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Abstract

This Thesis is dedicated to the variance decompositions from the VAR model un-

der the Diebold, Yilmaz (2012) methodology combined with the Baruník, Křehlík

(2017) method of frequencies that was used to create traditional and directional

spillover tables to be compared under different frequencies. Diverse markets vari-

ables were used for the analysis during the period 1/6/1999 to 29/6/2018. The

S&P 500 Index represented the financial markets, EUR/USD and YEN/USD rep-

resented the Forex markets, and eight types of commodities: Crude Oil, Natural

Gas, Gasoline, and Propane represented energy commodities and Corn, Coffee,

Wheat, and Soybeans represented food commodities. This analysis contribute to

understanding of the dynamic frequency connectedness in case of a differentiated

system of markets. The main finding was the strongest short-frequency reaction

to shocks in case of all variables, which is opposite behavior than usually observed

in banking sector frequency dynamics analyses.
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systemic risk, spillovers, frequency analysis
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Abstrakt

Tato diplomová práce je věnována přenosu volatility pomocí dekompozice od-

chylek z VAR modelu metodou Diebold, Yilmaz (2012) v kombinaci s metodou

Baruník, Křehlík (2017) v různých frekvencích v období od 1. 6. 1999 do 29. 6.

2018. Index S&P 500 reprezentuje finanční trhy, EUR/USD a YEN/USD trhy s

měnovými kurzy. Ropa, zemní plyn, benzín a propan představovují energetické

komodity. Kukuřice, káva, pšenici a sójové boby zastupují potravinářské ko-

modity. Tato empirická studie přispívá k pochopení dynamické spojitosti rozdíl-

ných frekvencí v případě diferencovaného systému trhů. Hlavním zjištěním je

skutečnost nejsilnější krátkodobé reakce na šoky, která byla pozorována v pří-

padě všech proměnných. To je v příkrém rozporu s výsledky klasických analýz

frekvenční dynamiky v bankovním sektoru, které byly doposud pozorovány.

Klasifikace: F12, F21, F23, H25, H71, H87

Klíčová slova: finanční trhy, komoditní trhy, provázanost, nejistota, frekvenční

analýza
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Author Bc. Juliána Šoleová
Supervisor doc. PhDr. Jozef Baruník Ph.D.
Proposed topic Frequency Connectedness of Financial, Commodity, and

Forex Markets

Motivation The connectedness of financial markets opens an area for research and

offers space to move from current standard methods and frameworks of connectedness

that use classical tools which overlook some properties and provide aggregate infor-

mation only such as generalized forecast error variance decompositions (GFEVD) used

by Diebold and Yilmaz (2012) to more advanced models because shocks propagate on

different horizons and our intention is to see the differences and a topic of dynamics of

responses to shocks arise. Ortu et al. (2013) argue that formation of preferences brings

different horizons and consumption has to response to shocks.

Hypotheses

Hypothesis #1: FX markets, commodities and financial markets influence each

other on both short and long runs with various strengths.

Hypothesis #2: Types of shocks resulting in the short-, medium-, and long-term

responses differ.

Hypothesis #3: The hypothesis of Baruník, Křehlík (2018) that shocks with

long-term responses transmit across markets with larger strengths, pointing to

high long-run systemic risk works for global most liquid financial, commodity,

and forex markets.

Methodology We will analyze the frequency connectedness of global data from

publicly available databases on forex markets, the commodity market and the financial
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Chapter 1

Introduction

Global economic growth has already been renewed since the 2008 crisis. Over

the last decade the connectedness of markets has risen in importance. The eco-

nomic world is changing quickly and with profound results. Why is it important

to understand systemic risk through market connectedness? It is important be-

cause it may prevent negative economic events such as slow downs and crashes.

Financial regulators, bankers, economists, politicians as well as academics are

interested in systemic risk. Connectedness is central to risk measurement and

management. This covers risks regarding return, default and contractual/activity

connectedness. Systemic risk is directly connected to financial markets and var-

ious academic works view this topic differently. Correlation-based measures

use pairwise association and average correlations, (Engle (2009)) CoVaR; Co-

VaR (Adrian, Brunnermeier (2008)) or variance decompositions Diebold, Yilmaz

(2012), Diebold, Yılmaz (2014). Systemic risk influences the stability of financial

markets with high importance on the source of the instability and the frequency

responses to the shocks. Baruník, Křehlík (2017) specify those responses as as-

sessing connectedness at different horizons to capture the heterogenous frequency

of responses based on divergent expectations.

The purpose of this Thesis is to provide a complex empirical analysis of fi-

nancial markets, forex markets and commodities in the frequency domain to

test whether their dynamic connectedness corresponds to the theory of Baruník,

Křehlík (2017). Various empirical methods were developed to describe the volatil-

ity of time series in a single complex model. Variance decompositions were the

12



primary methods used to analyze sources of volatility. In this paper we are going

to base the analysis of connectedness on variance decompositions specified by

Diebold, Yilmaz (2009) and Diebold, Yilmaz (2012). Diebold, Yilmaz (2009) in-

troduced a methodology from a variance decomposition of vector autoregressive

model (VAR) to capture the connectedness of one variable explained by other

variables. The method is order dependent and does not differentiate any time

horizons. Diebold, Yilmaz (2012) introduced a methodology from a variance de-

composition of vector autoregressive model with no order dependence but still in a

one frequency horizon. Those studies introduced the possibility of measuring the

connectedness between financial markets, forexes and commodities. Nevertheless,

those studies also measured the impact of shocks to the system of variables with

no regard to their length. Is it important to understand not only the level of

impact but also the duration of impact of the shocks on the system?

Yes. For systemic risk management purposes it is important to understand

the dynamics of the whole system in as much depth as possible and how long it

takes for each variable to recover (if ever) and return to normal. This may help

to understand and predict market evolution. Baruník, Křehlík (2017) refined

variance decompositions and came up with “the frequency dynamics of connect-

edness” created by different strengths and lengths of shocks to financial markets.

Does connectedness really differ in different frequencies? Yes. Baruník, Křehlík

(2017) provided an empirical analysis of numerous important U.S. banks that

showed significantly different results over different frequencies. The greater the

frequency, the stronger the connectedness. Would this work for a different and

wider system of variables? That is the research question of our analysis.

In this Thesis we use the Diebold, Yilmaz (2012) methodology combined with

the Baruník, Křehlík (2017) method of frequencies. We used realized volatility

for the VAR model and variance decompositions. We created traditional and

directional spillover tables overall to be compared in different frequencies. We

also analyzed total and individual frequency dynamics of all variables. Our chosen

frequencies were one week, one month, and one year. 250 windows were used for

our rolling sample estimation.

We decided to provide an analysis of the S&P 500 Index representing financial

13



markets, EUR/USD and YEN/USD representing forex markets, and eight types

of commodities: Crude Oil, Natural Gas, Gasoline, and Propane representing

energy commodities and Corn, Coffee, Wheat, and Soybeans representing food

commodities. We created a widely differentiated system where we expected lower

connectedness compared to purely financial or banking empirical analyses. We

believe this analysis will contribute to the understanding of whether dynamic

frequency connectedness differs in the case of a widely differentiated system.

Baruník, Křehlík (2017) considered volatility spillovers as a proxy for uncer-

tainty transmission. We believe that understanding transmission is crucial for risk

management. Our data sample covers the period from 1/6/1999 to 29/6/2018. To

the best of our knowledge such a diverse markets data analysis in the frequency

dynamics domain has not yet been undertaken. We believe that our results might

be of interest to economists, investors and regulators of financial and commodity

markets.

Our Thesis is structured as follows: Chapter 1 covers introduction, Chapter

2 provides a literature review, Chapter 3 describes the methodology of measur-

ing connectedness primarily based on Diebold, Yilmaz (2009), Diebold, Yilmaz

(2012), and Baruník, Křehlík (2017). Chapter 4 covers the institutional back-

ground of each of our variables with factors driving their prices. Chapter 5

contains data analysis. Chapter 6 provides empirical results and finally Chapter

7 provides a summary of our findings, discusses results, and suggests possible

extensions of our analysis.
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Chapter 2

Literature Review

Increasing market connectedness raises an interest of researchers and analyz-

ing methods evolve. Academics try to develop more suitable general frameworks

to minimize number of overlooked properties that are sources of systemic risk.

This chapter provides a review of the main literature regarding measurement of

connectedness.

Linear dependence was firstly measured on 3 time frequencies through a

frequency decomposition of a likelihood statistics ratio. (Geweke (1982)) This

method soon moved to 2 multiple time frequencies conditional on the 3rd where

the distribution measures were approximated by bootstrap and multivariate ex-

tensions were created. (Geweke (1984)) Later the method developed into a normal

linear regression model approached as a problem in Bayesian inference where the

disturbances were calculated using the Monte Carlo simulation. (Geweke (1986))

For all those methods related measures in restrictive environment were used. We

decided to use 3 time frequencies of one week, one month, and one year.

A conditional covariance matrix of asset returns using the FACTOR-ARCH

model to analyze dynamics between asset risk premia and volatility in a single

system was examined later. It was proved by an empirical analysis dedicated to

pricing of Treasury bills with an outcome of stable positive results over time. (En-

gle et al. (1990)) Another approach was built on the structural VAR and spectral

decompositions to interpret the impact of changes of one variable on other vari-

ables. The empirical section behind analyzed relationship among the time series.

The frequency dynamics of the connectedness was specified through variance de-
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compositions based on the frequency responses to shocks. (Stiassny (1996)) A

different method estimated the time varying correlations using dynamic condi-

tional correlation (DCC) models that used univariate two step methods based on

a likelihood function. Its empirical section tested propriety of the DCC model

and the conclusion was a good performance in different situations and feasible

results. (Engle (2002)) Correlations of risk management, portfolios and hedging

depending on forecast of an asset structure, volatility and correlations within the

system and introduction of new methods for estimating dynamic correlations and

forecasting correlations and their measurement were examined a few years after.

(Engle (2009)) Through the model dynamics of the cross section disturbances

of economic time-varying growth was provided an evidence that transitions from

low to high income levels were primarily small and sparsely-populated. (Quah

et al. (1992)) We analyzed the volatility dynamics through variance decomposi-

tions from the VAR model and our empirical analysis was applied to a wider field

of markets.

A different approach estimated stochastic volatility models using a price range

to prove that the range was of high efficiency volatility but also that it was

Gaussian and robust to microstructure noise. The dynamics of daily exchange

rate volatility were used to conclude that one single model was not enough to

describe the high- and the low- frequency dynamics of volatility. (Alizadeh et al.

(2002)) The first sights of need for distinction between the short- and the long-

term of the system brought measuring connectedness between the moving average

and the error correction representation of consumption, income, wages and prices

through the vector autoregression model was proposed. (Engle, Granger (1987))

The VAR and GARCH models were used to explain causes of volatility spillovers

in exchange rates. (Engle et al. (1988)) These empirical analyses also remained in

a financial and consumption sector but supported the idea to separate frequencies.

The long-term and the short-term effect disturbances on the output variance

joint behavior and the moving average representation of the output could be

used to interpret fluctuations. The analysis behind focused in an interpretation

of fluctuations in a GNP and unemployment. The dynamics present resulted in

the short-term disturbances effect that increased steadily over time. (Blanchard,
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Quah (1989)) The low frequency movements of the dynamics where the long-term

changes proved that the stochastic trend of the decompositions and an error to

one series could be a shock to the long-term trend were modeled many years

later. (Balke, Wohar (2002)) This was an important idea that the long-term

lasting shock had the greatest power at low frequencies and could lead to the

long-term connectedness if it influenced the other variables.

An academic work leading to the idea of the variance decompositions started

by the consumer preference theory already. A vector autoregression model with

random coefficients could be used. As a prove was described the unemployment-

inflation dynamics after the World War II in the U.S. (Cogley, Sargent (2001))

The model applied the decompositions to a number of consumption-based dis-

counted factor models. The conclusion was an instability of the inflation dy-

namics in both the short- and the long-run via spectral estimates implied by

their time-varying VAR. The consumption-based asset pricing model was used to

prove existence of the financial market dynamics as the long-run growth raised

equity prices. (Bansal, Yaron (2004)) The investors preference dynamics could be

quantified through connectedness of shocks to set the asset pricing through the

decompositions. (Dew-Becker, Giglio (2016)) These examples proved suitability

of the variance decompositions from the VAR model in the connectedness mea-

sure methodology and an importance of the dynamics measure where the results

differed in various frequencies.

Impulse-response shocks leading to fluctuations dependent on the connect-

edness structure was another theory proved by an empirical evidence that ana-

lyzed the higher-order interconnections and concluded that the aggregate volatil-

ity might be obtained from shocks if the input–output matrix was unrelated to

the nature of the aggregate fluctuations. (Acemoglu et al. (2010)) A distinction

of the short-term from the long-term movements in connectedness and an intro-

duction of the Vector Error Correction Model (VECM), which was the vector

autoregression (VAR) extended by cointegration restrictions for analyzing the

dynamic effects of permanent and transitory shocks using the Cholesky decom-

positions was another method. The impulse-response functions diversified shocks

based on a degree of their persistence. The conclusion of an empirical evidence
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behind proved that if some variables share common stochastic trends then the

system of variables was connected by restrictions. If we separate the short- and

the long-term shocks, the standard VAR identification tools could be used to

make them mutually uncorrelated. (Gonzalo, Ng (2001))

Regarding systemic risk the system-wide connectedness could be examined

to identify a gap between an approach of different sources of isolated systemic

risk and global measures not connected to any theory. A specific example was

testing the gap in order to be fully understood and to provide a guideline for reg-

ulating banks and the market with regard to the shocks on the financial market.

(Benoit et al. (2017)) The long-run risk valuation model where the consump-

tion growth contained predictable cyclical components was used and provided

the main reason to believe that agents operate on different investment horizons

based on their preferences. These horizons were represented by frequencies and

consumption growth through cyclical components. (Ortu et al. (2013)) The con-

sumption growth could be separated into a variety of frequencies and provided

an evidence of the cross-sectional pricing ability of a business cycle component

of the consumption growth. (Bandi, Tamoni (2017)) A simple model of systemic

risk to demonstrate that each financial institution’s contribution to systemic risk

could be measured through a different method. The empirical analysis proved

the possibility to predict emerging risks such as outcome of stress tests, decline

in equity valuation and widening credit default swap spreads. (Acharya et al.

(2017)) A measurement of systemic risk and the value at risk of the financial

system conditional on institutions being under distress through CoVaR was also

proposed. Systemic risk was defined as “the difference between CoVaR of institu-

tions under distress” and CoVaR of institutions in “normal situation”. (Adrian,

Brunnermeier (2008)) A practical application of the methodology predicted more

than half of the realized covariance during the financial crisis of 2008. (Adrian,

Brunnermeier (2016)) These papers provided an evidence of importance and need

to create suitable methods for systemic risk measurement purposes.

Highly important methodology was a spillovers measure based on the forecast

error variance decompositions from the vector autoregressions (VAR) depending

on Cholesky-factor identification. The resulting variance was variable ordering
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dependent across identical assets data in different countries and distilled wealth

of information into a single spillover measure. The empirical study analyzed

19 global equity markets over the years 1990-2009 and their conclusion was an

evidence of divergent behavior in the dynamics of return spillovers. The term

“spillover index” was firstly used as a measure of financial market independence

in different time horizons. (Diebold, Yilmaz (2009)) Our complete traditional,

directional, total and individual dynamics analysis under this methodology is

provided in the Appendix section.

The main body of our paper was built up on a spillovers measure, which moved

to usage of Cholesky-factor identification of the VAR with resulting variance

decompositions invariant to ordering. The original empirical study behind the

methodology analyzed daily volatility spillovers across the U.S. stocks, bonds,

foreign exchange and commodity markets during 1999-2010 with a conclusion of

limited importance of volatility spillovers from the stock market to other markets

especially during the financial crisis of 2008. (Diebold, Yilmaz (2012)) We applied

this method to a diverse system of financial, commodity and forex markets. We

provided complete traditional, directional, total and individual analysis dynamics

within this methodology.

Creation of a scale of the short-, medium-, and long-term and a general frame-

work that allowed measurement of the connectedness at different frequencies while

their exact length could be chosen were proposed later. Where the strength and

length of shocks that impacted the other variables of the system could be mea-

sured and compared. The empirical evidence was dedicated to number of U.S.

banks where different trends caused various shocks in different frequencies and

created systemic risk. (Baruník, Křehlík (2017)) This was the methodology we

were mainly building our hypothesis on as well as our empirical analysis was built

on this methodology with usage of mentioned orders invariant spillovers measures.

(Diebold, Yilmaz (2012))

The focus of Baruník, Křehlík (2017) on the frequency-specific measurement

of systemic risk based on different lengths could be compared to Bandi, Tamoni

(2017) who separated consumption growth into cyclical components through di-

versification of betas in different frequencies. However; Baruník, Křehlík (2017)
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used the spectral representations of the variance decompositions to document the

frequency dynamics of the connectedness. Commodity prices driven by consump-

tion naturally generated shocks with heterogeneous frequency responses.
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Chapter 3

Methodology

In this section we describe methodological background used for our analysis.

Firstly, we counted the realized volatility and established the Vector Autoregres-

sive model (VAR). The methodology of Diebold, Yilmaz (2009) and Diebold,

Yilmaz (2012) were followed to define the forecast error variance decomposition

(FEVD). Methodology of Baruník, Křehlík (2017) brought Fourier transforma-

tion of the impulse-response functions to analyze the FEVD and we showed the

decomposed aggregated connectedness to the short-, medium-, and the long-term

frequencies.

3.1 Realized Volatility

The realized volatility was counted as:

σ2
n = 1/(m − 1)

m∑
i=1

(un−i − ū)2,

where ū was the average daily log return that was assumed to be near enough

to 0 to be round of and dropped out. Moreover 1/(m−1) was the sample variance

estimator where could be used just 1/m as a population variance. The simplified

version was:

σ2
n = 1/m

m∑
i=1

u2
n−i.

So the daily variance estimate was counted as a square of the logreturns2.
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From the daily variances were counted the daily realized volatility the average

daily standard deviations by square roots.

3.2 Measuring Connectedness with the Variance

Decompositions

The variance decompositions were used for determining how much of the fu-

ture uncertainty of variable i was due to shocks in variable j so it documented

how the variance behave under certain period of time. That provided a useful

information for future uncertainty. However; measuring responses to shocks as

standard correlation-based measure was not suitable for us as we wanted to doc-

ument the impact of our variables at diverse frequencies with various strengths.

The connectedness measure of the VAR using the forecast error variance de-

compositions (GFEVD) was undertaken. The VAR model was used as an under-

lying model for spillovers theory regarding Diebold, Yilmaz (2012) methodology.

The frequency-dependent connectedness was measured from the variance decom-

positions and frequencies measured by the different periods of time regarding the

Baruník, Křehlík (2017) methodology.

3.2.1 Orthogonal Structural System Dependent on Order-

ing

The volatility spillovers from the variance decompositions allowed to aggregate

the total spillovers effect across markets in one order dependent measure. (Engle

et al. (1990), Diebold, Yilmaz (2009))

The N-variable dimensional covariance-stationary data-generating process de-

scribed by the VAR model of order p with orthogonal shocks (the moving average

representation of the VAR) exist and was defined as:

xt = Θ(L)εt,

which was a moving average representation of time series specifically first-

order two-variable VAR (2x2 parameter matrix of koeficients), xt represented
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the realized volatitity and described the vector autoregressive stationary process,

and εt represented white noise (sometimes referred as unpredictable innovation

through which correlation of the model could be tested). (Diebold, Yilmaz (2009)

(originally proposed by Sims (1992)))

Θ(L) = Φ0 + Φ1(L) + Φ1(L)2 + ... =⇒ Θ(L) = (I − ΦL)−1,

could be rewritten as

xt = A(L)ut,

where A(L) = Θ(L)Q−1
t ; ut = Qtεt; E(utu

′
t) = I, which was a unique lower-

triangular Cholesky-factor identification of the covariance matrix where Θ0 did

not need to be diagonal. (Sims (1992))

For this 2x2 matrix corresponding a 1-step-ahead error vector was described

as

et+1,t = xt+1 − xt+1,t = A0ut+1 =
⎡⎣a0,11 a0,12

a0,21 a0,22

⎤⎦ ⎡⎣u1,t+1

u2,t+1

⎤⎦ ,

which had the covariance matrix

E
(

et+1,te
′

t+1,t = A0A
′

0

)
.

An order dependent spillover index in simple first-order two-variable case was

than

C =
a2

0,12 + a2
0,21

trace(A0A
′
0)

∗ 100.

The simple VAR framework and this Cholesky-factor was orthogonal and

dependent on ordering as shocks in the model might be orthogonal to other

variables with high importance of identification scheme where the dependence on

ordering complicated the measure. Nevertheless; all aspects of the connectedness

were contained in this representation while the contemporary aspects in Θ0 and

the dynamic aspects in Θ1, Θ2. A problem arised with usage of high number of

coefficients in Θ0, Θ1, Θ2, ... so a transformation was needed for better and more

compact results, which could be done through the variance decompositions.
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The orthogonal structural system identified the uncorrelated structural shocks

from correlated assumptions. The main assumptions of the Cholesky-factor iden-

tification was the sensitivity to ordering and the generalized variance decompo-

sition (GVD). (Diebold, Yılmaz (2014)) Under the GVD over-identification used

to be faced so that the identifying restrictions could not be tested. (Koop et al.

(1996), Pesaran et al. (1998))

Find the results of our empirical study based on the Diebold, Yilmaz (2009)

methodology dependent on ordering in the Appendix section.

3.2.2 Directional Spillovers Independent on Ordering

The total connectedness was too robust to Cholesky ordering, which means

that the range of the total connectedness estimates across ordering was small.

(Diebold, Yılmaz (2014)) The new directional spillovers in a generalized VAR

framework might eliminate possible dependence of the results dependent on or-

dering and built on the generalized VAR and the generalized identification. (Koop

et al. (1996), Pesaran et al. (1998)) Moreover; a permanent and transitory de-

composition theory of both unorthogonzalied and orthogonzalied shocks could be

used. (Diebold, Yilmaz (2012), Gonzalo, Ng (2001))

The principle was that instead of using orthogonalized - correlated - shocks

historically observed distribution of the errors was used, which caused that the

contribution to the variance of the forecast error was not necessarily equal to one.

(Diebold, Yilmaz (2012))

The N-variable dimensional covariance-stationary data-generating process de-

scribed by the VAR model of order p with no orthogonal shocks was

var(p), xt =
p∑

i=1
Φixt−1εt =⇒ xt = Φ1xt−1 + Φ2xt−2 + ... + Φpxt−p + εt,

where xt = (x1t, ..., xNt)′; t = 1, ..., T ; Φ1, ..., ΦN was a coefficient parameters

matrix and

ε ∼ (0,
∑

)
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was a vector of identically distributed disturbances. The moving average

representation was

xt =
∞∑

i=0
Aiεt−i,

where the NxN coefficient matrices Ai obeyed recursion Ai = Φ1Ai−1 +

Phi2Ai−2 + ... + PhipAi−p with A0 an NxN identity matrix and Ai = 0.

The moving average coefficients (the variance decompositions) were important

for dynamics of the system analyzing the forecast error variances of each variable.

In this model each variable was regressed on its own p lags and matrices of each

coefficients contained complete information about the connection between the

variables.

The lag-polynomial matrix was represented as

Φ(L) = [IN − Φ1L − ... − ΦpLp] =⇒ Φ(L)xt = εt,

where IN was an identity matrix and |Φ(z)| lied outside the unit circle. The

vector moving average representation:

xt = Ψ(L)εt,

where Ψ(L) = [Ψ(L)]−1 was a matrix of infinite lag polynomials and Ψh was

the moving average coefficients with h=1,. . . ,H horizons. (Pesaran et al. (1998))

The variance decompositions were the transformation of the (NxN) matrix of

moving average coefficients Ψh at lag h through which could be measured connect-

edness as contribution of shocks to the system. As the errors were uncorrelated

the total covariance matrix of the forecast error conditional at the information in

t − 1 was

ΩH =
H∑

h=0
Ψh

∑
Ψ′h,

where ∑ were the covariance matrix errors than the covariance matrix of the

conditional forecast error

γk
t (H) =

H∑
h=0

Ψh[εt+H−h − E(εt+H−h/εkt+H−h)]
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with normal distribution

γk
t (H) =

H∑
h=0

Ψh[εt+H−h − σ−1
ii (εt+H−h/εkt+H−h)]

then the covariance matrix was

Ωk
H =

H∑
h=0

Ψh

∑
Ψ′h − σ−1

ii

H∑
h=0

Ψh(
∑

).k(
∑

)′.kΨ′h.

The main difference from the order dependant methodology was the identi-

fication scheme of shocks while calculating the variance decomposition could be

described as

(θH)j,k = σ−1
kk

∑H
h=0((ΨhΣ)j,k)2∑H

h=0(ΨhΣΨ′
h)j,j

,

where (θH)j,k represented the contribution of the kth variable to the variance

of the forecast error of j over the horizon H, and Ψh was the (N × N) matrix of

moving average coefficients at lag h and σkk = (Σ)k,k.

CH =

∑
j ̸=k

(
θ̃H

)
j,k∑

θ̃H

∗ 100 =
⎛⎝1 −

Tr
{

θ̃H

}
∑

θ̃H

⎞⎠ ∗ 100,

where C stood for the connectedness measure and Tr
{

θ̃H

}
was the trace

operator of the θH matrix.

Directional Spillovers

The generalized VAR measure allowed to learn about the direction of the

volatility spillovers where dH
ij was the ij − th H-step variance decomposition

component and each variance decomposition followed dH
ij , i, j = 1, ...N , j ̸= i.

(Diebold, Yilmaz (2012)) The variance decomposition matrix could be denoted

as DH = dH
ij . (Diebold, Yılmaz (2014)) The off-diagonal entries of DH were parts

of the N forecast-error variance decompositions of relevance and measured the

pairwise directional connectedness from j to i as

CH
i←−j = dH

ij

where
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CH
i←−j ̸= CH

j←−i

in case of not just an individual element DH but off-diagonal row or column

sums.

The total directional connectedness from i variable to j variable was specified

as the sum of off-diagonal elements equal to the H-step forecast-error variance

where

CH
i←−• =

N∑
j=1,j ̸=i

dH
ji ; CH

j←−• =
N∑

i=1,i ̸=j

dH
ji

was the grand total of the off-diagonal entries in DH , which measured the

total connectedness as

CH = 1
N

N∑
i,j=1,i ̸=j

dH
ij ,

which could be used to obtain the total directional connectedness measures.

Specifically, measuring the directional volatility spillovers obtained to variable

i FROM all other markets j was represented as

Cg
i←−•(H) =

∑N
j=1,i ̸=j θ̃g

ij(H)∑N
i,j=1 θ̃g

ij(H)
∗ 100.

Measuring the directional volatility spillovers obtained from variable i TO all

other markets j was represented as

Cg
•−→i(H) =

∑N
i,j=1,i ̸=j θ̃g

ji(H)∑N
i,j=1 θ̃g

ji(H)
∗ 100.

Than the NET volatility was

Cg
i (H) = Cg

•−→i − Cg
i←−•(H).

3.3 Frequency Dynamics

The VAR approximating model was the most commonly used method for

the estimation of connectedness in frequency domain. The VAR provided some

properties of the relationship between the variables of the frequency domain.
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The estimated VAR was often used to compute impulse responses and the fore-

cast error variance decompositions. Linear feedback measures of analysis of the

variables relationships properties and their decomposition by frequency could be

undertaken. (Geweke (1982), Geweke (1984), Geweke (1986) )

Frequencies can be distinguished as the short-, medium-, and long-term. The

frequencies responses to shocks show the spectral representation of the variance

decompositions. (Baruník, Křehlík (2017))

An estimation of spectral quantities was performed through a Fourier trans-

formation. The estimates of the quantities where the cross-spectral density on

the interval d = (a, b) : a, b ∈ (−π, π), a ≻ b defined as

∫
d

Ψ(e−iw)
∑

Ψ′(e+iw)dw,

then estimated as

∑
w

Ψ̂(w)
∑̂

Ψ̂′(w).

The frequency response function Ψ(e−iw) = ∑
h e−iwhΨh, which could be ob-

tained as the Fourier transformation of the coefficients Ψh, with i =
√

−1 with

the spectral density of xt at frequency w where the Fourier transformation of

MA(∞) filtered series was

Cx(w) =
∞∑

h=−∞
E(xtx

′

t−h)e−iwh = Ψ(e−iw)ΣΨ′(e+iw).

The power spectrum Cx(w) described the distribution of xt variance over the

frequency components w. The generalized causation spectrum over the frequen-

cies w ∈ (−π, π) was defined as

(f(w))j,k ≡ σ−1
kk | Ψ(e−iwΣ)j,k |2

(Ψ(e−iwh)ΣΨ′(e+iw))j,j

,

where Ψ(e−iw) = ∑
h e−iwhΨh was the Fourier transformation of the impulse

response Ψh and (f(w))j,k represented the portion of the spectrum of the jth

variable at a given frequency w due to shocks in the kth variable.

The impulse response function depended on the parameters of the model in

a complex way and was of a little use in constructing the confidence bands even
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though the sampling variability accessed by bootstrapping. (Gonzalo, Ng (2001))

The natural decomposition of the variance to frequencies weighted (f(w))j,k

by the frequency share of the variance of the jth variable, with the weighting

function

Γj(w) = (Ψ(e−iw)ΣΨ′(e+iw))j,j
1

2π
(Ψ(e−iλ)ΣΨ′(e+iλ))j,jdλ

.

The decomposition of the impulse response function at a given frequency band

was then estimated as

Ψ̂(d) =
∑
w

Ψ̂(w)

and

CF
d = CW

d = C∞

that could be estimated as

(θ̂d)j,k =
∑
w

Γ̂j(w)(f̂)(w)j,k,

where the estimated generalized causation spectrum was represented as

(f̂(w))j,k ≡ σ̂−1
kk ((Ψ̂(w)∑̂)j,k)2

(Ψ̂(w)∑̂Ψ̂′(w))jj

,

and an estimate

Γ̂j(w) = (Ψ̂(w)∑̂Ψ̂′(w))jj

(Ω)j,j

of the weighting function

Ω =
∑
w

Ψ̂(w)
∑̂

Ψ̂′(w).

Then Ĉw and Ĉf at the given frequency band of interest could be readily

derived by plugging
{
θ̃d

}
j,k

estimated into

{
θ̃d

}
j,k

= (θd)j,k/
∑

k

(θ∞)j,k

to get
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∑
w

Γ̂j(w)(f̂)(w)j,k = (θd)j,k/
∑

k

(θ∞)j,k.

The spectral representation of the variance decomposition

(θ∞)j,k = 1
2π

∫ π

−π
Γj(w)(f(w))j,kdw,

where (ΘH)j,k at H → ∞ in the time domain was an information aggregated

through frequencies ignoring heterogeneous frequency responses to shocks and

the effect of the whole range of frequencies influence. θ∞)j,k.

To diversify the short-, medium-, or the long-term connectedness it was needed

to work with the amount of the forecast error variance created on a convex set of

frequencies w ∈ (a, b). The generalized variance decompositions on the specific

frequency band d was defined as

(θd)j,k = 1
2π

∫
Γj(w)(f(w))j,kdw.

The scaled generalized variance decomposition on the frequency band was

defined as

{
θ̃d

}
j,k

= (θd)j,k/
∑

k

(θ∞)j,k.

Then the within connectedness on the frequency band d of the connectedness

effect that occured within the frequency band was weighted by the power of the

series on the given frequency band exclusively was then defined as

CW
d = 100 ×

⎛⎝1 −
Tr

{
θ̃d

}
∑

θ̃d

⎞⎠,

while the frequency connectedness on the frequency band d that decomposed

the overall connectedness into distinct parts that gave the original connectedness

measure was then defined as

CF
d = 100 ×

⎛⎝ ∑
θ̃d∑
θ̃∞

−
Tr

{
θ̃d

}
∑

θ̃∞

⎞⎠ = CW
d ×

∑
θ̃d∑
θ̃∞

,

where Tr. was the trace operator, and the ∑
θ̃d marked the sum of all com-

ponents of the θ̃d matrix.
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Chapter 4

Institutional Background

Commodity markets operate differently on the basis of multiple dependencies.

Functionality depends not only on the nature of the commodity and the needs

of traders but also on its history. (Nesnidal, Podhajsky (2006)) Commodities in

today’s world do not lose their importance because the natural resources create

the largest non-financial market in the world. More than thirty commodity ex-

changes (such as New York, London, Tokyo, or Paris) generate each year more

than 2.2 trillion Dollars, which is several times more than the stock exchanges

do. (Rogers (2008))

The purpose of this chapter is to provide background information of all vari-

ables used in the empirical study. Variables chosen were financial market repre-

senting S&P 500 Index, two forex markets EURO and YEN and eight types of

commodities, namely Crude Oil, Natural Gas, Gasoline, Propane, Corn, Coffee,

Wheat and Soybeans, which can be considered as energy and food commodities.

Data used for this analysis are daily closing financial statement historical data

since 1.6.1999 until 29.6.2018. We focus on the method how the prices are in-

fluenced and connected. Moreover; how they react to the shock in the short-,

medium-, and the long-term and how their behavior differ.
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4.1 Standard & Poor’s 500 Index

Background Information

The S&P 500 Index is a member of the S&P Global 1200 family of indices. The

S&P 500 Index contains of approximately 500 titles of major US-based companies.

It is about 75% of the total US stock market. Through this index it is possible

to reliably evaluate the performance of the US stock market. The index can be

understood as a value-weighted index, which calculates the representativeness of

the branches and it reflects the current economic situation in the USA. It is used

by all economists, financial analysts and investors. It has been in use since 1943.

(Rejnus (2014))

The smaller companies included in the S&P 500 Index have more favorable

position than larger entities as they have higher potential to increase their mar-

gins. Moreover; with extending globalization each company exposes itself to a

number of macroeconomic factors that affect the economy globally.

Factors Driving Price

According to Agrawal (2016) the most significant determinants affecting the

S&P 500 range include, above all, cuts in goods costs, conservative rental growth,

S&P 500 structure, permanent interest rate cuts. It turned out that in 2014, as

well as in 2004, the reduced cost of goods fallen in total revenues by about 2%

during that period. That was also the reason why this variable was the most

involved in overall corporate profitability. The index variable is historically the

largest source of income erosion, which is a considerable disadvantage. That also

includes sales and administration costs, income taxes, depreciation, research and

interest costs. (Agrawal (2016))

Other sources have confirmed that the S&P 500 Index is also being affected

by such economic variables as GDP or the unemployment rate. The rise in GDP

from one period to the next contributes to an increase in the stock market. The

explanation is that consumers generally make more purchases, and it probably

also leads to higher earnings on the stock market (higher investments). In this

case GDP acts as a means of pointing out the purchasing power of investors. In
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the event that the economy is hit by a higher unemployment rate that influences

employees as they do not have any job, which causes worries about redundancy.

The financial security of both employed and unemployed decreases, which leads

them to smaller investments in the stock market. Investors do not have enough

free funds as they need to keep some for their necessary expenses and investments

in the stock markets does not belong to necessities. Therefore, the unemployment

rate is used as one of the key indicators for investors. The cyclicality of industry

can also be mentioned. If the economy thrives well, it is producing cyclical stocks,

however; in case of poor economic conditions and in the event of a recession, there

are more cyclical stocks than non-cyclical issues. E.g. in the event of a recession

during the economic crisis, cyclical stocks were run out three times faster than

the S&P 500 Index. (Taublee (2001))

Data

Data of trading the Standard & Poor’s 500 Index were downloaded from

CBOE. CBOE (2018a): “Cboe is the exclusive home for S&P 500 Index options

(SPX). Cboe’s suite of S&P 500 products includes the flagship SPX contract –

the most-actively traded index option in the U.S. – along with contracts featuring

different expirationS (SPXW - Weekly and End-of-Month), exercises (AM and

PM), sizes (regular and mini) and trading methods (electronic and open outcry)”.

Source: CBOE; Release: Standard & Poor’s 500 Index; Units: U.S. Dol-

lars, Not Seasonally Adjusted; Frequency: Daily closing data, Date:1/6/2018-

29/6/2018; data cleaned up for public holidays and all missing observations- used

days in total: 4717. (CBOE (2018b))

4.2 Forex EUR/USD

Background Information

The currency pair USD/EUR is one of the strongest and most traded on forex

because the US Dollar is the most traded and it is also currency, which is being the

most held. Euro is the second most popular currency in the world. This currency

pair thus covers two major economies of the world: European and American -
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therefore it represents more than a half of the total trading on forex.

Factors Driving Price

The first factor that influences this currency pair is the trading time that

affects volatility. EUR/USD activity slows slightly at midday, then rises in after-

noon. That also affects some important institutions such as the European Central

Bank and the Federal Reserve System, which has an impact on monetary policy,

regulates money supply, interest rates and influences the strength of the currency.

One can not fail to mention the political instability deviates this currency pair

in a rather significant way. This applies to the European or the US events such

as Brexit of 2016, which touched the euro. The elections in particular European

countries or the euro-zone crisis may be named among others, which was reflected

in the depreciation of the euro. More over while for example the US Treasury

Secretary Steven Munchin has said the weaker Dollar is good for the US, it has

led to an immediate fall in the US Dollar. (Bobrova (2018))

Data

Source: Board of Governors of the Federal Reserve System (US); Release:

H.10 Foreign Exchange Rates; Units: U.S. Dollars to One Euro, Not Seasonally

Adjusted; Frequency: Daily; Noon buying rates in New York City for cable trans-

fers payable in foreign currencies. Date: 1/6/2018-29/6/2018; data cleaned up

for public holidays and all missing observations- used days in total:4717. (FRED

(2018b))

4.3 Forex YEN/USD

Background Information

The YEN/USD exchange rate is the second most traded currency pair, which

in 2015 accounted for 18.3% of all forex trades closed and since 2007 the share of

closed deals has increased by a whole 5%. Consequently, there is an increasing

interest in this currency pair, despite the fact that Japan is not as prevalent in

the world trade as it used to be in the past. (Raputa (2015))
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Factors Driving Price

Although it has been mentioned above that the currency pair is still in the

interest of traders, it has tended to decline during the recent years. The best

values were reported in 1985. Local mines relate mainly to 2011, which is directly

related to the tragedy of the Fukushima nuclear power plant. Local maxims were

reached in 2007 and 2015, which is related to the Asian-Russian financial crisis,

the peak of the US mortgage bubble and unprecedented quantitative easing by

the Bank of Japan. As Raputa (2015) also mentions, the declining currency pair

trend is the natural outcome of the gap between the US and Japanese inflation.

That theory is also supported by the 30-year inflation rate, which remains higher

in the US than in the case of Japan, and that also reduces the relative US Dollar.

This causes an average annual loss of 2.5%. (Raputa (2015))

Data

Source: Board of Governors of the Federal Reserve System (US); Release:

H.10 Foreign Exchange Rates; Units: Japanese Yen to One U.S. Dollar; Not

Seasonally Adjusted; Frequency: Daily; Noon buying rates in New York City

for cable transfers payable in foreign currencies.Date:1/6/2018-29/6/2018; data

cleaned up for public holidays and all missing observations- used days in total:

4717. (FRED (2018a))

4.4 Gasoline

Background Information

Gasoline is a product made of petroleum. That is why the history of crude

oil is closely related. The rise of gasoline is related to the development of indus-

trial oil processing. Gasoline, as a byproduct of oil, was almost negligible in the

nineteenth century. Towards the end of the 19th century, following the invention

of a passenger car, gasoline was actively used as a fuel for these cars. (EIA.gov

(2018)) Petrol is a light distillation fraction of petroleum made up of hydrocar-

bons. It is distilled at lower temperatures. Industrial gasoline is produced in oil

refineries. (vitejtenazemi.cz (2013))
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Factors Driving Price

The price of gasoline is influenced by several factors such as a minimum con-

sumption tax according to the Czech National Bank. For the Member States

of the European Union, the European Commission Directive stipulates that the

minimum consumption tax on unleaded gasoline is set at 0.359 EUR per litter,

which is approximately 9 EUR per conversion. However, the real value varies

by country, which then raises price jumps. The petrol price is also affected by

gross refinery margins. The Czech National Bank adds that the refinery in Eu-

rope sets the price of gasoline according to the current prices that are valid on

the Rotterdam Commodity Exchange. However, Asian refineries with modern

technologies enter the market and rapidly increase their capacities and boosts

production. That leads to pressure on gasoline prices in general and leads up

to shutting down European refineries as margins remain at a low level. (CNB

(2012))

Alexeeva-Talebi (2011) states that the price of gasoline also increases EU

emission allowances if the price of that allowance increases, which is reflected

in higher gas prices traded on the European commodity market. Wadud et al.

(2009) points out that if the emission allowance price increases by 1%, the petrol

price will increase by 0.08%. The price of petrol is also directly influenced by

rising incomes of the population, as their increase is also reflected in higher petrol

consumption.

Data

Source: U.S. Energy Information Administration; Release: Spot Prices; Units:

Dollars per Gallon; Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-

29/6/2018; data cleaned up for public holidays and all missing observations- used

days in total: 4717. (FRED (2018d))
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4.5 Natural Gas

Background Information

Natural gas can be described as an indispensable source of energy for society.

This is a so-called very hot gas, which can be used in a number of areas - heating,

cooking etc. In terms of its properties, the mixture of gaseous hydrocarbons is

composed of methane together with other non-hydrocarbon gases. (Budin (2015))

Factors Driving Price

An important factor affecting the price of Natural Gas is the production tech-

nology of a shale gas. That may led to an increase in the supply of Natural Gas

and, at the same time, to a reduction in its price by more than 50%. This is also

related to new technologies in the wind and solar power; the emergence of more

efficient batteries and technologies to store energy. These factors will not only

reduce demand for oil but also for natural gas in all developed countries, thus

slowing demand growth for both commodities in developing countries. (Boeckh

(2012))

Data

Source: U.S. Energy Information Administration; Release: Natural Gas Spot

and Futures Prices (NYMEX); Units: Dollars per Million BTU; Not Season-

ally Adjusted; Frequency: Daily; Date:1/6/2018-29/6/2018; data cleaned up for

public holidays and all missing observations- used days in total: 4717. (FRED

(2018c))

4.6 Crude Oil

Background Information

Crude Oil is a raw material and non-renewable natural energy source. As a

raw material it has an indirect share in most of the globally produced energy and

is also used as a raw material in many industries. Crude Oil is also an important

source of transport. (Jenicek, Foltyn (2010))
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Factors Driving Price

The price of Crude Oil, like any other commodity, is the result of a mutual in-

teraction between supply and demand. The factors influencing these two parties

also have an impact on the price of oil on commodity markets. E.g. according

to Benak (2010) weather is a significant factor influencing higher supply. If hur-

ricanes are reported, mining capacities are reduced, resulting in a change of the

price of Crude Oil on the market. The author also mentions geopolitical factors

such as wars, civil unrest or terrorist attacks. It is also necessary to mention a

OPEC’s decision on oil production.

Cernoch (2012) mentions that at the beginning of the analyzed period, specif-

ically in 2000 and 2001, the collapse of the price of barrel oil has slowed economic

growth in the US; which reduced demand for Crude Oil. The price was also influ-

enced by the threat of war in the context of the US terrorist attack in September

2001. However, in the following year, the price of Crude Oil started to rise. Sev-

eral important factors and events need to be addressed here. First, it was the

strike of the oil company Petroleos de Venezuela, due to the strike the company

lost an average production of 3 million barrels per day. That had a major impact

on the US, which used to be dependent on Venezuelan oil exports. (ourenergypol-

icy.org (2014)) The oil supply also fell due to a strike on the Nigeria oil rig, which

at the time was one of the world’s largest oil producers. (latimes.com (2003))

Considering the world economy growth of 4.2% (worldbank.org (2018)) was

recorded in 2004-2007 and the demand for Crude Oil increased. Producers, how-

ever, had to maximize production in order to fulfill demand. The other determi-

nants, such as little investments in oil fields and the weak US Dollar lead to the

fall of price. (Cernoch (2012))

The year 2008 when the financial crisis began resulted in a steep decline in

the Crude Oil prices at the beginning of 2009. The price of a barrel was below 40

Dollar as the demand also declined sharply. In order to support demand growth,

OPEC reduced mining quotas, which was evaluated as successful. The price of

Crude Oil grew gradually to 115 Dollar per barrel in 2011. The US began to

extract unconventional oil from 2008, but it did not show up on the price of

crude oil. Although US demand for the year was higher, it was balanced by the
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reduced demand due to riots in areas where the key oil producers were located.

That political instability in Libya lead to limited Crude Oil exports. Libya was at

that time one of the largest oil producers in the OPEC cartel. Those mentioned

conditions lead to decrease in demand for crude oil, and its price had fallen

sharply. However, riots were also recorded in Egypt, which further exacerbated

the rise in oil prices due to concerns that Egypt could be cut off respectively the

Suez Canal closed, which is crucial for oil exports. (Bednar (2011))

According to Traxler (2012), further reductions in crude oil demand were

caused by sanctions imposed on Iraq by the US and the European Union. After

these events the oil price remained for a long time at a high price level. It even

occurred that Brent had a higher price than WTI oil, despite the fact that WTI

oil is of a higher quality. The cause probably remained at the anomaly of standard

market power level- in both supply and demand. The higher grew the WTI oil

with regard to unconventional mining from shale, the more Brent crude oil fell.

Although military riots in the Middle East caused the rise in crude oil prices

in a number of cases, it is not necessarily a rule. An example may be the year

2003, when the invasion of Iraq took place. Just before this event, the price of

oil fell by more than 10 Dollar a barrel as a result of the expectation that new oil

resources were about to be leveraged into Western countries. Similarly, the same

was the result of the terrorist attack in September 2011 (financial markets panic

triggered by a drop in oil prices of 6$ to 22$ a barrel). In the case of military

intervention in Libya, the oil price dropped by 15$ per barrel. (Colosseum (2013))

Data

Source: U.S. Energy Information Administration; Release: Spot Prices; Units:

Dollars per Barrel; Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-

29/6/2018; data cleaned up for public holidays and all missing observations- used

days in total: 4717. (FRED (2018e))
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4.7 Propane

Background Information

Propane is a colorless and highly flammable liquefied gas. It is characterized

by the lowest flammability range. It is produced by means of refining and pro-

cessing of natural gas. It is also one of the main components in liquid petroleum

gas (LPG) along with butane. Propane has a wide range of uses such as heating,

brazing, heat treatment, and acetylene is replaced with flame cutting. It is also

another possible fuel source for passenger cars. It heats industrial buildings or

houses. (Linde-gas.cz (2018))

Factors Driving Price

Propane is also a commodity that is derived from other commodities, traded

on the global market and its prices often fluctuate, depending on many factors

that cannot be always predicted reliably. In this case, the demand for Propane

is relatively important. Demand growth occurs especially when people demand

heating in their homes. In the US it can be in the event of an extreme winter.

Here, basically, two factors combine demand and climatic conditions. Given

that the weather has changed a lot in the last few years and the whole world

is experiencing various extreme weather fluctuations, it is often unpredictable

that the demand for Propane in the last few years is rising, the market reacts by

increasing the price of this commodity. (propane101.com (2018))

An example is the turn between years 2013 and 2014, when the price was

rising rapidly, due to the fact that the US was in the middle of the winter, and

there was also a higher demand for Propane. Moreover, Propane is completely

dependent on the price of oil and Natural Gas. If any fluctuations in prices,

demand or supply for these two commodities occur, it logically depends on the

price of propane. Apart from unexpectedly cold weather, the propane price is

also affected by its low inventory. (Klobuchar (2018))
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Data

Source: U.S. Energy Information Administration Release: Spot Prices; Units:

Dollars per Gallon, Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-

29/6/2018; data cleaned up for public holidays and all missing observations- used

days in total: 4717 (FRED (2018f))

4.8 Corn

Background Information

Corn is considered to be an agrarian commodity. It is a one-year crop that

can reach up to 3 meters. Maize is a plant, which requires sufficient amount of

moisture, and is also relatively sensitive to temperature fluctuations. The risks

of Corn growing include its susceptibility to soil erosion, the need for special

machinery harvesting, the use of herbicides and the possibility of severe damage

to wild pigs during cultivation. (Skladanka (2006)) Those risks also need to be

reflected in the price development of the commodity.

Not only grains, but also the whole silage plants can be harvested such as

maize sticks. It is a commodity with high energy value. The specific use of maize

differs according to cultivated types, which can be up to several hundred with

respect to different hybrids and modifications. (komodity24.cz (2018))

Factors Driving Price

Fluctuations of corn price are influenced by number of crucial factors, both

economic and non-economic determinants. Similarly to other agricultural com-

modities (wheat, soy or cocoa) it is also very difficult for maize to predict the

price of the commodity, as it is influenced by many global factors. For exam-

ple, population growth, declining oil reserves, weaker agricultural yields due to

weather, rising demand for meat, and more. (Rattray (2012))

One of the major influences involved in raising the price of Corn is controversial

ethanol production. (komodity24.cz (2018)) In recent years, the volume of Corn

used to produce ethanol as an alternative source of fuel has increased. As demand

for ethanol increases, there is also a marked increase in demand for maize itself,
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which also affects the price of that commodity. As a result, farmers are encouraged

to raise their crops and therefore the production of maize is increasing. Demand

for ethanol, however; shows steeper pace than in case of growing crops. Despite

growing area for Corn is extending, the price of corn continues to rise. (Rattray

(2012))

In 2005, the price of Corn was very low, ranging from 1.90$ to 2.70 $/ poul.

(kurzy.cz (2018)) A significant increase came in 2007 and 2008. However, this

was only a short time. This phenomenon occurred for several reasons. Prices did

not rise only for maize, but for many other crops, due to poor harvesting and

insufficient cereal supplies. (Wisner (2008)) But these were not the only factors

others were such as: the rise in oil prices, the depreciation of the US Dollar

and the demand for Corn due to the production of ethanol in the United States.

(Wiggins et al. (2010))

An important factor on the supply side is the weather. In the event of un-

expected flooding or enormous drought the price of Corn responds very quickly.

(komodity24.cz (2018)) E.g. in 2012 the price of corn increased rapidly from 5.1$

/ pound to 8.2$ / bushel (during July and August of that year). This means a

61% increase in price over a very short period because the volume of US corn was

reduced as the Corn Belt area had enormous droughts. US production therefore

had to cope with a 13% reduction in production, a sharp decline compared to the

average growth rate of maize production at that time (4.86%). (Rattray (2012))

The problem in this situation was that the US cereal stocks were completely in-

adequate to demand. However, the situation began to calm down after several

months, but prices of corn fell to its original price level by the beginning of 2013.

(bbc.com (2012))

The price of Corn is also dependent on the demand for meat. This is due

to the fact that approximately 40% of the world’s maize stocks are used in the

form of animal feed. It is mainly used in developing countries. In the future, it

is expected that demand for meat will continue to increase especially in South

Asia. Rattray (2012) also mentions the political factors influencing maize prices.

For example in 2011 policy factors played its role in influencing both supply and

demand for agricultural commodities. Arab Spring in 2011 that took place in
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countries like Tunisia, Egypt, Algeria or Libya affected the demand for grain

and wheat across the region. The governments of these states started buying

large volumes of Corn and wheat in order to maintain food security, which lead

to pressure on prices. Egypt for example bought 120 thousands tons of Corn

from the US in mid-February 2011. In a view of fears of oil prices in Libya, the

demand for ethanol has increased as an alternative fuel source, which has resulted

in higher demand for maize (also wheat and sugar). (Rattray (2012)) It is clear

from the above that the determinants of maize prices can not be analyzed in

isolation, as these factors interact with each other and result in a greater impact

together than each factor should have (the synergy of these factors).

Another important factor is China’s demand as China is the largest importer

of Corn and oil, which is ultimately reflected in the use of Corn as a form of

biofuel. China is also processing bulk stocks of corn for ethanol, with demand

rising year after year. The price of corn is also affected by the USD exchange rate,

as is the case of wheat. Dollar is considered a reserve currency, and given that

stock contracts are traded mainly in Dollars, and the US exported Corn to the

entire world, the price of Corn is influenced by the movement of strengthening or

weakening of that currency. (commodity.com (2018b))

Data

Source: www.macrotrends.net; Release: Spot Prices; Units: Dollars per pounds,

Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-29/6/2018; data cleaned

up for public holidays and all missing observations- used days in total: 4717.

4.9 Coffee

Background Information

Coffee is another important commodity that belongs to the category of so

called soft drinks. It is a popular drink worldwide, despite its negative effects on

human health. As stated in the literature, approximately 2,000 berries or 4,000

grains are needed for half a kilogram of Coffee, and the coffee maker is able to

produce at most a kilogram of roasted Coffee per year. In terms of type of Coffee,
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two basic types of Coffee are distinguished. One is Robusta and the second one is

Arabica. On the world commodity markets, both types can be traded, but they

are different in both price and quality. (Rogers (2008))

Factors Driving Price

Similarly to other commodities, the price of Coffee is depends on different

determinants influencing both supply and demand. However, they are above all

climatic phenomena that have a major impact on the supply side in this case.

This is due to the conditions for the growth of coffee beans. In order of optimal

growth, the weather must not fluctuate extremely. If the drought is too high or

the precipitation is too high, the crop is reduced. Like droughts and precipitation,

large frosts also cause loss of Coffee, not only for the next but also for the one

after the next period. (Rogers (2008))

The price of Coffee also reflects the presence of various natural disasters such

as hurricane, tornado, flood or tsunami. Natural disasters influence not only

growing of Coffee but also demand for Coffee as people loose their property and

shape their current needs. It is also necessary to mention the geopolitical factor.

Coffee is mainly grown in developing countries that are more susceptible to quicker

and easier political unrest. Political tensions most influence the jump prices of

Coffee, whether down or up. (Bojinov (2012))

The price of coffee is also affected by transport costs. Here it is necessary to

reflect the fact that Coffee beans are grown mainly in countries such as Brazil,

Colombia, Vietnam, Indonesia or West Africa. For exporting to consumer coun-

tries, it is necessary to overcome considerable distances, thus increasing transport

costs, which must be included in the resulting coffee price. And if the price of oil

rises, there are jumps in the price of Coffee. (Rogers (2008))

According to Otava (2018) it is also necessary to keep in mind the changes

that occur in the discretionary balance of consumer households. Discretionary

balance allows us to focus more on the real household income. This is due to the

deduction from their total income of the mandatory expenditure necessary for

the operation of the household under all conditions. Rogers (2008) adds that if

households do not have enough money for other unnecessary expenses, demand
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will fall, which necessarily carries a lower price for Coffee.

The role of raising Coffee prices also has its health aspects. It may happen

that in case of introducing new health effects of coffee consumption, consumers

will evaluate it in a certain way, and their preferences will change - their demand

for Coffee will change. Negative data on coffee, unless other conditions change,

is affecting declining demand, which is also associated with a fall of coffee prices.

The case of positive information it is just the opposite. (Bojinov (2012))

Data

Source: www.macrotrends.net; Release: Spot Prices; Units: Dollars per kg

(robusta prices), Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-

29/6/2018; data cleaned up for public holidays and all missing observations- used

days in total: 4717.

4.10 Wheat

Background Information

Wheat can be considered as a basic agricultural commodity, which is cul-

tivated at all continents except Antarctica (the largest Wheat producer is the

European Union, China, USA and Russia). Considering its nutritional value, it

is one of the most consumed raw materials in the world. (investujeme.cz (2018))

Not only seeds are grown, but also a whole plant that can be used in agriculture.

In large quantities, Wheat is used in the food or pharmaceutical industry. In a

smaller percentage also as a source for bioethanol or for biomass. (Likes (2018))

Factors Driving Price

There are several factors affecting price of Wheat. In the first place, we could

place a US Dollar exchange rate and because the US exports large quantities of

Wheat to other world markets, Wheat is mainly traded in US Dollars. When

the US Dollar is boosted, the price of wheat is decreasing, and the opposite price

effect is observed when the currency is weakened. Similarly, as with other basic

raw materials, the discrepancy between supply and demand has the most impact
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on the price. When production is increasing and wheat consumption is only

slightly growing, world stocks are being filled, which has the effect of pushing

down wheat prices. (commodity.com (2018c))

The markets of Asia and Africa are growing, which affects the world demand

for Wheat. In addition, the population is rapidly growing in these countries,

which is linked to the demand for Wheat. These countries need to increase the

volume of basic raw materials, so the most Wheat is ordered from these countries.

Moreover that leads to demand pressures in the long run, which also increases the

price of wheat. In emerging economies, however; the economy has an unstable

nature, which also affects the volatile political situation. In many cases, therefore;

the country is wholly inaccurate when it attempts to favor domestic production

or introduce high tariffs (India’s case), which negatively influences the demand

for wheat imports and negatively affects the price of this commodity. (Gabor

(2017))

Of course, climate conditions, like other agricultural commodities, can not be

ignored. The weather always influences the achieved yields from the farmed area,

thus the weather reduces or increases the overall production. Climate factors play

a major role in this, as speculators evaluate weather forecasts and predict possible

Wheat production. Because meteorological forecasts are relatively inaccurate,

speculators have an impact on unjustified volatility. (commodity.com (2018c))

Other experts say that due to the extreme weather in recent years there cannot be

made relied production predictions. Extreme weather conditions have worsened

production over the last five years, again reflecting the rise in the price of this

crop on commodity markets. (Gabor (2017))

In certain periods, the price of Wheat may also be affected by its ban on

exports from export countries, due to an increase in the export tax. These mea-

sures protect home markets from short-term shocks or food deficiencies. However,

these measures are detrimental to the countries where the wheat is imported. In

the mid-term, domestic farmers have less incentive to invest in increasing their

production, thus increasing domestic imbalances. The wheat price is also affected

by the inability of the system to respond flexibly, due to the seasonal harvest of

wheat, when producers react with a certain time lag on market signals. (Komise-
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Evropskych-Spolecenstvi (2018))

The last factor affecting the Wheat price will be the subsidy for ethanol. The

US allows to subsidize maize, which is the main raw material for the production

of ethanol added to the fuel. This is the reason why the Wheat production in the

US is declining, and farmers prefer to grow corn. Ending subsidies would most

likely increase the production of wheat and reduce its cost. (commodity.com

(2018c)) However, this is not expected in the years to come, due to an increasing

demand for ethanol as an alternative fuel source.

Data

Source: www.macrotrends.net; Release: Spot Prices; Units: Dollars per kg,

Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-29/6/2018; data cleaned

up for public holidays and all missing observations- used days in total: 4717.

4.11 Soybeans

Background Information

Soy is a legume that has high nutritional value (high protein and oil content),

so it is now increasingly demanded among consumers around the world. Out of

soybeans is made mainly soybean oil and soybean meat. The use of this crop is

mainly in the food industry, partly from soybean oil also produced by bio-fuels.

Soy scrap with its high protein content is used as feed for livestock. However,

soybean scrap is increasingly demanding by consumers who replace it with meat

(vegetarians, vegans). Soy has also been represented in the pharmaceutical in-

dustry. (soja.cz (2018))

Factors Driving Price

The Soybeans price is affected by several important factors. It is possible to

place US and Brazil production at the first place in the world, since Soybeans

are dependent on these markets, which are their largest exporters. Changes in

Soybeans conditions in these countries (such as climatic conditions) may affect

overall production and Soybeans prices. An example may be the existence of
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any US flood or hurricane. Soybeans production is reduced immediately and the

price goes up. This factor is related to the US Dollar. Here is basically the same

situation as Wheat or Corn commodities. Exchange contracts are traded in US

Dollars and appreciation or, on the contrary, weakening of the US Dollar is based

on decreasing or increasing the price of this crop. (commodity.com (2018a))

Soybeans are considered to be a relatively large exported commodity. Ap-

proximately 45% of its production is exported. Compared to other commodities,

wheat 23%, in the case of maize 14%. This is why the price of Soybeans is par-

ticularly dependent on exports to emerging countries. As the number of people

on the continent of Asia and Africa is increasing and more over taken in consid-

eration how rich the emerging economies are, the growing consumption of meat

and other food products is expected to grow in demand for crops such as soy so

its price increases. (Adeyanju (2014))

In addition to population growth, it is also worth mentioning the ongoing dis-

pute between the US and China, which wants to introduce duties on imported soy

from the US as a response to the US steel import duty introduced by the United

States. In addition to economic variables, political and geopolitical determinants

can also play a role in the cost of Soybeans commodity in long run. (Tan (2018))

Other factor is the existence of substitutes for Soybeans. There is a competi-

tion in the oil field not only regarding soy, but also palm, sunflower, oil, rapeseed

etc. The price of Soybeans is so dependent on the substitutions and how the de-

mand for them changes over time. There is also no mention of ethanol subsidies.

In the US there is a strong subsidy for the production of corn, which is used to

produce ethanol as a fuel source. Ending subsidies would also affect SoybeanS

production and lowering its price. (commodity.com (2018a))

Like other crops, soybean needs its specific climatic conditions for successful

cultivation. Soybeans needs the hottest summer. According to the experience of

many farmers, a temperature of between 20°C and 30°C is required for the suc-

cessful production of soy. Temperatures that fall below 20°C during the summer,

or climbed up to over 40°C, will have a negative effect on the growth of Soybeans.

An example is, 2009 when Argentina, as the third largest Soybeans producer in

the world, experienced the worst drought in the past 50 years in its history. This

48



fact resulted in a rapid decline in crop production in the country, which was re-

flected in commodity markets in the form of soybean prices. Similar problems

were also experienced by Brazil in 2014, which again caused higher prices of the

commodity. (Adeyanju (2014))

Data

Source: www.macrotrends.net; Release: Spot Prices; Units: Dollars per kg,

Not Seasonally Adjusted; Frequency: Daily; Date:1/6/2018-29/6/2018; data cleaned

up for public holidays and all missing observations- used days in total: 4717.
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Chapter 5

Data Analysis

The analysis was based on the end-of-the-day data during the business work-

ing days beginning 1/6/1999 and ending 29/6/2018. Data were manually put

together to match by dates and each day when the value was missing at least

for one variable was excluded completely to provide as good analysis as possi-

ble. Public holidays that differ via countries were excluded as well as important

stock exchange influencing dates such as a week after 11/9/2001 not to cause any

estimation bias. Finally, the data span provided a sample of 4717 trading days.

Table 5.1 shows standard descriptive statistic of our variables. Generally, the

highest values has S&P 500 Index, followed by YEN and Crude Oil. Soybeans

mean keeps also under 10, Wheat and Natural Gas under 5, Corn under 4, the

rest around 1. validity is 100% for all variables and 0 missing observations.
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Chapter 6

Empirical Results

This chapter is dedicated to the measurement of the time-frequency dynamics

of connectedness of the data set. As the estimation and computational tool

was used the statistical software R and additional supporting packages such as

Connectedness Frequency created by Krehlik (2018).

We demonstrate the static analysis of the spillovers covering the realized

volatility, the vector auto-regression model, the test for stationarity, the static

full-sample spillover analysis of the traditional spillovers table with FALSE Boolean

parameter under Diebold, Yilmaz (2012) methodology, test of correlation and the

same under Diebold, Yilmaz (2009) methodology in the Appendix to this The-

sis. Secondly, the spillovers tables decomposed into frequencies as an analysis of

connectedness dynamics with a rolling window of 250 days, which corresponds to

about one-year span.

6.1 Realized Volatility

Volatility is latent and needs to be estimated. An optimal approach to our

data is realized volatility. The realized volatility was counted in Microsoft Excel

as a wealth ration counted as natural log of the relative price change, which is a

continuously compounded return. From closing daily data were calculated daily

log returns by taking natural log dividing today closing daily data by yesterdays

daily closing data. That gave us a series of daily log returns but as a reason of

this methodology we lost 1 day of data- the first day 1/6/1999 as our observation
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began that day and we had no values of the previous day. So for 4717 observations

we got 4716 daily natural log returns. The daily variance estimate was counted as

a square of the logreturns2. From that we got a series of daily variances, which

we were interested for following usage.

By square root of daily variances we counted the daily realized volatility - the

average daily standard deviations. It gave us equally weighted daily volatility as

each day was taken having the same weight. This could be done due to deleting

all dates values that could bring unnatural or outlining values and those values

should be counted with different weights. (Bionic-Turtle (2010))

For a preview of an example of the data frame of the realized volatility see

the Appendix section.
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Table 6.1 shows the standard descriptive statistics of the realized volatility.

The highest mean and the quantiles has Natural Gas followed by Crude Oil.

Means of all commodities are almost ten times higher compared to the forexes

and the Index. The same apply to the median results with an exception of

Soybeans.

EUR/USD and Propane have 0 value in their first quantile, while the third

quantile keeps the lowest for forex EUR/USD. The lowest maximum value has

Soybeans and the minimal value is 0 for all variables.

The highest kurtosis has Propane followed by Crude Oil, while the lowest

Soybeans and forex YEN/USD. The most skewed data has Crude Oil followed by

Natural as and the less Soybeans.

All values have one missing variable as a consequence of counting variance

where the value for the firs date 1/6/1999 could not be counted as we were

missing the previous day value as mentioned previously.

Comparing table 5.1. data analysis of historical prices to table 6.1. data

analysis of realized volatility highly differ as expected. From the strongest val-

ues of S&P 500 Index transform into the lowest. The strong position of forex

YEN/USD historical prices dropped to similar low values as forex EUR/USD.

While standard deviation differed in case of prices in case of volatility ranges just

between 0 and 0.04. Reason for these outcome is obvious as we were working

with square roots.
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6.2 Vector Autoregression Model

The Vector Autoregression model (VAR) was used as an underlying model

for spillovers theory while it is in general usually used for estimation of linear

connectedness between various time series build up on variance decompositions

matrix containing complete information about all variables. (Baruník, Křehlík

(2017))

Firstly we ran a regression for each of our variables time series of the realized

volatility. For our endogenous variables y1 − y11 the coefficient of the VAR was

estimated separately for each equation by least-squares methodology.

The number of lags for VAR must be chosen based on criteria provided in R

by package vars function "VARselect", which generated the criteria for selection

of the best number of lags fitting the model jointly. Our information criteria

provided the following results to minimize the mean squared error:

Table 6.2: VARselect

AIC(n) HQ(n) SC(n) FPE(n)
10 3 3 10

Source: Author’s computations

Where AIC stands for Akaike information criterion that provided means for

model selection and demonstrated how much information was lost. AIC is often

similar to FPE as they have similar criteria such as corollary but both estimators

often overestimate the true lag order with positive probability. HQ stands for

Hannan-Quinn Criterion and SC for Schwarz Criterion (Umidjon et al. (2018))

As AIC and FPE equal and they often overestimate we decided to go for HQ and

equal SC with choice of 3 lags.

See the Appendix section for the VAR estimation results and for the VAR

estimated coefficients (an example of SPX).
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6.3 Stationarity

A test of stationarity helps to avoid false inferences. Stationarity tells whether

the variables do not consist of a unit root process as it could bias the OLS

estimation of the VAR model. That is meant as no trend or constant variance,

autocorrelation or periodic fluctuations over time. In this case we decided for

graphic representation of data, which is strong enough for purposes of proving

no stationarity evidence for the VAR model. In other cases if needed tests of

stationarity such as ADF may be undertaken.

Figure 6.1. displays graphic illustration of the realized volatility that demon-

strates the evolution of realized volatility of eleven selected variables over time.

All of the data range from zero. S&P 500 Index, EUR/USD and YEN/USD forex,

Soybeans keep the lowest just up to maximum value of 0.1 , while Corn, Coffee

and Wheat up to double maximum value of 0.2. Gasoline increases up to value

0.25, Crude Oil and Propane to 0.5 and Natural Gas up to 0.6. Generally we can

say, that the Index and forexes keeps the lowest, food higher and energy variables

at the highest values. Nevertheless; the data show no perpetual or periodical

trend over time so they are a prove of no stationarity.
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Figure 6.1: Graphic Representation of Realized Volatility

Source: Author’s computations
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6.4 Traditional & Directional Spillovers Estima-

tion

This section contains results of unconditional volatility connectedness of tra-

ditional and directional spillovers measures gained by Diebold, Yilmaz (2012)

methodology that builds up on invariant ordering. The Boolean parameter is

set as FALSE, which caused estimation of the connectedness with the effect of

correlation that might influence the whole system.

The coefficient matrices were used for the variance decompositions to ob-

tain the spillovers measure. Here we provided a full-sample analysis of volatility

spillovers using the variance decomposition model with 3 lags. All tables were

created from author computations using R studio software and results presented

are percentages.

Results for the TRUE Boolean parameter are provided in the following sec-

tion "6.6 Test of Correlation". Results for Diebold, Yilmaz (2009) methodology

relying on Cholesky-factor identification of VARs, so the resulting variance de-

compositions can be dependent on variable ordering for both FALSE and TRUE

parameters find in the Appendix to this Thesis.

The traditional volatility spillovers provided an approximate decomposition of

the various non-directional volatility spillovers in a single index. The directional

connections in realized volatility consist of TO other variables and FROM other

variables values. This section presents an estimation of total vector autoregres-

sions of order 3 (selected by Hannan_Quinn and Schwarz Criterion) identified

using Cholesky-factor with no importance of ordering. The directional estima-

tion consists not only from TO and FROM values but also NET. The NET value

was counted as TO-FROM=NET and its expected value was close to 0 as TO

and FROM values usually do not differ significantly.
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Tables 6.4, 6.5, 6.6 YEN/USD, Soybeans, and surprisingly also Gasoline

keeps TO and FROM spillovers at the lowest levels. The highest NET value has

the S&P Index followed by Natural Gas and all others also remain under 1%. 6

values keep in negative values, which means that our system of variables have

slightly higher impact FROM other variables than TO other variables.

For all results of the FALSE parameters under the methodology Diebold, Yil-

maz (2009) dependent to ordering find result in the Appendix section. Generally

can be concluded, that results slightly differ in case of Diebold, Yilmaz (2009)

and the pairwise spillovers were lower while for directional spillover higher. That

means the order of variables influence the overall connectedness measure.

6.5 Frequency Connectedness

This section presents spillover tables under the methodology of Baruník,

Křehlík (2017), which decompose the spillovers into frequencies. As previously

we use Diebold, Yilmaz (2012) methodology and the Boolean parameter FALSE.

For the TRUE Boolean parameter under DY 2012 methodology see section "6.6.

Test of Correlation". For results under the methodology DY 2009 with both

FALSE and TRUE parameters see the Appendix section.

For the frequency analysis purposes bounds were chosen to demonstrate one

week (band: 1 day to 5 days: short-term frequency), one month (band: 5 days

to 22 days: medium-term frequency) and one year (band: over 33 days: long-

term frequency). The estimation was run with different bounds separately. The

following sections were divided per frequencies.
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Conclusions

To sum up our results we must conclude that the longer the frequency the

lower the spillovers. That is very surprising result as our expectation and our 3rd

Hypothesis were that longer frequencies would result in higher effects of impact of

shock on the system and its connectedness. This expectations were build on liter-

ature dedicated to analysis of frequency connectedness such as Baruník, Křehlík

(2017), which estimate number the most liquid US banks. The contribution of

our analysis was to test those theories on diverse markets data such as financial,

forex and energy and food commodities markets. It is understandable that the

connectedness among these markets is lower compare to the banking sector or to

any other -one sector oriented analysis. Considering these facts our results are

not surprising anymore. Our diverse set of market variables behaved differently

and the connectedness was stronger in the short-run compared to the medium-

and the long-run.

Nevertheless; in all frequencies the highest connectedness had EUR/USD with

the S&P Index and Crude Oil with Natural Gas. Stronger connectedness com-

pared to the others has also Wheat with Coffee and Yen with the S&P Index.

For all results of the FALSE parameter under the methodology Diebold, Yil-

maz (2009) dependent to ordering find result in the Appendix section. Generally

can be concluded that results slightly differ and in the case of Diebold, Yilmaz

(2009) were higher. That means the order dependence impact also the overall

connectedness frequency measure.

6.6 Test of Correlation

This section provides results for Diebold, Yilmaz (2012) methodology with the

TRUE Boolean parameter as a test of correlation. This results were compared to

the results of the Diebold, Yilmaz (2012) methodology with the FALSE Boolean

parameter. The results should slightly differ just as we expected some correlation

effect, moreover; we expected that analysis with the TRUE Boolean parameter

should have slightly higher results as we expected that correlation deflect the

results from the analysis with the FALSE Boolean parameter closer to 0.

66



The spillovers were counted as the contribution of the diagonal elements of

the FEVD to the total sum of the matrix. The diagonal values are always the

highest percentage of the entire tables and represents self correlation. Method

used reminds the vector autoregressions of order 3 (selected by Hannan_Quinn

and Schwarz Criterion) identified using Cholesky-factor with no importance of

ordering.

In case of both the off-diagonal column/row sums gave the value for counting

the spillover index while the column/row sums including diagonal gives denom-

inator of the spillover index. It is interesting to compare the values gained by

both methodologies.

Table 6.10 shows regarding the traditional estimation that the highest off-

diagonal connectedness have C̃H
CrudeOil←NaturalGas = 22.65% followed by

C̃H
NaturalGas←CrudeOil = 21.27%, C̃H

EUR←SP X = 20.31%, C̃H
SP X←eur = 15.19%. All

of the traditional gross values are way higher compared to the analysis with

the FALSE parameter. That means the correlation very strongly deflect the

connectedness to 0. All directional spillovers equal in case of the FALSE and the

TRUE parameters.

table 6.11 contains the total spillover index counted as total TO-FROM=NET

divided by the number of 11 variables and can be compare to the results under

dependence on variable ordering of the method of Diebold, Yilmaz (2009) in the

Appendix section.
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The frequency dynamics analysis showed the same trend as analysis with the

FALSE parameter. The strongest connectedness was in case of the short-term,

while significantly lower in the medium- and even lower in the long-term. As well

the results of the highest connectedness was between EUR/USD and the S&P

Index, followed by Crude Oil and Natural Gas.

If our results would be exactly similar to the analysis with the FALSE param-

eter that would be a prove of no correlation. Nevertheless; all our values were

higher here compared to result of the FALSE parameter so our conclusion is an

evidence of an impact of correlation on the system.

For all the results of the TRUE parameter under the methodology Diebold,

Yilmaz (2009) dependent to ordering find result in the Appendix to this Thesis.

Generally can be concluded, that results in the case of the Diebold, Yilmaz (2009)

methodology were exactly similar. That means the order dependent method with

the TRUE parameter do not impact the overall frequency connectedness measure.

That means the results differ for different Boolean parameters.

6.7 Dynamics of Connectedness:
The Rolling Widow Estimation

The entire spillover estimation provided an average variable behaviour sum-

mary, nevertheless; missed potential movements in the spillovers. Usage of the

rolling window estimation over time series brigs dynamics of the connectedness

based on the methodology Diebold, Yilmaz (2012). The estimation was performed

under parameters of 3 lags and 250 windows, which means that our graphs moved

by 249 dates drop from moving window by −seq(1 : (W − 1)).

Figure 6.2 shows the dynamic analysis of total connectedness that gives a

general overview of events that may influenced the volatility connectedness of

our variables. The rolling distribution of the total directional connectedness was

plotted by using the time series of volatility of daily closing values. Several cycles

in the total spillover plot might be identified. Mainly the crisis of 2008 brought a

huge increase from around 25% to almost 40% and started in early 2007 already

with sub-prime crisis and came back to normal around 2010, but this swing was
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Figure 6.2: Overall Total Connectedness
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discussed many times. Lets have a look at smaller cycles ranging more or less

between 20% to 30%.

• 2000 the dot-com bubble that had a serious impact on the total volatility

connectedness of the financial stocks

• 2001 the terrorist attack and fall of the Twins followed by the Nasdaq and

other stock exchanges and recession in the following week after the attack

and in late 2001 again increased connectedness trend due to the Enron and

MCI WorldCom scandal

• 2003 an invasion of Iraq, which let to a little increase followed by a slight

decline

• 2005 FED announced change in interest rates, which let to changes in

volatility of prices of commodities

• 2007-2008 the financial crisis

• 2011-2013 the European debt crisis

73



Figure 6.3: Overall Frequency Connectedness

2000 2005 2010 2015
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Nowadays the Index is hitting the bottom of our observed period and is around

23%. Generally; we can say that in our sample data there were not observable

those events mainly but were there many little cycles that were probably mostly

caused by monetary policy changes and their impact on interest rates.

Figure 6.3 shows the overall total connectedness in frequencies, where the

black line represents the short-term, the red line the medium-term and the blue

one the long-term connectedness. The short-term connectedness reminds closest

in its value to the total connectednes (Figure 6.2.) and ranges between 18% to

28% with more or less similar deflections. Nevertheless; the medium-term and

the long-term keep very low compared to the short-term and ranges between 0%

to 8%, while the medium-term is the flattest one and the long-term creates in

fact just 3 cycles: around 2003, 2008, 2014.

This result supports our conclusion from the frequency spillover tables. Our

results were similar, the strongest connectedness was observed in the case of the

short-term frequency, while the medium- and long-term were closer to each other

and closer to 0. That support our theory that because our variables diverse so
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much in their market fields they are the most connected just in a the short-run

while in the long-run they incline to very low or almost 0 connectedness. That is

a second prove against our hypothesis previous to our empirical analysis.

Both the overall total spillover plot and the overall frequency connectedness

plot discarded directional information, lets have a look at “Directional TO Oth-

ers” (row sum) and “Directional FROM Others” (column sum) in separate fre-

quency graphs.

Figure 6.4 and 6.5 represent the "TO" connectedness. It is very interesting

how differently our variables behave. All stay in low values between 0% and 4%.

In general we can watch the same trend when the short-term keeps above the

others and is more dynamic compare to flatter medium- and the long-run. Also

the short-run differs the most for all variables. Lets mention a few of the most

interesting outcomes.

The S&P 500 Index was the most influenced in the medium- and the long-run

during the financial crisis of 2008 when its values increased to the same maximum

level of the short-run around 2%. Natural Gas and Propane have very similar

outcome for the medium- and the long-term while their long-run differ very much.

Crude Oil fluctuate the most of all in all terms. We can also conclude that in

"TO others" behaviour our food section consisting of Corn, Coffee, Wheat and

Soybeans behave more similar to each other in all terms compare the the rest of

variables.

Figures 6.6 and 6.7 show the "FROM" connectedness. All variables vary

between 0% and 3.5% so in general a bit lower compared to "TO". Also the trend

of lower medium- and the long-run reminding lower compare to the short-term,

which is also more dynamic. Graphs are very similar to "TO" outcome, the main

differences are in Gasoline where the 2008 swing is less obvious and the medium-

and the long-term were before 2008 almost flat. Crude Oil is a bit less dynamic

and Propane has in medium and long-run higher values. The food section reminds

also very similar and keeps the same, just Wheat and Coffee are a bit flatter.

Figures 6.8 and 6.9 represent the "NET" connectedness ("TO"-"FROM").

Here we get to negative numbers, which means higher influence "FROM other"

variables than "TO other" variables. Our all lines represent different lengths cross
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each other variables and range between −1% to 1.5%, while the short-run reminds

the most dynamic. Also the outcome does not copy our event structure anymore.

Also the food does not remind very similar to each other. Interesting to mention

is that our forex EUR/USD ranges the most in the short-run compared to the

other variables while Wheat and Soybeans keep slightly higher in the medium-

and the long-term compared to the short. To sum up, all "NET" graphs keep

close to 0%, which means no big differences between "TO" and "FROM".

Figure 6.10 presents summary graphs where all previously presented graphs

are always combined in just one picture. That helps us to compare that "TO" is

the most ranging and medium and long-term frequencies keeping lower. "FROM"

ranging less and medium and long-term frequencies keeping lower as well while

"NET" keeps around 0% and all frequencies blend.

Overall; all of the graphs support our previous frequency spillover tables re-

sults. Both directional graphs TO and FROM demonstrates the strongest con-

nectedness in short-term, nevertheless; in TO case more than in FROM case.

Lower and close to 0 in the medium- and the long-term. NET values range

around 0 as previously and as expected.
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Figure 6.4: Individual Graphic Representation of TO Connectedness; Source: Au-

thor’s computations
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Figure 6.5: Individual Graphic Representation of TO Connectedness - continue
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Figure 6.6: Individual Graphic Representation of FROM Connectedness; Source:

Author’s computations
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Figure 6.7: Individual Graphic Representation of FROM Connectedness - continue
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Figure 6.8: Individual Graphic Representation of NET Connectedness; Source: Au-

thor’s computations
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Figure 6.9: Individual Graphic Representation of NET Connectedness - continue;

Source: Author’s computations
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Figure 6.10: Summary Graphic Representation of Connectedness; Source: Author’s

computations
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Chapter 7

Conclusions

The analysis of volatility connectedness provides a tool to view market risk

transmission for the purposes of risk management, portfolio diversification and

market regulation. The main contribution of this analysis has been to test how

closely are highly diverse variables representing financial markets, forexes, and

commodities connected in the overall and frequency domains. The analysis of

frequency volatility spillovers was based on variance decompositions from vector

autoregressions based on daily closing prices of the S&P 500 Index, YEN/USD

forex, EUR/USD forex, Gasoline, Natural Gas, Crude Oil, Propane, Corn, Coffee,

Wheat, and Soybeans during the period 1/6/1999 - 29/6/2018.

For analysis purposes we used R studio software and its supporting pack-

ages such as the Frequency Connectedness. The analysis was performed using a

generalized vector autoregressive framework in which are forecast error variance

decompositions invariant to ordering under the methodology of Diebold, Yilmaz

(2012). The main analysis was run with a FALSE Boolean parameter. The test of

correlation was undertaken by running the analysis with a TRUE Boolean param-

eter. As the results differed (specifically were higher under a TRUE parameter)

we provided the evidence of correlation in the dataset.

The results of the main traditional and directional spillovers analysis were

as following: the traditional pairwise correlation of variables ranged between the

lowest −0.47% of the pair SPX-EUR and the highest 0.08% of Coffee-Wheat.

Directional TO other variables and FROM other variables ranged between the

lowest 0.91% TO Gasoline and the highest 2.6% FROM SPX. The NET spillover
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kept close to 0 as expected, which indicates that TO and FROM spillovers were

at similar levels. In the frequency domain we showed the strongest connectedness

on the one week short-term estimation (ranging between 0.02% between SPX

and Natural Gas and 11.56% between Crude Oil and Natural Gas), lower in

the case of one month medium-term estimation (ranging between 0.01% between

number of variables and 6.33% between Crude Oil and Natural Gas) and the

lowest in the case of the one year long-term estimation (ranging between 0.01%

between number of variables and 6.10% between EUR and SPX). This results

were very surprising and did not corroborate our Hypothesis 3 that shocks with

long-term responses transmit across markets with greater strengths, pointing to

high long-run systemic risk. This works for the globally most liquid financial,

commodity, and forex markets. This theory was not corroborated but the exact

opposite trend was observed. Our Hypothesis 1 that FX markets, commodities

and financial markets influence each other on both short- and long- runs with

various strengths and Hypothesis 2 that types of shocks resulting in the short-

, medium-, and long-term responses differ were corroborated as different shocks

were observed in this analysis with different impacts on all variables with different

strengths and lengths. This means not only, for example, that the financial

crisis of 2008 caused changes in connectedness. Also the terrorist attack of 2001

influenced all variables in our sample, and each differently.

The dynamics of connectedness was analyzed through the rolling window esti-

mation that decomposed the spillover index into all of the forecast error variance

components for one variable coming from shocks to the other variable. The entire

sample and the time variation was tracked by the rolling 250 window estimation.

Our findings again proved a relationship between all variables. In general the

strongest reaction of all variables was to the global financial crisis of 2008. Both

the overall and individual directional frequency connectedness corroborated our

Hypotheses 1 and 2 while it did not corroborate our 3rd Hypothesis.

Overall, all our frequency results, both spillover tables and dynamic graphic

representations showed that the greater strengths have shocks in the short-term.

As mentioned previously, the probable reason is that Baruník, Křehlík (2017)

ran their empirical analysis on the most important American Banks. However,
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our series of variables was largely diverse and was connected only at low levels

compared to the banking sector moreover the strongest in the short-run. In the

long-run the connectedness was close to 0. The main conclusion is that in the

short-term, the reaction of all variables to any shock is stronger compared to the

medium- and the long-term. The short-term is also the most ranging in the case

of all variables. The main contribution of the Thesis was the provision of evidence

of a connectedness measurement mostly in the short-term between highly diverse

variables representing financial, forex and commodity markets.

In the Appendix to this Thesis you will find the results of the complete anal-

yses under Diebold, Yilmaz (2009) order variant methodology. The results ob-

tained were higher compared to our original analysis, so an order dependence was

proved in the system.

The analysis in this Thesis gave just a small insight into volatility connected-

ness among diverse system of markets representing variables. It suggests a new

theory that, in the wide system, the strongest connectedness can be observed in

the short-term while in the long-term the connectedness is getting closer to 0.

This new theory demands further investigation.

Firstly, as we are using just day closing prices so it would be great to use high

frequency data and run the same analysis under the same methodology. Secondly,

it would be interesting to use a larger dataset or a different but also diverse system

of markets to prove our theory or, even better, to run two datasets separately:

one on the banking sector and the second one on widely diverse markets to prove

they behave differently. Thirdly, our results could be used for risk management

purposes or they could be compared to the results of other methods of measuring

connectedness.
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Acronyms

VAR: the Vector Autoregressive Model

VECM: the Vector Error Correction Model

(G)FEVD: the (general) forecast error variance decomposition

GVD: the generalized variance decomposition

CoVaR: the conditional value at risk

DY 2009: Diebold, Yilmaz (2009)

DY 2012: Diebold, Yilmaz (2012)

BP: Boolean parameter

SPX: S&P 500 Index

YEN: YEN/USD forex

EUR: EUR/USD forex

LPG: liquid petroleum gas
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Appendix

7.0.1 The Data Frame

Table 7.1: Preview of the data frame - Realized Volatilities; Source: Author’s com-

putations

SPX EUR YEN Gasoline Natural Gas Crude Oil Propane Corn Coffee Wheat Soybeans

0.00042486299 0.00000000000 0.0010760254 0.0219789067 0.008510690 0.0024110922 0.00000000 0.004618946 0.008230499 0.003960401 0.002181026
0.02147542463 0.00000000000 0.0032246090 0.00000000000 0.004246291 0.0119690238 0.03509132 0.027274418 0.008163311 0.031130919 0.015135424
0.00508589632 0.00508589632 0.0029673612 0.0029673612 0.017167804 0.0171678036 0.0000000000 0.0000000000 0.024692613 0.024692613 0.002148229
0.00508589632 0.00000000000 0.0040248114 0.0210534092 0.042379223 0.0311905068 0.03390155 0.009009070 0.068992871 0.003883500 0.006430890
0.00099394159 0.00966191091 0.0055898214 0.0206192872 0.012526260 0.0140570209 0.00000000 0.000000000 0.055059777 0.011696040 0.002134473
0.01206975659 0.01206975659 0.0118580103 0.0118580103 0.004192878 0.0041928783 0.00000000 0.000000000 0.000000000 0.000000000 0.006376217
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7.0.2 VAR

Table 7.2: VAR Estimation Results; Source: Author’s computations

Endogenous variables: SPX, EUR, YEN, Gasoline
Natural Gas, Crude Oil, Propane
Corn, Coffee, Wheat, Soybeans

Deterministic variables: const

Sample size: 4713

Log Likelihood: 154136.948

Roots of the characteristic polynomial: 0.7987, 0.775, 0.775, 0.7527, 0.6616
0.6318, 0.6318, 0.5897, 0.5659 0.5659
0.5446, 0.5446, 0.5346, 0.5346, 0.4998
0.4998, 0.4957, 0.4957, 0.4554, 0.4554
0.4398, 0.4398, 0.4262, 0.4262, 0.402
0.3793, 0.3793, 0.3781, 0.3781, 0.3353

0.3353, 0.243, 0.243

call: VAR(y = volatilities, p = 3, type = "const")

As a specific example of VAR estimated coefficient find result for the S&P

500 Index results:
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Table 7.3: VAR: estimated coefficients for SPX, preview. Source: Author’s computa-

tions

estimate:

std.error

SPX.l1 0.4874587
(0.0155959)

EUR.l1 0.0586682
(0.0184352)

YEN.l1 0.0693522
(0.0257301)

GASOLINE.l1 0.0086103
(0.0066996)

NATURAL GAS.l1 0.0054695
(0.0039756)

CRUDE OIL.l1 0.0010703
(0.0051118)

PROPANE.l1 −0.0074712
(0.0061719)

CORN.l1 0.0118080
(0.0086751)

COFFEE.l1 −0.0102154
(0.0077073)

WHEAT.l1 −0.0072076
(0.0092318)

SOYBEANS.l1 0.0059126
(0.0115014)

Observations 4,714
R2 0.3362
Adjusted R2 0.3316
Residual Std. Error 0.007596 (df = 4679 )
F Statistic 71.83 (df =33; 4679)
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7.0.3 Results of the Diebold, Yilmaz (2009) Methodology

Traditional Spillover Analysis

FALSE Boolean parameter

Table 8.4 represents the pairwise directional connectedness measures or spillovers

table based on the Diebold, Yilmaz (2009) methodology with the FALSE Boolean

parameter and the traditional estimation. The diagonal values are missing and

the most of the values are negative and the highest is C̃H
P ropane←Soybeans = 0.018%

followed by C̃H
P ropane←Coffee = 0.006%. While compared to the main analysis un-

der the methodology Diebold, Yilmaz (2012) this values are lower while the main

analysis have higher values. As the values differ it is a prove that data are order

sensitive.

Tables 8.5, 8.6, 8.7 represent the spillovers tables based on the Diebold,

Yilmaz (2009) methodology with the FALSE Boolean parameter and the direc-

tional estimation. The highest NET value has N.Gas followed by SPX. Over a

half of the NET values are negative while the lowest value has Crude Oil. Those

negative value means that over a half variables has stronger impact TO others

than they are being impacted FROM others.

While compared to the main analysis under the Diebold, Yilmaz (2012) method-

ology this values are slightly higher. As the values differ it is a prove that data

are order sensitive.
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TRUE Boolean parameter

Table 8.8 represents the spillovers table based on the Diebold, Yilmaz (2009)

methodology with the TRUE Boolean parameter. Regarding the traditional esti-

mation the highest off-diagonal connectedness has C̃H
CrudeOil←NaturalGas = 28.82%

followed by C̃H
EUR←SP X = 24.03%, C̃H

Corn←P ropane = 18.07%, C̃H
W heat←Coffee =

16.18%. Interesting is that almost all of the other values are lower that 1% or

around 3%. Regarding the gross directional estimation the highest TO value

has SPX 3.13% followed by 3% of Natural Gas, the rest of variables has values

around 1%. FROM value 3.11% Crude Oil followed by 2.44% of EUR, there we

can observe in general slightly higher values compared to TO.

While comparing to the correlation test under methodology Diebold, Yilmaz

(2012) this values are slightly lower. As the values differ it is a prove that data

are order sensitive.
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Frequency Connectedness

FALSE Boolean parameter

Table 8.10 represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the FALSE Boolean parameter

and the traditional and the gross directional estimation in the short-run frequency.

The highest off-diagonal values has C̃H
CrudeOil←NaturalGas = 14.73% followed by

C̃H
W heat←Coffee = 12.04%. The most of other values are close to 0.

Table 8.11 represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the FALSE Boolean parameter

and the traditional and the gross directional estimation in the medium-run fre-

quency. The highest off-diagonal values has C̃H
CrudeOil←N.Gas = 8.04% followed by

C̃H
EUR←SP X = 7.42%. The most of other values are close to 0.

Table 8.12 represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the FALSE Boolean parame-

ter and the traditional and the gross directional estimation in the long-run fre-

quency. The highest off-diagonal values has C̃H
EUR←SP X = 7.22% followed by

C̃H
CrudeOil←N.Gas = 6.04%. The most of other values are very close to 0.

While compared to the correlation test under the methodology of Diebold,

Yilmaz (2012) this values are higher.
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TRUE Boolean parameter

Table 8.13 represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the TRUE Boolean param-

eter and the traditional and the gross directional estimation in the short-run

frequency. The highest off-diagonal values has C̃H
EUR←SP X = 5.43% followed by

C̃H
C.Oil←N.Gas = 3.91%. The most of other values are close to 0.

Table 8.14 represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the TRUE Boolean parame-

ter and the traditional and the gross directional estimation in the medium-run

frequency. The highest off-diagonal values has C̃H
EUR←SP X = 3.06% followed by

C̃H
C.Oil←N.Gas = 2.11%. The most of other values are close to 0.

Table 8.15represents the pairwise directional connectedness measures based

on the Diebold, Yilmaz (2009) methodology with the TRUE Boolean parame-

ter and the traditional and the gross directional estimation in the long-run fre-

quency. The highest off-diagonal values has C̃H
EUR←SP X = 3.21% followed by

C̃H
Y EN←SP X = 0.70%. The most of other values are very close to 0.
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7.0.4 Appendix Summary

The short-term frequency estimation. The traditional estimation results for

Diebold, Yilmaz (2009) and Diebold, Yilmaz (2012) with the TRUE Boolean

parameter were exactly the same while differed when the Boolean parameter was

FALSE. Generally all off-diagonal results ranged between 0.01% and 14.73%.

The medium-run frequency estimation. The traditional estimation results

for Diebold, Yilmaz (2009) and Diebold, Yilmaz (2012) with the TRUE Boolean

parameter were again exactly the same while differed when the Boolean parameter

FALSE. Generally all off-diagonal results ranged between 0.00% and 8.04% which

was lower compared to the short-term frequency maximum 14.73%.

The long-run frequency estimation. The traditional estimation results for

Diebold, Yilmaz (2009) and Diebold, Yilmaz (2012) with the TRUE Boolean

parameter were again exactly the same while differed when the Boolean parameter

was FALSE. Generally all off-diagonal results ranged between 0.00% and 7.22%

which was not far from the medium-run frequency results 8.04%, nevertheless; all

other off-diagonal values were way closer so 0%.

While compared to the correlation test under the methodology Diebold, Yil-

maz (2012) this values were exactly similar to the Diebold, Yilmaz (2009) method-

ology with the TRUE parameter. That is a prove that in case of no correlation

included in the system results do not differ under order dependent or independent

methods.

111


	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Realized Volatility
	3.2 Measuring Connectedness with the Variance Decompositions
	3.2.1 Orthogonal Structural System Dependent on Ordering
	3.2.2 Directional Spillovers Independent on Ordering

	3.3 Frequency Dynamics

	4 Institutional Background
	4.1 Standard & Poor's 500 Index
	4.2 Forex EUR/USD
	4.3 Forex YEN/USD
	4.4 Gasoline
	4.5 Natural Gas
	4.6 Crude Oil
	4.7 Propane
	4.8 Corn
	4.9 Coffee
	4.10 Wheat
	4.11 Soybeans

	5 Data Analysis
	6 Empirical Results
	6.1 Realized Volatility
	6.2 Vector Autoregression Model
	6.3 Stationarity
	6.4 Traditional & Directional Spillovers Estimation
	6.5 Frequency Connectedness
	6.6 Test of Correlation
	6.7 Dynamics of Connectedness: The Rolling Widow Estimation

	7 Conclusions
	Bibliography
	Acronym
	Appendix
	7.0.1 The Data Frame
	7.0.2 VAR
	7.0.3 Results of the diebold2009 Methodology
	7.0.4 Appendix Summary



