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Abstract

Thesis investigates frequency-related phase relationships among returns of five
major 5-minute European stock market indexes and compares relative phases
on high frequencies, with focus on dynamics between developed and developing
stock markets from 2008 to 2015 using. Using continuous and discrete wavelet
transform we find significant phase relationships among the considered indexes,
particularly we spot very strong relationship between the developed ones with
no significant phase difference on any investigated frequency. Furthermore we
observe significant lag of developing markets behind developed ones, particu-
larly on horizons between 20 and 80 minutes. We also observe that the rela-
tionships is fading throughout the examined period, with increased variance of
the relative phases and diminishing significance of some phase differences. The
results indicate that either less developed markets are becoming more effective
or it can be a sign of decreasing inter-dependencies (e.g. lower common trends).
This thesis contributes to the literature by examining noisy financial time series
on highest frequencies and shows relevance of the method on simulated signals

with high degree of noise.
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Abstrakt

Prace zkouma frekvenéné zavislé vztahy ve fazich pétiminutovych ziskt indexu
péti velkych Evropskych trhit a porovnava jejich relativni fdze na vysokych
frekvencich s zaméfenim na vyvo]j mezi rozvijejicimi se a rozvinutymi akciovymi
trhy v letech 2008 az 2015. Pomoci vinkové analyzy nachézime signifikantn{ vz-
tahy mezi fazemi akciovych indext, zejména pak silny vztah mezi fadzemi FTSE
a DAX a signifikantni zpozdéni indexi méné rozvinutych evropskych trhi,
predevsim na frekvencich mezi 20 a 80 minutami. Pozorujeme taktéz snizujici
se stabilitu téchto vztaht v pribéhu zkoumaného horizontu a v nékterych
pripadech i mizici significanci. To muze naznacovat jak postupné zefektiviiovani
méné vyspélych trhu tak snizovani zavislosti mezi evropskymi trhy (napiiklad
v podobé snizujicich se spoleénych trend). Pridanou hodnotou préace je mimo
jiné analyza silné zasumnénych signdli na nejvyssich frekvencich a demostrace

pouzitelnosti metod pomoci analyzy umélych signéla.
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Motivation

Information about relationships between stock markets around the world is vital for
portfolio management and diversification. Important part of literature has tried to
unveil it. Probably the first work finding statistically significant relationship was
paper by Fischer & Palasvirta (1990), who found interdependence between several
stock markets with U.S. Stock market being the global leader — for example a lag of
48 days of Canadian stock market after U.S. Market. Many others (e.g. Candelon
et al. (2005), Loh (2013)) have investigated correlations between stock markets. In-
teresting findings were presented by Graham et al. (2012), who examined relations
ships between emerging markets and U.S. Market, finding evidence of co-movements
only for part of the selected countries and consistent over time only for frequencies
larger than a year. Above mentioned works have one thing in common — they all
explore these relationships on lower frequencies of at most 1 day.

Egert & Kocenda (2007) examine high frequency (5—minutes) data of western
and CEE stock exchanges and look for long term and short term relationships be-
tween the indexes. They find no evidence of cointegration (long-term) but sings of
some short term spillover effects in both returns and volatility.

Wu et al. (2006) examined phase difference between NASDAQ and DJIA on
inter-day data using Hilbert-Huang method. They find that some big events (9/11
attacks) had in phase reaction, at other periods the two indexes were out-of- phase,
with changing relationship over time. For example during 2001 and 2002 DJIA was
ahead in phase to NASDAQ), implying that DJIA had greater effect on NASDAQ
than vice versa.

Barunik & Vacha (2013) used wavelet methods to explore correlations and con-

tagion of the 2008 crisis across CEI markets. Using high-frequency data they find
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correlations mainly on lower frequencies. They also report a little evidence of corre-
lations on high frequencies and find it only on longer horizons. Yet the data-set used
ends in 2009 and the causality on different scales is not explored in this work.

This work aims to build on existing literature (abovementioned stock index re-
lated papers and other papers using useful wavelet methods) and investigate existence
and nature of the shift (lead-lag relationship) between stock indexes with focus on

czech stock market.

Hypotheses

1. Market indexes are correlated and in phase on higher frequency level among

developed countries

2. Less developed market indexes (such as Czech or Hungarian) exhibit phase-

shift after classical indexes

3. There is Granger causality from developed to developing stock exchanges at

some frequency which is increasing over time (lag is diminishing)

Methodology

Data I will use for this thesis will be PX, BUX, DAX, FTSE and maybe other indexes
and will be obtained from Charles university database. Then high-frequency price
data will be converted to 5-minutes data — such high frequency should open the
possibility to explore all shifts in the data.

To test the hypotheses, I will use spectral methods, mainly wavelets. For the
start, we will follow methodology used by Cazelles et al. (2008) and Torrence &
Webster (1999), which give us good information about dependence structure of ex-
amined markets in time-frequency domain. Later, we may extend our methods to
general frequency domain with moving windows. Wavelets, unlike Fourier analysis,
offer possibility to analyse time series both in time and frequency domains. This will
allow observation of time-evolution of the frequency relationships. Anchor method
is going to be wavelet phase coherency that measures how out-of- phase is one signal
(time-series) compared to anoher on different scales.

Following Reboredo et al. (2017), 1 will use Granger (1969) causality test (lin-
ear and non-linear) to further explore the dependencies in the time series. After
trasforming the series using discrete wavelet transform (which will decompose the
series into different time-scales with shortest being in 10-minutes frequency (captur-
ing 5-minute moves)), it will be possible to learn more about the causality between
the indexes. That should also help to investigate if the difference is diminishing —

the causality is expected to shift across scales and parts of the data sample.
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Other methods will be added during the work to increase robustness of the re-
sults. There is a possibility to use above-mentioned Hilbert-Huang method and many
others. Possible extension added throughout the work might be observing influence
of the volatility (and other features of the indexes, such as assymetricity of responses

dependent on the sign of the returns) on the results.

Expected Contribution

This work will asses the question of possible phase difference between stock markets
with different level of development. Wavelet analysis brings slightly different ap-
proach than classical econometrics since it works in time-frequency domain and thus
allows for exploring causality and shifts not only on the entire series, but also on
its different scales (frequencies). That will allow for understanding the relationship
more deeply and might serve as tool to exploit the interdependencies between the
markets.

Since the thesis is expected to bring new information about stock indexes it might
be useful for both portfolio analysts and policy makers.

Regarding portfolio analysis, if the hypotheses will be confirmed, results will be
usable to improve forecasting efficiency of models for speculators (short term traders).
Wavelet analysis offer possibility of forecasting different scales separately (i.e. differ-
ent horizons). Revealed connections between stock markets in some of these scales
can then be exploited in the forecasting which mostly outperform simpler forecast-
ing (as schown by Schliiter & Deuschle (2010)). Also this thesis should bring new
information in risk-management since time-frequency methods show commovement
in indexes in different horizons (Rua & Nunes (2009)).
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Chapter 1
Introduction

The study of stock markets’ dynamics is present since the beginning of 20th
century. Later, co-movement of stock market indices came under study to
reveal possibilities of international diversification (e.g. Ansoff (1957), Grubel
(1968), Makridakis & Wheelwright (1974)). These possibilities were important
both for firms for whom diversification of activities could easily decrease overall
risk as well as for investors, who could benefit from the same.

These analysis subsequently turned into co-movement analysis of the mar-
ket indices, employing every suitable method (including parametric and non-
parametric methods, spectral inference). Up until 1990, as far as the author is
aware, showed lower co-movements and thus higher potential benefit of diver-
sification and risk management.

In later periods researchers observed increasing correlation among indices. Us-
ing spectral methods, researchers could analyze co-movements of markets in dif-
ferent horizons and firstly found evidence of increasing long-term co-movements
implying decreased opportunity to diversify in the long run but significant ev-
idence of those opportunities for short term investors. With time the higher
co-movement spread over to higher frequencies and after 2006 financial crisis
major indices became highly correlated (but left open the opportunity to di-
versify into emerging markets). Some works even found co-movements among
markets be that high that presence of inter-day arbitrage were rare.

One commonality of most previous works is that they employ daily, weekly
or even monthly data. Of the exceptions this study notes Egert & Kocenda
(2007) that use intra-day data to examine co-movements and volatility and
returns spillover effects (but without employing horizon-specific methods) and

Vacha & Barunik (2012) who look into interdependence of European indices
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around crisis in 2008, both using 5-minutes data.

This thesis is building upon existing literature to examine co-movements using
spectral methods, with particular focus on lead-lag relationships and phase
similarities, methods used mainly in other fields (Cazelles et al. (2008)) but
increasingly popular in analysis of financial times series as well (Loh (2013),
Roesch et al. (2014) and others).

We examine the phase similarities and causality from two developed stock
market indices (FTSE 100 and DAX), presumably FEuropean market leaders
with well documented high correlation, coherency and phase, to ”developing”

stock market indices (BUX, PX, WIG). We focus on answering three questions:
e Are FTSE 100 and DAX highly correlated and in phase?

e Do developing markets exhibit phase-shift after developed markets that

is decreasing in time?

e [s there significant Granger causality from developed to developing mar-

kets that shift among frequencies (from lower to higher) in time?

We contribute to existing literature in several ways. We examine relative phases
on highest frequencies, where the tendencies are not uncoverable by methods
which have enough power for lower ones, on data which, as far as the author is
aware, were not examined by other researchers. Furthermore we demonstrate
that such alteration does not change the significance of observed lags in phase.
We also employ more methods and cross-valuate the results with all parts of
wavelet analysis to seek the explanation of the results.

This thesis is organized as follows. Chapter 2 provides broader overview of
literature on stock market co-movements and end with financial time series
phase analysis. Chapter 3 describes the data used in the analysis. Chapter 4
introduces wavelets (both continuous and discrete) and related methods used
in this thesis. Chapter 5 presents the results of all parts of the analysis and

Chapter 6 provides conclusion and outlook for possible extensions.



Chapter 2

Related Works

Vast amount of academic papers have examined relationships between stock
markets of all sorts. The matters of interest are, among others, cross-correlations,
co-movements or lead-lag relationship between them. This chapter aims to
bring brief overview of literature that deal with these questions. It begins with
examination of how academics studied co-movements of financial markets, then
look into works that applied spectral methods to explore them and finally sum-
marize works which apart from examining co-movements specifically look into

phase differences between financial time-series using wavelets.

2.1 Studies on co-movement and interdependence

of financial markets

Interdependence and inter-connectedness on financial markets have been ex-
amined thoroughly for its importance in risk management and asset allocation.
Grubel (1968) stressed out benefits of cross-country diversification and was
one of the first who empirically shown the potential welfare gains of interna-
tional diversification on ex post returns of worlds major stock exchanges. To
confirm the claim, Makridakis & Wheelwright (1974) found no stable linear re-
lationship among stock exchanges, which could have implied that potential of
diversification was easily exploitable. Over time, the relationships between re-
lated (geographically, ideologically) stock markets increased significantly. Due
to increase inter-connectedness Brooks & Del Negro (2005) analyze the benefits
of diversification within and out of Europe and conclude (in perspective of a
Dutch investor) that diversifying out of Europe brings twice the risk reduction

than diversifying only in Europe.
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King et al. (1990) investigates monthly data on 16 markets to determine factors
influencing conditional volatility and co-variances finding that only little of the
co-variation between stock markets is due to observable variables and find ev-
idence to support the hypotheses that correlation is linked to volatility. King
& Wadhwani (1990) found empirical evidence that due to investor reaction on
price movements in other markets increase in the volatility leads to increased
magnitude of contagion on 1987 Black Monday. Longin & Solnik (1995) in-
vestigated the correlation among major SE and found positive trend in the
conditional correlation in the period 1960-1990 with periods of increased con-
ditional volatility accompanied by increased correlation (but Longin & Solnik
(2001) point out that all tests assume multivariate normal distribution, which
might not be the case, at least for both bull and bear market). Partially on the
contrary, Forbes & Rigobon (2002) investigated the contagion accounting for
possible heteroskedasticity and found little or no evidence of increasing correla-
tions during crisis (1987, 1994 and 1997) - moreover they suggest that there is
strong interdependence among economies at all states of the world (it is impor-
tant to note that Forbes & Rigobon (2002) used narrow definition of contagion
and thus they do not directly claim that there was not any form of contagion).
Syllignakis & Kouretas (2011) used DCC-MGARCH! model on weekly data to
examine if there are increasing correlations between CEE countries indices and
US, Russia and and Germany and found increased co-variances between them
in times of crises (pointing to increasing contagion).

Lin et al. (1994) found significant influence of information incorporated in New
York (Tokio) SE during trading hours on setting opening prices in Tokio’s
(NY’s) (i.e. daytime returns of one exchange influence overnight returns of the
other (bi-directional relationship)). Karolyi & Stulz (1996) then investigate
source of U.S. Japan stock return correlation and find only large shocks to
stock indexes to have stable effect on the correlation (unlike industry shocks or
macroeconomic announcements).

Johnson & Soenen (2003) using Geweke-Granger measure found high level of
the same day market responses among countries in America (on daily data)
implying high integration and market efficiency and suggested that there are
only rare cross-market adjustments that do not take place on the same day (i.e.
cross-market arbitrage opportunities were scarce beyond 24 hours horizon).
Brooks & Del Negro (2004) looked into the source of co-movements among na-

tional stock markets and suggested that contemporary increase in co-movements

IDynamic Conditional Correlation Multivariate GARCH
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is not permanent but rather temporary due to stock market bubble which sug-
gest that after the bubble bursts international diversification still can be effec-
tive tool to reduce portfolio risk. Candelon et al. (2008) extend the Harding &
Pagan (2006) model to measure changes in stock market cycle synchronization
in Asia and found an increase in synchronization among these stock markets
in time.

Lgert & Kocenda (2007) apply wide range of methods (VAR, cointegration
test, Granger causality) to investigate commovements among 3 major CEE
stock market indices(BUX, WIG, PX) and their relationships with 3 Western
European markets (DAX, FTSE 100, CAC) and find no robust cointegration
among the stock index pairs. Additionally, they find returns spillover effects
among both pairs of markets and from Western Europe to CEE as well as
volatility spillover effect in almost all directions (implying that even developing
markets can influence Western European markets suggesting that CEE markets
can be considered a separate asset class and that should be taken into account
for risk measurement). They also find interaction of BUX with both PX and
WIG, but not among the two itself.

Gjika & Horvath (2013) examine Central European stock markets using asym-
metric DDC-mGARCH model and found that correlation among them has in-
creased in time both in between the Central European markets and with other
Euro are markets resulting in very high correlation similar to the correlation
of US and Canadian markets. They also suggest that CE stock markets have
asymmetric conditional variance and recommend use of flexible models when

analyzing them to avoid drawing inappropriate conclusions.

2.2 Spectral methods and comovements on stock

markets

Spectral methods have increased in popularity in last decades. Amount of lit-
erature applying these methods in signal processing (Fourier Transform, Con-
tinuous and discerete wavelet transform and others) is growing rapidly and it
is gaining reputation in financial time-series as well since it provides ability to
analyze series from investment horizon perspective, it can be used as noise-
filtering technique or ability to extract both amplitude and phase of a series

(for example using complex wavelets).
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Fischer & Palasvirta (1990) have utilized the advantages of spectral meth-
ods (Fourier Transform) and examined relatively high-frequency data (daily)
on 22 stock exchanges and found coherence in index price movements, sev-
eral (phase) lead-lag relationships with U.S. being the world price leader (e.g.
Canadian market was 0.27 (2-pi period) behind in phase after U.S. market on
420 day frequency )) - where U.S. being the leader could imply either that U.S.
price changes affect all the other prices or the existence of single pricing to
which U.S. stocks responded the fastest. They also found evidence of possible
existence of single pricing mechanism for several combinations of the exam-
ined markets. The lead-lag relationship could result, if forecasted correctly, in
finding arbitrage opportunities among markets.

Smith (2001) showed that after 1987 crisis, the phase lead-lag relationship
among Pacific Rim were significantly smaller and increase in mean coherence
(which can be interpreted as increased interdependence) can lead to lower po-
tential benefit of international diversification.

Rua & Nunes (2009) revisit the examination of stock exchange co-movements
using wavelet analysis using three-dimensional approach. They apply this ap-
proach to asses the risk reduction from diversification thanks to the possibility
of assessing different investment horizons (scales, frequencies) and co-movement
changes in time simultaneously. They found that on low frequencies the degree
of co-movement is relatively high implying that the benefits of international
diversification over long term may be less important (at least relatively to the
benefit for the short-term investor). They also demonstrate the impact of re-
vealed co-movements on comparing VaR of international portfolio with and
without accounting for the co-movements (i.e. omitting co-movements results
in severe underestimation of VaR across all frequencies with increasing magni-
tude). Similarly, Dajeman et al. (2012) use MODW'T to examine correlations
between CEFE and other major markets and find the correlations to vary in both
time and scale and PX and BUX being highly correlated with developed mar-
kets. Graham et al. (2012) analyze co-movements of 22 emerging markets and
US market using wavelet coherency (on 2001-2010 weekly data) and they find
strong co-movements on relatively lower frequencies with change after 2006,
where they observe statistically significant coherence even at higher frequen-
cies for some period (with longer periods located also on the monthly scale in
some of the markets). They expect that observed changes after 2006 are due

to shock from the global financial crisis.
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Graham & Nikkinen (2011) focus their wavelet coherency analysis on study of
co-movement of Finish stocks with other stock markets and extend previous
works 2 by examining not only (weekly) stock market returns co-movements but
also volatility co-movements. Apart from finding high co-movement between
Finland and both developed and developing markets on low frequencies, they
have observed increase in co-movements on relatively higher frequencies with
time, especially after 2006 and towards the end of the data set - they attribute
that to the substantial financial and economical deregulation that took place
since 2006. For volatility, however, observed co-movements are relatively low
in general and mainly observed in separate time-scale windows.

Gallegati (2008) apply discrete wavelet transform (in particular MODW'T) on
45 years of monthly data on DJIA index and Industrial production index for US
to measure if industrial firms lead the real output on scale-by-scale basis and
find strongest evidence of leading the real output on lower frequencies (with
periods of 8 months and larger - in accord with economic theory suggesting that
institutional investors with larger investment horizons link their investments
with macroeconomic variables). They reveal the lags computing the correlation
of the growth rate with DJIA returns in windows of 24 months for each scale and
observation. In & Kim (2006) use MODWT to examine lead-lag relationship
between S&P 500 index and S&P 500 futures index daily data using 8 levels of
wavelets and find bi-directional Granger causality between stocks and futures
on all scales and very large correlation (above 0.92 for all scales). *

Vacha & Barunik (2012) examine co-movements and contagion among CEE and
DAX around the 2008 crisis using wavelet methods on 5-minute data. They
find the highest interdependence between PX and WIG but also find both time
and frequency changing nature of the relationships. Important feature is that
they find significant correlation not only on low frequencies, but also on high
frequencies (e.g. 80 minutes wavelet correlation between DAX and BUX to
be 0.6 after fall of Lehman Brothers). Ranta (2013) studied contagion among
major world stock markets and defined contagion as changes in time on low
scales (higher frequency) without changes on higher scales and they found clear
evidence of such a contagion. For example, DAX and FTSE started to have
very high coherency after several shocks and have significant coherency of 0.8

around the end of data set (2009) even on the highest frequency (8 days). They

2previous works that analyzed data using wavelet coherency

3their work also document how hedge ratio changes with wavelet scale - investment horizon

4overall results point to efficiency between the markets and absence of arbitrage oppor-
tunity between them
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accompany the continuous wavelet analysis with MODW'T and found wavelet
correlations between majority of the examined series to reach 0.9 on 2 to 4 days
averages.

Aloui & Hkiri (2014) used wavelet coherency to investigate daily co-movement
of markets in Gulf Cooperation Council countries and found that for several
pairs the co-movements started to be significant after 2006 even at the lowest
frequencies. In general they found increasing co-movements with time towards
the higher frequencies, especially after external shocks, such as after the sub-

prime financial crisis.

2.3 Financial time series and phase shifts

Information transmission in network of markets (three Western equity indices)
was studied by Roesch et al. (2014) who, using propagation values for all three
indices based on work of Schmidbauer et al. (2013), aimed to capture relative
importance of the market in the network at certain point in time ® and using
the wavelet phase difference® found that DJIA was in ”anti-phase” to other two
while FTSE 100 and Euro Stoxx are in phase to each other (evidence found
only on lower frequencies, on higher is the energy of propagation relatively low
and the relative phase was not examined), even though range of frequencies
with significant phase similarity has shrunk.

Madaleno & Pinho (2012) examine several of the largest stock market indices
using CWT and find high coherency on low frequencies (in some pairs increasing
in time) but also identify larger periods of coherence in higher frequencies (4-64
days) after 2006 (with exception of DJIA-FTSE where it was present earlier)
and identify lead-lag relationships using phase difference (for example they
find DJIA to lead Bovespa in 32-64 days horizon and reverse leadership in 128-
256 days) but in general changing phase positioning between pairs of indices.
Similarly, Albulescu et al. (2015) used CW'T to examine the contagion among
FTSE 100, DAX 30 and CAC 40 futures on daily returns and find long term
co-movements to be present over entire sample and in short term strong co-
movements over selected windows in the data. They also use wavelet phase
difference and find that DAX and CAC are following the FTSE in the long

5For example there is a peak in the values for DJIA around 13** October 1989 after failed
deal with parent company of United Airlines since it that news had global impact
SReferred to as Cross Wavelet Power Spectra Phase
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term and for some periods also in the short and mid-term (this can be evidence
of slightly different lead-lag relationships in spot and futures markets).
Weekly comovements between Asian stock markets and U.S. and European
stock markets we examined by Loh (2013). He found both time and scale vari-
ation in the comovements with increasingly important comovements on short
scales (high frequencies) after 2006 (similarly as papers on other combinations
of integrated markets). Apart from wavelet coherency analysis they report
wavelet phase differences, finding, for example, that European and Australian
markets were in phase for most periods and scales with several periods of lead
or lag on most scales with changing relationship even within a selected scale
(thus no overall leadership within a time-horizon could be reported). Europe
and Australia combination is particularly interesting since towards the end of
the data-set, they exhibit phase similarity and significant coherency across all
scales.

Reboredo et al. (2017) examined relationships between oil and renewable en-
ergy stock using wavelet coherence, phase difference and Granger causality
(both linear and non-linear) and imply that unveiled relationships can be used
in two ways - absence of causality and relative independence on higher frequen-
cies imply that oil can be used as a hedge for renewable energies while linear
causality in interdependence on higher frequencies imply possibility to use one
to improve forecast of the another. While cross wavelet phase difference do not
indicate homogeneity in the processes as the computed phase difference change
very frequently across time and scales, they also computed wavelet coherence
phase difference, where they found that oil does not lead the prices of renew-
able energies (they are in phase) apart from short time periods on some and
apart from the lowest frequency examined (512 days) where oil was consistently

leading renewable energies.



Chapter 3
Data description

Data used in this thesis are on five of the major Furopean stock indices - Finan-
cial Times Stock Exchange 100 (FTSE 100), which is computed from weighted
prices of 100 largest companies (with larges market capitalization) that are
listed on London stock exchange,' Deutchland Aktieindex (DAX) which is stock
index based in Frankfurt Bourse and is comprised of 30 largest companies listed
in Frankfurt,? Index PX which is computed from prices of 25 companies with
largest market capitalization in Czech Republic,® Budapest Stock Exchange
Index (BUX) computed from price changes on up to 25 blue chip Hungarian
companies and Warsaw stock exchange index (WIG) constituting of 151 com-
panies.? Data available start for all five indexes on 2™ January 2008 and for
the first four span to 30" December 2015, for WIG it is until end of 2011.
Historical values can be found in figure 3.1. In the sub-figures it is easy to
observe the impact of the recent global financial crisis where all of the indices
plummet and the impact of European Debt crisis in 2010.

Table 3.1 shows correlation matrix of the indices. We can see (as expected)
very high correlation coefficients of pairs FTSE 100 — DAX (0.8), medium cor-
relation coefficient between WIG and both FTSE 100 and DAX and moderate
correlations between the rest of indices. Correlation between PX and BUX is
lower then their respective correlations with FTSE and DAX, however their
correlation with WIG is is higher than with the developed indices. However

this issue can be explained by the fact that the observed period for WIG is

1
2

more on which companies can be found on www.londonstockexchange. com
more on http://en.boerse-frankfurt.de/index/constituents/DAX#Constituents
3how the index is computed and all constituents can be found on https://www.pse.cz/
indexy/popis-indexu/index-px/
“more can be found on https://www.gpw.pl/opis_indeksu_WIG_en


http://www.londonstockexchange.com
http://en.boerse-frankfurt.de/index/constituents/DAX%23Constituents
https://www.pse.cz/indexy/popis-indexu/index-px/
https://www.pse.cz/indexy/popis-indexu/index-px/
https://www.gpw.pl/opis_indeksu_WIG_en
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Figure 3.1: Values of stock market indices 2008-2015
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shorter than for the other indexes and contains global financial crisis which

might skew the coefficients upward.

Table 3.1: Correlation Matrix of Stock Indices

FTSE DAX PX BUX  WIG

FTSE 1 0.791  0.279  0.250 0.408
DAX 0.791 1 0.272  0.257 0.402
PX 0.279  0.272 1 0.211  0.291
BUX 0.250  0.257 0.211 1 0.250
WIG 0.408  0.402  0.291 0.250 1

Next, continuously compounded returns (log-returns) are computed. Using

data sampled in 5 minute frequency, returns are computed as follows:

P,
Rtlog<Pt > (3.1)
t—1

Figure 3.2 displays the 5-minute returns for all 5 series.

Table 3.2 summarizes the descriptive statistics of the 5-minute returns data for
all 5 stock markets. We can see that the number of observations do differ due
to different length of the trading hours and different national holidays as well
as different time-zones (for FTSE 100). To deal with this issue we use only
data that are available for all stock indices (analysis with WIG is carried out
separately on shorter data set due to shorter period available) and we omit the
first and last observations to address the problem of overnight returns (which

would appear is some data-sets but not in all due to the first condition).

Table 3.2: Descriptive statistics of the 5-minute returns data

FTSE 100 DAX BUX PX  WIG

Mean -1.4e-07  1.4e-06 -4.7e-07 -4e-06  -3e-06
Std. dev. 0.0012  0.0015 0.0017  0.0015  0.002
Skewness -0.74 -0.26 -0.75 -5 -0.54
Kurtosis 130 14 380 1110 95
Min -0.068 -0.063 -0.12 -0.15  -0.058

Max 0.039 0.074 0.1 0.09  0.046

N 2.1e+05 2.1e+05 1.8e+05 1.6e+05 T7e+04

We can see from both table 3.2 and both figures that best mean performance

has DAX (positive 0.0000016 5-minute returns), while relatively the worst per-
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Figure 3.2: Log-returns of stock market indices 2008-2015
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formed PX followed by WIG - but WIG data may not be directly comparable
with statistics for other indices since it includes both crisis but not the other
half of the observations. Most stable was FTSE 100 (with standard deviation
0.0012), highest changes we on average observed in Poland (same applies as
with the mean). Maximal return is observed on Hungarian index (10%), high-
est fall on Czech (15%). High skewness and very high kurtosis imply asymmet-
ric (on PX) and much fatter tails than with normal distribution. Interestingly,
recalculating both parameters excluding first year the skewness of PX returns
falls close to zero (-0.077) implying that significantly ”fatter” left tail occured

mostly around the financial crisis.

3.1 Missing data

Due to both use of Spot data and presence of less liquid markets (PX, WIG),
data on some days contain missing values. It can be either because the market
price did not change over the minute, or that the market was open for shorter
period of time. To address mostly the first issue, on certain days missing values

were replaced by previous values. Those days had to satisfy two conditions:
e number of 1-minute observations had to be at least 300
e first and last trading hour had to be at least 6 hours apart

This ensure that ”strange”® days were not used for the analysis but valid days

were completed.

5for example days where there were only a single hour of observations



Chapter 4

Methodology

4.1 Brief introduction to wavelets

The wavelet transformation is a time-frequency decomposition that can be in
a sense compared to Fourier transformation. The basic difference is in the
functions that are used for the transformation. While Fourier transforma-
tion uses sines and cosines (functions periodic over the whole axis), wavelet
transformation uses localized function and thus while Fourier transformation
transforms signal from time-domain to the frequency domain, wavelet transfor-
mation transforms the signal to the time-frequency plane, where the frequency
components are usually called scales. Moreover, wavelets allow for analysis of
non-stationary components in stochastic processes(Sifuzzaman et al. (2009)).
The name of the transformation is derived from central object in the transfor-
mation, a function called wavelet. It is a wave-like function, that is centered
around some point and its magnitude rather quickly decays to zero (hence it
is localized). Basic component of wavelet transformation is then called mother
wavelet, a standard wavelet with certain properties, usually defined around zero
and from whose definition other wavelets are constructed by either moving the
center of the mother wavelet (also called translation) and/or by altering the
width of the wave-like function (called dilation) or both.

Wavelet can be any function that satisfies certain mathematical properties,
but in practice there are some families of functions that are used, for example
Haar, Daubechies, Mexican Hat, Morlet or Paul wavelets. Those functions can
be either only real valued (Mexican hat) or complex (Morlet wavelet). Their
dilations can be either orthogonal to each other, which implies that information

extracted on one scale is not present in other scales, or redundant, which is
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common for continuous wavelet transform and is more robust to noise (Cazelles
et al. (2008)).

The wavelet transformation itself takes an input signal and returns it in an-
other form in which some properties can be investigated. It is then done by
a convolution of a signal (financial time-series, earth surface profile) with di-
lated and translated versions of mother wavelet and obtained coefficients are
then passed to further analysis. Dilation of the wavelet determines the fre-
quencies of the information that are stored in the coefficient. The computation
can be done either over discrete set of dilation parameters (and thus on dis-
crete scales - Discrete Wavelet Transform(DW'T)) or smoothly over all possible
scales (Continuous Wavelet Transform (CWT)). Simple use of the DWT is
for filtration of a signal from high-frequency components (filter out noise) or
to different frequency components (different finesse of the information), CWT
can be used, for example, for analysis of time-scale variation and for search of
coherent structures among the time-frequency plane.

Let us define some mathematical requirements for function to be called (mother)

wavelet.

4.1.1 Formal requirements

For a wave-like function to be called wavelet, it must satisfy some mathematical

properties (Addison (2017)), firstly, it has to have finite energy:
E/ lp(t)]2dt < oo (4.1)

where ¢(t) is chosen wavelet function. It is customary to choose function ¥(t)

such that it has unit energy; [ [¢(t)|?dt = 1. Secondly, it must satisfy

>

Admissibility condition:
< |7, 2
oo [Ty »
0 S
where 9)(f) is the Fourier transform of ¢ (¢):

an- [ " (el gy (4.3)

C, is called Admissibility constant. This constant is then important for inverse

wavelet transformation to recover the original signal. The implication of eq. 4.2
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is that the wave-like function has to have zero mean (it has no zero-frequency

component). ¥ (t) is then called mother wavelet.

4.2 Continuous wavelet transform

4.2.1 The transform

We define a translated and dilated version of the mother wavelet:

gty = 9 (=7) (4.4)

S

where 7 is a translation parameter (i.e. moves the center of wavelet along the
time axis) and s is a scaling parameter (i.e. makes the wavelet function wider
Or narrower).

Wavelet transform of a signal z is then defined as(Addison (2017)):

>

Wy(s, ) = w(s)/ x(t)r s (t)dt (4.5)
It is convenient to set function (w(s)) to 1/4/s to ensure that the wavelets
have the same energy at all scales and where the bar over the wavelet function
means complex conjugate of the function (for real valued wavelets it is equal
to the original function). W (s, ) then represents the extracted information
or contribution of the particular scale at given point in time 7 to the signal.
The integral is then computed over all scales and time points and from one-
dimensional signal yields two-dimensional transformed signal. The original

signal (series) can then be obtained by computing the inverse wavelet transform:

(1) — Cig /_ b /O b S%Wm(s,r)x(t)wm(t)drds (4.6)

To examine local power, the wavelet power of signal z is defined as:

W (1,8) = Wol(r, s) x Wo(T,s) (4.7)

Wy (7, 8) can be understood as local variance of a signal at scale s and time

T.



4. Methodology 18

We can compute the contribution to energy of any scale to the total energy by:
1 [e @]

E.(s) = — / W o (T, 8)ds (4.8)
Cg —00

4.2.2 Wavelet cross-spectrum

To analyze common properties of two signals we can compute their wavelet
cross-spectrum:

Way(T,8) = Wo(r,s) x W,(7,s) (4.9)
which shows the areas where the signal have both high power and can be
understood as analogy to local co-variance of signals = and y. Regarding two
Gaussian white noise signals, its expected value at every point is the same as
the signal variance (Roesch et al. (2014)). Then for cross coefficients to be well
interpreted, it is better to standardize the signals - therefore the returns data
were normalized so their mean is equal to 0 and variance equal to 1.

The cross wavelet power is simply |W, (7, s)|.

To investigate which values are significantly different from random Red noise,
cross-spectrum distribution is needed. Torrence & Compo (1998) note that
theoretical wavelet cross-spectrum of two normalized series with Fourier spectra

PP and P! should have distribution (for complex wavelets):

7
W, (7, )| = 22(p) 2,/ PrPY (4.10)

with Z5(95% =~ 4)'. Significant areas with 95% confidence are enclosed by

black contours.

4.2.3 Wavelet coherency

Cross wavelet transformation is useful to find areas of high common power,
however it can be useful to investigate normalized coefficients that account
for magnitude of local powers. Such coefficients are called Wavelet squared

coherency. Torrence & Compo (1998) defined it as:

(™ Way (7, 5)°)]
(s7HWalr, 8)[2) (s Wy (7, 8)[?)

R*(1,5) = (4.11)

'For precise definition of Z(-), see Torrence & Compo (1998), p. 76
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where both in nominator and denominator there are applied smoothing op-
erators (.) which stand for smoothing the wavelet power and cross-power in
both time and frequency domain. We can choose from a variety of smoothing

functions. In this thesis Bartlett window was chosen which is defined as:

B—H(a)=1-

a— (N —1)/2
(N—-1)/2 ‘

where N stands for the length of the smoothing window. Such window has tri-
angular shape and the process can be understood as taking weighted average of
the coefficients with linearly decreasing weights from the centre. The convolu-
tion is done simultaneously in both domains by convolution of the coefficients
with two-dimensional version of the filter (B — H(a) x (B — H(a)"), where ’
stands for transposition of a vector and x is matrix multiplication.

Wavelet coherence can by definition attain values from 0 to 1 and thus it can
be understood as a spectral counterpart to a local measure of correlation co-
efficient. Values close to 1 then indicate high level of local co-movement. To
assess statistical significance of the wavelet coherence it is feasible to find which
values are significantly different from zero, i.e. choose a null hypotheses Hy un-
der which the coefficients are not statistically significant against random noise.
Yet wavelet coherence does not have any theoretical distribution and Monte
Carlo method have to be used to determine empirical confidence intervals.
Torrence & Compo (1998), Torrence & Webster (1999), Cazelles et al. (2008)
and others suggest the use of surrogate series to asses significance of wavelet
cross-spectrum and wavelet coherence. Such series can be simple white noise,
red noise (AR(1) series), random series with the similar spectrum or bootstrap
of the series. Here we choose to use simple bootstrap to assess statistical sig-
nificance. The surrogate series are constructed by taking the original series
and bootstrap from it with identical probabilities. Hy is then such that the
cross-spectrum and coherence of the inspected series are not statistically dif-
ferent from random signal (5% significance level). Figure 4.1 shows 90th, 95th
and 99th percentile of wavelet squared coherence for two Red noise series with
AR(1) coefficient 0.25, based on 1000 Monte-Carlo simulations. Similar simula-
tion was run with White noise series, showing equal results that differ at third

decimal place which might be a consequence of lower amount of simulations.
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Figure 4.1: Borders of Squared Coherence for 2 Red noise signals

4.2.4 Cone of Influence

The signals that are observed in practice are finite. Its implication is that closer
to the edges of the signal (problematic proximity depends on size of the scale)
there are no values past the edge on which the calculation should be done and
therefore we need to calculate the coefficient on some data. There are several
ways how to deal with this issue, such as zero-padding (placing zeroes on both
sides of the signal to fill for missing values) or mirroring the series. In this
thesis, zero-padding was used on the edges of the data spans. It follows that
the coeflicients computed using zeroes do not have to represent real coefficients
well and thus should not be interpreted. If subsets were investigated, longer
series was used and then cut to the desired length. Implication of this approach
is that there are no edge-effects in the middle subsets and almost no edge-effect

on higher frequencies at the beginning and end of the data-set.

4.2.5 Morlet wavelet

In choosing of an appropriate wavelet function, we have to decide which proper-
ties we want to investigate. Since we are interested mainly in phases, only com-
plex wavelets should be considered. Morlet wavelet is deemed to be very well
localized in scales (Cazelles et al. (2008)) (at least compared to Paul wavelet
(Torrence & Compo (1998))), which is a property that is desirable in analysis
of the phase differences.

Morlet wavelet consists of a complex wave enclosed within a Gaussian envelope
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and is defined as:

42

w(t) _ 7T—1/4(6i277f0t _ 6_<27Tf0)2/2)6? (4.12)

where fj is called central frequency of the wavelet. In practice, the second term

in the brackets is not used and the wavelet then simplifies to:
. _42
P(t) = m VA (ot e (4.13)

and with w = 27/, its Fourier transform is ¢(w) = e®=“9*/2(Ahuja et al.
(2005)). We can directly see that the zero-frequency component is not zero,
but for wy larger then five the zero-frequency component is very small and it
produces minimal error (Addison (2017)). Furthermore, the cone of influence
for the Morlet wavelet is defined as v/2s, with s standing for scale. Coefficients
further away from the edges are only minimally influenced by the edge-effects
The Morlet wavelet is a complex wavelet, which allows to investigate not only

both the local variance and co-variance but also phase and phase difference.
a7

wot+/(2+w2)

(Torrence & Compo (1998), thus with wy = 6 we have A ~ 1.03. This means

that the scales are almost proportional to the inverse of the frequency which

Moreover, the Fourier wavelength of the Morlet wavelet is A =

greatly simplifies the interpretation.

4.2.6 Wavelet phase

Wavelet analysis with the use of complex wavelets offer apart from the cross-
spectrum and coherency analysis also analysis of phase. For Morlet wavelet,

measure of local phase of a signal z is defined as(Torrence & Compo (1998)):

(4.14)

¢u(7,5) = tan™! (W)

Re(W,(7,s)

4.2.7 Discrete wavelet transform

Discrete wavelet transform can be defined similarly to the CWT with the dif-
ference that only discrete translation and dilation coefficients 7 and s are con-
sidered. Feasible way to sample the translation parameters is using the shortest
considered time steps (1 observation), while for the the scaling parameters can
be linked to time steps by using powers of 2 (also called dyadic grid scaling

(Addison (2017))). The wavelets and the transform of continuous signal x then
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become:
1 t—n2™
Ymn(l) = \/2—m¢< om > (4.15)
W(m, n) — /_ ()t (1)t (4.16)

where m and n are all integers referring to the scaling and dilation parameters.
If the wavelets form an orthonormal basis, simple reconstruction of the signal by
sum of all the coefficients is possible and the variance of the signal is preserved
in the transformation. To limit the number of scales in the transformation,
scaling function can be introduced. Its translated and dilated versions are
defined the same as wavelets. The difference is however in the property of
its base version (i.e. with parameters m and n both 0) in the sense that it

integrates to 1:

/Oo p(t)dt =1 (4.17)

Aproximation coeflients at scale m and location n are then defined as:

S{m,n) = / () P (t)dt (4.18)
where S(m,n) is then an approximation of the signal at scale m. They have

such properties that we can write signal z(t) in a form:

2(t) = T (1) + > da(t) (4.19)

m—=—0o0

where my is arbitrarily chosen highest detail scale, 2, (t) = >°°° __ S(mg, 7)Pmg.n(t)

n=—oo

and d,,,(t) =Y W (m,n)pm,(t), first part being called scaling coefficients
and second detail coefficients. It can be shown from scaling coefficient on scale
J we can compute detail coefficients and scale coefficient on scale J-1 (and vice
versa).?

When dealing with discrete signal, if the signal has length N being an integer
power of 2, we can decompose the signal to J levels of detail coefficients and

a scaling coefficient with n being limited by the length of a signal (N = 27)

2for more detailed information on the definition of father wavelet, wavelet frames, the
computation of scaling and detail coefficients and other computations linked to introduced
form of definition of DWT, see Addison (2017), p. 65-87. It is also possible to only define
DWT on discrete signal in a form of discrete filters (see e.g. Gengay et al. (2001)
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using multi-resolution algorithm (also know as fast wavelet transform) when we
compute one level of detail coefficients at a time from scaling coefficients until
we obtain all J levels of details that we want to investigate (we do not have
to compute all possible levels). Detail coefficients of level m € J then contains
information from frequency band f € (1/2™%1 1/2™) - i.e. lowest scale m=1
represents periods between 2 and 4 observations. We can see that each step
can be understood as applying high-pass filter on remainder of the signal.

Unfortunately, DW'T is not circular shift invariant (if signal is shifted by 1
observation the coefficients are different, not just shifted by 1) and financial
time-series seldom have the length of 2. To overcome that problem, mazimum
overlap discrete wavelet transform can be introduced. Moreover, Gencay et al.
(2001) provide a summary of feasible properties of MODWT, among which the
most important is that MODW'T can be performed on sample of any length,
amount of the coefficients (in time-domain) is the same as the signal length
and it is associated with so-called zero-phase filtering. Important consequence
is well alignment of time-features in the coefficients. Additionally, MODWTT is
asymptotically more efficient variance estimator then DW'T. It can be shown

that MODWT coefficients preserve the variance of the signal, ie. ||| =

et Sont W mym)|[P 4+ 320, (1S ()1

4.2.8 Wavelet correlation

We estimate variance and covariance of analyzed signals at different frequency
bands using the MODWT. It can be used as a time-averaged complement to
the localized correlation coefficients provided by CWT.? Following Barunik
et al. (2016) and Vacha & Barunik (2012), we use wavelet base estimator of

correlation of signals z and y on scale j (j = 2™) as:

pealf) = ACOU(Wm(m, n),AWy(m, n))
\/V&T(Wx(m, n))Var(W,(m,n))

(4.20)

where Cov(W,, W,) and Var(W;) are wavelet based covariance and variance

estimators, defined as (covariance of signal with itself is variance):

CA'ng;,y(j)kL z_: W (m, n)W,(m,n) (4.21)

m n=>Lm—1

3even though smoothing of the coefficient itself does, in a sense, time-averaging
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where L,, is the length of the wavelet filter as scale m* and k,, = N—L,, +1 > 0.
Under the assumption that analyzed processed are stochastic auto-regressive
processes of order d (d is the largest lag in the process) and L,, > 2d, MODWT
correlation estimator at scale m is asymptotically normally distributed around

the true value with large sample variance N 'R, i.e.:

ﬁz,y(j) ~ N(pm,y(j)ﬂ Nn_lem) (4'22)

4.3 Continuous wavelet transform and Phase dif-

ference

Apart from computing individual phases of each signal we can also compute
phase difference or signals x and y. The computation is the same as for the
individual phases but we use the cross-transform instead and the relative phase
difference (smoothed) is then simply defined as (Torrence & Compo (1998)):

P <1m<<wz,y<n s>>>> o

with I'm(-) and Re(-) standing for imaginary and real parts of the wavelet cross
spectrum. Note that the smoothing in time and scale is done before taking real
or imaginary part and thus has to be done only once. Phase is then defined
on (—m,m). If the difference lies on the interval (—n, —7/2) or (0,7/2) the
first series is leading the second, otherwise the second is leading (Roesch et al.
(2014), Hanus & Vécha (2018)). The phase differences are evaluated on sets of
scales due to correlation of wavelet coefficients on adjacent scales. Note that
several papers (for example Hanus & Vacha (2018)) suggest to divide the cross-
wavelet transform at each scale by that scale before the smoothing is done, yet
both approaches lead to qualitatively equal results.

If one signal lags behind the other, it has to hold that ¢(X)—¢(Y') = constant #
0 (Cazelles & Stone (2003)). When dealing with a noisy time-series, the relative
phase position tend to change, either overall or on certain scales. But if two

series tend to have some phase relationship (tend to be phase-locked), there

4discrete wavelets such as Daubechies or Symlet wavelets are defined with a finite number
of vanishing moments (equivalent of the Gaussian envelope of Morlet wavelet), i.e. they
become 0 after some distance from the center. We than say that the length of the wavelet
filter on scale 1 is then the number of vanishing moments of the wavelet time 2™

Sfor precise definition of R,,, see Whitcher et al. (1999)
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should be some non-zero preferred value. To deal with the circularity, i.e. that
—7m and 7 are next to each other, when computing mean of the phase shifts
we follow Addison (2018)% and introduce circular mean phase shift of signals

and y as follows:

CMPD(x,y) = tan™ < {sin (P (7, S))>> (4.24)
(cos(¢ry(T,5)))

where (-} stand for averaging in time. This measure is used for calculation the
raw mean phase difference and also for its confidence intervals described below.
There are unfortunately no theoretical distributions available for phase dif-
ference of two signals and thus approach employing Monte Carlo methods is
needed. We examine some possible approaches and use them to assess our
results.
To examine the significance of the existence of the preferred value, normal-
ized Shannon entropy (SE) can be used to determine significance of the peak.
Following Hanus & Vécha (2018) the confidence intervals of the mean phase

difference were determined with a bootstrap approach.

4.3.1 Shannon entropy test

If two noisy signals are not in any way phase synchronized, their phase differ-
ences should follow uniform distribution (i.e. their mutual phase position can
be at any point with equal probability), while if the distribution is peaked, it
points to tendency to be synchronized. Useful measure that can quantify how
different is the phase difference distribution from uniform distribution can then
be Normalized Shannon entropy (P. Tass & Freund (1998)) that quantifies the
localization of an information. Index of Shannon entropy of distribution ¢, ,(¢)

is defined as

Np
S == pilogps (4.25)
k—1

5 Addison uses different measure for phase difference when using such circular mean, how-
ever it does not affect usability of this measure (even though it decreases the scale of the
difference between it and classic mean). Measures proposed by Addison (so-called non-
smoothed phase differences) were tested on the artificial (noisy) signals and did not provide
correct identification of the phase differences. This leads researcher to the conclusion that
those measures are not fit to examine phase-positions of very noisy data on higher frequencies.
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P 18 a relative frequency of observation in bin k of a frequency histogram with

N}, being the number of bins. Normalized Shannon entropy is then

Smax - S

Q - SmeI

(4.26)
with 9,4 = InN. Then Q can have values between 0 and 1 with 0 for uniform
distribution and 1 for Dirac like distribution, i.e. full phase synchronization.
Two independent signals should have phase difference distribution uniform, but
to avoid miss-interpretation of the coefficient due to randomness, significantly
different value from uniform distribution is then determined by computing the
index for 1000 white-noise and red-noise series and and the observed () is
evaluated against noise entropies to obtain probability of the signals to be
phase-correlated due to randomness.

It is important to note that for two series to be phase-locked over time their
phase difference distribution should be unimodal - have one peak. Two (or
several) peaked distribution can mean that the phase sharply shifted in certain
period or that the relative phase switches between 2 or more states. Thus in-
spection of the phase in time is needed. Another issue is that the insignificance
against random noise indicates that there is no interesting (or observable) re-
lationship between the processes. Conversely if we find significant values it
suggest that the is phase relationship present. In the same time, the relative
size of the Shannon entropy statistic can be understood as a measure of stabil-
ity of the phase-difference. Lower values indicate lower stability,”, while high

values suggest that there is a single phase lock.

4.3.2 Phase bootstrap

To establish the empirical confidence intervals we constructed 500 surrogate
series by adding 5% white noise to the original ones. Then for each pair of
series the phase difference is computed. At each time point and at each band
on which phase difference was obtained a 95% confidence interval is computed.
If one series is then significantly lagged in phase after the other, the phase
should be stable and different from zero. Therefore confidence interval of the
mean phase difference are established by taking mean over series consisting of

the border of significance at each time point.

"White, Red and Fourier noise all seldom have Shannon entropy over 0.15



4. Methodology 27

4.3.3 Computation of CWT with discrete input signal

Financial time-series do not provide us with continuous data and also all inte-
grals can be numerically approximated with only finite accuracy. To address
this issue, it is thus feasible to select approximation finesse and use efficient
methods for computation of the coefficients. In time domain, the shortest avail-
able resolution is used (i.e. 5-minute), in frequency domain we choose to use
scales as powers of 2 (set of scales from one power to another is called octave)
and in between each power we compute 25 scales exponentially distributed over
the sub-interval. Following Torrence & Compo (1998), the wavelet transform

in discrete time can be then rewritten as

27rs <

twindt
S0 Tp)* (swy)e (4.27)

where z; stands for Fourier transform of a signal x, @2() is Fourier transform of
the wavelet and w stands for angular frequency which is 27% for k < N/2 and
2k

—s; otherwise. The coefficients are then computed employing Fast Fourier
Transformation algorithm.

The scale decorrelation length was empirically determined to be 0.6 of an octave
for Morlet wavelet (Torrence & Compo (1998)) and it was chosen as a smooth-
ing window in frequency domain. The smoothing window in time represents
trade-off between resolution in time-localization and robustness to noise. Var-
ious window lengths are used in practice, for example Cazelles et al. (2008)
use in their MatLab package window of a tenth of time-series length. In this
thesis it was chosen to be 400, which means that each coefficient is smoothed
by observations distant up to two and a half day with linearly decaying weights.

More details are provided in the following section.

4.3.4 Phase differences of artificial signals

To demonstrate the strength of wavelet analysis, this section employs above
introduced method on a signals composed of single or multiple sinus waves
with added noise and compares them signals generated by White and Red
noise processes and to phase-randomized Fourier surrogate of indexes PX and
DAX in 2008.
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Figure 4.2: Signals a(t) and b(t), on the top without noise

First pair of signals are simple sinuses shifted twice:

a(t) = sin(2*wx1/6) + ¢, (4.28)
sin(2 m* (t +1)/6), if t <2000

b(t) = e + § sin(2x 7 (t +1)/6), if t € (2000,4000) (4.29)
sin(2*m* (t+1)/6), if t > 4000

where ¢; is a random normally distributed noise with zero mean and variance
equal to the signal without it (e.g. ¢, N(0,0.5)). Figure 4.2 shows the signals
around the first shift with and without the noise. We can see that without the
noise the signals periodicity and phase are very clear while with the noise, no
apparent comovement, phase difference or shift in it are observable.

Figure 4.3 show wavelet Cross-power, squared coherence and phase difference
of simple noisy signal a(t) and composite noisy signal b(t). On the y-axis of
the first two graphs Cross-power shows that the variation is interesting only
at periods around 6. Coherence nicely smooths the relationship and show that
the signals are indeed highly coherent across entire existence around period 6
but also show some random coherence on lower frequencies. However in the
phase plot, it is easy to see that stable phase is present only on band 4-8, where
it starts at -1, then shifts two -2 and reverts back to -1 - indicating changing
lag of a(t) behind b(t).

Figure 4.4 shows the evolution of phase difference on three bands (2-4, 4-8 and
16-32). We can see that the phase difference clearly shows the relationship
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Figure 4.3: Wavelet phase difference of a(t) and b(t)

on the band 4-8, while no stable relationship is present for the other bands.
Shannon Entropies are 0.1, 0.56 and 0.08, respectively. For the band 4-8 we
see a value that never occured for random noises in our simulation (relatively
higher stability) while the values for the other two bands are not statistically
different from random.

Second, composite signals ¢(t) and d(t) consisting of 4 sinus wave were created:

x(t) = sin(2x 7 1/3) (4.30)
y(t) = sm(? x 7 x1/6) (4.31)
2(t) = sin(2 x 7 x t/24) (4.32)
w(t) = sin(2 x 7 x 1/48) (4.33)
c(t) = x(t) +y(t) + 2(1) + w(t) + € (4.34)

3xx(t)+y(t+1), ift <2000
d(t) = z(L) +w(t) +ea+  x(t — 1) +y(t +2), if t € (2000,4000) (4.35)
w(t — 1) +y(t+1), if t > 4000

We can see that the processes are in phase for periods 24 and 48 (lower frequen-
cies), and with changing phase difference on high frequencies (periods 3 and 6).
Their wavelet cross-power, coherence and phase are showed in figure 4.5. It is
interesting to see the almost vanishing coherence on the highest frequency after
signal d(t)’s amplitude was lowered to 1 in comparison to 3. The phase differ-
ence plot indicates quite stable phase on bands 16-32 and 32-64 and changing
phase difference on bands 2-4 and 4-8, where darker blue colours indicate shift
onward while shift to red colours on band 2-4 show the lag of d(t) behind c(t).

Figure 4.6 investigates few bands of the phase difference. We can see stable
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Figure 4.6: Wavelet spectra and phase of ¢(t) and d(t)

phase-lock on band 16-32, 2 clear peaks and shift around point 2000 and band 2-
4 and no clear relationship on band 64-128. Shannon entropies from top down
are 0.3, 0.5 and 0.15. Latest can be surprising since it is marginally higher
than what we get from simulations of all three types of noise. This is due
to the smoothing and correlation on adjacent scales as the 0 phase difference
from scale 32-64 influenced the result and demonstrates important implication
on Shannon entropy test: SE only rejects that the signal is a random noise
process (colours white, red and Fourier phase randomized surrogate). But the
coefficient remains valid to tell us about the relative stability of the phase

difference.

Noises and smoothing window

Changing the size of the smoothing window affects the time-resolution of the
phase-difference and thus it is important to use the appropriate length of the
window. First, let us have a look at the Red Noise phase difference. Red-noise
can be defined asGilman et al. (1963):

RN(t) = ax RN(t — 1)+ /(1 — a?) xe,e N(0,1) (4.36)
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Figures 4.7 and 4.8 show the time-evolution of the wavelet phase difference with
the windows set to 50 and 400. It can be seen that regardless of the frequency
band, the distribution of the phase difference is dispersed across the whole
period. Histograms 4.12 of the phase difference look almost the same across
all periods and smoothing windows. White noise exhibit identical properties
and the same is valid for phase-randomized Fourier surrogate of the indices (as
defined by Cazelles et al. (2008)).

Figures 4.10 and 4.11 show the time-evolution of the wavelet phase difference
for the composite process c(t) and d(t) with smoothing windows set to be
50 a 400. It can be seen that while for the relatively low frequency band
(64-128) the phase-lock can be observed with window 50, the high-frequency
components seem like a noise and it is hard to distinguish for example between
band 2-4 and 8-16. On the other hand, with window 400 the relationship unveils
itself and we can observe, even-though still noisy, the relationships on expected
scale while the scale 8-16 remains random. The effects of the smoothing are
much larger on the highest frequencies than the lower ones. Reason is fairly
straightforward - the wavelets on higher scales work in a broad sense as weighted
averages themselves, and thus are smoother by definition and only less space
for smoothing remains.

Figures below well illustrate the effect of the smoothing. The phase-relationship
between the series remain the same, since we smooth the coefficients from which
we calculate the phase difference, not the phases itself. That has direct impact
for the bootstrap approach of obtaining the confidence intervals of the means of
the relative phases - they are quite robust to the changes of smoothing windows.
Extreme example is shown in table 4.1 where we compare Red noise processes
with 19500 observations smoothed with windows of length 15 and 400 where

we do not observe much change in the confidence intervals.

Table 4.1: Relative phase confidence intervals and entropies of Red Noise series

Window 2-4 Confidence Shannon 4-8 Confidence Shannon 8-16 Confidence Shannon
length scale interval entropy scale interval entropy scale interval entropy
15 0.04 (-0.8, 0.9) 0.06 0.00 (-0.7, 0.7) 0.07 0.03 (-0.6, 0.6) 0.07
400 0.07 (-0.7, 0.9) 0.09 0.12 (-0.5, 0.8) 0.08 0.15 (-0.5, 0.6) 0.07

Window 16-32 Confidence Shannon 32-64 Confidence Shannon 64-128 Confidence Shannon
length scale interval entropy scale interval entropy scale interval entropy

15 0.08 (-0.5, 0.6) 0.08 0.02 (-0.5, 0.6) 0.08 0.24 (-0.3, 0.8) 0.09
400 0.10 (-0.5, 0.6) 0.07 0.10 (-0.4, 0.6) 0.08 0.34 (-0.2, 0.9) 0.10
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Figure 4.9: Red Noise phase histograms

4.3.5 Phase synchronization without smoothing

In recent paper Addison (2018) points out possibility to examine phase dif-
ferences on scales without any smoothing of the transform itself. The phase-
synchronicity is measured by averaging the "raw” phase difference of the signals

x and y defined as

6¢m,y(7—7 S) - 6¢m(7—7 S) - 6¢y(7—7 S) -

This definition is however equivalent to computing the non-smoothed phase of
the cross-transform.
Addison (2018) defines so-called phase synchronization index, a measure to

compare phase-synchronicity of different signals, as:
PSI.y(s) = (sin(0¢uy(T, 8)))* + {cos(0uy (7, 5))) (4.38)

Such measure can have values ranging from 0 to 1, with 0 pointing to full
randomness of the series and 1 to perfect synchronization on particular scale

similarly to Shannon entropy. Since the measure produces single value for
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Figure 4.12: Phase difference histograms of signals ¢(t) and d(t)

each scale, it is possible to examine it ’continuously’. It is not clear which
synchronization values are significantly larger than 0 and not caused only by
finite length of the series. We thus use bootstrap approach on 1000 red-noise
signal pairs to establish indication of significance of the synchronicity. Figure
4.13 shows 95™ percentile of values of PSls between 2 random signals (both
white-noise and red-noise shown).

We have to point out that the measure is not equivalent to any of the above
measures - since here we do not smooth the data nor the transforms which
averages out part of the deviations. This can lead to failure to uncover existing
relationships that remain masked under noise on particular scale. On the other

hand it offers more detailed and less biased information on the synchronicity.

4.4 MODWT and Granger Causality

One well known test of cross-influence between signals (time-series, indexes) is
called linear Granger Causality test. It is a spectral test designed to statistically
assess if information contained in past realizations of A is useful for prediction
of process B after accounting for all the information in process B (i.e. its past

values). If such a causality is present on some frequencies it shows slightly
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Figure 4.13: 95 quantile of PSIs of White-noise and Red-noise artificial signals

different but stronger picture how the series are following each other (however
the presence of bidirectional causality is possible, while instantaneous lead of
both series is not). Following Reboredo et al. (2017), we introduce VAR model

without instantaneous causality as follows:

k k
Ty = a1 + Z Qg T Z ﬁiyt_z' + Ug t (439)
i=1 i=1
k k
Yy = ay + Z Yiy—; + Z Dt -t My (4.40)
i=1 i=1

where 1, is random term in time ¢ for series s. To select which lags should
be used to in VAR model, variety of methods are commonly used in practice
- i.e. Aikake’s, Hannan-Quinn or Schwarz’s Bayesian information criterions
or likelihood ratio test. Dziak et al. (2012) note that while AIC has quickly
decreasing probability of Type I error (under-fitting) with increasing sample
size, probability of Type II error remains the same. On the other hand SBIC’s
probability of both types of error decrease slowly with sample size. Since
samples used in this thesis are quite large, SBIC is used for lag selection.

We can set null hypotheses that x does not cause y Hf : 1 = ... = Br = 0 and

y does not cause x Hf : 74 = ... = v = 0. In presence of normally distributed
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random terms with constant variance, the test statistic for such a test follows
Fisher distribution with (k, T-2k-1) degrees of freedom. However, for the raw
series, normality of the error term is a strong and unlikely assumption (even
though it is satisfied for sub-series obtained by MODWT). Mantalos et al.
(2007) show if the underlying processes contain conditional heteroskedasticity,
linear Granger causality test tends to over-reject the null hypotheses of no
causality and therefore lead to finding causality where none is present. Since the
raw data exhibit auto-correlation and conditional heteroskedasticity, following
Hafner & Herwartz (2009) we use wild bootstrap to establish empirical p-value
of the Granger causality (using 5000 runs®).

We then apply this model on a sub-sample of 2008 and 2015 (2011 for WIG)
on both original series and the filtered series obtained by inverse MODWT
on the scale coefficients allowing for, apart from observing direct causality,
also for causality localized on certain frequency band providing possibly both
localization of causality and identification of new ones (that could be covert in

the process by other information).

4.5 Tools used to carry out the analysis

The analysis is done in R 3.4.0. Several tools of the tools were originally coded
in MatLab by other researchers but they were rewritten to R language syn-
tax.? Packages data.table(Dowle & Srinivasan (2017)) waveslim and wmtsa(for

MODWT calculation) were used to carry out the analysis.

8This number is a result of compromise in which the variance between two model runs
on the same data seems negligible for the use-case whilst keeping the computational time
reasonable (to cope with dozens of runs)

Yparticularly the wavelet transform itself



Chapter 5

Empirical results

5.1 Evidence from CWT and wavelet correlation

5.1.1 FTSE 100 and DAX

We start the empirical section by comparison of the two indexes that are consid-
ered as being developed markets, FTSE 100 and DAX. Figure A.1! shows the
contour plots of the evolution of wavelet cross-power, wavelet squared coher-
ence and wavelet phase difference of the two time-series, with significant areas
being enclosed by solid black lines. On the x-axis we have time domain (each
graph standing for 1 year, months as labels), on the y-axis we have frequency
domain. To be able to focus on high frequency aspects, only scales of cycles
of up to 3 days are depicted (the calculation was done over another octave to
control for unwanted effects of smoothing). Thus relatively lower frequencies
in this study point to scales of around 1 day. Regarding the wavelet power, we
can see that the the common high power is usually located to short time-period
which as a consequence causes black areas in the plots (since every small area
is enclosed by black line). Significant areas indicate high common energy on
particular scale in certain points in time. It brings interesting results regard-
ing where and how the significant areas are clustered - we can see a cluster in
the end at 2008 and in many other periods and those clusters span over most
scales. However, it is hard to observe any time-effects since it does not reflect
significant comovements over relatively calmer periods.

On the other hand, wavelet coherence controls for relative energy of underlying

processes and shows how well processes co-move with each after energy at that

TAll the figures of CWT to which the text refers are shown in the Appendix A due to
their very large number and/or size
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time and scale is account for. We can see that that the areas of very high
coherence indicate strong link between DAX and FTSE 100. On frequencies
below 80 minutes, the coherence is almost always significant. Surprising is the
time-evolution of the coherence that we observe. Over time, the coherence par-
ticularly on highest but also on relatively lower frequencies decreases with the
usual values falling from around 0.6 to 0.2 (with localized windows of higher
significance) - even though it is still significant against random noise. This
effect appears to be stronger from second half of the 2012. The reasons behind
that are unclear - one possibility could be that the common pricing mechanism
that influences the global prices shifts its localization to lower frequencies (be-
yond those inspected in this work). Lowest six plots of figure A.1 show relative
phase difference of the 2 time-series. We can observe mostly only marginally
negative or positive values with exceptions on relatively lower frequencies to-
wards the end of the sample. Figure A.2 and table 5.1 together bring more
focused evidence on the relative phase. During year 2008 to 2012, we can see
that the phase difference fluctuates with very low amplitude around 0 (with
small exception for band 64-128 which relates to 320-640 minutes namely in
2008 and 2011). Bootstrap test do not indicate any year of significant non-zero
phase. Shannon entropies on high-frequency bands are very high (approxi-
mately 4 times higher than highest SE for random noise pairs) suggesting the
overall stability of the differences. Interesting is the observed lower stability
of the relative phase over the years 2013 to 2015 where particularly on lower
frequency bands the phase histograms are flatter. This could be the result of
lower coherence of the processes. Figure 5.1 show evolution of wavelet correla-
tion on each scale across years. We can see that correlation has similar values
for all the frequency bands are the follow rather similar time-pattern. The cor-
relations, mainly on the highest frequency bands, undergone significant changes
and, at least from 2010, they show decreasing correlations with minimum in
2013. This minimum is consistent with stability of the phase difference that
is also lowest in 2013. These results are baffling, however possible explanation
is that the global pricing mechanism that drives common changes in the series
is becoming more stable and moves to lower frequencies and as a consequence
leave less energy to higher frequencies. The level of the noise remains the same
and even when the series are phase-locked on those frequencies, uncorrelated
behavior increasingly dominates the observed relative phase.

In general, the results of CW'T and correlations on FTSE 100 and DAX indicate

that the two indexes are well phase synchronized and are then either in phase
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or in a very small lag one behind the other without any indication which one
could be the leader. This points in favor of the first hypotheses of this thesis,

however there is no test suited to confirm it.

Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.06  (-0.14, 0.02) 0.72 -0.04  (-0.14, 0.06) 0.70 -0.01  (-0.16, 0.13) 0.61
2009 -0.06 (-0.12, 0.00) 0.73 -0.05  (-0.13, 0.03) 0.72 0.01 (-0.11, 0.13) 0.67
2010 -0.01  (-0.08, 0.04) 0.78 -0.02  (-0.10, 0.05) 0.75 0.00 (-0.10, 0.11) 0.69
2011 -0.00 (-0.08, 0.07) 0.76 -0.02  (-0.13, 0.07) 0.71 -0.02  (-0.17,0.12) 0.63
2012 0.00 (-0.05, 0.07) 0.76 0.00 (-0.08, 0.08) 0.67 0.03 (-0.10, 0.14) 0.65
2013 -0.01 (-0.08, 0.05) 0.72 -0.02  (-0.11, 0.06) 0.65 -0.02  (-0.16, 0.10) 0.61
2014  -0.01  (-0.08, 0.05) 0.71 -0.01  (-0.10, 0.08) 0.66 -0.01  (-0.14, 0.12) 0.59
2015 0.00 (-0.07, 0.07) 0.68 -0.01  (-0.10, 0.08) 0.64 -0.02  (-0.16, 0.12) 0.54

Year &80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 0.01 (-0.19, 0.23) 0.59 0.02 (-0.27, 0.32) 0.54 0.02 (-0.39, 0.45) 0.44
2009 -0.00 (-0.17, 0.15) 0.62 0.02 (-0.21, 0.26) 0.58 -0.07  (-0.40, 0.26) 047
2010 -0.00 (-0.16, 0.15) 0.65 -0.02  (-0.24, 0.21) 0.58 0.01 (-0.29, 0.30) 0.54
2011 -0.03  (-0.26, 0.20) 0.58 0.01 (-0.29, 0.32) 0.51 -0.00  (-0.43,0.44) 0.43
2012 0.03 (-0.14, 0.22) 0.53 0.02 (-0.23, 0.28) 0.49 0.02 (-0.33, 0.37) 0.45
2013 -0.05 (-0.24, 0.15) 0.50 -0.06  (-0.32, 0.21) 0.42 -0.07  (-0.40, 0.32) 0.39
2014 -0.07  (-0.27, 0.12) 0.51 0.01 (-0.27, 0.29) 0.46 -0.07  (-0.43,0.27) 0.42
2015  -0.02 (-0.25, 0.19) 0.48 -0.01  (-0.33, 0.28) 041 -0.02  (-0.43, 0.39) 0.33

Table 5.1: Mean phases and Shannon Entropies over years, FTSE 100 and DAX
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Figure 5.1: Evolution of MODWT correlation across scales of FTSE and DAX

5.1.2 PX

Figure A.3 show the results of the transform on Czech spot index prices PX
and DAX. It is interesting to observe similar patterns in wavelet power as
between FTSE 100 and DAX. But for example in the first four months of
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2009 the areas appear larger on lower frequencies which might indicate higher
common reaction to Global financial crisis at that time (Blue Monday). The
coherence is however much lower. Warmer colors in lower frequencies are almost
missing indicating, even though significant, relatively low degree of correlation
on highest scales. Nevertheless the time evolution share similar pattern where
the coherence even looses significance in majority of time periods.

The graphs of phase difference offer different picture. They imply that the phase
difference is negative and PX is lagging behind DAX in earlier years of the ob-
served period and mainly on higher frequencies while in latter we observe wider
confidence intervals and higher uncertainty over the phase-difference. This is
supported by graphs in figure A.4 and the results showed in table 5.2. On
the highest frequency band (frequencies of 10 to 20 minutes standing for the
finest information in the data) the mean of the phase is ranging between -0.78
and -0.46 with less negative values toward the end of the sample. With time
also the significance falls and the phase difference become more scattered and
in 2015 we cannot say on 5% significance level that that PX is still lagging
behind DAX. The most volatile phase difference can be observed in 2013 (sim-
ilarly for all bands) where even though the distribution is peaked and with
negative mean resembles the distribution of random noises (Shannon entropy
is only 0.16). Similar values we observe on next band where particularly in
the first half of the subset CWT indicates highly significant non-zero values
with normalized Shannon Entropy from 0.4 to 0.5. Phase difference remains
marginally significant to the end of the sample but looses much of its stabil-
ity (as can be seen on the shape of phase histograms in figure A.4. Identical
pattern is present for band of scales from 40-80 minutes. On relatively lower
frequencies the results point to a preferred value but with lower stability and
mostly insignificantly non-zero values which imply lower phase-correlation and
no significant lag of Prague behind Frankfurt. These patterns are supported
by the correlation estimates (fig. 5.2). We can see that on high frequencies, the
correlation is relatively lower. On band with frequencies of 10-20 minutes we
observe correlations around 0.15 with its low of 0.05 in 2013, which corresponds
to the almost-noise Shannon entropy. On lower frequencies the correlation in-
creases, though the pattern in the values of Shannon entropy resembles the
pattern in correlations. However, the observed correlations serve as contrast to
results of Egert & Koéenda (2011) for time period 2003 to 2006, who calculated
correlations on high frequency data from PX and DAX of 0.007 while 2 years

later we see much higher values on scales shorter than one day.
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Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.78  (-1.11, -0.42) 0.28 -0.69  (-0.92, -0.45) 0.45 -0.41  (-0.66, -0.14) 0.40
2009 -0.56  (-0.87,-0.21) 0.26 -0.70  (-0.91, -0.49) 0.36 -0.52  (-0.73, -0.28) 0.39
2010 -0.62 (-0.89, -0.32) 0.29 -0.64  (-0.81, -0.47) 0.47 -0.50  (-0.69, -0.30) 0.43
2011 -0.78  (-1.17, -0.37) 0.27 -0.74  (-0.97, -0.48) 0.42 -0.47  (-0.73, -0.19) 0.40
2012 -0.59  (-0.93, -0.26) 0.28 -0.72  (-0.94, -0.50) 0.39 -0.47  (-0.71, -0.24) 0.38
2013 -0.70  (-1.11, -0.19) 0.16 -0.72  (-1.03, -0.38) 0.28 -0.39  (-0.77, -0.05) 0.24
2014  -0.58  (-0.96, -0.11) 0.16 -0.64  (-1.02, -0.21) 0.24 -0.44  (-0.78, -0.10) 0.27
2015 -0.46  (-0.94, -0.00) 0.21 -0.52  (-0.84, -0.20) 0.25 -0.37  (-0.70, -0.05) 0.26
Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008  -0.27 (-0.55, 0.06) 0.41 -0.19 (-0.58, 0.23) 0.33 -0.04 (-0.59, 0.53) 0.28
2009 -0.36  (-0.59, -0.11) 0.40 -0.24 (-0.52, 0.05) 0.35 -0.19 (-0.64, 0.24) 0.29
2010 -0.28 (-0.52, -0.06) 0.42 -0.22 (-0.54, 0.09) 0.33 -0.22 (-0.60, 0.14) 0.31
2011  -0.24 (-0.62, 0.11) 0.35 -0.19 (-0.60, 0.23) 0.28 -0.06 (-0.66, 0.46) 0.26
2012 -0.36  (-0.65, -0.10) 0.41 -0.30 (-0.63, 0.04) 0.30 -0.13 (-0.64, 0.44) 0.24
2013 -0.24 (-0.67, 0.15) 0.25 -0.04 (-0.54, 0.39) 0.19 -0.24 (-0.78, 0.25) 0.18
2014  -0.33 (-0.75, 0.14) 0.26 -0.19 (-0.65, 0.24) 0.24 -0.15 (-0.66, 0.33) 0.24
2015  -0.35 (-0.72, 0.03) 0.26 -0.17 (-0.55, 0.22) 0.26 -0.09 (-0.73, 0.47) 0.22
Table 5.2: Phase differences with confidence intervals and entropies for PX and
DAX
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Figure 5.2: Evolution of MODWT correlation across scales of PX and DAX

Figure A.5 depict wavelet transformations of indexes PX and FTSE 100. Wavelet
power confirms the occurrences of commonly highly volatile sessions between
DAX, FTSE 100 and PX. We can see higher dispersion of power in 2013 and

extremely high localized periods in 2011 and 2015 with wavelet cross-power

over 100 (average for two white noise processes is 1 with 3 as upper bound of

95% confidence interval). Coherency patterns are highly similar to those be-
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tween DAX and PX but show lower degree of coherence mainly in first half of
2011 and from 2013 onward. Phase difference plots indicate that PX lags also
behind FTSE 100, mainly between 2008 and 2010. Figure A.6 brings evidence
that the phase difference is more unstable than with DAX. This is visible both
on the line plots (we can see shorter periods of stability and more periods where
the synchronization is not visible) and on the values of Shannon entropy (table
5.3). On highest frequencies the average lag becomes insignificant on 5% level
in 2014 and on scales between 40 and 80 minutes it is not significant since 2013.
Relatively lower frequencies indicate lower level of phase-lock. The values are
insignificantly negative (with several exceptions on scale around 2 hours) and
the Shannon Entropy approaches values of random noise. Histogram and line
plot for band 64-128 (320 to 640 minutes, around 1 trading day) in figure A.6
(h) show that the preference of 0 among the values is very weak and in many
periods it escapes to the edges of the cycle. Surprising are the estimates for
correlations (figure 5.3), that are almost identical to those with DAX (only
they drop sooner on some bands).

These results are partly in favor of the second thesis hypotheses. We do observe
the phase lag of Prague behind developed stock markets on highest frequencies,
but while on some frequencies we see significant lag throughout the observed
periods, on some of the investigated frequencies the phase differences become
statistically insignificantly different from zero.

Nonetheless, due to the lower stability of observed phase differences, we cannot
reject the hypotheses that PX tends to lag less throughout the years. For
example on the 10-20 minute band the values of mean phase difference are
closer to 0 in 2014 and 2015, however as the uncertainty regions expand the

true value might be even largely negative than in previous years?.

5.1.3 BUX

We continue with comparing BUX with FTSE 100 and DAX. Graphical repre-
sentation of the continuous wavelet analysis is depicted in figures A.7 and 5.5,
respectively. The cross power with both resembles the plots of PX, though the
peaks have lower values (for DAX in the whole sample and FTSE 100 in sec-
ond part of the data set). This observation has impacted the coherency plots.
Significant areas are scarcer, even more from 2013 when the mutual coherence

values are extremely low. Phase plots seem less stable and the patterns are

2we we need non-overlapping confidence intervals to be able to claim observed difference
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Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.64  (-0.92, -0.28) 0.28 -0.64  (-0.88, -0.40) 041 -0.43  (-0.67, -0.15) 0.40
2009 -0.51  (-0.82, -0.20) 0.30 -0.66  (-0.86, -0.44) 0.35 -0.55  (-0.78, -0.29) 0.38
2010 -0.63  (-0.91, -0.32) 0.32 -0.63  (-0.79, -0.46) 0.45 -0.50  (-0.70, -0.31) 0.40
2011 -0.66  (-1.09, -0.23) 0.27 -0.67  (-0.92, -0.39) 0.38 -0.47  (-0.74, -0.18) 0.38
2012 -0.55  (-0.90, -0.23) 0.28 -0.78  (-0.99, -0.54) 0.37 -0.51  (-0.76, -0.29) 0.35
2013 -0.54  (-1.04, -0.05) 0.17 -0.71  (-1.10, -0.26) 0.22 -0.39 (-0.81, 0.02) 0.21
2014  -047 (-0.97, 0.14) 0.16 -0.55  (-0.96, -0.08) 0.22 -0.36 (-0.79, 0.02) 0.25
2015  -0.34 (-0.81, 0.14) 0.17 -0.47  (-0.85, -0.10) 0.23 -0.33 (-0.73, 0.08) 0.24
Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008  -0.32 (-0.60, 0.03) 0.38 -0.27 (-0.63, 0.15) 0.31 -0.13 (-0.66, 0.40) 0.26
2009 -0.38  (-0.62, -0.09) 0.36 -0.27 (-0.58, 0.03) 0.35 -0.10 (-0.58, 0.31) 0.25
2010 -0.27  (-0.51, -0.03) 0.44 -0.24 (-0.54, 0.06) 0.37 -0.28 (-0.64, 0.09) 0.30
2011 -0.26 (-0.64, 0.12) 0.30 -0.22 (-0.61, 0.20) 0.29 -0.04 (-0.58, 0.48) 0.30
2012 -0.43 (-0.73,-0.17) 0.38 -0.40 (-0.77, 0.03) 0.28 -0.11 (-0.69, 0.43) 0.24
2013  -0.30 (-0.69, 0.13) 0.22 -0.06 (-0.59, 0.39) 0.18 -0.18 (-0.76, 0.30) 0.17
2014  -0.23 (-0.74, 0.29) 0.23 -0.17 (-0.72, 0.32) 0.22 -0.12 (-0.63, 0.31) 0.22
2015  -0.28 (-0.69, 0.15) 0.24 -0.23 (-0.66, 0.22) 0.22 0.11 (-0.56, 0.78) 0.16

Table 5.3: Mean phases and Shannon Entropies over years, PX and FTSE 100
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Figure 5.3: Evolution of MODWTT correlation over years of PX and FTSE 100

observable on frequencies between 20 and 80 minutes. We can see in tables 5.4

and 5.5 and figures A.9 and A.10 that on relatively lower frequencies we find

no significant lag of BUX after either of developed indexes. Conversely, until

2013, on the highest frequencies the lag is significant and, apart from 2008,
quite stable. Both the stability and the size of the lag is higher between BUX
and DAX than FTSE 100. However on the highest frequency, the Shannon

entropies become very low in the second part of the data set (and for 2008)

and in case of FTSE 100, the relative phases are not different from random

noise on 10-20 minute band. Going through the line plots, it is easy to see

that there appear to be no preferred value on the highest frequency band. It
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is supported by the wavelet coherency, which approaches zero in these years.

The results in terms of the hypotheses are a bit different than in the case of PX.

Hungarian index seems to follow both DAX and FTSE in certain years, however
the stability is low not only from 2013 but also in 2008. The relationship

perishes for highest frequencies and the behavior becomes unrecognizable from

random. There is no straight-forward explanation for that. It seems that the

pricing mechanism may remain common for parts of the information stored

in the prices, but below 20 minute horizon there seems to be no information

transmission and looses stability on all high frequencies.

Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.79  (-1.29, -0.17) 0.20 -0.62  (-0.99, -0.24) 0.30 -0.45  (-0.81, -0.04) 0.29
2009 -0.50 (-0.77, -0.25) 0.31 -0.50  (-0.71, -0.32) 0.39 -0.34  (-0.58, -0.13) 0.39
2010 -0.44 (-0.68, -0.19) 0.39 -0.40  (-0.57, -0.21) 0.45 -0.26  (-0.46, -0.02) 0.42
2011 -0.45 (-0.77, -0.10) 0.34 -0.47  (-0.71, -0.18) 0.42 -0.34  (-0.63, -0.04) 0.41
2012 -0.33  (-0.65, -0.01) 0.22 -0.40  (-0.66, -0.17) 0.30 -0.33  (-0.62, -0.05) 0.37
2013  -0.40 (-0.83, 0.13) 0.15 -0.63  (-1.04, -0.14) 0.24 -0.38 (-0.89, 0.13) 0.21
2014  -047 (-0.98, 0.04) 0.14 -0.57  (-0.96, -0.20) 0.24 -0.53  (-0.90, -0.06) 0.23
2015  -0.55 (-1.11, 0.13) 0.15 -0.65  (-1.03, -0.21) 0.19 -0.57  (-0.92, -0.14) 0.24
Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008  -0.32 (-0.67, 0.01) 0.35 -0.12 (-0.60, 0.30) 0.34 -0.10 (-0.69, 0.48) 0.27
2009 -0.29 (-0.55, -0.00) 0.38 -0.12 (-0.47, 0.21) 0.29 -0.14 (-0.63, 0.34) 0.30
2010 -0.21 (-0.48, 0.06) 0.39 -0.08 (-0.44, 0.28) 0.31 -0.13 (-0.58, 0.30) 0.30
2011  -0.21 (-0.60, 0.17) 0.34 -0.14 (-0.59, 0.29) 0.27 0.00 (-0.61, 0.59) 0.26
2012 -0.34 (-0.64, 0.00) 0.33 -0.07 (-0.52, 0.38) 0.23 -0.03 (-0.57, 0.56) 0.20
2013 -0.24 (-0.69, 0.20) 0.19 0.01 (-0.56, 0.55) 0.15 -0.01 (-0.75, 0.64) 0.14
2014  -0.26 (-0.72, 0.23) 0.20 -0.16 (-0.67, 0.34) 0.16 0.12 (-0.55, 0.86) 0.17
2015  -0.29 (-0.80, 0.20) 0.27 -0.23 (-0.81, 0.32) 0.21 -0.04 (-0.72, 0.61) 0.23
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Table 5.4: Mean phases and Shannon Entropies over years, BUX and DAX
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Figure 5.4: Evolution of MODWT correlation across scales of BUX and DAX
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Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008  -0.60 (-1.13, 0.02) 0.16 -0.56  (-0.96, -0.16) 0.27 -0.39 (-0.77, 0.02) 0.29
2009 -0.40 (-0.68, -0.12) 0.34 -0.42  (-0.65, -0.23) 0.43 -0.32  (-0.60, -0.10) 0.38
2010 -0.47  (-0.73, -0.23) 0.37 -0.40  (-0.55, -0.21) 0.43 -0.28  (-0.52, -0.03) 0.39
2011 -0.45 (-0.78, -0.05) 0.29 -0.45  (-0.68, -0.17) 0.36 -0.29 (-0.59, 0.02) 0.37
2012 -0.38 (-0.70, 0.01) 0.22 -0.42  (-0.66, -0.13) 0.29 -0.41  (-0.68, -0.10) 0.33
2013  -0.31 (-0.83, 0.32) 0.11 -0.51  (-0.96, -0.05) 0.20 -0.26 (-0.77, 0.21) 0.19
2014  -0.32 (-0.91, 0.29) 0.12 -0.61  (-0.98, -0.12) 0.20 -0.45 (-0.95, 0.13) 0.16
2015  -0.58 (-1.15, 0.03) 0.13 -0.65  (-1.04, -0.15) 0.16 -0.54 (-1.00, 0.03) 0.19
Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.31 (-0.67, 0.07) 0.34 -0.19 (-0.64, 0.23) 0.30 -0.15 (-0.71, 0.39) 0.26
2009 -0.25 (-0.55, 0.07) 0.39 -0.13 (-0.50, 0.26) 0.28 -0.04 (-0.55, 0.42) 0.27
2010 -0.20 (-0.50, 0.11) 0.38 -0.03 (-0.39, 0.36) 0.28 -0.21 (-0.63, 0.24) 0.28
2011  -0.16 (-0.57, 0.23) 0.29 -0.18 (-0.61, 0.25) 0.28 0.00 (-0.63, 0.66) 0.19
2012 -0.39  (-0.74, -0.02) 0.29 -0.07 (-0.60, 0.42) 0.24 -0.06 (-0.69, 0.52) 0.22
2013 -0.16 (-0.62, 0.34) 0.19 -0.05 (-0.62, 0.54) 0.16 0.00 (-0.79, 0.70) 0.15
2014  -0.17 (-0.68, 0.29) 0.20 -0.12 (-0.65, 0.38) 0.16 0.05 (-0.64, 0.82) 0.15
2015  -0.26 (-0.76, 0.23) 0.16 -0.19 (-0.78, 0.36) 0.19 -0.00 (-0.72, 0.60) 0.19
Table 5.5: Mean phases and Shannon Entropies over years, BUX and FTSE 100
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Figure 5.5: Ivolution of MODWTT correlation across scales of BUX and FTSE

5.1.4 WIG

Finally, we examine index WIG. Figure A.11 shows CWT with DAX, figure
A.12 shows analysis with FTSE 100. We can observe similar pattern as with

PX, however peaks of common power have lower absolute values and are spread

more even over the years. Wavelet coherence analysis show quite stable regions

of comovement on frequencies below 80 minutes with warmer tones in 2009

and 2010 and more localized but higher coherency on lower frequencies. Sim-

ilar break is visible on phase difference plot with lag on frequencies up to 80

minutes and changing behavior on lower ones. Wavelet correlation sheds some
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light into the time-pattern, with on average highest correlations in years 2010
and 2011 (peak), but the differences are significant only in certain scale-time
combinations (see figure 5.6).

Tables 5.6 and 5.7 with figures A.13 and A.14 provide scale-by scale time in-
spection of the relative phases. We can see that lag is quite small but significant
in horizons of 10-20 minutes and 20-40 minutes, with highest stability in 2009.
Highest frequency band very stable relationship particularly with DAX. How-
ever we do not see any strong changes in the strength of the lag itself. Surprising
is that the entropy is highest in 2011 even when the correlation falls. On the
horizon around half an hour it is stable for both pairs. On frequencies of up
to 5 hours, they appear to be almost in phase, with stronger stability on the

continent, mainly in 2011.

Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.46  (-0.73, -0.16) 0.35 -0.38  (-0.57, -0.19) 0.46 -0.21  (-0.44, 0.01) 0.48
2009 -0.38  (-0.54, -0.22) 0.44 -0.31  (-0.44, -0.19) 0.50 -0.08  (-0.28, 0.10) 0.50
2010 -0.30 (-0.47, -0.13) 0.43 -0.27  (-0.39, -0.13) 0.51 -0.16  (-0.33, 0.03) 0.50
2011 -0.38  (-0.57, -0.23) 0.46 -0.30  (-0.45, -0.15) 0.50 -0.16  (-0.34, 0.00) 0.50

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.11 (-0.41, 0.17) 0.43 0.01 (-0.37, 0.39) 0.36 -0.12  (-0.69, 0.48) 0.27
2009 -0.05 (-0.28, 0.15) 0.44 -0.01 (-0.37, 0.33) 0.38 -0.04  (-0.48, 0.37) 0.29
2010  -0.09 (-0.32, 0.15) 0.45 -0.08 (-0.38, 0.20) 0.40 -0.08  (-0.48, 0.28) 0.34
2011  -0.05 (-0.29, 0.18) 0.53 -0.08 (-0.39, 0.20) 0.40 -0.07  (-0.56, 0.42) 0.31

Table 5.6: Mean phases and Shannon Entropies over years, WIG and DAX

Year 10-20 Confidence Shannon  20-40 Confidence Shannon  40-80 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.37  (-0.59, -0.13) 0.39 -0.33  (-0.52, -0.12) 0.50 -0.22  (-0.44, 0.01) 0.47
2009 -0.29 (-0.46, -0.13) 0.43 -0.27  (-0.41, -0.15) 0.53 -0.10  (-0.32, 0.09) 0.45
2010 -0.27  (-0.47, -0.10) 0.41 -0.24  (-0.37, -0.10) 0.50 -0.17  (-0.35, 0.01) 0.48
2011 -0.50  (-0.71, -0.25) 0.35 -0.34  (-0.50, -0.19) 0.48 -0.14  (-0.34, 0.04) 0.47

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon

minutes interval entropy minutes interval entropy minutes interval entropy
2008 -0.14 (-0.44, 0.15) 0.37 -0.01 (-0.42, 0.35) 0.31 -0.18  (-0.73, 0.40) 0.25
2009  -0.09 (-0.33, 0.14) 0.42 -0.02 (-0.37, 0.30) 0.40 0.01 (-0.40, 0.43) 0.33
2010 -0.11 (-0.37, 0.12) 0.43 -0.01 (-0.31, 0.28) 041 -0.11  (-0.51, 0.28) 0.31
2011  -0.13 (-0.39, 0.16) 0.44 -0.15 (-0.48, 0.19) 0.35 -0.04  (-0.60, 0.43) 0.31

Table 5.7: Mean phases and Shannon Entropies over years, WIG and FTSE 100
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Figure 5.6: Evolution of MODWTT correlation across scales between WIG and
DAX (six figures on left) and FTSE 100 (six on right)

5.2 Granger causality

First, Granger causalities of the non-decomposed indexes were examined. Ta-
ble 5.8 shows the Granger causality results. The arrows show the direction of
the causality, with right arrow (=) indicating that index on the left Granger-
causes index on the top and <= indicates bidirectional causality (indexes
significantly influence each other).

We can see that overall that the interaction between the series has lowered be-
tween the year 2008 and 2015, which is consistent with the decreasing wavelet
correlations. However it is interesting to point out that DAX Granger caused
FTSE 100 in 20082, and both of these indices tend to influence the ones con-
sidered less developed. Interesting difference is that DAX and PX used to have
bidirectional relationship and it changed to one-directional in 2015. For the
rest, the relationships remained the same (FTSE and DAX cause WIG and
BUX). Regarding the interactions between the less developed ones (to which
this thesis gives lower level of interest) there is a full level of bidirectional
causality. It indicates either that the indices are not subject to separate pric-
ing mechanisms and interact which each other on general level or that they are
strongly influenced by the same third factor (e.g. DAX index).

Second, all the indices were decomposed using maximum-overlap discrete wavelet
transform onto 6 detailed series and trend series. The detail series are thus con-

structed to contain information that has scales (horizon) of up to 640 minutes

3it is important to note that the p-value for the direction FSTE 100 =—=DAX was 0.066
but we choose not to reject no influence
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2008 FTSE 100 DAX PX WIG BUX 20151 FTSE 100 DAX PX WIG BUX
FTSE 100 — & <+— <+« — |[|[FTSE 100 — None* —* — —
DAX - e — = DAX None * — —r = =
PX = = - = = PX == = — = =
WIG <~ = = — = WIG <~ — = — <=
BUX == = = = — BUX <~ <~ = = —

1 2011 for WIG, == left cause top, <= top cause left, <= bidirectional causality, * causality changed

Table 5.8: Granger causality of the original series

(roughly corresponding to 2 days). However one of the implications of MODW'T
redundancy is that the scales (frequencies) are not perfectly separated. Figure
5.7 shows the transformation for DAX in 2008 for January. We can see the
nice alignment of the decomposed series and the original one (one on the top,
dl to d6 correspond to detail series and s6 to 6th level of scaling coefficient).

Note that most of the variance is present on higher frequencies.
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Figure 5.7: MODWT of DAX in January 2008, top series is the original

Table 5.9 displays Granger-causalities of the investigated indexed by their de-
composed sub-parts. Results for pair FTSE-DAX are surprising - even though
the relationship seemed one-directional without decomposition, apart from 20-
40 minute scale they exhibit bidirectional causality. This might be partially
caused by the fact that for the raw series, only 1 lag was selected by the crite-
rion, however various larger lags are selected for the decomposed series. Results
of the causality are in line with the phase-results - in 2008 the series influence
each other and as the phase-differences become more unstable in 2015 also the
Granger-causalities perish (at least on the highest frequencies). However, the
lack of linear causality does not imply some degree of phase synchronization

since it does not address entirely same question.
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Index-pair FTSE — DAX Index-pair FTSE — PX DAX — PX
Year 2008 2015 Year 2008 2015 2008 2015
Detail level Detail level
1 <~ None* 1 = = <= —=*
2 None None 2 = = = =
3 — None* 3 — — = =
4 = =" 4 = = = <=
5 = =" 5 = = = <=
6 = = 6 = = <= ="
Index-pair FTSE — BUX DAX — BUX Index-pair FTSE — WIG FTSE — WIG
Year 2008 2015 2008 2015 Year 2008 2015 2008 2015
Detail level Detail level
1 = - - - 1 = - - ="
2 — — — — 2 — = = =
3 = - <= —=* 3 = - - ="
4 = = = = 4 = =" = =
5 = —* = —* 5 = = = =
6 — — — —* 6 = = = =

= left cause right, <= right cause left, <= bidirectional causality, * causality changed

Table 5.9: Granger causality of transformed indexes

In general we observe uni-directional causalities on highest frequencies from
developed to developing markets, on lower the dynamics are more diverse. It
always holds that developed markets Granger-cause developing (on 95% sig-
nificance level) although, in many cases, the relationship is bidirectional. This
result is however not contradictory to the observed phase-differences. Mostly,
bidirectionality is added in the latter period, with exception of DAX-PX on
detail 1 and 6 and for DAX-BUX on detail level 3 and WIG-FTSE on detail
4. Bidirectional relationship implies increased expectation of non-significant
phase-difference, however it does not have to be the case. In presence of semi-
periodic components and with low restriction on size of maximal lag in VAR
model?, different dynamics can be uncovered.

Results do however suggest possibility of larger-than-expected interactions be-
tween Western indexes and Eastern ones.®> The other explanation could be that
presence of general pricing mechanism to which both are subject affects indexes
in different manner and both developed and developing markets can react to

different types of information with changing speed.

“Model selected optimal lag with maximum set to 50
50n the other hand, significant causality does not say anything about the importance of
the causality. The effects can still be negligible for any kind of real use (e.g. predictions)
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Figure 5.9: Time-evolution of Phase synchronization index of PX and DAX
Red dashed line denotes 95 quantile of Red Noise pairs’ PSI

5.3 Non-smoothed phase synchronization

Final part of our examination focused on measuring the stability of the phase
synchronicity without any upfront smoothing with the PSI (figures 5.8, 5.9,
5.10, 5.11, 5.12, 5.13 and 5.14). The lines represent years 2008, 2011, 2013
and 2015 (2008, 2009, 2010 and 2011 for WIG) to capture the evolution of the
phase synchronization index over time.

We can see that DAX and FTSE 100 exhibit quite high values over all of the
measured frequencies, while the developed-developing pairs show much lower
values. The common observed pattern is the formation of 2 clusters (for WIG
for all years between 2008 and 2011 form 1 cluster), before 2012 and after
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that - we observe lowering phase synchronization index in the second period.
While for PX and both DAX and FTSE we see equal or marginally higher
synchronization for 2008 in contrast to 2011 on the highest frequencies (which
favors the hypotheses of this thesis), for BUX, at least on the frequencies below
80 minutes, we see the highest-synchronization in 2011. One explanation for
this might be that BUX did not react as much to global pricing mechanisms in
the beginning of the observed sample, but caught up in the second part of the
sample. Interesting are also the values for WIG, they seem to be the largest
of all developed-developing pairs, unfortunately there is no straightforward
explanation for that.

These results (and mainly the comparisons) have to be considered with cau-
tion. We do not have any statistical approach show that the differences are
significantly different from each other. On the other hand, it provides another
confirmation of the overall results as they are in line with both lower stability
of the phase-plots (and thus Shannon entropies) and wider confidence intervals

for the mean phases.



Chapter 6
Conclusion

In this thesis, we have built upon existing approaches to investigate time-
scale dependencies and phase-relationship patterns using methods of wavelet
analysis, not common in economic literature. Center point of the work is
the discovery of a suitable method that can work with extremely noisy data
such as high-frequency price development patterns. The challenge was both
to correctly specify and demonstrate relevance of our approach. Continuous
wavelet transform and smoothed phase analysis can depend significantly on
the smoothing window that is used, and while in the frequency domain there
is natural value for its length, contemporary Economic research uses rather
arbitrarily chosen window lengths! (e.g. Roesch et al. (2014)). We show that
with moderately large window (in comparison to the length of the time-series)
we are able to uncover information well masked under the random noise. This
property comes at a price - it is possibly subject to the variance-bias trade-off
which should be investigated on more rigorous basis, possibly with standalone
research.

To support our research with a measure of statistical significance, apart from
investigation or noisy periodic signals and real series, we have compared our
results with various types of random noise (white noise, red noise (AR(1))
or 'Fourier’ noise?). This serves as a common benchmark for significance of
Shannon entropy test (see e.g. Cazelles & Stone (2003)) or for wavelet cross-
power or coherence. However assumption of full randomness between time-
series in our data might not be strict enough, and since significance of phase
difference cannot be approached analytically, we also add another measure

employed by Hanus & Vécha (2018). The underlying assumption is that when

1Or they do not provide deeper explanation for the chosen filter length
2Random series that maintains basic spectral relationships of the investigated data
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two series have consistent phase differences, adding further noise would not
weaken this relationship, however when the observed value is only random, we
would observe 'diverging’ phase difference pattern (and thus large confidence
intervals). In chapter 4 we show that the method correctly identifies significant
phase differences in artificial signals only on frequency bands on which those
difference were put in data-generating process. To provide wider picture in the
results, we contrast CWT with MODWT approach to measure linear Granger
causality on data decomposed on approximately equivalent bands.

We find, in accordance with the first thesis hypotheses, that there is no sig-
nificant phase difference between UK’s FTSE100 and DAX indexes. We are
not aware of any test that rejects non-synchronization of the phase-differences,
however the measures we employ point to very close synchronization of the two
indexes throughout the period on frequencies at least up to daily (on highest
frequencies, the 95% confidence intervals are wide only one 45th of the period).
Additionally, the level of stability is much larger than with any other investi-
gated pair (supported by the highest wavelet correlation coefficient). However
decreasing correlation and Granger-causality points to disappearing of linear
influences in most recent year.

We observe highly significant lag of all PX, BUX and WIG behind both FTSE100
and DAX on the highest frequency bands. It is the strongest in the first half of
the sample, but becomes lower and more volatile towards the end of the period.
Exact values cannot be quantified, but under assumption that observed values
of the lag are the true values then for example PX on 20-40 frequency band
(where the stability is the highest) would be lagging behind DAX by approxi-
mately 200 seconds in 2008 and 150 seconds in 2015. Situation is similar for this
frequency band for all ”developed”-"developing” index pairs on this frequency
band. On the other frequency bands, we observe lower stability, where for
PX we saw stable significant phase differences only to band 40-80 minutes and
for PX-FTSE we saw no significant difference on that band in 2013. However
throughout the years we observe lowering stability of the differences. While
on average they remain non-zero, the relative phases are more volatile and its
practical usability decreases.

Lowering stability has unfortunate suggestions for exploitabilty of the results
of this thesis, especially if one would want to use it to improve his trading
strategy. Fven though phase-lag does not tell any story about how largely
the information will be transmitted into the lagged signal, it should provide

indication on average direction that is to come. However with lower stability it
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might become much harder to create improvement of the strategy that would
generate positive expected value. Although this possibility calls for further
exploration, trading implication are above the scope of this work.

On the other, hand the results provide very interesting insight on the mutual
relationship among the indices. We observe lower synchronicity (in sense of
stability of both synchronization and lag) and decreasing lag of developing fi-
nancial markets, which suggest lowering gap between the developing and devel-
oped financial markets and reduction in common trends in price-developments
in intra-day markets.

Possible extensions of this thesis could be the inspection of the average high-
frequency phase-relationship for each day separately to deal with the problem
of breaks in the data (we try to deal with the problem by omitting first and last
5-minute periods of the trading day, however it brings disturbance to the cross-
coefficients between the last-of-day and first-of-day returns). Downside of this
approach would be very limited investigable frequency bands due to only several
observations per day and therefore large edge effects on lower frequencies.
Another suggested extension is the link of phase differences to the trading vol-
umes, where larger liquidity would suggest obvious hypotheses of lower phase-
difference between the indexes, unfortunately both are above the scope of the

thesis.
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Figure A.1: Images of CWT analysis on FTSE 100 and DAX
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A. MODWT figures VII

(a) Wavelet cross-power
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Figure A.3: Images of CWT analysis on PX and DAX
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Figure A.4: Evolution of phase difference of PX and DAX
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Figure

A.4: Evolution of phase difference of PX and DAX
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Figure A.4: Evolution of phase difference of PX and DAX
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Figure A.4: Evolution of phase
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A. MODWT figures Xl

(a) Wavelet cross-power
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Figure A.5: Images of CWT analysis on PX and FTSE 100




Figure A.6: Iivolution of phase ¢
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Figure A.6: Iivolution of phase ¢
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Figure A.6: Iivolution of phase ¢
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A. MODWT figures XVII

(a) Wavelet cross-power (a) Wavelet cross-power
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A. MODWT figures XVIII

(a) Wavelet cross-power (a) Wavelet cross-power (a) Wavelet cross-power (a) Wavelet cross-power
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Figure A.9: Evolution of phase difference of BUX and DAX
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Figure A.10: Evolution of phase difference of BUX and FTSE500
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Figure A.10: Evolution of phase d
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Figure A.10: Evolution of phase difference of BUX and FTSE500
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Figure A.10: Evolution of phase d
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Figure A.11: Images of CWT analysis on WIG and DAX
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Figure A.13: Evolution of phase difference of WIG and DAX
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Figure A.13:

Evolution of phase difference of WIG and DAX
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Figure A.14: Evolution of phase ¢
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Figure A.14: Evolution of phase difference of WIG and FTSE500
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