65.73 75.05 68.35 71.54

WNN word, cap,
suffix

63.32 52.23 57.84 68.91 58.77 63.44

WNN word, cap,
suffix

57.10 50.65 53.68 66.30 54.54 59.85

Table 20: Results (dos Santos et al. 2015)19

Except for recall, the CharWNN setup does not completely outperform the WNN

system which lacks character embeddings and utilizes suffix and capitalization

features. Dos Santos et al. (2015) hypothesizes that this may be due to the small size

of the dataset20. See §5.4 below for more regarding this. Dos Santos et al. (2015) also

used a different selective dataset than that described above containing five rather than

ten categories: Person, Organization, Location, Date, Value. This selective scenario

18. These results were evaluated using the CoNLL-2002 evaluation script
https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt
19. Selective Scenario refers to the HAREM selective dataset.
20. The evaluation script from HAREM-I yielded higher scores for dos Santos (2015) et. al.’s model,
but this evaluation was based on criteria other than purely complete span matches

54

yielded more favorable results due to the collapsing of problematic categories into

O. We will discuss this more in §5.6 below.

5.5.2 Domingues-Fernandes (2018)

Domingues-Fernandes’ (2018) master’s thesis deals with NER in Portuguese. He

implements several architectures for the task: the window-based approach of dos

Santos et al. (2015), including extra feature engineering, and several bidirectional

RNN models (BiLSTM with and without in-task character embeddings.

55

As we have seen in our discussion of PoS tagging in the previous chapter,

RNNs are especially adept for sequence labeling. As a consequence, both PoS and

NER tasks can share the same architecture. Domingues-Fernandes (2018) achieves

his best results for the HAREM total dataset using a BiLSTM with character CNN

embeddings (BiLSTM_CNN), based on (Ma & Hovy, 2016). Figure 14 above

illustrates NER with a BiLSTM with character CNN embeddings. Once a word

representation is obtained with the character level embeddings, these features are

concatenated with pretrained word embeddings such as word2vec and fed to the

BiLSTM, which at each timestep outputs a hidden state ht representing the best tag

class given the history. These outputs are then fed to a CRF which outputs a

probability distribution for all output classes for the input sentence.

For the selective scenario, Domingues-Fernandes (2018) achieves his best

results using Lample et al. (2016)’s Theano implementation of a BiLSTM21, referred

to as BiLSTMChar. This model is similar to that of Ma et al. (2016), but uses in-task

character embeddings from a BiLSTM rather than a CNN. Dropout is applied to

concatenated word and character-level representations before the BiLSTM layer. The

forward and backward outputs are concatenated and fed to another tanh dense layer

the same size of the original dimension, thus downsizing the concatenated outputs of

the BiLSTM. The final later is decoded with a CRF. The hyperparameters as well as

results of the model are given below in Tables 21-22.

21. https://github.com/glample/tagger

56

Parameter Value

Character CNN kernel size
Number of CNN filters
Word embedding dimension
Character embedding dimension
BiLSTM state size
Learning rate
Decay rate
Dropout
Batch size

3
30
64
25
256
.1
.05
.5
16

Table 21: Hyperparameters of BiLSTM with Character CNN [BiLSTM_CNN]
(Domingues-Fernandes 2018)

Parameter Value

Word embedding dimension
Character embedding dimension
Character BiLSTM state size
BiLSTM state size
Learning rate
Dropout
Batch size

100
25
25
100
25
.5

Table 22: Hyperparameters of BiLSTM with BiRNN Character Embeddings
[BiLSTMChar] (Domingues-Fernandes 2018)

The results for both of these models obtained using the CoNLL-2003 script are given

below:

MODEL TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

WNN (dos Santos et al 2015) 68.52 63.16 65.73 75.05 68.35 71.54

BILSTMCHAR 68.94 65.84 67.35 71.90 68.49 70.15

BILSTMCNN 72.64 67.50 69.97 70.67 66.35 68.44

Table 23: Best Results for Domingues-Fernandes (2018)

For the total scenario (10 tags) the BiLSTM with CNN-based character

embeddings outperforms the window-based network with capitalization and suffix

57

features. For the sake of comparison, dos Santos et al (2015)’s selective results are

given here as well, but it should be noted that the datasets used differ in the tagsets

used. In any case, the windows-based approach performs better in this task for the

selective dataset, perhaps suggesting that the usefulness of character-level features

are not as important for NER in the selective scenario. However, the results in §5.5.2

speak in favor of character-level features here, and it seems more likely that what we

are observing here is the impact of the window-based model with its feature

engineering. There, however, is a clear performance gain for the model leveraging

CNN character embeddings in the total scenario. Why the CNN performs better than

the BilSTM for extracting character features is not clear. In the next section, I present

the model and results for the setups I experimented with for this task.

5.6 Model

The sequence labeling model introduced in §3.2, leveraging character language

model (CharLMs) embeddings, which was used in the PoS task (§4.3), was utilized

for the NER tagging task with only fine tuning of the hyperparameters. Below I

describe the hyperparameters found to be optimal and several distinct combinations

of input representations (features) that were evaluated.

5.6.1 Setups

The baseline and experimental setups described in §3.3.2 (presented below for

convenience) were applied to the NER tagging task.

The baseline setups are:

HUANG: A classic BiLSTM-CRF setup with pretrained word embedding
—a reimplementation of Huang et al. (2015)

LAMPLE: A hierarchical BiLSTM-CRF setup with pretrained word
embeddings and in task character-level embeddings—a
reimplementation of Lample et al. (2016)

58

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE) and in task
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and both pretrained and in task word embeddings

FLAIR+WE+CLE: A BiLSTM-CRF setup with with pretrained character
language model (CharLM) and both in task word (WE) and in task
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and
both in task word (WE) and in task character character-level
embeddings (CLE)

5.6.2 Hyperparameters

A handful of experiments were carried out with differing batch normalization and

dropout schemes, and it was found that neither normal nor locked dropout before

either the character-level or sentence-level BiLSTM was favored. Dropping out at

consistently yielded worse results. This contrasts with the PoS tagging task, in which

dropout before LSTMs improved performance. As with PoS tagging, however, batch

normalization before the sentence-level LSTMs helped with overfitting. The reason

dropout did not help with overfitting is not clear.

59

As mentioned, the HAREM dataset was small, and there was a huge margin

in the performance of training and development sets indicative of overfitting. The

dimensionality of the CharLM embeddings alone were 4096, and in each BiLSTM

there are 8 weight matrices, leading to a huge amount of parameters in the setup.

During experimentation a linear layer was added, projecting this high dimension

space to a lower dimension space in the range of 96 to 2048. It turned out that this

worsened performance. Another hyperbolic tangent (tanh) layer was also added

between the BiLSTM and output layer similar to Lample et al. (2016)’s

implementation, but this was also not favorable. The optimal state size for the

BiLSTM tagger was found to be 256, half the size of that of the PoS tagger. This was

most likely due to the small size of the HAREM dataset.

I carried out another experiment with character embeddings from a CNN

rather than an RNN (BiLSTM), similarly to was done for PoS tagging, using the

basic FLAIR setup. The motivation for this was that Domingues-Fernandes (2018)

achieved his best results for the HAREM total dataset using a BiLSTM with

character CNN embeddings (BiLSTM_CNN). The results of this setup based on Ma

and Hovy (2016) are given in Table 24, along with RNN character-level embeddings

(CLE). The notation is #filters-max_kernel_size, e.g. 300-3 denotes 300 filters, with

kernels of size 2 and 3. Despite the number of filters and kernel sizes experimented

with, however, RNN CLE consistently outperformed CNN CLE for both the total

and selective data sets.

60

MODEL- TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

200-3 65.63 62.39 63.97 69.32 64.34 66.74

200-4 65.41 61.89 63.60 67.96 64.74 66.31

300-3 65.17 61.59 63.33 69.12 64.18 66.56

300-4 64.00 62.00 62.99 67.97 65.10 66.50

400-3 65.93 62.75 64.30 68.23 65.78 66.98

400-4 65.04 61.81 63.38 66.01 63.90 64.94

500-3 65.45 63.08 64.24 67.85 65.34 66.57

500-4 64.79 61.48 63.09 68.16 66.02 67.07

RNN CLE 67.13 63.16 65.08 69.75 65.86 67.75

Table 24: Results NER task comparing RNN versus CNN character embeddings

These hyperparameters are summarized in Table 25 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word embedding dimension
Character BiLSTM state size
BiLSTM state size
Optimizer
Gradient clipping
Batch normalization before sentence-level BiLSTM
Initial learning rate
Annealing rate
Patience
Batch size
Epochs

300
256
256
256
SGD
.25
True
.1
.5
5
32
35

Table 25: Hyperparameters for sequence tagger (NER)

61

5.7 Results

In this section I present the models used in experiments with the HAREM dataset.

For the sake of comparability, I used similar datasets as those of dos Santos et al.

(2015) and Domingues-Fernandes (2018), with the only difference being that I used

my own split of training and development sets, following dos Santos et al (2015) and

like both of these authors took the test data from the miniHAREM. For the selective

scenario, I used the same data as Domingues-Fernandes (2018).

 In Table 26 below, the results of these baselines and setups are presented,

vis-à-vis the best published results to my knowledge, dos Santos et al. (2015) and

DOMINGUES-FERNANDES (2018).

MODEL TOTAL SCENARIO SELECTIVE SCENARIO

PR REC F1 PR REC F1

baselines

HUANG 63.11 55.24 58.92 68.20 58.68 63.08

LAMPLE 58.51 55.77 57.11 66.94 60.83 63.74

models

FLAIR 60.41 56.93 58.62 70.05 65.86 67.89

FLAIR+PWE 67.17 62.83 64.93 70.52 65.38 67.85

FLAIR+CLE 65.62 61.84 63.67 71.15 65.19 68.42

FLAIR+WE 65.45 60.95 63.12 69.66 65.94 67.75

FLAIR+PWE+CLE 66.43 62.75 64.54 70.16 65.18 67.58

FLAIR+PWE+WE 65.21 61.09 63.09 70.05 66.53 68.25

FLAIR+WE+CLE 65.42 62.53 63.94 68.53 64.62 66.52

FLAIR+ALL 67.13 63.16 65.08 69.75 65.86 67.75

best published

dos Santos et al. (2015) 68.52 63.16 65.73 75.05 68.35 71.54

Domingues-Fernandes (2018) 72.64 67.50 69.97 71.90 68.49 70.15

Table 26: Results NER task

62

 In the total scenario, it is surprising that the basic FLAIR configuration

performs slightly worse than the one of the baselines, HUANG, with only pretrained

embeddings, and only somewhat better than LAMPLE, with added character

embeddings. Recall that for PoS tagging, the addition of the CharLM to the setup led

to significant error reduction. Addition of pretrained word embeddings to this

configuration leads to a sharp rise in performance, slightly more than that of in task

character or word embeddings. This is the case because of the paucity of training

data. Pretrained word embeddings outperform in task ones when there is not enough

training data for task-specific semantic features to be learned. We have seen the

opposite trend with PoS tagging (§4.4.3), where data was sufficient to learn task-

specific word representations.

When two embeddings of any type are combined, we observe a surprising

drop in performance. This was the case for PoS tagging, such that the performance of

FLAIR+PWE is better. This suggests that this may be overkill for such datasets of small to

medium sizes. However, if this is the case, it is then quite surprising that for the total

scenario combination of all of the embeddings (FLAIR+ALL) leads to the best result

among the setups. More expected would be preference for a simpler model. In light

of the decent performance of baseline HUANG, I hypothesize that although decent

performance is possible with just pretrained word embeddings, the addition of the

LM allows the model to learn shallow semantic structure more than just the word

embeddings by themselves. Similarly, adding character embeddings to this mix, leads

to more favorable results because these in task context-insensitive character

embeddings combined with both pretrained and in task word embeddings lead to

better word semantics than either the context-sensitive LM or context-insensitive

character embeddings in isolation.

In the selective scenario, we observe somewhat different results. Among the

baselines, character-enhanced LAMPLE performs that best, and similarly among the

experimental setups, FLAIR+CLE is the winner. As mentioned in 5.4, the capitalization

and suffix features of dos Santos et al. (2015) seem to be favored here. It is not clear

to me why the CNN-based character embeddings of Domingues-Fernandes (2018)

63

outperforms the LM setups. Perhaps the smaller number of parameters of this simpler

model avoided the mentioned overfitting problem encountered by these experimental

setups.

5.7.1 Errors

In both the total and selective dataset system results, there were some confusions of

Person and Organization, e.g. alunos do 1o Ciclo do Ensino Básico da Escola

Codeçoso (Person) ‘students from the first Cycle of the Elementary School

Codeçoso’. In the total dataset there is a combination of Value, Event, and

Abstraction tags for this entity, which should be all Person. For the selective dataset,

the system labeled the first part of the entity as O (rather than wrong entity classes)

and the last part (Escola Codeçoso) as an Organization, the same as in the total

dataset. Thus it appears that having less tags may have led to less confusion but still

resulted in a missed correct entity. Similarly, feira do Soajo is correctly a Location in

the total dataset, yet labeled as a Person in the selective dataset.

There are some apparent inconsistencies in the annotation that led to very

frequent errors. Titles such as senhor ‘Mr.’ and professor ‘Professor’, which in

Portuguese are not capitalized, are not part of the entity, yet grandmother (avó) and

grandfather (avô) before a noun is included as the entity. In both datasets, often the

title was labeled as Person, and less frequently it was correctly marked as O.

‘Grandmother/grandfather’ was always O. Titles (Obra) were problematic in the total

dataset, and their elimination in the selective dataset seems to have helped.

Abstraction (Misc in the selective dataset) was often missed, e.g. HISTÓRIA

‘history’ or labeled as Organization, e.g. (ministro da) Agricultura (both datasets).

Numerals are often confused, particularly when they are ordinals (i.e. number + o) in

an entity. However, the selective dataset has changed this notation, somewhat

inconsistently, to the fully spelled (non-numeric) ordinal, cf. 1o Ciclo (selective

Primeiro Ciclo) for the above entity, and 1o Cabo ‘first head’ (Person), the same in

both datasets, in which the number is labeled as Value in the total dataset and O in

the selective. In cases like these, both changing spelling and removing the VALUE

tag also has led to better results.

64

5.8 Conclusions

In this chapter, we have focused on the task of NER. In contrast to what we observed

for PoS tagging in Chapter 4, the addition of a character language model (CharLM)

did not lead to immediate improvement over the baselines for this task. It was

speculated that this was because of the paucity of training data. This hypothesis

seems to have been confirmed, because when pretrained word embeddings,

independent of the task at hand, were added to the base CharLM, significant gains

were achieved. Thus the precomputed fastText embeddings allowed the model to

learn word representations that were not possible with task-specific word and

character-level embeddings alone. When all of the embeddings are combined in the

full setup, slightly more gains were achieved, again demonstrating the usefulness of

using both precomputed contextualized and non-contextualized word representations

in an ensemble with task-specific word features.

65

CHAPTER 6

Verbal Multiword Expression (VMWE)

Identification

The task of verbal multiword expression (VMWE) identification is similar to NER,

in that it involves detecting a specific type of linguistic construction in unstructured

text and then classifying it into a fine grained category such as verbal idiom (take a

nap, fly off one’s rocker) or light verb construction (make a decision, do some

thinking). Multiword expressions are idiosyncratic and typically non-compositional

in meaning and are long considered a ‘pain in the neck’ for NLP (Sag et al. 2012).

MWE identification is often a necessary step in machine translation and

parsing. The international research community PARSEME is devoted to the task and

organizes regular workshops (the first MWE workshop in 2008) and multilingual

shared tasks since 2017 (Savary et al. 2018). In this chapter, we will first define

MWEs and then examine some of the published results for the PARSEME shared

task. Finally, I present experimental setups and hyperparameters I used for this task.

6.1 Toward a Definition of MWE

Consider the following examples:

(35) Benvindos O
à O
página O
Web B-LOCAL
do O
Aeroclube B-ORGANIZACAO
de I-ORGANIZACAO
Torres I-ORGANIZACAO
Vedras I-ORGANIZACAO

66

(36) After much frustration at work, John called it a day.

(37) Ela tocou no assunto.

She touched.3.SG on-the matter.

She discussed the matter.

(38) Gabriela quer se fazer médica

Gabriela want-3.SG REFL.3.SG make doctor

 Gabriela wants to be a doctor.

(39) Estende-se por uma área de 29,34 km2.

Extends.REFL.3.SG through an area of 29,34 km2.

 It extends for an area of 29,34 km2.

The meaning of the idiom call it a day ‘finish’ in (36) is not derivable from its parts

and is thus non-compositional. While the Portuguese idiom tocar no assunto

‘discuss, comment’ in (37) may be partially compositional, since to touch something

is metaphorically to elaborate on it, to a nonnative speaker, this construction would

most likely need to be learned by special rule. The reflexive constructions in (38-39)

are also problematic. In (38) fazer-se is not strictly to make oneself, and extender-se

in (39) is not really to extend oneself. The reflexive clitic pronoun here intransitivizes

the verb, adding a nuanced meaning in (38) but not in (39), which is thus not a

VMWE. Typically VMWEs such as (35-38) are fully to partially non-compositional

on the scale of compositionality.

 The following properties are among the most typical of VMWEs (Savary et

al. 2018):

1. Semantic non-compositionality: The meaning of VMWEs cannot be
inferred in a grammatically regular way from their parts.

2. Lexical and grammatical rigidity: VMWEs are subject to lexico-
grammatical constraints. When words in an idiom are replaced by related
words, the expression loses its idiomatic meaning, e.g. call it a day →
*denominate it a day, tocar no assunto → *apalpar o assunto. If the
expression is modified syntactically, it may lose its meaning in the case of
an idiom—e.g. *call it a long day.

3. Grammatical variability: In spite of (2), VMWEs still inflect and undergo
passivization and those that are light verbs can accept modifiers, e.g. John
takes (took, etc.) a long nap.

67

4. Discontinuity: The variability in (3) often leads to discontinuous
components of the VMWE., e.g. John takes a long nap, Naps are often
taken after heavy meals.

These properties make task of VMWE identification challenging, more so

than NER, since named entities by their vary definition are rigid designators and

quite easy to detect. In the next section, we explore the VMWE categories of the

PARSEME shared task.

6.2 PARSEME Shared Task

The PARSEME (Savary et al. 2018) multilingual shared task on VMWE

identification, organized by the European PARSEME community, is the largest of its

kind. There have been open and closed track competitions in 2017 and 2018. The

2017 event (Savary et al. 2017) included 18 languages. The 2018 (Savary et al. 2018)

event involved some changes in the categories, data format, and languages. I chose to

work only with the Portuguese data since I have only trained language models for

this language and it was my goal to utilize experimental setups similar to those

presented in §4.3.2 and §5.5.2. I also chose to work with the 2017 PARSEME data in

order to compare my results to those of previous neural implementations.

6.2.1 VMWE typology

The 2017 PARSEME shared task identifies both language-agnostic (universal) and

language-specific VMWE types. Among language-agnostic types, which are shared

by all languages in the task, are:

1. Light Verb Constructions (LVCs) in which the verb has lost its meaning (i.e is
bleached), taking on the meaning of its nominal complement

Eu dei uma caminada.
I gave a walk.
I took a walk.

68

Isso me dá dor de cabeça.
 That me give.3.SG pain of head.
 That gives me a headache.

2. Idioms (ID):
 Ele sempre faz das suas.

 He always do.3.SG of his own.
 He always does stupid things.

Among the language-specific types, which characterize some but not all languages,

are:

3. Inherently Reflexive Verbs (IReflVs): Frequent in Romance and languages,
 where the pronoun changes the meaning or subcategorization frame of the

 verb
O professor se enganou.
The professor 3.SG.REFL deceived.
The professor made a mistake.

4. Verb Particle Constructions (VPCs): Pervasive in Germanic and Hungarian,
 rare in Romance and Slavic. The particle completely alters the meaning of
 the verb, e.g. to do in ‘kill’ or adds a predictable non spatial meaning to the
 verb (Ramisch et al. 2018), e.g. to eat up

5. Other: Not belonging to (1-4), e.g. to drink and drive, to short-circuit

No category is present in all languages, but ID and LVC are used in almost

languages, while the most frequent category in all the corpora is IReflV due to its

pervasiveness in Slavic and Romance (Savary et al. 2017).

6.2.2 Corpora

The entire PARSEME corpora contain 230,062 sentences (4,5 M tokens) for training

and 44,314 sentences (900K tokens) for testing. There are 3947 MWEs in the

Portuguese corpus. The distribution of tags is given in Table 25. Note that the most

frequent category for Portuguese in LVC, followed by ID, and IReflV. There are no

VPCs, and the other category is extremely rare and does not appear in the test

dataset.

69

LVC ID IREFLV OTHER

TRAIN 2110 (.61) 820 (.24) 515 (.15) 2 (0)

TEST 329 (.66) 90 (.18) 81 (.16) 0 (0)

2439 (.62) 910 (.23) 596 (.15) 2 (0)

Table 27: PARSEME Tag Distribution (Portuguese)

The Portuguese training data was split (95% ~ 5%) into training and development

sets respectively. Below are some corpus statistics.

SENTENCES TOKENS

TRAIN 18,559 341,349

DEV 1081 17,996

TEST 2600 54,675

Table 28: PARSEME Corpus Statistics (Portuguese)

Each dataset contains two files. The first file is in CONLL-U column format,

containing 10 columns with morphosyntactic annotations: index, form, lemma,

universal PoS (upos), language-specific PoS (xpos),

(40) CONLL -U format

1 Você você PRON PRON Case=Nom|...|PronType=Prs 2 nsubj _ _
2 sabia sabia VERB VERB Mood=Ind|...|Tense=Imp|VerbForm=Fin 0 root _ _
3 ? ? PUNCT . _ 2 punct _ _

The second file is in PARSEMETSV format, containing index, form, no_space (for

printing in which punctuation should not be preceded by a space) and the target

MWE label, which are enumerated in the following form ID:MWE-TYPE. More than

one MWE associated with a word are separated by semicolons, such as ter below in

(40) which heads three separate light verb constructions (LVCs). Every MWE

instance after the first is annotated with the ID rather than MWE type.

70

(41) PARSEMETSV format

1 É _ _
2 necessário _ _
3 ter _ 1:LVC;2:LVC;3:LVC
4 ensino _ 1
5 médio ns 1
6 , _ _
7 experiência _ 2
8 em _ _
9 vendas _ _
10 e _ _
11 disponibilidade _ 3
12 de _ _
13 horário nsp _
14 . _ _

As this annotation scheme is not amenable to neural classification, preprocessing was

performed in such as way as to allow classification of subsequent occurrences of the

MWE. A variant of the BIOSE (Beginning Inside Outside Single End) scheme with

an additional – label instead of O for all outside tags was chosen since it easily

allowed the identification of discontinuous MWEs. Thus all IDS were replaced by

the full MWE-TYPE. However, multiple tags on single tokens as well as embedded

MWEs such as 1:LVC and 2:LVC above are problematic for such a system. These

cases were dealt with by eliminating all tags other then the first and erasing any ID

chains. After preprocessing (40) appears as (41) below:

(42) PARSEMETSV format

1 É _ _
2 necessário _ _
3 ter _ B-LVC
4 ensino _ I-LVC
5 médio ns F-LVC
6 , _ _
7 experiência _ _
8 em _ _
9 vendas _ _
10 e _ _
11 disponibilidade _ _
12 de _ _
13 horário nsp _
14 . _ _

71

These two files were joined into one input file consisting of 11 columns in a

modified CoNLL-U format identical to that used by the 2018 PARSEME

task22 . The script used for this is included in the attached source code.

6.2.3 Evaluation

As we saw for NER tagging §5.4, precision, recall, and F1 score were used for the

MWE task. The 2017 PARSEME scripts were used, providing per MWE (full match)

as well as per token (partial match) results.

6.3 Neural Models for MWE (PARSEME Task)

In this section, we review one neural model MUMULS, which participated in the

2017 PARSEME shared task (Klyueva, Doucet, and Straka 2017). Although not

scoring the highest in the 2017 PARSEME task, MUMULS, achieved quite good

results for the majority of languages without using feature engineering and a shift-

reduce parsing setup. Next I present a later modification of this model (Variš and

Klyueva 2017), which, although it did not compete in the task, has improved on

MUMULS and published results using the PARSEME corpora.

6.3.1 MUMULS, Klyueva, Doucet, and Straka (2017)

The MUMULS system (Klyueva, Doucet, and Straka 2017) was the only neural

model to participate in the 2017 PARSEME task. It is a bidirectional GRU

22. The NO_SPACE column was eliminated since it was not used for evaluation purposes.

72

(BiGRU), which is quite similar to the BiLSTM model used in this thesis23.

Although the gating is distinct to that of the LSTM, the recurrent connections allow

the GRU to encode long range dependencies (history) in a similar fashion. The

BiGRU was also implemented in TensorFlow and, as is discussed below, is a variant

of my model and is one of the setups which I have reimplemented. Below are the

hyperparameters.

PARAMETER VALUE

Word, lemma, PoS embedding dim
BiGRU state size
Optimizer
Decoder
Learning rate
Batch size
Epochs

100
100
Adam
Softmax
.001
64
14

Table 29: Hyperparameters (MUMULS)

MUMULS uses in task word, lemma, and PoS embeddings, which are concatenated

and fed to the RNN. The outputs are then concatenated and passed to a final dense

layer upon which softmax classification is finally performed.

Data preprocessing although not identical to that used by me for this task,

was similar, using a CONT for all subsequent MWE tags rather than the BIOSE

scheme. Multiple tags for a tag other than the first were also thrown away. The

PARSEME evaluation script was used, giving the following results for Portuguese:

MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

MUMULS 53.58 37.40 44.05 82.47 47.17 60.01

Al Saied et al. (2017) 75.43 60.80 67.33 80.05 63.70 70.94

Table 30: Results for Portuguese (MUMULS)

23. https://github.com/natalink/mwe_sharedtask/blob/master/mwe_tagger.py

73

The results for Portuguese were were somewhat lower than those of other languages.

In §6.8 I comment on this more.

6.3.2 Variš and Klyueva (2017)

Variš and Klyueva (2017) improved upon MUMULS. I will refer to those version as

MUMULS+. In task character-level embeddings (CLE) are added to MUMULS.

Experimental setups are run with CNN as well as RNN-based CLE. Similarly to my

experiments, the CNN-based CLE feared the better of the two. Several encoder

architectures for the classification task are also experimented with, a BiLSTM (like

MUMULS), a deep convolutional encoder, and a self-attentive multihead encoder.

The BiLSTM encoder is identical to what was used in MUMULS. The deep

convolutional encoder (Gehring et al. 2017) works like the CNN architectures

which have been discussed, with the exception that positional embeddings which

encode the index of inputs, residual connections, and a gating mechanism are used

here. Self-attention (Vaswani et al. 2017) is used instead of a BiLSTM to encode

long-distance dependencies. As all pairs of words in an input are mapped, this

reduces the path length that gradients must propagate to one. If the sentence is long,

self-attention is more effective than a BiLSTM, which has trouble such long range

dependencies. In addition to these different encoders, two decoder setups are also

used: softmax (like in MUMULS) and a CRF (like in my system).

Experiments were carried out with the Czech PARSEME dataset. The best

embedding results were obtained via the CNN. With regard to decoders, self-

attention and BiLSTM yielded similar results followed by the deep convolutional

decoder. As is expected for this task, the CRF fared better than softmax. The self-

attention encoder with CNN CLE and CRF was chosen for the PARSEME task. The

hyperparameters of this setup are summarized below.

74

PARAMETER VALUE

Character CNN filters
Character CNN max kernel size
Word, lemma, PoS embedding dim
Self-attentive layers
Self-attentive encoder heads per layer
Fully connected layer hidden units
Dropout
Decoder
Optimizer
Learning rate
Batch size
Epochs

?
6
100
3
10
450
.8
CRF
?
?
?
14

Table 31: Hyperparameters (MUMULS+)

The results for the Portuguese VMWE identification task are given below:

MODEL PER MWE PER TOKEN

F1 F1

MUMULS 44.05 60.01

MUMULS+ 40.00 52.00

Al Saied et al. (2017) 67.33 70.94

Table 32: Results for Portuguese (MUMULS)

For most of the languages other than Portuguese, the MUMULS+ setup performed

better than its predecessor. Both MUMULs and MUMULS+ had some difficulties

with Portuguese. We will discuss this more in §6.8.

6.4 Model

The model used for the task of VMWE identification is identical to that used for the

tasks of PoS tagging and NER, with only minor changes in the hyperparameters,

described below.

75

6.4.1 Setups

The setups are identical to those used for PoS tagging and NER, with the exception

that the three additional setups with in task lemma, PoS, and both lemma and PoS

embeddings were also used. For this task, I slightly altered the baselines from the

those used for NER, since for this task the setups involve lemma and tag

embeddings, in addition to those for the other two tasks. The baselines are

MUMULS and MUMULS+ (the improved version presented in §6.3.2 with a

BiLSTM in lieu of self-attention).

The baseline setups are:

MUMULS: a BiLSTM-SOFTMAX setup with in task word, lemma, and
tag embeddings—a reimplementation of (Klyueva, Doucet, and Straka
2017)

MUMULS+: A BiLSTM-CRF setup with in task word, lemma, and tag
embeddings, as well as character-level embeddings—a
reimplementation of Variš and Klyueva (2017)

The experimental setups are:

FLAIR: A BiLSTM-CRF setup with pretrained character language model
(CharLM) embeddings—a reimplementation of Akbik et al. (2018)

FLAIR+PWE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE)

FLAIR+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task character-level embeddings (CLE)

FLAIR+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and in task word embeddings (WE)

FLAIR+PWE+CLE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and pretrained word embeddings (PWE) and in task
character-level embeddings (CLE)

FLAIR+PWE+WE: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and both pretrained and in task word embeddings

76

FLAIR+WE+CLE: A BiLSTM-CRF setup with with pretrained character
language model (CharLM) and both in task word (WE) and in task
character-level embeddings (CLE)

FLAIR+ALL: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and
both in task word (WE) and in task character character-level
embeddings (CLE)

There are three additional experimental setups for the task of Verbal

Multiword Expression (VMWE) identification:

FLAIR+ALL+LEMMA: A BiLSTM-CRF setup with pretrained character
language model (CharLM) and with pretrained word embeddings
(PWE) and in task word (WE), character character-level (CLE), and
lemma (LEMMA) embeddings

FLAIR+ALL+TAG: A BiLSTM-CRF setup with pretrained character language
model (CharLM) and with pretrained word embeddings (PWE) and in
task word (WE), character character-level (CLE), and tag (TAG)
embeddings

FLAIR+ALL+LEMMA+TAG: A BiLSTM-CRF setup with pretrained character
language model (CharLM) and with pretrained word embeddings
(PWE) and in task word (WE), character-level (CLE), lemma
(LEMMA), and tag (TAG) embeddings.

6.4.2 Hyperparameters

A number of experiments were carried out to tune the hyperparameters for the

model. First, I tested several setups with CNN versus RNN character embeddings for

the FLAIR+ALL+LEMMA+TAG full setup. In contrast to what was observed for PoS tagging and

NER. it was found that CNN character embeddings outperformed RNN character

embeddings. In Table 33 below these results are summarized. Note that the setup

notation is #filters-max_kernel_size, e.g. 300-3 denotes 300 filters, with kernels of

size 2 and 3.

77

MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

200-3 66.88 62.60 64.67 78.72 67.32 72.57

200-4 69.81 51.80 59.47 85.55 56.64 68.16

300-3 66.23 61.20 63.62 80.90 66.48 72.99

300-4 68.79 64.80 66.74 80.50 68.25 73.87

400-3 68.25 54.60 60.67 84.60 60.17 70.32

400-4 73.52 42.20 53.62 90.79 46.70 61.68

500-3 67.83 54.40 60.38 84.18 59.80 69.92

500-4 66.45 60.20 63.17 82.03 65.27 72.70

RNN CLE

Table 33: Different CNN Character Hyperparameter Results

Subsequently I varied the size of the RNN, from 128 up to 1024 hidden units. The

best results were obtained with 512. These hyperparameters are summarized in Table

34 below.

PARAMETER VALUE

Pretrained fastText word embedding dimension
In task word/lemma/PoS embedding dimension
Character CNN units
Character CNN max filter size
BiLSTM state size
Optimizer
Gradient clipping
Batch normalization before sentence-level BiLSTM
Batch normalization Character CNN
Initial learning rate
Annealing rate
Patience
Batch size
Epochs

300
512
300
4
512
SGD
.25
True
True
.1
.5
5
32
20

 Table 34: Hyperparameters for sequence tagger (MWE)

78

6.5 Results

In Table 6.5, I present the results of the setups used with the PARSEME dataset. The

best results were obtained with the full setup leveraging all embeddings

FLAIR+ALL+LEMMA+TAG , with an F-score of 66.74, slightly under that of the winner of the

majority of the PARSEME languages, the transition-based system ATILF-LLF, with

an F-score of 67.33. However, since only closed results (with no allowed pretraining)

were reported for this event, in reality it is not fair to compare any of the setups other

than the baselines to this system, since all of the other setups make use of pretrained

character language model embeddings. Thus the best ‘open’ system is really

MUMULS+, with identical hyperparameters to the other setups, with an F-score of

57.72. Although this result is significantly lower than ATILF-LLF, it does require the

feature-engineering (feature tuning phase) of the transition system. It should also be

pointed out that this baseline reimplementation performs somewhat better than Variš

and Klyueva (2017), with MWE F-score of .40, slightly lower than original

MUMULS (.44). It is not clear why the baselines deviate from the original systems,

unless it has to do with the way the data were preprocessed and perhaps the

hyperparameters and normalization used.

79

MODEL PER MWE PER TOKEN

PR REC F1 PR REC F1

baselines

MUMULS 63.69 45.60 53.15 87.23 52.65 65.66

MUMULS+ 66.15 51.20 57.72 83.65 56.55 67.48

models

FLAIR 67.16 45.00 53.89 84.54 49.77 62.65

FLAIR+PWE 64.32 47.60 54.71 82.16 53.02 64.45

FLAIR+CLE 57.40 62.80 59.98 72.29 69.27 70.74

FLAIR+WE 62.91 54.00 59.81 77.62 62.49 69.24

FLAIR+PWE+CLE 56.62 62.40 59.37 72.56 68.99 70.73

FLAIR+PWE+WE 64.86 50.20 56.60 83.54 56.55 67.44

FLAIR+WE+CLE 64.95 55.60 59.91 81.52 60.63 69.54

FLAIR+ALL 66.67 46.00 54.44 84.62 51.07 63.69

FLAIR+ALL+LEMMA 61.20 59.00 60.08 78.01 65.55 71.24

FLAIR+ALL+TAG 68.13 46.60 55.34 86.00 51.90 64.74

FLAIR+ALL+LEMMA+TAG 68.79 64.80 66.74 80.50 68.25 73.87

Al Saied et al. (2017) 75.43 60.80 67.33 80.05 63.70 70.94

Table 35: Results VMWE task

Several generalizations emerge from the results of the experimental setups. It

is surprising that addition of the character language model (CharLM) only leads to

slight improvements over the MUMULS baseline. Recall that this setup used only in

task word, lemma, and PoS embeddings, without a CRF. However, we cannot

attribute this to paucity of training data as was the case for the NER task. Instead it

appears that this task depends on more than precomputed contextualized character-

level features. Adding either word or character embeddings improves the result of

the base FLAIR model, but the CLE yield the best results, followed by the in task

word embeddings. Why there is such a marked difference between the pretrained and

in task word embeddings is most likely due to the fact that pretrained embeddings are

80

most useful when there is little training data available. This is the case because, as we

saw in §1.3.1 , they are context-insensitive and thus reflect generic semantic features.

When there is sufficient data available, as is the case here, in task word embeddings

can be learned which are better representatives of the task in hand. The PARSEME

data is magnitudes larger than the NER dataset, and it is for this reason that the

results here are different from those observed for NER (§5.6.3), where the opposite

trend was observed, namely that pretrained word embeddings outperformed the rest.

The reason the CLE embeddings fair the best is principally due to two factors. First,

these embeddings represent subword features (i.e. character n-grams) which

generalize better across related words (e.g. paradigms). These embeddings are

capable of representing idiosyncratic aspects of training data such as spelling and

capitalization (Liang and Zhao 2017). These features are important for MWE

identification. Second, because of this, CLE help to combat the data sparsity problem

and reduce the out of vocabulary (OOV) rate.

Combining pretrained word embeddings and CLE lead to lower results than

FLAIR+CLE. A similar result was observed for PoS tagging. It appears that the

pretrained embeddings are not so favorable when non-generic in task embeddings are

available. All the other embeddings seem to combine well. The FLAIR+ALL setup is

also unusually low, perhaps because it also contains both of these two seemingly

incompatible embeddings. Adding tag and lemma embeddings improves this result,

however, and the best result is obtained with the full setup with all embeddings. In an

additional experiment, I ran the full setup without each of the character and

pretrained word embeddings together in the full setup in order to see if better results

were obtained than with either of these together, and worse results were obtained.

Thus it seems that lemma, followed by tag, embeddings greatly improve the lower

gains of the FLAIR+ALL setup. Lemma embeddings contribute an in task semantic

genericness shared across morphologically related forms which aids the task of

MWE identification. Tag embeddings contribute shallow morphosyntactic features

which help in this task, yet which are not as important as lemma semantic features.

81

6.5.1 Errors

Table 36 presents the results for the best setup per tag. In the detailed analysis section

of Klyueva et al. (2017), several patterns were discerned with regard to mistakes

made by the MUMULS tagger for Portuguese. These observations as well as some of

my own are given in the sections to follow.

LVC ID IREFLV OTHER

PR 66.6 64.3 67.1 -

REC 67.2 60.0 68.1 -

F1 66.9 64.3 67.6 -

Table 36: Results per Tag (FLAIR+ALL+LEMMA+TAG)

6.5.1.1 LVC

LVCs were the most frequent tag in Portuguese. Savary et al. (2018) identify LVC

candidates as those constructions containing a verb and nominal complement,

possibly preceded by a preposition. These candidates must pass several tests to be

considered bonafide LVCs:

(43) LVC Tests

1. Does the Noun denote a state or event?
2. Does the Noun maintain one of its original senses?
3. Does the Verb only provide morphological features?

 4. Can a nominal periphrasis be used to denote the same meaning as that with
 the verb, e.g. John had a long walk → John’s long walk?

82

It is tricky to identify LVCs and correct identification was confounded by several

additional factors.

(44) Difficulties (LVCs)
1. Discontinuity
2. Inverted syntax (V...N - > N..V)

As was the case with MUMULS (Klyueva, Doucet, and Straka 2017), my system had

some trouble with discontinuous LVCs in which several elements intervene between

the verb and noun, e.g. fazer hoje uma comemoração ‘(lit.) to make today a

celebration’ When a noun was fronted, my model also missed some LVCs,

particularly when they were discontinuous, e.g. concurso da Mega - Sena que , será

realizado... ‘contest, which will be carried out...’. There were a few cases of false

positives such as dá um beijo ‘give a kiss’, which does not pass tests 1, 3 and 4

above. At least two false positives faz um escândalo ‘give a kiss’, tem deficiência

mental ‘have a mental deficiency’, which seem to pass all of the tests, seem to be an

annotation error, cf. teve orgasmo ‘had an orgasm’ which is a LVC.

6.5.1.2 IReflV

There are eight litmus tests to determine if we are dealing with an IReflV, but the

following three are usually sufficient (Savary et al. 2018) :

(45) IReflV Tests
1. Does the verb always occur with the clitic?
2. Does its sense change?
3. Does the subcategorization frame change?

If one can answer yes to any of these tests, it appears we’re dealing with IReflV. It

should be noted that non-inherent reflexive-like constructions such as non-

idiosyncratic reflexives (e.g. se transforma ‘transform oneself → turn into’),

impersonal constructions (e.g. aqui se fala Português ‘One speaks/Portuguese is

spoken here’), passive constructions (e.g. se construiu uma casa ‘a house was built’,

83

and reciprocal constructions (se beijam ‘they kiss each other’) have identical forms

as the IReflVs, yet do not pass the above tests. It is unclear how a neural network

learns to distinguish all of these formally identical constructions.

Affecting the identification of IReflVs is clitic syntax in Portuguese.

Brazilian Portuguese utilizes two different positions, proclisis (before the verb) and

enclisis (after the verb), the latter to a much lesser extent than in European

Portuguese. The PARSEME corpus appears to be mostly Brazilian. However, I can

find no information regarding the source texts24. Unfortunately, the corpus is not

consistent in its annotation and some cases of enclitic pronouns attached with a

hyphen are separated while others are not.

(46) Examples of proclisis (no hyphen)

1 Se _ 1:IReflV
2 meterão _ 1

(47) Examples of enclisis (hyphen)

1 Corresponder- _ 1:IReflV
 2 se _ 1

but

1 refiro-me _ 1:IReflV

Like MUMULS (Klyueva, Doucet, and Straka 2017), my system had trouble with

unbroken cases like refiro-me ‘I am referring to’, vingar-se ‘to take revenge’, while

the separated clitic gave an unambiguous indication of the reflexive construction. In

some cases, however, the broken construction was sometimes not identified, cf..

casa- se ‘is getting married’, which may have been confused with casa ‘house’.

24. The PARSEME 2018 literature reveals that this corpus is Brazilian (Ramisch et al. 2018).

84

6.5.1.3 ID

One would expect idioms to be problematic for any ML system. Unlike the case of

LVCs and IReflVs, we do not want the system to generalize with IDs (Klyueva,

Doucet, and Straka 2017). The performance of my system for IDs was not so much

lower than the other categories. The most typical were false negatives, e.g. segue o

baile ‘the dance continues’, chamando atenção ‘call attention’, which were simply

not in the training data and thus not learned. There were some cases of false

positives, such as literal estender a mão ‘(lit.) extend one’s hand’, in which the

system undesirably has overgeneralized. The only way to prevent overgeneralization

is controlling for overfitting with batch normalization or dropout as has been done.

6.6 Conclusions

In this chapter, we have focused on the task of VMWE identification. Similarly to

what was observed for NER in Chapter 5, the addition of a character language model

(CharLM) did not lead to immediate improvement over the baselines for this task.

However, in contrast to NER, this was not due to a lack of training data, since when

pretrained word embeddings, independent of the task at hand, were added to the base

CharLM, results only slightly improved, indicating that task-specific word features

are needed. Gains are observed when in task word and character embeddings are

used, ideally separately or together. When lemma and tag embeddings are combined

in the full setup, significant gains were observed (F-score 66.74), underscoring the

usefulness of lemmas for capturing general word meaning and part-of-speech (PoS)

tags for representing shallow syntactic features.

85

CHAPTER 7

Conclusions

The goal of this thesis was to examine the effect of using different embedding setups

in various sequence labeling tasks. The results of these experiments were quite

favorable and advanced the state of the art for Portuguese part of speech (PoS)

tagging and achieved near state of the art results for the tasks of Portuguese NER and

VMWE identification.

In Chapter 1, the reader was introduced to deep learning methods and

architectures, as well as word embeddings and language models. In Chapter 2, we

explored the use of character language models (CharLMs) in state-of-the-art

sequence taggers. In Chapter 3, the deep learning architecture of my sequence tagger

model was described, along with the experiments embedding setups to be used in the

sequence labeling tasks. Chapter 4 presented the task of part of speech (PoS) tagging,

the Portuguese data, the state of the art, the parameters of the tagging model, and the

results of the experimental setups. We likewise did the same for the task of NER in

Chapter 5 and VMWE identification in Chapter 6.

In all three tasks we have observed similar as well as distinct effects of using

different embedding setups. For PoS tagging (Chapter 4), the use of a character

language model (CharLM) by itself led to significant improvements over the

baselines. This seems to be motivated by the ease of learning these shallow syntactic

features, greatly aided by the presence of contextualized word representations

extracted via a CharLM. When pretrained CharLM embeddings were used in

conjunction with task-specific word embeddings state-of-the-art results were

achieved for PoS tagging (F-score of 97.49).

The task of NER (Chapter 5) posed significant challenges, particularly due to

the lack of training data. In contrast to what was observed for PoS tagging,

leveraging a character language model (CharLM) by itself did not lead to immediate

improvement over the baselines for NER. Here more was needed, i.e. pretrained

86

word embeddings, which when combined with contextualized embeddings led to

significant gains. It was hypothesized that using pretrained embeddings allowed the

model to learn word representations not possible with task-specific word and

character-level embeddings by themselves.

Similarly to in NER, in the task of VMWE identification, the use of a

character language model (CharLM) also did not lead to immediate improvement

over the baselines. In contrast to NER, however, this cause of this was not lack of

training data. Here sufficient data allowed task-specific word and character

embeddings to be learned. The presence of lemma and tag features for this dataset

also made it possible to train task-specific lemma and tag embeddings, whose use led

to close to state-of-the-art results for Portuguese (F-score 66.74). This underscores

the importance of lemmas for capturing general word semantics and part-of-speech

(PoS) tags for representing shallow syntactic features.

To conclude, the major contribution of this thesis is its thorough exploration

of the use of different experimental setups with embeddings applied to sequence

labeling tasks. Secondary contributions are in the advancement of the state of the art

in PoS tagging for Portuguese and near state of the art results without the use of

handcrafted features for Portuguese NER and VMWE identification.

87

Bibliography

Afonso, S., Bick, E., Haber, R., & Santos, D. (2002). Floresta sinta(c)tica: a treebank
for Portuguese. Proceedings of the Third International Conference on Language
Resources and Evaluation (LREC 2002), 1698–1703.

Akbik, A., Blythe, D.,Vollgraf, R. (2018). Contextual String Embeddings for
Sequence Labeling. Proceedings of the 27th International Conference on
Computational Linguistics, 1638-1649. Retrieved from
http://aclweb.org/anthology/C18-1139

Aluísio, S., Pelizzoni, J., Marchi, A. R., de Oliveira, L., Manenti, R., &
Marquiafável, V. (2003). An account of the challenge of tagging a reference
corpus for brazilian portuguese. Proceedings of the 6th international
conference on Computational processing of the Portuguese language,
PROPOR’03, 110–117, Berlin, Heidelberg: Springer-Verlag.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3, 1137–1155.

Camacho-Collados, J., & Pilehvar, M. T. (2018). From Word to Sense Embeddings:
A Survey on Vector Representations of Meaning, 1–46. Retrieved from
https://arxiv.org/abs/1805.04032

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., & Robinson, T.
(2014). One billion word benchmark for measuring progress in statistical
language modeling. Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, 2635–2639.

Chen, G. (2016). A Gentle Tutorial of Recurrent Neural Network with Error
Backpropagation, 1–9. Retrieved from http://arxiv.org/abs/1610.02583

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., & Koehn, P. (2014). One
Billion Word Benchmark for Measuring Progress in Statistical Language
Modeling. Retrieved from https://arxiv.org/abs/1312.3005

Chinchor, N. A. (1998), Proceedings of the Seventh Message Understanding
Conference (MUC-7) Named Entity Task Definition. Fairfax, VA

Chiu, J. & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-
CNNs. TACL, 4, 357-370.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.P.
(2011). Natural language processing (almost) from scratch. JMLR, 12, 2493-
2537.

Deng, L., & Yu, D. (2014). Foundations and Trends in Signal Processing (Deep
Learning Methods and Applications), 7 (3-4).

dos Santos, C. N., Seco, N., Cardoso, N., & Vilela, R. (2006). HAREM: An
Advanced NER Evaluation Contest for Portuguese. Proceedings of the 5th
International Conference on Language Resources and Evaluation, LREC 2006,
1986–1991. Retrieved from

88

https://pdfs.semanticscholar.org/d07c/03050ce795989123c7ec24a0ff11f039dbcf
.pdf

dos Santos, C. N., & Zadrozny, B. (2014). Learning Character-level Representations
for Part-of-Speech Tagging. Proceedings of the 31st Annual International
Conference on Machine Learning (ICML’14), ICML-14(2011), 1818–1826.
Retrieved from http://proceedings.mlr.press/v32/santos14.pdf

dos Santos, C. N., & Guimarães, V. (2015). Boosting Named Entity Recognition with
Neural Character Embeddings, 25–33. Retrieved from
https://arxiv.org/abs/1505.05008 Gehring, J., Auli, M., Grangier, D., Yarats, D.,
and Dauphin, Y. (2017). Convolutional sequence to sequence learning.
Retrieved from https://arxiv.org/abs/1705.03122

Domingues-Fernandes, I. A. A Deep Learning Approach to Named Entity
Recognition in Portuguese Texts (Master’s thesis). Retrieved from
https://sigarra.up.pt/feup/pt/pub_geral.show_file?pi_gdoc_id=1225188

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Boston, MA: MIT
Press.

Graves, A. (2014). Generating Sequences With Recurrent Neural Networks, 1–43.
Retrieved from https://arxiv.org/abs/1308.0850

Grishman, R. & Sundheim, B. (1996). Message Understanding Conference 6: A
Brief History. Proceedings of the 16th Conference on Computational
Linguistics, 1, 466-471. San Mateo, CA: Morgan Kaufmann.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence
Tagging. Retrieved from https://arxiv.org/abs/1508.01991

Jozefowicz, R., Schuster, M., Wu, Y., Com, Y. G., & Brain, G. (2015). Exploring the
Limits of Language Modeling. Retrieved from https://arxiv.org/abs/1602.02410

Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring
the limits of language modeling. Retrieved from
https://arxiv.org/abs/1602.02410

Klyueva, N., Doucet, A., Straka, M. (2017). Neural Networks for Multi-Word
Expression Detection. Proceedings of the 13th Workshop on Multiword
Expressions (MWE 2017), 60–65. ACL.

Kripke, Saul (1971). Identity and Necessity. New York: New York University Press.

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. ICML ‘01,
282-289.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K.m &
Dyera, C. (2016). Neural Architectures for Named Entity Recognition.
Retrieved from https://arxiv.org/abs/1603.01360

LeCun, Y. (1989). Generalization and network design strategies. Technical Report
CRG-TR-89-4, University of Toronto.

89

Liang, D., Xu, W., & Zhao, Y. (2017). Combining Word-Level and Character-Level
Representations for Relation Classification of Informal Text. Proceedings of the
second conference on representation learning for NLP, 43–47. Retrieved from
http://www.aclweb.org/anthology/W17-2606

Ma, X., & Hovy, E. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF. Retrieved from https://arxiv.org/abs/1603.01354

Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning Generic
Context Embedding with Bidirectional LSTM. Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, 51–61.
Association for Computational Linguistics Retrieved from
http://www.aclweb.org/anthology/K16-1006

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & and Dean, J. (2013c).
Distributed representations of words and phrases and their compositionality.
NIPS, 1-9.

Peters, M. E., Ammar, W., Bhagavatula, C., & Power, R. (2017). Semi-supervised
sequence tagging with bidirectional language models. Retrieved from
https://arxiv.org/abs/1705.00108

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer,
L. (2018). Deep contextualized word representations. Retrieved from
https://arxiv.org/abs/1802.05365

Ramisch, C. et al. (2018) Edition 1.1 of the PARSEME Shared Task
on Automatic Identification of Verbal Multiword Expressions. Proceedings of
the Joint Workshop on Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG-2018), 222–24. Retrieved from
http://aclweb.org/anthology/W18-4925

Rocha-Fonseca, E. & Rosa, J.L.G (2013). Mac-Morpho Revisited: Towards
Robust Part-of-SpeechTagging. Proceedings of the 9th Brazilian Symposium
in Information and Human Language Technology, 98–107. Sociedade
Brasileira de Computação.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A. & Flickinger, D. (2002).
Multiword Expressions: A Pain in the Neck for NLP. Proceedings of the 3rd
International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing-2002), Berlin, DE, Springer.

Sang, E. F. T. K., & De Meulder, F. (2003). Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition, 1–4.
Retrieved from https://arxiv.org/abs/cs/0306050

Savary A., et al. (2018). PARSEME multilingual corpus of verbal multiword
expressions. In Stella Markantonatou, Carlos Ramisch, Agata Savary &
Veronika Vincze (Eds.), Multiword expressions at length and in depth:
Extended papers from the MWE 2017 workshop, 87-147. Berlin, DE.: Language
Science Press.

90

Schütze, H. (1998). Automatic Word Sense Discrimination. Computational
Linguistics, 24(1), 97-123.

Straková, J. (2017). Neural Network Based Named Entity Recognition (Doctoral
dissertation). Retrieved from
http://ufal.mff.cuni.cz/~strakova/doctoral_thesis.pdf

Todorovic et al (2008). Named entity recognition and classification using context
Hidden Markov Model. Neural Network Applications in Electrical Engineering,
43–46. IEEE. Retrieved at https://ieeexplore.ieee.org/document/4685557

Variš, D. & Klyeva, N. (2017). Improving a Neural-based Tagger for Multiword
Expression Identification. Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC-2018). Paris, FR: European
Language Resource Association.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention is all you need. Retrieved from
https://arxiv.org/abs/1706.03762

Zhang Y., & Wallace, B. (2016). A Sensitivity Analysis of (and Practitioners’ Guide
to) Convolutional Neural Networks for Sentence Classification. Retrieved from
arXiv:1510.03820

Zhao S. (2004). Named entity recognition in biomedical texts using an HMM model.
Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications, 84-87. Stroudsburg, PA: ACL.

Zheng, Y., Shi, Y., Guo, K., Li, W., & Zhu, L. (2017). Enhanced word embedding
with multiple prototypes. 4th International Conference on Industrial Economics
System and Industrial Security Engineering, IEIS 2017. Piscataway, NJ: IEEE.

91

List of Figures

1. RNN (Folded and Unfolded) 6

2. LSTM 7

3. CBOW and Skip Gram 8

4. Context2vec 11

5. Classical Neural LM 13

6. Components of a NLM 14

7. TagLM (Peters et al. 2017) 17

8. Character-level embeddings from an LSTM 18

9. Character Language Model 24

10. Character LM embeddings 25

11. Window Approach Network 37

12. A CNN 39

13. BiLSTM with Convolutional Character Level Embeddings 55

92

List of Tables

1. Hyperparameters for NER 20

2. Hyperparameters for Chunking 20

3. CNN-BIG-LSTM LM 20

4. Task results for TagLM 21

5. ELMo BiLM 22

6. Flair CharLM 27

7. Flair sequence model 27

8. Results for Flair vis-à-vis Peters et al. (2017, 2018) 27

9. Hyperparameters for CharLMs 29

10. MacMorpho v.1 35

11. CharWNN sequence tagging model, dos Santos et al. (2014) 40

12. Results (dos Santos et al. 2014) 40

13. CNN versus RNN for Character Embeddings (PoS Tagging) 43

14. Hyperparameters of PoS sequence tagger 44

15. Model Results (PoS Tagging) 45

16. HAREM V. 1 Corpus Statistics 50

17. HAREM Tag Distribution 50

18. Selective HAREM Tag Distribution 51

19. CharWNN NER tagging model, dos Santos et al. (2014) 54

20. Results (dos Santos et al. 2015) 54

21. Hyperparameters of BiLSTM with Character CNN [BiLSTM_CNN]
(Domingues-Fernandes 2018) 57

21. Hyperparameters of BiLSTM with BiRNN Character Embeddings
[BiLSTMChar] (Domingues-Fernandes 2018) 57

93

23. Best Results for Domingues-Fernandes (2018) 57

24. Results NER task comparing RNN versus CNN character
embeddings 61

25. Hyperparameters for sequence tagger (NER) 61

26. Results NER task 62

27. PARSEME Tag Distribution (Portuguese) 70

28. PARSEME Corpus Statistics (Portuguese) 70

29. Hyperparameters (MUMULS) 73

30. Results for Portuguese (MUMULS) 73

31. Hyperparameters (MUMULS+) 75

32. Results for Portuguese (MUMULS) 75

33. Different CNN Character Hyperparameter Results 78

34. Hyperparameters for sequence tagger (MWE) 78

35. Results VMWE task 80

36. Results per Tag (FLAIR+ALL+LEMMA+TAG) 82

94

List of Abbreviations

CharLM Character Language Model
CLE Character Level Embedding
CNN Convolutional Neural Network
CoNLL Conference on Natural Language Learning
CRF Conditional Random Field
BiGRU Bidirectional Gated Recurrent Unit
biLM Bidirectional Language Model
BiLSTM Bidirectional Long Short-Term Memory
BiRNN Bidirectional Recurrent Neural Network
BIO Beginning (B), Inside (I) and outside (O)
BIOSE Beginning (B), Inside (I) and Outside (O),

Single (S), End (E)
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
HMM Hidden Markov Model
LM Language Model
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MUC Message Understanding Conference
MWE Multiword Expression
NER Named Entity Recognition
NLM Neural Language Model
NLP Natural Language Processing
NN Neural Network
PoS Part-of-Speech (Tagging)
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
MWE Verbal Multiword Expression

95

