An angular analysis of the rare decay $B^0 \rightarrow K^*(K^+\pi^-)\mu^+\mu^-$ is presented. The study is based on a data sample from pp collisions at centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the Large Hadron Collider which corresponds to an integrated luminosity of 20.3 fb$^{-1}$. An extended unbinned maximum-likelihood fit of the decay angular distribution is used to measure the CP-averaged angular observables F_L, S_3, S_4, S_5, S_7 and S_8 and the corresponding form-factor independent observables P_1, P'_4, P'_5, P'_6 and P'_8. The measurements are performed in the region $0.04 \text{GeV}^2 < q^2 < 6 \text{GeV}^2$, where q is the dimuon invariant mass.

The results are in agreement with the Standard Model predictions and compatible with measurements published by other experiments. The most significant deviations are observed for parameters P'_4, P'_5 at the level of 2.7 standard deviations and for P'_6 which is 1.9 standard deviations away from one of the predictions. The P'_6 deviation in bin $4 \text{GeV}^2 < q^2 < 6 \text{GeV}^2$ is consistent with the one reported by the LHCb collaboration.

The second part of this work shortly summarises the operation of the ATLAS Semiconductor Tracker, testing of the prototype module for the Inner Tracker strip upgrade, and the monitoring of non-collision background which was developed as a part of this thesis.