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Abstract 

Bladder carcinoma (BCa) is among the most common carcinomas in the Western world. 

Despite the availability of effective therapies, there is currently an urgent need to develop 

a stratification method, which would enable the accurate identification of patients 

responsive to therapy. In the theoretical part of my diploma project I describe the 

heterogeneity of BCa and the currently applied immunotherapeutic approaches. I 

specifically focused on the Bacillus Calmette-Guérin (BCG) vaccine instillation. For 

decades another use of BCG has been a prophylactic vaccination against tuberculosis (TB) 

infection. BCG serves as a model treatment because it is highly efficient when prescribed 

to the responsive patient. However, an effective stratification is yet to be developed for 

BCa and latent tuberculosis infection (LTBI) diagnosis and/or monitoring. 

In the experimental part of my project, I developed and tested a 10-parameter panel for T 

cell-specific activation test (TAT) applicable for a stratification of BCa patients as well as 

for the detection of LTBI. I tested the panel on positive controls using flow cytometry 

(FCM) method because it allows for detection and measurement of dozens of markers at a 

single cell level. It is easily applicable to available urine and blood samples obtained from 

BCa patients. 

Combination of TAT markers allowed me to detect reactive T cell population after 

polyclonal and antigen-specific stimulation. Therefore, I conclude that the TAT panel is 

suitable for further development and validation of a patient stratification method based on 

the detection of antigen-specific T cell response. 

 

Key words: T-cell response, flow cytometry, in vitro activation test, tumor 

immunotherapy, patient stratification, personalized medicine 



Abstrakt 

Karcinom močového měchýře patří mezi nejčastější karcinomy v západním světě. 

Navzdory dlouhodobému výzkumu a existenci efektivních terapeutických možností 

přetrvává potřeba vyvinout stratifikační metodu, která umožní identifikovat pacienty 

odpovídající na léčbu. V teoretické části své diplomové práce jsem popsala heterogenitu 

karcinomu močového měchýře, jako modelové patologie a terapeutické přístupy, které se 

v současnosti uplatňují. Obzvlášť jsem se soustředila na terapii založenou na instilaci 

Bacillus Calmette-Guérin (BCG). BCG je po desetiletí používaná jak při léčbě karcinomu 

močového měchýře, tak jako preventivní vakcína proti infekční tuberkulóze (TB). BCG 

slouží jako modelová terapie, protože u odpovídajících pacientů je vysoce účinná.  

Nicméně, pro zlepšení diagnostiky a monitorování průběhu onemocnění karcinomu 

močového měchýře a latentní tuberkulózy (LTBI) chybí účinná stratifikační metoda. 

V experimentální části své práce jsem navrhla a testovala 10 parametrický panel pro 

detekci T buněčné odpovědi na aktivaci (TAT) pro budoucí využití při stratifikaci pacientů 

s nádorem močového měchýře a pro detekci (LTBI). Panel jsem testovala na pozitivních 

kontrolách metodou průtokové cytometrie, která umožňuje detegovat desítky znaků na 

jednotlivých buňkách. Je dobře využitelná pro zpracování a měření snadno dostupných 

pacientských vzorků moči a krve. 

Kombinace znaků zahrnutá v TAT panelu mi umožnila detegovat reaktivní T buněčné 

populace po polyklonální a antigen-specifické stimulaci. Došla jsem proto k závěru, že 

mnou vytvořený panel je vhodný pro další rozvíjení stratifikační metody na základě 

detekce antigen specifické T buněčné odpovědi.  

 

Klíčová slova: T-buněčná odpověď, průtoková cytometrie, aktivační test in vitro, 

imunoterapie nádorů, stratifikace pacientů, personalizovaná medicína 



Contents 

1. Introduction ..................................................................................................... 1 

2. Theoretical background .................................................................................. 2 

2.1. Heterogeneity of bladder carcinoma........................................................... 2 

2.2. BCa Immunotherapy.................................................................................. 4 

2.2.1. BCG treatment ................................................................................... 4 

2.2.2. Checkpoint inhibitors ......................................................................... 9 

2.2.3. Adoptive cell therapy – uniCAR T cells ........................................... 10 

2.3. BCa monitoring methods currently used in the clinics.............................. 12 

2.3.1. Cytology .......................................................................................... 12 

2.3.1. BladderChek and Urovysion FISH ................................................... 12 

2.3.2. Cytokine detection ........................................................................... 13 

2.3.3. Proteome testing .............................................................................. 13 

2.4. TB and LTBI diagnostic methods currently used in the clinic .................. 14 

2.4.1. Tuberculin skin test .......................................................................... 14 

2.4.2. Interferon g release assay (IGRA) .................................................... 15 

2.4.3. Monitoring of lymphocyte activation and cytokine release detection 15 

2.5. Principles for designing a TAT panel ....................................................... 16 

2.5.1. In Vitro T cell stimulation ................................................................ 17 

2.5.2. TAT panel makers ........................................................................... 18 

3. Goals of the experimental part of the diploma thesis................................... 22 

4. Materials and methodology........................................................................... 23 

4.1. Materials ................................................................................................. 23 

4.1.1. Cells ................................................................................................ 23 

4.1.2. Beads ............................................................................................... 23 

4.1.3. Antibodies ....................................................................................... 24 

Table 1. Overview of used antibodies ............................................................. 24 

4.1.4. Buffers and chemicals ...................................................................... 25 

4.1.5. Laboratory equipment ...................................................................... 26 

4.1.6. Software .......................................................................................... 26 



4.1.7. Laboratory consumables .................................................................. 26 

4.2. Methodology ........................................................................................... 27 

4.2.1. Isolation of peripheral blood mononuclear cells (PBMC) using Ficoll 

Paque gradient..................................................................................................... 27 

4.2.2. Stimulation of PBMC ...................................................................... 28 

4.2.3. Flow cytometry ................................................................................ 28 

4.2.4. Titration of monoclonal antibodies (mAb)........................................ 28 

4.2.5. Compensation .................................................................................. 30 

4.2.6. Cell line cultivation .......................................................................... 30 

4.2.7. SDS-PAGE Electrophoresis ............................................................. 31 

4.2.8. Western blot .................................................................................... 32 

4.2.9. Binding assay................................................................................... 32 

5. Results ............................................................................................................ 33 

5.1. Design of TAT panel ............................................................................... 33 

5.2. Detection of surface markers ................................................................... 44 

5.2.1. CD4 and CD8 expression in time ..................................................... 44 

5.2.2. Detection of degranulation ............................................................... 47 

5.2.3. Detection of T cell-specific activation markers ................................. 49 

5.3. Cytokine detection ................................................................................... 56 

5.4. CMV-specific response............................................................................ 60 

5.5. UniCAR .................................................................................................. 62 

6. Discussion ...................................................................................................... 65 

7. Conclusion ..................................................................................................... 71 

References .............................................................................................................. 72 

 

 

  



List of the abbreviations used in the thesis 

 

Ab  antibody 
Ag  antigen 
APC  antigen presenting cell 
BCa  bladder carcinoma 
BCG Bacillus Calmette-Guérin 
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1. Introduction 

Bladder carcinoma (BCa) is among the most common carcinomas in the Western world 

with high recurrence rates. Patients are treated using numerous therapies including 

transurethral resections of the bladder (TURB), chemotherapy and immunotherapies such 

as BCG vaccine instillation and recently also checkpoint inhibition. However, the 

routinely applied monitoring tests are still falling short in terms of accurate stratification 

of responsive patients to the individual treatment options.  

For the above stated reasons, I decided to work on designing an efficient stratification 

method, with a particular focus on BCG-based treatment. BCG vaccine is a vaccine from 

attenuated M. bovis strains and alongside the BCa treatment it has been historically used 

to vaccinate patients against tuberculosis infection (TB).  

Therefore, my first goal was to design a T cell activation test (TAT) panel, which 

incorporated the knowledge of previous studies on detection of active TB and latent 

tuberculosis infection (LTBI). To detect the expression of the included markers, I chose 

the method of flow cytometry (FCM). FCM is optimal for detection of multiple markers 

in one assay allowing to identify rare antigen-reactive T cell populations and describe their 

phenotype in detail.  

Using the designed TAT panel my next goal was to optimize positive controls (polyclonal 

stimuli PHA lectin and PMA/ionomycin) for the future use of TAT in BCa and LTBI 

patient stratification and monitoring. Then I decided to test the capability of TAT to detect 

antigen-specific T cell response using CMV lysate in order to confirm its efficiency to 

detect rare populations. Lastly, I wanted to exploit the uniCAR T cell system as another 

form of antigen-specific control 
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2. Theoretical background 

2.1. Heterogeneity of bladder carcinoma 

In Czechia, bladder carcinoma (BCa) is the sixth most common carcinoma in men and the 

eleventh in women. The incidence is the highest for patients between 60 and 80 years of 

age1. The overall 5-year survival rate reaches 70%2. Even though the survival rate is highly 

promising there is a lot of potential for improvement. Despite the use of effective treatment 

options, including BCG immunotherapy established since 19753, the recurrence rate of 

high-risk BCa reaches 39.1%. Additionally, 33.1% of patients progress within 10 years4.  

To decrease the incidence of recurrence and progression it is essential to develop an 

efficient stratification method, which will improve the diagnosis and monitoring of the 

progress of treatment.  

Based on tumor, node, metastasis (TNM) classification, BCa is divided into non-muscle 

invasive bladder carcinoma (NMIBC) and muscle invasive bladder carcinoma (MIBC), 

which can progress to metastatic state5. The NMIBC represents 70% of all BCa6. WHO 

introduced the first grading system in 1973, updated it in 2004 and in 2016. Based on the 

new grading system, NMIBC covers a spectrum of papillary carcinomas divided into three 

major categories, neoplasms of low malignant potential, low-grade (LG) and high-grade 

(HG) carcinoma7. Regarding staging, NMIBC, a superficial type of the disease, covers Ta, 

T1 and flat carcinoma in situ (CIS) lesions5 based on TNM staging. The MIBC covers the 

stages T2-T4b and is characterized by a high potential of developing metastases, which 

significantly worsens patient’s prognosis5.  

The European Association of Urology (EAU) guidelines set a standard of care for BCa 

based on risk stratification. BCa tumors are divided into low-, intermediate- and high-risk 

ones8. The risk is evaluated based on the progression probability of a tumor from the non-

muscle invasive to the muscle invasive stage9.  

Transurethral resection of bladder tumor (TURB) is a first-line treatment for the 

intermediate and high-risk tumors. TURB is followed by re-TURB and a  single-shot 

chemotherapy and an instillation of BCG10. In case the BCG instillation fails or is not well 
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tolerated by the patient, the EAU guidelines recommend application of intravesical 

chemotherapy with cisplatin or mitomycin C as part of the bladder-preserving strategy. In 

case the chemotherapy fails and further progression is detected, EAU guidelines suggest 

to opt for radical cystectomy in order to stop the progression of the disease11. 

The standard treatment for MIBC is radical cystectomy combined with neoadjuvant 

chemotherapy and neoadjuvant/adjuvant radiotherapy. Adjuvant therapy is an additional 

therapy prescribed in order to decrease the size of tumor before the target therapy or 

therapy following the initial surgery to achieve remission5.  

Of all the treatment options, BCG immunotherapy prescribed to responsive patients is 

Figure 1.  Comparison of survival of high grade (HG) BCa patients treated with BCG instillation 

therapy with those not treated with BCG. Red curve represents patients who received the BCG 

therapy. Blue curve represents patients not treated by BCG therapy. The survival was documented 

for ten years. The effects of BCG therapy leads to 5-year survival in 74% of patients compared to 

28% in patients with no BCG therapy and twice as many patients reaching 10-year survival 12. 
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currently the major option leading to long-term clearance of the high-risk tumor and 

around 30% higher disease-free survival as illustrated in Figure 1. 

 

2.2. BCa Immunotherapy 

There are currently several available options to treat BCa exploiting the power of 

individual patient’s immune system.  

Innate immune system is crucial for the eradication of the incoming pathogens entering 

the body and their clearance. Additionally, it works as a mediator and an initiator of the 

adaptive immune response, playing an essential role in tumor surveillance and eradication. 

Innate immune system operates on cellular (NK cells, dendritic cells, macrophages and 

mast cells) and humoral (complement, cytokines) levels.  

Adaptive immune system works in an antigen-specific manner and leads to highly precise 

eradication of the tumor cells. T cells, which recognize the newly arising tumor-specific 

neoantigens can specifically and effectively target the clonal tumor cells, expressing the 

neoantigens12. It has been shown that non-coding regions are a particularly rich source of 

tumor-specific neoantigens, allowing cytotoxic CD8+ T cells to target the tumor. The great 

advantage of the use of such antigens is that they can be shared among patients, which 

allows for a broader group of patients to benefit from them13. 

2.2.1. BCG treatment 

BCG vaccine employs both arms of the immune system in the process of BCa eradication 

and TB prevention. The vaccine consists of attenuated live strains of Mycobacterium bovis. 

M. bovis is routinely employed for high-risk patients in two areas of disease treatment. 

The first one is BCa. The stratification of patients for BCG immunotherapy must determine 

whether the patient has a reactive T cell clone against antigens specific to the administered 

M. bovis and whether they will mount the immune response against the tumor-antigens in 

order to prescribe the therapy to responsive patients.  
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The second field is the prophylactic use of M. bovis against a similar microorganism (M. 

tuberculosis). The prophylaxis works in the form of a vaccine against tuberculosis 

infection (TB) with M.tuberculosis. The protective treatment functions on the basis of 

antigenic mimicry between M. bovis and tumor-specific neoantigens in case of BCa and 

M. bovis and M. tuberculosis in case of TB14. 

2.2.1.1. BCG vaccine instillation 

BCG is applied as a first line modality for early intermediate- and high-risk NMIBC BCa 

patients in the form of lyophilized vaccine instillation15. Several strains have been used for 

BCa treatment including, Tice, Montreal, Pasteur, Connaught and Connaught and Tice. It 

has been demonstrated that the individual strains partially differ in their therapeutic 

efficacy16. Its functionality stems from the effect of bacterial infection on the tumor cells 

and by inducing the host’s immune response.  

The instillation schedule and the dose of the BCG vaccine are a highly discussed topic. 

Currently EAU guidelines suggest instillation series spanning three years starting with 6x 

weekly at 0 month and then following 3x weekly at 3, 6, 12, 18, 24, 36 month11.  

Immune response to the BCG therapy can be divided into three main phases. The initial 

one is infection of the bladder cells followed by the induction of immune response which 

leads to the development of antitumor response6,17. The BCG mechanism has been 

coherently depicted in a review by Redelman et al., and is presented in Figure 217. 
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Figure 2. Mechanism of BCG vaccine treatment. The scheme depicts the mechanism behind BCG 

vaccine effect. After its application, the vaccine is absorbed through macropinocytosis, employs MHCII 

molecules mechanism and presents the antigens to the immune cells. Adaptive immune cells, both CD4+ 

and CD8+ T cells are recruited and through cytokine release and the immediate cytotoxicity destroy 

the tumor cells17. 

First, the BCG is attached through the fibronectin, which leads to its absorption via 

macropinocytosis by the BCa cells18,19. Upon the instillation, the BCG vaccine induces 

release of antimicrobial peptides, such as b-defensins and cathelicidins, which are induced 

by the activation of mitogen activated protein kinase (MAPK) signalling pathway. MAPK 

signalling pathway carries signal from the surface of the cell to the nucleus of the cell via 

series of phosphorylative reactions and results in protein synthesis. MAPK signalling 

pathway has also been tested as a potential target of BCa treatment. It has been found that 

p38 MAPK inhibition resulted in decrease of proliferation rate in BCa cell lines including 

RT112, T24 and UM-UC-3 routinely used in research20.  

Another important mechanism of the innate immune response, which has been researched 

for its predictive properties is degranulation21. Degranulation belongs among the earliest 

detectable signs of immune system activation. 
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The most important innate immune cells for BCG vaccine efficiency are natural killer 

(NK) cells. NK cells are activated through NKG2D receptor and produce IFNg which leads 

to induction of M1 macrophages. Increased numbers of M1 macrophages have been 

detected in regressing BCa tumors22. The NK cells also lead to eradication of tumor cells 

by perforin release, which results in membrane disruption of the effected tumor cell 

through perforin-granzyme pathway23. Increased numbers of NK cells were detected in 

NMIBC patients’ peripheral blood compared to healthy donors, 13.8% vs 5.56% 

respectively24.   

Last essential involvement of innate immune response on cellular level are neutrophils. 

Neutrophils secrete TNF-related apoptosis-inducing ligand (TRAIL. In tumor cells, 

expression of TRAIL results in apoptosis, which means that neutrophils are directly 

involved in eradication of the tumor15. 

The BCG treatment leads to induction of adaptive immune response, more precisely 

systemic, Th1 effector response, tolerization, Th2 response or regulatory Th17 response. 

The polarization between the two depends on released cytokines. Th1 cells produce IL-2, 

IFNg and TNFb while Th2 produce IL-4, IL-5, IL-10 and IL-1325. BCG is a Th1 polarizing 

therapy. Th1 induction is crucial for the effectiveness of BCG therapy in BCa patients26,27. 

The induction of adaptive immune response was proved in research, when cytokines 

including IL-1b, IL-10 and TNF-a were detected 24 hours after the BCG instillation at 1st 

and 6th week.   

However, Th1 response is also the main disadvantage of the therapy. If the BCG therapy 

is not tolerated well by the patient it can lead to serious systemic side effects26,28–30. 

Therefore, the instillation schedule and the dose of the BCG vaccine remain a discussed 

topic. The goal is to maximize the efficiency and minimize adverse side effects. 

2.2.1.2. BCG vaccine against TB infection 

BCG has been used as a prophylactic vaccine against TB since 192131. It has proved 

effective yet it still fails to completely prevent lung TB32. In 2009 WHO issued a TB 

warning on the basis of high number of people suspected of carrying the latent TB 

infection (LTBI). Based on WHO issued guidelines, active TB infection is a state when 
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M. tuberculosis, cause of TB disease starts multiplying in the infected individual and 

manifests symptoms including cough lasting longer than 3 weeks. In contrast to active TB 

infection, LTBI is not clinically symptomatic but bears the risk of developing into the 

active form at any time. Currently 25% of the world’s population are estimated to be at 

risk of carrying LTBI32. Despite that, vaccination programs in developed countries (incl. 

Czechia) decreased. Currently only children from high-risk groups based on epidemiology 

findings are subjected to vaccination. Non-vaccinated children are considered at risk of 

developing LTBI if exposed to active TB infection in their household33. Lack of 

vaccination may cause significant problems for the local healthcare systems, especially in 

places with lower healthcare standards or in cases when patients come to the doctor too 

late.  

The immune response to BCG vaccination is not yet completely understood. The initial 

interaction between BCG antigens and the immune system occurs on the level of innate 

immune response, more specifically macrophages. The interaction occurs via pattern 

recognition receptors (PRR), namely TLR2/4 and complement receptor 332.  

BCG also interacts with dendritic cells (DC), which present the BCG-specific antigens to 

naïve T cells in lymph nodes through the DC-SIGN receptor. Additionally, in vitro DC 

increase their antigen presenting properties upon BCG presentation. The last major 

component of innate immunity, which is crucial for the establishment of memory against 

BCG are neutrophils32.  

To create a long-term memory B cells are highly significant. B cells participate in the 

opsonisation process in the initial stages of infection, which allow for phagocytosis by the 

cells of innate immunity and result in the antigen presentation to T cells32.  Upon the 

interaction with BCG, neutrophils release a number of cytokines and induce Th1 and Th17 

cells, which play an essential role in controlling TB34. The role of CD4+ T cells in TB 

immunity has been described in more detail than CD8+ T cells especially for their role in 

establishing central memory and for production of IFNg (essential for resistance against 

M. tuberculosis infection)35.  

Clear overlap between the effects of M. bovis and M. tuberculosis was recently proved 

even in BCa therapy when live attenuated M. tuberculosis vaccine, MTBVAC was used 

to treat a mice model of BCa. The tests showed promising results, with only <10% 
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mortality in treated mice. One of the main advantages of MTBVAC application over the 

routinely used BCG MEDAC vaccine instillation is the possibility to accurately identify 

and describe the applied strain18. 

2.2.2. Checkpoint inhibitors 

BCa is a suitable pathology for another form of immunotherapy, checkpoint inhibition 

therapy because of its high mutational burden. At 8.03 mutations per megabase (Mb), it is 

among tumors with the highest mutational burden in adults36. High number of mutations 

significantly increases the statistical probability of an expression of tumor-specific antigen 

and the existence of corresponding antigen-reactive T cell clone.  

The checkpoint inhibitors unblock the adaptive immune system and in effect lead to 

activation of tumor-specific cytotoxic T cells12. The checkpoint inhibitors are primarily 

prescribed to MIBC patients. The overview of basic mechanism of checkpoint inhibition 

is shown in Figure 3. CD8+ T cells target the tumor cells by perforin granzyme pathway23. 

CD4+ T cells have also been proved to play an essential role in tumor immunity both as 

tumor suppressive cells and as immune regulatory cells37. 

 So far several checkpoint inhibitors have been identified and are routinely used in the 

clinic, PD-1 (PDCD1), PD-L1 (CD274), CTLA-4 (CTLA-4)38. Additionally TIM-3 

(HAVCR2), LAG-3 (LAG3) and TIGIT (TIGIT) are under investigation for introduction 

into the clinical practice39. 

Food and drug administration (FDA) agency in the USA approved five checkpoint 

inhibition drugs to treat BCa specifically, in both first and second line of treatment for 

unressectable T3-T4 tumors and patients not eligible for cisplatin based therapy40.  

The currently approved checkpoint inhibition immunotherapy for BCa targets PD-1 

(PDCD1), (nivolumab, pembrolizumab)41 and PD-L1 (CD274), (avelumab, durvalumab, 

atezolizumab)42 molecules. 
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Following the FDA approval, EU authority European Medicines Agency (EMA) approved 

nivolumab, pembrolizumab and atezolizumab for BCa treatment in 2017 and in Czechia. 

A major disadvantage in Czechia is that the application of the drugs to patients is not yet 

covered by the regular health insurance and therefore, can only be administered to patients 

participating in a clinical study.  

This led me to choose the stratification of patients with the potential to receive BCG, as 

the only routinely available and applied immunotherapy for BCa. However, the knowledge 

will be applicable to other forms of immunotherapy.   

2.2.3. Adoptive cell therapy – uniCAR T cells 

Another possibility, which is not routinely applied in the treatment of tumors is a type of 

cell therapy, specifically chimeric receptor (CAR) T cells, and more precisely universal 

chimeric receptor (uniCAR) T cells. So far, the uniCAR therapy has been applied in 

treatment of liquid tumors. These are artificially engineered transgenic T cells whose 

major advantage is that they circumvent the MHC molecule – Ag presentation pathway, 

Figure 3. The overview of mechanism of checkpoint inhibitor therapy. The scheme depicts 

two major checkpoint inhibitors used for treatment of BCa targeting PD-1 and PD-L1 

molecules. Once the checkpoint inhibitors are blocked the T cells become effective. The 

tumor-antigen specific T cells target tumor cells. This results in a clearance of the tumor46. 
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mediating direct interaction between T cell and the tumor cell in the body via an Ag-

specific binding construct, see Figure 4 for a scheme of the construct, bridging tumor and 

effector T cell. 

The uniCAR system combines the intracellular CD28/CD3z domain with the binding 

element designed from the single chain variable fragment (scFv) domain, also referred to 

as target module (TM), connected by a flexible linker and activating universal immune 

receptor. Additionally, the construct requires an extracellular hinge, spacer element and 

endodomain, responsible for signalling via immunoreceptor tyrosine activation motif 

(ITAM).  

UniCAR T cell system allows the TM to be interchangeable43. TM may be designed to bind 

to diverse tumor-specific antigens. The brilliance of the system is in the target modules, 

which have an affinity to the target cell and to the T cell and can be easily replaced as a 

soluble molecule44,45. 

 
Figure 4. Construction of uniCAR T cells. The conventional CAR T cells (here labeled cCAR) contain 

scFv fragment, which determines the affinity of the construct to T cell receptor. The scFv is connected 

to the transmembrane domain via a hinge. On the other side of the construct signalling domains enable 

the activation of T cell. The uniCAR consists of two parts. The first one allows manipulation with T cells 

in a non-stimulatory manner and the second one is a specific TM, which allows for induced activation 

of TSA specific T cells.48  
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Recently, novel TM has been developed, which does not recognize a cell surface TSA but 

rather a short peptide, E5B9 derived from nuclear autoantigen La/SS-B44 .  

2.3. BCa monitoring methods currently used in the clinics 

Monitoring of the immune response has been a challenge since the very beginning of the 

BCG treatment of BCa3. A wide scope of methods is available including pathological 

assessment, identification of molecular biomarkers, monitoring of cell response, detection 

of local (urinary) and systemic (blood) cytokines and identification of genomic 

signatures46. The monitoring methods could also be divided to local and systemic 

approaches based on the scale of the detected markers.  

2.3.1. Cytology 

Routine monitoring on the local scale includes cytology of samples biopsied from the 

bladder.  Cytology is based on identification of cells released from the surface of bladder. 

Relying on cytology for diagnosis and monitoring proved problematic dues to two factors. 

First major downside is the low sensitivity in cases of low-grade tumors. Second is the 

high variation in assessment of the samples among pathologists, which led to 

establishment of the Paris System in 201347. The Paris System provides a unified, 

standardized terminology and scaling system to allow for more accurate diagnostics and 

monitoring of BCa48. However, the sensitivity of cytology in newly diagnosed patients has 

been reported as low as 28%49.  

Two more local monitoring methods are currently available in the clinics, BladderChek 

nuclear matrix protein-22 (NMP-22) and Urovysion Fluorescent in situ hybridization 

(FISH)49. 

2.3.1. BladderChek and Urovysion FISH 

BladderChek NMP-22 detects the presence of NMP-22, which indicates presence of 

transitional cell carcinoma50. Sensitivity of BladderChek MMP2 reaches 88%49. 

Urovysion FISH detects abnormalities in chromosomes 3, 7, 17 and 9p2151. Sensitivity of 

Urovysion FISH reaches 80%. The conclusion from a comparative study of BladderChek 
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vs Urovysion FISH is to use BladderChek test as it provides the best price-performance 

ratio and significantly improves the prediction and monitoring of BCa49. The FISH method 

has been used to predict recurrence in patients undergoing BCG therapy and led to 

promising results. Patients with FISH positive results prior to BCG vaccine instillation, 

had a 3 to 5 times higher chance of tumor recurrence52. This means a FISH method can 

also be incorporated into a panel of detection and monitoring methods for BCG therapy. 

2.3.2. Cytokine detection 

In general, there is a high tendency to identify as many markers at once as possible. 

Markers, which may be detected using non-invasive methods, to spare the patient from 

undergoing further procedures are preferable. The sample of choice is urine53,54. So far IL-

226 and soluble intercellular adhesion molecule (ICAM-1)53 have been detected in urine. 

These cytokines and markers are released in response to T cell specific activation. An 

entire panel of cytokines present in urine prior to BCG installation, which predicted the 

recurrence of BCa with 85.5% accuracy has been identified. Prediction cytokines are IL-

2, IL-8, IL-6, IL-1ra, IL-10, IL-12[p70], IL-12[p40], TRAIL, and TNF-α55.  In another 

study on cytokine release into urine after BCG instillation, IL-17 was added to the panel 

of previously listed cytokines. The analysis was performed using FCM and led to a 

conclusion that the response and prediction values are highly personal56. 

Out of the presented list of cytokines,  IL-2 and IFNg have also been used for detection of 

systemic response57. Another study expanded the list of cytokines detectable in both urine 

and serum to include IL-4, GM-CSF, IFNg, IP-10, MIP-1a, PDGF, MIP-1b,RANTES and 

VEGF54.  

The systemic approaches include tests performed on patients’ peripheral blood. Cytokine 

producing cells were detected both prior to and after BCG installation.  

2.3.3. Proteome testing 

New approaches to monitoring the immune response to BCG vaccine are constantly being 

developed and tested. A highly promising one is a test of proteome. Levels of protein 

expression have been evaluated in precancerous lesions in the bladder of an in vivo rat 
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model. The predictive proteins are Rab-GDIb, aldehyde dehydrogenase 2 and 14-3-3z/d58. 

Another approach to prediction of BCG vaccine functionality and effectiveness is the 

computational mathematical model, which extracts information from empirically collected 

data on dosage and instillation schedule and predicts response of BCa patients to the 

treatment59. 

2.4. TB and LTBI diagnostic methods currently used in the 

clinic 

Any mimicry between the tumor-specific antigens and the M. bovis antigens may further 

enhance the immune response and aid in the timely and more precise detection of BCa-

responsiveness in patients. Therefore, the knowledge regarding diagnosis of TB and 

detection of LTBI carries a great potential for BCG instillation as treatment for BCa. 

2.4.1. Tuberculin skin test 

The most commonly used test in detecting TB and LTBI caused by M. tuberculosis is the 

tuberculin skin test (TST) alongside with an X ray examination. TST is performed by 

cutaneous injection of M. tuberculosis purified protein derivative (PPD) and the 

subsequent measurement of the local immune response60.  Its great disadvantage is the low 

specificity in BCG vaccinated individuals. Moreover, the specificity of TST has been 

shown to be age specific. During childhood it decreases down to 62.7%61 and this 

specificity perseveres into adulthood62. The guidelines of American Thoracic society, 

suggest to opt for alternative to TST in BCG vaccinated patients from the age of 5 years 

on63. In patients with active TB sensitivity of the TST was 25% and specificity 67%63. 

Therefore, the TST is not a sufficient method to detect the LTBI and identify the point of 

transition between LTBI and active TB. It must be complemented by other methods or 

replaced by a more efficient test. TST has also been performed in the course of treatment 

of BCa before the BCG vaccine was installed. 5-year survival rate was 66.6% of patients, 

who underwent the TST before BCG vaccination  compared to 59.1% in the cohort, which 

did not undergo  the TST64. Showing the enhancement property of TST for the efficiency 

of BCG instillation.  
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2.4.2. Interferon g release assay (IGRA) 

Interferon g release assays (IGRA) is routinely used to confirm the TST positivity. IGRA 

has also been employed as an alternative or complement to the TST in cases where TST is 

not the best option due to factors listed above65. IGRA are based on enzyme-linked 

immunosorbent assay (ELISA). T cells are stimulated by M. tuberculosis peptides and the 

IFNg release is measured. To account for the fact that the BCG vaccination interferes with 

the results of the TST, M. tuberculosis specific antigens have been identified, namely CFP-

10 and ESAT-6 to increase both the specificity and the sensitivity of the tests. These 

antigens are not present in the BCG vaccine and therefore serve as unique indicators of the 

infection, which are not skewed by the BCG vaccination.  

Currently the most commonly used IGRA are QuantiFERON-TB-Gold PLUS (QFT Plus), 

QuantiFERON-TB-Gold in tube and T-SPOT.TB.  The sensitivity is 80.2% and 91% 

respectively66. In a low-risk study group, the sensitivity of QFT Plus was 87.93% and 

specificity was 97.17%67.   

However, in an attempt to increase the effectiveness of BCG vaccination, ESAT-6 has 

recently been added into the newly produced vaccine. This addition led to development of 

ESAT-6 free IGRA, which tested both new M. tuberculosis antigens, EspC, EspF and 

Rv2348c and IP-10 as a replacement readout for IFNg. This new test shows highly 

promising results compared to QuantiFERON, which was used as a control (79% vs 84% 

sensitivity and 97% vs 99% specificity respectively)68. 

2.4.3. Monitoring of lymphocyte activation and cytokine release 

detection 

Finally, TB can be highly accurately diagnosed by detection of cytokine release. A panel 

of cytokines was tested to determine which ones have the capacity to distinguish between 

LTBI and active TB. The panel included Il-1b, IL-2, IL-6, IL-10, IL-17, G-CSF, IFN-g, 

IP-10, MIP-1α and TNF- α. IL-2, IL-10, IFN-g, IP-10 and TNF- α levels were significantly 

higher in the LTBI patients69.  
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IL-2 is a particularly useful marker, which has been tested in a method called LIOSpot, 

based on the ELISA method the same way as QuantiFERON method. In LIOSpot IL-2 

levels are measured instead of IFN-g release. ESAT-6 and CFP-10 were used as stimulants 

in the LIOSpot method as well, reaching sensitivity of 86% and 80% for the respective 

antigens and specificity of 36% and 54%. However, an additional marker, alanine 

dehydrogenase (Ala-DH) was included in the mix of stimulation antigens and the 

sensitivity was 96% and specificity 100%, which makes it a useful tool for active TB 

detection70.  

Another test, which has been proposed as a potential candidate to be combined with IGRA 

is TNF-a release assay (TARA). TARA in combination with IGRA led to increase in 

specificity to 93% for active TB and the sensitivity of 89%71.  

Finally, a test has been designed, which combines detection of IL-2, IFN-g and TNF-a as 

LTBI specific markers. This triple marker test provides highly specific results, which 

enable more accurate diagnosis and detect LTBI with sensitivity >88%72. essences 

2.5. Principles for designing a TAT panel 

The goal of urological oncologists is to prescribe the right therapy, efficiently monitor 

progress of treatment and cure the patient. Flow cytometry offers a personalized approach, 

thanks to the single cell analysis and testing of large panels of markers, which may be 

adjusted based on patient’s individual needs, medical history and immune profile. FCM 

provides an alternative to the currently used methods for a more accurate diagnosis and 

disease monitoring. It has been proved in literature that FCM is a robust method for 

detection of rare antigen-specific T cell populations73. In order to develop an efficient 

panel of markers to detect T cell specific activation, two major conditions must be met. 

The first one is the right selection of markers to be included in the panel and the second is 

the right stimulation of T cells to test the expression characteristic for BCa and LTBI with 

a high enough predictive value. 
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2.5.1. In Vitro T cell stimulation 

The general frequency of antigen-specific reactive T cells has been detected ranging from 

0.002% for epitope-specific reactive T cells to 1.73% of PPD reactive T cells in patients 

with active TB. The range is based on the type of antigen (tumor, BCG antigens, 

tuberculin, multimers bound to MHC), detection method (FCM, multimer binding assay) 

and origin of T cells (healthy donors, donors diagnosed with a tumor, donors with LTBI, 

donors with active treated vs non-treated tuberculosis)74–76.  

The PBMC isolated from whole blood or buffy coat must be set in culture (RPMI 1640 

medium) and activated (by various stimuli). There are three major types of stimulants. T 

cells can be activated in a polyclonal, oligoclonal and monoclonal manner. Polyclonal 

stimulation leads to the largest number of activated T cells, oligoclonal comes second and 

finally the lowest number of T cells is activated by the monoclonal stimulation. This is the 

reason to move from polyclonal, to oligoclonal and finally to monoclonal stimulation in 

the development of TAT to test the detection power of the panel on increasingly 

challenging activators. To build and run the first tests on TAT panel I used the polyclonal 

activation.   

PMA activates protein kinase (PKC) pathway and the ionomycin increases the intracellular 

levels of Ca2+.  PMA/ionomycin activation was selected to set a baseline of positive 

controls for the final TAT because it has been identified as the strongest stimulation to 

detect cytokine production and other activation markers. The expected response of T cells 

to polyclonal stimulation is up to 100%77.  

The oligoclonal stimulation is performed by so called superantigens78. The superantigens 

stimulate T cells by crosslinking Vb part of the TCR and the MHCII molecule on APC79. 

Superantigens are used at a concentration ranging from 0.1 to 1000 ng/ml80–82. Oligoclonal 

stimulation leads to activation of up to 20% of  CD4+ and CD8+ T cells combined83. 

Stimulation with the Cytomegalovirus (CMV) lysate represents a middle step in the 

process of detection of rare antigen-specific T cell populations, reaching 5 to 10% of all 

CD8+  T cells84. Based on their origin 40%-90% of people are CMV positive, which ensures 

a sufficient proportion of CMV positive donors among healthy blood donors to serve as a 
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control85. Moreover, CMV lysate has been used as a powerful marker for prediction and 

monitoring of patient’s response to selected immunotherapy86.  

The last type of T cell stimulation is antigen-specific or monoclonal. Monoclonal 

stimulation leads to the lowest numbers of reactive T cells in healthy individuals reaching 

only 0.01%87. The T cells are stimulated by specific antigens, at various concentrations 

based on the type of the antigen. Individual clones of reactive T cells are detected. In the 

TAT stimulation, the antigens will come from several sources, the BCG vaccine lysate, M. 

tuberculosis specific synthetic peptides and PPD, the BCa cell line lysate and the tumor 

lysates.  

The BCG lysate represents antigens present in the BCG vaccine, which have the potential 

to trigger immune response. The tumor-specific antigens will follow in the form of BCa 

cell lines lysates and BCa patient sample lysates, to detect BCa-specific T cell activation 

in the personalized setting on patient’s peripheral blood. Each stimulant will be used for 

in vitro test to detect the response in healthy BCG-vaccinated/non-vaccinated donors and 

compare it to the response mounted by latent and acute TB patients and BCa patients 

before and after BCG instillation. Healthy, adult donors serve as a control for the other 

cohorts. 

2.5.2. TAT panel makers 

As was described above, the T cell immune response is crucial for the success of prescribed 

immunotherapy. Based on the published research, I selected the following combination of 

markers to be included in the TAT panel. 

Lineage markers 

CD4 and CD8 are the most commonly used markers to detect T cell populations88–93.  

Other frequently used marker is CD388–93. I decided to use all three markers, CD3, CD4 

and CD8 because they provide a precise distinction of the T cell population.  

Degranulation markers 

As was stated above, the first manifestation of PBMC activation is degranulation and 

particularly degranulation of basophils21,94. Therefore, it is used as the primary initial 

control of successful stimulation as early as 1-hour after activation95,96. Numerous studies 
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on degranulation have been conducted and led to development of basophil activation test 

(BAT). The BAT is primarily used for detection of allergies97 but has also been used to 

determine the oversensitivity of cancer patients to oxaliplatin chemotherapeutic98 . 

Markers included in the BAT are CD63 (LAMP-3) and CD203c (ENPP3)99 . CD 63 is 

present intracellularly on the membrane of granules in basophils, mast cells and platelets 

as well as on the membrane of other cells and is detectable on the surface after 

degranulation100. Degranulation is also an essential part of the initiation of cytolytic 

functions of T cells.  Two markers, CD107a (LAMP-1) and CD107b (LAMP-2) have been 

shown to directly connect to the T cell cytolytic function mediated by perforin granzyme 

activation101. CD107a is a marker of both NK cells and T cell activation102.  

To include both the earliest markers and the T cell specific markers, CD63 and CD107a 

were included in the TAT panel. To avoid false positive signal in a T cell oriented assay, 

caused by platelets and basophils CD41 (ITGA2B) can be added to clearly distinguish 

platelets from a whole blood sample103.  

Activation markers 

Alongside the initial degranulation, there are numerous surface activation markers, which 

are expressed on T cells after activation.  A wide array of markers including CD25 

(ILR2A), CD26 (DPP4), CD71 (TFRC), CD154 (CD40LG), CD69 and costimulatory 

molecules CD26, CD27, CD28, CD30 (TNFSF8) and CD134 (TNFRSF4). The markers 

can be divided into early and late activation markers, based on the time when they are 

expressed relative to the point of initial T cell stimulation. 

The earliest one is CD69, a C-type lectin, which was shown to work as a powerful Due to 

its early expression and essential role in T cell activation it has been included in the TAT 

panel. 

Two major late activation markers are CD137 (TNFRSF9) and CD154104.  CD137 belongs 

to the TNF-receptor family and plays an important role in clonal expansion105and is 

expressed after T cell reacts in an antigen-specific manner106. CD137 has been identified 

as signature of activated T cells, my interest being particularly with the focus on tumor- 

and M. tuberculosis- specific T cells35,107. CD137 has been shown to identify tumor 

infiltrating lymphocytes with higher accuracy than previously thought PD-1108, which may 
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be further increase the predictive value of the marker in future research. Although CD137 

is expressed on both CD4+ and CD8+ T cells, in general there is a tendency to preferentially 

use is as a marker for CD8+ T cells reactivity 109.  

CD154 plays a role in T cell proliferation and cytokine production as a costimulatory agent 

by CD28 costimulation110 and tyrosine phosphorylation111. CD154 is a marker of antigen-

stimulation of CD4+ T cells112. CD154 has been effectively used to define a population of 

T cells with an antiviral function113. 

Cytokines 

Cytokines are small signalling proteins, which play an essential, irreplaceable role in 

immune response. Numerous studies have been conducted on identifying cytokines, which 

are specifically released after activation of T cells. Based on the previously reported 

literature search I decided to include IL-2, IFN-g and TNF-a into the final TAT panel. 

These three cytokines have been previously used for detection of BCG-reactive responses 

and used for prediction of BCa patients’ response to BCG therapy114 

IL-2 is a major T cell cytokine. It leads to activation and expansion of T cells through TCR 

signalling. Activated CD4+ and CD8+ T cells produce IL-2. It has been shown that IL-2 

can also play a role in self-tolerance. IL-2 influences CD4+ Foxp3+ subset, which has 

immunoregulatory function, making it an ambivalent cytokine in the sense that it induces 

T cell proliferation but resulting in both enhancement and suppression of immune 

response115. MAPK, JAK/STAT and PI3K/AKT pathways lead to synthesis of IL-2. When 

naïve CD8+ T cells undergo activation and proliferate in the presence of IL-2, they are 

limited in development of effector function116. Overall the IL-2 is a marker of activation 

of T cells of various subsets, which makes it an excellent cytokine to be included in the 

TAT. 

The second included cytokine is IFN-g. IFN-g is a proinflammatory cytokine, produced by 

NK and T cells in response to tumors and intracellular pathogens. It is associated with 

polarization towards Th1 response, which is essential in BCG vaccine therapy 117. 

The last cytokine to be included is TNFa. TNFa is also proinflammatory but has 

ambivalent functions. TNFa works by activating the NFkB signalling pathway118. It 

belongs among the activation cytokines, which indicate antigen-specific T cell response119. 
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At the same time it has been shown to inhibit CD8+ T cell anti-tumor function120. TNFa is 

also important for the induction of MDSC by non-activated CD4+ T cells, contributing to 

the induction of immune response121. This means that it also functions as a potent link 

between innate and adaptive immunity. 
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3. Goals of the experimental part of the diploma 

thesis 

• Design a panel to detect T cell specific activation based on T cell specific 

markers, early and late activation markers and cytokines  

• Optimize positive controls for the detection of non-specific polyclonal 

stimulation of T cells 

• Use of uniCAR T cell system as a potential T cell specific positive control 

• Detection of Ag-specific response to CMV stimulation 
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4. Materials and methodology 

4.1. Materials 

4.1.1. Cells 

• Whole blood obtained from healthy donors 

• Buffy coats from Institute of Hematology and Blood Transfusion (UHKT), 

donors #18002635, #18003342, #18003345, #18005433, #18005434, 

#18005439 

4.1.2. Beads 

• Rainbow Calibration Particles, 8-peak, Spherotech Inc. (USA), Cat. No. RCP-

30-5A, Ref.No A79016, Lot.No.: AF02 

• VersaComp Antibody Capture Bead Kit, Beckman Coulter (USA) Ref. No. 

B22804, Lot. No.: 4131002K 

• CytoFLEX Daily QC Fluorospheres, Beckman Coulter (USA) Ref. No. B53230, 

Lot.No.: AJ06F, AJ02F



24 

4.1.3. Antibodies 

Table 1. Overview of used antibodies 

Antigen Clone Fluorochrome Manufacturer Cat. No. Concentration 
(µg/ml) 

Final 
dilution 

CD4 MEM-241 AF700 Exbio A7-359-T100 unknown 1:320 
       

CD8 MEM-31 Pacific Orange Exbio PO-207-T100 30 1:160 
       

CD8 MEM-31 PE/Cy7 Exbio T7-207-T100 30 1:320 
       
CD8 MEM-31 PerCP/Cy5.5 Exbio T9-207-T100 unknown 1:320 
       
CD63 MEM-259 PerCP/Cy5.5 Exbio T9-343-T100 unknown 1:160 
       
CD107a REA792 APC/Vio770 Miltenyi 

Biotech 
130-111-623 205 1:320 

       
CD69 FN50 FITC BioLegend 310904 unknown 1:160 

       
CD137 4B4-1 BV650 BD Biosciences 309828 100 1:40 
       
CD154 24-31 PE Exbio 1P-781-T100 100 1:20 
IFNg 4S.B3 APC Exbio 1A-706-T100 unknown 1:10 
       
TNFa MAb11 BV605 BioLegend 502936 unknown 1:20 
       
IL-2 MQ1-

17H12 
PE/Cy7 BioLegend 500326 100  

CD41 MEM-06 PB Exbio PB-309_T100 1243 1:160 
       
E5B9 
antibody 
 
GAM-PE  

Laboratory 
of professor 
Bachmann 

   unknown 1:20 
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4.1.4. Buffers and chemicals 

Table 2. List of used reagents 

Reagent Distributor Cat. No. Lot. No. 

HBSS IMG ASCR   

PBS    

Gelatine Sigma-Aldrich G7765-250ML SLBH6724V 

Sodium azide Sigma-Aldrich S8032-25G BCBQ2297V 

Ficoll-PaqueTMPLUS GE Healthcare 

Biosciences AB 

17-1440-02 10225938 

DMSO Sigma-Aldrich D2650-100mL RNBF8134 

Ionomycin Sigma-Aldrich IO634 080430 

PMA Sigma-Aldrich   

PHA    

CMV lysate 

 

2nd Medical Faculty 

CUNI, doc. Kalina 

  

Triton X-100 Sigma-Aldrich T8532-100mL 033KD0605 

Paraformaldehyde 

Hoechst 33342 

Hoechst 33258 

Sigma-Aldrich P6148-500G 010M1507 

 

Fetal Calf Serum (FCS) Biosera   

RPMI Sigma-Aldrich R8758-500ML RNBF9794 

BD FACS Permeabilizing 

Solution2 

BD Biosciences 340973 6357992 

BD FACS Lysing Solution BD Biosciences 349202 8059717 

Brefeldin A                   

 

eBioscience  00-4506-51 E00021-1633 

• I used 1x HBSS with bicarbonate (23.3.mL/500mL 1xHBSS) for work with 

cells in RT in the laboratory. 

• I stained cells with antibodies in 1xHBSS with bicarbonate, 0.1% gelatin and 

<0.01% sodium azide  
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4.1.5. Laboratory equipment 

• Microscope Olympus CHA, Olympus (Japan) 

• Carl Zeiss Primo VertTM inverted microscope, Carl Zeiss AG (Germany) 

• Classic vortex mixer, Velp Scientifica (Italy) 

• Centrifuge Alegra X-15R, Beckman Coulter, Inc. (USA) 

• Shel Lab CO2 incubator, Sheldon Manufacturing, Inc. (USA) 

• 13-parameter CytoFlex S, Beckman Coulter, Inc. (USA) 

• MacsQuant Analyzer, Miltenyi Biotech (Germany) 

 

4.1.6. Software 

• CytExpert v2.1., Beckman Coulter, Inc. (USA)  

• Flow Jo, v10.5.3, FLOWJO, LLC (USA) 

• MacsQunatify SW, Miltenyi Biotech (Germany) 

4.1.7. Laboratory consumables 

• PipetmanâClassic, P2, P10, P20, P100, P200, P1000, Gilson (USA) certified at 

Sipoch 

• Gilson tips, Diamond for pipetman, Gilson (USA), Ref.No. F171200, F171300 

• Lithium Heparin Vacuettes for blood donations, Greiner bio-one (Austria), ref.no. 

456083, Lot. No.: A17013SM 

• Culture flasks 50mL, SigmaAldrich (Germany), Ref.No. CLS432150 

• Culture flasks 75mL, SigmaAldrich (Germany), Ref.No. CLS3290 

• Serological disposable pipets, 10mL, Fisherbrand (USA), Cat. No. 13-676-10J 

• Serological disposable pipets, 5mL, Fisherbrand (USA), Cat. No. 13-676-10H 

• 6-well plates, Corning (USA), Cat.No. 3506 

• 96-well polypropylene plates, Fisherbrand (USA), Cat. No. 12565502, Lot. No.: 

155238 

• Plastic tubes 15mL, Fisherbrand (USA), Cat. No. 05-539-5 

• Plastic tubes 50mL, Fisherbrand (USA), Cat.No. 05-539-7 

• Cryogenic vials, Biologix (USA), Cat.No. 81-7204, Lot.No. 120702 



27 

• Vials 1,5mL, Eppendorf (Germany), Cat.No. 0030123328 

• Vials 2mL, Eppendorf (Germany), Cat. No. 0030123344 

4.2. Methodology 

4.2.1. Isolation of peripheral blood mononuclear cells (PBMC) 

using Ficoll Paque gradient 

The PBMC were isolated from whole blood and from buffy coat obtained from healthy 

donors. In order to isolate PBMC I used FicollPaque and followed the protocol provided 

by GE Healthcare. First the 45 mL buffy coat is diluted with 1x HBSS to achieve the final 

volume of 80 mL. 10 ml Ficoll Paque is put into a fresh 50ml tube and then carefully 

layered over with 40 mL of prediluted buffy coat. The final ratio of Ficoll Paque to diluted 

buffy coat is 1 to 4. This way, each buffy coat is processed in two 50ml tubes. The tubes 

are carefully placed in a centrifuge and spun down at 400 g for 30 minutes at 20 °C with 

minimal acceleration and deceleration and no brake. The layer of white blood cells forms 

a clearly visible white ring above the layer of Ficoll Paque and it must be carefully 

transferred to a fresh 50ml tube and washed once in 1x HBSS with bicarbonate.  

In order to detect lymphocyte-specific degranulation the platelets must be very carefully 

identified and eliminated because they express both degranulation markers CD63 and 

CD107a  themselves122.  Since there are 150-400*106/ml they can lead to false positivity in 

the cytometric measurement123. Additionally, platelets aggregate and attach to 

granulocytes, monocytes and lymphocytes after their degranulation, which further skews 

the results. Therefore, I tested staining with platelet-specific CD41 marker to exclude the 

platelet population124 from whole blood samples. The resulting gating strategy is shown in 

Figure 6 below. In blood processed on Ficoll Paque, the samples were centrifuged at 80xg 

for 20 minutes, which proved efficient enough. Cells are spun down to the pellet and the 

thrombocytes are discarded with the supernatant. 
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4.2.2. Stimulation of PBMC 

The most potent non-specific polyclonal stimulus is phorbol 12- myristate 13- acetate 

(PMA) in combination with ionophore ionomycin. Based on literature research I opted for 

20 ng/ml of PMA and 500 ng/ml of ionomycin.  The stimulation was performed in the 

volume of 2ml, at 2*106 cells/ml in 12-well plates for  6, 24, 120 hours at 37 °C, 5% CO274–

76.  

4.2.3. Flow cytometry 

Flow cytometry (FCM) is a method enabling the detection, analysis and description of a 

sample on a single cell level. Beckman Coulter CytoFlex S at the Faculty of Science flow 

cytometry facility has been used with the configuration shown in Table 2.  

BC CytoFlex S uses Avalanche photodiode (APD) detectors as opposed to photomultiplier 

(PMT). The APD system uses gain, as a reverse function of voltage during sample 

acquisition. The gains were adjusted in order to ensure accuracy of measurements. To set 

the right gains, we have used a manual baseline determination for each channel where 

minimal CV has been achieved with increasing SD for BC calibration beads. Additionally, 

we have used Spherotech Rainbow beads and compared the position of 8 visible peaks on 

the scale.  

A long-term reproducibility of measurement is ensured by performing quality control 

measument of CytoFlex daily QC fluorospheres before every measurement. The 

CytExpert software newly offers a setup standardization, which automatically updates 

acquisition settings after running the QC standardization procedure, however I have not 

used this feature for my experiments. The optimized settings are presented in Table 4. 

4.2.4. Titration of monoclonal antibodies (mAb) 

Antibodies from the designed panel must be titrated on PBMC isolated from buffy coats 

or whole blood. The PBMC were stained for extracellular (CD4, CD8, CD63, CD107a, 

CD69, CD137, CD154) and intracellular (IL-2, IFNg, TNFa) markers. CD4 and CD8 were 

titrated on non-activated PBMC. CD63, CD107a, CD69, IL-2, IFNg and TNFa were 

titrated on cells activated for 6 hours, CD137 and CD154 were titrated on cells activated 
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for 24 hours. All antibodies were diluted and PBMC were washed and measured in a 

staining buffer 1x HBSS with 0.1% of gelatine and <0.01% of sodium azide.  

100 µl of PBMC suspension (from 6*106 cells/ml), were transferred from 5ml tubes and 

washed in a 96-well polypropylene plate. The staining with individual antibodies is 

performed on a pellet of PBMC. The serial dilution of antibodies is prepared in 10 µl of 

the staining buffer starting from 2x the concentration recommended by the manufacturer 

and then decreasing the concentration two-fold in each following well until the final 

dilution of 1 to 2560 in the final volume of 20 µl (pellet from left after centrifugation of 

100 µl PBMC suspension from   6*106 cells/ml and 10 µl staining solution with correct 

amount of added antibodies ) was reached. After the serial dilution has been prepared for 

extracellular markers, the PBMC were incubated with antibodies for 30 minutes, in the 

dark at RT. After incubation, cells are washed by 350 µl of staining buffer, centrifuged at 

300g for 5 min and resuspended in 100 µl of staining buffer for measurement.  

For the detection of intracellular markers, Brefeldin A (BFA) is added to the PBMC 2 

hours after the initial activation. Brefeldin A blocks the Golgi complex from pumping the 

produced cytokines to extracellular space. The PBMC were centrifuged at 500g for 8 

minutes at RT. Next, PBMC were resuspended in 100 µL BD FACS Lysing solution and 

incubated for 10 minutes in dark at RT, then they were centrifuged at 500g for 8 minutes 

at RT again and resuspended in 200 µL of BD FACS Permeabilizing Solution 2 and 

incubated for 7 minutes in dark at RT. The permeabilized cells were centrifuged at 1500g 

for 8 minutes at RT and stained with intracellular antibodies. Intracellular antibodies were 

incubated for 30 minutes at RT, then the cells were washed and centrifuged as was 

described in the previous step. The final stained sample was resuspended in 100 µL of 

staining buffer and measured. 

To analyze the acquired data and select correct dilution factor, the important parameter 

during measurement is the median fluorescent intensity (MFI) of both negative and 

positive populations calculated by the software. Correct gating is key in order to determine 

the best dilution to be used in future experiments. The measured MFI values are used to 

create the titration graph and calculate the stain index. Stain index determines the optimal 

dilution by identifying the point of best separation between positive and negative 

population of cells. See Figure 7 and Figure 8 for exemplary graphs.  
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Equation 1. Calculation of stain index. The Median fluorescent intensity of negative population is 

subtracted from the median fluorescent intensity of the positive population and the resulting number is 

divided by standard deviation of the negative population times two. 

Once the antibodies are titrated the optimal dilution is used for staining the PBMC in a 

total volume of 20 µl (pellet from left after centrifugation of 100 µl PBMC suspension 

from   6*106 cells/ml and 10 µl staining solution with the right amount of added 

antibodies). 

4.2.5. Compensation 

Compensation is a mathematical operation that serves the purpose of right visualization 

and analysis of acquired data.  The aim of compensation is to correct the overlap of 

individual spectra when using multiparametric panels for FCM125. The goal is to achieve 

the orthogonal distribution of populations to clearly separate them from each other and be 

able to identify all the expressed markers from the panel of antibodies specifically on each 

population, and each subset. In order to achieve the maximum attainable positivity, I used 

VersaComp Antibody Capture Kit. Equal proportions of positive and negative beads are 

mixed (3 drops each) and 10 µl of the solution with beads are stained with antibody  in the 

final volume of 20 µl. The beads are incubated in the dark, at RT for 20 minutes, washed 

with staining buffer and measured. The cells of interest are stained with the entire panel of 

antibodies, incubated at RT in the dark for 30 min. After incubation, cells are washed in 

350 µl staining solution, centrifuged at 300g for 5 minutes and measured on CytoFlex S 

using CytExpert software applying the calculated compensation to analyze the data. 

Since the manual setup is prone to introducing errors into the calculation, the trend is to 

establish an automated workflow to ensure accuracy and reproducibility of experiments126.  

4.2.6. Cell line cultivation 

For the purposes of working with uniCAR system, I was trained in cell line cultivation. In 

order to be able to establish a positive control using the uniCAR T cells, two cell lines, 

were selected, PC3 and LNCap both from the laboratory of professor Michael Bachmann 
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at Carl Gustav Carus Institute in Dresden, Germany. Both PC3 and LNCap cell lines are 

prostatic adenocarcinoma cell lines and were selected for the expression of PSCA128,129. 

PC3 and LNCap cell lines have been set in culture and cultivated in an incubator at 37 °C 

and 5% CO2. The cell lines were cultivated in RPMI 1640 medium with 10% FCS and 100 

mg/mL of streptomycin. 

4.2.7. SDS-PAGE Electrophoresis 

The SDS-PAGE electrophoresis is a method used to separate proteins. The separation 

occurs on a polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS). The gel 

is prepared following the protocol in a fume hood. The final gel consists of stacking and 

separating part, which differ in the amount of individual chemicals shown in Table 3.  

Table 3. Preparation of SDS-PAGE gel 

 Stacking gel (µl) Separating gel (µl) 

H2O 2975 4600 

5M Tris-HCl 1250 2600 

30% acrylamide  670 2600 

10% SDS 50 100 

10% ammonium persulfate 50 100 

TEMED 5 10 

 

The gel was left to polymerize for 30 to 40 min and then was stored in water or wet towel 

in a fridge overnight for later use. To determine the amount of protein, known amount of 

Bovine serum albumin (BSA) standards were used as a reference sample in a serial dilution 

prepared from stock concentration of 10 µg/µl into final volume of 10 µl. The serial 

dilution was: 0.25 µg, 0.50 µg, 1 µg, 3 µg, 5 µg and 7 µg. The protein had to be denatured 

at 95 °C for 10 min before loading onto the gel. After the protein was loaded, the gel ran 

at 80 V for 10 to 15 min, for the samples to enter the gel. After that the voltage was 

increased to 100-120 V and the gel ran for 60 to 90 min (until the bands were clearly 

separated). To visualize the sample, the gel had to be stained with Coomassie Brilliant 
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Blue (Coomassie Brilliant Blue 0.25 g, 10% acetic acid, 20% methanol) for 60 minutes at 

RT and de-stained using de-staining solution (20% methanol and 10% acetic acid) three 

times for 30 minutes and left overnight at RT.  

4.2.8. Western blot 

The Western blot is an analytical method used to detect specific proteins. The protein, 

which underwent SDS-PAGE electrophoresis is transferred onto a membrane, using 15 V 

for 60 min.  The membrane is blocked and stained with primary antibody. Primary mouse 

antibody targeted against E5B9 and PSCA were used at a concentration of 5 µg/mL. After 

the first staining blocking solution of Bovine Serum Albumin (BSA) is used on a shaker 

for 60 min at room temperature (RT). Then the membrane continues to secondary GAM 

antibody staining at a concentration 0,5 µg/mL. Finally, the bands were detected using 

Image Lab software. 

4.2.9. Binding assay 

The binding assay is a technique which serves to prove the presence of TM through 

detection of E5B9 peptide by a specific mAb for the binding assay, 96 well plates are used. 

200 000 target cells/well (cancer cells) in 50µl and serial dilution (two-fold) of TM in PBS 

starting at 125 µg/mL were used. The cells were incubated with TM at 4 °C for 60 min. 

After the incubation wells were washed twice with PBS and centrifuged at 360x g for 3 

min and incubate the sample with antibodies against E5B9 epitope followed by a 

secondary GAM IgG antibody conjugated with PE fluorochrome. After antibody staining 

and 2 rounds of washing, the cells are measured on a cytometer to detect positivity for PE-

conjugated antibody. This method serves to prove the presence of TM target molecule on 

the surface of a tested cell line and leads to calculation of equilibrium dissociation 

constant, KD. KD is essential for determining the affinity of TM to the target cells and the 

effectivity of the CAR T cells.  



33 

5. Results 

5.1. Design of TAT panel 

I designed the TAT panel for future use in diagnosis and monitoring of BCG vaccine 

therapy. I designed the panel using FluoroFinder software (https://fluorofinder.com/). The 

original complete panel included all selected parameters measurable at once (Table 4). 

Table 4. Design of complete TAT panel for BC CytoFLEX.The table demonstrates set-up of BC 

CytoFlex cytometer for the detection of surface markers. Each marker is listed under the respective 

channel based on the fluorochrome to which it is conjugated, row “Label”. I included the gain setup 

values in parentheses next to the label of each respective channel. Numbers listed in the row titled 

“Filter” represent the parameters of bandpass filters for each respective channel. Blue background 

indicates T cell core markers, orange are degranulation markers, red surface activation markers and 

yellow cytokines. 

 

Because I made a mistake with CD8_PO, which resulted in running out of the antibody 

prematurely, I decided to split the panel into two mutually compatible panels. The first one 

covers surface activation markers and is presented in Table 5. The second resulting panel 

is focused on the detection of T-cell specific cytokines. Its design is depicted in Table 6. 

First, cells were stained with antibodies for T cell core markers on the surface and then 

cells were permeabilized and stained for cytokines.  

 

 

V1 (300) V2 (500) V3 (1000) V4 (2800) V5 V6
Filter 450/45 525/40 610/20 660/20
Label Hoechst CD8_PO TNF⍺_BV605 CD137_BV650 empty empty

B1 (150) B2 B3 B4 (1200)
Filter 525/40 690/50
Label CD69_FITC empty empty CD63_PerCP/Cy5.5

G1 (800) G2 (1300) G3 (1300) G4 G5 (3000)
Filter 585/42 610/20 690/50 780/60
Label CD154_PE CD3_PE/DL594 empty IL-2_PE/Cy7

R1 (3000) R2 (3000) R3 (3000)
Filter 660/20 712/25 780/60
Label IFNγ_APC CD4_AF700 CD107a_APC/Vio770
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Table 5. Surface markers panel. The BC CytoFLEX gains set-up remained the same as the one 

demonstrated in Table 7. Only surface activation markers were included in the panel. 

 

 

Table 6. Panel for cytokine detection. The set-up of BC CytoFLEX gains remained the same as the one 

demonstrated in Table 7. T cell core markers were complemented with cytokine activation.  

 

To confirm that the gains were set correctly, I measured Rainbow 8-peak beads on the 

above listed gains. As shown in Figure 5, all the peaks fit on the scale when measured on 

the respective gains. All eight peaks must fit onto the scale while maintaining a good 

distinction between individual peaks. High values in all red channels, V4 and G5 result in 

the need for high compensation between the respective channels. 

V1 V2 V3 V4 V5 V6
Filter 450/45 525/40 610/20 660/20
Label CD137_BV650 empty empty

B1 B2 B3 B4
Filter 525/40 690/50
Label CD69_FITC empty empty CD63_PerCP/Cy5.5

G1 G2 G3 G4 G5
Filter 585/42 610/20 690/50 780/60
Label CD154_PE empty CD8_PE.Cy7

R1 R2 R3
Filter 660/20 712/25 780/60
Label CD4_AF700 CD107aAPCVio770
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Figure 5 Control of correct gain setup. Rainbow 8-peak beads were measured in all channels to 

confirm that the correct gains were set. The last peak is set in dark green. 



36 

Gating strategy is essential for analyzing the data acquired on the target cell population. 

For the titrations I used gating strategy depicted in Figure 6. 

  

  

 

Figure 6. Gating strategy of non-activated lysed blood measured on BC CytoFLEX. From all 

collected events depicted in the first dot plot, I gated on cells. Then I selected singlets on FSC-A vs 

FSC-H, in the form of typical conical singlet gate. Singlets were then visualized on a dot plot of SSC-A 

vs V1 (viability dye channel), where I gated on cells, which are negative for Hoechst 33342, shown in 

cells 

All events Cells 

Singlets Live cells 

Lymphocytes 
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the light blue live cells gate. From the live cells I gated on individual populations of PBMC, based on 

the typical blood profile. Individual cell types were designated their own colors: Neutrophils (yellow), 

monocytes (green) and lymphocytes (red). The CD8 antibody was titrated on cells from lymphocyte 

gate, shown in the histogram. 

For the purposes of calculating the compensation matrix and staining the cells correctly, 

the used antibodies must be titrated and used in constant final concentration. Each panel 

was compensated separately. The cells were stained in steps described in the methodology 

part of the thesis. The resulting SI calculated using the Formula 1 and MFI of positive 

populations were put in separate graphs as shown in Figure 7 and Figure 8 respectively. 

The optimal dilution was identified and used in all following experiments. 

 

Figure 7. Example of titration analysis of CD8 monoclonal antibody. Each dot represents one dilution 

in the serial dilution of the titration. Figure represents the titration curve based on Stain index values.  

Figure 8. Example of titration analysis of CD8 monoclonal antibody. Each dot represents one dilution 

in the serial dilution of the titration. Figure 8 is for comparison, based on MFI values.  

 

When I repeatedly experienced difficulties with signal detection on positive controls for 

CD154_PE and TNFa_BV605, I tested whether the antibody is properly conjugated with 
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the right fluorochrome by staining positive and negative beads using a dilution of 1 to 10, 

shown in Figure 9.  When the antibody is correctly conjugated with the fluorochrome, two 

sharp peaks (one for the positive and one for the negative population) are detectable in the 

respective channels, (CD154_PE in G1 and TNFa_BV605 in V3). The conclusion is that 

both antibodies are correctly conjugated and detectable using the channels, as expected on 

BC CytoFLEX. 

 

Figure 9. Control of conjugation of antibodies CD154 (G1) and TNFa (V3). The first dot plot shows 

the gating strategy for selection of beads. CD154 is detected in G1 channel and TNFa is detected in 

V3 channel on positive and negative beads forming the separate sharp peaks. 

 

Compensation matrix was calculated based on positivity detected using single stain 

controls on beads. The accuracy and applicability of the compensation matrix was 

analyzed based on two outputs. The first one is depicted in Figure 10 and Figure 11 for 

surface markers panel and cytokine detection panel respectively is the so called NxN plot. 

The goal is to achieve orthogonal distribution of populations. In surface markers panel 

(Figure 10), there is a non-orthogonal distribution between R2 (CD4) and B4 (CD63) and 

between G5 (CD8) and R3 (CD107a). The NxN plot for cytokine detection panel (Figure 

11)was based on correct matrix calculation correctly, achieving orthogonal distribution.
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Figure 10. Compensation matrix for surface markers panel performed on conjugated beads. The NxN plot illustrates the compensation matrix acquired in 

FlowJo software, which was applied to conjugated file of beads and then used for cell samples as well. The NxN plot shows the orthogonal distribution achieved 

using the compensation matrix.  
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Figure 11. Compensation matrix for cytokine detection panel performed on conjugated beads. The NxN plot illustrates the compensation matrix acquired in 

FlowJo software, which was applied to conjugated file of beads and then used for cell samples as well. The NxN plot shows the orthogonal distribution achieved 

using the compensation matrix. The individual populations of beads assume an orthogonal position to each other.  
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A second type of visualization for correct evaluation of compensation matrix is based on 

analysis of the spillover among channels demonstrated in Figure 12 and Figure 13. The 

panels were evaluated based on spread of the signal from each fluorochrome into the 

surrounding channels.  

The spillover for surface markers panel, as shown in Figure 12 is acceptable except for 

signal in G5 (CD8) and R3 (CD107a).  Signal from G5 is not fully compensated and is 

detectable in R3 and the signal specific for R3 is undercompensated, which corresponds 

with the conclusion drawn from NxN plot of surface markers, Figure 10. 

As shown in Figure 13 there is no significant spillover among individual channels. 

However, there is a high background signal in particular in V3 (TNFα), G1 (CD3) and R1 

(IFNγ). G5 (IL-2) channel has a high background signal originating from B4 (CD8), R1 

(IFNγ) and V3 (TNFα).   
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Figure 12. Depiction of spillover among individual channels for surface markers panel. The layout 

mirrors the setup of lasers and individual channels in CytoFLEX cytometer as depicted in Table 7. 

Each pseudocolor plot represents a population of beads stained with respective antibodies as described 

in the annotation of each y-axis. Individual channels, on the x-axis B1, B4, G1, G5, R2, R3, unstained, 

V1, V4 labeled SampleID. The beads highlighted in red frame are overcompensated in G5 and 

undercompensated in R3. 
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Figure 13. Depiction of spillover in between individual channels for cytokine detection panel.   

Layout reflects the   CytoFLEX cytometer setup as shown in Table 7. Individual channels on the x-axis 

are B4, G1, G5, R1, R2, unstained and V3 labeled SampleID.      
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5.2. Detection of surface markers 

I used the calculated compensation matrices for analysis of acquired data.  

5.2.1. CD4 and CD8 expression in time 

First, I focused on the detection of surface core T cell markers, CD3, CD4 and CD8. I 

measured the expression of T cell core markers in relation to activation at 4 time points (0, 

1 hour, 6 hours and 24 hours post-stimulation) to evaluate their expression during the 

polyclonal stimulation with PMA/ionomycin. Non-stimulated samples were gated 

following the strategy presented in Figure 14.  

 

Figure 14. Gating strategy in FlowJo software for the analysis of both panels. The first gate was set 

to include all the cells, and it was gated on FSC-A vs SSC-A. In the second step the singlets were gated 

in a typical conically shaped singlet cell gate on FSC-A vs FSC-H. The next step was to gate live cells 

from singlets based on their negativity for Hoechst, detectable in V1 channel. On the cleared data from 

live cells gated on FSC-A vs SSC-A, typical blood profile was established, and lymphocytes were 

divided based into CD4 and CD8 positive populations. 

When I stained lymphocytes with T cell core markers, CD4 was internalized after 6 hours 

of polyclonal stimulation with PMA/ionomycin. Once the CD4 marker internalized it was 

no longer possible to gate CD4+T cells accurately, Figure 15. Therefore, when I expected 

CD4+T cells to express surface activation markers I decided to gate the population as CD8-

, which included the indistinguishable CD4+T cells, shown in Figure 20. 
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Figure 15. Gating strategy for the analysis of CD4+ lymphocytes in the samples with internalization.  

The dot plot shows a sample of isolated lymphocytes, which were activated by PMA/ionomycin. CD4 

and CD8 expression were measure at four time points. As control in the beginning, before any 

manipulation, 1 hour, 6 hours and 24 hours after activation. As becomes apparent CD4 positivity is no 

longer distinct after 6 hours of activation with PMA/ionomycin. The MFI for CD4 signal decreases as 

the stimulation progresses. The MFI values for CD8 positivity remain stable throughout the activation.  

Additionally, in samples where I observed internalization, a small population became 

apparent, which was not present in the non-stimulated blood, highlighted in red frame in 

Figure 15. I tried to identify the properties of the mentioned unknown population.  

I created an overlay of dot plots for the unknown population from individual activation 

time points. I determined that the population remained in the same position. Next, I 

visualized the unknown population from all time points in the form of multiple histograms 

to see positivity of each population for degranulation markers CD63 (B4) and CD107a 

(R3). The unknown population was positive for CD63 (B4 channel) and CD107a (R3 

channel). Therefore, I determined that the population was platelets.  

control 1 hour 6 hours 24 hours 
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Figure 16. Identification of an unknown population. Overlaying dot-plots of all cells from non-

stimulated blood sample (background) with the unknown population (blue, 1 hour after activation, light 

green 6 hours after activation, orange 24 hours after activation) appearing during activation parallel 

with internalization of CD4 marker. Overlaying histograms show positivity of the unknown population 

for early degranulation markers CD63 (B4) and CD107a (R3). 

Since platelets degranulate excessively there was a strong need to exclude them from the 

analysis. I experimented with two methods to get rid of the unwanted platelets. First option 

is based on staining of the sample with CD41 antibody, a platelet marker, shown in Figure 

17. Second option was based on the centirfugation of PBMC prior to stimulation at 80xg 

for 20 minutes. Lymphocytes were collected on the bottom of the tube and the platelets 

remained floating in the supernatant,  which led to platelets being discarded with the 

supernatant before activation. In cytokine detection experiment I decided to get rid of 

platelets by centrifugation. 

 

CD63_PerCPCy5.5_B4 

CD107a_APCVio770_R3 
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Figure 17 Gating strategy to exclude platelets. Staining with CD41_PB, shown in the third graph 

distinguishes the population of platelets clearly from the rest of PBMC. The resulting blood profile, 

shown in the last graph is much clearer with separated populations compared to the first one, which 

depicts the typical profile of platelets across lymphocyte and monocyte populations. 

5.2.2. Detection of degranulation 

The first detectable sign of successful activation of PBMC is degranulation. Degranulation 

markers are detectable after 1 hour of activation. There are two degranulation markers 

included in the TAT panel, CD63 and CD107a. To evaluate the measured frequencies of 

antigen-specific T cells, positive controls must be established to compare to the reference 

frequencies. I stimulated PBMC with polyclonal stimulation in the form of 

PMA/ionomycin.  

After 1 hour of polyclonal stimulation with PMA/ionomycin, neutrophils and monocytes 

expressed both CD63 and CD107a, while lymphocytes expressed only CD107a. 

Histograms shown in Figure 18  were created based on values of Mean fluorescent 

intensity (MFI) for negative controls and PMA/ionomycin stimulated granulocytes, 

lymphocytes and monocytes shown in Table 7. 
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Figure 18. Expression of early degranulation markers CD63 a CD107a on neutrophils (yellow), 

lymphocytes (red) and monocytes (green). The first line of graphs shows gating strategy for the clear 

identification of analyzed populations. The individual graphs demonstrate differences in expression of 

CD63 and CD107a by individual cell types after 1-hour stimulation with PMA/ionomycin. The grey 

represents a negative control, cells which were also activated but not stained with the respective 

antibodies. 

 

 

 

 

granulocytes lymphocytes monocytes 

CD63_PerCP/Cy5.
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Table 7. MFI values for CD63 and CD107a. The MFI values which were obtained from histograms, 

shown in Figure 18. 

MFI 1h PMA/ionomycin 0h non-activated 
 CD107a CD63 CD107a CD63 

granulocytes 4 034 846 456 300 
lymphocytes 1 829 98 45 30 
monocytes 16 132 2 261 174 293 

 

5.2.3. Detection of T cell-specific activation markers 

To prove that the PMA/ionomycin stimulation serves as a suitable positive control for 

detection of T-cell specific early and late activation markers, I included T cell-specific 

early activation marker CD69 and two late activation markers CD137 and CD154. All 

three markers are surface markers. CD69 is expressed early, 1 to 6 hours after stimulation. 

CD137 and CD154 are expressed later, 6 to 24 hours after activation.  

CD69 was included in the TAT panel and measured in B1 channel. As shown in Figure 

19 and Figure 20, over 96% of both CD8+ and CD8- T cells were successfully activated 

after 6 hours of polyclonal stimulation with PMA/ionomycin. 
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Figure 19. CD69 expression on CD8+ T cells as a positive control of activation of positive control 

using PMA/ionomycin. The expression of CD69 marker was measured at 4 time points (initial, pre-

stimulation, 1 hour, 6hours and 24 hours after initial stimulation) to monitor the progress of activation 

in positive controls. CD69 positivity is detected in >99% of CD8- lymphocytes after 6 hours of 

activation. The first line of dot plots represents the gating strategy. 
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Figure 20. CD69 expression on CD8- T cells as a positive control of activation of positive control 

using PMA/ionomycin. The expression of CD69 marker was measured at 4 time points (initial, pre-

stimulation, 1 hour, 6hours and 24 hours after initial stimulation) to monitor the progress of activation 

in positive controls. CD69 positivity is detected in >96% of CD8- lymphocytes after 6 hours of 

activation. The first line of dot plots represents the gating strategy. 

CD137 was measured in V4 channel, data for CD137 positivity are shown in Figure 21 

(CD8+ T cells) and Figure 22 (CD8- T cells). CD154 was measured in G1 channel, data 

for CD154 are shown in Figure 23 (CD8+ T cells) and Figure 24 (CD8- T cells). 
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Figure 21. CD137 expression on CD8+ T cells stimulation with PMA/ionomycin. Figure 19 illustrates the 

expression of CD137 after stimulation with PMA/ionomycin at 4 time points, (0 hour pre-stimulation, 1 hour, 

6hours and 24 hours after stimulation) to monitor the progress of activation in positive controls. The first 

line of graphs represents the gating strategy. 

CD137 was expressed on 66.5% of CD8+ T cells after 6 hours of stimulation with 

PMA/ionomycin and was further detected on 66.9% 24 hours post-stimulation.  
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Figure 22. CD137 expression on CD8- T cells stimulation with PMA/ionomycin. Figure 22 illustrates 

the expression of CD137 after stimulation with PMA/ionomycin at 4 time points, (0 hour pre-stimulation, 1 

hour, 6hours and 24 hours after stimulation) to monitor the progress of activation in positive controls. The 

first line of dot plots represents the gating strategy. 

CD137 was expressed on 22.9% of CD8- T cells after 6 hours of stimulation with 

PMA/ionomycin. After 24 hours of stimulation, 36% of CD8- T cells were positive for 

CD137. 
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Figure 23. CD154 expression on CD8+ T cells stimulation with PMA/ionomycin. Figure 22 illustrates the 

expression of CD154 after stimulation with PMA/ionomycin at 4 time points, (initial, pre-stimulation, 1 hour, 

6hours and 24 hours after initial stimulation) to monitor the progress of activation in positive controls. The 

first line of graphs represents the gating strategy. 

Expression of CD154 on CD8+ T cells was detected 1 hour after stimulation at 3.26%, the 

expression increased to 11.9% after 6 hours of stimulation and decreased again to 8.24% 

24 hours after stimulation.  
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Figure 24. CD154 expression on CD8- T cells stimulation with PMA/ionomycin. Figure 21 illustrates the 

expression of CD154 after stimulation with PMA/ionomycin at 4 time points, (time 0, 1 hour, 6hours and 24 

hours after stimulation) to monitor the progress of activation in positive controls. The first line of dot plots 

represents the gating strategy. 

Expression of CD154 on CD8- T cells was detected 1 hour after stimulation at 23.8%, the 

expression increased to 37.7% after 6 hours of stimulation and decreased again to 23.8% 

24 hours after stimulation.  

Measured signal for CD69, CD137 and CD154 on CD8+ and CD8- T cells proved that 

polyclonal stimulation with PMA/ionomycin serves as a suitable positive control for the 

TAT panel. 
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5.3. Cytokine detection 

Cytokines are intracellular markers of T cell activation. Since the monitoring methods used 

in BCa treatment, LTBI diagnosis and monitoring are frequently based on cytokine release 

detection, I decided to include three major cytokines in the TAT panel. They are IL-2, 

TNFα and IFNγ. To confirm its functionality as a positive control I stimulated the cells 

with PMA/ionomycin.  

I also activated T cells using another polyclonal stimulus, PHA to serve as an additional 

positive control for the final TAT. PHA is beneficial because in contrast to 

PMA/ionomycin it does not lead to CD4 internalization, which enables more accurate 

phenotyping of activated T cell subsets. I stimulated PBMC isolated from buffy coats from 

three donors, BC#18005433, BC# 18005434, BC# 18005439. 

During the microscopy control of activation progress, I detected that the PMA/ionomycin 

stimulation showed abnormalities. During measurement the PMA/ionomycin activation 

proved faulty, which led me to discard it from analysis and focus solely on PHA 

stimulation as a positive control.  

The first measured cytokine was TNFα, shown in Figure 23. I measured TNFα positivity 

on CD4+ and CD4- T cells because I detected no signal, when gating on CD8+ T cells.  
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Figure 25. Detection of TNFa on CD4+ and CD4- T cells. TNFa was measured after stimulation with PHA 

on subsets of CD4+ and CD4- T cells 6 hours and 24 hours after initial stimulation. Each row represents one 

donor, BC#18005433, #18005434 and #18005439. Dot plots in the first row show gating strategy for the 

analysis. 
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After polyclonal stimulation with PHA I was able to detect expression of TNFa on both 

CD4+ and CD4- T cells. 6 hours after activation with PHA, the positivity for CD4+ T cells 

ranged between 1.23% and 2.50% and it decreased to 0.30%-0.50% after 24 hours, which 

was at the level of negative controls. For CD4- T cells positivity ranged between 7.37% 

and 9.46% after 6 hours of stimulation with PHA and stagnated or decreased to a range 

between 4.80% and 9.49% after 24 hours of stimulation.  

Second cytokine included in the TAT was IL-2. IL-2 is a major T cell cytokine, which 

indicates T cell activation. I detected signal only for CD4+ T cell subset.  
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Figure 26. Detection of IL2 on CD4+ and CD4- T cells. IL2 was measured after stimulation with PHA 

on subsets of CD4+ and CD4- T cells 6 hours and 24 hours after initial stimulation. Each row represents one 

donor, BC#18005433, #18005434 and #18005439. The first row depicts gating strategy for the analysis. 
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IL2 expression was detected only after 24 hours from initial stimulation on a subset of 

0.19% to 0.68% of CD4+ T cells with no detectable signal after 6 hours. There was no 

expression of IL2 on CD4- T cells at either time point. 

5.4. CMV-specific response 

CMV stimulation serves as a control of antigen-specific T cell response for the TAT. It 

was selected as a positive control because CMV-specific T cells are more frequent than 

the expected frequencies of BCG-specific and tumor-specific reactive T cells and because 

of high number of positive donors in the population.  

PMA/ionomycin and PHA stimulation served as positive controls for the CMV 

stimulation. I measured surface activation markers after CMV stimulation. To enhance the 

CMV-positive response I measured their expression after re-stimulation. The acquired data 

are shown in Figure 27. 
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Figure 27. Detection of low frequency CD8+ T cell populations of a single donor in response to CMV 

stimulation at different time points. The responsive CD8+ T cells were detected based on expression 

of late activation surface marker CD137 (V4-A) on BC CytoFLEX S cytometer. Expression of CD137 

was measured 5-days post-stimulation with CMV lysate in comparison to non-stimulated control and 

positive control stimulated with PMA/ionomycin and PHA. On day 7, PBMC were re-stimulated and 

the expression of CD137 was measured 3- and 5-days post re-stimulation. 

As the Figure 27 illustrates, using flow cytometry, I was able to identify a rare CMV-

responsive population of CD8+ T cells based on the expression of late surface activation 

marker CD137. Specific activation is apparent from the 3rd day after initial stimulation, 

when I observed a population of 0.50% of CD8+ T cells, which were responsive to CMV 

stimulation. The frequency of reactive CD8+ T cells increased up to 7.72% of CMV-

responsive CD8+ T cells 5 days after re-stimulation with CMV. 

BC#18003345
No stimulation PMA+ionomycin PHA CMV

Day 0

Day 3 after 
initial 

stimulation

Day 3 after 
re-

stimulation

0.02%

0.50%

2.24%

7.72%
Day 5 after 

re-
stimulation

CD137
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5.5. UniCAR 

As another antigen-specific positive control I proposed a spike experiment using the 

uniCAR T cell system. I used the PSCA as the positive control. PSCA is the target antigen 

present on the surface of prostate cancer cell lines PC-3 and LNCap. I included PSCA 

because it is also frequently expressed on BCa cells. 

First, I proved the expression of PSCA on LNCap prostate cancer cell line by performing 

SDS-PAGE gel, shown in Figure 28.  

 

 

Figure 28. SDS-PAGE gel to prove presence of PSCA on LNCap cell line. PSCA expression was 

proved on LNCap prostate cancer cell line. 

 

TM binding to the cancer cell line is prerequisite to the interaction between uniCAR T 

cell and the tumor cell, which leads to tumor cell eradication. I ran a Western Blot, Figure 

29 to prove the presence of the desired TM.  
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Figure 29. Western Blot. The Western Blot was used to prove the binding of the TM with E5B9 epitope 

to LNCap. The E5B9 was detected via a specific antibody and a secondary GAM-HRP…  

 

Finally, I collected data on positive results proving the antigen-specific binding by the 

uniCAR system, which might serve as another potential positive control, detecting its 

functionality through a binding assay, see Figure 30.  

 

 

Figure 30. Binding assay. The binding assay is a proof of the interaction between the uniCAR T cells 

and the tumor cells. The first and third graph are negative controls for PC-3 and LNCap cell lines, 

respectively. The negative controls were prepared by adding the secondary antibody (GAM_PE) to the 

cells without TM. The second and fourth graphs show positive controls, both TM and secondary 

antibodies were added to the uniCAR T cells and tumor cells. 
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I did not use the transduced uniCAR T cells for the positive control spike experiment 

because the process of preparation results in limited yields of transduced cells. The team 

in German laboratory could not spare the necessary transduced cells before the completion 

of my diploma project due to their own ongoing research. Nonetheless, uniCAR T cells 

can be used as positive control to be stimulated by selected TM or a combination of TMs 

suitable for BCa and/or LTBI and other pathologies not limited to PSCA. I will attempt to 

acquire the necessary materials to exploit the uniCAR T cells as positive control in the 

near future. 

Despite my mistake in handling CD8 antibody, the split of the panels proved practical for 

handling the donor samples in preparation for staining as well as in terms of time 

management of activation and collection of cells from culture where they were exposed to 

stimulants. Second major advantage of the split was in making the calculation of 

compensation easier and more manageable in the terms of manual adjustment of the 

compensation matrix to achieve.  

I tested degranulation markers CD63 and CD107a, surface markers CD69, CD137 and 

CD154 and cytokines IL-2, IFNγ and TNFα on positive controls using PMA/ionomycin 

and PHA stimulants. I was able to detect positivity for all markers except for IFNγ. The 

conducted tests proved that PMA/ionomycin and PHA are suitable positive controls. 

I was further able to detect CMV-specific T cell response on CD137 activation marker. 

This result shows that CMV is a suitable candidate for positive control of antigen-specific 

T cell response. However, the CMV stimulation requires more testing as well as the 

uniCAR T cell system. 
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6. Discussion 

I designed a 10-parametric TAT panel, Table 4 for potential use in the BCG therapy 

targeting BCa and LTBI. Combination of markers proves more efficient in immune 

response monitoring than narrowly focused panels. Therefore, the TAT panel included T 

cell core markers, degranulation markers, surface activation markers and cytokines. A 

similar multiparametric panel has been proposed for the use in monitoring patients’ 

response to immunotherapy by mass cytometry including markers from across the 

spectrum, covering early and late surface markers, cytokines, degranulation markers and 

markers of different cell types130. 

Because of a mistake I made when titrating CD8_PO antibody I was not able to test the 

complete panel on my positive controls. Since I could not afford to purchase new CD8_PO 

antibody, I had to design alternative panels. The complete TAT panel was divided into 

two, one for the surface markers (CD4, CD8, CD63, CD107a, CD69, CD137 and CD154), 

Table 5 and the second one for intracellular staining (CD3, CD4, CD8, IL-2, IFN-g and 

TNF-a), Table 6. The two panels remain compatible and may be unified into one again. 

The split of the panel proved quite practical because it was easier to set up, calculate and 

apply compensation, which was performed on VersaComp beads for both surface markers 

and cytokine detection panels. Because of high gains (maximum=3000) in the red and far 

red spectrum (G5, R1, R2, R3 channels), listed in Table 4 and demonstrated on Rainbow 

beads in Figure 5, the values in compensation matrix are also high leading to higher spread 

in the negative populations. Despite that, an orthogonal distribution among individual 

populations was achieved for the cytokine detection panel (6 parameters), Figure 11. In 

the larger panel for surface markers (8 parameters) I was not able to achieve orthogonality 

among all channels despite manual adjustment of the compensation matrix, Figure 10. 

There was a non-orthogonal distribution between B4 (CD63) and R2 (CD4) and between 

G5 (CD8) and R3 (CD107a). The same suboptimal compensation was proved by 

visualization of spillover in Figure 12.  

I observed a high background signal in the cytokine detection panel, especially in V3 

(TNFα), G1 (CD3) and R1 (IFNγ), Figure 12. Despite the above discussed issues, I 
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conclude that I was able to compensate the panels sufficiently and both were suitable for 

further testing to establish positive controls for the final TAT.   

To accurately analyse T cell specific response, first I analysed detected positivity for 

included T cell core markers CD3, CD4 and CD8 in all included donors in non-stimulated 

PBMC. CD8 marker was expressed steadily with a population of 17.7%-28.5%, exemplary 

sample shown in Figure 15. CD8 was stably expressed and detectable in each donor. CD8 

counts are in accordance with the published reference numbers for Caucasian 

population131.  

To test the functionality of the designed TAT panel and select the optimal positive controls 

for the TAT, I experimented with polyclonal (PMA/ionomycin, PHA) and antigen-specific 

(CMV lysate) stimulation.  

First, I analysed the data collected on T cell core markers to ensure analysis of T cell-

specific response. I measured the expression of CD4 and CD8 markers on non-stimulated 

blood, Figure 14. Then I observed the kinetics of T cell core markers, to confirm stability 

of expression, Figure 15. I determined, that CD4 marker internalized after stimulation with 

PMA/ionomycin. The beginning of downregulation of CD4 markers was observed already 

at 1 hour after activation, Figure 15 and Figure 24. However, when stimulated by PHA 

and CMV I did not observe any CD4 downregulation, Figure 25. The phenomenon of CD4 

internalization after stimulation with PMA/ionomycin was described in literature132.  

The downregulation complicates the analysis of reactive CD4+ T cells. For the purposes 

of phenotyping of CD4+T cells or in case I am particularly interested in the CD4+ T cell-

specific response, a PHA will be a better positive control. Alternatively, CD4+ T cells can 

be included in the analysis by setting a wide gate on CD8- T cell population, Figure 20, 

Figure 22 and Figure 24 or by gating more accurately on CD3+CD8- T cells. So far, I have 

not tried gating on CD3+CD8- T cells and I have analysed CD8+ and CD8- T cell 

population133.  

As shown in Figure 15, I detected an unknown population during the activation process. 

In order to identify the origin of the population I gated on the population at each time point, 

1 hour, 6 hours and 24 hours after stimulation. I followed an analysis strategy described in 

the Results and by overlaying the populations on a dot-plot, Figure 16 and looking at the 
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positivity for CD63 and CD107a degranulation markers I determined that it was a 

population of platelets. Since platelets degranulate, aggregate and express activation 

markers including CD15495 they interfere in the data analysis Therefore, I needed to 

exclude them from the measurement. As shown in Figure 17, platelets can be easily and 

precisely excluded by staining the sample with CD41 platelet marker124. Another 

possibility how to exclude platelets is to centrifuge the sample at 80xg for 20 minutes 

before activation. Data collected on cells activated after PBMC were centrifuged and 

platelets were discarded with the supernatant used for cytokine detection, Figure 25 and 

26.  

I decided to always use the centrifugation to get rid of platelets in the TAT for two reasons. 

The first one is that adding an unnecessary antibody into a 10-parametric TAT panel results 

in more error-prone analysis. Additionally, I used CD41_PB, which is detected in V1 

channel that I need to keep free for a viability dye. The second reason is that those platelets, 

which are adherent and have aggregated on lymphocytes, will be excluded from the 

analysis, due to CD41 positivity. The second reason is simply practical. Centrifugation is 

cheaper and faster than an additional staining step.  

After I made sure that I was truly analysing T cells, I moved on to analysis of the earliest 

activation markers, degranulation markers. The expression of early degranulation markers 

CD63 and CD107a was clearly detectable after 1 hour of stimulation. There was a clear 

pattern of expression of each marker based on the observed cell type. The positivity was 

analysed based on changes in the MFI value, listed in Table 7. As shown in Figure 18, 

CD63 was clearly detected on monocytes (MFI from 293 on negative control to 2261 on 

activated cells) and granulocytes (MFI from 300 on negative control to 846 on activated 

cells). CD63 was not expressed on lymphocytes (MFI from 30 to 98). CD107a expression 

was detected on monocytes, granulocytes and lymphocytes. These observations prove that 

stimulation was successful and are in accordance with the published data134,135. Since the 

MFI increased significantly in the positive controls I conclude that including the detection 

of degranulation is a useful asset to the TAT panel.  

The next step in the activation cascade is detection of early, T cell specific activation 

marker, CD69. Since I tested the positivity for all the remaining surface markers CD69, 

CD137 and CD154 on PBMC stimulated with PMA/ionomycin, I was only able to 
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determined the positivity on CD8+ and CD8- T cells but not more accurately on CD4+ T 

cells for the reasons stated above. I detected CD69 positivity in over 99% of CD8+ T cells, 

Figure 19 and in over 96% if the CD8- T cells, Figure 20 stimulated with PMA/ionomycin. 

In published work, CD69 positive population represented 93% of all T cells136 and was 

used for detection of T cell activation after polyclonal and oligoclonal stimuli137, which is 

the case for my results as well. Therefore, CD69 is a valid marker for the TAT panel and 

PMA/ionomycin is a suitable positive control to detect it. 

Regarding the late activation surface markers, CD137 and CD154 are the two included in 

the TAT panel. I tested CD137 positivity on PBMC stimulated with PMA/ionomycin, 

which was proved to work in published work138. CD137 was detectable in 66.5% of CD8+ 

T cells and in 22.9% of CD8- T cells after 6 hours and in 66.9% of CD8+ T cells and 36% 

of CD8- T cells after 24 hours of stimulation. Data are shown in Figure 21 and Figure 22 

for CD8+ T cells and CD8- T cells respectively.  

I detected CD154 positivity after polyclonal stimulation in both CD8+ , (Figure 23) and 

CD8- T cells, (Figure 24) but the population of CD154+ cells was higher 37.7% at 6 hours 

after stimulation for CD8- T cells compared to 11.9% at 6 hours after stimulation for CD8+ 

T cells. CD154+ has been reported to be detected on a population of CD4+ T cells113, which 

I was able to confirm with my results.   

After establishing positivity on the surface markers, I experimented with the cytokine 

panel. Originally, I activated the cells using both polyclonal stimuli as positive controls, 

PMA/ionomycin and PHA. Due to abnormal and insufficient activation with 

PMA/ionomycin which I confirmed under a microscope and by measurement. I suspect I 

used a different batch of ionomycin, which was not stored properly. For the positive 

stimulation to detect cytokines, I therefore used PHA. I included antibodies against TNFa, 

IL-2 and IFNg.  

Strongest expression of TNFa was detected 6 hours after activation with PHA, Figure 25. 

The frequency of TNFa positive cells decreased to between 0.30% and 0.50% and 4.80% 

to 9.49% for CD4+ and CD4- T cells respectively 24 hours after activation. After PMA 

ionomycin stimulation the expected positivity for TNFa is above 40%132. In the published 

work, the highest positivity achieved by PHA stimulation was detected after 8 hours of 

stimulation139.  The lower percentage of TNFα+ T cells might be caused by suboptimal 
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conditions of stimulation, which was too short for the activation with PHA as a positive 

control and suboptimal with PMA/ionomycin. 

I detected IL2 expression for CD4+ T cells after 24 hours of stimulation with PHA, Figure 

26. The positivity ranged between 0.19% and 0.68%. I detected no positivity for neither 

CD4- T cells nor for CD8+ T cells. After polyclonal stimulation the expected IL2 positivity 

is nearly 50%140. Since I detected the IL-2 antibody conjugated to PE/Cy7 fluorochrome 

on beads I ruled out the possibility of any fault with the antibody.  

Because of lower than expected expression of TNFa and IL-2 I tried to identify the reason 

for lower expression. I always confirmed the activation by microscopic observation of the 

sample at 6 hours and 24 hours of activation. The significantly lower ratio of detected 

positivity might be caused by suboptimal permeabilization. To prevent a mistake in 

permeabilization, I included a control by staining a control sample of the same type of 

cells with intracellular marker. Another reason of the lower positivity may be wrong 

handling of the antibody, resulting in losing fluorescence.  

Expected IFNg positivity after polyclonal stimulation is 30% 140. I was not able to detect 

any IFNg on either T cell subset even after following the activation protocol for positive 

controls described in the manufacturer’s manual. After CMV stimulation, cytokines were 

reported to be detectable on CD4+ T cells113. 

Due to contamination I was not able to detect any cytokines on CMV-stimulated cells. 

To test a positive control for antigen-specific stimulation, I detected CD137 positivity on 

PBMC from one healthy donor after 72 hours after stimulation. Significant increase of 

CD137+ T cells was detectable 3 days after re-stimulation. The strongest signal was 

measured 5 days after re-stimulation and reached 7.72% of CD8+ T cells, Figure 27. In a 

study focused on CMV status in donors for patients ready for a stem cell transplant, 

CD137+ positive T cells have been detected at a median of 6.2%, ranging from 0.4 to 

26.2%141, confirming my results.  

As part of my ERASMUS+ practical internship, I have been introduced to the 

establishment, production and testing of uniCAR T cells. I have been able to detect the 

expression of PSCA antigen on an SDS PAGE gel as expected44, Figure 28. As the next 

step, I have used confirmed the presence of E5B9 epitope, which is used to mediate 
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interaction between uniCAR T cells and the tumor cell, Figure 29. The expression of E5B9 

neoepitope works as an essential part of the binding domain, proving successful 

construction of the uniCAR domain44. The binding assay, Figure 30 is the last step to 

prove that the interaction between T cell and tumor cell can occur. This shows that the 

transformation of the cells and the construction of uniCAR domain has been successful 

and the system may be taken to be tested in animal models or used for different purposes 

such as controls for T cell responses44,142.  

UniCAR T cells can be exploited as a positive control for monoclonal stimulation for the 

most common stimulating antigens. The extracellular domain which I used binds the 

PSCA (PSCA gene) cell surface marker143, which has been detected in BCa samples but 

other epitopes may be designed. 

In conclusion the TAT panel is suitable for further testing with the focus on detection of 

antigen-specific T cell response with polyclonal (PMA/ionomycin, PHA) and antigen-

specific (CMV and uniCAR T cells) stimulants as positive controls.  
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7. Conclusion 

In my diploma project I focused on developing a stratification and monitoring method 

based on flow cytometry detection of antigen-specific T cell response, applicable for BCG 

based therapies namely for BCa and LTBI patients. My goals were to design a TAT panel 

suitable for FCM, optimize positive controls for the future use of TAT and test the 

efficiency of TAT in detecting antigen-specific T cell response.  

I successfully designed a 10-parametric panel for FCM. Since I had to split the original 

complete panel in two, the compensation matrices from CytExpert and FlowJo softwares 

are only applicable to the respective panels. Nonetheless, the panels stayed compatible and 

it remains a priority to unify the panels into one and test the originally designed TAT in 

its entirety on both the polyclonal stimulation as well as for its efficiency in detection of 

rare antigen-specific T cell populations. 

I managed to establish the stimulation of lymphocytes isolated from whole blood of 

healthy donors with PMA/ionomycin and PHA. PHA allows for more accurate positive 

control, since it does not lead to internalization of CD4 marker. These stimulations will 

serve as positive controls for the final TAT. After stimulation with CMV I was also able 

to detect the antigen-specific T cell population, using the surface activation markers panel. 

Even though the CMV-responsive T cell populations are more frequent than the expected 

frequencies of rare tumor- and M.tuberculosis-specific T cells, it served to prove the 

validity of the proposed stratification method. 

Unfortunately, I did not have the opportunity to employ uniCAR T cells as positive 

controls for antigen-specific stimulation due to limited access to the material. 

In conclusion, the designed TAT panel has a high potential for application in cases of 

BCG-based therapies. It will be further tested on T cell populations stimulated by BCG-, 

M.tuberculosis- and tumor-specific antigens.  
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