
DOCTORAL THESIS

Amirhossein Akbar Tabatabai

In the Light of Intuitionism:
Two Investigations in Proof Theory

Department of Algebra

Supervisor of the doctoral thesis: Prof. RNDr. Pavel Pudlák, DrSc
Study programme: Mathematics

Study branch: Algebra, Theory of Numbers and Mathematical Logic

Prague 2018

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Acknowledgment. This work has been supported by the institute of mathemat-
ics of the Czech academy of sciences and the ERC advanced project FEALORA,
lead by prof. Pavel Pudlák.

First and foremost, I like to thank Pavel Pudlák to whom I am incredibly
indebted, for his guidance, his support, the discussions that we have had and
all the things I have learned from him. I also wish to thank Jan Krajiček from
whom I learned a lot and Lev Beklemishev, Emil Jeřábek, Pavel Hrubeš and Neil
Thapen for reading some parts of the earlier draft and pointing out some errors
in the earlier proofs and arguments. Last but not least, I would like to thank
Mohammad Ardeshir, Arnold Beckmann, Sam Buss, Anna Horská, Raheleh Jalali
and Masoud Memarzadeh for their support and their helpful discussions and
comments.

ii

Title: In the Light of Intuitionism: Two Investigations in Proof Theory

Author: Amirhossein Akbar Tabatabai

Department: Department of Algebra

Supervisor: Prof. RNDr. Pavel Pudlák, DrSc, Institute of Mathematics,
Academy of Sciences of the Czech Republic

Abstract: This dissertation focuses on two specific interconnections between the
classical and the intuitionistic proof theory. In the first part, we will propose a
formalization for Gödel’s informal reading of the BHK interpretation, using the
usual classical arithmetical proofs. His provability interpretation of the proposi-
tional intuitionistic logic, first appeared in [12], in which he introduced the modal
system, S4, as a formalization of the intuitive concept of provability and then
translated IPC to S4 in a sound and complete manner. His work suggested the
search for a concrete provability interpretation for the modal logic S4 which itself
leads to a concrete provability interpretation for the intutionistic logic. In the
first chapter of this work, we will try to solve this problem. For this purpose,
we will generalize Solovay’s provability interpretation of the modal logic GL to
capture other modal logics such as K4, KD4 and S4. Then, using the mentioned
Gödel’s translation, we will propose a formalization for the BHK interpretation
via classical proofs. As a consequence, it will be shown that the BHK interpreta-
tion is powerful enough to admit many different formalizations that surprisingly
capture different propositional logics, including intuitionistic logic, minimal logic
and Visser-Ruitenburg’s basic logic. We will also present some negative results
to show that there is no provability interpretation for any extension of the sys-
tem KD45 and as we expected there is no BHK interpretation for the classical
propositional logic.

In the second half of the dissertation, we change our focus to the other direction
of the interconnection to investigate the applications of the intuitionistic view-
point in the realm of classical proof theory. For this purpose, we will develop
a complexity sensitive version of the classical Dialectica interpretation to deal
with the bounded theories of arithmetic. More precisely, we will define a notion
called the computational flow which is a pair consisting of a sequence of compu-
tational problems of a certain sort and a sequence of computational reductions
among them. We will develop a theory for these flows to provide a sound and
complete interpretation for bounded theories of arithmetic. This property helps
us to transform a first order arithmetical proof to a sequence of computational
reductions by which we can extract the computational content of low complexity
statements in some bounded theories of arithmetic including I∆0, T k

n , I∆0(exp)
and PRA. Then, in the last section, by generalizing term-length flows to ordinal-
length flows, we will extend our investigations from bounded theories to strong
unbounded systems such as PA and PA + TI(α) to capture their total NP search
problems.

Keywords: Provability Interpretation, BHK Interpretation, Proof Mining, Bou-
nded Arithmetic

iii

Contents

1 Provability Interpretation of Propositional and Modal logics 2
1.1 Introduction . 2

1.1.1 BHK Interpretation . 2
1.1.2 The Main Idea and the Main Results 6

1.2 Preliminaries . 8
1.2.1 Sequent Calculi for Modal Logics 9
1.2.2 Propositional Logics . 9
1.2.3 Solovay’s Theorems . 11

1.3 Provability models . 11
1.3.1 Definitions and Examples 11
1.3.2 Discussion . 15

1.4 The Logic K4 . 17
1.4.1 Soundness . 17
1.4.2 Completeness . 19

1.5 The Logic KD4 . 24
1.6 The Logic S4 . 26

1.6.1 Soundness . 26
1.6.2 Completeness . 28
1.6.3 Uniform and Strong Completeness 35

1.7 The Logics GL and GLS . 38
1.7.1 The Case GL . 39
1.7.2 The Case GLS . 41

1.8 The Extensions of KD45 . 41
1.9 A Remark on the Logic of Proofs 44
1.10 BHK Interpretations . 50

2 Computational Flows in Arithmetic 60
2.1 Introduction . 60
2.2 Preliminaries . 62
2.3 Non-deterministic Flows . 67

2.3.1 Non-deterministic Reductions and Reduction Programs . . 68
2.3.2 Non-deterministic Flows 76
2.3.3 Applications . 82

2.4 Deterministic Flows . 86
2.4.1 Reductions and Flows . 86
2.4.2 The Main Theorem . 88
2.4.3 Applications . 101

2.5 Ordinal Flows . 109

Bibliography 116
References . 116

1

1. Provability Interpretation of
Propositional and Modal logics

1.1 Introduction

1.1.1 BHK Interpretation
In the intuitionistic tradition, mathematics is considered as a theory of mental
constructions and hence, truth naturally means the existence of a proof. Thus,
provability is the cornerstone of the whole intuitionistic paradigm. With this
fact in mind, like any other logic, the intuitionistic logic would be a calculus to
describe the behavior of truth, which in this case, is the concept of provability.
In other words, intuitionistic logic is a meta-theory of the concept of provability.
Let us explain the role of connectives in this logic. Again, like any other logic, a
connective is an operation on the truth content of its inputs, which in the case
of intuitionistic logic means the operations on the proofs. If we want an intuitive
semantics for intuitionistic logic, we have to find out what the meaning of a con-
nective is. The answer to this question is the well-known BHK interpretation.
Its propositional part is the following:

• a proof for A ∧B is a pair of a proof for A and a proof for B.
• a proof for A ∨B is a proof for A or a proof for B.
• a proof for A → B is a construction which transforms any proof of A to a proof
for B.
• a proof for ¬A is a construction which transforms any proof of A to a proof for
⊥.
• ⊥ does not have any proof.

Clearly, what we presented as the BHK interpretation is just an informal in-
terpretation and we need to find its exact formalization if we want to use it as
a mathematical tool. For instance, if we want to establish an argument which
shows that Heyting’s formalization of IPC is an adequate formalization of intu-
itionistic viewpoint, we have to prove the soundness and completeness of IPC
with respect to the BHK interpretation and this obviously needs an exact for-
malizion. Now, to formalize the interpretation, we firstly need a formalization
of the concept of proof. Based on the extensive works in proof theory that have
been done so far, it seems quite possible to find an appropriate formalization of
the concept of proof and hence of the BHK interpretation. But, unfortunately,
despite all the attempts that have been made, the BHK interpretation has not
been formalized so far (for an extensive history of the problem see [2]). Why does
this natural and simple interpretation resist formalization? To find an answer to
this question, let us review one of the key properties of the interpretation. Think
of a proposition A → B. Its proof is a construction that transforms any proof of
A to a proof of B. It is clear that this construction would be a meta-proof and
not just a proof, because it talks about proofs and therefore it should belong to
the meta-language of A and B. In other words, we could claim that the act of

2

introducing an implication increases the layer of the meta-language which we are
arguing in. Therefore, in BHK interpretation all levels of our meta-languages are
involved and this is the reason why this interpretation is so complex to formalize.
Since we need to formalize the meaning of proof, we have to extend our task to
find a meaning of a proof at any level of the meta-languages.

There are two different approaches to implement this idea. In the first ap-
proach, we could be faithful to the intuitionistic paradigm and find an intuition-
istically valid interpretation of the proofs. However, in the second approach we
could change our viewpoint and construct a bridge to find an appropriate classical
interpretation of the concept of a proof to formalize the BHK interpretation. The
first approach is Heyting’s approach and the second one is Kolmogorov’s. At first
glance, the first approach seems very natural to try but there is a huge problem
there; a conceptual vicious circle which forces us to understand the semantics of
the paradigm, the BHK interpretation, in terms of itself and it makes the whole
process very complicated. We want to emphasize that this vicious circle does
not mean that the first approach is philosophically invalid, but it just shows how
complex it could be. (Think of classical logic and its semantics which is based
on the classical meta-theory. This is an obvious vicious circle, but these kinds
of vicious circles are the inherent properties of any paradigm in the philosophy
of mathematics and we have to deal with them.) In this chapter we follow the
second approach and interpret all proofs as the classical proofs in different layers
of meta-languages. But this is not an easy task to do and in the forthcoming part
of the Introduction we will investigate the problems in this approach.

The last thing we want to mention here is that what we are going to formalize,
is actually an implicit version of the BHK interpretation, instead of the original
one. In the original interpretation we interpret all the connectives as operations
on explicitly specified proofs. But we could somehow eliminate the proofs from
the interpretation and just talk about the provability of a sentence. For instance,
the disjunction case in the original BHK interpretation transforms to the following
one: A∨B is provable if A is provable or B is provable. The problem here, is the
case of implication which is not reducible to a simpler one. In order to solve this
problem, we need a primitive connective to formalize the concept of provability.
A role which would be played by the connective “box” in modal logics and this
is one of the most important contributions to the problem, which was made by
Kurt Gödel. Now, Gödel’s contribution.

Gödel’s Translation

In 1933 [12], Gödel introduced a provability interpretation of IPC that can be
seen as an implicit version of the well-known BHK interpretation of the intu-
itionistic logic. By this interpretation he could justify the fact that Heyting’s
formalization of IPC is sound and complete for its intended semantics which is
the BHK interpretation. Let us review some steps of his work.

1. Giving a proof interpretation: Before giving any provability interpretation
of IPC, we should explain our intention of the concept of provability and the
properties that we want to have. As you expect, Gödel began his work exactly

3

from this point. He used the language of modal logics, in which the symbol
“□” is interpreted as a provability predicate. In the next step, he formalized the
expected properties of this provability predicate by some axioms which make up
the well-known modal system S4. Notice that in contrast with using a concrete
interpretation of provability, he used a theory for formalizing this concept (S4).
In fact, his system just characterizes the properties of our intuitive provability
predicate by some formal system, and is totally silent about its real nature.
After this introduction, we are ready to give the definition of his interpretation.
Consider the translation function b : L → L□ as follows:
L and L□ are the languages of IPC and S4 respectively. 1

(i) pb = □p and ⊥b = □⊥

(ii) (A ∧B)b = Ab ∧Bb

(iii) (A ∨B)b = Ab ∨Bb

(iv) (A → B)b = □(Ab → Bb)

(v) (¬A)b = □(Ab → □⊥)

It is clear that Ab is the implicit BHK interpretation of A. In fact, the defini-
tion of b is the natural paraphrase of the original BHK interpretation in terms of
provability instead of proofs.
It is time to investigate the soundness-completeness property of the interpreta-
tion.

2. Soundness and Completeness: Consider the following theorem:

Theorem 1.1.1. For any proposition A ∈ L, IPC ⊢ A iff S4 ⊢ Ab.

Proof. For the complete investigation of this theorem and some related results2

see [12].

We have the system S4 which formalizes what we expect from a provability
predicate and based on the mentioned soundness-completeness result we can re-
duce the problem of finding a formalization of the implicit BHK interpretation
to the problem of finding a provability interpretation for S4. Therefore, our task
will be to find a concrete interpretation of this provability predicate (the connec-
tive box) in terms of classical provability in classical theories. But, consider the
fact that the problem of finding a provability interpretation for S4 has its own
importance itself, independent of its relation to the BHK interpretation.

1 In fact, our translation is different from the translation of the paper [12]. The differences
are the following: pb = p, ⊥b = ⊥, (A → B)b = □Ab → □Bb, and (¬A)b = ¬□Ab. While
both of these two translations basically do the same task, we use the first one, because it is
more compatible with our intuition of intuitionistic semantics and it is adequate for the systems
weaker than S4.

2While this theorem is the heart of Gödel’s work, he only stated it and left it without any
proof. The soundness part is an easy consequence of induction on the length of the proof, but
the completeness part was finally proved in 1947 by Tarski and McKinsey using the algebraic
semantics for S4.

4

The first attempt to find a concrete provability interpretation for S4 was made
by Gödel himself. In a very negative way, he showed that the natural expected
interpretation of the provability predicate is not sound for S4. Let us explain his
result in more detail:
The most natural choice to interpret the box operator is the provability predi-
cate of a formal theory 3. Let T be a formal system; therefore, the meaning of
□A would be PrT (A) such that PrT (·) is a provability predicate for T . (Notice
that in this case we suppose our formal system T to be sufficiently strong to be
able to formalize some parts of the meta-mathematics.) Consider the theorem
□¬□⊥ of S4. Its interpretation is PrT (¬PrT (⊥)) and if it were true we would
have T ⊢ ¬PrT (⊥) which contradicts Gödel’s second incompleteness theorem.
Therefore, we know that on the one hand, the seemingly natural way to formalize
the concept of proof and provability in the BHK interpretation is to fix a formal
system and interpret all the proofs as the proofs in that theory. And on the other
hand, the logic S4 is not sound with respect to this natural interpretation. This
is for the case of S4. However, we could claim that the natural formalization of
the BHK interpretation is not sound either. For instance, if you try to interpret
the sentence A∧ (A → B) → B of intuitionistic logic, you find out that it is more
or less the same as the modal formula □(□p → p) and hence intuitionistic logic
inherits the same problem. In sum, we can say that the natural formalization of
the BHK interpretation and also the natural interpretation of S4 do not work.
Based on these observations, we have intuition why finding a formalization of the
BHK interpretation is a difficult task.

There is a natural question to ask. If the theory S4 is intuitively valid and we
know that we can not interpret the box as a provability predicate in some formal
system, then what could be a natural provability interpretation of S4? Unfor-
tunately, despite a lot of attempts which have been made so far, this question
remains open. For instance, Kripke [15] introduced a provability interpretation
which is based on his Kripke models and just captures our provability intuition for
formulas without nested modalities. Or in [9], Buss introduced the “pure prov-
ability” which have the same problem with the nested modalities. Actually, the
only successful attempt to find a provability interpretation is Artemov’s “logic of
proofs” which is based on the idea of introducing all explicit proofs, investigating
the intended behavior of proofs in a theory (logic of proofs) and then interpreting
the box as the existence of the proof. These explicitly mentioned proofs could
empower us to avoid non-standard proofs which have the main role in Gödel’s
second incompleteness theorem and some of the counter-intuitive theorems in
meta-mathematics. In Section 9 we will come back to Artemov’s logic of proofs
and we will discuss its advantages and disadvantages.

As this long introduction shows, our main problem is to find a provability
interpretation for the modal logic S4 to formalize the BHK interpretation. In
this chapter, we will try to solve this problem and in the forthcoming part of the
Introduction we will sketch the idea of our semantics and our key results.

3The system T is formal iff the set of its consequences is recursively enumerable.

5

1.1.2 The Main Idea and the Main Results
Why the mentioned natural proof interpretation is not a solution to our problem?
One of the possible answers is the fact that this interpretation does not distinguish
between languages and meta-languages. Let us illuminate this fact by an example.
Suppose p is an atom. What should be an intended interpretation of p? p is an
atomic sentence about the real world, it is just a description of the world and this
description is in the first level. But how about □p? The intended interpretation
of this formula is the provability of p in some theory. But, what is important
here, is the level of the theory and the level of this sentence. Since p is a fact
about the real world, the theory in which p is proved, should be a first level
theory, i.e. a theory about the world. However, the sentence (□p) is not about
the real world; it is about provability and hence it should be characterized as
a sentence in the second level. Therefore, the intended meaning of this second
level sentence is PrT0(p). Let us ask about the interpretation of □□p. This is
about the provability of provability of p. The first box refers to a first level
theory T0. But the second box is about the provability of the provability, which
has higher order, and it means the provability should be investigated in a second
level theory, T1. The important thing is the fact that there is no reason to
assume that T1 = T0. Actually, our experience in mathematical logic shows that
it is genuinely important to distinguish the meta-theory and the object theory,
and in some crucial cases the power of the meta-theory should be more than the
theory itself. For instance, Gödel’s incompleteness theorems show that to answer
a very basic meta-mathematical question about the system, i.e. its consistency,
we need a more powerful meta-theory. Based on these sentiments, the natural way
to interpret boxes in a modal sentence is interpreting them in different theories
depending on the nesting level of the individual occurrence of a box. To formalize
this idea, we need two different ingredients. First, a model for the real world to
interpret atoms as facts about the world and second a hierarchy of theories which
plays the role of the hierarchy of the meta-theories. Hence, the intended model
would be (M, {Tn}∞

n=0) in which M is a classical model and Tn is the theory in
the n-th level of the hierarchy. (We call these models, the provability models.)
Moreover, we need a way of witnessing all boxes as the provability predicates of
these theories in a coherent way. This is the complex part of the formalization
and we will talk about it in the next section. But for now, just think of the
interpretation intuitively in the sense that any outer box should be interpreted
as the provability predicate of a stronger theory. Therefore, our main result for
modal logics is the following:

Theorem 1.1.2. (i) The logic K4 is sound and complete with respect to the
provability interpretation in all provability models.

(ii) The logic KD4 is sound and complete with respect to the provability inter-
pretation in consistent provability models, i.e. (M, {Tn}∞

n=0) where for any
n, M thinks that Tn is consistent and Tn+1 ⊢ Cons(Tn).

(iii) The logic S4 is sound and complete with respect to the provability interpre-
tation in all reflexive provability models, i.e. (M, {Tn}∞

n=0) where for any
n, M thinks that Tn is sound and Tn+1 ⊢ Rfn(Tn).

6

(iv) The logic GL is sound and complete with respect to the provability interpre-
tation in all constant provability models, i.e. (M, {Tn}∞

n=0) where for any
n, M thinks that Tn = T0.

(v) The logic GLS is sound and complete with respect to the provability inter-
pretation in all sound constant provability models, i.e. (M, {Tn}∞

n=0) where
for any n, M thinks that Tn is sound and Tn = T0.

(vi) No extensions of the logic KD45 are sound in any provability model.

Here are some remarks about this main theorem. First of all, it shows that the
use of a hierarchy of meta-theories instead of just one theory to witness the box
operators could define a brand new framework to capture different modal logics
depending on provability interpretation. In fact, it shows that modal logics could
be seen as the formal theories to describe the relation between the real world and
the theories in the hierarchy of meta-theories which we use; in other words, they
are theories for the whole discourse of provability. Moreover, in the case of the
logics K4, KD4 and S4 it shows that they describe the relation of the model
and meta-theories in a natural and expected way. For instance, in an informal
reading of the axiom □A → A in S4, we mean that our proofs are sound. And
this is exactly one of the conditions we put on the models to capture the logic
S4. It is similar for all other axioms, logics and conditions in the aforementioned
result.
Secondly, the result shows that if we restrict the whole hierarchy of meta-theories
to just one theory, we could reconstruct Solovay’s results for GL and GLS. There-
fore, it shows that our provability interpretation is a generalization of Solovay’s
interpretation and our main result is a generalization of Solovay’s results.

If we combine this provability interpretations with Gödel translation, we will
have different BHK interpretations with respect to different powers of meta-
theories. We have:

Theorem 1.1.3. (i) The logic BPC is sound and complete with respect to the
BHK interpretation in all provability models.

(ii) The logic EBPC is sound and complete with respect to the BHK interpre-
tation in all consistent provability models, i.e. (M, {Tn}∞

n=0) where for any
n, M thinks that Tn is consistent and Tn+1 ⊢ Cons(Tn).

(iii) The logic MPC is sound and complete with respect to the weak BHK in-
terpretation in all reflexive provability models, i.e. (M, {Tn}∞

n=0) where for
any n, M thinks that Tn is sound and Tn+1 ⊢ Rfn(Tn).

(iv) The logic IPC is sound and complete with respect to the BHK interpretation
in all reflexive provability models, i.e. (M, {Tn}∞

n=0) where for any n, M
thinks that Tn is sound and Tn+1 ⊢ Rfn(Tn).

(v) The logic FPL is sound and complete with respect to the BHK interpretation
in all constant provability models, i.e. (M, {Tn}∞

n=0) where for any n, M
thinks that Tn = Tm.

(vi) The logic CPC does not admit any BHK interpretations.

7

If you are not familiar with these propositional logics, we will define them in
the Preliminaries section. But for now, just assume that the propositional logics
BPC, EBPC, IPC and FPL are the propositional counterparts of the modal
systems K4, KD4, S4 and GL, respectively. Moreover, by weak BHK interpre-
tation, we informally mean the usual BHK interpretation without the consistency
condition. This is the last condition in the BHK interpretation which assumes
that there is no proof for ⊥. And finally, MPC, roughly is IPC without the Ex
Falso rule. The rule which makes possible to prove anything from the contradic-
tion.

Some remarks about this result are in order. First of all, it shows that there
are different BHK interpretations instead of just one. This observation somehow
contradicts the folklore belief and it is surprising. The reason is that the BHK
interpretation just defines the meaning of a connective in terms of the provabil-
ity in different levels of meta-languages. But, it is silent about what kinds of
commitments we impose on our meta-theories.

Therefore, we can impose different philosophically motivated conditions on
the behavior of meta-theories to capture different propositional logics, all of them
valid under the BHK interpretation. For instance, we can choose the minimal
possible commitment which means that there is no non-trivial condition on the
hierarchy of meta-theories. Then the BHK interpretation leads to the logic BPC.
On the other hand, if we suppose that our meta-theories are strong enough to
prove the reflection principle for lower theories and all the theories are sound,
then the BHK interpretation leads to the logic IPC. This observation shows a
key fact: There is a web of different intuitionistic logics according to the BHK
interpretation; the logics IPC and BPC are just two examples of these intuition-
istic logics and both of them are philosophically valid. In sum, we have to talk
about intuitionistic logics instead of the intuitionistic logic.
Secondly, the result shows that our framework of provability interpretations can
capture different propositional logics and just like the case of modal logics, we are
able to say that propositional logics are logics to describe the behavior of the real
world and the hierarchy of meta-theories. This formalizes the intuitionist claim
that intuitionistic mathematics is a way to talk about proofs and proofs only.
Thirdly, it is possible to define different kinds of Gödel’s translation. Hence, it is
possible to capture different propositional logics via these different translations.
But it is important to consider that the translation we used in the above result
is the valid translation to formalize the BHK interpretation and those different
kinds of translations may not be rooted in the usual BHK interpretation. How-
ever, they are still provability interpretations and could be useful.

1.2 Preliminaries
In this section we will introduce some of the preliminaries that we need in the
following sections. First of all, we will introduce the sequent calculi for the modal
logics K4, KD4 and S4. Then we will introduce some propositional logics such
as BPC, MPC and IPC as the propositional counterparts of some of the modal
logics and finally we will state the Solovay’s completeness results.

8

1.2.1 Sequent Calculi for Modal Logics
Consider the following set of rules:
Axioms:

A ⇒ A ⊥ ⇒

Structural Rules:
Γ ⇒ ∆(wL)

Γ, A ⇒ ∆
Γ ⇒ ∆(wR)

Γ ⇒ ∆, A

Γ, A,A ⇒ ∆
(cL)

Γ, A ⇒ ∆
Γ ⇒ ∆, A,A

(cR)
Γ ⇒ ∆, A

Γ0 ⇒ ∆0, A Γ1, A ⇒ ∆1
(cut)

Γ0,Γ1 ⇒ ∆0,∆1

Propositional Rules:
Γ0, A ⇒ ∆0 Γ1, B ⇒ ∆1

∨L

Γ0,Γ1, A ∨B ⇒ ∆0,∆1

Γ ⇒ ∆, Ai
∨R (i = 0, 1)

Γ ⇒ ∆, A0 ∨ A1

Γ, Ai ⇒ ∆
∧L (i = 0, 1)

Γ, A0 ∧ A1 ⇒ ∆
Γ0 ⇒ ∆0, A Γ1 ⇒ ∆1, B

∧R

Γ0,Γ1 ⇒ ∆0,∆1, A ∧B

Γ0 ⇒ A,∆0 Γ1, B ⇒ ∆1
→ L

Γ0,Γ1, A → B ⇒ ∆0,∆1

Γ, A ⇒ B,∆
→ R

Γ ⇒ ∆, A → B

Γ ⇒ ∆, A
¬L

Γ,¬A ⇒ ∆
Γ, A ⇒ ∆

¬R

Γ ⇒ ∆,¬A
Modal Rules:

Γ,□Γ ⇒ A
□4R

□Γ ⇒ □A
Γ,□Γ ⇒

□DR

□Γ ⇒
□Γ ⇒ A

□SR

□Γ ⇒ □A
Γ, A ⇒ ∆

□L Γ,□A ⇒ ∆

The system G(K4) is the system that consists of the axioms, structural rules,
propositional rules and the modal rule □4R. G(KD4) is G(K4) plus the rule
□DR and finally, G(S4) is the system G(K4) when we replace the rule □4R by
□SR and add the rule □L. All of these systems have the cut elimination property.
(See [16]).

1.2.2 Propositional Logics
The next ingredient is the propositional counterparts of the usual modal logics.
The intuitionistic logic IPC and the minimal logic MPC are the well-known log-
ics in this area, but there are also some weaker systems which are very interesting
in terms of the provability interpretation. For instance, we can mention the basic
propositional logic BPC and the formal propositional logic FPL defined by A.
Visser in [22] or the extended basic propositional logic EBPC defined by M.
Ardeshir and B. Hesaam in [1]. To define these logics, consider the following set
of rules:

9

Propositional Rules:

A B
∧I

A ∧B
A ∧B

∧E

A
A ∧B

∧E

B

A
∨I

A ∨B
B

∨I

A ∨B A ∨B

[A]
D
C

[B]
D′

C
∨E

C
[A]
D
B

→ I

A → B

⊥
⊥
A

Formalized Rules:

A → B A → C(∧I)f

A → B ∧ C
A → C B → C(∨E)f

A ∨B → C

A → B B → Ctrf

A → C

Moreover, consider the following set of rules:

A ¬A
C

⊥
A A → B

R

B

D

A ∨ ¬A
(A ∧ (A → B)) → B

L

A → B

The logic BPC is defined as the system which consists of the propositional rules
and the formalized rules. Then logic EBPC defined as BPC + C, logic FPL
is defined as BPC + L, IPC is defined as BPC + R, MPC is defined as IPC
without ⊥ rule, and finally CPC is defined as IPC +D.

Remark 1.2.1. Consider the following rules:

⊤ → ⊥
C′

⊥
⊤ → A

R′

A
(⊤ → A) → A

L′

⊤ → A

It is possible to define EBPC as BPC + D′; IPC as BPC + R′ and FPL
as BPC + L′. It is obvious that D′, R′ and L′ are special cases of D, R and L,
respectively. Therefore it remains to show that D′, R′ and L′ can simulate D, R
and L, respectively. The following proofs show that it is the case:

A
⊤ → A A → ⊥

⊤ → ⊥
C′

⊥

A
⊤ → A A → B

⊤ → B
R′

B

10

A → ⊤

[⊤ → (A → B)]2
[A]1

⊤ → A

⊤ → (A ∧ (A → B)) [(A ∧ (A → B)) → B]3
⊤ → B

A → B→ I2
(⊤ → (A → B)) → (A → B)

⊤ → (A → B)
(∗)

A → B→ I1
A → ((A → B))

A → (A ∧ (A → B)) [(A ∧ (A → B)) → B]3
(A → B)

Notice that the double lines mean simple sub-proofs that we omit and (∗) is the
sub-proof which proves

A, (⊤ → (A → B)), ((A ∧ (A → B)) → B) ⊢ A → B

1.2.3 Solovay’s Theorems
In this subsection we will mention the Solovay’s seminal arithmetical complete-
ness theorems. (See [20] and [7].) They will be needed to prove some of our
completeness theorems in the next sections. Note that in the case of GL we will
state the uniform version of the completeness theorem which will have a crucial
role in our proofs.

Definition 1.2.2. Assume that IΣ1 ⊆ T is a Σ1-sound arithmetical theory. By
an arithmetical substitution σ we mean a function from the atomic formulas in
the modal language to the set of arithmetical sentences. And if A ∈ L□ is a modal
formula, by Aσ we mean an arithmetical sentence resulted by substituting atoms
by σ, and interpreting boxes as the provability predicate of T .

Theorem 1.2.3. (i) (First Theorem) If GL ⊢ A then for all arithmetical sub-
stitutions σ, IΣ1 ⊢ Aσ. Moreover, there is an arithmetical substitution ∗
such that for all modal formulas A, if T ⊢ A∗, then GL ⊢ A.

(ii) (Second Theorem) GLS ⊢ A iff for all arithmetical substitutions σ, N ⊨ Aσ.

1.3 Provability models
In this section we will introduce a provability model as a formalization of the
intuitive combination of a model and a hierarchy of theories. Then, we will
define the satisfaction relation between modal formulas and provability models.
And as a conclusion, we will justify our notion of provability interpretation.

1.3.1 Definitions and Examples
Suppose that we have a modal formula A, and we want to interpret any box in the
formula as a provability predicate. Note that when you have two boxes in A such
that one box is in the scope of the other box, our intuition forces us to accept that

11

the outer box talks about the provability in the meta-theory while the inner box is
just capturing the provability in the lower theories. Therefore, we can claim that
the natural model for the provability interpretation of modal logics is a pair of
one first order structure to interpret the atoms of the language, and a hierarchy of
theories to play the role of a hierarchy of meta-theories. Moreover, we choose our
structure and our theories as a model and theories for arithmetic, respectively,
because in these theories we have a natural way of coding the language, the meta-
language, the meta-meta-language and so on. Furthermore, we suppose that all
of our theories include IΣ1 to have enough power to formalize the basic meta-
mathematics of the theories. And, for the same reason we assume M ⊨ IΣ1,
because we want to have the true meta-mathematical properties obviously.

Definition 1.3.1. A provability model is a pair (M, {Tn}∞
n=0) where M is a model

of IΣ1 and {Tn}∞
n=0 is a hierarchy of arithmetical r.e. theories such that for any

n, IΣ1 ⊆ Tn ⊆ Tn+1 provably in IΣ1.

We define expansions of a modal formula.

Definition 1.3.2. E(A), the set of all expansions of A, is inductively defined as
follows:

• If A is an atom, E(A) = {A}.

• If A = B ◦ C, then E(A) = {D ◦ E | D ∈ E(B) and E ∈ E(C)} for
◦ ∈ {∧,∨,→}.

• If A = ¬B, then E(A) = {¬D | D ∈ E(B)}.

• If A = □B, then E(A) = {□⋁k
i=1 Di | ∀1 ≤ i ≤ k, Di ∈ E(B)}.

Moreover, if Γ is a sequence of modal formulas, by a sequence of expansions of
Γ, we mean a sequence such that for any formula in Γ, it has at least one of its
expansions and at most finitely many of them. We will denote these sets by Γ̄.

Informally speaking, an expansion of a formula A is a formula resulted by
replacing any formula after a box with disjunctions of the expansions of the
formula.

Example 1.3.3. For instance, the formula □(¬□(□p∨□p) ∨ ¬□□(p∨ p)) is an
expansion of the formula □¬□□p

So far, we have justified the Definition 1.3.1. Let us investigate the intuitive
meaning of the witnesses, as well. We claim that a natural interpretation is based
on the interpretion of the outer boxes as meta-theories of the inner boxes. For
simplicity, we call this kind of interpretation ordered interpretation. Therefore,
to have an ordered interpretation we need to interpret all of the boxes in A as the
provability predicates of the theories in an ordered way. And, since for any theory
we have a number which shows its layer in the hierarchy, it is enough to assign
a natural number to a box. Consider that if we assign n to a box, the intended
meaning is that the interpretation of that box is the provability predicate for the
theory Tn. This role is played by the concept of witness. In fact, a witness is just
an assignment for the boxes in an ordered way.

12

Notation 1.3.4. If wis are sequences of natural numbers, by (w1, w2, . . . , wn) we
mean the concatenation of wis.

Definition 1.3.5. Let w be a sequence of natural numbers and A be a modal for-
mula. Then the relation w ⊩ A, which means w is a witness for A, is inductively
defined as follows:

• If A is an atom, () ⊩ A.

• If A = B ◦ C, then (w1, w2) ⊩ A if w1 ⊩ B and w2 ⊩ C for ◦ ∈ {∧,∨,→}

• If A = ¬B, then w ⊩ A if w ⊩ B.

• If A = □B, then (n,w) ⊩ A if w ⊩ B and n > m for all m which appear
in w.

Moreover, if Γ is a sequence of modal formulas, by a witness for Γ, we mean a
sequence of witnesses such that any witness wi in the sequence is a witness for
Ai in Γ.

Informally, a witness for a formula A is a sequence of numbers which we assign
to occurrences of the boxes in A such that the number for outer box is greater
than all numbers of inner boxes. This condition formalizes the idea that any
outer box refers to the meta-theories in the hierarchy.

Example 1.3.6. For instance, w = (n,m, k, r) is a witness for □(p → q) ∨
□(¬□p → □q) if m > k, r.

The next definition is about evaluating a modal formula by an arithmetical
substitution for atoms and a witness for the boxes in the formula.

Definition 1.3.7. Let w be a witness for A and σ an arithmetical substitution
which assigns an arithmetical sentence to a propositional variable. And also let
(M, {Tn}∞

n=0) be a provability model. By Aσ(w) we mean an arithmetical sentence
which results by substituting the variables by the values of σ and interpreting any
box as the provability predicate of Tn if the corresponding number in the witness
for this box was n. The interpretation of boolean connectives are themselves.
Moreover, if Γ is a sequence of modal formulas Ai, and w = (wi)i is its witness,
by Γσ(w) we mean the sequence of Aσ

i (wi).

Example 1.3.8. For the witness and the formula A of the last example, Aσ(w)
would be PrTn(pσ → qσ) ∨ PrTm(¬PrTk

(pσ) → PrTr(qσ)).

We are ready to introduce the concept of the satisfiability of a formula in a
provability model.

Definition 1.3.9. A sequent Γ ⇒ ∆ is true in (M, {Tn}∞
n=0) when there are

sequences of expansions Γ̄ and ∆̄ of Γ and ∆, respectively, and witnesses u
and v for Γ̄ and ∆̄ respectively such that for any arithmetical substitution σ,
M |= Γ̄σ(u) ⇒ ∆̄σ(v). Moreover, we say that a sequent Γ ⇒ ∆ is true in a class
of models C, when there are uniform sequences of expansions and witnesses for all
models. In a more precise way, we write C ⊨ Γ ⇒ ∆, if there are sequences of ex-
pansion Γ̄ and ∆̄ and witnesses u and v such that for all arithmetical substitutions
σ and all provability models (M, {Tn}∞

n=0) in C, M |= Γ̄σ(u) ⇒ ∆̄σ(v).

13

Informally speaking, truth means the existence of expansions and witnesses
such that the interpretation of a formula (or sequent) becomes true for all arith-
metical substitutions.

Remark 1.3.10. Note that our definition of satisfiability allows us to use a
disjunction of finitely many expansions of the formula instead of the original
formula itself. In other words, if we want to show that (M, {Tn}∞

n=0) ⊨ A, we
could use finitely many expansions B1, B2, . . . , Bk for A and find a witness for⋁k

i=1 Bi. The same is true for the sequents.

Let us illuminate the Definition 1.3.9 with some examples.

Example 1.3.11. Let (N, {Tn}∞
n=0) be a pair where T0 = PA and for any n,

Tn+1 = Tn + Rfn(Tn). Based on the definition, this pair is obviously a provability
model. We want to show that the sentence □(□A → A) is true in the model. To
do this, we need some expansions of the formula and a witness for them. For
the expansions, just use the formula itself, and for a witness, first find a witness
for A and call it w; if n is a number greater than all the numbers in w, then
the sequence (n + 1, n, w, w) is a witness for □(□A → A). For any arithmetical
substitution σ, we have N ⊨ PrTn+1(PrTn(Aσ(w)) → Aσ(w)) since the theory Tn+1
can prove reflection for Tn. As you can see, the idea of introducing a hierarchy
to witness the boxes in modal sentences could kill the effect of Gödel’s second
incompleteness theorem.
Let us illuminate the importance of expansions with an example. Consider the
sentence ¬□(¬□A∧A). We want to show that this sentence is true in the above
mentioned provability model. (Note that this formula is provable in S4.) Pick a
witness w for the sentence A, a number n greater than all numbers in w and the
formula itself as its expansion. In this case we need two copies of the sentence,
therefore we have to find a witness for B = ¬□(¬□A∧A) ∨ ¬□(¬□A∧A). It is
easy to verify that the sequence (n+ 2, n+ 1, w, w, n+ 1, n, w, w) is a witness for
B. For any arithmetical substitution σ, we have

N ⊨ ¬Prn+2(¬Prn+1(Aσ(w)) ∧ Aσ(w)) ∨ ¬Prn+1(¬Prn(Aσ(w)) ∧ Aσ(w))

Because if we have both

Prn+2(¬Prn+1(Aσ(w)) ∧ Aσ(w))

and
Prn+1(¬Prn(Aσ(w)) ∧ Aσ(w))

then from the first part and the soundness of Tn+2 we have ¬Prn+1(Aσ(w)) and
from the second part and the fact that the provability predicate commutes with ∧,
we have Prn+1(Aσ(w)), which is a contradiction. Therefore, the sentence is true in
N. It is easy to see that if we want to show the truth of the sentence □(¬□(¬□A∧
A)), we should use the expansion □B of the formula. This observation shows the
importance of the expansions, but is it possible to avoid them?

Example 1.3.12. In this example we want to argue that some sentences do not
have a witness in some provability models. Finding these kinds of examples is not
hard. It is enough to think of formulas such as p or □p. However, what we want

14

to show here is finding an example to show the importance of the expansions in
the definition. Think of the provability model of the last example and consider
the formula ¬□(¬□p ∧ p). We showed that if we use two different copies of
the formula, then the disjunction of those different copies have a witness in the
provability model. We want to show that if we just use one copy, it is impossible
to witness the formula. Assume that w = (n,m) is a witness for ¬□(¬□p ∧ p)
in the above mentioned provability model. Then since w is a witness, we have
n > m. On the other hand, we know that for any arithmetical substitution, we
should have N ⊨ ¬Prn(¬Prm(pσ) ∧ pσ). Use the arithmetical substitution which
sends p to Cons(Tm). Therefore, we have

N ⊨ ¬Prn(¬Prm(Cons(Tm)) ∧ Cons(Tm))

Based on the formalized Gödel’s second incompleteness theorem

IΣ1 ⊢ Cons(Tm) → ¬Prm(Cons(Tm))

since IΣ1 ⊆ Tm+1 and Tm+1 ⊢ Cons(Tm) we have

Tm+1 ⊢ ¬Prm(Cons(Tm))

hence N ⊨ Prm+1(¬Prm(Cons(Tm))) and since Tm+1 has the reflection principle
for Tm, N ⊨ Prm+1(Cons(Tm)). Since n > m we have

N ⊨ Prn(¬Prm(Cons(Tm))) ∧ Prn(Cons(Tm))

which contradicts our assumption. As you can see, our provability interpretation
is sensitive to the use of expansions and also to the numbers of copies of expan-
sions. In the following discussion, we will argue that this property is an inherent
property of the informal intuition behind modal formulas.

1.3.2 Discussion
One of the complexities of our provability interpretation is the use of expansions
and in this discussion, we want to justify its role. But before that, we need some
observations. First of all, it seems that if we use the intuitive interpretation of
the boxes as the provability predicates of different theories in the hierarchy of
theories, meta-theories, meta-meta-theories and so on, the natural provability
interpretation will be the following:

A sentence A is true in a provability model (M, {Tn}∞
n=0), if there is a witness w

for A such that for all σ, M |= Aσ(w).

Which informally says that if you could witness the boxes in the formula A in
the provability model, then it is true. Note that this definition is simpler than
ours and does not use any kind of expansions. Let us concentrate on S4 as the
theory for our intuitive provability, and temporarily use the above definition as
the definition of the truth. To interpret all axioms of the system S4 it is easy to
see that we need two natural conditions on our model. First of all, Tn+1 should
be powerful enough to prove the reflection of the theory Tn and secondly, all
Tns should be sound with respect to our model M (This is what the nature of

15

provability in S4 assumes; think of □(□A → A) and □A → A, respectively.)
The sentence ¬□(¬□A ∧A) is a theorem of S4 and we expect that it should be
true in any model with those two conditions. But in Example 1.3.12 we showed
that there is no witness for the sentence and hence, with the definition above,
the sentence is not true. The reason is the different roles of an occurrence of a
box in a modal formula. To elucidate this point, let us investigate the intuitive
proof of the sentence ¬□(¬□A∧A) in S4. The proof is a proof by contradiction.
Assume □(¬□A ∧ A), then because all theorems are true (axiom T), we have
¬□A ∧ A and hence ¬□A. On the other hand, since the provability commutes
with the conjunction (a consequence of the axiom K), we have □A, which is a
contradiction. Consider the fact that the box in ¬□A is inherited from the inner
box in ¬□A∧A and the box in □A is inherited from the outer box in □(¬□A∧A).
Therefore, to reach the contradiction, we need these two boxes refer to one layer
in the hierarchy of theories which is impossible because the inner one is the theory
and the other is the meta-theory and it is impossible to have Tn+1 = Tn, because
Tn+1 should prove the reflection for Tn.
What these considerations show, is actually the fact that one box in S4 could
have different roles. (In the above sentence, the outer box has two different
roles, one as the meta-theory of the inner box and the other, as the theory itself.)
Therefore, the natural way to interpret these boxes is an approach which captures
the different roles of a box at the same time, and this is not possible with the
above simplified semantics, because it is obviously based on the assumption that
any box has just one role which needs just one witness. Here is where we need
expansions. In fact, the intended purpose of the expansions is using different
copies of the formula, first to allow several attempts at witnessing a single formula
and then to capture different roles of one box at once. (See Example 1.3.11 to
find out how this technique works.)
There is another question to ask. Why do we need this kind of iterative expansion
method and why is just the simple disjunction of the formula not enough? The
answer is that for any fixed role available for one box, it is also possible to
have different roles for inner boxes. Therefore, after any box you need a new
disjunction. (Think of the sentence □(¬□(¬□A∧A)).) This is just what we call
expansions.
As a conclusion for this discussion, let us compare our situation here in modal
logic with first order logic. In first order logic, if we have a theorem of the
form ∀x∃yA(x, y) where A(x, y) is quantifier-free and if we want to witness y,
Herbrand’s theorem gives the answer; we can witness y by terms in our language.
However, we know that one term is not enough. The reason is simple. The
existentially quantified y could have different values (roles) and these different
values (roles) can be captured by a disjunction of sentences A(x, t(x)) for some
finite possible set of terms t(x). The situation in modal logic is the same. We
read boxes as existence of theories and we want to witness them. Since there are
different roles for any box, we need a disjunction to capture these different roles.
In other words, we could interpret the expansions as a kind of Herbrandization
of the modal formulas.

16

1.4 The Logic K4
Intuitively, the logic K4 is sound with respect to all kinds of provability inter-
pretations. The reason is very simple. K4 has two important modal axioms;
the axiom K which means that the provability predicate is closed under modus
ponens, and the axioms 4 which means that the provability of a sentence is also
provable. The first axiom is a very easy fact and all strong enough meta-theories
can prove it. On the other hand, if our meta-theory is sufficiently strong (Σ1-
complete), the axiom 4 would be also easily proved. Consider the fact that these
axioms are not only true but also provable and it justifies the use of the necessi-
tation rule. Hence, K4 is valid in all provability interpretations. In this section
we want to formalize this intuitive argument and show that the logic K4 is sound
and also strongly complete with respect to the class of all provability models.

1.4.1 Soundness
If we denote the class of all provability models by PrM, we have:

Theorem 1.4.1. (Soundness) If Γ ⊢K4 A then PrM ⊨ Γ ⇒ A.

Proof. To prove the soundness theorem for K4, we will use the cut-free sequent
calculus for K4 i.e. G(K4). To simplify the proof, we use the following conven-
tions: Firstly, if Φ and Ψ are sequences of arithmetical sentences and T is an
arithmetical theory, by T ⊢ Φ ⇒ Ψ, we mean T ⊢ ⋀ Φ → ⋁ Ψ. Secondly, without
loss of generality, we assume that the main formulas in all of the rules, except
the exchange rule, are just the rightmost formulas in the sequent. We just use
this assumption for the sake of brevity and clarity of the proof.
We want to prove the following claim by induction on the length of the proof in
G(K4).

Claim. If Γ ⇒ ∆ is provable in G(K4), then there are sequences of ex-
pansions Γ̄ and ∆̄ and witnesses w1 and w2 for Γ̄ and ∆̄ respectively such
that for any provability model (M, {Tn}∞

n=0) and any arithmetical substitution
σ, IΣ1 ⊢ Γ̄σ(w1) ⇒ ∆̄σ(w2).

1. The case of axioms and structural rules. For the axiom A ⇒ A, it is enough
to use A as its expansion in both sides and just an arbitrary witness for A in both
sides, again.

For the exchange rule, just use the same expansions and witnesses after the
application of the corresponding exchange.

For the weakening rule, if we prove Γ, A ⇒ ∆ from Γ ⇒ ∆, by IH, we could
find expansions Γ̄, ∆̄ and witnesses w1 and w2. Pick an arbitrary witness w for A.
For Γ, A ⇒ ∆, use the sequences Γ̄, A and ∆̄, and for the witnesses use (w1, w)
and w2. It is easy to show that IΣ1 ⊢ Γ̄σ(w1), Aσ(w) ⇒ ∆̄σ(w2). The case for
the right weakening is the same.

17

For the contraction rule, if we prove Γ, A ⇒ ∆ from Γ, A,A ⇒ ∆, then by IH,
there are sequences of expansions {Γ̄, {Āi1}r

i=0, {Āj2}s
j=0} and ∆ and also wit-

nesses w1 = (u, (vi1)r
i=0, (vj2)s

j=0) and w2. For the sequent Γ, A ⇒ ∆, use the
sequences of expansions {Γ̄, {Āi1}r

i=0, {Āj2}s
j=0} and ∆̄ and for the witnesses just

use the same witnesses. In this case, because of the use of a finite set of different
expansions instead of just one expansion, we can say that the semantics absorbs
the contraction rule. The case for the right contraction is the same.

2. The case of propositional rules. In this case we just prove the case
that the last rule is R∧; the other rules are similar and the argument is the
same. If Γ1,Γ2 ⇒ ∆1,∆2, A ∧ B, is proved from Γ1 ⇒ ∆1, A and Γ2 ⇒
∆2, B then by IH we have the sequences of expansions Γ̄1, {∆̄1, {Āi}r

i=0}, Γ̄2,
{∆̄2, {B̄j}s

j=0} and witnesses w1 and w2 = (u, (xi)r
i=0) and w′

1, w′
2 = (u′, (yj)s

j=0).
For the sequent Γ1,Γ2 ⇒ ∆1,∆2, A∧B use the sequences of expansions {Γ̄1, Γ̄2},
{∆̄1, ∆̄2, {Āi ∧ B̄j}i=r,j=s

i=0,j=0} and witnesses (w1, w
′
1), (u, u′, ((xi, yj))i=r,j=s

i=0,j=0).

3. The case of modal rules. If □Γ ⇒ □A is proved from Γ,□Γ ⇒ A, then
by IH, we have the sequences of expansions {Γ̄1,□Γ2} and {Ai}r

i=0 and witnesses
w1 = ((uj)s

j=0, (vk)t
k=0) and w2 = (xi)r

i=0 where uj is a witness for the jth formula
in Γ̄1 and vk is a witness for the kth formula in □Γ2. Pick number n greater than
all the numbers in w1 and w2. For the sequent □Γ ⇒ □A use the sequences of ex-
pansions {□Γ1,□Γ2} and □

⋁r
i=0 Ai and for the witnesses use ((n, uj)s

j=0, (vk)t
k=0)

and (n, (xi)r
i=0). By IH, we know that for any arithmetical substitution σ,

IΣ1 ⊢
s⋀

j=0
Γ̄σ

1 (uj) ∧
t⋀

k=0
□Γσ

2 (vk) →
r⋁

i=0
Aσ

i (xi).

Since IΣ1 ⊆ Tn, we have

Tn ⊢
s⋀

j=0
Γ̄σ

1 (uj) ∧
t⋀

k=0
□Γσ

2 (vk) →
r⋁

i=0
Aσ

i (xi).

Therefore, by Σ1-completeness in IΣ1 we have

IΣ1 ⊢ Prn(
s⋀

j=0
(Γ̄σ

1 (uj) ∧
t⋀

k=0
(□Γσ

2 (vk))) →
r⋁

i=0
Aσ

i (xi)),

hence

IΣ1 ⊢ Prn(
s⋀

j=0
Γ̄σ

1 (uj)) ∧ Prn(
t⋀

k=0
□Γσ

2 (vk)) → Prn(
r⋁

i=0
Aσ

i (xi)).

By formalized Σ1-completeness of Tn in IΣ1 we have

IΣ1 ⊢
t⋀

k=0
□Γσ

2 (vk) → Prn(
t⋀

k=0
□Γσ

2 (vk))

and hence

IΣ1 ⊢
s⋀

j=0
Prn(Γ̄σ

1 (uj)) ∧
t⋀

k=0
□Γσ

2 (vk) → Prn(
r⋁

i=0
Aσ

i (xi)),

18

which is what we wanted to prove and this completes the proof of the claim.

For the proof of the soundness theorem, if Γ ⊢K4 A then there exists a finite
set ∆ ⊆ Γ such that ∆ ⊢K4 A. Therefore, G(K4) ⊢ ∆ ⇒ A. By the Claim there
are some expansions ∆̄ and {Ai}r

i=0 for ∆ and A, respectively and witnesses u and
{wi}r

i=0 such that for any arithmetical substitution σ, we have IΣ1 ⊢ ∆̄σ(u) ⇒⋁r
i=0 A

σ
i (wi). Since M ⊨ IΣ1, we have M ⊨ ∆̄σ(u) ⇒ ⋁r

i=0 A
σ
i (wi). Pick Γ̄ the

same as Γ after replacing the part of ∆ by ∆̄. Moreover, choose the witness v for
Γ̄ as an arbitrary expansion of u to Γ̄. Hence, M ⊨ Γ̄σ(v) ⇒ ⋁r

i=0 A
σ
i (wi) which

completes the proof of the soundness.

1.4.2 Completeness
For the completeness theorem, the idea is to reduce the completeness of K4
to the completeness of GL which is the well-known Solovay’s theorem. (See
Preliminaries and [20].) To do that, we need a translation from K4 to GL which
could transfer the provability behavior of K4 to the provability behavior of GL.

Definition 1.4.2. Let A be a modal formula with k occurrences of □ and let
Q = {qi}∞

i=0 be a sequence of atoms which are not used in A. Then, a translation
t based on Q for the modal sentence A, is a sequence of k numbers which assigns
natural numbers to boxes in A such that the number assigned to the outer box is
greater than all the numbers for the inner boxes. And At is defined as follows:

(i) If A is an atom, At = A.

(ii) (B ◦ C)t = Bt ◦ Ct for all ◦ ∈ {∧,∨,→}

(iii) (¬B)t = ¬Bt.

(iv) (□B)t = □(⋀n
i=0 qi → Bt) where n is the number assigned to the box in t.

Informally, if we interpret a box as the provability predicate for the theory S,
then the translation t is just changing the provability predicate of the theory S
to the provability predicate of the theory S + {q0, . . . , qn} where n is the number
that t assigns to that box. For instance, if t = (1, 2, 1) and A = □p → □□p, then
At will be the following modal formula:

□(q0 ∧ q1 → p) → □(q0 ∧ q1 ∧ q2 → □(q0 ∧ q1 → p)).

We want to show that this translation is complete, i.e.

Theorem 1.4.3. If GL ⊢ At for some translation t, then K4 ⊢ A.

The natural proof should be based on a technique of the transformation of
transitive Kripke models to conversely well-founded transitive Kripke models,
which is implemented by the following lemma.

Lemma 1.4.4. Let (K,R, V) be a finite transitive Kripke tree with clusters, A
a modal formula and t a translation. Then there is a finite transitive irreflexive
Kripke model (K ′, R′, V ′) such that for any node k ∈ K, there is a node k′ ∈ K ′

such that if k ⊨ A then k′ ⊨ At.

19

Proof. First of all, for all subformulas B of A, define the complexity of B, C(B),
as follows: If B is box-free, define C(B) = −1. Otherwise, define C(B) as the
maximum number assigned by t in B. Moreover, suppose that C(A) = n. To
simplify the proof, let us make some conventions. We will use I for clusters and
for any k ∈ K, by I(k) we mean the cluster of k. By a path p = (kα)M

α=0, we
mean a sequence of nodes in K such that for any α, (kα, kα+1) ∈ R and if all the
nodes of the path p belong to the cluster I, we write p ⊂ I. Moreover, we write
p ≺ p′, when p is a proper initial segment of p′. Finally, by e(p) we mean the
rightmost element of p, or in other words, the end point of p.

For any cluster I define X(I) as follows: If I consists of one irreflexive node
k, X(I) = {k} and if I consists of reflexive nodes, define X(I) as the subset of all
paths p ⊂ I with length less than or equal to n+ 2. The idea is simple. We want
to transform a transitive model to a nonreflexive transitive model. To accomplish
this, we will unwind the reflexive clusters by some paths of nodes in that cluster
and we will use variables in Q to refer to a copy of the node instead of itself,
when we check the truth of the modal formulas.

Define K ′ = ⋃
I X(I) and R′ = R1 ∪R2 where

R1 =
⋃

(k,l)∈R,I(k)̸=I(l)
{(a, b) | a ∈ X(I(k)) and b ∈ X(I(l))}

and
R2 =

⋃
I

{(p, p′) | p ≺ p′; p, p′ ⊂ I}.

And finally, define

V ′(r) = {p ∈ K ′ | e(p) ∈ V (r)} ∪ {k | k ∈ V (r) and k is irreflexive}

for all atoms r in A, and

V (qi) = {k | k is irreflexive} ∪ {p | |p| ≤ n+ 2 − i}.

Informally speaking, K ′ is just the set K where you replace each reflexive clus-
ter I with all paths of length less that or equal to n + 2 of nodes in I; R′ and
V ′ are the natural relation and valuation induced by R and V , respectively and
qi is true in all irreflexive nodes and also in all paths of nodes in reflexive clus-
ters with length bounded by n+2− i. We want to prove the following two claims.

Claim.1. The model (K ′, R′, V ′) is a finite transitive irreflexive Kripke model.

The finiteness follows from the definition. For the transitivity, suppose that
a, b, c ∈ K ′ and (a, b) ∈ R′ and (b, c) ∈ R′. Then, there are two cases. The
first case is when a and b come from the same cluster. Hence, by definition, this
cluster should be a reflexive cluster. Therefore, a and b are paths in this cluster
and a ≺ b. If c comes also from this cluster, we will have b ≺ c and since ≺ is
transitive, we have a ≺ c and hence (a, c) ∈ R′. But, if c comes from another
cluster, then the cluster of c should be above the cluster of b and hence it is also
above the cluster of a which is the same as b’s and then by definition we have

20

(a, c) ∈ R′.
The proof of the second case, which is when a and b come from different clusters,
is similar to the proof of the first case.

For the irreflexivity, suppose (a, a) ∈ R′. If a is an irreflexive node in K, then
it is impossible, by the definition of R′, to have (a, a) ∈ R′. If a comes from a
reflexive cluster, then again by the definition of R′, the path a should be a proper
segment of itself which is impossible.

Claim.2. For all subformulas B of A, if k ⊨ B, then⎧⎨⎩∀p, |p| ≤ n+ 1 − C(B) ∧ e(p) = k, p ⊨ Bt if k is reflexive.
k ⊨ Bt if k is irreflexive.

and if k ⊭ B then⎧⎨⎩∀p, |p| ≤ n+ 1 − C(B) ∧ e(p) = k, p ⊭ Bt if k is reflexive.
k ⊭ Bt if k is irreflexive.

To prove the claim, we use induction on B.

1. Atomic case. If B is an atom, the claim easily follows from the definition
of V ′.

2. If B = C ∧ D and k ⊨ C ∧ D then k ⊨ C and k ⊨ D. If k is ir-
reflexive, then by IH, the claim holds. If k is reflexive, then by IH, for all p
such that |p| ≤ n + 1 − C(C) and e(p) = k, we have p ⊨ Ct. And also for
all p such that |p| ≤ n + 1 − C(D) and e(p) = k, we have p ⊨ Dt, and since
C(C ∧D) = max{C(C), C(D)}, then for all p such that |p| ≤ n+ 1 −C(C ∧D)
and e(p) = k, we have p ⊨ Ct ∧Dt.
If k ⊭ C ∧D, then k ⊭ C or k ⊭ D. W.l.o.g. assume k ⊭ C. If k is irreflexive, the
claim is obvious. If k is reflexive, then by IH, for all p such that |p| ≤ n+1−C(B)
and e(p) = k we have p ⊭ Ct, and again since C(C ∧D) = max{C(C), C(D)} we
have ∀p, |p| ≤ n+ 1 − C(B ∧D) ∧ e(p) = k, p ⊭ (C ∧D)t.

3. If B = ¬C, then for irreflexive k, the claim is obvious from IH. If k is
reflexive and k ⊨ ¬C, then k ⊭ C, and by IH, ∀p, |p| ≤ n + 1 − C(C) p ⊭ Ct.
Therefore, ∀p, |p| ≤ n + 1 − C(C) p ⊨ ¬Ct and since C(C) = C(¬C) we have
what we wanted. The other case is the dual of the first case.

4. The case for disjunction and implication is the same as the cases for con-
junction and negation and we omit them here.

5. The modal case. This is the most important and the most complex part of
the proof.

5.1. If B = □C and k ⊨ □C then for all l which (k, l) ∈ R, l ⊨ C. Define
m = C(B).
5.1.1. If k is irreflexive, we know that the nodes above k in K ′ are of two forms.

21

The l’s which are irreflexive and (k, l) ∈ R or the p’s where p comes from a
cluster I above k and e(p) = l. For the first kind of nodes, by IH we know that
l ⊨ Ct, therefore l ⊨ ⋀m

i=0 qi → Ct. If we were in the second case, we know that
l ⊨ C and again by IH, for all p such that |p| ≤ n + 1 − C(C) and e(p) = l, we
have p ⊨ Ct. Therefore, for all p, |p| ≤ n + 1 − C(C) we have p ⊨ Ct and hence
p ⊨

⋀k
i=0 qi → Ct. If |p| > n + 1 − C(C), since C(C) < C(B) = m, we have

|p| > n+ 2 −m, and then by the definition of the valuation we know that p ⊭ qm

and hence p ⊭ ⋀m
i=0 qi and thus p ⊨ ⋀m

i=0 qi → Ct. Therefore, for all p above k, we
have p ⊨ ⋀m

i=0 qi → Ct. Since for all nodes above k, ⋀m
i=0 qi → Ct is true, we have

k ⊨ □(⋀m
i=0 qi → Ct) which means k ⊨ (□C)t.

5.1.2. If k is reflexive from the cluster I, pick p such that |p| ≤ n + 1 − m.
We want to show that p ⊨ □(⋀m

i=0 qi → Ct). We know that all nodes above p
are of the form irreflexive l’s or p′ ⊂ J where J is a cluster above I or p′ ⊂ I
where p ≺ p′. For the first and second kinds, by a proof similar to that of 5.1.1,
we can show that l ⊨ ⋀m

i=0 qi → Ct and p′ ⊨
⋀m

i=0 qi → Ct. For the third case, if
|p′| > n+ 2 −m, then p′ ⊭ qm and hence p′ ⊭ ⋀m

i=0 qi and thus p′ ⊨
⋀m

i=0 qi → Ct.
If |p′| ≤ n + 2 − m then since C(C) ≤ m − 1 we have |p′| ≤ n + 1 − C(C). On
the other hand, k ⊨ □C, hence all nodes in I satisfy C, and specially we have
e(p′) ⊨ C, by IH, and by the fact that |p′| ≤ n + 1 − C(C), we have p′ ⊨ Ct

and therefore ⋀m
i=0 qi → Ct. We proved that at all nodes above p ∈ K ′, we have⋀m

i=0 qi → Ct hence p ⊨ □(⋀m
i=0 qi → Ct) which is what we wanted.

5.2. If B = □C and k ⊭ □C, then there is a node l such that l ⊭ C. Define
C(B) = m.
5.2.1. If k is irreflexive, we want to show that k ⊭ □(⋀m

i=0 qi → Ct). Note that
since (k, l) ∈ R, and k is irreflexive, then l ̸= k and it belongs to a cluster above
k. If l is irrefelexive then by IH, l ⊭ Ct and also since it is irreflexive, for all i,
l ⊨ qi; hence l ⊭ ⋀m

i=0 qi → Ct since l ̸= k and (k, l) ∈ R, (k, l) ∈ R′. Therefore,
k ⊭ □(⋀m

i=0 qi → Ct). If l is a reflexive node of the cluster I, then define p ⊂ I
as a path such that |p| = n + 2 − m and e(p) = l. Since C(C) ≤ m − 1 then
|p| ≤ n + 1 − C(C). By IH, p ⊭ Ct. (Consider that m is the complexity of a
boxed formula and therefore m ≥ 0, hence n+ 2 −m ≤ n+ 2 and it means such
a p exists.). Moreover, we know that p ⊨

⋀m
i=0 qi since |p| ≤ n + 2 − i for all

i ≤ m, therefore, p ⊭ ⋀m
i=0 qi → Ct. Since the cluster of k and the cluster of l are

different and (k, l) ∈ R, then (k, p) ∈ R′ and it means that k ⊭ □(⋀m
i=0 qi → Ct).

5.2.2. Consider the case that k is reflexive. In this case, if l belongs to a
cluster above k, then the proof is the same as 5.2.1. If the cluster of l and k are
the same (say I), we have the following construction: Pick p such that e(p) = k
and |p| ≤ n + 1 − m. We want to show that p ⊮ □(⋀m

i=0 qi → Ct). Pick p′ ⊂ I
such that e(p′) = l, p ≺ p′ and |p′| = n + 2 − m. (It is enough to extend p to a
path of length n + 2 − m ending at l. Note that n + 2 − m > n + 1 − m, which
guarantee the existence of an expansion with endpoint l possibly different from
k. Moreover, this length is less that n+ 2 and therefore p′ exists in our model as
a path). We know that C(C) ≤ m−1, hence |p′| ≤ n+1−C(C). By IH, p′ ⊭ Ct.
On the other hand, p ⊨

⋀m
i=0 qi since |p| ≤ n + 2 − i for all i ≤ m, therefore,

p ⊭ ⋀m
i=0 qi → Ct. Since p ≺ p′, we can conclude that p ⊭ □(⋀m

i=0 qi → Ct).

22

The lemmas are obvious by the claim 2. For B in the claim, choose A itself,
then if k ⊨ A and k is irreflexive , then k ⊨ At. But if k is reflexive, pick p = k
as a path with length one. Hence |p| = 1 ≤ n + 1 − C(A), since C(A) = n and
therefore, p ⊨ At. Therefore, for any k ⊨ A there is a node k′ ∈ K ′ such that
k′ ⊨ At.

For the proof of Theorem 1.4.3 we have:

Proof. If K4 ⊬ A, then there is a finite transitive Kripke tree with clusters
(K,R, V) and a node k such that k ⊨ ¬A. If we apply Lemma 1.4.4 for ¬A,
we can construct a finite transitive irreflexive Kripke model (K ′, R′, V ′) and a
node k′ such that k′ ⊭ ¬At. But (K ′, R′, V ′) is a model of GL and GL ⊢ At. A
contradiction. Hence K4 ⊢ A.

Based on the completeness of the translations, which we have introduced, we
are able to prove the completeness theorem. But, since we want to establish a
more powerful completeness result, i.e. the strong completeness, we need one
more lemma.

Lemma 1.4.5. There is a hierarchy of theories {Tn}∞
n=0 such that for any n,

IΣ1 ⊆ Tn and Tn ⊆ Tn+1 provably in IΣ1 and also an arithmetical substitution
∗ such that for any modal formula A, if there exists a witness w for A such that
(M, {Tn}∞

n=0) ⊨ A∗(w) for all M ⊨ IΣ1, then K4 ⊢ A.

Proof. Add infinitely many new atoms Q = {qn}∞
n=0 to the language of modal

logics, and apply all axioms and rules of the logic K4 to the new language to
construct a new system K4(Q) and do the same thing for the logic GL to con-
struct GL(Q). Pick the substitution ∗ as the uniform substitution of Solovay’s
theorem (see Preliminaries and [7]). It simply says that for any A, IΣ1 ⊢ A∗ iff
GL(Q) ⊢ A, where A∗ means the combination of substituting any atom p with p∗

and interpreting all boxes as the provability predicate of IΣ1. For any n, define
Tn = IΣ1+{q∗

i }n
i=0. We claim that this ∗ and this hierarchy {Tn}∞

n=0 works for the
claim of the lemma. First of all, it is easy to show that the hierarchy satisfied the
conditions claimed. Secondly, we have M ⊨ A∗(w) for all M ⊨ IΣ1. Therefore,
IΣ1 ⊢ A∗(w). Use qi’s in the translations from K4 to GL. Since the interpreta-
tion of a box in any formula □D with witness m is PrTm(D), and it is provably
equivalent to PrIΣ1(⋀m

i=0 qi → D), it is easy to see that there is a translation t,
such that IΣ1 ⊢ A∗(w) ↔ (At)∗. (In fact t equals to the witness w.) Therefore,
IΣ1 ⊢ (At)∗, by the uniform version of Solovay’s theorem, GL(Q) ⊢ At, and by
Theorem 1.4.3, K4(Q) ⊢ A. It means that there exists a proof for A in K4(Q).
Since A does not have any qi ∈ Q, it is enough to put qi = ⊤ everywhere in the
proof to find a proof for A in K4.

We want to prove the strong completeness theorem.

Theorem 1.4.6. (Strong Completeness) If PrM ⊨ Γ ⇒ A, then Γ ⊢K4 A.

Proof. We know that there are the sequence of expansions Γ̄, and expansions
B1, . . . , Bk of A and witnesses u for Γ̄, and w1, . . . , wk for B1, . . . , Bk such that
for all provability models and all arithmetical substitutions σ,

M ⊨ Γ̄σ(u) ⇒ {Bσ
i (wi)}k

i=0.

23

Pick the hierarchy of theories and ∗ from Lemma 1.4.5. Then for all M ⊨ IΣ1,

M ⊨ Γ̄∗(u) ⇒ {B∗
i (wi)}k

i=0.

Hence
IΣ1 + Γ̄∗(u) ⊢

k⋁
i=0

B∗
i (wi).

Therefore there is a finite ∆ ⊆ Γ̄ and a subset of witnesses v from u, such that

IΣ1 + ∆∗(v) ⊢
k⋁

i=0
B∗

i (wi).

Hence, for all M ⊨ IΣ1, we have

M ⊨
⋀

∆∗(v) →
k⋁

i=0
B∗

i (wi).

By Lemma 1.4.5, K4 ⊢ ⋀ ∆ → ⋁k
i=0 Bi, which means Γ̄ ⊢K4

⋁k
i=0 Bi. Finally,

since in the presence of the axiom K, all expansions of a formula are equivalent
to itself, Γ ⊢K4 A.

1.5 The Logic KD4
The logic KD4 is a modal logic resulting from adding the axiom D : □A →
¬□¬A or equivalently ¬□⊥ to K4. Therefore, intuitively, if, in M , all the
theories from the hierarchy are consistent and each theory proves the consistency
of preceding theories, then the axioms of KD4 should be valid. (Since we have
the neccesitation rule, the sentence □¬□⊥ is also provable and this is why we
need the consistency statements to be provable, as well.) The formalization of
these models is exactly what we will call consistent provability models and we
will show that the logic KD4 is sound and strongly complete with respect to
these models.

Definition 1.5.1. A provability model (M, {Tn}∞
n=0) is called consistent if for all

n, M thinks that Tn is consistent and Tn+1 ⊢ Cons(Tn), i.e. M ⊨ Cons(Tn) and
M ⊨ PrTn+1(Cons(Tn)). Moreover, the class of all consistent provability models
will be denoted by Cons.

Let us prove the soundness theorem.

Theorem 1.5.2. (Soundness) If Γ ⊢KD4 A, then Cons ⊨ Γ ⇒ A.

Proof. We use the soundness theorem for K4. If Γ ⊢KD4 A, then

Γ + □¬□⊥ ∧ ¬□⊥ ⊢K4 A.

Based on the soundness of K4, there are sequences Γ̄+{□(⋁si
j=0 ¬□⊥)∧¬□⊥}i∈I

and {Ak}t
k=0 as the expansions of Γ + □¬□⊥ ∧ ¬□⊥ and A, respectively and

24

witnesses u, (ni, (mij)si
j=0, ki) and wk such that for any provability model like

(M, {Tn}∞
n=0) and any arithmetical substitution σ,

M ⊨ Γ̄σ(u) + {Prni
(

si⋁
j=0

¬Prmij
(⊥)) ∧ ¬Prki

(⊥)}i∈I ⇒
t⋁

k=0
Aσ

k(wk))

If we apply this fact to the consistent provability models, since ni > mij and
for any n, M ⊨ Prn+1(¬Prn(⊥)), we have M ⊨ Prni

(¬Prmij
(⊥)) for all i ≤ r

and j ≤ si. Moreover, since for any n, M ⊨ ¬Prn(⊥), we have M ⊨ ¬Prki
(⊥).

Therefore, for any consistent provability model (M, {Tn}∞
n=0) we have

M ⊨ Γ̄σ(u) ⇒
t⋁

k=0
Aσ

k(wk)

which completes the proof of the soundness for KD4.

For the completeness theorem, the idea is reducing the completeness of KD4
to the completeness of K4 which was proved in the previous section.

Theorem 1.5.3. (Strong Completeness) If Cons ⊨ Γ ⇒ A, then Γ ⊢KD4 A.

Proof. We know that there are a multiset Γ̄, and expansions B1, . . . , Bk of A
and witnesses u for Γ̄, and w1, . . . , wk for B1, . . . , Bk such that for any consistent
provability model and any arithmetical substitution σ,

(M, {Tn}∞
n=0) ⊨ Γ̄σ(u) ⇒ {Bσ

i (wi)}k
i=0.

Define ∆ as a sequence which consists of an infinite number of the formula □¬□⊥
and also an infinite number of the formula ¬□⊥. We claim that Γ,∆ ⇒ A is true
in the class PrM. For the expansions, use the same expansions for Γ and A, and
also use ∆ itself, as its sequence of expansions. For witnesses, use u, wi’s and
for ∆, for any number n, use (n+ 1, n) for one of the formulas □¬□⊥ and n for
one of the formulas ¬□⊥. Call this witness v. Let (M, {Tn}∞

n=0) be an arbitrary
provability model. We claim that

M ⊨ Γ̄σ(u),∆σ(v) ⇒ {Bσ
i (wi)}k

i=0.

Because when M ⊨ Γ̄σ(u),∆σ(v) then M ⊨ ∆σ(v) which means for any n,

M ⊨ Prn+1(¬Prn(⊥)),

and
M ⊨ ¬Prn(⊥).

Therefore, (M, {Tn}∞
n=0) is a consistent provability model and since M ⊨ Γ̄σ(u)

we have,

(M, {Tn}∞
n=0) ⊨

k⋁
i=0

Bσ
i (wi).

Therefore, for all provability models and all σ, we have

M ⊨ Γ̄σ(u),∆σ(v) ⇒ {Bσ
i (wi)}k

i=0.

Hence, by the strong completeness of K4, we have Γ,∆ ⊢K4 A and since all
formulas in ∆ are provable in KD4, we have Γ ⊢KD4 A.

25

Remark 1.5.4. Note that the truth of a formula in a class of provability models
means the existence of a uniform sequence of expansions and also a uniform
witness for it. In other words, we have a fixed sequence of natural numbers which
works for all provability models in the class. Therefore, we could claim that
sentences just describe the behavior of the natural numbers instead of some actual
theories. What does it mean? It means that sentences do not describe the behavior
of a concrete specific provability model, but instead, they talk about the roles of
these ingredients in the structure (provability model) which are encoded by the
natural numbers. Informally speaking, sentences just transcend the actual theories
to their abstract roles in the structure of a provability model. (As an example,
think of how the cardinal numbers transcend the concept of cardinality from the
actual sets.) For instance, in the case of the logic KD4, it describes the relation
between a meta-theory Tn+1 and its theory Tn which is the condition that the
meta-theory is powerful enough to show the consistency of the theory. This is
not about some actual theories which we use; it is about the power of the meta-
theory in comparison to its theory. In other words, KD4 describes the abstract
condition of consistency and provability of consistency. This fact is true in all
soundness-completeness results we propose in this chapter.

1.6 The Logic S4
Intuitively, if we have the property that all theories are sound and the soundness
of theories are also provable in their meta-theories, all axioms of S4, would be
valid. The formalization of these models is exactly what we will call the reflexive
provability models. In fact, we will show that the logic S4 is sound and also
strongly complete with respect to the class of all reflexive provability models.

1.6.1 Soundness
First of all we need a definition:

Definition 1.6.1. A provability model (M, {Tn}∞
n=0) is reflexive if for any n,

M thinks that Tn is sound and Tn+1 ⊢ Rfn(Tn), i.e. M ⊨ PrTn(A) → A and
M ⊨ PrTn+1(PrTn(A) → A) for each sentence A. Moreover, the class of all
reflexive provability models will be denoted by Ref .

Let us prove the soundness theorem.

Theorem 1.6.2. (Soundness) If Γ ⊢S4 A, then Ref ⊨ Γ ⇒ A.

Proof. To prove the soundness theorem, we will use the cut-free sequent calculus
for S4, i.e. G(S4). And, we will use the conventions of Theorem 1.4.1. We want
to prove the following claim:

Claim. If Γ ⇒ ∆ is provable in G(S4), then there are sequences of expansions
Γ̄ and ∆̄ and also witnesses w1 and w2 for Γ̄ and ∆̄, respectively and a number n
greater than all the numbers in w1 and w2, such that for any reflexive provability
model (M, {Tn}∞

n=0) and any arithmetical substitution σ, Tn ⊢ Γ̄σ(w1) ⇒ ∆̄σ(w2)
is true in M . We will call the number n the context number.

26

The proof of the claim is by induction on the length of the proof of Γ ⇒ ∆
and the proof for the non-modal cases are similar to the proof of Theorem 1.4.1.
But the difference is just the presence of the context number n here. To find this
number in all non-modal cases, if the case is the axiom case, any number works;
for contraction and exchange, just use the same number in the induction hypoth-
esis. For weakening, use the successor of the maximum of the context number
of the induction hypothesis and the arbitrary chosen witness for the weakening
formula. For the other cases, it is enough to use the maximum numbers of the
induction hypothesis. We want to prove the case of the modal rules.

1. If Γ,□A ⇒ ∆ is proved by Γ, A ⇒ ∆, then by IH, we can find sequences
of expansions {Γ̄, {Ai}r

i=0}, ∆̄ and witnesses w1 = (u, (xi)r
i=0) and w2 and the

context number n. For the sequent Γ,□A ⇒ ∆, use the sequences of expansions
{Γ̄, {□Ai}r

i=0}, ∆̄ and for the witnesses use (u, ((n, xi))r
i=0), w2 and for the context

number use n + 1. By IH, we know that for all reflexive provability models and
all arithmetical substitution σ, M thinks

Tn ⊢ Γ̄σ(w1), {Aσ
i (xi)}r

i=0 ⇒ ∆̄σ(w2).

We claim that there is a proof, formalizable in IΣ1, for the following statement:
If Tn ⊆ Tn+1, Tn+1 ⊢ Prn(Aσ

i (xi)) → Aσ
i (xi) for all i ≤ r and

Tn ⊢ Γ̄σ(w1), {Aσ
i (xi)}r

i=0 ⇒ ∆̄σ(w2)

then
Tn+1 ⊢ Γ̄σ(w1), {Prn(Aσ

i (xi))}r
i=0 ⇒ ∆̄σ(w2).

The proof is simple. We have Tn ⊆ Tn+1 and Tn+1 ⊢ Prn(Aσ
i (xi)) → Aσ

i (xi).
Therefore,

Tn+1 ⊢ Γ̄σ(w1), {Prn(Aσ
i (xi))}r

i=0 ⇒ ∆̄σ(w2).
The proof just uses the fact that all first order tautologies are provable and Pr
is closed under modus ponens and all of these properties are provable in IΣ1.
Since M ⊨ IΣ1, M thinks that this implication is true. On the other hand both
of premises are true in M , because of IH and the condition of being a reflexive
provability model. Therefore, M thinks

Tn+1 ⊢ Γ̄σ(w1), {Prn(Aσ
i (xi))}r

i=0 ⇒ ∆̄σ(w2),

which completes the proof.

2. If □Γ ⇒ □A is proved by □Γ ⇒ A, then by IH we have sequences of
expansions □Γ and some expansions {Ai}r

i=0 and witnesses w1 and (xi)r
i=0 and a

context number n such that for all arithmetical substitutions σ, M thinks

Tn ⊢ □Γσ(w1) ⇒ {Aσ
i (xi)}r

i=0.

For the sequent □Γ ⇒ □A, use the expansion □Γ and □(⋁r
i=0 Ai), and the

witnesses w1 and (n, (xi)r
i=0) and the context number n+ 1.

Based on the Σ1-completeness available in M , M thinks

IΣ1 ⊢ Prn(
⋀

□Γσ(w1) →
r⋁

i=0
(Aσ

i (xi))).

27

Because the provability predicate commutes with the implications provably in
IΣ1, we have this property in M , hence

IΣ1 ⊢ Prn(
⋀

□Γσ(w1)) → Prn(
r⋁

i=0
(Aσ

i (xi)))

is true in M . Again by Σ1-completeness, we have

IΣ1 ⊢
⋀

(□Γσ(w1)) → Prn(
r⋁

i=0
(Aσ

i (xi)))

true in M . And finally since Tn+1 is an expansion of IΣ1 provably in IΣ1, we
have the inclusion in M , hence

Tn+1 ⊢
⋀

(□Γσ(w1)) → Prn(
r⋁

i=0
(Aσ

i (xi)))

is true in M which completes the proof of the claim.
For the proof of the soundness theorem, if Γ ⊢S4 A then there exists a finite
subset ∆ of Γ such that ∆ ⊢S4 A. Then G(S4) ⊢ ∆ ⇒ A, then by the claim,
there are sequences of expansions ∆̄ and {Ai}r

i=0 and the witnesses u and (xi)r
i=0

and a context number n such that for all reflexive provability models (M, {Tn}∞
n=0)

and all arithmetical substitution σ, we have Tn ⊢ ∆̄σ(u) ⇒ ⋁r
i=0 A

σ
i (xi) in M .

Therefore, by soundness of Tn in M , we have M ⊨ ∆̄σ(u) ⇒ ⋁r
i=0 A

σ
i (xi). Define

Γ̄ as the sequence of expansions of Γ by using Γ and replacing the subset ∆ by
∆̄ and also use any arbitrary witnesses to extend u to a witness for Γ̄. Call this
new witness v. We have

M ⊨ Γ̄σ(v) ⇒
r⋁

i=0
Aσ

i (xi)

which is what we wanted to prove.

1.6.2 Completeness
For the completeness theorem, the idea is the same as the idea of the original
proof of Solovay’s theorem. We will modify the technique of encoding Kripke
models in arithmetic. In this case, we need to encode transitive reflexive trees
with clusters. Therefore we have two tasks. Firstly, finding a method to encode
the clusters and secondly, modifying Solovay’s construction to work with reflexive
trees instead of irreflexive ones.

Lemma 1.6.3. Let m be a natural number and {Tn}N
n=0 be an increasing hierarchy

of theories such that IΣ1 ⊆ T0, and for any n, Tn+1 ⊢ Rfn(Tn). Therefore, there
are arithmetical sentences A1, A2, . . ., Am such that:

(i) For any i and j, if i ̸= j then IΣ1 ⊢ Ai ∧ Aj → ⊥

(ii) IΣ1 ⊢ ⋁m
i=1 Ai

(iii) For any n ≤ N , and any i ≤ m, Tn+1 ⊢ ¬PrTn(¬Ai)

28

(iv) If we also assume that all theories in the hierarchy are consistent, then for
any n ≤ N and any i ≤ m, N ⊨ ¬PrTn(¬Ai) and N ⊨ Am.

Proof. First of all, we want to prove the following claim:

Claim. For any increasing reflexive hierarchy {Tn}N
n=0 and any natural num-

ber p ≥ 1, there is another increasing hierarchy {T ′
n}Np

n=0 such that for any n ≤ N ,
T ′

np = Tn and for any i ≤ Np−1, T ′
i+1 ⊢ Cons(T ′

i). Moreover, if all of the theories
in the T hierarchy are consistent, all of the theories in the T ′ hierarchy will be
consistent, as well.

To prove the claim, define T ′
i as follows: For i = np, define T ′

i = Tn, then for
the any np ≤ i < (n+1)p−1 define T ′

i+1 inductively as the theory T ′
i +Cons(T ′

i).
First of all, we want to show that for any np ≤ i < (n + 1)p − 1, T ′

i+1 ⊆ T ′
(n+1)p

and also T ′
(n+1)p proves the reflection principle for T ′

i+1. The proof is based on
the induction on i. If i = np, we know that T ′

(n+1)p proves the consistency for
T ′

np, hence T ′
np+1 ⊆ T ′

(n+1)p. Moreover, since T ′
(n+1)p ⊢ Cons(T ′

np), it is easy to
check that T ′

(n+1)p can prove the reflection principle for T ′
np+1 = T ′

np + Cons(T ′
np).

Suppose that we have the claim for i, and we want to prove it for i + 1. By IH,
T ′

(n+1)p proves the reflection principle for T ′
i , hence it proves the consistency of T ′

i

and hence T ′
i+1 ⊆ T ′

(n+1)p. Again, it is easy to show that since T ′
(n+1)p ⊢ Cons(T ′

i),
T ′

(n+1)p also proves the reflection principle for T ′
i+1 = T ′

i + Cons(T ′
i).

We claim that for any i, T ′
i ⊆ T ′

i+1 and T ′
i+1 proves the consistency of T ′

i . The
proof is based on two different cases of the definition of T ′

i+1. If we are in the first
case, then i+ 1 = (n+ 1)p for some n. Then by what we proved so far, the claim
is obvious. If we are in the second case, then T ′

i+1 = T ′
i + Cons(T ′

i), and hence
the claim is again obvious from the definition.
Moreover, if the first hierarchy is consistent, then since all T ′

i ’s are subtheories of
T ′

Np = TN , the second hierarchy is consistent, as well.

It is time to prove the lemma. If m = 1, pick A1 = (0 = 0); then it is easy
to verify that this sentence satisfies the conditions of the lemma. The reason is
that Tn+1 proves the consistency of Tn and hence Tn+1 ⊢ ¬Prn(0 ̸= 0). Moreover,
if all theories are consistent, then ¬A1 is not provable in Tn.
Assume that m > 1 and use the hierarchy T from the assumption of the lemma,
and also use the aforementioned construction to construct the hierarchy T ′, for
p = 2m. We want to define the sentences Ai based on this new hierarchy. Define

Br =
N⋁

k=1
(Cons(T ′

2km−2r) ∧ ¬Cons(T ′
2km−2r+1))

for 1 ≤ r ≤ m − 1. Define A1 = B1 and Ar = ⋀r−1
i=1 ¬Bi ∧ Br for 2 ≤ r ≤ m − 1

and Am = ⋀m−1
i=1 ¬Bi. We claim that these Ai’s have the properties in the lemma.

First of all, because of the form of Ai’s, it is obvious that any two different Ai

and Aj are contradictory and also ⋁m
r=1 Ar. In fact, these claims are first order

tautologies and hence they are provable in IΣ1. We want to show that

T ′
2(n+1)m ⊢ ¬PrT ′

2nm
(¬Ar)

29

We will prove the cases r ̸= 1,m, r = 1 and r = m separately. Assume r ̸= 1,m.
Let us argue in IΣ1. If ¬Ar is provable in T ′

2nm, then by definition ⋁r−1
i=1 Bi ∨ ¬Br

is provable in T ′
2nm. From Bt, t ≤ r − 1, we could conclude⋁

I

(Cons(T ′
2km−2t)) ∨

⋁
J

(¬Cons(T ′
2km−2t+1))

where I = {k | 2km − 2t + 1 ≥ 2nm + 1} and J = {k | 2km − 2t + 1 < 2nm}.
First of all, we know that T ′

2nm proves Cons(T ′
2km−2t+1) if k ∈ J . The reason is

that if k ∈ J , then 2km− 2t+ 1 < 2nm and since the consistency of any theory
is provable in the higher theory in T ′ hierarchy, we can prove the consistency of
T ′

2km−2t+1 in T ′
2nm. Therefore, we can conclude that the following is provable in

T ′
2nm. ⋁

I

(Cons(T ′
2km−2t)).

On the other hand, we know that if k ∈ I, then k ≥ n+1 because 2km−2t+1 ≥
2nm + 1 is impossible when k ≤ n. Therefore, 2km − 2t ≥ 2(n + 1)m − 2t.
Moreover, 2(n+ 1)m− 2t ≥ 2(n+ 1)m− 2(r − 1) since t ≤ r − 1, and since the
hierarchy is increasing, Cons(T ′

2km−2t) implies Cons(T ′
2(n+1)m−2(r−1)). Hence, Bt

implies Cons(T ′
2(n+1)m−2(r−1)). Furthermore, from

¬Br =
N⋀

k=1
(Cons(T ′

2km−2r) → Cons(T ′
2km−2r+1))

we conclude
Cons(T ′

2(n+1)m−2r) → Cons(T ′
2(n+1)m−2r+1).

Therefore, we have

T ′
2nm ⊢ (Cons(T ′

2(n+1)m−2r) → Cons(T ′
2(n+1)m−2r+1)) ∨ Cons(T ′

2(n+1)m−2(r−1)).

Hence

T ′
2nm + Cons(T ′

2(n+1)m−2r) ⊢ Cons(T ′
2(n+1)m−2r+1) ∨ Cons(T ′

2(n+1)m−2(r−1)).

But we have 2(n+ 1)m− 2r + 1 ≤ 2(n+ 1)m− 2(r − 1); therefore

T ′
2nm ⊢ Cons(T ′

2(n+1)m−2(r−1)) → Cons(T ′
2(n+1)m−2r+1).

And hence
T ′

2nm + Cons(T ′
2(n+1)m−2r) ⊢ Cons(T ′

2(n+1)m−2r+1).
Since r ≤ m, we have 2(n+ 1)m− 2r + 1 ≥ 2nm, therefore we have

T ′
2(n+1)m−2r+1 ⊢ Cons(T ′

2(n+1)m−2r+1).

Note that all the parts of this argument is formalizable in IΣ1. For the first
time we want to use T ′

2(n+1)m to reach the contradiction. Since 1 ≤ r, then
2(n+1)m−2r+1 < 2(n+1)m, hence the consistency of T ′

2(n+1)m−2r+1 is provable
in T ′

2(n+1)m. Therefore, since we are arguing in T ′
2(n+1)m, we have the consistency

of T ′
2(n+1)m−2r+1. On the other hand, we showed

PrT ′
2(n+1)m−2r+1

(Cons(T ′
2(n+1)m−2r+1)).

30

By the formalized version of the second incompleteness theorem in IΣ1, we know
that if a theory proves its own consistency it is inconsistent; hence T ′

2(n+1)m−2r+1
is inconsistent. A contradiction. Therefore, T ′

2(n+1)m shows that ¬Ar is not prov-
able in T ′

2nm.

Note that the proof uses the form of ¬Ar which has some positive Bt’s and
one negative Br. But Now if we are in the cases r = 1 or r = m, then ¬Ar has
just positive Bt’s or just negative Bt’s. In these cases it is enough to use the part
of the proof which investigates the corresponding Bt’s. Again argue in IΣ1. For
the case, r = 1, if T ′

2nm proves ¬A1, then T ′
2nm proves ¬B1. Therefore,

T ′
2nm ⊢

N⋀
k=1

(Cons(T ′
2km−2) → Cons(T ′

2km−1)).

Hence
T ′

2nm ⊢ (Cons(T ′
2(n+1)m−2) → Cons(T ′

2(n+1)m−1)).
Since m ≥ 1, we have 2(n+ 1)m− 1 ≥ 2nm and hence

T ′
2(n+1)m−1 ⊢ (Cons(T ′

2(n+1)m−2) → Cons(T ′
2(n+1)m−1))

and then since 2(n+ 1)m− 1 > 2(n+ 1)m− 2, we have

T ′
2(n+1)m−1 ⊢ Cons(T ′

2(n+1)m−1).

Argue in T ′
2(n+1)m. We have the consistency of T ′

2(n+1)m−1. On the other hand,
T ′

2(n+1)m−1 proves its own consistency, hence by the formalized second incomplete-
ness theorem, it should be inconsistent. A Contradiction. Therefore, T ′

2(n+1)m
proves that ¬A1 is not provable in T ′

2nm.

For the proof of the case r = m, use the idea of I and J for positive Bt’s.
It is enough to use I and J , to show that if ¬Am is provable in T ′

2nm, then
Cons(T ′

2(n+1)m−2(m−1)) will be provable in T ′
2(n+1)m−2(m−1). After that, reaching a

contradiction is the same as for the other cases.

Since T ′
2nm = Tn, we have a proof for the part (iii). For (iv), if the hierarchy T

is consistent, then the hierarchy T ′ is also consistent and hence if ¬Ar is provable
in T ′

2nm then we have

T ′
2(n+1)m−2r+1 ⊢ Cons(T ′

2(n+1)m−2r+1)

for cases 1 < r < m, and

T ′
2(n+1)m−1 ⊢ Cons(T ′

2(n+1)m−1)

for r = 1, and
T ′

2(n+1)m−2(m−1) ⊢ Cons(T ′
2(n+1)m−2(m−1))

for r = m. Consider that the arguments for these statements are formalizable
in IΣ1 and hence they are true. For 1 < r < m, by the second incompleteness
theorem, T ′

2(n+1)m−2r+1 should be inconsistent. A contradiction. Therefore, T ′
2nm

can not prove ¬Ar and hence Tn ⊬ ¬Ar. The cases r = 1,m are similar. For the

31

second part of (iv), note that we know Am = ⋀m
r=1 ¬Br. We want to show that

all Br’s are false. We have

Br =
N⋁

k=1
(Cons(T ′

2km−2r) ∧ ¬Cons(T ′
2km−2r+1))

and since the whole T ′ hierarchy is consistent, all statements (Cons(T ′
2km−2r) ∧

¬Cons(T ′
2km−2r+1)) are false and hence Br is false. Then ¬Br is true and hence

Am is true.

Lemma 1.6.4. Let (K,R) be a finite reflexive transitive tree with clusters and let
k be one of the nodes in the root cluster. Moreover, let (N, {Tn}N

n=0) be a reflexive
provability model. Then there exists a set of arithmetical sentences {Si}i∈K such
that

(i) If i ̸= j, T0 ⊢ Si → ¬Sj.

(ii) Tn+1 ⊢ Si → Prn(⋁
(i,j)∈R Sj).

(iii) If (i, j) ∈ R then Tn+1 ⊢ Si → ¬Prn(¬Sj).

(iv) N ⊨ Sk.

Proof. Define a primitive recursive function h : N → K similar to the h function
in the Solovay’s proof of the completeness of GL.

h(0) = k and h(x+ 1) =

⎧⎨⎩j if (i, j) ∈ R and PrfN(x,¬Sj)
h(x) otherwise

where Sj = PI(j) ∧ Aj ∧ j = j and PI(j) = ∃y∀x ≥ y h(x) ∈ I(j) in which I(j)
means the cluster of j. Moreover, Aj’s are the sentences constructed in Lemma
1.6.3 for m = Card(I(j)) and the hierarchy {Tn + PI(j)}N

n=0. In addition, we
choose Ak as the sentence Am from Lemma 1.6.3. By these sentences, we mean
the sentences from the proof of Lemma 1.6.3, and not what the lemma claims.
The reason is that we have to be sure that these sentences are definable from the
code of the function h which has not been defined yet. The reason is the following:

The function h is going to be defined based on the classical circular argument
based on the fixed point lemma in IΣ1. The important part is that the Aj’s
constructed in Lemma 1.6.3 are arithmetical formulas based on the code of PI(j),
which makes the whole circular argument possible. It is provably in IΣ1 that h
is a function. (Note that we put j = j in the definition of Sj to make sure that
there is at most one j such that x would be a proof for ¬Sj and this makes the
definition of h unambiguous.) It is also provable that h eventually stops in some
cluster and since h is a function, this cluster is unique. The existence of such
cluster is an obvious application of the fact that h is an increasing function and
the tree is finite. Note that all of these facts are provable in IΣ1. To prove (i),
consider two cases. If i and j belong to different clusters, then PI(i) and PI(j)
are contradictory based on what we claimed about the uniqueness of the limit
cluster. This contradiction is also provable in IΣ1 and hence in T0. If i and j
belong to the same cluster, then by Lemma 1.6.3, we know that Ai and Aj are

32

contradictory, provable in IΣ1, and hence we reach a contradiction for Si ∧ Sj in
T0. For (ii), we argue in Tn+1. If we have Si, then we have PI(i) and there exists
x such that h(x) ∈ I(i). Since this formula is Σ1, by Σ1-completeness we have
Prn(h(x) ∈ I(i)). Moreover, h is provably increasing in IΣ1 and hence in Tn,
and also provably in IΣ1 we know that h eventually stops in some cluster, i.e.
Prn(⋁

J PJ). But we have Prn(h(x) ∈ I(i)). Therefore, the limit should be above i
which means Prn(⋁

(i,j)∈R PI(j)). On the other hand, by Lemma 1.6.3 we know that
IΣ1 ⊢ ⋁

i∈I Ai, and we can conclude that Prn(⋁
(i,j)∈R PI(j) ∧Aj), hence ⋁

(i,j)∈R Sj.

For (iii), we will argue in Tn+1 and the proof is by contradiction. If we have
Si and Prn(¬Sj) for some j which (i, j) ∈ R, then there are two possibilities.
First, when the clusters of i and j are different. We have Si = PI(i) ∧ Ai, hence
we have PI(i) which means that there is some number z, such that for all y ≥ z,
h(y) ∈ I(i). Moreover, we know that Prn(¬Sj) and since Tn ⊆ TN , we have
PrN(¬Sj). Therefore, there exists some x such that PrfN(x,¬Sj). It is easy to
see that we can pick x ≥ z. Hence, we can conclude that h(x + 1) ∈ I(i). Since
(i, j) ∈ R, j is above all nodes in I(i) and PrfN(x,¬Sj), hence h(x + 1) = j.
But h(x + 1) should belong to I(i) and j /∈ I(i); a contradiction. Therefore,
¬Prn(¬Sj).
Assume that the cluster of i and j is I. Then the statement Si → Prn(¬Sj) is
equivalent to

PI ∧ Ai → Prn(PI → ¬Aj).

Since {Tn}N
n=0 is a reflexive hierarchy, the hierarchy {Tn +PI}N

n=0 is also reflexive.
Moreover, At’s are constructed for this hierarchy, hence by Lemma 1.6.3, we know
that

Tn+1 + PI ⊢ ¬PrTn+PI
(¬Aj)

which proves what we wanted.

For (iv), since h eventually stops in some cluster, there is a cluster I, such
that N ⊨ PI . If I ̸= I(k), since h(0) = k, there should be some first element x,
such that h(x) ∈ I. Assume h(x) = i. Since x ̸= 0, and h(x) ̸= h(x − 1), we
have PrfN(x − 1,¬Si) and hence, PrN(PI → ¬Ai). By Lemma 1.6.3, the theory
TN + PI should be inconsistent, and therefore we have TN ⊢ ¬PI . On the other
hand, the theory TN is sound, hence N ⊨ ¬PI which contradicts our assumption.
Hence, I = I(k) and therefore, N ⊨ PI(k). On the other hand, TN + PI(k) is
consistent because it is sound, and consequently by Lemma 1.6.3, Ak which was
chosen to be the Am from the lemma, is true; hence Sk = PI(k) ∧ Ak is true.

The following lemma uses the previous lemma to transfer the truth from a
Kripke model to a reflexive provability model.

Lemma 1.6.5. Assume the conditions of Lemma 1.6.4 and let {Si}i∈K be defined
as in that lemma. Define σ as the arithmetical substitution which sends the atom
p to ⋁

i⊨p Si. For any i ∈ K, any modal formula A and any witness w for A with
elements less than N , we have:⎧⎨⎩Tmax(w)+1 ⊢ Si → Aσ(w) if i ⊨ A

Tmax(w)+1 ⊢ Si → ¬Aσ(w) if i ⊭ A

33

Proof. We prove the lemma by induction on A. If A is an atom and i ⊨ A, then
by the definition we have T0 ⊢ Si → Aσ. If i ⊭ A then all j’s in Aσ = ⋁

j⊨A Sj

are different from i, and by (i) in Lemma 1.6.4, we conclude T0 ⊢ Si → ¬Aσ.
The proof for the boolean cases is easy. For the modal case, if i ⊨ □B, then
for all j which (i, j) ∈ R, we have j ⊨ B. Since w is a witness for □B, it is
equal to (n, u) where n is greater than all the numbers in u. Therefore by IH,
Tmax(u)+1 ⊢ Sj → Bσ(u) for all j above i. Hence,

Tmax(u)+1 ⊢
⋁

(i,j)∈R

Sj → Bσ(u).

Since n ≥ max(u) + 1, we have

Tn ⊢
⋁

(i,j)∈R

Sj → Bσ(u).

Then
IΣ1 ⊢ Prn(

⋁
(i,j)∈R

Sj → Bσ(u)),

and consequently,
IΣ1 ⊢ Prn(

⋁
(i,j)∈R

Sj) → Prn(Bσ(u)).

By (ii) in Lemma 1.6.4, we have

Tn+1 ⊢ Si → Prn(Bσ(u)),

and n = max(w). Thus, the proof for this case is finished.

If i ⊭ □B, then there exists j which (i, j) ∈ R and j ⊭ B. Again we have
w = (n, u), such that n is greater than all the numbers in u. By IH, Tmax(u)+1 ⊢
Sj → ¬Bσ(u). Since n ≥ max(u) + 1,

Tn ⊢ Sj → ¬Bσ(u)

and
IΣ1 ⊢ Prn(Bσ(u) → ¬Sj)

and then
IΣ1 ⊢ ¬Prn(¬Sj) → ¬Prn(Bσ(u))

and by (iii) in Lemma 1.6.4, we have

Tn+1 ⊢ Si → ¬Prn(Bσ(u))

and again since n = max(w), the proof is complete.

We state and prove the completeness theorem.

Theorem 1.6.6. (Completeness) Let (N, {Tn}∞
n=0) be a reflexive provability model

such that (N, {Tn}∞
n=0) ⊨ A, then S4 ⊢ A. Therefore, if Ref ⊨ A, we have S4 ⊢ A.

34

Proof. Since (N, {Tn}∞
n=0) ⊨ A, there are expansions B1, . . . , Bk of A and wit-

nesses w1, . . . , wk such that for all arithmetical substitutions σ, we have N ⊨⋁k
i=0 B

σ
i (wi). Define C = ⋁k

i=0 Bi and w = (wi)k
i=0. Therefore, we know that w

is a witness for C in (N, {Tn}∞
n=0). We claim that S4 ⊢ C. Pick N greater than

all the numbers in w. If S4 ⊬ C then there exists a finite reflexive transitive tree
with clusters (K,R, V), such that in one of the nodes in the root cluster (say k),
C is false. Then by Lemmas 1.6.4 and 1.6.5, we can construct an arithmetical
substitution, such that Tmax(w)+1 ⊢ Sk → ¬Cσ(w). Since the model is a reflexive
provability model, all Tm’s are sound and hence N ⊨ Sk → ¬Cσ(w). But by
Lemma 1.6.4 we know that N ⊨ Sk, thus N ⊨ ¬Cσ(w), which contradicts with the
assumption N ⊨ Cσ(w). Therefore, S4 ⊢ C. And finally, since in the presence of
the axiom K, all the expansions of a formula are equivalent to the formula itself,
we have S4 ⊢ A.
For the second part of the theorem, it is easy to verify that if Ref ⊨ A, then at
least for one of the provability models (N, {Tn}∞

n=0) we have (N, {Tn}∞
n=0) ⊨ A.

And then the claim follows from the first part.

1.6.3 Uniform and Strong Completeness
In this subsection we will strengthen the completeness theorem of the last sub-
section to a stronger version of uniform strong completeness theorem. The proof
will be just the uniform version of the previous completeness proof. Therefore,
first of all we need a uniform version of Lemma 1.6.3.

Definition 1.6.7. A hierarchy {Tn}∞
n=0 of theories is called uniform if there exists

a Σ1 formula Prf(x, y, z) such that for any n, m and A, Prf(n,m, ⌈A⌉) iff m
is a code of a proof for A in Tn. The hierarchy is called uniformly increasing
if it is a uniform hierarchy and also we have IΣ1 ⊆ T0 provably in IΣ1 and
IΣ1 ⊢ ∀x∀z(∃y Prf(x, y, z) → ∃w Prf(x + 1, w, z)). And finally it is called
uniformly reflexive hierarchy if it is a uniformly increasing hierarchy such that
for any formula A, IΣ1 ⊢ ∀x∃y Prf(x+ 1, y,∃w Prf(x,w,A) → A).

Lemma 1.6.8. Let {Tn}∞
n=0 be a uniformly reflexive hierarchy of theories. Then,

there is an arithmetical sentence A(x, y) such that:

(i) IΣ1 ⊢ ∀x, z ≤ y (x ̸= z ∧ A(x, y) ∧ A(z, y) → ⊥)

(ii) For all m, IΣ1 ⊢ ⋁m
i=1 A(i,m)

(iii) For any n, and any i ≤ m, Tn+1 ⊢ ¬PrTn(¬A(i,m))

(iv) If we also assume that all theories in the hierarchy are consistent, then for
any n, and any i ≤ m, N ⊨ ¬PrTn(¬A(i,m)) and N ⊨ A(m,m).

Proof. The proof is basically the same as the proof of Lemma 1.6.3. The only
difference is that, here we have to define everything uniformly. First of all we need
to define the hierarchy T ′. Since T is a uniformly reflexive hierarchy, it is easy to
prove that the hierarchy T ′ is a uniform hierarchy. Note that the definition of this
new hierarchy is also uniform in p, i.e. there exists a proof predicate Prf(x, y, z, t)

35

which means that y is a proof for z in T ′
x when we choose t as our p. Define,

B(x, y) as the following:

B(x, y) = ∃z ≥ 1 (Cons(T ′
2zy−2x) ∧ ¬Cons(T ′

2zy−2x+1)),

and
A(x, y) = ∀1 ≤ z ≤ x− 1 ¬B(z, y) ∧B(x, y).

Note that A(x, y) and B(x, y) are the uniform versions of Ar and Br in which
x stands for the index r and y for the number m. The proof of the properties
we claimed is exactly same as the proof of Lemma 1.6.3. The reason is that all
properties are based on the standard numbers n, i and m. The only exception is
(i), which is easily proved from the definition.

Theorem 1.6.9. (Uniform Completeness) Let {Tn}∞
n=0 be a uniform reflexive

hierarchy of sound theories. Then there exists an arithmetical substitution ∗,
such that for any modal formula A, if there exists a witness w such that for all
M ⊨

⋃
n Tn, (M, {Tn}∞

n=0) ⊨ A∗(w) then S4 ⊢ A.

Proof. First, note that according to the filtration method (see [10]), there exists a
primitive recursive algorithm which reads A as an input and constructs a counter
model (finite transitive reflexive tree with clusters) for A if S4 ⊬ A, and outputs
zero, otherwise. Call this primitive recursive function, f . Therefore, if we use
Aa to emphasize that the code for A is a, we have f(a) = (Wa, Ra, Va, wa) in
which wa is a node in the root cluster such that wa ⊭ Aa. The reason why
such an f exists is that the size of a counter model is elementary bounded by
the size of the code of the formula. (See [10].) Assume that the function ⟨·, ·⟩
is some canonical pairing function which is primitive recursive. Define g(a) as
the following primitive recursive function: Compute f(a), change the name of all
nodes w in Wa to ⟨w, a⟩ and code the whole model again.
Pick all g(a)’s and put all of them over one new reflexive root, k; and for valuation,
use the induced valuation of the model plus the fact that the node k does not
accept any atom. Then, use the technique of Lemma 1.6.4 and define the function
h on the whole new model:

h(0) = k and h(x+ 1) =

⎧⎨⎩j if R(h(x), z) and PrfT (x,¬S(z))
h(x) otherwise

Where firstly, T = ⋃∞
n=0 Tn. It is easy to check that since the hierarchy is uniform,

its union is also a recursively enumerable theory which has the following property:
IΣ1 ⊢ Prn(A) → PrT (A). Secondly, R(y, z) is a primitive recursive relation (∆1
formula in IΣ1) which reads nodes y and z and if y ̸= k, it decides whether
they belong to the same model g(pr0(z)), and if yes, whether (y, z) belongs to the
relation of g(pr0(z)), i.e. Rg(pr0(z)). And if y = k, then the relation R(y, z) decides
whether z is in the g(pr0(z)) or not (where pr0(z) is the index of the model which
z belongs to). This R is a formalization of the accessibility relation of the new
model. Note that we have to choose R in a way that the following holds:

(i) IΣ1 ⊢ ∀x, y, z (R(x, y) ∧R(y, z) → R(x, z))

(ii) For any node i ̸= k, IΣ1 ⊢ ∀x(R(i, x) → ⋁
Rg(pr0(i))(i,j) x = j)

36

It is easy to find such an R. The idea is, first using g to define a primitive re-
cursive function H(z) which reads z and outputs the whole set above z. Then
define R(x, y) as the existence of a sequence w from x to y such that for any r,
wr+1 belongs to H(wr). The proof for these two properties are starightforward.
(i) holds because of our transitive definition of R. (ii) needs the claim that if w
is a sequence from i to x, then x ∈ H(i). Use induction on the length of w to
prove the claim.

And finally, the formula

S(z) = ∃y∀x ≥ yh(x) ∈ I(z) ∧ A(z, Card(I(z))) ∧ z = z

where I(z) is a primitive recursive function, which reads z and computes the whole
cluster of z. Note that here we use a uniform version of Si’s, and consequently
we need the uniform version of Ar’s. For any i ̸= k, the model above wi is a
finite reflexive transitive tree with clusters, and hence with the same arguments,
we have the following:

(i) T0 ⊢ ∀x, y (x ̸= y → (S(x) → ¬S(y))).

(ii) Tn+1 ⊢ S(i) → Prn(⋁
(i,j)∈R S(j)) for all i ̸= k.

(iii) If (i, j) ∈ R then Tn+1 ⊢ Si → ¬Prn(¬Sj) for all i.

(iv) N ⊨ Sk.

Since the model above any node i ̸= k is a finite model, the proof is the same
as the proof of Lemma 1.6.4, with only some minor changes. Firstly, for (i), we
need the uniform version of the proof of Lemma 1.6.4. It is implied by the facts
that h is a provably total function in IΣ1 and also the part (i) in Lemma 1.6.8.
Secondly, for (ii), we need to prove that if the function reaches i, then the limit
cluster exists and it is above the cluster I(i). It is provable in IΣ1. The idea is
based on the fact that h is increasing and also the fact that if h reaches i, we can
find the elements above i. These simple facts are provable by two properties of
R which are mentioned before.

Define the arithmetical substitution as follows: p∗ = ∃z S(z) ∧ V (z, p) where
V (z, p) is a primitive recursive predicate (i.e. a ∆1 formula in IΣ1) which reads
z and p and if z ̸= k decides whether p is true in the node z in the model g(a),
where a = pr0(z) is the index of the model which z belongs to. And if z = k, then
rejects for all p. Since g is primitive recursive, this primitive recursive predicate
exists. Note that V is a formalization of the valuation of the new model.
By a similar proof of Lemma 1.6.5 we know that for all i ̸= k, we have⎧⎨⎩Tmax(w)+1 ⊢ Si → Aσ(w) if i ⊨ A

Tmax(w)+1 ⊢ Si → ¬Aσ(w) if i ⊭ A

If S4 ⊬ A, then i = wa ⊭ A, where a is the code of A. We have

Tmax(w)+1 ⊢ Si → ¬A∗(w).

37

Hence for all n ≥ max(w) + 1,

Tn ⊢ Si → ¬A∗(w).

Then by
Tn+1 ⊢ Sk → ¬Prn(¬Si),

we have
Tn+1 ⊢ Sk → ¬Prn(A∗(w)).

Since Tn+1 is sound, N ⊨ ¬Prn(A∗(w)) which means Tn ⊬ A∗(w), and since n
could be any sufficiently large number, T ⊬ A∗(w), therefore, there is M , a model
of T = ⋃

n Tn, such that M ⊭ A∗(w), which is a contradiction. Hence, S4 ⊢ A.

Using the previous lemma, we are able to prove the strong completeness the-
orem.

Theorem 1.6.10. (Uniform Strong Completeness) Let {Tn}∞
n=0 be a uniformly

reflexive hierarchy of sound theories. Then there exists an arithmetical substitu-
tion ∗, such that for any modal sequent Γ ⇒ A, if there exist witnesses u and v
such that for all M ⊨

⋃
n Tn, (M, {Tn}∞

n=0) ⊨ Γ∗(u) ⇒ A∗(v), then S4 ⊢ Γ ⇒ A.
Moreover, if Ref ⊨ Γ ⇒ A, then Γ ⊢S4 A.

Proof. Use the arithmetical substitution from the uniform completeness. Since

(M, {Tn}∞
n=0) ⊨ Γ∗(u) ⇒ A∗(v)

for all M ⊨
⋃

n Tn, then ⋃
n Tn + Γ∗(u) ⊢ A∗(v). Therefore, there is a finite subset

∆ ⊆ Γ and a witness w, a subset of u, such that ⋃
n Tn + ∆∗(w) ⊢ A∗(v). Thus,

for all M ⊨
⋃

n Tn, we have

(M, {Tn}∞
n=0) ⊨ ∆∗(u) ⇒ A∗(v).

By uniform completeness, we have S4 ⊢ ∆ ⇒ A and hence, S4 ⊢ Γ ⇒ A.
The second part of the theorem, is obvious from the first part; because if Ref ⊨
Γ ⇒ A, then the assumption of the first part is true for some sequence of ex-
pansions Γ̄ and B1, B2, . . . , Br. Hence Γ̄ ⊢S4

⋁r
i=0 Bi. Since in the presence of

the axiom K, the expansions of a formula are equivalent to the formula itself, we
have Γ ⊢S4 A.

1.7 The Logics GL and GLS
As Solovay showed in his pioneering work, [20], the logic GL is sound and com-
plete for the interpretation that interprets all boxes as provability predicates in
some appropriate theory. Moreover, he showed that if we change the definition
slightly, we can also capture the logic GLS. We translate his results into our
framework and after defining constant and sound-constant provability models,
we will show the soundness and completeness of GL and GLS for the classes
of all constant provability models and all sound-constant provability models, re-
spectively. In fact, the soundness-completeness theorems of these logics are just
a new representation of Solovay’s results. Consequently, we can claim that our
provability interpretation is actually a generalization of Solovay’s provability in-
terpretation.

38

1.7.1 The Case GL
First of all the definition of the constant and sound-constant provability models:

Definition 1.7.1. A provability model, (M, {Tn}∞
n=0) is constant if for any n

and m, (M, {Tn}∞
n=0) thinks that Tn = Tm, i.e. M ⊨ PrTm(A) ↔ PrTn(A) and

M ⊨ PrT0(PrTm(A) ↔ PrTn(A)) for all sentences A; and it is called a sound-
constant model when it is constant and for any n, M thinks that Tn is sound,
i.e. M ⊨ PrTn(A) → A for any sentence A. The class of all constant provability
models and the class of all sound-constant provability models will be denoted by
Cst and sCst, respectively.

Remark 1.7.2. In the previous definition we used a notion for the equality of the-
ories which seems ad-hoc and artificial. Here in this remark, we will justify that
definition. Intuitively, M thinks that two theories are equal, when their provability
properties are the same. In a more precise way, we say that M thinks Tn and Tm

are equal, when for any modal sentence ϕ(p), any witness w and any arithmetical
substitution σ for all atoms except p, M ⊨ ϕσ(Prm(A))(w) ↔ ϕσ(Prn(A))(w).
We will show that this definition of equality is equivalent to the original one.
First of all, if we use ϕ(p) = p, we will have M ⊨ PrTm(A) ↔ PrTn(A). More-
over, if we use ϕ(p) = □(p ↔ q), w = (0) and σ where qσ = Prn(A), we have
M ⊨ PrT0(PrTm(A) ↔ PrTn(A)). For the converse, we use induction on ϕ to show
the following claim.

Claim. For any formula ϕ(p), any witness w and any arithmetical sub-
stitution σ for all atoms except p, M thinks that both of the following state-
ments are true: ϕσ(Prm(A))(w) ↔ ϕσ(Prn(A))(w) and T0 ⊢ ϕσ(Prm(A))(w) ↔
ϕσ(Prn(A))(w).

The atomic case and the boolean case are obvious. For the modal case, it is
an easy consequence of the fact that Σ1-completeness and some basic facts about
the provability predicate are true in M .

We are ready to prove the soundness-completeness result for GL. First of all,
a technical lemma.

Lemma 1.7.3. Let (M, {Tn}∞
n=0) be a constant provability model. Then for any

modal formula A, any witness w and any arithmetical substitution σ, if 0 assigns
zero to all the boxes of A, then M thinks that both of the following statements are
true: Aσ(w) ↔ Aσ(0) and T0 ⊢ Aσ(w) ↔ Aσ(0).

Proof. Use induction on A. The case for the atoms and the boolean connectives
are easy. For the modal case, if A = □B, and w = (n, u), then by IH, M thinks
T0 ⊢ Bσ(u) ↔ Bσ(0). Hence Tn ⊢ Bσ(u) ↔ Bσ(0) and by Σ1-completeness,
M ⊨ Prn(Bσ(u) ↔ Bσ(0)). Thus Prn(Bσ(u)) ↔ Prn(Bσ(0)) is true in M . Since
Prn(Bσ(0)) and Pr0(Bσ(0)) are equivalent in M , we have

M ⊨ Prn(Bσ(u)) ↔ Pr0(Bσ(0)).

For the other part of the claim, for □B, we have M ⊨ Prn(Bσ(u) ↔ Bσ(0)).
Therefore by Σ1-completeness, M thinks T0 ⊢ Prn(Bσ(u) ↔ Bσ(0)). Hence T0 ⊢

39

Prn(Bσ(u)) ↔ Prn(Bσ(0)) is true in M . But we know that M thinks that

T0 ⊢ Prn(Bσ(0)) ↔ Pr0(Bσ(0)),

therefore, M thinks that

T0 ⊢ Prn(Bσ(u)) ↔ Pr0(Bσ(0)).

Theorem 1.7.4. (Soundness) If Γ ⊢GL A, then Cst ⊨ Γ ⇒ A.

Proof. If Γ ⊢GL A then there exists a finite ∆ ⊆ Γ such that GL ⊢ ⋀ ∆ → A.
Then by Theorem 1.2.3, we have IΣ1 ⊢ ∆σ(0) → Aσ(0). Thus for any model M ,
M ⊨ Γσ(0) ⇒ Aσ(0). Pick any arbitrary witnesses for Γ and A say wΓ and wA.
By using the Lemma 1.7.3 we will have M ⊨ Γσ(wΓ) ⇒ Aσ(wA).

For the completeness of GL we have:

Theorem 1.7.5. (Uniform Strong Completeness) Let IΣ1 ⊆ T be an r.e. Σ1-
sound theory and {Tn}∞

n=0 be a hierarchy of theories such that for any n, Tn =
T , then there is an arithmetical substitution ∗ such that for any modal sequent
Γ ⇒ A, if for all M ⊨ T , we have (M, {Tn}∞

n=0) ⊨ Γ ⇒ A, then Γ ⊢GL A. In
particular, if Cst ⊨ Γ ⇒ A then Γ ⊢GL A.

Proof. Pick ∗ as the uniform arithmetical substitution in Solovay’s completeness
theorem for T (see Preliminaries and [7]). Pick M ⊨ T , arbitrarily. We have
(M, {Tn}∞

n=0) ⊨ Γ ⇒ A, hence there are a sequence of expansions Γ̄ and expan-
sions {Ai}r

i=0 of A and witnesses u and wi such that

M ⊨ Γ̄∗(u) ⇒
r⋁

i=0
A∗

i (wi).

Since all the theories are equal, we can easily verify that for any formula B
and any witness v, B∗(v) is equivalent to B∗, where B∗ means a combination
of substituting all the atoms by ∗ and interpreting any box as the provability
predicate for T . Then we have

M ⊨ Γ̄∗ ⇒
r⋁

i=0
A∗

i .

Moreover, it is easy to prove that if B is an expansion of C, then B∗ is equivalent
to C∗ in IΣ1 and hence M ⊨ Γ∗ ⇒ A∗. Since M is arbitrary, we have T+Γ∗ ⊢ A∗,
therefore, there is a finite subsequence ∆ ⊆ Γ such that T + ∆∗ ⊢ A∗. Then by
Solovay’s uniform completeness theorem, we have ∆ ⊢GL A, thus Γ ⊢GL A. For
the second part of the theorem, it is easy to show that if Cst ⊨ Γ ⇒ A, then the
assumption of the first part for T = IΣ1 is met, and hence Γ ⊢GL A.

40

1.7.2 The Case GLS
For the case of GLS we have:

Theorem 1.7.6. (Soundness) If Γ ⊢GLS A, then sCst ⊨ Γ ⇒ A.

Proof. If Γ ⊢GLS A, then there are formulas B1, B2, . . . , Bk such that Γ ⊢GL⋀k
i=1(□Bi → Bi) → A. By the proof of the soundness of GL, we know that

for any constant provability model and any arithmetical substitution σ, M ⊨
Γσ(0) + ⋀k

i=1(Pr0(Bσ
i (0)) → Bσ

i (0)) ⇒ Aσ(0). Since M ⊨ Pr0(ϕ) → ϕ for any
arithmetical ϕ, we have M ⊨ Γσ(0) ⇒ Aσ(0). Use Lemma 1.7.3 to change the
index of the theories from zero to any arbitrary witness.

Moreover, we have the completeness theorem.

Theorem 1.7.7. (Completeness) Let IΣ1 ⊆ T be a sound r.e. theory and
{Tn}∞

n=0 be a hierarchy of theories such that for any n, Tn = T . If (N, {Tn}∞
n=0) ⊨

A, then GLS ⊢ A; and especially, if sCst ⊨ A, then GLS ⊢ A.

Proof. By the assumption, we have (N, {Tn}∞
n=0) ⊨ A. Hence, there are expan-

sions {Ai}r
i=0 of A and witnesses wi such that for all arithmetical substitutions

σ, N ⊨
⋁r

i=0 A
σ
i (wi). Since all the theories are equivalent, it is easy to show that

for any formula B and any witness v, Bσ(v) is equivalent to Bσ, where Bσ means
a combination of substituting any atom by σ and interpreting any box as the
provability predicate for T . Therefore, N ⊨

⋁r
i=0 A

σ
i . Moreover, it is easy to prove

that if B is an expansion of C, then Bσ is equivalent to Cσ in IΣ1, hence N ⊨ Aσ.
Since σ is arbitrary, based on Solovay’s second completeness theorem, GLS ⊢ A.
For the second part of the theorem, it is easy to verify that if sCst ⊨ A then the
assumption of the first part for T = IΣ1 is met and hence GLS ⊢ A.

1.8 The Extensions of KD45
Intuitively, the logic S5 does not admit any provability interpretation. The in-
formal reason is as follows: The axiom 5 : ¬□A → □¬□A simply states that if
A is not provable in a theory Tn, then this fact will be provable in Tn+1, i.e.

Tn ⊬ A ⇒ Tn+1 ⊢ ¬Prn(A).

Moreover, the axiom T asserts that all theories are sound, hence

Tn ⊬ A ⇔ Tn+1 ⊢ ¬Prn(A).

We can use the last equivalence and the fact that the theory Tn+1 is recursively
enumerable to find a decision procedure for the provability in the theory IΣ1 ⊆ Tn,
which is impossible.
The above argument is based on the axiom 5 and the fact that all theories are
sound. But it is possible to weaken the soundness part to a certain consistency
assumption which generalizes the above argument to all extensions of the logic
KD45.

41

Theorem 1.8.1. There is no provability model (M, {Tn}∞
n=0) such that

(M, {Tn}∞
n=0) ⊨ KD45.

Hence, there are no provability models for any extension of the logic KD45. In
particular, S5 does not have any provability interpretation.

Proof. The proof we present here is more complex than the natural proof of this
theorem, because we use weaker assumptions than what is available in KD45.
The reason of our interest in this more complex proof is that we will use the same
proof for the case of the classical propositional logic, and in that case we just
have access to these weaker assumptions.
We prove the claim by contradiction. Suppose that there is a provability model
(M, {Tn}∞

n=0) such that (M, {Tn}∞
n=0) ⊨ KD45. First, we show that the following

three statements are true in M , then we will use these statements to reach the
contradiction.

(i) For any n, M thinks that Tn+1 ⊬ Prn(⊥). (Weak version of the consistency
assumption.)

(ii) For any n, there exist N > n and s < N such that M thinks that
TN ⊢ Prn+1(Prn(⊥)) → Prs(⊥). (Weak version of the provability of the
consistency assumption.)

(iii) There are m, n and k such that M thinks that for any arithmetical state-
ment ϕ,

¬Prn(ϕ) → Prm+1(Prk(ϕ) → Prm(⊥)).

(Weak version of the axiom 5).

To prove (i), for any number n, define □n⊤ as follows: □0⊤ = ⊤ and □n+1⊤ =
□□n⊤. Consider the formula ¬□□(⊥ ∧ □n⊤), which is a theorem of KD45.
Therefore, we have expansions of this formula, of the form ¬□⋁si

j=0 □
⋁tij

k=0(⊥ ∧
Bijk) for 0 ≤ i ≤ r, where Bijk is an expansion of □n⊤. Moreover, there are
witnesses wi = (ni, (mij, (uijk)tij

k=0)si
j=0) for any of these expansions such that for

any arithmetical substitution σ, we have

M ⊨
r⋁

i=0
¬□

si⋁
j=0

□(
tij⋁

k=0
(⊥ ∧Bijk))σ(wi).

Since the number of the boxes in □n⊤ is n, and witnesses for these boxes should
be increasing, we have mij ≥ n and hence ni ≥ n + 1. Define M = minij(mij)
and N = mini(ni). Since Bijk is an expansion of the theorem □n⊤, we can
easily show that Bijk(uijk) is provable in IΣ1. Hence, it is easy to see that
M ⊨ ¬PrN(PrM(⊥)) for some N > M ≥ n. Therefore, if M ⊨ Prn+1(Prn(⊥)),
and since N > M ≥ n, we have PrN(PrM(⊥)), which is a contradiction.

For (ii), apply the same method to the formula □(□□(□⊥ ∧ □n⊤) → □⊥)
which is again a theorem of KD45. Then there are expansions of the form

42

□
⋁qj

j=0(□(⋁pij

k=0 □
⋁tijk

l=0 Bijkl) → □⊥) where Bijkl is an expansion of □⊥ ∧ □n⊤
and there are witnesses wi = (ni, (mij, (rijk, (uijkl)

tijk

l=0)pij

k=0, sij)qi
j=0) such that

M ⊨
r⋁

i=0
(□(

qj⋁
j=0

(□(
pij⋁

k=0
□

tijk⋁
l=0

Bijkl) → □⊥))σ(wi).

Once more, with the same reasoning as in the case (i), n ≤ rijk < mij < ni.
Define N = maxi(ni), r = minijk(rijk), m = minij(mij) and s = maxi(si).
Hence N > m, r, s and m > r ≥ n. Since the theories in the hierarchy {Tn}∞

n=0
are provably increasing, it is easy to prove

M ⊨ PrN(Prm(Prr(⊥)) → Prs(⊥)).

Because m > r ≥ n, we have

M ⊨ PrN(Prn+1(Prn(⊥)) → Prs(⊥)).

Since n is arbitrary, we have proved that for any n, there exists N > n, s < N
such that

M ⊨ PrN(Prn+1(Prn(⊥)) → Prs(⊥)),
and this is what we wanted.

For (iii) we know that ¬□p → □(□p → □⊥) is provable in KD45 and
consequently it is true in the model. Therefore, there are some expansions of the
formula ¬□p → □

⋁si
j=0(□p → □⊥), and some witnesses (ni,mi, (kij, lij)si

j=0) for
them, such that for any arithmetical substitution σ,

M ⊨
r⋁

i=0
(¬□p → □

si⋁
j=0

(□p → □⊥))σ(ni,mi, (kij, lij)si
j=0).

Define n = maxi(ni), k = minij(kij), m = maxi(ki) and l = maxij(lij). It is easy
to show that

M ⊨ ¬Prn(pσ) → Prm(Prk(pσ) → Prl(⊥)).
It is easily verified that we can increase m and l; therefore, w.l.o.g. we can assume
that m = l + 1. Send p to ϕ to prove the claim, and this completes the proof of
the statement (iii).

For the proof of Theorem 1.8.1, we want to use these three statements to reach
a contradiction. First of all, to simplify the proof, use the following notation. For
any a and b, define the theory Tba = Tb + Cons(Ta). Thus, by Prba(A), we mean
PrTba

. Now, (iii) would be equivalent to

M ⊨ ¬Prn(pσ) → Prml
(¬Prk(pσ)).

Put ϕ = Prml
(⊥); therefore,

M ⊨ ¬Prn(Prml
(⊥)) → Prml

(¬Prk(Prml
(⊥))).

On other hand by the formalized Σ1-completeness, we have

IΣ1 ⊢ ¬Prk(Prml
(⊥)) → ¬Prml

(⊥),

43

hence,
Tml

⊢ ¬Prk(Prml
(⊥)) → ¬Prml

(⊥).
Moreover, by Σ1-completeness, we have

IΣ1 ⊢ Prml
(¬Prk(Prml

(⊥)) → ¬Prml
(⊥)).

Therefore,
IΣ1 ⊢ Prml

(¬Prk(Prml
(⊥))) → Prml

(¬Prml
(⊥)).

And since M ⊨ IΣ1, we have

M ⊨ ¬Prn(Prml
(⊥)) → Prml

(¬Prml
(⊥)).

Based on Gödel’s second incompleteness theorem formalized in IΣ1, we can con-
clude

IΣ1 ⊢ ¬Prml
(⊥) → ¬Prml

(¬Prml
(⊥)).

However, by (i), we have
M ⊨ ¬Prl+1(Prl(⊥)),

hence M ⊨ ¬Prml
(⊥). Since M ⊨ IΣ1,

M ⊨ ¬Prml
(¬Prml

(⊥)).

Therefore,
M ⊨ Prn(Prml

(⊥)),
and thus by definition of Tml

we have

M ⊨ Prn(Prm(Prl(⊥))).

By (ii), there is some N ≥ l such that M ⊨ PrN(Prl+1(Prl(⊥)) → Prs(⊥)).
W.l.o.g. pick this N ≥ n. Since N ≥ n, M ⊨ PrN(Prm(Prl(⊥))), and there-
fore, M ⊨ PrN(Prs(⊥)). Because N > s, we have M ⊨ PrN(PrN−1(⊥)), which
contradicts with (i), and the proof follows.

1.9 A Remark on the Logic of Proofs
As we mentioned in the Introduction, and as far as we know, the only successful
attempt to find a natural provability interpretation for S4 and hence, a formal-
ization of the BHK interpretation is done by Artemov [2] and is called the logic
of proofs. In this section, we will look into this approach and investigate some of
its advantages and disadvantages.

The main idea of the logic of proofs, LP, is using explicit proofs to avoid the
non-standard proofs and hence to eliminate the incompleteness phenomenon. Let
us give a more detailed account of this result. The language of LP is two sorted;
one sort is for the explicit proofs and the other for the propositions. The first sort
consists of proof terms constructed by the proof variables, proof constants and
the proof connectives +, · and !, while the second sort contains terms constructed
by the propositional variables, propositional connectives and the formulas of the
form t : A in which t is a proof term and A is a proposition. Let us explain the

44

intuitive meaning of these operations:

First of all we have to emphasize that in this interpretation, unlike the usual
case in mathematics, proofs can be multi-conclusion. To find a natural candidate
for these multi-conclusion proofs, it is enough to consider any usual proof as a
proof for all intermediate statements it uses to prove the conclusion. For instance,
the usual proof A1, A2, . . . , An of An will be interpreted as a proof for all Ai’s.

1. The operation “!”. If t is a proof for A, then !t is a proof for the fact that
“t is a proof for A”. Therefore, the operator ! is the proof checker and could be
interpreted as a self-awareness operator.
2. The operation “·”. If t is a proof for A → B, and s is a proof for A, then t · s
is a proof for B. Intuitively, · means the application of Modus Ponens on the
proofs.
3. The operation “+”. t+s means the union of the proofs t and s. Recall that our
proofs are multi-conclusion and t+s can be served as a proof for all conclusions of
t and s. Therefore if t is a proof for A and s is a proof for B, then t+ s is a proof
for both A and B. To gain a better understanding, if we use the canonical way of
changing usual proofs to multi-conclusion proofs, i.e. reading a usual proof as a
proof for all intermediate statements in the proof, then t+ s just means putting
t and s together. This is exactly what the symbol + suggests.
4. The predicate “ : ”. The intuitive meaning of t : A is that t is a proof for A.

The formal system LP is a theory in this language to capture the intended
meaning of the symbols defined above. The axioms are the following:

1. A finite complete set of axioms for the classical propositional logic for the
language of LP,
2. t : A → A,
3. t : A → B → (s : A → t · s : B),
4. t : A →!t : t : A,
5. t : A → s+ t : A,
6. s : A → s+ t : A.

The rules are the modus ponens and the neccesitation rule. The latter means
that for any axiom A, we have ⊢ cA : A, where cA is an appropriate constant
exclusively used for A.

The natural interpretation for LP would be based on the usual proofs in
Peano arithmetic. To formalize this idea, first of all we need a proof predicate:
A proof predicate is a provably ∆1 formula (in PA) Prf(x, y) with some natural
basic properties (which we skip here. See [2]), and the following fundamental
property:

PA ⊢ A ⇔ ∃xPrf(x, ⌈A⌉).

We want to interpret the language of LP with this natural provability in-
terpretation. Define an arithmetical substitution ∗ as the following: Firstly, it
interprets ·, !, + and constants as the recursive functions on proofs in PA in the
intended way. For instance, the function for · i.e., ·∗, will be the recursive function

45

which reads the codes of the proofs for A and A → B and replies the code of
a proof for B. Why can we define such recursive functions? To show the fact
that these functions exist, we need a proof; but here we just want to explain the
main idea instead of a formal proof. For this reason, let us limit ourselves to the
canonical proof predicate of PA. In this case, it can be easily shown that we can
define these functions in a recursive way. For instance, if x and y are proofs for
A → B and A respectively, for ·∗(x, y) it is enough to put y after x and add the
formula B at the end. This is obviously a proof for B and this process is clearly
a recursive function. Moreover, note that for any cA, c∗

A is one of the proofs for
the axiom A∗. The existence of such a c∗

A also needs a proof, which we skip here.
(See [2].)

Up to this point, we have interpreted all the proof connectives as recursive
functions. Use these interpretations to interpret all proof terms t. Note that for
interpreting proof variables we use arbitrary natural numbers as codes of proofs.
Extend the interpretation ∗ to formulas. The idea is just interpreting all atoms as
arithmetical sentences, reading t : A as the proof predicate Prf(t∗, ⌈A∗⌉) and com-
mute ∗ with all boolean connectives. For instance, the interpretation of !x : p → p
would be Prf(!∗(n), ⌈ϕ⌉) → ϕ where the interpretations of x and p are n and ϕ,
respectively.

These arithmetical interpretations are the natural and concrete interpretations
of the proofs, and in [2] Artemov proved that LP is sound and complete with
respect to the class of these arithmetical interpretations.

Theorem 1.9.1. LP ⊢ A iff A∗ is true for all arithmetical interpretations ∗.

So far, we have found a natural proof interpretation for the system LP. Find-
ing a natural interpretation for S4 into LP would be the next step. Subsequently,
we can use the composition of these interpretations to find a proof interpretation
for S4 and hence for IPC. We do not go into detail about the interpretation
of the modal language into the system LP, but the basic idea is the following:
Interpret any box as the existence of a proof; thus, any modal sentence will be
equivalent to a first order formula in the language of LP. Therefore, we have
quantifiers everywhere and specially in the scope of the predicate “:”. We know
that there is no way to exchange the quantifiers with the proof predicate (which
is the reason why the incompleteness phenomenon and non-standard proofs ap-
pear), but since we require all the codes of the proofs to be standard numbers,
we extract all the quantifiers and convert the translated formula into the prenex
form. Use the Skolemization technique to witness the existential quantifiers by
the universal ones. These witnesses are called realizations. (This is where we
essentially need “+”. It is important to note that by using Skolemization, we
usually find a finite set of different witnesses and then we can roughly use + to
merge these finite witnesses into one.) Note that this is not how Artemov argues
in [2]; however, we explained the realizations in the way that we think is more
accessible and to show why it is natural to have such a concept at the heart of the
interpretation of the modal sentences. Let us illuminate the above interpretation
by an example.

46

Example 1.9.2. Consider the modal formula (□(p → p)∧¬□p) → □¬□p. First,
we have to interpret all of the boxes as the existence of the proofs. Hence, we have

(∃w : (p → p) ∧ ¬∃x : p → ∃y : (¬∃z : p).

Then, by extracting the quantifiers, we have

(∃w : (p → p) ∧ ∀x¬x : p) → ∃y∀z y : ¬z : p,

which is equivalent to

∀w∃x∃y∀z((w : (p → p) ∧ ¬x : p) → y : ¬z : p)).

And finally by witnessing y and x by some terms t(w, z) and s(w, z), we have

(w : (p → p) ∧ ¬s(w, z) : p) → t(w, z) : ¬z : p.

This new formula is a realization for the modal formula (□(p → p) ∧ ¬□p) →
□¬□p. Note that this realization is just one possible realization of the formula
and if we change the witnessing terms t(w, z) and s(w, z), we can find different
realizations for the same formula.

After introducing the realizations, Artemov proved the following: (See [2].)

Theorem 1.9.3. S4 ⊢ A iff there exists some realization r such that LP ⊢ Ar.

In sum, we can say that Artemov used two ingredients to find a provability
interpretation for S4. The first one is the interpretation of modal sentences via
realizations into the system LP. (Here the main idea is the interpretation of the
boxes as the existence of the standard proofs.) And the second ingredient is the
interpretation of the system LP via natural arithmetical proof interpretations.
Therefore, the main idea of what Artemov did, is to use the system LP as a
bridge to interpret S4 via arithmetical proof interpretations.

Let us explain the advantages of this approach. First of all, it uses the explicit
proofs and by the method of using realizations, it makes sure that everything is
a standard proof in this context. Therefore, this approach actually kills the ef-
fect of Gödel’s incompleteness theorems and makes the proof interpretation more
intuitive. Note that naturally, we do not count infinite non-standard proofs as
proofs. Moreover, regardless of the relation between modal logics and explicit
proofs, the system LP has its own applications. In fact, since it is a formal sys-
tem for explicit proofs, it can be used as a theory to investigate the concept of
proof and its natural calculus. Consequently, these formal systems are appropri-
ate to investigate the formal verification in computer science or the behavior of
justifications in formal epistemology.

However, this utopia of explicit proofs comes at a price. The price is a combi-
nation of two unintended properties: The first one is related to the fundamental
change in the interpretation of the concept of provability and the second one is
about the role of LP as an unbiased bridge. The problem is that the bridge is
not neutral and somehow reflects its own behavior, which is not what we wanted.

47

Let us explain the first property by a simple example: Consider the modal
sentence □¬□p. The intended meaning of this sentence is the existence of a proof
that shows p is not provable. In other words, it states that there exists a proof
which shows that for any possible proof x for p, x is not a proof for p. Let us
use the logic of proofs interpretation of the sentence. Since the occurrences of
the inner and the outer box are negative and positive respectively, the meaning
of the sentence is the existence of a term t(x) such that t(x) : ¬x : p. Forgetting
the condition that the term t(x) should be a term in the language, it means that
for all x, there exists a proof y = t(x) which proves ¬x : p. In other words, it
says that for any possible proof x for p, there exists a proof which shows that x
is not a proof for p. It is easy to check that while the first interpretation is an ∃∀
statement, the second one is a ∀∃ statement, and it is obviously weaker than the
first one. In fact, when we claim that we have a proof for unprovability of p, we
mean a fixed uniform proof of the fact and we do not mean a machine (term) to
transform a possible proof of x to a proof y that shows x is not a proof for p.
What we showed above is just the difference for one statement. Nevertheless, the
argument actually works for different kinds of sentences. The reason is simple:
Logic of proofs needs to kill the presence of non-standard numbers. For this mat-
ter, it pushes out all the quantifiers. (It also changes the order of quantifiers to
find a functional interpretation of proofs.) Since quantifiers do not commute with
proof predicates, the content of the sentence before pushing out the quantifiers is
different from that of the transformed sentence. The first sentence is the intended
interpretation of provability and the latter is what the logic of proofs interprets
as the meaning of provability. While this new interpretation is interesting and
useful, it is not the intended interpretation of informal provability and hence not
the interpretation of S4.

In the following, we accept the functional interpretation of provability as what
the logic of proofs proposed and we want to investigate the role of terms which
we ignored in the previous argument. Let us explain the second property by a
thought experiment: Think of the situation that you have another binary connec-
tive “?” in the language of LP with the following intuitive meaning: If s is a proof
for A → A and t is not a proof for A, then ?(s, t) is a proof of the proposition
that “t is not a proof for A”. Add the axiom

(s : (A → A) ∧ ¬t : A) →?(s, t) : ¬t : A

to the system LP and call it LP?. It is clear that the connective ? and the
above sentence are the negative versions of the connective ! and its corresponding
axiom, respectively. What is not clear is the use of the seemingly useless part
s : A → A. We can explain this issue as the following: Assume that we have a
non-proof t for A and we want to construct a proof of the sentence ¬t : A. We
call this proof r. The important fact is that the sole access to t is not enough
to construct r because the code of A is also needed and this is actually where s
plays its role: s is a proof for A → A, hence we can use s to compute the code of
A and now we have enough information to construct r.
Our method here seems ad-hoc and is certainly ugly, but remember that our goal
is to perform an experiment about LP and fortunately this ad-hoc example is
good enough to make our point. Now, let us be more formal about the natural

48

arithmetical interpretation of this connective and this new system. Since we used
explicit standard proofs, we know that there exists a recursive function which
reads t and the code of A and if t is not a proof for A, finds a proof of this
fact. The reason is as follows: We know that Prf(x, y) is provably ∆1, hence if
¬Prf(t, ⌈A⌉), we have

PA ⊢ ¬Prf(t, ⌈A⌉).
Therefore, by the definition of a proof predicate we have

∃rPrf(r, ⌈¬Prf(t, ⌈A⌉)⌉).

Use unbounded search to find this r. Since it exists, our program halts and finds
it. Now interpret ?(s, t) as the recursive function which reads s, finds the code
of A and then by the above-mentioned method finds the intended proof r. Thus,
based on this new natural arithmetical interpretation, we can interpret the new
axiom (s : (A → A) ∧ ¬t : A) →?(s, t) : ¬t : A. Hence, we have a natural
arithmetical interpretation for the system LP?. On the other hand, one of the
instances of the new axiom, i.e. (w : (A → A) ∧ ¬z : A) →?(w, z) : ¬z : A,
where z and w are proof variables, is the realization of the modal statement
5′ : (□(A → A) ∧ ¬□A) → □¬□A in this new language. (Put t(w, z) =?(w, z)
and s(w, z) = z in Example 1.9.2.) The above discussion means that we can
find a very natural provability interpretation of a variant of the axiom 5. Recall
that this axiom is not provable in S4 and it seems contradictory with Artemov’s
completeness result. However, there is no contradiction. The reason is that “?”
is not in the original language of LP, and hence you can not use it as a witness
in the realization.
This observation shows that the arithmetical interpretation actually validates a
variant of the axiom 5, but the lack of the appropriate symbol in LP interferes
with this fact. Therefore, the system LP does not reflect the whole power of ex-
plicit proofs; it just chooses the appropriate part to witness all the theorems of S4
and nothing more than that. In other words, the formalization of the provability
interpretation via the explicit proofs is very sensitive to the language we use. If
we change the language, then with the same arithmetical interpretation, we will
capture different modal logics. Therefore, we can conclude that the soundness-
completeness result for S4 with respect to this kind of arithmetical interpretations
is a soundness-completeness result for the language we use and not the natural
arithmetical interpretation we choose. Now, a natural question would be the
following: If we eliminate this language barrier and make the relation between
modal logics and arithmetical interpretations as “direct” as possible, then which
modal logic corresponds to the whole power of the arithmetical interpretations
of the proofs? By the direct connection, we roughly mean the following: For any
modal sentence A, write it in the prenex form in a way that we defined before.
Then, instead of witnessing the existential quantifiers by some terms in some lan-
guage, witness them by some natural recursive functions on the proofs in Peano
arithmetic. Define the logic E as the logic of all statements which are valid for
this kind of arithmetical interpretations. Clearly, the question mentioned above
is informal, but it is easy to verify that the answer is not S4. The reason is
that we can find an appropriate way to interpret a variant of 5 as we have shown
above. It is appropriate because there is no a priori reason to accept the recursive
function ! and reject ?. The first one finds a proof for Prf(m,n) if Prf(m,n) is

49

true and the second function finds a proof for ¬Prf(m,n) if Prf(m,n) is false.
Both of them are recursive and hence accessible for us as human beings. Note
that Prf is a provably recursive predicate, and hence finding a proof for Prf(m,n)
or a proof for its negation are similar computational tasks. (In the modal setting,
the axioms 4 and 5 are intuitively different because we read □A as ∃xPrf(x,A).
This interpretation makes the sentence Σ1 which is different from its negation.)

To sum up, the explicit proofs approach first kills all the quantifiers and puts
some explicit witnesses for them. Therefore, it ignores the order of quantifiers
and changes the canonical meaning of sentences and then as a consequence, it
eliminates the computability based difference between provability and unprov-
ability (Σ1 vs Π1) and maps both predicates to the boolean combinations of the
explicit proof predicate Prf, which belongs to the class ∆1. Consequently, the
axioms 4 and 5 become similar and hence arithmetical interpretations can inter-
pret a variant of 5 in a very natural way. Finally, to avoid this fact, the logic
of proofs uses the language of LP to regain the difference between 4 and 5 by
choosing what we need for S4 and ignoring the other natural functions as ex-
emplified by the function ?. This argument shows that the approach of explicit
proofs does not distinguish 4 from 5 in a natural and essential way and hence,
it can not be considered as a formalization of the provability interpretation of S4.

As the final part of this section, let us compare what we do in this chapter with
the approach of the explicit proofs. First of all, we use the canonical meaning
of provability instead of the logic of proofs’ functional interpretation. Moreover,
we do not use any language as a bridge. Therefore, our soundness-completeness
results represent the provability behavior of our arithmetical interpretations in
a direct way. Secondly, to capture different modal logics, we impose different
natural conditions on our provability models, specifically on the hierarchy of the-
ories. Therefore, we can claim that our approach can characterize different modal
logics based on their different provability natures. Thirdly, our interpretation is
based on the implicit proofs approach and hence it is a natural generalization
of Solovay’s work on GL. But since the Löb axiom is based on the incomplete-
ness phenomenon, the explicit approach does not capture it and thus does not
accept Solovay’s provability interpretation as a special case. Hence, the explicit
approach can not serve as the general framework for provability interpretations.

1.10 BHK Interpretations
Briefly, what we are going to do in this section, is to introduce a formalization of
the BHK interpretation. Indeed, we will generalize this goal to make a framework
to formalize different kinds of provability interpretations which includes the BHK
interpretation as a special case. Note that the usual BHK interpretation is not
the unique provability interpretation of the propositional language; in fact, there
are many of them. Some of them can be characterized as variants of the original
BHK interpretation, and some can’t. The reason is that those provability inter-
pretations do not satisfy the intended philosophical conditions which we want to
have, but they are still provability interpretations and they need an exact for-
malization if we want to use them. Let us illuminate the idea by two examples.

50

The first one is a controversial variant of the BHK interpretation; it is obtained
from the original BHK interpretation after relaxing the condition which says that
there does not exist a proof for ⊥. This interpretation informally corresponds
to the minimal propositional logic, MPC. The second example of provability
interpretation is also obtained from the original BHK interpretation, but now
we read ⊥ as the inconsistency, instead of the provability of the inconsistency.
More precisely, and using the notation of Gödel’s translation, we have ⊥g = ⊥,
where g stands for this new translation (which is different from what we used in
the Introduction). This provability interpretation cannot be characterized as a
variant of the BHK interpretation because of some philosophical reasons, which
we do not get into here.

In this section, we try to justify the claim that our provability interpreta-
tion can offer an appropriate framework to formalize these different provability
interpretations of the propositional logics. To implement this idea, we need two
steps. First, we have to interpret all the connectives as the provability inter-
pretation demands; this step is done by Gödel’s translation. The second step
is interpreting the provability predicates (i.e. boxes in the modal translation)
as the classical provability of the classical theories. For that reason, we need a
hierarchy of theories to formalize the hierarchy of the intuitive provabilities in
the definition of the provability interpretation and also a model to evaluate the
truth value of our statements. This second step is done by the provability models.

What we discussed above is the general framework. Let us come back to
the specific case, which is the original BHK interpretation. Is there a right for-
malization of this interpretation? As we will show later, for different kinds of
provability models, we have different BHK interpretations and these interpreta-
tions could show inherently different provability behaviors. Consequently, there
are different formalizations for the BHK interpretation, instead of just a canoni-
cal one. The reason is that the BHK interpretation just interprets propositional
connectives in a discourse of provability, but it does not say anything about the
internal structure of the concept of provability. For instance, it does not say any-
thing related to the power of the meta-theories compared to the lower theories.
Since the BHK interpretation is the intended semantics for the intuitionistic logic,
we have to accept that there could be different intuitionistic logics in terms of
different interpretations of the power of our model and our theories. All of them
are equally intuitionistic if we have just the BHK interpretation as the criterion.

The natural question is that what these intuitionistic logics are if we impose
some natural conditions on the behavior of our model and our theories.
In the following, we will show that for some natural classes of provability mod-
els such as the class of all models or the class of all reflexive models, we can
characterize some propositional logics such as BPC and IPC, respectively. For
instance, in the case of reflexive models, the result shows that if we use the BHK
interpretation with the philosophical commitment which states that all of the
theories, meta-theories, meta-meta-theories and so on are sound and also, any
meta-theory is powerful enough to prove the soundness of the lower theories,
then the logic of the formulas which are valid under this kind of BHK interpreta-

51

tion, is the usual propositional intuitionistic logic. But, if we choose the minimal
power, which does not assume any non-trivial condition on the hierarchy of the
meta-theories, then the logic will change to BPC. However, what is important
here is that all of these logics could be characterized as intuitionistic logics. This
fact can explain the reason behind the disputes about finding the correct formal-
ization of the intuitionistic logic. For instance, in [17], Ruitenburg argues that
the truly intuitionistic logic is not IPC and he proposed BPC as the right one.
Our approach here has a plural nature, and it tries to explain why with the same
informal semantics (the BHK interpretation) there are different proposed logics.

Finally, a remark about classical logic. Since we have the axiom of the ex-
cluded middle in classical logic, we should have the following condition on prov-
ability models: Either the “provability of p” is provable or it is provable that the
provability of p implies the provability of ⊥. This means that the meta-theory
should be powerful enough to prove the unprovability of almost all unprovable
formulas. As we saw in the case of the logic S5, it contradicts with the natural
condition that all the theories should be recursively enumerable. Therefore, in-
tuitively speaking, we have to say that classical logic is beyond the scope of the
BHK interpretation. In the following, we will prove this fact in a precise way.

Definition 1.10.1. A provability interpretation for the propositional language is
a translation from the propositional language to the language of modal logics.

To illuminate the Definition 1.10.1, let us introduce three provability inter-
pretations as examples.

Definition 1.10.2. The BHK interpretation b is the following translation:

(i) pb = □p and ⊥b = □⊥

(ii) (A ∧B)b = Ab ∧Bb

(iii) (A ∨B)b = Ab ∨Bb

(iv) (A → B)b = □(Ab → Bb)

(v) (¬A)b = □(Ab → □⊥)

Our translation is the same as the usual one, except for the case of ⊥, which
is translated to ⊥ in the usual translation. (The negation of a formula A is
considered as A → ⊥ and it inherits this change in the translation from ⊥.) The
reason for slightly changing the definition of the translation is because the usual
translation can not capture the intended intuition of the BHK interpretation.
Actually, the intended intuitionistic meaning of ⊥, similar to the other atomic
formulas, is its provability. Therefore, the natural interpretation of ⊥ is □⊥. On
the other hand, we know that the BHK interpretation claims that there is not any
proof of ⊥, which means ¬□⊥. Based on these two observations, we can justify
the usual translation of ⊥ as □⊥ ∧ ¬□⊥, which is the same as ⊥. Nevertheless,
we have to emphasize that the condition of the unprovability of inconsistency is
not related to the meaning of the connectives, and hence it should not interfere in
the BHK interpretation; it is actually a commitment we impose on the discourse

52

of the provability. In our terms, the unprovability of the inconsistency asserts
that the theories and meta-theories are consistent and it is obviously a property
of the provability model and not a property of the connectives which we want
to define. Hence, to formalize the original BHK interpretation, we need two
ingredients; one is the b translation which is the formalization of the implicit
BHK interpretation, and the second is the consistency condition on the provability
models. The following definition formally states the second condition.

Definition 1.10.3. A provability model (M, {Tn}∞
n=0) is called a BHK model if

for any n, M ⊨ ¬Prn+1(Prn(⊥)).

Remark 1.10.4. It seems that the natural consistency condition would be the
consistency of all the theories. Yet, it is not enough. For instance, it is possible
that all the theories in the hierarchy are consistent, but some meta-theory thinks
that the lower theory is inconsistent, which contradicts with what an intuitionist
assumes. For the intuitionist, the hierarchy of theories are just different layers of
the story of the mind, and obviously these stories must be consistent in accordance
with the BHK interpretation. However, this condition should be mentioned in
the story itself. One way is assuming that any meta-theory actually proves the
consistency of the lower theories. This is a natural condition, but it imposes
a strong commitment on our theories. To keep the commitments as minimal as
possible, we believe that the right condition to impose on the theories is the weaker
condition which states that any meta-theory does not think that the lower theory
is inconsistent. As we will see, this weaker condition widens the horizon of the
BHK interpretation to capture the basic propositional logic on the one hand, and
avoid artificial and degenerate models in which we could capture classical logic,
on the other.

Based on the aforementioned considerations, when we talk about the formal-
ization of the BHK interpretation, we always refer to the BHK models. Let us
formalize what we will call the weak BHK interpretation.

Definition 1.10.5. Let q be a new atom which does not belong to the propositional
language. The weak BHK interpretation, w, is the following translation:

(i) pw = □p and ⊥w = □q

(ii) (A ∧B)w = Aw ∧Bw

(iii) (A ∨B)w = Aw ∨Bw

(iv) (A → B)w = □(Aw → Bw)

(v) (¬A)w = □(Aw → □q)

The translation is based on the idea that in this variant of the BHK interpre-
tation, we eliminate the consistency condition from the discourse of provability.
As a result, with this interpretation the intuitionist can not distinguish the in-
consistency statement from any other statements. Therefore, in her viewpoint,
⊥ is just a new atomic sentence which could be provable.

And finally, we will define Gödel’s translation to show that there could be
different provability models apart from the BHK interpretations.

53

Definition 1.10.6. Gödel’s provability interpretation, g, is the following trans-
lation:

(i) pg = □p and ⊥g = ⊥

(ii) (A ∧B)g = Ag ∧Bg

(iii) (A ∨B)g = Ag ∨Bg

(iv) (A → B)g = □(Ag → Bg)

(v) (¬A)g = □(¬Ag)

It is time to define the satisfaction of a propositional formula in a provability
model with respect to some provability interpretation i.

Definition 1.10.7. Let i be a provability interpretation. Then, by an expansion
of a propositional formula A, and a witness for A under the interpretation i, we
mean an expansion and a witness for Ai. And by (M, {T}∞

n=0, i) ⊨ Γ ⇒ A we
mean (M, {T}∞

n=0) ⊨ Γi ⇒ Ai. Moreover, if C is a class of provability models, by
(C, i) we mean {(M, {T}∞

n=0, i) | (M, {T}∞
n=0) ∈ C} and by (C, i) ⊨ Γ ⇒ A we

mean C ⊨ Γi ⇒ Ai.

The next step is establishing the soundness-completeness theorem for the prov-
ability interpretations we defined. But first, we need a technical lemma.

Lemma 1.10.8. If Γb ⊢KD4 A
b, then EBPC ⊢ Γ ⇒ A.

Proof. If Γb ⊢KD4 Ab then there is a cut-free proof for Γb ⇒ Ab in G(KD4).
Call it π. It is clear that all formulas occurring in π are sub-formulas of Ab or
sub-formulas of formulas in Γb. We know that all of these sub-formulas have the
following forms: Bb; Bb → Cb and atoms p. (⊤ and ⊥ are considered atomic
formulas in this proof.) Therefore, every sequent in π has the following form:

Γb, {Bb
i → Cb

i }i∈I , {pj}j∈J ⇒ ∆b, {Db
r → Eb

r}r∈R, {qs}s∈S

Now we will prove the following claim:

Claim. If

G(KD4) ⊢ Γb, {Bb
i → Cb

i }i∈I , {pj}j∈J ⇒ ∆b, {Db
r → Eb

r}r∈R, {qs}s∈S

where {pj}j∈J ∩ {qs}s∈S = ∅ and ⊥ /∈ {pj}j∈J then for any X ⊆ I

Γ, {Dr}r∈R, {Ci}i∈X ⊢EBPC
⋁

{∆, {Er}r∈R, {Bi}i/∈X}

The proof is by induction on the length of the cut-free proof in G(KD4).
To simplify the proof, we will call a sequent satisfying the conditions {pj}j∈J ∩
{qs}s∈S = ∅ and ⊥ /∈ {pj}j∈J , a good sequent.

The case for axioms and structural rules are easy to check. If the last rule is
a conjunction or disjunction rule, then the main formula has the first form. Then
since it is possible to simulate all conjunction and disjunction rules in EBPC,

54

the case of conjunction and disjunction rules are also easy to check. If the last
rule is an implication rule, since we define our claim up to using implicational
rules, there is nothing to prove in this case. Moreover, notice that if the conclu-
sion sequent is good then the premises are so. Therefore, it is possible to use the
induction hypothesis for them. Finally, if the last rule is a modal rule, then we
have the following two cases:

1. If the last rule is a modal rule □4R, based on the form of formulas and
the fact that in those three forms a boxed formula should be of the first kind, we
have two cases. The first case is when the boxed formula in the right side has the
form □(Db → Eb). The second case is when the formula has the form □p. For
the first case, the last rule has the following form:

{pj,□pj}j∈J , {Bb
i → Cb

i ,□(Bb
i → Cb

i)}i∈I ⇒ Db → Eb

{□pj}j∈J , {□(Bb
i → Cb

i)}i∈I ⇒ □(Db → Eb)
and we want to prove

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC D → E

Since every formula in the consequent sequent is boxed, it is a good sequent.
Moreover, the only way for the premise sequent to not be good is that for some
j, pj = ⊥. Therefore the claim is obvious from the ⊥ rule in EBPC. Hence, we
can also assume that the premise sequent is a good one. Then, by IH we know
that for any X ⊆ I we have

{pj}j∈J , {Bi → Ci}i∈I , {Ci}i∈X , D ⊢EBPC {Bi}i/∈X , E

By the rule → I the following is provable by Σ = {pj}j∈J ∪ {Bi → Ci}i∈I⋀
{Ci}i∈X ∧D →

⋁
{Bi}i/∈X ∨ E

Fix i ∈ I and also fix some Z ⊆ I − {i}. Both of the following statements are
theorems of Σ: ⋀

{Ci}i∈Z ∧D →
⋁

{Bi}i/∈Z ∨ Bi ∨ E

and ⋀
{Ci}i∈Z ∧ Ci ∧D →

⋁
{Bi}i/∈Z ∨ E

Since Σ ⊢ Bi → Ci. Then by using appropriate formalized rules we will have⋀
{Ci}i∈Z ∧D →

⋁
{Bi}i/∈Z ∨ E

provable by Σ in EBPC. By iterating this method we can eliminate all elements
in I. Therefore we will have

Σ ⊢EBPC D → E

which is what we wanted to prove.

If the boxed formula in the right side of the rule is □p, then the last rule has
the form

55

{pj,□pj}j∈J , {Bb
i → Cb

i ,□(Bb
i → Cb

i)}i∈I ⇒ p

{□pj}j∈J , {□(Bb
i → Cb

i)}i∈I ⇒ □p

and we want to prove

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC p

There are two different cases. The first case is when p ∈ {pj}j∈J or ⊥ ∈ {pj}j∈J .
In this case the claim is an obvious consequence of an axiom in EBPC. The
second case is when p /∈ {pj}j∈J and ⊥ /∈ {pj}j∈J . Therefore, the premise sequent
is a good one. Hence by IH and for any X ⊆ I we have

{pj}j∈J , {Bi → Ci}i∈I , {Ci}i∈X ⊢EBPC {Bi}i/∈X

with the same method as above we can deduce

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC ⊤ → ⊥

Then by the rule C, we will have

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC ⊥

which is what we wanted.

2. If the last rule is □DR, then everything in the proof is the same as the
proof for the case 1 when we put D = ⊤ and E = ⊥. Therefore, we will have

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC ⊤ → ⊥

Then by the rule C, we will have

{pj}j∈J , {Bi → Ci}i∈I ⊢EBPC ⊥

which is what we wanted.
After proving the claim, the theorem is an easy consequences of the claim. Since
there is a proof of Γb ⇒ Ab in G(KD4) then the sequent is obviously a good one
and hence by the claim we will have Γ ⊢EBPC A.

Theorem 1.10.9. (i) Γ ⊢BPC A iff Γb ⊢K4 A
b

(ii) Γ ⊢EBPC A iff Γb ⊢KD4 A
b

(iii) Γ ⊢IPC A iff Γb ⊢S4 A
b

(iv) Γ ⊢FPL A iff Γb ⊢GL A
b

(v) Γ ⊢MPC A iff Γw ⊢S4 A
w

Proof. The proof of the soundness part is easy and routine. For the completeness
part, the case (iv) is proved by Visser in [22]. The same proof also works for
(i). (iii) is a well-known result. (See [18] for instance.) (ii) is proved by Lemma
1.10.8. For the case (v), we know that MPC and S4 are sound and strongly
complete with respect to the class of reflexive transitive Kripke models. (For

56

MPC the model should also be persistent.) However, in the case of MPC, the
nodes can also satisfy ⊥. Soundness is again easy. For the completeness part, if
we have a counter MPC-Kripke model for Γ ⇒ A, we can construct a counter
S4-model for Γw ⇒ Aw in the following way: Use the same Kripke model, with
the same values, but assume that q is true in a node, if ⊥ is true in that node.
Then, it is easy to show that for any propositional formula B, B is true in the
node l iff Bw is so. Therefore, if the first model is a counter example for Γ ⇒ A,
then the new one is a counter example for Γw ⇒ Aw. This construction proves
the completeness part.

We can use the soundness and completeness of these translations to transfer
our results from the modal setting to the propositional one.

Definition 1.10.10. The class BHK is the class of all BHK models and the
class cBHK is the class of all BHK models which are constant.

Theorem 1.10.11. (i) Γ ⊢BPC A iff (PrM, b) ⊨ Γ ⇒ A. And BPC ⊢ A iff
(BHK, b) ⊨ A.

(ii) Γ ⊢EBPC A iff (Cons, b) ⊨ Γ ⇒ A.

(iii) Γ ⊢IPC A iff (Ref , b) ⊨ Γ ⇒ A.

(iv) Γ ⊢FPL A iff (Cst, b) ⊨ Γ ⇒ A. And FPL ⊢ A iff (cBHK, b) ⊨ A.

(v) Let (M, {Tn}∞
n=0) be a provability model. Then (M, {Tn}∞

n=0, b) ⊨ CPC iff
there exists n such that M ⊨ Prn+1(Prn(⊥)). Therefore, no BHK interpre-
tation for classical logic exists.

Proof. Based on Theorem 1.10.9, the strong soundness-completeness parts are
just easy consequences of the soundness-completeness results for the correspond-
ing modal logics. For the BHK completeness part for (i), if (BHK, b) ⊨ A,
then there are expansions Bi’s for Aw and a witness for ⋁

Bi, such that for
all arithmetical substitutions σ, and all BHK models (M, {Tn}∞

n=0), we have
M ⊨ (⋁r

i=0 Bi)σ(w). Let Γ be a sequence of infinitely many copies of ¬□□⊥
and u a witness, which witnesses each of these formulas by (n+ 1, n). We claim
that for any provability model (M, {Tn}∞

n=0) and any arithmetical substitution
σ, we have M ⊨ Γσ(u) ⇒ (⋁r

i=0 Bi)σ(w). If M ⊨ Γσ(u), then for any n, we
have M ⊨ ¬Prn+1(Prn(⊥)). Hence, (M, {Tn}∞

n=0) is a BHK model and there-
fore, M ⊨ (⋁r

i=0 Bi)σ(w). We know PrM ⊨ Γ ⇒ Ab; therefore, by strong com-
pleteness for K4, we have Γ ⊢K4 Ab. Thus, K4 ⊢ ¬□□⊥ → Ab and then,
K4 ⊢ ((⊤ → ⊥) ∨A)b. By Theorem 1.10.9, BPC ⊢ (⊤ → ⊥) ∨A, and therefore
by the disjunction property of BPC, we know that BPC ⊢ A or BPC ⊢ ⊤ → ⊥.
The latter is impossible by simple facts about BPC, therefore BPC ⊢ A.
The case (iv) also needs an argument exactly similar to the case (i). Moreover,
since the consistent and reflexive models satisfy the consistency condition of the
BHK interpretation, the cases (ii) and (iii) are just a combination of Theorem
1.10.9 and the completeness results for the corresponding theories.

For (v) we need some justification. First of all we want to show that if for any
n, M ⊨ ¬Prn+1(Prn(⊥)), then (M, {Tn}∞

n=0) is not a model for CPC. We prove

57

this claim by contradiction. Assume that for any n, M ⊨ ¬Prn+1(Prn(⊥)) and
(M, {Tn}∞

n=0, b) ⊨ CPC. We want to show that all three statements of the proof
of Theorem 1.8.1 are also true in our case. Firstly, (i) is true by assumption.
Secondly, consider the formula □n⊤ which is a translation of the propositional
classical theorem ⊤n with the definition ⊤0 = ⊤ and ⊤n+1 = ⊤ → ⊤n. Therefore,
the formula □(□□(□⊥ ∧□n⊤) → □⊥) is the translation of the tautology ((⊤ →
(⊤ → (⊥ ∧ ⊤n))) → ⊥). Thus,

(M, {Tn}∞
n=0) ⊨ □(□□(□⊥ ∧ □n⊤) → □⊥).

Since we used this formula to show (ii), we can claim that we also have (ii) here.
Thirdly, we know that p ∨ ¬p is a theorem of CPC. Hence, (M, {Tn}∞

n=0) ⊨
(p ∨ ¬p)b, which means (M, {Tn}∞

n=0) ⊨ (□p ∨ □(□p → □⊥). Therefore, (iii) is
also true in M . Thus, we have a contradiction and it proves the claim.

For the converse, assume that there is some n such that M ⊨ Prn+1(Prn(⊥));
we will show that (M, {Tn}∞

n=0, w) ⊨ CPC. First of all, to simplify the proof,
define the complexity of any box as the maximum depth of the nested boxes in
front of that box. For instance, the complexity of the inner box in □(□p ∧ q) is
zero, and the complexity of the outer box is one. Define the canonical witness
starting from n, as follows: Witness any box by its complexity plus n. It is easy
to show that this witness is an ordered one, because the witness for any outer box
is bigger than the witness for the inner boxes. Define Aσ as the formula resulted
by substituting all the atoms by σ and witnessing all the boxes by the canonical
witness starting from n. It is easy to verify that for any propositional formula
A → B, M ⊨ ((A → B)w)σ. To show this, firstly, note that the following claim
holds: For any propositional formula B,

IΣ1 ⊢ Prn(⊥) → (Bw)σ.

The proof of the claim is based on induction on B and easily follows. Assume
that the complexity of the outmost box in □(Aw → Bw) is k ≥ n + 1. (Since
witnesses begin with n and there is at least one box in Aw, k is at least n + 1.)
By Σ1-completeness we have

IΣ1 ⊢ Prk(Prn(⊥) → (Bw)σ),

and hence,
IΣ1 ⊢ Prk(Prn(⊥)) → Prk((Bw)σ).

Then since M ⊨ IΣ1, then

M ⊨ Prk(Prn(⊥)) → Prk((Bw)σ).

We know that M ⊨ Prn+1(Prn(⊥)) and k ≥ n + 1; hence M ⊨ Prk(Prn(⊥)).
Therefore,

M ⊨ Prk((Bw)σ),
and thus,

M ⊨ Prk((Aw)σ → (Bw)σ),
and the proof follows.

58

It is easy to check that for any formula B, there exists another formula C such
that C is in the CNF form, in which all the literals are implicational formulas,
positive atoms and ⊥ and classically equivalent to B. Note that the process of
constructing this C just uses the classical rules for conjunction and disjunction.
Since w and the canonical witness respect the conjunction and disjunction and
their basic rules, (Bw)σ and (Cw)σ are equivalent in M . Suppose that CPC ⊢ B;
we want to show that M ⊨ (Bw)σ. It is enough to show that M ⊨ (Cw)σ.
Considering that all the literals in C are implicational formulas, positive atoms
and ⊥, the literals of Cb are translations of implications, boxed atoms or □⊥. If
M ⊭ (Cw)σ, there must be some clause in which all the literals are false. Since
the translations of the implications are true in M , there has to be a clause in
C consisting of atoms and ⊥. Therefore, C can not be a classical tautology and
hence B will not be, as well. But CPC ⊢ B; a contradiction. Thus, M ⊨ (Bw)σ.
So far, we have shown that if CPC ⊢ B, then M ⊨ (Bw)σ. If we send q in
the definition of ⊥w = □q, to ⊥, then we have M ⊨ (Bb)σ, which proves the
theorem.

There is another type of the BHK interpretation in which there is not any
kind of assumption on the non-existence of a proof of the contradiction.

Theorem 1.10.12. (i) Γ ⊢MPC A iff (Ref , w) ⊨ Γ ⇒ A.

(ii) Let (M, {Tn}∞
n=0) be a provability model. Then (M, {Tn}∞

n=0, w) ⊨ IPC iff
(M, {Tn}∞

n=0, w) ⊨ CPC iff there exists n such that M ⊨ Prn+1(Prn(⊥)).

Proof. For (i), use Theorem 1.10.9 and the soundness-completeness results for
S4. For (ii), if there exists n such that M ⊨ Prn+1(Prn(⊥)), then by the
proof of Theorem 1.10.11 part (v), we know that (M, {Tn}∞

n=0, w) ⊨ CPC.
Moreover, if (M, {Tn}∞

n=0, w) ⊨ CPC, then we can easily verify that we have
(M, {Tn}∞

n=0, w) ⊨ IPC. It remains to show that if (M, {Tn}∞
n=0, w) ⊨ IPC, then

there exists n such that M ⊨ Prn+1(Prn(⊥)).
Assume that (M, {Tn}∞

n=0, w) ⊨ IPC and for any n, M ⊨ ¬Prn+1(Prn(⊥)).
We want to reach a contradiction. We know that IPC ⊢ ⊥ → p. Hence,
(M, {Tn}∞

n=0) ⊨ (⊥ → p)w. Thus, (M, {Tn}∞
n=0) ⊨ □(□q → □p). Consequently,

there are expansions of the form, □(⋁si
j=0(□q → □p)) for 0 ≤ i ≤ r and witnesses

wi = (ni, (mij, kij)si
j=0) such that for any arithmetical substitution σ,

M ⊨
r⋁

i=0
□(

si⋁
j=0

(□q → □p))σ(wi).

Define k = maxij(kij), m = minij(mij) and n = maxi(ni). It is easy to see that

M ⊨ Prn((Prm(qσ) → Prk(pσ))).

And if we choose a substitution σ such that qσ = (0 = 0) and pσ = (0 = 1), then
we have

M ⊨ Prn((Prm(0 = 0) → Prk(0 = 1)),

and hence M ⊨ Prn(Prk(⊥)). Thus, for some number N > n, k, we have M ⊨
PrN+1(PrN(⊥)) which is a contradiction.

59

2. Computational Flows in
Arithmetic

2.1 Introduction
Intuitively speaking, proofs are the information carriers that transfer the informa-
tional content of the assumptions to the informational content of the conclusion.
This open notion of content admits many different interpretations in many differ-
ent disciplines. The most trivial one is the truth value which is preserved along
any sound proof and consequently is the least informative one. But there are
more useful examples. The computational content is one of them and it is no
exaggeration to state that this type of content is one of the main players in proof
theory and theoretical computer science. The reason is its widespread incarna-
tions, from witnesses of existential quantifiers a la Herbrand to Gödel’s Dialectica
interpretation of higher order arithmetical statements. In this chapter, we will
follow this line to introduce another computational interpretation which can be
seen as a classical and a more direct reading of the Dialectica interpretation and
in the rest of this introduction we will try to explain its basic ideas.

Let us begin with the general idea of how any computational interpretation
works by summarizing the process behind it: First, any interpretation needs to
interpret a sentence as a computational problem for which the computational con-
tent roughly means any way that can solve the problem computationally. Then
it should define a computational flow as a sequence of certain types of simple
methods to transfer the previously defined content from one point to another.
And finally, it should find a way to translate any formal proof of a given system
to such a computational flow.

To implement these three stages, we first need to define the game theoretic
interpretation of formulas in the prenex form. The basic idea is the following:
First interpret any quantifier-free formula A(x1, y1, x2, . . .) as a game between two
players in which the first player, plays x1 and then the second player, plays y1 and
they continue this process alternately. At the end of the game, if A(x1, y1, x2, . . .)
holds, the second player wins and otherwise the first one is the winner. Now,
the sentence ∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .) simply means that the second player
has a winning strategy and this strategy is exactly the computational content of
the sentence ∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .). Now let us define the simple meth-
ods or the ways that the information flows. In this stage, we have essentially
two different choices to make. Let us first begin with the simpler one, i.e., the
deterministic reductions. To explain these reductions, assume that we have a
second player’s strategy to win the game A(x1, y1, x2, . . .) and we want to pro-
vide a second player’s strategy to win the game B(u1, v1, u2, . . .). For this pur-
pose, we define the deterministic reduction from ∀u1∃v1∀u2 . . . B(u1, v1, u2, . . .)
to ∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .) as a tuple of functions (fi, gi) with the lowest
possible complexity such that fi reads all uj’s for j ≤ i and yk for k < i and finds

60

xi, and gi reads the same data plus yi and computes vi such that
A(f1(u1), y1, f2(u1, u2, y1), . . .) → B(u1, g1(u1, y1), u2, . . .).

It is clear that these functions find a way to relate the moves of the games A and
B to transfer the winning strategy of the second player for the game A to his
winning strategy for the game B.

Now let us review the second type of reductions, i.e., the non-deterministic
reductions. The idea behind the non-deterministic reductions is simply the power
to first compute a move in a given stage and then after a while coming back to
that move again to compute another value for the same move. Let us explain the
idea by some examples. Assume that in the first step of the reduction, when we
read u1 to compute the move x1, instead of using just one function f1, we use
two functions f1 and f ′

1 to compute two possible choices for x1’s. Then these two
choices lead to two possibly different moves y1 and y′

1 which we can use both to
find our needed move v1. If we continue with the usual deterministic reductions,
this leads to the condition that states the formula

A(f1(u1), y1, f2(u1, u2, y1, y
′
1), . . .) ∧ A(f ′

1(u1), y′
1, f

′
2(u1, u2, y1, y

′
1), . . .)

should imply the formula B(u1, g1(u1, y1, y
′
1), u2, . . .). This is the simplest way of

using non-determinism, but there are other more complex ways to consider. For
instance, we can first use f1(u1) to compute x1 and then after reading y1, we can
again try to compute x1, this time using the function f ′′

1 (u1, y1) which also has
access to y1. As we can observe, non-determinism can easily lead to some sort
of hugely complex interaction between the moves which makes the transferring
process for the winning strategies extremely complicated. We will investigate
these reductions in the following sections.

So far, we have completed the definition of our reasonable methods. But
what about the simplicity of these methods? At first glance, it seems that the
low complexity of the reductions ensures the expected simplicity that we promised
but unfortunately the reality is far from that. In fact, in some cases, while the
complexity of the functions can be extremely low, verifying the truth of the
formula

A(f1(u1), y1, f2(u1, u2, y1), . . .) → B(u1, g1(u1, y1), u2, . . .)
in the deterministic case or the corresponding formula in the non-deterministic
case, can be extremely high, non-trivial and non-syntactical. This is clearly not
what we expect from a simple reduction. Hence, we also add a base weak theory
B to the definition to force the above-mentioned implications to be provable in B.
This condition makes the reductions simple and syntactical as we expect them to
be.

Based on these reductions, it is now natural to define a computational flow as a
uniform sequence of reductions and try to transform any proof in any appropriate
theory to a computational flow. This completes all the needed ingredients for our
new proof mining technique to characterize the low complexity consequences of
both weak and strong theories of arithmetic. The rest of this chapter is devoted
to develop the details of this new proof mining method.

61

2.2 Preliminaries
In this section we will review some preliminaries. First, let us fix a language
which can be any arbitrary extension of a ring-type language for numbers:

Definition 2.2.1. Let L be a first order language of arithmetic extending LR =
{0, 1,+, .−, ·, d(−,−),≤} where x .− y and d(x, y) mean max{0, x− y} and ⌊ x

y+1⌋
in the standard model, respectively. By R we mean the first order theory in the
language LR consisting of the axioms of non-trivial commutative discrete ordered
semirings (the usual axioms of non-trivial commutative rings minus the existence
of additive inverse, plus the axioms to state that ≤ is a total discrete order such
that < is compatible with addition and multiplication with non-zero elements),
plus the following defining axioms for .− and d:

(x ≥ y → (x .− y) + y = x) ∧ (x < y → x .− y = 0),

and
((y + 1) · d(x, y) ≤ x) ∧ (x .− (y + 1) · d(x, y) < y + 1).

Note that to avoid division by zero and to have a total function symbol in the
language we defined division as ⌊ x

y+1⌋ and not ⌊x
y
⌋.

Remark 2.2.2. First note that R can prove that all elements are non-negative
simply because multiplying them preserves the order. Secondly note that the lan-
guage L is powerful enough to represent the conditional function

C(x, y, z) =

⎧⎨⎩y x = 0
z x > 0

as a term and R is powerful enough to prove that the term works. The crucial
point is that the term χ=0(x) = d(x + 2, x) .− 1 = ⌊x+2

x+1⌋ .− 1 has the following
property provably in R:

χ=0(x) =

⎧⎨⎩1 x = 0
0 x > 0

Hence it is enough to represent C by χ(x)y + (1 .− χ(x))z. Moreover, using
χ≤(x, y) = χ=0(x .− y), we can represent the characteristic function for ≤ and
since we have the power to simulate all boolean operators and x = y is equivalent
to x ≤ y ∧ y ≤ x, we have the characteristic functions of all quantifier-free
formulas of the language LR = {0, 1,+, .−, ·, d(−,−),≤}.

To define different bounded systems of arithmetic, we have to set two main
ingredients of the induction axiom, i.e., the complexity of the induction formula
and the length of the induction. For the first one we have:

Definition 2.2.3. The hierarchy {Σk,Πk}∞
k=0 is defined recursively in the follow-

ing way:

(i) Π0 = Σ0 is the class of all quantifier-free formulas,

(ii) Σk ⊆ Σk+1 and Πk ⊆ Πk+1,

62

(iii) Πk and Σk are closed under conjunction and disjunction,

(iv) If B(x) ∈ Σk then ∃x ≤ t B(x) ∈ Σk and ∀x ≤ t B(x) ∈ Πk+1 and

(v) If B(x) ∈ Πk then ∀x ≤ t B(x) ∈ Πk and ∃x ≤ t B(x) ∈ Σk+1.

Remark 2.2.4. In this chapter, Πk and Σk always mean the previously defined
classes of bounded formulas. To denote the usual arithmetical hierarchy based on
unbounded quantifiers we will use Π0

k and Σ0
k. Moreover, whenever A is quantifier-

free and B ∈ ⋃
k≥0 Σk, we use the formula A → B as an abbreviation for ¬A∨B.

Unlike the former, the latter is a formula in ⋃
k≥0 Σk.

Definition 2.2.5. (i) A class of bounded formulas Π is called a π-class of the
language L if it includes all quantifier-free formulas of L, is closed under
substitutions, subformulas, conjunction, disjunction and bounded universal
quantifiers and if ∃y ≤ t B(y) ∈ Π then there exists C(y) such that ⊢
C(y) ↔ ¬B(y) and ∀y ≤ t C(y) ∈ Π.

(ii) A class of bounded formulas Σ is called a σ-class of the language L if it
includes all quantifier-free formulas of L, is closed under substitutions, sub-
formulas, conjunction, disjunction and bounded existential quantifiers and
if ∀y ≤ t B(y) ∈ Σ then there exists C(y) such that ⊢ C(y) ↔ ¬B(y) and
∃y ≤ t C(y) ∈ Σ.

Example 2.2.6. The class of all bounded formulas is a trivial example of both π
and σ classes. The more interesting examples though include the classes Π̂b

k(#m)
and Σ̂b

k(#m) (drop #m from the notation when m = 2), in the language of bounded
arithmetic augmented with subtraction, division and #i for 2 ≤ i ≤ m. These
classes are defined in the following way:

(i) Π̂b
0(#m) = Σ̂b

0(#m) is the class of all sharply bounded formulas, i.e., the
formulas whose quantifiers are bounded by a term of the form |t|, for some
term t,

(ii) Σ̂b
k(#m) ⊆ Σ̂b

k+1(#m) and Π̂b
k(#m) ⊆ Π̂b

k+1(#m),

(iii) Π̂b
k(#m) and Σ̂b

k(#m) are closed under conjunction and disjunction,

(iv) If B(x) ∈ Σ̂b
k(#m) then ∃x ≤ t B(x) ∈ Σ̂b

k(#m) and ∀x ≤ t B(x) ∈
Π̂b

k+1(#m) and

(v) If B(x) ∈ Π̂b
k(#m) then ∀x ≤ t B(x) ∈ Π̂b

k(#m) and ∃x ≤ t B(x) ∈
Σ̂b

k+1(#m).

We can also consider a more relaxed version of these classes, i.e., Σb
k(#m) and

Πb
k(#m), (again dropping #m when m = 2), which are defined with the same

definition as above, adding the condition that:

“Πb
k(#m) and Σb

k(#m) are closed under sharply bounded quantification, i.e., a
quantification bounded by |t| for some term t.”

63

Note that, assuming that the polynomial hierarchy does not collapse, these
more relaxed versions of the classes (for m = 2) are not π- and σ-classes, respec-
tively. The reason is the existence of a Πb

k formula (a Σb
k formula), ending with

an existential (a universal) sharply bounded quantifier, which is also bounded,
without a Πb

k negation (a Σb
k negation).

Now let us define a robust form for the classes of terms that can play the role
of induction-length.
Definition 2.2.7. Let A ⊇ R be a theory. A class of terms, T, is called an
A-term ideal if:

(i) It is closed under all function symbols of the language LR, provably in A,
i.e. for any function symbol f ∈ LR and any t(x⃗) ∈ T, there exist r(x⃗) ∈ T
such that A ⊢ r(x⃗) = f(t(x⃗)).

(ii) It is closed under substitution, i.e. if t(x⃗, y) ∈ T and s is an arbitrary term
(not necessarily in T) then t(x⃗, s) ∈ T provably in A, i.e. there exists
r(x⃗) ∈ T such that A ⊢ r(x⃗) = t(x⃗, s).

(iii) It has a subset of monotone majorizing terms provably in A, i.e. there exists
a set of terms M ⊆ T such that for any t(x⃗) ∈ T there exists s(x⃗) ∈ M such
that A ⊢ t(x⃗) ≤ s(x⃗) and for any r(x⃗) ∈ M , A ⊢ x⃗ ≤ y⃗ → r(x⃗) ≤ r(y⃗).

Example 2.2.8. For the language LR, there are two trivial R-term ideals; Tall

consisting of all terms of the language and Tcl consisting of all closed terms, with
majorizing sets as the set of all polynomials and the whole set of closed terms,
respectively. To have a non-trivial example, consider the language of bounded
arithmetic extended with subtraction and division and the theory Ap as BASIC+R
plus the axioms |x| ≤ x, |xy| ≤ |x| + |y| and x ≤ y → |x| ≤ |y|. Now define Tp as
the class of all terms majorized by a term in the form p(|x⃗|) for some polynomial
p provably in Ap. The majorizing subset is the set of all terms in the form p(|x⃗|)
and the reason that the set is an Ap-ideal is that all terms are bounded by a
polynomial in length and the fact that these terms are increasing, both provably
in Ap.

Using these ingredients, we can introduce the general definition of a bounded
theory of arithmetic:
Definition 2.2.9. Let A ⊇ R be a set of quantifier-free axioms, T be an A-
term ideal and Φ be a class of bounded formulas closed under substitution and
subformulas. By the first order bounded arithmetic, B(T,Φ,A) we mean the
theory in the language L which consists of axioms A, and the (T,Φ)-induction
axiom, i.e.,

A(0) ∧ ∀x(A(x) → A(x+ 1)) → ∀xA(t(x)),
where A ∈ Φ and t ∈ T. In case that the A-term-ideal T equals to the set of all
terms of the language, we denote the theory B(T,Φ,A) by B(Φ,A).
Example 2.2.10. With our definition of bounded arithmetic, different kinds of
theories can be considered as bounded theories of arithmetic, for instance I∆0, Sk

n,
T k

n , I∆0(exp) and PRA augmented with subtraction and division in the language
and the axioms of R in the theory, are just some of the well-known examples.

64

Remark 2.2.11. Note that the theory B(T,Φ,A) may not have access to the
full-induction scheme

A(0) ∧ ∀x(A(x) → A(x+ 1)) → ∀xA(x),

for any A ∈ Φ. For instance, in the theory Sk
2 , the system only has the length-

induction that is believed to be weaker than the usual induction in T k
2 .

As usual in the proof theoretical investigations, we are interested in a more
structural representation of proofs. For this purpose and for any arbitrary set
Ax of sequents, consider the system G1(Ax) consisting of the following rules:

Axioms:

A ⇒ A A1, . . . An ⇒ B1, . . . Bm

where the right axiom is a substitution of a sequent in Ax.

Structural Rules:
Γ ⇒ ∆(wL)

Γ, A ⇒ ∆
Γ ⇒ ∆(wR)

Γ ⇒ ∆, A

Γ, A,A ⇒ ∆
(cL)

Γ, A ⇒ ∆
Γ ⇒ ∆, A,A

(cR)
Γ ⇒ ∆, A

Γ0 ⇒ ∆0, A Γ1, A ⇒ ∆1
(cut)

Γ0,Γ1 ⇒ ∆0,∆1

Propositional Rules:

Γ0, A ⇒ ∆0 Γ1, B ⇒ ∆1
∨L

Γ0,Γ1, A ∨B ⇒ ∆0,∆1

Γ ⇒ ∆, Ai
∨R (i = 0, 1)

Γ ⇒ ∆, A0 ∨ A1

Γ, Ai ⇒ ∆
∧L (i = 0, 1)

Γ, A0 ∧ A1 ⇒ ∆
Γ0 ⇒ ∆0, A Γ1 ⇒ ∆1, B

∧R

Γ0,Γ1 ⇒ ∆0,∆1, A ∧B

Γ0 ⇒ A,∆0 Γ1, B ⇒ ∆1
→ L

Γ0,Γ1, A → B ⇒ ∆0,∆1

Γ, A ⇒ B,∆
→ R

Γ ⇒ ∆, A → B

Γ ⇒ ∆, A
¬L

Γ,¬A ⇒ ∆
Γ, A ⇒ ∆

¬R

Γ ⇒ ∆,¬A

Quantifier rules:

Γ, A(s) ⇒ ∆
∀L

Γ,∀y A(y) ⇒ ∆
Γ ⇒ ∆, A(b)

∀R

Γ ⇒ ∆,∀y A(y)
Γ, A(b) ⇒ ∆

∃L

Γ,∃y A(y) ⇒ ∆
Γ ⇒ ∆, A(s)

∃R

Γ,⇒ ∆,∃y A(y)

Bounded Quantifier rules:

Γ, A(s) ⇒ ∆
∀≤L Γ, s ≤ t,∀y ≤ t A(y) ⇒ ∆

Γ, b ≤ t ⇒ ∆, A(b)
∀≤R Γ ⇒ ∆, ∀y ≤ t A(y)

Γ, b ≤ t, A(b) ⇒ ∆
∃≤L Γ,∃y ≤ t A(y) ⇒ ∆

Γ ⇒ ∆, A(s)
∃≤R Γ, s ≤ t,⇒ ∆,∃y ≤ t A(y)

65

Note that in the rules (∀R), (∃L), (∀≤R) and (∃≤L), the variable b must not
occur in the lower sequent of the rule.

There is also another type of sequent calculus, called G3(Ax), absorbing all
the structural rules. It is defined with the same rules, by eliminating structural
rules and replacing the axioms, the cut rule, the propositional rules and the rules
(∀L), (∃R), (∀≤L) and (∃≤R) by the following rules:

Axioms:

Γ, P ⇒ P,∆ Γ, P1, . . . Pn ⇒ Q1, . . . Qm,∆

where P1, . . . Pn ⇒ Q1, . . . Qm ∈ cl(Ax) and P , Pi’s and Qj’s are all atomic for-
mulas. By cl(Ax) we mean the closure of Ax under substitution and contraction.

Structural Rules:

Γ ⇒ ∆, A Γ, A ⇒ ∆
(cut)

Γ ⇒ ∆

where P is an atmoic formula, and

Propositional Rules:

Γ, A ⇒ ∆ Γ, B ⇒ ∆
∨L

Γ, A ∨B ⇒ ∆
Γ ⇒ ∆, A,B

∨R

Γ ⇒ ∆, A ∨B

Γ, A,B ⇒ ∆
∧L

Γ, A ∧B ⇒ ∆, C
Γ ⇒ ∆, A Γ ⇒ ∆, B

∧R

Γ ⇒ ∆, A ∧B

Γ ⇒ A,∆ Γ, B ⇒ ∆
→ L

Γ, A → B ⇒ ∆
Γ, A ⇒ B,∆

→ R

Γ ⇒ ∆, A → B

Quantifier rules:

Γ, A(s),∀y A(y) ⇒ ∆
∀L

Γ,∀y A(y) ⇒ ∆
Γ ⇒ ∆, A(s),∃y A(y)

∃R

Γ,⇒ ∆,∃y A(y)

Bounded Quantifier rules:

Γ, A(s),∀y ≤ t A(y) ⇒ ∆
∀≤L Γ, s ≤ t,∀y ≤ t A(y) ⇒ ∆

Γ ⇒ ∆, A(s), ∃y ≤ t A(y)
∃≤R Γ, s ≤ t,⇒ ∆,∃y ≤ t A(y)

Using the system G1, choosing Ax as the set of all sequents (⇒ A) where
A ∈ A and adding the following induction rule to G1(Ax):

Induction:

Γ, A(b) ⇒ ∆, A(b+ 1)
(Ind)

Γ, A(0) ⇒ ∆, A(t)

66

for every A ∈ Φ and t ∈ T, we can capture the theory B(T,Φ,A). Note that
in the induction rule the variable b must not occur in the lower sequent of the rule.

The most important property of the sequent calculi that we have defined is
cut elimination:

Theorem 2.2.12. (Cut Elimination)

(i) Any proof in the systems G1(Ax) and G3(Ax) can be transformed to a proof
in which every cut rule has at least one premise chosen from the axioms of
Ax.

(ii) If B(T,Φ,A) ⊢ Γ ⇒ ∆ then there exists a free-cut free proof for the same
sequent in the same system.

Corollary 2.2.13. If Γ ∪ ∆ ⊆ Φ and B(T,Φ,A) ⊢ Γ ⇒ ∆ then there exists a
proof of the same sequent in the same system such that all formulas occurring in
the proof are in Φ.

The proofs of the Theorem 2.2.12 and the Corollary 2.2.13 can be essentially
found in [18] and [8].

2.3 Non-deterministic Flows
In this section, we will develop a computational extracting method, designed
specifically for bounded theories of arithmetic. This method is based on two sim-
ple ingredients: First reducing any proof in any bounded theory of arithmetic
to a single uniform sequence of implications such that these implications become
provable in a very weak theory (usually universal induction-free system powerful
enough to handle the four basic mathematical operations, addition, subtraction,
multiplication and division). And secondly, developing a program interpretation
of the Herbrand theorem adopted for our bounded arithmetical language to wit-
ness any step in the implications by the terms of the language. These programs
that we call reduction programs generalize the usual reduction between k-turn
games and teacher-student interactive protocols. In fact, they provide a non-
deterministic interactive machinery to witness the existential variables by the
universal variables using the terms of the language.

As a result of combining these ingredients, we will establish a general method
to extract computational information from bounded arithmetical proofs. As an
application of this method, we will first propose a characterization of all total
search problems of any complexity in any bounded arithmetical theory, especially
in the presence of higher smash functions. These theories mimics the higher order
bounded theories in a first order setting and hence our characterization can be
interpreted as a characterization of all provably total higher search problems
in higher order bounded arithmetic. More specifically, we will investigate the
bounded statements of the theories Sk

2 for k ≥ 1 to reduce their provability to
a polynomially long sequence of reduction programs between k-turn games. We
will also apply our technique to reprove the strong witnessing theorem for theories
Sk

2 . This type of witnessing theorem has been investigated for different bounded

67

theories (See [19], [6], [4], [13] and [21]). Here, we propose another proof for this
result for the hierarchy {Sk

2 }k≥1.

2.3.1 Non-deterministic Reductions and Reduction Pro-
grams

Let us begin right away by non-deterministic reductions.

Definition 2.3.1. Let B be a theory and A(x⃗) and B(x⃗) be some formulas in the
language L. We say B(x⃗) is non-deterministically B-reducible to A(x⃗) and we
write A(x⃗) ≥B

n B(x⃗) if B ⊢ A(x⃗) → B(x⃗). Moreover, by the equivalence A ≡B
n B

we mean the conjunction of A ≥B
n B and B ≥B

n A.

The natural question is that how this proof-theoretic concept can be consid-
ered as a computational reduction and why it is called non-deterministic. To
answer this question, first recall that by the flow machinery, we intend to trans-
form any arithmetical proof to a sequence of reductions, and the base theory for
those reductions preferably is a simple universal and possibly induction-free the-
ory. Therefore, we can use the Herbrand theorem for each step of the reduction
to witness the essentially existential quantifiers in A → B by its universal quanti-
fiers. This is actually what is happening in the deterministic reductions, but here
the difference is the use of ∨-expansions in the Herbrand proof. Intuitively, these
expansions allow us to use some constant many terms to witness one existential
quantifier as opposed to just one term in the case of deterministic reductions.
Moreover, expansions make some room for interaction in providing the witness-
ing terms which makes the concrete witnesses extremely complicated. For these
reasons, we call these reductions non-deterministic and in the following we try to
state a computational interpretation of Herbrand theorem, tailored specifically
for our setting here.

Definition 2.3.2. Let L be a language extending the language of LR. A formula
A(x⃗) is in the prenex bounded form if there exists a quantifier-free formula GA,
such that

A = ∀y1 ≤ p1(x⃗)∃z1 ≤ q1(x⃗)∀y2 ≤ p2(x⃗) . . . GA(x⃗, y1, z1, y2, z2, . . .)

Note that all bounding terms depend only on x⃗ where x⃗ is the set of all free
variables of A(x⃗). Moreover, we say that the formula is in the k-prenex bounded
form when the number of bounded quantifiers is at most k.

Definition 2.3.3. Let L be a language extending the language of LR, the formulas

{∀yi1 ≤ pi1(x⃗)∃zi1 ≤ qi1(x⃗)∀yi2 ≤ pi2(x⃗) . . . Gi(x⃗, yi1, zi1, yi2, zi2, . . .)}i∈I

and

{∀uj1 ≤ p′
j1(x⃗)∃vj1 ≤ q′

j1(x⃗)∀uj2 ≤ p′
j2(x⃗) . . . Hj(x⃗, uj1, vj1, uj2, vj2, . . .)}j∈J

be in the prenex bounded form where x⃗, yin, zin, ujm and vjm are distinct vari-
ables and B be a theory extending R. Define V as the set of distinct variables
yk

in, zk
in, uk

jm and vk
jm for k ≥ 0. These variables provide infinite many copies of

68

any variable from yin, zin, ujm and vjm. Moreover, note that for k = 0 we have
the original copy, i.e., y0

in = yin, z0
in = zin, u0

jm = ujm and v0
jm = vjm.

Consider the instructions [Read X ≤ t(x⃗)] and [Compute Y by s ≤ t(x⃗)]
where t is a term depending only on x⃗ and variables X and Y are chosen from the
set V. By a B-reduction program from {Hj}j∈J to {Gi}i∈I we mean a sequence
P = (Pr)l

r=0 of instructions such that:

(i) The instruction [Read X ≤ t(x⃗)] applies only on X = uk
jm and X = zk

in

variables.

(ii) The instruction [Compute Y by s ≤ t(x⃗)] applies only on Y = vk
jm and

Y = yk
in variables.

(iii) Any variable can be read or computed at most once.

(iv) We can read or compute a variable Z if there exists a decreasing path of
already read or computed variables starting from Z and ending in one of the
variables {yi1}i∈I or {uj1}j∈J . By “decreasing”, we refer to the order defined
by the relations (yk

in ≺ zk
in), (zk

in ≺ yk
i(n+1)), (uk

jm ≺ vk
jm), (vk

jm ≺ uk
j(m+1))

and (Y k ≺ Y k+1) for any Y ∈ {vjm, yin}.

(v) In the instruction [Compute Y by s ≤ t(x⃗)], the term s depends only on
the variables x⃗ and the variables that had been read before the current stage.
Moreover, we have to have B ⊢ ∀X⃗ ≤ r⃗(x⃗)s(X⃗) ≤ t(x⃗) where X⃗ are the
previously read variables and r⃗(x⃗) are their corresponding bounds.

(vi) For the last condition, first define S(P<r) recursively as:

S(P<0) = {Gi}i∈I ⇒ {Hj}j∈J

and S(P<r+1) is defined from S(P<r) by the following rule:

There are two cases to consider. First if Pr is the instruction [Read
X ≤ t(x⃗)], then replace all instances of ∀X ≤ t(x⃗)A(X) in the succe-
dent of S(P<r) by A(X). And also replace all instances of ∃X ≤ t(x⃗)A(X)
in the precedent of S(P<r) again by A(X). Second, if Pr is the instruction
[Compute Y by s ≤ t(x⃗)], then for any occurrence of ∃Y ≤ t(x⃗)A(Y)
in the succedent of S(P<r), replace ∃Y ≤ t(x⃗)A(Y) by (∃Y ≤ t(x⃗)A(Y))+1

and add A(s) to the succedent of S(P<r). And for any occurrence of ∀Y ≤
t(x⃗)A(Y) in the precedent, replace ∀Y ≤ t(x⃗)A(Y) by (∀Y ≤ t(x⃗)A(Y))+1

and add A(s) in the precedent, where C+1 means increasing the upper index
of any bounded variable in C by one.

Now after defining S(P<r), we also have to have the following last condition:
There should be a quantifier-free sub-sequent S ′ = (Γ ⇒ ∆) of S(P<l+1)
such that ∀X⃗ ≤ r⃗(x⃗)(⋀ Γ → ⋁ ∆) is provable in B, where X⃗ are all the read
variables occurred in S ′ and r⃗(x⃗) are their corresponding bounds.

69

Remark 2.3.4. (Game Interpretation) Let

C = ∀y1 ≤ p1(x⃗)∃z1 ≤ q1(x⃗)∀y2 ≤ p2(x⃗) . . . GC(x⃗, y1, z1, y2, z2, . . .)

be in the k-prenex bounded form with exactly k quantifiers. The game associated
to this formula, GC, is defined as the following: There are two players. The first
player chooses a number y1 ≤ p1(x⃗), then the second player chooses a number
z1 ≤ q1(x⃗) and they continue alternately, until they reach the end of the quan-
tifiers. At the end, if G(x⃗, y1, z1, y2, z2, . . .) becomes true the second player wins
and otherwise the first player is the winner. Now it is clear that the second player
in the game GC has a winning strategy iff the formula C is true. With this game
interpretation, any reduction program from B to A is nothing but a reduction to
transfer a second player’s winning strategy in the game GA to a winning strat-
egy for him in the game GB. Note that unlike the usual deterministic reductions
between the games, these reduction programs provide a complicated protocol to
transfer the winning strategies.

In the following, we will illuminate the notion of a reduction program by some
concrete examples.

Example 2.3.5. (Deterministic Game Reductions) The usual complexity theo-
retic reduction between k-turn games is a specific example of the reduction pro-
grams. To be more precise, assume that L = LPV and B = Th(N). Now consider

∀y1 ≤ p1(x⃗)∃z1 ≤ q1(x⃗)∀y2 ≤ p2(x⃗) . . . G(x⃗, y1, z1, y2, z2, . . .)

and
∀u1 ≤ p′

1(x⃗)∃v1 ≤ q′
1(x⃗)∀u2 ≤ p′

2(x⃗) . . . H(x⃗, u1, v1, u2, v2, . . .)
with k-many bounded quantifiers and define the following natural PV-reduction
program:

[Read u1 ≤ p′
1(x⃗)]; [Compute y1 by f1(x⃗, u1) ≤ p1(x⃗)]; [Read z1 ≤ q1(x⃗)];

[Compute v1 by g1(x⃗, u1, z1) ≤ q′
1(x⃗)]; ...

where fi’s and gj’s are polynomial time computable functions represented by terms
in the language LPV. These reductions that we call deterministic reductions be-
tween k-turn games are the simplest example of reduction programs.

Example 2.3.6. (Non-determinism) Let L be the language of PV and A(x, y, z)
be an atomic formula in this language. Now consider the formulas

∃u ≤ s(x)∀v ≤ t(x) A(x, u, v)

and
∃yy′ ≤ s(x)∀zz′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)]

in this language. Since these formulas are logically equivalent, it seems quite rea-
sonable to assume that the first formula is reducible to the second one. Moreover,
this equivalence is quite elementary and it is just on the level of pure first order
logic. Hence, we can expect a very low complexity reduction in this case. Let us
try to construct such a possible reduction. (Note that the notion of a reduction

70

program is defined for formulas in prenex bounded form and since the formula
[A(x, y, z) ∨ A(x, y′, z′)] is not atomic, speaking of reduction programs in this
case is not technically correct. However, this is not a serious issue since we can
represent the formula A(x, y, z) by α(x, y, z) = 0 for some term α and hence the
formula [A(x, y, z)∨A(x, y′, z′)] can be safely replaced by α(x, y, z)·α(x, y′, z′) = 0.
Having all said, we still prefer keeping the original non-atomic form to be more
explanatory in our discussion on the non-deterministic nature of reductions.) To
construct a reduction, we have to take a look at a proof of

∃u ≤ s(x)∀v ≤ t(x) A(x, u, v)

from
∃yy′ ≤ s(x)∀zz′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)].

The simplest proof works as the following: Assume we have y ≤ s(x) and y′ ≤ s(x)
such that

∀zz′ ≤ t(x)[A(x, y, z) ∨ A(x, y′, z′)]
which implies

∀z ≤ t(x)A(x, y, z) ∨ ∀z′ ≤ t(x)A(x, y′, z′)
Then there are two possibilities: If ∀z ≤ t(x)A(x, y, z) then pick u = y and if
¬∀z ≤ t(x)A(x, y, z) which implies ∀z′ ≤ t(x)A(x, y′, z′), pick u = y′.

Simulating this argument by the usual reductions between 3-turn games, as in
Example 2.3.5, (assume the existence of a dummy bounded universal quantifier in
the leftmost part of the formulas), we observe that our computational power has
to be strong enough to decide ∀z ≤ t(x)A(x, y, z) to provide such a witness. But
since ∀z ≤ t(x)A(x, y, z) can be extremely complex, CoNP-complete for instance,
this task is far beyond the usual low complexity power that we can afford. Hence,
it seems that finding a deterministic reduction is not that easy, if not impossible.

Now let us relax the strict structure of the deterministic game reductions to
the following weaker non-determinism appeared in the reduction programs: In the
process of witnessing, allow reductions to provide possibly more than one candidate
and expect at least one of them works at a time. For instance, in this example,
provide two different guesses for u like g(x, y, y′) = y and h(x, y, y′) = y′ and
expect the sequent

{∀v0 ≤ t(x)A(x, g(x, y, y′), v0),∀v1 ≤ t(x)A(x, h(x, y, y′), v1)}

to be reducible to

∀z ≤ t(x)∀z′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)]

via a PV-reduction program. For the latter, it is just enough to use the universal
quantifiers to witness themselves via identity terms. More formally:

[Read y ≤ s(x)]; [Read y′ ≤ s(x)]; [Compute u0 by g(x, y, y′) ≤ s(x)];
[Compute u1 by h(x, y, y′) ≤ s(x)]; [Read v0 ≤ t(x)]; [Read v1 ≤ t(x)];
[Compute z by v0 ≤ t(x)]; [Compute z′ by v1 ≤ t(x)].

71

Hence, we can observe that non-determinism possibly provides more reductions
than what the strict determinism can do. Moreover, note that this type of non-
determinism is just the computational incarnation of the contraction rule which
makes its use somehow unavoidable.

Example 2.3.7. (Student-Teacher Game) The real power of the reduction pro-
grams lies in the combination of non-determinism and interaction. In the Ex-
ample 2.3.6, we observed the impact of the non-determinism part. In this ex-
ample we will explain how this non-determinism leads to some complicated in-
teractions. For this purpose, let us interpret the teacher-student game of the
KPT theorem ([14]) as an example of our reduction programs. Assume we have
the formula ∃y ≤ t(x)∀z ≤ s(x)A(x, y, z) where A is an atomic formula in
the language of PV. Then consider the following PV-reduction program from
∃y ≤ t(x)∀z ≤ s(x)A(x, y, z) to ⊤ with length 2l:

[Compute y = y0 by f0(x) ≤ t(x)]; [Read z = z0 ≤ s(x)]; [Compute y1

by f1(x, z0) ≤ t(x)]; [Read z1 ≤ s(x)]; [Compute y2 by f2(x, z0, z1) ≤ t(x)]; ...

Since it is a reduction program, the following is provable in PV:

A(x, f0(x), z0) ∨ A(x, f1(x, z0), z1) ∨ . . . ∨ A(x, fl(x, z0, . . . , zl−1))

with the bounded universal quantifiers on zk ≤ s(x) for k ≤ l−1. The point in the
interaction between the so-called student and teacher is mimicked by computing
y as y0, reading z = z0, computing y again under the name y1 but this time
with access to z0, reading z1 and computing y again under the name y2 but now
with more information about both z0 and z1 and so on. This non-determinism
that lets us compute a variable finite many times with different functions and the
interaction with the inside universal quantifiers to guess the existential quantifier
again is the main power of reduction programs.

Example 2.3.8. (Impossibility of Simulation) In this example we want to provide
an evidence for what we observed in the Example 2.3.6 to show that it is generally
impossible to simulate the non-deterministic reductions and reduction programs
by usual deterministic reductions. Assume A(x, y, z, t) = (y = 0 ∧B(x, t)) ∨ (y =
1∧¬B(x, z)) where B(x, t) is an arbitrary atomic formula in the language of PV.
We want to show that there is no deterministic Th(N)-reduction from

∃u ≤ 1∃v ≤ s∀w ≤ s A(x, u, v, w)

to
∃yy′ ≤ 1∃tt′ ≤ s∀zz′ ≤ s [A(x, y, z, t) ∨ A(x, y′, z′, t′)]

(Note that again, our formulas are not in the prenex bounded form and hence
speaking of reduction programs is not technically correct. However, we can resolve
the issue as in the Example 2.3.6.) Assume that there exists such a deterministic
Th(N)-reduction. Hence, there is a polytime function f such that:

∃v ≤ s∀w ≤ s A(x, f(x, y, y′), v, w)

is reducible to

∃tt′ ≤ s∀zz′ ≤ s[A(x, y, z, t) ∨ A(x, y′, z′, t′)]

72

which means that

∃tt′ ≤ s∀zz′ ≤ s[A(x, y, z, t) ∨ A(x, y′, z′, t′)]

implies
∃v ≤ s∀w ≤ s A(x, f(x, y, y′), v, w)

in Th(N) for all y, y′ ≤ 1. Pick y = 0 and y′ = 1. It is easy to see that the left
side of the implication is true because either ∃t ≤ s B(x, t) or ∀z′ ≤ s ¬B(x, z′)
is true, hence the right side should be true, as well. But the truth of the right side
means

(f(x, 0, 1) = 0 ∧ ∃v ≤ s B(x, v)) ∨ (f(x, 0, 1) = 1 ∧ ∀w ≤ s ¬B(x,w))

which means that we have a polytime decision procedure for the NP predicate
∃w ≤ s B(x, v) which implies NP = P.

Remark 2.3.9. The Example 2.3.8 shows that pure logical deductions are far
beyond the power of low level deterministic reductions. In other words, it is
possible to prove B by A just by some elementary methods of logic but it does
not mean that B can be deterministically reducible to A. Let us explain where
the problem is. At the first glance, it seems that all logical rules are completely
syntactical and amenable to low complexity reductions. It is correct everywhere
except for one logical rule: the contraction rule which is more or less responsible
for all kinds of computational explosions like the explosion of the lengths of the
proofs after the elimination of cuts. Notice that the reason that we have the
equivalence in the Example 2.3.6 is this contraction rule and it is easy to see that
this rule is the source of non-determinism and hence interactions. Therefore,
it seems natural to use non-deterministic reductions to simulate computationally
what is going on in the realm of proofs.

Now it is time to relate the proof theoretical non-deterministic reductions to
the computational reduction programs. This is the task of our reinterpretation
of the generalized Herbrand theorem for the bounded domain:

Theorem 2.3.10. Let B ⊇ R be a universal theory and A(x⃗) and B(x⃗) two
formulas in the prenex bounded form. Then A(x⃗) ≥B

n B(x⃗) iff there exists a
B-reduction program from B(x⃗) to A(x⃗).

Proof. The proof is based on the fact that any B-reduction program is nothing
but a backward interpretation of a proof that consists of some bounded quanti-
fier rules applied on top of a quantifier-free B-provable statement. This backward
interpretation transforms the rules (∀≤R) and (∃≤L) to Read instructions and
rules (∃≤R) and (∀≤L) to Compute instructions. The rest of this proof is the
formalization of this very idea.

1. First assume that there exists a B-reduction program {Pr}l
r=0 from B(x⃗)

to A(x⃗). We have to prove the following claim:

Claim. We want to show that all the free variables of S(P<k) are among x⃗ or
the variables that had been read before k. We prove the claim by induction on k.

73

For k = 0 the claim is clear. For k + 1, if Pk is the instruction [Read X ≤ t(x⃗)],
then by definition the free variables of S(P<k+1) are among the free variables of
S(P<k) and X. By IH, all free variables of S(P<k) had been read before k and
X itself has been read in the stage k, which complete the proof. If Pk is the
instruction [Compute Y by s ≤ t(x⃗)], then by definition the free variables of
S(P<k+1) are among the free variables of S(P<k) and the free variables of s. But
the free variables of s are among x⃗ and the variables that had been read before
k which is exactly what we wanted to prove.

Now let us come back to prove the theorem. Define S̄(P<k) as

∀X⃗ ≤ r⃗(x⃗)[
⋀
Sp(P<k) →

⋁
Ss(P<k)]

where X⃗ are all the read variables occurred freely in S(P<k), r⃗(x⃗) are their cor-
responding bounds and Sp(P<k) and Ss(P<k) are the precedent and succedent
of S(P<k), respectively. By induction on k we will show that B ⊢ S̄(P<l+1−k).
For k = 0 we have the claim from the definition of a program. To prove the
claim for k + 1, we have two possibilities: First if Pl−k is the instruction [Read
X ≤ t(x⃗)], then S(P<l−k+1) is defined from S(P<l−k) by replacing all instances
of ∀X ≤ t(x⃗)A(X) by A(X) in the right hand-side or ∃X ≤ t(x⃗)A(X) by A(X)
in the left hand-side. Since any quantifier appears at most once, this formula
is unique. On the other hand, since X is read in the stage l − k, then by the
claim, S(P<l−k) does not have a free variable X. By IH, B ⊢ S̄(P<l−k+1). Hence,
we can introduce the universal bounded quantifier to have B ⊢ S̄(P<l−k). If
Pl−k is the instruction [Compute Y by s ≤ t(x⃗)], then S(P<l−k+1) is defined
from S(P<l−k) by adding A(s) to its right hand-side if there is ∃Y ≤ t(x⃗)A(Y)
also in the right hand-side of S(P<l−k) or by adding A(s) in the left hand-side
of S(P<l−k) if ∀Y ≤ t(x⃗)A(Y) is also appeared in its left hand-side. By IH,
B ⊢ S̄(P<l−k+1). Since B ⊢ s ≤ t(x⃗) we have B ⊢ S̄(P<l−k) by the introduction
of bounded existential quantifier rules.

Now by induction we can conclude B ⊢ S(P<0) = [A(x⃗) ⇒ B(x⃗)] which is
what we wanted to prove.

2. For the other direction of the theorem, first note that B is a universal theory.
Therefore, it is possible to develop a G3-style calculus for it, by some axioms like
P1, P2, . . . , Pn ⇒ Q1, Q2, . . . , Qm where Pi’s and Qj’s are atomic formulas. By
Theorem 2.2.12 and since B ⊢ A → B there is a proof for the sequent A ⇒ B
in which one of the premises of any cut is an axiom. Therefore, since A and B
are two formulas in the prenex bounded form, all the rules in the proof will be
G3-style bounded quantifier rules, axioms and cuts with axioms as one of their
premises. Now change the name of the variables in a way that any variable can be
occurred in a quantifier at most once, and for this purpose use only the bounded
variables of A → B with their possibly different variants with upper indices.
More precisely, it is enough to modify the rules in the proof such that the usual
(∃≤R) and (∀≤L) rules change to the following rules:

Γ, A(s),∀y+1 ≤ t(x⃗) A+1(y+1) ⇒ ∆
Γ, s ≤ t(x⃗),∀y ≤ t(x⃗) A(y) ⇒ ∆

Γ ⇒ ∆, A(s),∃y+1 ≤ t(x⃗) A+1(y+1)
Γ, s ≤ t(x⃗),⇒ ∆,∃y ≤ t(x⃗) A(y)

74

where C+1 means increasing the upper index of any bounded variable in C by one
and y+1 means increasing the upper index of y by one. Then since any variable
occurs at most in one quantifier, we can change all the rules (∃≤L) and (∀≤R) to:

Γ, y ≤ t ⇒ ∆, A(y)
Γ ⇒ ∆,∀y ≤ t A(y)

Γ, y ≤ t, A(y) ⇒ ∆
Γ,∃y ≤ t A(y) ⇒ ∆

in a way that all the sequents in the proof remain B-provable. The main point is
that if any variable occurs at most in one quantifier, substituting the eigenvari-
able b in the rules (∃≤L) and (∀≤R) by the bounding variable y itself, does not
affect the validity of the proof.

Now, by induction on the length of the proof, we will show that if Γ ⇒ ∆
appears in a stage of this proof, then there is a B-reduction-program P = {Pr}l

r=0
with S(P<0) = (Γ ⇒ ∆) using exactly the variables in the proof with the condi-
tion that the variable zm becomes a variant of the variable zn when m > n. (Note
that this condition is inconsistent with our naming condition in the definition of
the reduction programs which states that the variable zk should be considered
as a variant of z0 when k > 0 and z0 occurs as a bounded variable in S(P<0).
However, this is just a change in the names of the variables that makes everything
simpler. Therefore, the rest of this proof should be read, up to this change in the
naming condition.)

The claim for the axioms is straightforward. For the bounded existential
rule, assume that Γ, s ≤ t(x⃗) ⇒ ∆,∃y ≤ t(x⃗)A(y) is a consequence of Γ ⇒
∆, A(s),∃y+1 ≤ t(x⃗)A+1(y). Then by IH, there exists a program P with the
condition that S(P<0) = (Γ ⇒ ∆, A(s),∃y+1 ≤ t(x⃗)A+1(y)). Define s′ as:

s′ =

⎧⎨⎩s if s ≤ t(x⃗)
t(x⃗) if s > t(x⃗)

It is possible to find such a term because the language is powerful enough to
have the characteristic function for the order predicate as observed in Remark
2.2.2. Moreover, note that B ⊢ s′ ≤ t(x⃗). Define P ′ = P with different initial
sequent S(P ′<0) as (Γ, s ≤ t(x⃗) ⇒ ∆, A(s′), ∃y+1 ≤ t(x⃗)A+1(y)). The reason
that P ′ is also a reduction program is the following: The sequent S(P<l+1) has
a quantifier-free B-provable subsequent S ′. But the difference between S(P<l+1)
and S(P ′<l+1) is in adding the formula s ≤ t(x⃗) in the left hand-side of S(P<l+1)
and substituting s′ for s in A. We know that B ⊢ s ≤ t(x⃗) → s = s′. Pick
the correspondent of the S ′ in S(P ′<l+1) (S ′ after substitution s′ for s) and call
it S ′′ = Γ′′ ⇒ ∆′′. Hence, B ⊢ Γ′′, s ≤ t(x⃗) ⇒ ∆′′ which implies that P ′ is a
reduction program.

Now define Q by Qr = P ′
r+1 for r ≤ l and Q0 as the instruction [Compute y

by s′ ≤ t(x⃗)] and S(Q<0) = (Γ, s ≤ t(x⃗) ⇒ ∆,∃y ≤ t(x⃗)A(y)). It is pretty clear
that Q is a reduction program which proves the claim.

A similar argument also works for the bounded universal quantifier rule. The
only case that we have to check is the cut rule. Assume (Γ, P⃗ ⇒ ∆, Q⃗) is a con-
sequence of (Γ, P⃗ , R ⇒ ∆, Q⃗) and (Γ, P⃗ ⇒ R, Q⃗,∆) where the first is an instance

75

of an axiom with the main sequent (P⃗ , R ⇒ Q⃗) and the second is provable. By
IH there exists a program reducing {R, Q⃗,∆} to {Γ, P⃗}. This program also es-
sentially works for reducing {Q⃗,∆} to {Γ, P⃗}. More precisely, define P ′ = P with
different initial sequent as S(P ′<0) = ({Γ, P⃗} ⇒ {Q⃗,∆}). The only important
thing is showing that S(P ′<l+1) has a quantifier-free B-provable subsequent. From
IH we know that there exists a quantifier-free B-provable subsequent of S(P<l+1)
which we call S ′ = (Γ′ ⇒ ∆′). Since all P⃗ , Q⃗ and R are atomic formulas, they
will remain intact through the quantifier opening process of the reduction pro-
gram, hence the difference between S(P ′<l+1) and S(P<l+1) is in one instance
of R in the right-hand side of S(P<l+1). Moreover, it implies that (P ⇒ Q) is
a subsequent of both S(P<l+1) and S(P ′<l+1). Define S ′′ = (Γ′ ⇒ ∆′ − {R}).
We show that S ′′ is a B-provable quantifier-free subsequent of S(P ′<l+1). Since
P⃗ ⊆ Γ′ and Q⃗, R ⊆ ∆′ we have B ⊢ Γ′, R ⇒ ∆′ − {R} because it is an instance
of the axioms. Since B ⊢ Γ′ ⇒ ∆′ by cut we have B ⊢ S ′′ which completes the
proof.

2.3.2 Non-deterministic Flows
In the previous subsection, we defined the concept of a reduction which can be
considered as a one-step move of the computational content. Now it is time to
let it flow:

Definition 2.3.11. Let Π be a π-class, A(x⃗), B(x⃗) ∈ Π, B ⊇ R a theory and
T a B-term ideal. A non-deterministic (T,Π,B)-flow from A(x⃗) to B(x⃗) is a
pair (t,H) where t(x⃗) ∈ T is a term and H(u, x⃗) ∈ Π is a formula such that the
following statements are provable in B:

(i) H(0, x⃗) ↔ A(x⃗).

(ii) H(t(x⃗), x⃗) ↔ B(x⃗).

(iii) ∀u < t(x⃗) H(u, x⃗) → H(u+ 1, x⃗).

If there exists a non-deterministic (T,Π,B)-flow from A(x⃗) to B(x⃗) we will write
A(x⃗) ▷(T,Π,B)

n B(x⃗). Moreover, if Γ and ∆ are sequents of formulas in Π, by
Γ ▷(T,Π,B)

n ∆ we mean ⋀ Γ ▷(T,Π,B)
n

⋁ ∆. The case for (T,Σ,B)-flows is defined
similarly by changing Π everywhere with Σ.

Convention. In the remaining part of this section, we will fix an arbitrary
choice for the type of a flow as (T,Σ,B)-flow or (T,Π,B)-flow. For simplicity, and
to address both cases simultaneously, we will use the letters Φ and ϕ, standing
for a fixed choice from two cases [Φ = Σ and ϕ = σ] or [Φ = Π and ϕ = π]. For
instance, by the sentence “Φ is a ϕ-class” we mean either “Σ is a σ-class” or “Π
is a π-class”. Moreover, we use the shorthand ▷ for ▷(T,Φ,B)

n for simplicity and
if emphasis on some parts of the triple (T,Φ,B) becomes needed, we put back
those parts as the superscript of ▷. For instance, if we write ▷Φ, we want to
emphasize on the class of the flow.

The following theorem is the main theorem of the theory of non-deterministic
flows for bounded theories of arithmetic.

76

Theorem 2.3.12. Let Φ be a ϕ-class, Γ(x⃗)∪∆(x⃗) ⊆ Φ and A ⊆ B ⊆ B(T,Φ,A).
Then B(T,Φ,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ ▷(T,Φ,B)

n ∆.

To prove this theorem we need the following sequence of lemmas. These
lemmas provide a high level calculus for the relation ▷ which makes its use more
effective in any practical situation.

Lemma 2.3.13. (i) (Weak Gluing) If A(x⃗) ▷ B(x⃗) and B(x⃗) ▷ C(x⃗) then
A(x⃗) ▷ C(x⃗).

(ii) (Strong Gluing) If A(y, x⃗) ▷ A(y + 1, x⃗) and s ∈ T, then A(0, x⃗) ▷ A(s, x⃗).

Proof. For (i) since A(x⃗)▷nB(x⃗) there exists a term t(x⃗) ∈ T, a formulaH(u, x⃗) ∈
Φ such that B proves the conditions in the Definition 2.3.11. On the other hand
since B(x⃗) ▷n C(x⃗) we have the corresponding data for B(x⃗) to C(x⃗) which we
show by t′(x⃗) and H ′(u, x⃗). Define r(x⃗) = t(x⃗) + t′(x⃗) + 1 and

I(u, x⃗) =

⎧⎪⎪⎨⎪⎪⎩
H(u, x⃗) if u ≤ t(x⃗)
B(x⃗) if u = t(x⃗) + 1
H ′(u .− t(x⃗) .− 2, x⃗) if t(x⃗) + 1 < u ≤ t(x⃗) + t′(x⃗) + 1

Then, it is easy to check that this new data is a non-deterministic (T,Φ,B)-flow
from A(x⃗) to C(x⃗). Notice that since T is closed under successor and addition
and t, t′ ∈ T, we have r ∈ T.

For (ii), if we have A(y, x⃗)▷n A(y+ 1, x⃗) it is enough to glue all copies of the
sequences of reductions for 0 ≤ y ≤ s, to have A(0, x⃗)▷n A(s, x⃗). More precisely,
assume that all reductions have the same length t′(x⃗) greater than t(s, x⃗). This is
an immediate consequence of the facts that we can find a monotone majorization
for t(y, x⃗) like r(y, x⃗), and since y ≤ s we have t(y, x⃗) ≤ r(y, x⃗) ≤ r(s, x⃗). Now it
is enough to repeat the last formula in the flow to make the flow longer to reach
the length t′(x⃗, z⃗) = r(s, x⃗) where z⃗ is a vector of variables in s. Now, define
t′′(x⃗, z⃗) = s× (t′(x⃗) + 2),

I(u, x⃗) =

⎧⎨⎩H(u, y, x⃗) if y(t′ + 2) < u < (y + 1)(t′ + 2)
A(y, x⃗) if u = y(t′ + 2)

and

F (u) =

⎧⎪⎪⎨⎪⎪⎩
F (u, y) if y(t′ + 2) < u < (y + 1)(t′ + 2) .− 1
E0(u, y) if u = y(t′ + 2)
G1(u, y + 1) if u = (y + 1)(t′ + 2) .− 1

It is easy to see that this new sequence is a non-deterministic (T,Φ,B)-flow from
A(0, x⃗) to A(s, x⃗). Notice that T is closed under substitution, sum and product
and therefore, t′′ ∈ T.

Lemma 2.3.14. (Conjunction and Disjunction Rules)

(i) If Γ, A▷ ∆ or Γ, B ▷ ∆ then Γ, A ∧B ▷ ∆.

(ii) If Γ0 ▷ ∆0, A and Γ1 ▷ ∆1, B then Γ0,Γ1 ▷ ∆0,∆1, A ∧B.

77

(iii) If Γ ▷ ∆, A or Γ ▷ ∆, B then Γ ▷ ∆, A ∨B.

(iv) If Γ0, A▷ ∆0 and Γ1, B ▷ ∆1 then Γ0,Γ1, A ∨B ▷ ∆0,∆1.

Proof. (i) and (iii), are trivial simply because firstly we have A ∧ B ≥ A,
A ∧ B ≥ B, A ≥ A ∨ B and B ≥ A ∨ B and then we can add the needed
formula in the beginning or the end of the flow.

For (ii) and (iv), we will prove (ii), (iv) is just dual to (ii). If Γ0▷∆0, A, then
clearly we have ⋀ Γ0∧⋀ Γ1▷(⋁ ∆0∨A)∧⋀ Γ1. Moreover, we have ⋀ Γ1▷

⋁ ∆1∨B
and again we have ⋀ Γ1 ∧ (⋁ ∆0 ∨ A) ▷ (⋁ ∆1 ∨ B) ∧ (⋁ ∆0 ∨ A). Therefore by
weak gluing ⋀

Γ0 ∧
⋀

Γ1 ▷ (
⋁

∆1 ∨B) ∧ (
⋁

∆0 ∨ A).

But it is easy to see that

(
⋁

∆1 ∨B) ∧ (
⋁

∆0 ∨ A) ≥n

⋁
∆1 ∨

⋁
∆0 ∨ (A ∧B).

Hence
Γ0,Γ1 ▷ ∆0,∆1, (A ∧B).

In the following, wherever we write ¬A, we mean any possible formula B such
that ⊢ ¬A ↔ B.

Lemma 2.3.15. (Negation Rules) If Γ,∆ ⊆ Φ and A,¬A ∈ Φ then

(i) If Γ, A▷Φ ∆ then Γ ▷Φ ∆,¬A.

(ii) If Γ ▷Φ ∆, A then Γ,¬A▷Φ ∆.

Proof. We will prove (i), (ii) is similar. Since Γ, A ▷Φ ∆ there exists t ∈ T and
H ∈ Φ such that the conditions of the Definition 2.3.11 hold. Now, use H ∧ ¬A
as the formula to have a flow from (⋀ Γ ∧ A) ∨ ¬A to ⋁ ∆ ∨ ¬A. Since

B ⊢
⋀

Γ → (
⋀

Γ ∧ A) ∨ ¬A

by adding ⋀ Γ to the beginning of the flow we have a flow from Γ to ∆,¬A.

Remark 2.3.16. Note that the cut and induction rules are derivable in the pres-
ence of the structural and propositional rules and their context-free versions, i.e,

A ⇒ B B ⇒ C
A ⇒ C

A(y) ⇒ A(y + 1)
A(0) ⇒ A(t)

Therefore since we have weak and strong gluing lemmas, we do not need to prove
cut and induction in a separate lemma.

Lemma 2.3.17. (Implication Rules) If A → B ∈ Φ:

(i) If Γ0 ▷Φ ∆0, A and Γ1, B ▷Φ ∆1 then Γ0,Γ1, A → B ▷Φ ∆0,∆1.

(ii) If Γ, A▷Φ ∆, B then Γ ▷Φ ∆, A → B.

78

Proof. Note that when A → B ∈ Π then since Π is closed under subformulas, we
have A,B ∈ Π. For (i), since Γ0 ▷ ∆0, A by applying conjunction with A → B
everywhere in the flow, we have⋀

Γ0 ∧ (A → B) ▷ (
⋁

∆0 ∨ A) ∧ (A → B).

Since
(
⋁

∆0 ∨ A) ∧ (A → B) ▷
⋁

∆0 ∨ (A ∧ (A → B)),
and A ∧ A → B ≥n B, we have⋁

∆0 ∨ (A ∧ (A → B)) ▷
⋁

∆0 ∨B.

And then since Γ1 ▷B,∆1, by cut on B we have

Γ0,Γ1, A → B ▷ ∆0,∆1.

For (ii), if Γ, A▷B,∆, then by applying disjunction with A → B everywhere in
the flow,

(
⋀

Γ ∧ A) ∨ (A → B) ▷
⋁

∆ ∨B ∨ (A → B).
And since

((
⋀

Γ ∨ (A → B)) ∧ (A ∨ (A → B)) ▷ (
⋀

Γ ∧ A) ∨ (A → B),

we have

((
⋀

Γ ∨ (A → B)) ∧ (A ∨ (A → B)) ▷
⋁

∆ ∨B ∨ (A → B).

Since B ≥n (A → B), by contraction and cut we have B ∨ (A → B) ▷ A → B.
On the other hand, ≥ A ∨ (A → B). Hence

Γ ▷ ((
⋀

Γ ∨ (A → B)) ∧ (A ∨ (A → B)),

and therefore by gluing Γ ▷ ∆, A → B.

Now we are ready to prove the following soundness theorem as the first half
of the main theorem:

Theorem 2.3.18. (Soundness) If Φ is a ϕ-class, Γ(x⃗)∪∆(x⃗) ⊆ Φ, B(T,Φ,A) ⊢
Γ(x⃗) ⇒ ∆(x⃗) and A ⊆ B then Γ ▷(T,Φ,B)

n ∆.

Proof. We assume Φ = Π is a π-type class, the other case is similar. To prove the
theorem we use induction on the length of the free-cut free proof of Γ(x⃗) ⇒ ∆(x⃗).
The importance of using the free-cut free proof is its usual consequence that all
the formulas occurring in the proof belong to the class Π itself. (See Corollary
2.2.13.) Since Π consists of bounded formulas, it also implies that the only used
quantifier rules are bounded quantifier rules. Hence, we have the following cases:

1. (Axioms). If Γ(x⃗) ⇒ ∆(x⃗) is a logical axiom then the claim is trivial. If it
is a non-logical axiom then the claim will be also trivial because all non-logical
axioms are quantifier-free and provable in B. Therefore there is nothing to prove.

79

2. (Structural Rules). We will prove the case of the contraction rule, the rest
are similar. Assume that Γ, A ⇒ ∆ is prove by left contraction from Γ, A,A ⇒ ∆.
Then by IH, there exists a flow from ⋀ Γ∧ (A∧A) to ⋁ ∆. Since B ⊢ A → A∧A,
we know ⋀

Γ ∧ A ≥
⋀

Γ ∧ (A ∧ A)

adding ⋀ Γ ∧A to the beginning of the flow, we will have a flow from ⋀ Γ ∧A to⋁ ∆ which proves what we wanted.

3. (Cut). See the Remark 2.3.16.

4. (Propositional Rules). The conjunction and disjunction cases are proved in
the Lemma 2.3.14. The implication and negation cases are proved in the Lemmas
2.3.15 and 2.3.17, respectively.

5. (Bounded Universal Quantifier Rules, Right). If

Γ(x⃗) ⇒ ∆(x⃗),∀z ≤ p(x⃗)B(x⃗, z)

is proved by the ∀≤R rule by Γ(x⃗), b ≤ p(x⃗) ⇒ ∆(x⃗), B(x⃗, b), then by IH we
have Γ(x⃗), b ≤ p(x⃗) ▷ ∆(x⃗), B(x⃗, b). Therefore, there exists a term t(x⃗, b) ∈ T,
a formula H(u, x⃗, b) ∈ Π such that the conditions of the Definition 2.3.11 are
provable in B. First of all, extend the sequence by repeating the last formula to
reach a majorization s(x⃗, b). Then, define t′(x⃗) = s(x⃗, p(x⃗)) and H ′(u, x⃗) = ∀b ≤
p(x⃗)I(u, x⃗, b) where

I(u, x⃗, b) =

⎧⎨⎩H(u, b, x⃗) u ≤ s(x⃗, b)
H(s(x⃗, b), b, x⃗) o.w.

Firstly, it is clear that

H ′(0, x⃗) ≡n ∀b ≤ p(x⃗)[
⋀

Γ(x⃗) ∧ b ≤ p(x⃗)]

because 0 ≤ s(x⃗, b) and hence I(0, x⃗, b) = H(0, b, x⃗). Secondly, note that we have
H ′(u, x⃗) ≥n H

′(u+ 1, x⃗). Thirdly,

H ′(t′(x⃗), x⃗) ≡n ∀b ≤ p(x⃗)[
⋁

∆(x⃗) ∨B(x⃗, b)]

The reason is as the following: Assume b ≤ t then by the monotonicity of s
we have s(x⃗, b) ≤ t′(x⃗) which implies I(t′(x⃗), x⃗, b) = I(s(x⃗, b), b, x⃗) and since
I(s(x⃗, b), b, x⃗) = H(s(x⃗, b), b, x⃗) is B-equivalent to [⋁ ∆(x⃗) ∨ B(x⃗, b)], the claim
follows. Since t′(x⃗) is constructed by majorizing and substitution from t ∈ T, it
is also in T. Therefore, (H ′, t′) provides a (T,Π,B)-flow from

∀b ≤ p(x⃗)[
⋀

Γ(x⃗) ∧ b ≤ p(x⃗)]

to
∀b ≤ p(x⃗)[

⋁
∆(x⃗) ∨B(x⃗, b)

Finally add ⋀ Γ to the beginning of the flow and add ∀b ≤ p(x⃗)B(x⃗, b) ∨ ⋁ ∆ to
its end, then the new flow would be a flow from Γ to ∆(x⃗),∀b ≤ p(x⃗)B(x⃗, b).

80

Since the name of a variable does not affect the nature of a reduction, we can
complete this part.

6. (Bounded Universal Quantifier Rules, Left). Suppose

Γ(x⃗), s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)B(x⃗, z) ⇒ ∆(x⃗)

is proved by the ∀≤L rule by Γ(x⃗), B(x⃗, s(x⃗)) ⇒ ∆(x⃗). Since B ⊢ s(x⃗) ≤ p(x⃗) ∧
∀z ≤ p(x⃗)B(x⃗, z) → B(x⃗, s(x⃗)), we have

s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)B(x⃗, z) ≥ B(x⃗, s(x⃗)).

Since
Γ(x⃗), B(x⃗, s(x⃗)) ▷ ∆(x⃗),

by cut we have

Γ(x⃗), s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)B(x⃗, s(x⃗)) ▷ ∆(x⃗).

Moreover, note that t′′ is constructed by majorizing, substitution and successor
from t ∈ T, hence t′′ ∈ T.

7. (Bounded Existential Quantifier Rules, Right). It is similar to 6.

8. (Bounded Existential Quantifier Rules, Left). If Γ, ∃y ≤ p(x⃗)B(x⃗, y) ⇒ ∆
is proved by the ∃≤L rule by Γ, b ≤ p(x⃗), B(x⃗, b) ⇒ ∆, by IH we have Γ, b ≤
p(x⃗), B(x⃗, b) ▷ ∆ then since ∃y ≤ p(x⃗)B(x⃗, y) ∈ Π, B(x⃗, y) has a negation in Π.
Since Π is closed under substitution, B(x⃗, b) also has a negation in Π. Therefore,
by Lemma 2.3.15

Γ, b ≤ p(x⃗) ▷ ∆,¬B(x⃗, b)
by 5, we have

Γ ▷ ∆,∀y ≤ p(x⃗) ¬B(x⃗, y)
Finally again by Lemma 2.3.15 we have

Γ,∃y ≤ p(x⃗)B(x⃗, y) ▷ ∆.

9. (Induction). See the Remark 2.3.16.

We also have the following completeness theorem:

Theorem 2.3.19. (Completeness) If Γ(x⃗) ▷(T,Φ,B)
n ∆(x⃗) and B ⊆ B(T,Φ,A),

then B(T,Φ,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗).

Proof. If Γ(x⃗)▷(T,Π,B)
n ∆(x⃗), then by Definition 2.3.1, there exist a term t(x⃗) ∈ T,

and a formula H(u, x⃗) ∈ Π such that we have the following:

(i) B ⊢ H(0, x⃗) ↔ ⋀ Γ(x⃗),

(ii) B ⊢ H(t(x), x⃗) ↔ ⋁ ∆(x⃗),

(iii) B ⊢ ∀u ≤ t(x⃗) H(u, x⃗) → H(u+ 1, x⃗).

81

Since B ⊆ B(T,Π,A), we have

B(T,Π,A) ⊢ ∀u ≤ t(x⃗) H(u, x⃗) → H(u+ 1, x⃗).

Since H(u, x⃗) ∈ Π and t ∈ T, by induction we have ,

B(T,Π,A) ⊢ H(0, x⃗) → H(t(x⃗), x⃗).

On the other hand, we have B ⊢ H(0, x⃗) ↔ ⋀ Γ(x⃗) and B ⊢ H(t(x⃗), x⃗) ↔ ⋁ ∆(x⃗).
Therefore, B(T,Π,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗).

2.3.3 Applications
In this subsection we will explain some applications of the theory of non-determ-
inistic flows. For this purpose, let us first define a hierarchy of theories of bounded
arithmetic to have a variety of theories with different induction lengths for which
the non-determinism is the most effective trick. For this purpose, consider the
language Ln as the Buss’ language of bounded arithmetic, [8], augmented with
subtraction, division and the function symbols {#k}k≤n and define BASICn as
the theory Ap as in the Example 2.2.8, together with the defining axioms for
these new function symbols. These axioms include the axioms of the theory R
and a suitable representation of x#k+1y = 2|x|#k|y|. For m ≤ n − 1, define Tn,m

as the set consisting of all terms less than the terms of the form |t|m, provably
in BASICn where |t|m means applying the length function m many times. We
claim that Tn,m is a BASICn-term ideal. First note that for any terms t and s,
BASICn proves that |t|m · |s|m ≤ |t#m+1s|m, hence by m + 1 ≤ n, it is easy to
prove that Tn,m is closed under addition, multiplication, subtraction and division.
Secondly, it is clear that this set is closed under substitutions simply because of
its form and finally note that the set has the majorizing terms of the form |t|m
where t just consists of increasing function symbols, i.e. all the function symbols
excluding subtraction and division. Now, define the theory Rk

m,n as the bounded
arithmetic B(Tm, Π̂b

k(#n),BASICn).

In the following theorem, we show that it is possible to decompose proofs of
Rk

m,n:

Theorem 2.3.20. Let Γ,∆ ⊆ Π̂b
k(#n), then Rk

m,n ⊢ Γ ⇒ ∆ iff

Γ ▷
(Tm,Π̂b

k(#n),BASICn)
n ∆.

Note that more smash functions can simulate higher order objects in our first
order setting. For instance the theory Rk

n−1,n+r can be read as a theory powerful
enough to talk about the n-th order objects, has first order induction for the for-
mulas with k-many alternations of these higher order objects and finally has the
#r+1 function on the first order elements. For instance having a characterization
of Sk

3 = Rk
1,3-provable sentences of the form ∀x∃y ≤ |t(x)| A(x, y) where A is

quantifier-free in the language augmented with all computable functions in time
|t| where t ∈ L(#3), is equivalent to providing a characterization of the total
NP-search problems of the second order hierarchy V k

2 .

82

Using the Theorem 2.3.20 for the usual bounded theories Sk
2 , we can provide

an example of the combination of the ingredients that we have mentioned in
the beginning of this section, i.e., first transforming a proof to a sequence of
implications over a universal theory and then using the Theorem 2.3.10 to bring
the computational content of each implication.

Corollary 2.3.21. Let A(x⃗), B(x⃗) ∈ LPV be two formulas in the k-prenex bou-
nded form and Sk

2 (PV) be the theory Sk
2 written in the language of PV. Then

Sk
2 (PV) ⊢ A(x⃗) → B(x⃗) iff there exists a polynomial p, a formula G(u, x⃗) in

the k-prenex bounded form with bounds depending only on x⃗, a uniform sequence
of PV-reduction programs Pu from G(u, x⃗) to G(u + 1, x⃗) and two PV-reduction
programs, one from A(x⃗) to G(0, x⃗) and the other from G(p(|⃗x|), x⃗) to B(x⃗).

Proof. Since Sk
2 (PV) is axiomatizable by (T1,2, Π̂b

k)-induction; all quantifier-free
formulas have PV-equivalent atomic representation and PV is a universal theory,
the claim is a clear consequence of Theorem 2.3.20 and Theorem 2.3.10.

Remark 2.3.22. Note that this theorem transforms the provability of implica-
tions of Π̂b

k formulas (written in their k-prenex bounded forms) in Sk
2 (written

in the language of PV) to the existence of polynomially long sequence of k-turn
games with a uniform sequence of PV-reduction programs between them. This
characterization is more or less similar to the characterizations of [19] and [21]
for the theories T k

2 . The difference is on the length of the sequences which in
our case is polynomial and hence exponentially shorter that the exponentially
long sequence of reductions of [19] and [21]. However, our reduction steps are
non-deterministic and hence far more complicated than the simple deterministic
reductions of [19] and [21]. Using the Σ̂b

k+1-conservativity of Sk+1
2 over T k

2 , we
can use both characterizations for both theories for appropriate complexity. This
technique pushes the previously known characterization of ∀Σ̂b

j consequences of
T k

2 for 1 ≤ j ≤ k ([21]), one level up to provide also a characterization of ∀Σ̂b
k+1

consequences of T k
2 . It is also worth mentioning that we can apply our character-

ization to provide another combinatorial characterization of the total NP search
problems of the theory Sk+1

2 , and hence of T k
2 , based on polynomially long sequence

of PV-reduction-programs.

For the second application, we propose a new proof for the strong version of
witnessing theorems for the hierarchy Sk

2 . This type of strong witnessing theorems
appeared in [19], [6], [4], [13] and [21] for different bounded theories including the
theories Sk

2 .

Define the hierarchy of function classes □p
k as: □p

1 = FP, □p
k+1 = FPΣp

k and
let comp(x⃗,M,w) be a polytime formalization for “w is a computation of the
algorithm M on the inputs x⃗” and out(w) be a polynomial time function symbol
which reads w and computes the output of w. Then:

Corollary 2.3.23. (Strong Witnessing Theorem) The provably Σ̂b
k-definable func-

tions of Sk
2 are in □p

k, provably in PV, i.e. if Sk
2 ⊢ ∀x⃗∃yA(x⃗, y) where A(x⃗, y) ∈

Σ̂b
k, then there exists a machine M computing a function f ∈ □p

k such that
PV ⊢ comp(x⃗,M,w) → A(x⃗, out(w)).

83

Proof. Assume Sk
2 ⊢ ∀x⃗∃yA(x⃗, y). By Parikh theorem we know that there exists

a bound for the existential quantifier. Hence there exists a term t(x⃗) such that
Sk

2 ⊢ ∀y ≤ t(x⃗) ¬A(x⃗, y) ⇒ ⊥. W.l.o.g, assume that the language extends
the language of PV. Hence, Sk

2 is axiomatizable in this language by (T1,2, Π̂b
k)-

induction. By Theorem 2.3.20, there exist a polynomial p(|⃗x|) and a formula
H(u, x⃗) ∈ Π̂b

k such that the following statements are provable in PV:

(i) H(0, x⃗) ↔ [∀y ≤ t(x⃗) ¬A(x⃗, y)].

(ii) H(p(|x⃗|), x⃗) ↔ ⊥.

(iii) ∀u < p(|⃗x|) H(u, x⃗) → H(u+ 1, x⃗).

W.l.o.g we can assume that H is in the k-prenex bounded form. Hence, H(u, x⃗) =
∀z ≤ s(x⃗) G(u, x⃗, z) where G(u, x⃗, z) begins with a bounded existential quanti-
fier and hence is in Σb

k−1. Since PV is a universal theory, by Theorem 2.3.10,
there exist a uniform PV-reduction program Pu from H(u + 1, x⃗) to H(u, x⃗) for
u < p(|⃗x|); a PV-reduction program N from H(0, x⃗) to ∀y ≤ t(x) ¬A(x, y) and
finally a PV-reduction program K from ⊥ to H(p(|⃗x|), x⃗). The idea is using the
power to decide Σb

k−1 formulas and in needed cases finding the witnesses for those
decisions, to simplify the reduction programs. We will simplify the reduction pro-
gram from H(u+ 1, x⃗) to H(u, x⃗), the cases for the other two are similar.

For simplicity, use z′ for z in H(u, x⃗) to have H(u, x⃗) = ∀z′ ≤ s(x⃗) G(u, x⃗, z′)
and H(u+ 1, x⃗) = ∀z ≤ s(x⃗) G(u+ 1, x⃗, z). Using the PV-reduction program Pu,
we write an algorithm in □p

k−1 to find z′ from z. W.l.o.g we can assume that the
program begins with reading z. The algorithm Mu is defined as the following:
Begin with the sequent

S(P<1
u) = ∀z′ ≤ s(x⃗)G(u, x⃗, z′) ⇒ G(u+ 1, x⃗, z)

Check the truth value of z ≤ s(x⃗) → G(u+ 1, x⃗, z). If it is true, halt and answer
0. If not, follow the program in a way that all added simpler formulas to the
left hand-side (right hand-side) of S(P<1

u) becomes true (false). More precisely,
at the stage m of the program, if Pm is the instruction [Read X ≤ t(x⃗)] and if
the formula ∀X ≤ t(x⃗)C(X) that is occurred in the right hand-side of S(P<m) is
false (∃X ≤ t(x⃗)C in the left hand-side is true), find X such that X ≤ t(x⃗) and
C(X) becomes false (true). If not, continue. For the instruction [Compute Y
by r ≤ t(x⃗)], if Y = z′k for some k and t(x⃗) = s(x⃗), check if G(u, x⃗, r) is true or
false. If it is false then halt and answer r. If not, continue. If Y /∈ {z′k}k≥0, then
continue.

The algorithm definitely halts and finds r(u, x⃗, z) such that both

z ≤ s(x⃗) → r(u, x⃗, z) ≤ s(x⃗)

and
z ≤ s(x⃗) → [G(u, x⃗, r(u, x⃗, z)) → G(u+ 1, x⃗, z)]

become valid. The reason is simple. If the algorithm does not find such an r,
it must reach the end of the program. Based on our construction, all added

84

formulas to the right hand-side is false and all added formulas in the left hand-
side is true. But there exists a quantifier-free subsequent of S(P<l+1

u) such that
PV ⊢ S ′. Since S ′ consists of quantifier-free formulas, it should consist of added
simpler formulas which implies that the left hand-side of S ′ is true while its right
hand-side is false. Hence, S ′ is false. Therefore, the algorithm halts. But if it
halts, there are two possibilities, either at the first stage G(u+ 1, x⃗, z) is false, or
in some stage there exists an r such that G(u, x⃗, r(u, x⃗, z)) is false. In both cases
we have

z ≤ s(x⃗) → [G(u, x⃗, r(u, x⃗, z)) → G(u+ 1, x⃗, z)].

We also have
z ≤ s(x⃗) → r(u, x⃗, z) ≤ s(x⃗)

In the first case because the output of the algorithm is 0 and in the second case,
because we faced the instruction [Compute Y by r ≤ s(x⃗)] whose definition
implies the claimed bound. Hence, the claim follows.

Now we show that the algorithm Mu computes a function in □p
k. Note

that the algorithm begins with checking z ≤ s(x⃗) → G(u + 1, x⃗, z) which is
in Σb

k−1. Then in each stage of the reduction program, if the instruction is [Read
X ≤ t(x⃗)], the algorithm checks the truth value of an existential sub-formula of
∀z′ ≤ s(x⃗)G(u, x⃗, z′) or a universal sub-formula of G(u + 1, x⃗, z) which implies
that the formula is in Σb

k−1. And finally if the instruction is [Compute Y by
r ≤ t(x)], at the worst case, we have to check G(u, x⃗, r) which is also in Σb

k−1.
Hence, the algorithm is a constant number of Σb

k−1 oracle questions and thus is
in □p

k.

Now let us investigate how complex this halting argument is. Since the length
of the reduction program is a constant and

PV ⊢ ∀u < p(|⃗x|) H(u, x⃗) → H(u+ 1, x⃗)

it is easy to formalize the above mentioned argument in PV to show the following
formula (∗):

∀u < p(|⃗x|)∀z ≤ s(x⃗)[∃wCom(x⃗, z,Mu, w) → [G(u, x⃗, out(w)) → G(u+ 1, x⃗, z)]]

and

∀u < p(|⃗x|)∀z ≤ s(x⃗)[∃wCom(x⃗, z,Mu, w) → out(w) ≤ s(x⃗)] (∗∗)

Now apply the same argument for the PV-reduction programs N and K to
have:

(i) ∀z ≤ s(x⃗)[∃wCom(x⃗, z, N,w)) → [(out(w) ≤ t(x⃗) → ¬A(x⃗, out(w))) →
G(0, x⃗, z)]].

(ii) ∃wCom(x⃗,K,w) → [G(p(|⃗x|), x⃗, out(w)) → ⊥].

(iii) ∃wCom(x⃗,K,w) → out(w) ≤ s(x⃗)

85

Now define the algorithm M as running K on 0, then put Mu’s end to end
beginning from u = p(|⃗x|) till u = 0 and at last run N . We claim that this M
works. First note that M is a result of polynomially many computational steps
in □p

k and hence it is also in □p
k. Secondly note that by the length induction in

PV on p(|x⃗|) .− u and using (∗) and (∗∗) we can prove

PV ⊢ ∃wCom(x⃗,M,w) → ∀u < p(|⃗x|) out(wu) ≤ s(x⃗).

and
PV ⊢ ∃wCom(x⃗,M,w) → ∀u < p(|⃗x|)¬G(u, x⃗, out(wu)).

Hence
PV ⊢ ∃wCom(x⃗,M,w) → [out(w) ≤ t(x⃗) ∧ A(x⃗, out(w))]

which complete the proof.

2.4 Deterministic Flows
In this section we will develop a theory for deterministic reductions and determin-
istic flows. We will use this theory to transform any proof in a bounded theory of
arithmetic to a term-length sequence of provably simple game reductions. This
technique provides a combinatorial characterization for the bounded consequences
of bounded theories of arithmetic, including the interesting case of higher search
problems of the theories IUk and T k

n and low complexity consequences of stronger
theories I∆0(exp), PRA and PA + TI(α). Our characterization also presents an-
other proof for the previous characterizations of low complexity consequences of
the theory T k

2 appeared in [19], [21] and [6].

2.4.1 Reductions and Flows
In the following, we will define the notion of a deterministic reduction as the
building block of the followed deterministic flows. These reductions are the gen-
eralization of the usual polynomial-time reductions between total NP search prob-
lems and the deterministic reductions between k-turn games as introduced in the
Section 2.2.

Definition 2.4.1. Let A be a formula whose negative sub-formulas are all atomic.
By the σ-prenex form of A, we means the result of the following process: First
bring out all existential quantifiers, then all universal quantifiers and so on. If
we begin by the universal quantifiers, it is called π-prenex form of A.

Definition 2.4.2. Let α ∈ {σ, π} and A(x⃗) and B(x⃗) be some bounded formulas
in the α-prenex form with at most k alternations of quantifiers, {F⃗i}k

i=1 be a
sequence of sequences of terms and B ⊇ R a theory. By recursion on k, we will
define F = {F⃗i}k

i=1 as a deterministic α-reduction, from B(x⃗) to A(x⃗) and we
will denote it by A(x⃗) ≥B,F

α B(x⃗) when:

(i) If A,B are quantifier-free, a sequence of sequences of terms is both a σ- and
a π-deterministic reduction from B to A iff B ⊢ A(x⃗) → B(x⃗).

86

(ii) If α = π, we have A = ∀u⃗C(x⃗, u⃗), B = ∀v⃗D(x⃗, v⃗) where the universal
quantifiers are the whole block of left-most universal quantifiers (possibly
empty) and F = {F⃗i}k+1

i=1 is a sequence of terms, then A(x⃗) ≥B,F
π B(x⃗) iff

C(x⃗, F⃗k+1(x⃗, v⃗)) ≥B,F̂
σ D(x⃗, v⃗)

where F̂ = {F⃗i}k
i=1.

(iii) If α = σ, we have A = ∃u⃗C(x⃗, u⃗), B = ∃v⃗D(x⃗, v⃗) where the existential
quantifiers are the whole block of left-most existential quantifiers (possibly
empty) and F = {F⃗i}k+1

i=1 is a sequence of terms, then A(x⃗) ≥B,F
σ B(x⃗) iff

C(x⃗, u⃗) ≥B,F̂
π D(x⃗, F⃗k+1(x⃗, u⃗))

where F̂ = {F⃗i}k
i=1.

It is possible to extend the definition to all bounded formula A(x⃗) and B(x⃗) whose
negative sub-formulas are all atomic, in the following way: We say F = {F⃗i}k

i=1 is
a deterministic α-reduction, from B(x⃗) to A(x⃗) iff F = {F⃗i}k

i=1 is a deterministic
α-reduction, from B̃(x⃗) to Ã(x⃗), where Ã(x⃗) and B̃(x⃗) are the α-prenex forms of
A and B, respectively.

Finally, we say B is (π,B)-deterministicly reducible to A and we write A ≥B
π

B, when there exists a sequence of sequences of terms F such that A ≥B,F
π B.

Moreover, by the equivalence A ≡B,E,F
π B we mean the conjunction of A ≥B,E

π B
and B ≥B,F

π A and we define (σ,B)-deterministic reducibility and equivalence
dually by replacing π to σ everywhere. Note that whenever the theory B is clear
from the context, we drop it from the superscripts everywhere.

Example 2.4.3. In this example we will draw the reader’s attention to the dif-
ference between π- and σ-reductions. Consider the formula

A = ∀y ≤ t(x)B(x, y) ∨ ∃z ≤ t(x)¬B(x, z)

where B is quantifier-free. Working with π-reductions, it is clear that we have
⊤ ≥π A because we can first read y and then witness z by y. But if we work with
the σ-reductions, the order of the variables changes and we have to witness z first
without the knowledge of the value y which is clearly impossible in the general
setting.

Convention. From now on we will assume that wherever we talk about
the deterministic reductions, the language and the base theory has the following
properties:

(i) There exists a subset of monotone majorizing terms provably in B, i.e. there
exists a set of terms M such that for any term t(x⃗) there exists s(x⃗) ∈ M
such that B ⊢ t(x⃗) ≤ s(x⃗) and for any r(x⃗) ∈ M , B ⊢ x⃗ ≤ y⃗ → r(x⃗) ≤ r(x⃗).

(ii) For any quantifier-free formula A(x⃗), there exists a term t(x⃗) such that
B ⊢ [t(x⃗) = 0 → A(x⃗)] ∧ [t(x⃗) ̸= 0 → ¬A(x⃗)]. We call this term the
characteristic function for the formula A(x⃗).

87

Definition 2.4.4. Let A(x⃗), B(x⃗) ∈ Πk be two formulas and α ∈ {σ, π}. A
(Πk,B, α)-deterministic flow from A(x⃗) to B(x⃗) is the following data: A term
t(x⃗), a formula H(u, x⃗) ∈ Πk and sequences of terms E0, E1, G0, G1 and F (u)
such that the following statements are provable in B:

(i) H(0, x⃗) ≡(E0,E1)
α A(x⃗).

(ii) H(t(x), x⃗) ≡(G0,G1)
α B(x⃗).

(iii) ∀u < t(x)H(u, x⃗) ≥F (u)
α H(u+ 1, x⃗).

If there exists a deterministic (Πk,B, α)-flow from A(x⃗) to B(x⃗) we will write
A(x⃗) ▷(Πk,B)

d,α B(x⃗). Moreover, if Γ and ∆ are sequents of formulas in Πk, by
Γ ▷(Πk,B)

d,α ∆ we mean ⋀ Γ ▷(Πk,B)
d,α

⋁ ∆. The case for (Σk,B, α)-flows is defined
similarly by replacing Πk with Σk.

For the sake of brevity, let us have some convention on notation:

Convention. In the remaining parts of this section, whenever we use the
letters Φ and α, we mean Φ ∈ {Σk,Πk} for some k and α ∈ {σ, π}. In cases that
k has been already fixed and the type of the class can be chosen from Σ and Π,
we write Φk. In some cases, it is important to have the same type of α as Φ, i.e.,
either [Φ = Σk for some k and α = σ] or [Φ = Πk for some k and α = π]. In
these cases, we use the letter ϕ instead of α to mention the dependency between
Φ and ϕ. Moreover, when we work with a fixed choice for Φ, α and B, we use
the shorthand ▷ for ▷(Φ,B)

d,α . However, sometimes, we put some parts of the pairs
(Φ,B) and (d, α) for ▷ to emphasize on those specific parts. For instance, if we
write ▷Φ

α , we want to emphasize on the class of the flow and the fact that it is a
α-flow.

2.4.2 The Main Theorem
Now were are ready to state the main theorem of this section. The theorem
relates the provability of bounded formulas in bounded theories of arithmetic to
the existence of a uniform term-length sequence of deterministic reductions. The
latter can also be interpreted as the existence of a uniform term-length sequence
of games with a uniform term-based sequence of methods to transfer the winning
strategies along them.

Theorem 2.4.5. (Main Theorem) Assume Γ(x⃗) ∪ ∆(x⃗) ⊆ Φk and A ⊆ B ⊆
B(Φk,A) then B(Φk,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ ▷(Φk,B)

ϕ ∆.

In the following we will prove a sequence of lemmas to make a high-level
calculus for deterministic flows. Then we will use this calculus to show that
this flow interpretation is sound and complete with respect to the corresponding
bounded arithmetic as stated in Theorem 2.4.5. All lemmas are true both for
both π and σ deterministic flows.

Lemma 2.4.6. (Conjunction Application) Let C(x⃗) ∈ Φ be a formula. If A(x⃗)▷Φ

B(x⃗) then A(x⃗) ∧ C(x⃗) ▷Φ B(x⃗) ∧ C(x⃗).

88

Proof. Since A(x⃗)▷B(x⃗), by Definition 2.4.4, there exists a term t(x⃗), a formula
H(u, x⃗) ∈ Φ and sequences of terms E0, E1, G0, G1 and F (u) such that

B ⊢ A(x⃗) ≡E0,E1 H(0, x⃗),

B ⊢ B(x⃗) ≡G0,G1 H(t(x⃗), x⃗),

and
B ⊢ ∀u < t(x⃗) H(u, x⃗) ≥F (u) H(u+ 1, x⃗).

Now define t′ = t, H ′(u, x⃗) = H(u, x⃗) ∧ C(x⃗) and E ′
0, E ′

1, G′
0, G′

1 and F ′(u) as
the corresponding sequences of terms extending their counterparts by using the
quantifiers in C to witness themselves by the identity terms. It is clear that the
new data is a deterministic (Φ,B, α)-flow from A(x⃗) ∧ C(x⃗) to B(x⃗) ∧ C(x⃗).

Lemma 2.4.7. (Disjunction Application) Let C(x⃗) ∈ Φ be a formula. If A(x⃗)▷Φ

B(x⃗) then A(x⃗) ∨ C(x⃗) ▷Φ B(x⃗) ∨ C(x⃗).

Proof. Since A(x⃗) ▷ B(x⃗) then by Definition 2.4.4, there exists a term t(x⃗), a
formula H(u, x⃗) ∈ Φ and sequences of terms E0, E1, G0, G1 and F (u) such
that the conditions in the Definition 2.4.4 is provable in B. Now define t′ = t,
H ′(u, x⃗) = H(u, x⃗) ∨ C(x⃗) and E ′

0, E ′
1, G′

0, G′
1 and F ′(u) as the corresponding

sequences of terms extending their counterparts by using the quantifiers in C
to witness themselves by the identity terms. It is clear that the new data is a
deterministic (Φ,B, α)-flow from A(x⃗) ∨ C(x⃗) to B(x⃗) ∨ C(x⃗).

Lemma 2.4.8. (i) (Weak Gluing) If A(x⃗)▷B(x⃗) and B(x⃗)▷C(x⃗) then A(x⃗)▷
C(x⃗).

(ii) (Strong Gluing) If A(y, x⃗) ▷ A(y + 1, x⃗) then A(0, x⃗) ▷ A(s, x⃗).

Proof. For (i), since A(x⃗) ▷ B(x⃗) there exists a term t(x⃗), a formula H(u, x⃗) ∈
Φ and sequences of terms E0, E1, G0, G1 and F (u) such that B proves the
conditions in the Definition 2.4.4. On the other hand since B(x⃗)▷C(x⃗) we have
the corresponding data for B(x⃗) to C(x⃗) which we denote t′(x⃗), H ′(u, x⃗), E ′

0, E ′
1,

G′
0, G′

1 and F ′(u). Define r(x⃗) = t(x⃗) + t′(x⃗) + 1,

I(u, x⃗) =

⎧⎪⎪⎨⎪⎪⎩
H(u, x⃗) u ≤ t(x⃗)
B(x⃗) u = t(x⃗) + 1
H ′(u .− t(x⃗) .− 2, x⃗) t(x⃗) + 1 < u ≤ t(x⃗) + t′(x⃗) + 1

and the sequence of terms in the same pointwise way. Then, it is easy to check
that this new data is a deterministic (Φ,B, α)-flow from A(x⃗) to C(x⃗).

For (ii), if we have A(y, x⃗) ▷A(y + 1, x⃗) it is enough to glue all copies of the
sequences of reductions for 0 ≤ y ≤ s, to have A(0, x⃗) ▷ A(s, x⃗). More precisely,
assume that all reductions have the same length t′(x⃗) greater than t(s, x⃗). This is
an immediate consequence of the facts that we can find a monotone majorization
for t(y, x⃗) like r(y, x⃗), and since y ≤ s we have t(y, x⃗) ≤ r(y, x⃗) ≤ r(s, x⃗). Now it
is enough to repeat the last formula in the flow to make the flow longer to reach

89

the length t′(x⃗, z⃗) = r(s, x⃗) where z⃗ is a vector of variables in s. Now, define
t′′(x⃗, z⃗) = s× (t′(x⃗) + 2),

I(u, x⃗) =

⎧⎨⎩H(u, y, x⃗) y(t′ + 2) < u < (y + 1)(t′ + 2)
A(y, x⃗) u = y(t′ + 2)

and

F (u) =

⎧⎪⎪⎨⎪⎪⎩
F (u, y) y(t′ + 2) < u < (y + 1)(t′ + 2) .− 1
E0(u, y) u = y(t′ + 2)
G1(u, y + 1) u = (y + 1)(t′ + 2) .− 1

and E ′
0 = E ′

1 = G′
0 = G′

1 = id. It is easy to see that this new sequence is a
deterministic (Φ,B, α)-flow from A(0, x⃗) to A(s, x⃗).
Lemma 2.4.9. (Quantifier Application)

(i) If A(x⃗, y) ▷Πk
π B(x⃗, y) then for any α ∈ {σ, π}, ∀y ≤ t(x⃗)A(x⃗, y) ▷Πk

α ∀y ≤
t(x⃗)B(x⃗, y).

(ii) If A(x⃗, y) ▷Σk
σ B(x⃗, y) then for any α ∈ {σ, π}, ∃y ≤ t(x⃗)A(x⃗, y) ▷Σk

α ∃y ≤
t(x⃗)B(x⃗, y).

Proof. For (i), since A(x⃗, y) ▷Πk
π B(x⃗, y), there exists a term s(x⃗, y), a formula

H(u, x⃗, y) ∈ Πk and sequences of sequences of terms E0, E1, G0, G1 and F (u)
such that the conditions of the Definition 2.4.2 are provable in B. W.l.o.g we
can assume that s is monotone, because any term is majorizable by a monotone
term and we can extend the sequence by repeating the last formula to reach that
majorization as the length of the flow. Define t′(x⃗) as s(x⃗, t(x⃗)) and H ′(u, x⃗) =
∀y ≤ t(x⃗)I(u, x⃗, y) where

I(u, x⃗, y) =

⎧⎨⎩H(u, y, x⃗) u ≤ s(x⃗, y)
H(s(x⃗, y), y, x⃗) o.w.

and

Cu =

⎧⎨⎩Fu u+ 1 ≤ s(x⃗, y)
Id o.w.

Firstly, it is clear that H ′(0, x⃗) ≡π ∀y ≤ tA(x⃗, y) by the reductions which read
y and witness it by itself and then apply the reductions E0 and E1. The reason
is that 0 ≤ s(x⃗, y) and hence I(0, x⃗, y) = H(0, y, x⃗).

Secondly, note that H ′(u, x⃗) ≥π H
′(u+ 1, x⃗) by witnessing the outmost quan-

tifier ∀y by itself and then applying Cu. Thirdly, H ′(t′(x⃗), x⃗) ≡π ∀y ≤ tB(x⃗, y) by
the reductions which read y and witness it by itself and then apply the reductions
G0 and G1. To prove this claim, first note that we can assume y ≤ t, because
otherwise, both sides of the reduction will be false regardless of the reduction.
Then using y ≤ t and the monotonicity of s we have s(x⃗, y) ≤ t′(x⃗) which im-
plies I(t′(x⃗), x⃗, y) = I(s(x⃗, y), y, x⃗) and since I(s(x⃗, y), y, x⃗) = H(s(x⃗, y), y, x⃗) is
π-equivalent to B by the reductions G0, G1, the claim follows. Finally note that
all the formulas in the flow begin with a universal quantifier, therefore, we can
also claim that all the reductions are σ-reductions and hence the flow is also a
σ-flow. The proof of (ii) is similar.

90

Lemma 2.4.10. (Conjunction and Disjunction Rules)

(i) If Γ, A▷ ∆ or Γ, B ▷ ∆ then Γ, A ∧B ▷ ∆.

(ii) If Γ0 ▷ ∆0, A and Γ1 ▷ ∆1, B then Γ0,Γ1 ▷ ∆0,∆1, A ∧B.

(iii) If Γ ▷ ∆, A or Γ ▷ ∆, B then Γ ▷ ∆, A ∨B.

(iv) If Γ0, A▷ ∆0 and Γ1, B ▷ ∆1 then Γ0,Γ1, A ∨B ▷ ∆0,∆1.

Proof. (i) and (iii) are trivial simply because firstly we have A∧B ≥ A, A∧B ≥
B, A ≥ A ∨ B and B ≥ A ∨ B by using the quantifiers in both sides to witness
themselves and forget the irrelevant parts and then add the needed formula in
the beginning or the end of the flow. For (ii), if Γ0 ▷ ∆0, A, then by conjunction
application with ⋀ Γ1 we have ⋀ Γ0 ∧ ⋀ Γ1 ▷ (⋁ ∆0 ∨ A) ∧ ⋀ Γ1. Moreover, we
have ⋀ Γ1 ▷

⋁ ∆1 ∨B and again by conjunction application ⋀ Γ1 ∧ (⋁ ∆0 ∨A) ▷
(⋁ ∆1 ∨B) ∧ (⋁ ∆0 ∨ A). Therefore by weak gluing⋀

Γ0 ∧
⋀

Γ1 ▷ (
⋁

∆1 ∨B) ∧ (
⋁

∆0 ∨ A).

But it is easy to see that

(
⋁

∆1 ∨B) ∧ (
⋁

∆0 ∨ A) ≥
⋁

∆1 ∨
⋁

∆0 ∨ (A ∧B).

Hence
Γ0,Γ1 ▷ ∆0,∆1, (A ∧B).

For (iv), if Γ0, A▷∆0 then by disjunction application with ⋀ Γ1 ∧B we have

(
⋀

Γ0 ∧ A) ∨ (
⋀

Γ1 ∧B) ▷
⋁

∆0 ∨ (
⋀

Γ1 ∧B).

Moreover, we have ⋀ Γ1 ∧B ▷
⋁ ∆1, hence again by disjunction application

(
⋀

Γ1 ∧B) ∨
⋁

∆0 ▷
⋁

∆0 ∨
⋁

∆1.

Hence, by weak gluing,

(
⋀

Γ0 ∧ A) ∨ (
⋀

Γ1 ∧B) ▷
⋁

∆0 ∨
⋁

∆1.

However, it is clear that⋀
Γ0 ∧

⋀
Γ1 ∧ (A ∨B) ≥ (

⋀
Γ0 ∧ A) ∨ (

⋀
Γ1 ∧B).

Hence,
Γ0,Γ1, (A ∨B) ▷ ∆0,∆1.

In the following, wherever we write ¬A, we mean the statement B resulting
from pushing the negation inside to the level of atomic formulas.

The following lemma provides a machinery to compute the value of the formula
A ∈ Φk ∈ {Πk,Σk} by a deterministic (Σk+1,B, α)-flow of reductions for any
α ∈ {π, σ}. This is a very important tool to reduce the complexity of deciding a
complex formula to just deciding one equality. We will see its use in full force in
the case of handling the contraction rule.

91

Lemma 2.4.11. (Computability of the characteristic functions) Suppose B has
a characteristic term for any quantifier-free formula then for any α ∈ {π, σ} and
any Φ ∈ {Πk,Σk} if A(x⃗) ∈ Φ then we have:

▷(Σk+1,B)
α ∃i ≤ 1 [(i = 1 → A) ∧ (i = 0 → ¬A)]

Proof. We say a bounded quantifier is constant if it has the form ∀z ≤ s(z =
s → D(z)) or ∃z ≤ t(z = s∧D(z)) for some term s. We denote these quantifiers
by ∀{z = s} and ∃{z = s}. To prove the theorem, use induction on the sum of
the number of non-constant quantifiers of A and the number of disjunctions and
conjunctions of A.

If all the quantifiers in A are constant, then it is enough to first eliminate
all the quantifiers in A by substituting the variables by the constant terms that
the constant quantifiers suggest, i.e., substituting the variable z in the quantifier
Q{z = s} by s. Call this quantifier-free formula B and put i = χB. If we witness
all the essentially existential quantifiers by the terms that they suggest, then we
reach the implication

(χB = 1 → B) ∧ (χB = 0 → ¬B)

which is provable in B by the assumption.

If A = Q⃗{z⃗ = s⃗}(B ∧ C) where Qn ∈ {∀,∃}, then by IH,

▷(Σk+1,B)
α ∃j ≤ 1 [(j = 1 → Q⃗{z⃗ = s⃗}B) ∧ (j = 0 → ¬Q⃗{z⃗ = s⃗}B)]

and

▷(Σk+1,B)
α ∃k ≤ 1 [(k = 1 → Q⃗{z⃗ = s⃗}C) ∧ (k = 0 → ¬Q⃗{z⃗ = s⃗}C)].

On the other hand, it is possible to reduce

∃i ≤ 1 [(i = 1 → Q⃗{z⃗ = s⃗}(B ∧ C)) ∧ (i = 0 → ¬Q⃗{z⃗ = s⃗}(B ∧ C))]

to the conjunction of two statements

∃j ≤ 1 [(j = 1 → Q⃗{z⃗ = s⃗}B) ∧ (j = 0 → ¬Q⃗{z⃗ = s⃗}B)]

and
∃k ≤ 1 [(k = 1 → Q⃗{z⃗ = s⃗}C) ∧ (k = 0 → ¬Q⃗{z⃗ = s⃗}C)].

To prove this, witness i by jk, the quantifiers in Q⃗ by the terms that they
suggest and the other quantifiers with themselves. Therefore, by conjunction
application and then gluing, we have

▷(Σk+1,B)
α ∃i ≤ 1 [(i = 1 → Q⃗{z⃗ = s⃗}(B ∧ C)) ∧ (i = 0 → ¬Q⃗{z⃗ = s⃗}(B ∧ C))].

The case for disjunction is similar to the conjunction case.

If A = Q⃗{v⃗ = s⃗}∀z ≤ t(x⃗)B(x⃗, z) where Qn ∈ {∀,∃}, then define G(u) as

∃k ≤ 1 [(k = 1 → Q⃗B̃(x⃗, u)) ∧ (k = 0 → ¬Q⃗B̃(x⃗, u))].

92

where B̃(x⃗, u) is ∀{z = u}B(x⃗, z) and Q⃗ stands for Q⃗{v⃗ = s⃗}. By IH we have a
(Σk+1,B, α)-flow from ⊤ to G(u+ 1) which is

∃k ≤ 1 [(k = 1 → Q⃗B̃(x⃗, u+ 1)) ∧ (k = 0 → ¬Q⃗B̃(x⃗, u+ 1))]

Define H(u) as

∃i ≤ 1 [(i = 1 → Q⃗∀z ≤ u B(x⃗, z)) ∧ (i = 0 → ¬Q⃗∀z ≤ u B(x⃗, z))].

Now, we want to prove the existence of a reduction from H(u+ 1) which is

∃j ≤ 1 [(j = 1 → Q⃗∀z ≤ u+ 1 B(x⃗, z)) ∧ (j = 0 → ¬Q⃗∀z ≤ u+ 1 B(x⃗, z))].

to the conjunction of G(u + 1) and H(u). For this purpose, witness j by ik.
Then for the other quantifiers use the following scheme: Note that we have three
possible cases, the case when i = k = 1, the case i = 1, k = 0 and the case i = 0.
In each case, some parts of the formulas, will be true regardless of the reduction
that we will present. Hence, we ignore them altogether and we call the other
formulas the main formulas.

Now, if i = k = 1, then the main formulas are Q⃗∀z ≤ u B(x⃗, z), B̃(x⃗, u + 1)
and Q⃗∀z ≤ u + 1 B(x⃗, z). To reduce Q⃗∀z ≤ u + 1 B(x⃗, z) to the conjunction of
Q⃗∀z ≤ u B(x⃗, z) and Q⃗B̃(x⃗, u+ 1), first witness constant quantifiers in Q⃗ by the
terms that they suggest. Then read z ≤ u + 1, if z = u + 1 use B̃(x⃗, u + 1) and
∀z ≤ u+1 B(x⃗, z) as the main formulas and ignore ∀z ≤ u B(x⃗, z). Then witness
the last universal quantifier of B̃(x⃗, u + 1) by u+ 1 and all the other quantifiers
in ∀z ≤ u + 1 B(x⃗, z) and B̃(x⃗, u + 1) with themselves. If z < u + 1, then use
∀z ≤ u B(x⃗, z) and ∀z ≤ u + 1 B(x⃗, z) as the main formulas and again witness
everything with themselves. If i = 1 and k = 0, then use ¬Q⃗∀z ≤ u + 1 B(x⃗, z)
and ¬Q⃗B̃(x⃗, u + 1) as the main formulas and witness constant quantifiers in
Q⃗ by the terms that they suggest. Then use u + 1 for z and witness all the
variables with themselves. Finally if i = 0, then use ¬Q⃗∀z ≤ u B(x⃗, z) and
¬Q⃗∀z ≤ u + 1 B(x⃗, z) as the main formulas and witness constant quantifiers in
Q⃗ by the terms that they suggest and all the other variables with themselves.

Therefore G(u + 1) ∧ H(u) ▷H(u + 1). By IH, ▷ G(u + 1). Hence, by con-
junction application H(u)▷G(u+1)∧H(u) and then by gluing H(u)▷H(u+1)
and finally by strong gluing H(0) ▷ H(t(x⃗)). Since H(0) ≡ G(0) and ▷ G(0),
hence ▷ H(0) which means ▷ H(t(x⃗)).

The case A = Q⃗{v⃗ = s⃗}∃z ≤ t(x⃗)B(x⃗, z) is similar to the universal case.

Lemma 2.4.12. (Canonical Normal Form) For any formula C(x⃗) ∈ Σk+1, there
exists C̃(x⃗, u⃗) ∈ Πk and some terms s⃗ such that the σ-prenex form of C̃(x⃗, u⃗)
is quantifier-free or it begins with a universal quantifier and ∃u⃗ ≤ s⃗ C̃(x⃗, u⃗) is
σ-deterministic equivalent to C. The same also holds for universal quantifiers,
Πk+1 and π-equivalence.

Proof. We will prove the claim by induction on the complexity of C. If C is
quantifier-free, then pick C̃ = C and pick u⃗ as the empty vector. If C begins

93

with a universal formula then C̃ = C and pick u⃗ as the empty vector again. If
C = ∃y ≤ t D, then pick C̃ = D̃ and add y to u⃗ and t to s⃗. For the cases
C = D ∧ E or C = D ∨ E, since their proofs are similar, we will only check the
disjunction case. If C = D ∨ E, by IH, there exists C̃ and D̃ and s⃗ and r⃗ such
that C ≡σ ∃u⃗ ≤ s⃗ C̃ and D ≡σ ∃v⃗ ≤ r⃗ D̃. Hence by propositional rules, it is
clear that

C ∨D ≡σ ∃u⃗ ≤ s⃗ C̃ ∨ ∃v⃗ ≤ r⃗ D̃

But
∃u⃗0 ≤ s⃗ C̃ ∨ ∃v⃗0 ≤ r⃗ D̃ ≡σ ∃u⃗1 ≤ s⃗ ∃v⃗1 ≤ r⃗ (C̃ ∨ D̃)

(For the moment we put some indices for the variables u⃗ and v⃗ for the referring
purpose.) To show the latter, for both reductions, when we read an existential
quantifier w ∈ u⃗∪ v⃗ with the bound p, if wi ≤ p use wi to witness w1−i, if not just
use zero. From right to left, if at least for one variable w1 we have w1 > p, then
this choice for the variable w1 makes the left hand-side of the reduction false,
regardless the choice of the other variables, which implies the reduction. If for
all the variables we have w1 ≤ p, then after using identity reduction both sides
will be equal and there is nothing to prove. For the other direction, let u⃗0

′ and
v⃗0

′ be the variables that do not meet their bounds in u⃗0 and v⃗0, respectively. If
both u⃗0

′ and v⃗0
′ have some variables, as before, it makes both ∃u⃗0 ≤ s⃗ C̃ and

∃v⃗0 ≤ r⃗ D̃ false and hence we have the reduction. If u⃗0 is non-empty and v⃗0 is
empty, then ∃u⃗0 ≤ s⃗ C̃ is false, regardless of the other parts of the reduction.
Since we choose zero to witness the variables u⃗1

′, all u⃗1 meet their bounds and
therefore the reduction is reduced to the fact that the disjunction of D̃ and a
substitution of C̃ is reducible to D̃. The proof for the other cases are similar.

Lemma 2.4.13. (Negation Rules) If Γ,∆ ⊆ Φk+1 and A ∈ Πk ∪ Σk then

(i) If Γ, A▷Φk+1
ϕ ∆ then Γ ▷Φk+1

ϕ ∆,¬A.

(ii) If Γ ▷Φk+1
ϕ ∆, A then Γ,¬A▷Φk+1

ϕ ∆.

Proof. Since we have conjunction and disjunction application, it is enough to
prove the claim:

Claim. If A(x⃗) ∈ Πk ∪ Σk, then

(∗) ⊤ ▷Φk+1
ϕ A(x⃗) ∨ ¬A(x⃗).

(∗∗) A(x⃗) ∧ ¬A(x⃗) ▷Φk+1
ϕ ⊥.

The reason for this sufficiency is the following:

For (i), if we have Γ, A▷ ∆ then ⋀ Γ ∧ A▷
⋁ ∆, hence by disjunction appli-

cation we have (⋀ Γ ∧ A) ∨ ¬A ▷
⋁ ∆ ∨ ¬A. By the claim we have ▷A ∨ ¬A,

therefore by conjunction application ⋀ Γ ▷
⋀ Γ ∧ (A ∨ ¬A). But, it is easy to see

that ⋀ Γ ∧ (A∨ ¬A) ≥ (⋀ Γ ∧A) ∨ ¬A. Hence by gluing we have ⋀ Γ▷
⋁ ∆ ∨ ¬A.

For (ii), we have ⋀ Γ▷
⋁ ∆∨A. By conjunction application ⋀ Γ∧¬A▷(⋁ ∆∨

A) ∧ ¬A. By the claim we have A∧ ¬A▷⊥ therefore by disjunction application

94

⋁ ∆ ∨ (A ∧ ¬A) ▷ ⋁ ∆. But, it is clear that (⋁ ∆ ∨ A) ∧ ¬A ≥ ⋁ ∆ ∨ (A ∧ ¬A).
Hence by gluing, ⋀ Γ ∧ ¬A▷

⋁ ∆.

Now, we will prove both (∗) and (∗∗) for the class Σk+1. For the other two cases
for Πk+1, we will use the following duality argument: Note that using negation on
all the elements of a (Σk+1,B, σ)-flow from C to D provides a (Πk+1,B, π)-flow
from ¬D to ¬C. Therefore, the Πk+1 case of (∗) is provable from the Σk+1 case
of (∗∗) and the Πk+1 case of (∗∗) is provable from the Σk+1 case of (∗).

Assume Φk+1 = Σk+1. For (∗), notice that

∃i ≤ 1 [(i = 1 → A) ∧ (i = 0 → ¬A)] ≥σ A ∨ ¬A

it is enough to witness A and ¬A in both sides with themselves. But since

▷(Σk+1,B)
σ ∃i ≤ 1 [(i = 1 → A) ∧ (i = 0 → ¬A)]

by propositional rules and gluing we can deduce ▷(Σk+1,B)
σ A ∨ ¬A.

For (∗∗), use induction on the complexity of A. If A is quantifier-free, then
there is nothing to prove. If A = B ∧ C, by IH, B ∧ ¬B ▷(Σk+1,B)

σ and C ∧
¬C ▷(Σk+1,B)

σ since

(B ∧ C) ∧ ¬(B ∧ C) ≥σ (B ∧ ¬B) ∨ (C ∧ ¬C)

witnessing any quantifier by itself, using gluing we will have

(B ∧ C) ∧ ¬(B ∧ C) ▷(Σk+1,B)
σ

The case for the disjunction is similar.

If A begins with a universal quantifier, by Lemma 2.4.12, there exists A′ such
that A ≡π A

′ = ∀z⃗ ≤ t⃗ B(z⃗) ∈ Πk ∪ Σk where ∀z⃗ ≤ t⃗ is the whole left-most block
of bounded universal quantifiers and B ∈ Σk−1. Then by the above considerations
on duality, since we have

▷(Σk,B)
σ B(w⃗) ∨ ¬B(w⃗)

hence
B(w⃗) ∧ ¬B(w⃗) ▷(Πk,B)

π

Now by Lemma 2.4.9 we have

∃w⃗ ≤ t⃗∀z⃗ ≤ t⃗ [B(w⃗) ∧ ¬B(w⃗)]▷(Σk+1,B)
σ

Now note that

∃w⃗ ≤ t⃗¬B(w⃗) ∧ ∀z⃗ ≤ t⃗B(z⃗) ≥σ ∃w⃗ ≤ t⃗∀z⃗ ≤ t⃗[B(w⃗) ∧ ¬B(w⃗)]

because we can witness w⃗ by itself and z⃗ by w⃗. The main point here is that
σ-prenex form of ¬B(w⃗) do not begin with an existential quantifier and hence

95

after reading the first block of existential quantifiers, the formula ¬B(w⃗) remains
intact. Therefore,

∃w⃗ ≤ t⃗¬B(w⃗) ∧ ∀z⃗ ≤ t⃗B(z⃗) ▷(Σk+1,B)
σ

hence A′ ∧ ¬A′▷(Σk+1,B)
σ . Finally, since A begins with at least one universal quan-

tifier and A ≡π A
′ we have A ≡σ A

′. On the other hand, ¬A ≡σ ¬A′ and hence
A ∧ ¬A ≡σ A

′ ∧ ¬A′ which completes the proof.

The case for the existential quantifier is similar.

In the following lemma, we will show that it is possible to simulate the con-
traction rule by deterministic reductions in the cost of extending one reduction
to a sequence of them, i.e., a flow.

Lemma 2.4.14. (Structural rules)

(i) If Γ, A,B,Σ ▷ ∆ then Γ, B,A,Σ ▷ ∆.

(ii) If Γ ▷ ∆, A,B,Σ then Γ ▷ ∆, B,A,Σ.

(iv) If Γ ▷ ∆ then Γ, A▷ ∆.

(v) If Γ ▷ ∆ then Γ ▷ ∆, A.

(iii) If Γ, A,A▷ ∆ then Γ, A▷ ∆.

(vi) If Γ ▷ ∆, A,A then Γ ▷ ∆, A.

Proof. The weakening and the exchange cases are trivial. For the contraction
case notice that in the presence of conjunction and disjunction applications and
also the gluing rule, it is enough to prove the following claim:

Claim. For any α ∈ {π, σ}, if A ∈ Φ, then:

(i) A(x⃗) ∨ A(x⃗) ▷Φ
α A(x⃗).

(ii) A(x⃗) ▷Φ
α A(x⃗) ∧ A(x⃗).

For (i), use induction on the complexity of A. If A is quantifier-free, then
there is nothing to prove, because A ∨ A ≡Φ

α A ≡Φ
α A ∧ A.

If A = B∧C, then by IH, B∨B▷ΦB and C∨C▷ΦC. But (B∧C)∨(B∧C) ≥
(B ∨B) ∧ (C ∨C) because it is just enough to witness any quantifier with itself.
Hence, by gluing and conjunction application, (B ∧C) ∨ (B ∧C)▷Φ B ∧C. The
case for disjunction is easy.

Now assume A = ∀z ≤ t(x⃗) B(x⃗, z). If Φ is the class Πk, by IH we have
B(x⃗, z) ∨ B(x⃗, z) ▷Πk

π B(x⃗, z) and if Φ is Σk, since ∀z ≤ t(x⃗)B(x⃗, z) ∈ Φ, then
it actually lives in the lower class Πk−1, which again by IH means B(x⃗, z) ∨
B(x⃗, z) ▷Πk−1

π B(x⃗, z). Hence, in either case

B(x⃗, z) ∨B(x⃗, z) ▷Πk
π B(x⃗, z)

96

By Lemma 2.4.9 we have

∀z ≤ t(x⃗) [B(x⃗, z) ∨B(x⃗, z)] ▷Φ
α ∀z ≤ t(x⃗) B(x⃗, z).

for any α ∈ {σ, π}. But ∀z ≤ t(x⃗) [B(x⃗, z) ∨B(x⃗, z)] is α-reducible to

∀u ≤ t(x⃗) B(x⃗, u) ∨ ∀v ≤ t(x⃗)B(x⃗, v)

using the variable z as the witness for both of u and v, hence the claim follows
from gluing.

For the existential case, w.l.o.g we can assume Φ = Σk for some k. The reason
is that if Φ = Πk, then since A begins with an existential quantifier, A ∈ Σk−1
and hence we can work with Σk−1. Therefore, we assume Φ = Σk for some k.
First note that by the Lemma 2.4.12, there exists A′ = ∃z⃗ ≤ t⃗(x⃗) B(x⃗, z⃗) such
that A ≡σ A

′. But since both of the formulas A and A′ begin with an existential
quantifier, A ≡π A

′. Therefore, it is enough to prove the claim for A′. Note that
by this assumption we can assume that the σ-prenex form of B is quantifier-free
or begins with universal quantifiers and hence B ∈ Πk−1. Then by the Lemma
2.4.13, we have B(u⃗) ∧ ¬B(u⃗) ▷Σk

σ ⊥ and B(v⃗) ∧ ¬B(v⃗) ▷Σk
σ ⊥ and then by the

propositional rules

(B(u⃗) ∨B(v⃗)) ∧ ¬B(u⃗) ∧ ¬B(v⃗) ▷Σk
σ ⊥ (∗)

Assume the length of this flow is s. Then, there is a (Σk,B, σ)-flow from

(i ≤ 1 ∧ j ≤ 1) ∧ [B(u⃗) ∨B(v⃗)] ∧ (χB(u⃗) = i) ∧ (χB(v⃗) = j)

to
(χB(u⃗) = i) ∧ (χB(v⃗) = j)] ∧ (i = 1 ∨ j = 1)

with the length s where χB(u⃗) = i means (i = 1 → B(u⃗)) ∧ (i = 0 → ¬B(u⃗)).
It is enough to use the formula G(w, i, j, u⃗, v⃗) to fill in between, where G is de-
fined by the following scheme: If i > 1 or j > 1 then use ⊥. If i = j = 1,
then use G(w, i, j, u⃗, v⃗) = B(u⃗) ∧ B(v⃗). If i = 1 and j = 0 use G(w, i, j, u⃗, v⃗) =
B(u) ∧ ¬B(v). If i = 0 and j = 1 use G(w, i, j, u⃗, v⃗) = ¬B(u) ∧B(v). And finally
if i = j = 0, use the flow from (∗). Moreover, in the first three cases, use identity
reductions, ignoring the B(u⃗) ∨B(v⃗).

Using the Lemma 2.4.9, for any α ∈ {σ, π} we have a (Σk,B, α)-flow from

∃u⃗, v⃗ ≤ t⃗ ∃i, j ≤ 1 [(i ≤ 1 ∧ j ≤ 1) ∧ [B(u⃗) ∨B(v⃗)] ∧ (χB(u⃗) = i) ∧ (χB(v⃗) = j)]

to
∃u⃗, v⃗ ≤ t⃗ ∃i, j ≤ 1 [(χB(u⃗) = i) ∧ (χB(v⃗) = j)] ∧ (i = 1 ∨ j = 1)]

Since the first element of the flow is α-equivalent to

∃u⃗, v⃗ ≤ t⃗ [[B(u⃗) ∨B(v⃗)] ∧ ∃i, j ≤ 1 [(χB(u⃗) = i) ∧ (χB(v⃗) = j)]]

for any α ∈ {σ, π} we will have (Σk,B, α)-flow from

∃u⃗, v⃗ ≤ t⃗ [[B(u⃗) ∨B(v⃗)] ∧ ∃i, j ≤ 1 [(χB(u⃗) = i) ∧ (χB(v⃗) = j)]]

97

to
∃u⃗, v⃗ ≤ t⃗ ∃i, j ≤ 1 [(χB(u⃗) = i) ∧ (χB(v⃗) = j)] ∧ (i = 1 ∨ j = 1)]

On the other hand, by the Lemma 2.4.11 and the Lemma 2.4.9, for any α ∈ {σ, π}
we know that there is a (Σk,B, α)-flow from

∃u⃗, v⃗ ≤ t⃗ B(u⃗) ∨B(v⃗)

to
∃u⃗, v⃗ ≤ t⃗ [[B(u⃗) ∨B(v⃗)] ∧ ∃i, j ≤ 1 [(χB(u⃗) = i) ∧ (χB(v⃗) = j)]]

Now, since
∃u⃗, v⃗ ≤ t⃗ B(u⃗) ∨B(v⃗)

and
∃u⃗ ≤ t⃗ B(u⃗) ∨ ∃v⃗ ≤ t⃗ B(v⃗)

are α-equivalent, it is enough to show that ∃y⃗ ≤ t⃗(x⃗) B(x⃗, y⃗) is α-reducible to

∃u⃗, v⃗ ≤ t⃗(x⃗) ∃i, j ≤ 1 (i = 1 ∨ j = 1) ∧ (χB(u) = i) ∧ (χB(v) = j)

It is enough to read i and j and decide between the cases that i = 1 or (i = 0,
j = 1). Then if i = 1, use u⃗ to witness y⃗ and reduce B(y⃗) to B(u⃗) in χB(u⃗) = i
by identity reduction. If (i = 0, j = 1) then use v⃗ to witness y⃗ and reduce B(y⃗)
to B(v⃗) in χB(v⃗) = j by identity reduction.

The case (ii) is the dual of (i) and provable by just using (i) on ¬A and then
taking negations.

Lemma 2.4.15. (Cut and Induction)

(i) If Γ0(x⃗)▷A(x⃗),∆0(x⃗) and Γ1(x⃗), A(x⃗)▷∆1(x⃗), then we have Γ0(x⃗),Γ1(x⃗)▷
∆0(x⃗),∆1(x⃗).

(ii) If Γ(x⃗), A(y, x⃗) ▷ ∆(x⃗), A(y + 1, x⃗) then Γ(x⃗), A(0, x⃗) ▷ ∆(x⃗), A(s(z⃗, x⃗), x⃗).

Proof. For (i), Since Γ0 ▷ ∆0, A and Γ1, A▷ ∆1 then⋀
Γ0 ▷

⋁
∆0 ∨ A

and ⋀ Γ1 ∧A▷
⋁ ∆1. Apply conjunction with ⋀ Γ1 on the first one and disjunc-

tion with ⋁ ∆0 on the second one to prove ⋀ Γ1 ∧ ⋀ Γ0 ▷ (⋁ ∆0 ∨ A) ∧ ⋀ Γ1 and
(⋀ Γ1 ∧ A) ∨ ⋁ ∆0 ▷

⋁ ∆1 ∨ ⋁ ∆0. Since (⋁ ∆0 ∨ A) ∧ ⋀ Γ1 ≥ (⋀ Γ1 ∧ A) ∨ ⋁ ∆0,
by using gluing we will have ⋀ Γ1 ∧ ⋀ Γ0 ▷

⋁ ∆0 ∨ ⋁ ∆1.

For (ii) we reduce the induction case to the strong gluing case. Since

Γ, A(y, x⃗) ▷ ∆, A(y + 1, x⃗)

by definition, ⋀ Γ ∧ A(y, x⃗) ▷ ⋁ ∆ ∨ A(y + 1, x⃗). Therefore, by the Lemma 2.4.7
we have

(
⋀

Γ ∧ A(y, x⃗)) ∨
⋁

∆ ▷
⋁

∆ ∨ A(y + 1, x⃗) ∨
⋁

∆
and by contraction for ⋁ ∆ we know⋁

∆ ∨ A(y + 1, x⃗) ∨
⋁

∆ ▷
⋁

∆ ∨ A(y + 1, x⃗).

98

Hence,
(
⋀

Γ ∧ A(y, x⃗)) ∨
⋁

∆ ▷
⋁

∆ ∨ A(y + 1, x⃗).
Then by conjunction introduction and the fact that (⋀ Γ∧A(y, x⃗))∨⋁ ∆)▷⋀ Γ∨⋁ ∆,

((
⋀

Γ∧A(y, x⃗))∨
⋁

∆), (
⋀

Γ∧A(y, x⃗))∨
⋁

∆)▷(
⋁

∆∨A(y+1, x⃗))∧(
⋀

Γ∨
⋁

∆)

By using the propositional, structural and the cut rule, it is easy to prove

(ϕ ∨ ψ) ∧ (σ ∨ ψ) ▷ (ϕ ∧ σ) ∨ ψ.

Hence, by using the contraction we have

(
⋀

Γ ∧ A(y, x⃗)) ∨
⋁

∆ ▷ (
⋀

Γ ∧ A(y + 1, x⃗)) ∨
⋁

∆.

Now by strong gluing we have

(
⋀

Γ ∧ A(0, x⃗)) ∨
⋁

∆ ▷ (
⋀

Γ ∧ A(s(z⃗, x⃗), x⃗)) ∨
⋁

∆.

But since Γ ∧ A(0, x⃗) ▷ (⋀ Γ ∧ A(0, x⃗)) ∨ ⋁ ∆ and

(
⋀

Γ ∧ A(s(x⃗), x⃗)) ∨
⋁

∆ ≥
⋁

∆ ∨ A(s(z⃗, x⃗), x⃗),

we have
Γ(x⃗), A(0, x⃗) ▷ ∆(x⃗), A(s(z⃗, x⃗), x⃗).

Lemma 2.4.16. (Implication Rules) If A → B ∈ Φ:

(i) If Γ0 ▷Φ ∆0, A and Γ1, B ▷Φ ∆1 then Γ0,Γ1, A → B ▷Φ ∆0,∆1.

(ii) If Γ, A▷Φ ∆, B then Γ ▷Φ ∆, A → B.

Proof. Notice that if A → B ∈ Φ then A → B is quantifier-free and hence
¬A,B ∈ Φ. Therefore, by definition, it is easy to see that A → B ≡ ¬A ∨ B.
Therefore:

For (i) since Γ0 ▷ ∆0, A by the Lemma 2.4.13 we have Γ0,¬A ▷ ∆0. On
the other hand, we have Γ1, B ▷ ∆1. Therefore, by the Lemma 2.4.10 we have
Γ0,Γ1,¬A ∨ B ▷ ∆0,∆1. Since A → B ▷ ¬A ∨ B, by using cut we have
Γ0,Γ1, A → B ▷ ∆0,∆1.

For (ii), since we have Γ, A ▷ ∆, B then by the Lemma 2.4.13 we will have
Γ,▷∆,¬A,B. Hence by the Lemma 2.4.10 we have Γ,▷∆, (¬A∨B), (¬A∨B). By
contraction, Γ,▷∆, (¬A∨B). Since ¬A∨B▷A → B, by cut Γ,▷∆, A → B.

The following theorem is the main theorem of the theory of flows for bounded
theories of arithmetic:

Theorem 2.4.17. (Soundness) If Γ(x⃗) ∪ ∆(x⃗) ⊆ Φ, B(Φ,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗)
and A ⊆ B has a characteristic function for any quantifier-free formula then
Γ ▷(Φ,B)

ϕ ∆.

99

Proof. We assume Φ is a π-type class. The other case is similar. To prove the
lemma we use induction on the length of the free-cut free proof of Γ(x⃗) ⇒ ∆(x⃗).

1. (Axioms). If Γ(x⃗) ⇒ ∆(x⃗) is a logical axiom then the claim is trivial. If it
is a non-logical axiom then the claim will be also trivial because all non-logical
axioms are quantifier-free and provable in B. Therefore there is nothing to prove.

2. (Structural Rules). It is proved in the Lemma 2.4.14.

3. (Cut). It is proved by Lemma 2.4.15.

4. (Propositional). The conjunction and disjunction cases are proved in the
Lemma 2.4.10. The implication and negation cases are proved in the Lemma
2.4.16.

5. (Bounded Universal Quantifier Rules, Right). If Γ(x⃗) ⇒ ∆(x⃗),∀z ≤
p(x⃗)B(x⃗, z) is proved by the ∀≤R rule by Γ(x⃗), b ≤ p(x⃗) ⇒ ∆(x⃗), B(x⃗, b), then by
IH, Γ(x⃗), b ≤ p(x⃗) ▷Πk

π ∆(x⃗), B(x⃗, b). By the Lemma 2.4.9, we have a (Πk,B, π)-
flow from ∀b ≤ p(x⃗)(b ≤ p(x⃗)∧⋀ Γ) to ∀b ≤ p(x⃗)[B(x⃗, b)∨⋁ ∆]. Since Γ does not
have a free b, it is easy to see that ⋀ Γ ≥π ∀b ≤ p(x⃗)(b ≤ p(x⃗) ∧ ⋀ Γ). Hence it is
enough to add ⋀ Γ to the beginning of the flow. Do the same for the right side to
reach ∀b ≤ p(x⃗)B(x⃗, b) ∨ ⋁ ∆. Finally note that changing the name of a bounded
variable does not change the nature of deterministic flows which complete the
proof.

6. (Bounded Universal Quantifier Rules, Left). Suppose

Γ(x⃗), s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)B(x⃗, z) ⇒ ∆(x⃗)

is proved by the ∀≤L rule by Γ(x⃗), B(x⃗, s(x⃗)) ⇒ ∆(x⃗). Then by IH,

Γ(x⃗), B(x⃗, s(x⃗)) ▷Πk
π ∆(x⃗)

But by witnessing z by s and the rest by themselves, we have⋀
Γ(x⃗) ∧ s(x⃗) ≤ p(x⃗) ∧ ∀z ≤ p(x⃗)B(x⃗, z) ≥π

⋀
Γ(x⃗) ∧B(x⃗, s(x⃗))

hence by gluing

Γ(x⃗), s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)B(x⃗, z) ≥π ∆(x⃗).

7. (Bounded Existential Quantifier Rules, Right). If Γ(x⃗), s(x⃗) ≤ p(x⃗) ⇒
∆(x⃗),∃z ≤ p(x⃗)B(x⃗, z) is proved by the ∃≤R rule by Γ(x⃗) ⇒ ∆(x⃗), B(x⃗, s(x⃗))
then by IH

Γ(x⃗) ▷Πk
π ∆(x⃗), B(x⃗, s(x⃗)).

Since ∃z ≤ p(x⃗)B(x⃗, z) ∈ Πk, it is also in Σk−1. Therefore, by Lemma 2.4.13,
Γ(x⃗),¬B(x⃗, s(x⃗))▷Πk

π ∆(x⃗). By 6, Γ(x⃗), s(x⃗) ≤ p(x⃗),∀z ≤ p(x⃗)¬B(x⃗, z)▷Πk
π ∆(x⃗)

and again by the Lemma 2.4.13 we will have

Γ(x⃗), s(x⃗) ≤ p(x⃗) ▷Πk
π ∆(x⃗),∃z ≤ p(x⃗)B(x⃗, z).

100

8. (Bounded Existential Quantifier Rules, Left). If Γ,∃y ≤ p(x⃗)B(x⃗, y) ⇒ ∆
is proved by the ∃≤L rule by Γ, b ≤ p(x⃗), B(x⃗, b) ⇒ ∆, by IH we have Γ, b ≤
p(x⃗), B(x⃗, b)▷Πk

π ∆ then since ∃b ≤ p(x⃗)B(x⃗, b) ∈ Πk, it is also in Σk−1. Therefore,
by the Lemma 2.4.13

Γ, b ≤ p(x⃗) ▷Πk
π ∆,¬B(x⃗, b)

by 5, we have
Γ ▷Πk

π ∆,∀y ≤ p(x⃗) ¬B(x⃗, y)
Finally again by Lemma 2.4.13 we have

Γ,∃y ≤ p(x⃗)B(x⃗, y) ▷Πk
π ∆.

9. (Induction). It is proved in Lemma 2.4.15.

We also have the following completeness theorem:

Theorem 2.4.18. (Completeness) If Γ(x⃗)▷(Φk,B)
ϕ ∆(x⃗) and B ⊆ B(Φk,A), then

B(Φk,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗).

Proof. If Γ(x⃗) ▷(Φk,B)
ϕ ∆(x⃗), then by the fact that the existence of deterministic

reductions implies provability, there exist a term t(x⃗), and a formula H(u, x⃗) ∈ Φk

such that we have the following:

(i) B ⊢ H(0, x⃗) ↔ ⋀ Γ(x⃗),

(ii) B ⊢ H(t(x), x⃗) ↔ ⋁ ∆(x⃗),

(iii) B ⊢ ∀u ≤ t(x⃗) H(u, x⃗) → H(u+ 1, x⃗).

Since B ⊆ B(Φk,A), we have

B(Φk,A) ⊢ ∀u ≤ t(x⃗) H(u, x⃗) → H(u+ 1, x⃗).

Since H(u, x⃗) ∈ Φk by induction we have,

B(Φk,A) ⊢ H(0, x⃗) → H(t(x⃗), x⃗).

On the other hand, we have B ⊢ H(0, x⃗) ↔ ⋀ Γ(x⃗) and B ⊢ H(t(x⃗), x⃗) ↔ ⋁ ∆(x⃗).
Therefore, B(Φk,A) ⊢ Γ(x⃗) ⇒ ∆(x⃗).

2.4.3 Applications
In this subsection we will use the soundness and completeness theorems that we
have proved in the previous subsection to extract the computational content of
the low complexity statements of some concrete weak bounded theories such as
Buss’ hierarchy of bounded theories of arithmetic and some strong theories such
as I∆0(exp), PRA and PA + TI(α).

For the first application, consider the theories IUk = B(Πk(LR),R) for k ≥
1. These theories are the fragments of the theory I∆0 corresponding to the
computational world of the linear time hierarchy. Moreover, consider the class
of all functions constructed from zero, projections and closed under successor,
addition, production, subtraction and division and call it R:

101

Corollary 2.4.19. Let Γ(x⃗)∪∆(x⃗) ⊆ Uk. Then, IUk ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ▷(Uk,R)
π

∆. The second condition means that there exists a sequence of length t ∈ R of
formulas in Uk beginning from ⋀ Γ ending with ⋁ ∆ such that each formula is
(π,R)-reducible to its successor using just the functions in R.

Proof. The only thing that we have to check is the fact that R has the charac-
teristic functions for any quantifier-free formula in the language LR. It has been
proved in the Remark 2.2.2.

The second application, and maybe the more important one, is the case of
Buss’ hierarchy of bounded arithmetic, in which we assume the language has
a symbol for any PV function and we denote the class of all strict Σb

k and Πb
k

formulas with Σ̂b
k and Π̂b

k.

Corollary 2.4.20. Let Γ(x⃗) ∪ ∆(x⃗) ⊆ Π̂b
k(#n). Then, T k

n ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff
Γ ▷

(Π̂b
k(#n),BASICn(PV))

π ∆, where BASICn(PV)) is the theory BASICn plus all the
defining axioms of PV. Specifically, for n = 2, T k

2 ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ▷(Π̂b
k,PV)

π ∆.
The second condition in the latter case means the existence of a uniform sequence
of length 2p(|x⃗|) of formulas in Πb

k starting with ⋀ Γ and ending in ⋁ ∆ such that
each formula is (π,PV)-reducible to its successor, using just the polynomial time
computable functions.

Proof. Observe that in the presence of all PV functions, any formula in Π̂b
k(#n)

is equivalent to a formula in Πk. Therefore, since T k
n is axiomatizable by Π̂b

k(#n)-
induction, it is also axiomatizable by Πk-induction.

And also we can apply the soundness theorem on stronger theories with full
exponentiation like I∆0(exp) and PRA. Consider the theory R augmented with a
function symbol for exponentiation with the usual recursive definition and denote
it by R(exp) and also denote the union of R and the induction-free part of PRA
by PRA−. Then:

Corollary 2.4.21. Let Γ(x⃗) ∪ ∆(x⃗) ⊆ Πk. Then:

(i) I∆0(exp) ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ ▷(Πk,R(exp))
π ∆.

(ii) PRA ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff Γ ▷(Πk,PRA−)
π ∆.

Proof. The only point to mention is that both of the theories I∆0(exp) and
PRA are axiomatizable by IΠk for any k. Hence we can apply the theory of
deterministic flows here.

We can also use the theory of flows to extract the computational content of
low complexity sentences of the very strong theories of arithmetic such as PA and
PA + TI(α). But this is not what we can implement in a very direct way. The
reason is that our method is tailored for bounded theories while these theories
are unbounded. Hence, to use our theory, we have to find a way to transfer
low complexity statements from these theories to some corresponding bounded
theories. This is what the continuous cut elimination method makes possible in
its very elegant enterprise. It transfers all Π0

2 consequences of a strong theory T
to some quantifier-free extensions of PRA and then makes it possible to apply the
flow decomposition technique. To explain how it works, we need some definitions:

102

Definition 2.4.22. Let T be a theory of arithmetic. We say that α is a Π0
2-proof

theoretical ordinal of T when ≺ is the primitive recursive representation of the
order on α and T ≡Π0

2
PRA + ⋃

β≺α TI(≺β) where TI(≺β) means full transfinite
induction up to the ordinal β.

Convention. From now on wherever we have a proof theoretic ordinal, we
always assume that it is closed under the operation β ↦→ ωβ.

Definition 2.4.23. Let ≺ be a quantifier-free formula in the language of PRA.
By theory PRA + ⋃

β≺α PRWO(≺β) we mean PRA plus the axiom schema

PRWO(≺β) : ∀x⃗∃y f(x⃗, y + 1) ⊀β f(x⃗, y)

for any function symbol f .

The following theorem uses continuous cut elimination technique to reduce
transfinite induction to PRWO.

Theorem 2.4.24. [11] Let T be a theory of arithmetic and α its Π0
2-proof theo-

retical ordinal. Then

T ≡Π0
2

PRA +
⋃

β≺α

PRWO(≺β)

The following theory is the skolemization of PRA + ⋃
β≺α PRWO(≺β):

Definition 2.4.25. The language of the theory PRA≺ consists of the language of
PRA plus the scheme which says that for any PRA-function symbol f(x⃗, y) and
any β ≺ α, there exists a function symbol [µβy.f](x⃗). Then BASIC≺ is the theory
axiomatized by the axioms of PRA plus the theory R and the following definitional
equations: f(x⃗, 1+[µβy.f](x⃗)) ⊀β f(x⃗, [µβy.f](x⃗)) and z < [µβy.f](x⃗) → f(x⃗, z+
1) ≺β f(x⃗, z). Finally, PRA≺ is BASIC≺ plus the usual quantifier-free induction.

Combining all of these steps together we can reduce a theory T to a bounded
arithmetical theory PRA≺.

Corollary 2.4.26. Let T be a theory of arithmetic and α its Π0
2-proof theoretical

ordinal. Then T ≡Π0
2

PRA≺.

Now we are ready to have the following corollary:

Corollary 2.4.27. Let Γ(x⃗) ∪ ∆(x⃗) ⊆ Πk, and αT is the Π0
2-ordinal of T with

the primitive recursive representation ≺αT
, then T ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff

Γ(x⃗) ▷(Πk,BASIC≺αT
)

π ∆(x⃗).

Proof. Note that the existence of the flow is equivalent to the provability of
Γ ⇒ ∆ in PRA≺αT

because PRA≺αT
is a bounded theory axiomatizable by the

usual induction on formulas in Πk. On the other hand, we have Γ(x⃗)∪∆(x⃗) ⊆ Πk.
Hence the sequent is bounded and is in Π0

2. Therefore, by the definition of Π0
2-

ordinals, we know that PRA≺αT
⊢ Γ ⇒ ∆ iff T ⊢ Γ ⇒ ∆, which completes the

proof.

103

Corollary 2.4.28. Let Γ(x⃗) ∪ ∆(x⃗) ⊆ Πk, and ϵ(α) be the least ϵ number after
α with a primitive recursive representation. Then PA + TI(α) ⊢ Γ(x⃗) ⇒ ∆(x⃗) iff

Γ(x⃗) ▷
(Πk,BASIC≺ϵ(α))
π ∆(x⃗).

So far, we have used the theory of deterministic flows to decompose first order
proofs of bounded theories. In the following we will introduce two different kinds
of characterizations and we will use them to reprove some recent results for some
specific classes of formulas. The types that we want to use are generalizations of
some recent characterizations of some low complexity statements in Buss’ hierar-
chy of bounded arithmetic by Game induction principles [19], [21] and some kind
of PLS problems [6].

First let us generalize our game interpretation of the Remark 2.3.4 to interpret
any formula of the form

A = ∀y⃗1 ≤ p⃗1(x⃗)∃z⃗1 ≤ q⃗1(x⃗)∀y⃗2 ≤ p⃗2(x⃗) . . . GA(x⃗, y⃗1, z⃗1, y⃗2, z⃗2, . . .)

as a k-turn game GA in which the players can have some but fixed predefined num-
ber of simultaneous moves. More precisely, in the game GA, the first player begins
by choosing the moves y⃗1 ≤ p⃗1(x⃗) altogether, then the second player chooses the
moves z⃗1 ≤ q⃗1(x⃗) and they continue alternately. Again if GA(x⃗, y⃗1, z⃗1, y⃗2, z⃗2, . . .)
becomes true the second player wins and otherwise the first player is the winner.
Note that in this multi-move version, we still have the equivalence between the
truth of A and the existence of the winning strategy for the second player. What
we want to add to this fact is its explicit version which states that any determin-
istic reduction from A to ⊤ is nothing but an explicit winning strategy for the
second player in the game GA.

Definition 2.4.29. Let L ⊇ LR be a language. An instance of the (j, k)-game
induction principle, GIj

k(L), is given by size parameters a and b, a quantifier-free
formula G(u, v⃗) with a fixed partition of the variables v⃗ into k groups, a sequence
of terms V and a uniform sequence Wu of sequences of terms. The instance
GI(G, V,W, a, b) states that, interpreting G(u, v⃗) as a k-turn game on moves v⃗
in which all moves are bounded by b, the following cannot all be true:

(i) Deciding the winner of the game G(0, v⃗) depends only on the first j moves,

(ii) The second player has a winning strategy for G(0, v⃗) (expressed as a Πj

formula.)

(iii) For u ≤ a .− 2, Wu gives a deterministic reduction from G(u + 1, v⃗) to
G(u, v⃗),

(iv) V is an explicit winning strategy for the first player in G(a .− 1, v⃗).

Notation. Let C and D be two classes of formulas and B be a theory. By
C ≡B D we mean that for any A ∈ C there exists B ∈ D such that B ≥π A and
for any A ∈ D there exists B ∈ C such that B ≥π A.

104

Theorem 2.4.30. Let j ≤ k. Then,

∀Σj[B(Πk,B)] ≡B GI
j
k(L).

Proof. It is clear that B(Πk,B) ⊢ GIj
k(L) and GIj

k(L) is expressible by a ∀Σj

sentence. For the converse, assume B(Πk,B) ⊢ ∀x⃗A(x⃗) where A ∈ Σj and j ≤ k.
Then, we know that B(Πk,B) ⊢ ¬A(x⃗) ⇒ ⊥ and ¬A ∈ Πj. By Corollary 2.4.20,
there exist a term t(x⃗), a formula H(u, x⃗) ∈ Πk and sequences of terms E0, E1,
I0, I1 and F (u) such that the following statements are provable in B:

(i) H(0, x⃗) ≡(E0,E1)
π ¬A(x⃗).

(ii) H(t(x⃗), x⃗) ≡(I0,I1)
π ⊥.

(iii) ∀u < t(x⃗)[H(u, x⃗) ≥Fu
π H(u+ 1, x⃗)].

First of all, note that we can change the definition of H in the following way:

H ′(u, x⃗) = (u = 0 → ¬A(x⃗)) ∧ (u ̸= 0 → H(u .− 1, x⃗)).

And, it is possible to shift also the reductions to have (i) to (iii) for H ′. Call
these reductions E ′

0, E ′
1, F ′

u, I ′
0 and I ′

1. Note that the truth of H ′(0, x) depends
only on first j blocks of quantifiers when we write it in the Πk form.

W.l.o.g., we assume that all bounds in H ′(u, x⃗) are the same and depend only
on x⃗. Call this bound s(x⃗). This is possible because any term is majorizable by a
monotone term. Again w.l.o.g we can assume that H ′ is in the following prenex
form:

H ′(u, x⃗) = ∀z⃗1 ≤ s∃y⃗1 ≤ s∀z⃗2 ≤ s . . . G(u, x⃗, z⃗1, y⃗1, z⃗2, . . .)

where G is quantifier-free and the number of quantifier groups are k. Define
a = t(x⃗), b = s(x⃗), Wu = F ′

u and V = I ′
0 and pick G for the game predicate

with its natural partition of variables. Therefore, we have an instance of the
game induction. Now we want to show that A(x⃗) is reducible to this game
induction provably in B. Since B ⊢ ∀u < t(x⃗)[H ′(u, x⃗) ≥F ′

u
π H ′(u + 1, x⃗)] and

B ⊢ H(t(x⃗), x⃗) ≡(I0,I1) ⊥, the false part of GIj
k(L) is the part which states “The

second player has a winning strategy for G(0, v⃗).” which means that H ′(0, x⃗) is
false. Since H ′(0, x⃗) is equivalent with ¬A(x⃗) provably in B, the reduction of the
sentence A(x⃗) to the game induction principle is proved.

Using this generalization it is trivial to reprove the case for Buss’ hierarchy of
bounded arithmetic:

Corollary 2.4.31. ([19], [21]) For all j ≤ k, ∀Σj(T k
2) ≡PV GIj

k(LPV).

Now, let us explain the second type of problems, i.e., the generalized local
search problems:

Definition 2.4.32. A formalized (Ψ,Λ,B,≺)-GLS problem consists of the fol-
lowing data:

(i) A sequence of terms N⃗(x⃗, s⃗) ∈ LB as the local improvements.

105

(ii) A term c(x⃗, s⃗) ∈ LB as a cost function.

(iii) A predicate F (x⃗, s⃗) ∈ Ψ which intuitively means that s⃗ is a feasible solution
for the input x⃗.

(iv) An initial sequence of terms i⃗(x⃗) ∈ LB.

(v) A goal predicate G(x⃗, s⃗′) ∈ Λ.

(vi) A quantifier-free predicate ≺ ∈ LB as a well-ordering.

(vii) A sequence of bounding terms t⃗(x⃗).

(viii) A projection function I.

such that B proves that ≺ is a total order and

B ⊢ ∀x⃗ F (x⃗, i⃗(x⃗))

B ⊢ ∀x⃗s⃗ (F (x⃗, s⃗) → F (x⃗, N⃗(x⃗, s⃗)))

B ⊢ ∀x⃗s⃗ (N⃗(x⃗, s⃗) = s⃗ ∨ c(x⃗, N⃗(x⃗, s⃗)) ≺ c(x⃗, s⃗))

B ⊢ ∀x⃗s⃗ ((N⃗(x⃗, s⃗) = s⃗ ∧ F (x⃗, s⃗)) → G(x⃗, I(s⃗)))

B ⊢ ∀x⃗s⃗′ (G(x⃗, s⃗′) → s⃗′ ≤ t⃗(x⃗))

By the computational problem associated to a GLS problem, we mean finding
s⃗′ ≤ t⃗(x⃗) such that G(x⃗, s⃗′).

If there is also a sequence of terms b⃗(x⃗) such that

B ⊢ ∀x⃗s⃗ (F (x⃗, s⃗) → s⃗ ≤ b⃗(x⃗))

The GLS-problem is called bounded and their class is denoted by BGLS(Ψ,Λ,B,≺
). Moreover, if LPV ⊆ LB and t⃗(x⃗) = 2p⃗(|x|) for some polynomials p⃗ we denote the
class by PLS(Ψ,Λ,≺,B) and if we have also the conditions that F is quantifier-
free in the language of B and G is quantifier-free in the language of PV, we denote
the class by PLS(≺,B). Finally if we also add B = PV, then we write PLS(≺)
for the class of these GLS-problems.

Theorem 2.4.33. (i) For any BGLS(Πk,Λ,B,≤)-problem we have:

B(Πk+1,B) ⊢ ∀x⃗∃s⃗′G(x⃗, s⃗′)

(ii) Let Λ ⊆ Ψ be a class of formulas, A ∈ Λ a formula and t⃗(x⃗) are terms such
that z⃗ ≤ t⃗(x⃗) ∈ Λ for all variables z⃗. Then if

B(Πk+1,B) ⊢ ∀x⃗∃y⃗ ≤ t⃗(x⃗)A(x⃗, y⃗)

then there exists a BGLS(Πk,Λ,B,≤)-problem with the condition that

G(x⃗, y⃗) = A(x⃗, y⃗) ∧ y⃗ ≤ t⃗(x⃗)

106

Proof. For (i), argue inside B and assume that there is no s⃗′ such that G(x⃗, s⃗′).
It implies that ∀s⃗(F (x⃗, s⃗) → N⃗(x⃗, s⃗) ̸= s⃗). Use induction on the formula

∀s⃗ ≤ r⃗(x⃗)[F (x⃗, s⃗) → c(x⃗, s⃗) ≥ n]

where r⃗(x⃗) is the bound for F . This bound exists because the GLS problem is
bounded. First note that the formula is in Πk+1. Hence in B(Πk+1,B) we can
afford such an induction. For n = 0 the claim is clear. For n+ 1, assume F (x⃗, s⃗),
therefore by the assumption N⃗(x⃗, s⃗) ̸= s⃗ which implies

c(x⃗, N⃗(x⃗, s⃗)) < c(x⃗, s⃗)

On the other hand, by F (x⃗, s⃗) we know that F (x⃗, N⃗(x⃗, s⃗)) and hence N⃗(x⃗, s⃗) ≤
r(x⃗). By IH, we have c(x⃗, N⃗(x⃗, s⃗)) ≥ n which implies c(x⃗, s⃗) ≥ n+ 1. Therefore,
we have

∀n∀s⃗ ≤ r⃗(x⃗)[F (x⃗, s⃗) → c(x⃗, s⃗) ≥ n]

Define c0 = c(x⃗, i⃗(x⃗)). For n = c0 + 1 and s⃗ = i⃗(x⃗) we will have c0 ≥ c0 + 1 which
is a contradiction. Hence there exists s⃗ such that Goal(x⃗, s⃗) which also implies
that s⃗ ≤ t⃗(x⃗).

For (ii), assume

B(Πk+1,B) ⊢ ∀x⃗∃y⃗ ≤ t⃗(x⃗)A(x⃗, y⃗).

Then, we know that ∀y⃗ ≤ t⃗(x⃗)¬A(x⃗, y⃗) ⇒ ⊥ is provable in the theory. Since
A ∈ Λ ⊆ Πk, we have ∀y⃗ ≤ t⃗(x⃗)¬A(x⃗, y⃗) ∈ Πk+1. By soundness theorem 2.4.17,
there exist a term s(x⃗), a formula H(u, x⃗) ∈ Πk+1 and sequences of terms E0, E1,
G0, G1 and F (u) such that the following statements are provable in B:

(i) H(0, x⃗) ≡(E0,E1)
π ∀y⃗ ≤ t⃗(x⃗)¬A(x⃗, y⃗).

(ii) H(s(x⃗), x⃗) ≡(G0,G1)
π ⊥.

(iii) ∀u < s(x⃗) H(u, x⃗) ≥Fu
π H(u+ 1, x⃗).

Since H ∈ Πk+1, w.l.o.g we can assume H(u, x⃗) = ∀v⃗ ≤ r⃗(x⃗, u)G(u, v⃗, x⃗) where
G(u, v⃗, x⃗) ∈ Σk and r⃗ are monotone. Use the deterministic reductions to show
the existence of terms U , V and Z such that

(i) B ⊢ [Z⃗(x⃗, v⃗) ≤ t⃗(x⃗) → ¬A(Z⃗(x⃗, v⃗), x⃗)] → [v⃗ ≤ r⃗(x⃗, 0) → G(0, v⃗, x⃗)].

(ii) B ⊢ [U⃗(x⃗) ≤ r⃗(x⃗, s(x⃗)) → G(s(x⃗), U⃗(x⃗), x⃗)] → ⊥.

(iii) B ⊢ ∀u < s(x⃗)[V⃗ (u, v⃗, x⃗) ≤ r⃗(x⃗, u) → G(u, V⃗ (u, v⃗, x⃗), x⃗)] → [v⃗ ≤ r⃗(x⃗, u +
1) → G(u+ 1, v⃗, x⃗)].

Now define B(u, v⃗, z⃗) = [u ≤ s(x⃗) ∧ v⃗ ≤ r⃗(x⃗, s(x⃗)) ∧ z⃗ ≤ t⃗(x⃗)]

F (x⃗;u, v⃗, z⃗) =

⎧⎨⎩v⃗ ≤ r⃗(x⃗, u .− 1) ∧ ¬G(u .− 1, v⃗, x⃗) ∧B(u, v⃗, z⃗) u > 0
z⃗ ≤ t⃗(x⃗) ∧ A(x⃗, z⃗) ∧B(u, v⃗, z⃗) u = 0

107

and

N⃗(x⃗;u, v⃗, z⃗) =

⎧⎪⎪⎨⎪⎪⎩
(u .− 1, V⃗ (u, v⃗, x⃗), z⃗) u > 1
(0, v⃗, Z⃗(x⃗, v⃗)) u = 1
(u, v⃗, z⃗) u = 0

and Goal(x⃗; z⃗) = [z⃗ ≤ t⃗(x⃗)∧A(x⃗, z⃗)], i⃗(x⃗) = (s(x⃗)+1, U⃗(x⃗), 0), and c(x⃗;u, v⃗, z⃗) =
u. It is clear to see that this data is a BGLS(Πk,Λ,B,≤)-problem. The reason
is that F ∈ Πk and Goal ∈ Λ by the assumption. The answer to this problem is
z⃗ such that z⃗ ≤ t⃗ and A(x⃗, z⃗) which completes the proof.

Corollary 2.4.34.

∀Σj+1[B(Πk+1,B)] ≡B BGLS(Πk,Πj,B,≤).

for all j ≤ k.

And again the special case for Buss’ hierarchy will be:

Corollary 2.4.35. ([6]) For all j ≤ k, ∀Σj+1(T k+1
2) ≡PV PLS(Πk,Πj,PV,≤).

Remark 2.4.36. Local search problems and the game induction principles pro-
vide weaker characterizations than what the theory of flows has to offer. The
game induction principle relaxes the B-provability condition of the reductions to
make the statement purely combinatorial at the expense of missing some useful
information about the provability. The GLS problems, though, keep the base theo-
ries present, but instead they reduce their reductions to unwind only the outmost
block of bounded universal quantifiers, sweeping the rest under the carpet of the
feasibility predicate. This is helpful to simplify the formalization, but it clearly
misses the huge reduction information that lies in the witnessing of the other
quantifiers.

Using this characterization by the GLS problems, we can also capture the class
of all low complexity search problems in strong theories. For the remaining part
of this subsection, assume that the languages LI∆0(exp) and LPRA(≺) has a separate
copy of the language of PV and define Σ̃b

j and Π̃b
j as Σj and Πj in the language

of PV. For instance, a formula in Σ̃b
1 is essentially in the form ∃y⃗ ≤ t⃗(x⃗)A(x⃗, y⃗)

where t⃗ are polynomial-time computable functions and A is a polynomial-time
computable predicate. Hence, Σ̃b

1 represents the NP predicates in our greater
languages. Moreover, assume that our theories have access to all definitional
axioms of PV for their separate language. To emphasize on this modification, we
will denote the new version of any theory by the superscript p.

Corollary 2.4.37. (i) ∀Σ̃b
j+1[I∆p

0(exp)] ≡Rp(exp) BGLS(Πj, Π̃b
j,Rp(exp),≤).

(ii) ∀Σ̃b
j+1(PRAp) ≡ PLS((PRA−)p,≤) ≡(PRA−)p, BGLS(Πj, Π̃b

j, (PRA−)p,≤).

Since we have ∀Σ̃b
j+1(PRAp

≺) ≡BASICp
≺

BGLS(Πj, Π̃b
j,BASICp

≺,≤), by the fact
that T ≡Π0

2
PRA≺αT

we will have:

Theorem 2.4.38. Let T be a theory of arithmetic with Π0
2-ordinal αT with a

primitive recursive representation ≺αT
, then

∀Σ̃b
j+1(T p) ≡BASICp

≺αT

BGLS(Πj, Π̃b
j,BASICp

≺αT
,≤)

108

Corollary 2.4.39. Let ϵ(α) be the least ϵ number after α with a primitive recur-
sive representation. Then

∀Σ̃b
j+1([PA + TI(α)]p) ≡BASICp

≺ϵ(α)
BGLS(Πj, Π̃b

j,BASICp
≺ϵ(α)

,≤)

Remark 2.4.40. These characterizations of the low complexity consequences of
the strong theories of arithmetic may seem a bit counter-intuitive. The reason
is the paradoxical situation in which we have full access to a class of extremely
complex functions while the search problems that we try to solve are much easier.
A typical example of such a mismatch is our characterization of the total Σ̃b

1 = NP
search problems of the theory I∆0(exp). What the Lemma 2.4.37 presents is an
algorithm based on a sequence of elementary computable reductions, while our
NP search problem is just a very low complexity problem solvable by a brute force
search in exponential time. Based on this mismatch, it may seem natural to
conclude the sufficiency of one obvious reduction which implies the triviality of
our characterizations. This is not a sound argument. It is correct that we have
full access to a certain class of complex functions but it does not mean that we
have full access to their complete theory about their behavior. What we know
is usually a very basic theory consisting of the defining axioms of the function
symbols. These complex functions behave as oracles to which we can impose our
questions, but we can’t fully understand their behavior, and hence we can’t be sure
about the correctness of their computations. Here is where the long sequences
of reductions come to rescue. They consist of very simple computational steps
based on the definitional axioms of the functions so that in each reduction we
can ensure that our computation works correctly. In fact, reductions decompose
a computation to simple verifiable steps which actually simulates the application
of the induction axiom in the proof of the totality of the search problem.

2.5 Ordinal Flows
In the previous sections we have developed a theory for deterministic and non-
deterministic flows to investigate provability in the bounded theories of arith-
metic. In this section we will generalize the theory to embrace also some stronger
unbounded theories. For this purpose, we will pursue the following path: Since
we are interested just in the low-complexity consequences of the theories, we will
first use the continuous cut elimination technique to transfer these consequences
of the theories to a simpler theory axiomatized by transfinite induction on the
universal statements. Then we will extend the length of the flows from terms to
infinite ordinals to be able to deal with these long ordinal-length inductions.

To implement this task we need the following polynomial time representation
of the very basic ordinal arithmetic. Note that our goal is importing the ordinal
analysis of the given theories (usually done over PRA) from the primitive recursive
setting to the polynomial time setting. This helps skipping the whole process of
reimplementation of the ordinal analysis over PV. For this purpose, from now
on, we will assume that the ordinal and its basic arithmetic are given by their
fixed primitive recursive representation.

109

Definition 2.5.1. Let α be an ordinal with a primitive recursive representation.
Then we say

A = (A,≺A,+A, ·A, .−A, dA(·, ·), 0A, 1A)
is a polytime representation of the ordinal α when A and ≺A are polytime rela-
tions, +A, ·A, .−A, dA(·, ·) are polytime functions and constants 0A, 1A such that:

(i) The structure A = (A,≺A,+A, ·A, .−A, dA(·, ·), 0A, 1A) is isomorphic to A =
(α,≺α,+α, ·α, .−α, dA(·, ·), 0α, 1α) where .−α, dA(·, ·) are subtraction and di-
vision from right, i.e. for β ⪯ α we have α .− β = γ where β + γ = α and
otherwise, α .−β = 0. For division, if β ̸= 0, by d(α, β) we mean the unique
γ where α = βγ + δ and δ ≺ β.

(ii) PV proves the axioms of discrete ordered semi-rings for the structure A
without the commutativity of addition and the axioms which state that ≺A

preserves under left addition and left multiplication by a non-zero element.

(ii) PRA proves that A is equivalent to the primitive recursive representation of
A.

Definition 2.5.2. Let LPV be the language of PV. Define the system TI(∀1,≺)
as the usual first order sequent calculus of first order language plus the axioms of
PV and the following induction rule for any a:

Γ, δ ≺ a,∀γ ≺a δ A(γ) ⇒ ∆, A(δ)
(Indα)

Γ, θ ≺ a ⇒ ∆, A(θ)
such that every formula in the proof just consists of formulas in the class ∀1
where ∀1 means the class of all universal formulas which is inductively defined
as the least set that includes atomic formulas and is closed under conjunction,
disjunction, implication with quantifier-free precedent and universal quantifiers,
a is the code for the ordinal α and ≺a means the order ≺ on the set {b|b ≺ a}.

Remark 2.5.3. For some practical reasons, it is useful to change the induction
rule to the rule:

Γ, δ ≺ a,∀γ ≺a δ A(γ) ⇒ ∆,∀γ ≺a δ + 1 A(γ)
(Ind′

α)
Γ, θ ≺ a,⇒ ∆, A(θ)

In the presence of the other first order rules specifically the ∀1-cut rule, the equiv-
alence of these two induction rules is trivial.

Recall the following definition of the Π0
2-proof theoretical ordinal of a theory

T :

Definition 2.5.4. Let T be a theory of arithmetic. We say that α is a Π0
2-proof

theoretical ordinal of T when ≺ is the primitive recursive representation of α and
T ≡Π0

2
PRA + ⋃

β≺α TI(≺β), where TI(≺β) means full transfinite induction up to
the ordinal β.

Convention. From now on wherever we have a proof theoretic ordinal, we
always assume that it is closed under the operation β ↦→ ωβ.

The following theorem uses continuous cut elimination technique to reduce
full transfinite induction to simpler one.

110

Theorem 2.5.5. [11] Let T be a theory of arithmetic and α its Π0
2-proof theoret-

ical ordinal. Then
T ≡Π0

2
PRA +

⋃
β≺α

∀1 − TI(≺β)

Using the Definition 2.5.4 and Theorem 2.5.5, we can transfer Π0
2 consequences

of the theory T to the theory PRA + ⋃
a∈A ∀1 − TI(≺a) where ≺a is a primitive

recursive representation of αT up to a. The following lemma makes it possible to
continue this process of transferring to reach the theory TI(∀1,≺) which is more
convenient for our technical purposes.

Lemma 2.5.6. PRA + ⋃
a∈A ∀1 − TI(≺a) is a ∀1-sequent conservative extension

of the theory TI(∀1,≺), i.e., for any Γ(x⃗) ∪ ∆(x⃗) ⊆ ∀1, TI(∀1,≺) ⊢ Γ(x⃗) ⇒ ∆(x⃗)
iff

PRA +
⋃

a∈A

∀1 − TI(≺a) ⊢ Γ(x⃗) ⇒ ∆(x⃗)

Proof. One direction is trivial. For the other direction, first note that the usual
translation of all quantifier-free formulas of the language of PRA into the ∆1(IΠ0

1)
statements in the language of Peano arithmetic to map PRA into IΠ0

1, can be
slightly changed to map the quantifier-free formulas into the class ∀1. (Use the
unbounded quantifiers as the witness for the whole computation of the involving
primitive recursive functions.) Extending this process to our languages both of
which includes the language of PV, we can assign a ∀1 formula to any quantifier-
free formula in the language of PRA and since the primitive recursive representa-
tion of the ordinal is equivalent to its polytime representation provably in PRA,
we can interpret the theory PRA+⋃

a∈A ∀1−TI(≺a) into the theory TI(∀1,≺).

Corollary 2.5.7. Let α be the Π0
2-ordinal of the theory T , then we have T ≡∀1

TI(∀1,≺) in the sequent sense of the Lemma 2.5.6.

We have defined our theory so far. Let us now define the concept of an ordinal
flow:

Definition 2.5.8. Let A(x⃗), B(x⃗) and H(δ, x⃗) be some formulas in ∀1. A tuple
(H, β) where β ≺ α is called an α-flow if

(i) PV ⊢ A(x⃗) ↔ H(0, x⃗).

(ii) PV ⊢ ∀ 1 ⪯ δ ≺ β [∀γ ≺ δ H(γ, x⃗) → ∀γ ≺ δ + 1 H(γ, x⃗)].

(iii) PV ⊢ H(β, x⃗) ↔ B(x⃗).

We denote the existence of an α-flow from A to B by A▷α B and we abbreviate⋀ Γ ▷α
⋁ ∆ by Γ ▷α ∆. Moreover, when it is clear from the context, we omit the

subscript α everywhere.

Like in the bounded case, we need to prove some basic lemmas for this new
notion of ordinal flow. These lemmas then help to prove the corresponding sound-
ness theorem.

Lemma 2.5.9. (Conjunction Application) Let C(x⃗) ∈ ∀1 be a formula. If A(x⃗)▷
B(x⃗) then A(x⃗) ∧ C(x⃗) ▷B(x⃗) ∧ C(x⃗).

111

Proof. Since A(x⃗) ▷ B(x⃗), then by Definition 2.5.8 there exist an ordinal β and
a formula H(γ, x⃗) ∈ ∀1 such that we have the conditions in the Definition 2.5.8.
Define β′ = β and H ′(γ, x⃗) = H(γ, x⃗) ∧ C(x⃗). It is clear that the (H ′, β′) is an
α-flow from A(x⃗) ∧ C(x⃗) to B(x⃗) ∧ C(x⃗).

Lemma 2.5.10. (Disjunction Application) Let C(x⃗) ∈ ∀1 be a formula. If A(x⃗)▷
B(x⃗) then A(x⃗) ∨ C(x⃗) ▷B(x⃗) ∨ C(x⃗).

Proof. Since A(x⃗)▷B(x⃗), then by Definition 2.5.8, there exist an ordinal β and a
formula H(γ, x⃗) ∈ ∀1 such that the conditions in the Definition 2.5.8 is provable
in PV. Now define β′ = β and H ′(γ, x⃗) = H(γ, x⃗) ∨ C(x⃗). It is easy to see that
(H ′, β′) is an α-flow from A(x⃗) ∨ C(x⃗) to B(x⃗) ∨ C(x⃗).

Lemma 2.5.11. (i) (Weak Gluing) If A(x⃗) ▷ B(x⃗) and B(x⃗) ▷ C(x⃗), then
A(x⃗) ▷ C(x⃗).

(ii) (Strong Gluing) If ∀γ ≺ δ A(γ, x⃗) ▷ ∀γ ≺ δ + 1 A(γ, x⃗), then ▷A(θ, x⃗).

Proof. For (i), since A(x⃗)▷B(x⃗) there exist an ordinal β and a formula H(γ, x⃗) ∈
∀1 such that PV proves the conditions in the Definition 2.5.8. On the other hand
since B(x⃗) ▷ C(x⃗) we have the corresponding data for B(x⃗) to C(x⃗) which we
show by β′ and H ′(γ, x⃗). Define β′′ = β + β′ and

H ′′(γ, x⃗) =

⎧⎨⎩H(γ, x⃗) γ ⪯ β

H ′(γ .− β, x⃗) β ≺ γ ⪯ β + β′

It is easy to check that (β′′, H ′′) is an α-flow from A(x⃗) to C(x⃗).

For (ii) first let us prove ∀γ ≺ 0 A(γ, x⃗) ▷ ∀γ ≺ θ + 1 A(γ, x⃗). If we have
∀γ ≺ δA(γ, x⃗) ▷ ∀γ ≺ δ + 1 A(γ, x⃗) then there exists β and H(η, δ, x⃗) such that
we have the conditions of the Definition 2.5.8. Define β′ = β × (θ + 1) and
I(τ, x⃗) = H(τ .−βd(τ, β), d(τ, β), x⃗). It is easy to see that (I, β′) is an α-flow from
∀γ ≺ 0 A(γ, x⃗) to ∀γ ≺ θ + 1 A(γ, x⃗). Now it is enough to add A(θ) in the end
of the flow and it completes the proof.

Lemma 2.5.12. (Conjunction and Disjunction Rules)

(i) If Γ, A▷ ∆ or Γ, B ▷ ∆, then Γ, A ∧B ▷ ∆.

(ii) If Γ0 ▷ ∆0, A and Γ1 ▷ ∆1, B, then Γ0,Γ1 ▷ ∆0,∆1, A ∧B.

(iii) If Γ ▷ ∆, A or Γ ▷ ∆, B, then Γ ▷ ∆, A ∨B.

(iv) If Γ0, A▷ ∆0 and Γ1, B ▷ ∆1, then Γ0,Γ1, A ∨B ▷ ∆0,∆1.

Proof. The proof is similar to the proof of the Lemma 2.3.14. Note that the proof
of the Lemma 2.3.14 is fully based on the weak gluing and applying conjunction
and disjunction everywhere in the flows, which means that we can apply the same
proof wherever we have those properties.

Theorem 2.5.13. (Soundness) If Γ ∪ ∆ ⊆ ∀1 and TI(∀1,≺) ⊢ Γ ⇒ ∆, then
there exists an α-flow from Γ to ∆.

112

Proof. We prove the lemma by induction on the length of the proof of Γ(x⃗) ⇒
∆(x⃗) using the induction rule mentioned in the Remark 2.5.3. Note that the
proof consists only of ∀1 formulas by definition.

1. (Axioms). If Γ(x⃗) ⇒ ∆(x⃗) is a logical axiom then the claim is trivial. If it
is a non-logical axiom then the claim will be also trivial because all non-logical
axioms are provable in PV. Therefore there is nothing to prove.

2. (Structural Rules). These are derivable from the same rules available in PV.

3. (Cut). See the Remark 2.3.16.

4. (Propositional Rules). The conjunction and disjunction cases are proved
in the Lemma 2.5.12. The implication and negation cases are easy because they
should have quantifier-free precedents and be quantifier-free, respectively, and
hence we can manipulate them as in the Lemma 2.3.15 and 2.3.17.

5. (Universal Quantifier Rules, Right). If Γ(x⃗) ⇒ ∆(x⃗),∀zB(x⃗, z) is proved
by the ∀R rule by Γ(x⃗) ⇒ ∆(x⃗), B(x⃗, b), then by IH, Γ(x⃗) ▷ ∆(x⃗), B(x⃗, b).
Therefore, there exist an ordinal β and a formula H(γ, x⃗, b) ∈ ∀1 such that
the conditions of the Definition 2.5.8 are provable in PV. Define β′ = β and
H ′(γ, x⃗) = ∀bH(γ, x⃗, b). Since H(γ, x⃗, b) ∈ ∀1 we have ∀bH(γ, x⃗, b) ∈ ∀1. The
other conditions to ensure that the new sequence is an α-flow from ∀b[⋀ Γ(x⃗)] to
∀b[B(x⃗, b) ∨ ⋁ ∆] is a straightforward consequence of the fact that if

PV ⊢ ∀γ ≺ δH(γ, b, x⃗) → ∀γ ≺ δ + 1 H(γ, b, x⃗),

then
PV ⊢ ∀γ ≺ δ∀bH(γ, z, x⃗) → ∀γ ≺ δ + 1∀bH(γ, z, x⃗).

Finally, note that Γ ∪ ∆ does not have a free b variable and hence ∀b[⋀ Γ] and
∀b[B(x⃗, z) ∨ ⋁ ∆] are equivalent to ⋀ Γ and ⋁ ∆ ∨ ∀bB(x⃗, z), provably in PV and
since changing the name of a bounded variable from b to z does not change the
nature of a flow, we can complete the proof.

6. (Universal Quantifier Rules, Left). If Γ(x⃗),∀zB(x⃗, z) ⇒ ∆(x⃗) is proved by
the ∀L rule by Γ(x⃗), B(x⃗, s(x⃗)) ⇒ ∆(x⃗), then since PV ⊢ ∀zB(x⃗, z) → B(x⃗, s(x⃗)),
and

Γ(x⃗), B(x⃗, s(x⃗)) ▷ ∆(x⃗),

we have
Γ(x⃗),∀zB(x⃗, z) ▷ ∆(x⃗).

7. (Induction). The proof is a combination of the strong gluing 2.5.11 and some
propositional maneuver mentioned in the Remark 2.3.16.

Theorem 2.5.14. (Completeness) If Γ ∪ ∆ ⊆ ∀1 and Γ ▷ ∆, then TI(∀1,≺) ⊢
Γ ⇒ ∆.

113

Proof. If there exists an α-flow from Γ to ∆ then it means that there exists (H, β)
such that

(i) PV ⊢ ⋀ Γ(x⃗) ↔ H(0, x⃗).

(ii) PV ⊢ ∀ 1 ⪯ δ ≺ β [∀γ ≺ δ H(γ, x⃗) → ∀γ ≺ δ + 1 H(γ, x⃗)].

(iii) PV ⊢ H(β, x⃗) ↔ ⋁ ∆(x⃗).

Therefore, using induction on H(δ, x⃗) we have

TI(∀1,≺) ⊢ H(0, x⃗) ⇒ H(β, x⃗),

and thus TI(∀1,≺) ⊢ ⋀ Γ(x⃗) ⇒ ⋁ ∆(x⃗).

Corollary 2.5.15. Let T be a theory of arithmetic, αT be its proof theoretic
ordinal with a polynomial time representation and Γ ∪ ∆ ⊆ ∀1. Then T ⊢ Γ ⇒ ∆
iff Γ ▷αT

∆.

In the following we will use ordinal PLS problems to characterize the NP
search problems of any theory with proof theoretic ordinal α.

Theorem 2.5.16. Let T be a theory of arithmetic and αT be its proof theoretic or-
dinal with a polynomial time representation, then TFNP(T) ≡PV

⋃
β≺αT

PLS(≺β).

Proof. First, note that all PLS problems are provably total in

PRA +
⋃

a∈A

TI(∀1,≺a)

To prove this fact, first find the least ordinal β such that ∃s⃗ (c(x⃗, s⃗) = β∧F (x⃗, s⃗)).
Its existence is a consequence of an instance of a ∀1-transfinite induction and
the existence of at least one ordinal, namely c(x⃗, i⃗(x⃗)), for which ∃s⃗ (c(x⃗, s⃗) =
c(x⃗, i⃗(x⃗))∧F (x⃗, s⃗)) holds. The corresponding s⃗ for this minimal β is the one whose
projection is the answer for the PLS problem because if not, N(x⃗, s⃗) should have
a lower cost which contradicts the choice of β. Hence, PRA + ⋃

a∈A TI(∀1,≺a)
proves the totality of the PLS problem and since it is a Π0

1 statement, its prov-
ability transfers also to the theory T .

For the converse, assume that T ⊢ ∀x⃗∃y⃗ [|⃗y| ≤ p⃗(|⃗x|) ∧A(x⃗, y⃗)] where A(x⃗, y⃗)
is quantifier-free in the language of PV. Then by the Corollary 2.5.15 we have
∀y⃗(|⃗y| ≤ p⃗(|⃗x|) → ¬A(x⃗, y⃗)) ▷ ⊥. Hence there exists (H, β) such that

(i) PV ⊢ ∀y⃗(|⃗y| ≤ p⃗(|⃗x|) → ¬A(x⃗, y⃗)) → H(0, x⃗).

(ii) PV ⊢ ∀ 1 ⪯ γ ≺ β [∀δ ≺ γ H(δ, x⃗) → ∀δ ≺ γ + 1 H(δ, x⃗)].

(iii) PV ⊢ H(β, x⃗) → ⊥.

Since H ∈ ∀1 we have H(γ, x⃗) ≡PV ∀z⃗G(γ, x⃗, z⃗) where G is quantifier-free. On the
other hand, all the conditions are provable in PV which means that we can wit-
ness the existential quantifiers by polytime functions. Hence, there are polytime
functions Y⃗ (x⃗, z⃗), Z⃗(x⃗, z⃗, δ), ∆(x⃗, z⃗, δ) and W⃗ (x⃗) such that:

114

(i′) PV ⊢ (|Y⃗ (x⃗, z⃗)| ≤ p(|⃗x|) → ¬A(x⃗, Y⃗ (x⃗, z⃗))) → G(0, x⃗, z⃗).

(ii′) PV ⊢ ∀ 1 ⪯ γ ≺ β [∆(x⃗, z⃗, δ) ≺ γ → G(∆(x⃗, z⃗, δ), x⃗, Z⃗(x⃗, z⃗, δ)) → δ ≺
γ + 1 → G(δ, x⃗, z⃗)].

(iii′) PV ⊢ G(β, x⃗, W⃗ (x⃗)) → ⊥.

Put δ = γ in (ii′), then we have

PV ⊢ ∀γ ≺ β [(∆(x⃗, z⃗, γ) ≺ γ → G(∆(x⃗, z⃗, γ), x⃗, Z⃗(x⃗, z⃗, γ)) → G(γ, x⃗, z⃗)].

Define

F (x⃗; γ, y⃗, z⃗) =

⎧⎪⎪⎨⎪⎪⎩
¬G(x⃗, γ, z⃗) if ω ⪯ γ

¬G(x⃗, γ .− 1, z⃗) if 0 ≺ γ ≺ ω

|⃗y| ≤ p⃗(|⃗x|) ∧ A(x⃗, y⃗) if γ = 0

and

N(x⃗; γ, y⃗, z⃗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆(x⃗, z⃗, γ), y⃗, Z⃗(x⃗, z⃗, γ)) ω ⪯ γ,¬G(x⃗, γ, z⃗)
(0, y⃗, 0⃗) ω ⪯ γ,G(x⃗, γ, z⃗)
(∆(x⃗, z⃗, γ .− 1) + 1, y⃗, Z⃗(γ .− 1)) 1 ≺ γ ≺ ω,¬G(x⃗, γ .− 1, z⃗)
(0, y⃗, 0⃗) 1 ≺ γ ≺ ω,G(x⃗, γ .− 1, z⃗)
(0, Y⃗ (x⃗, z⃗), z⃗) γ = 1
(γ, y⃗, z⃗) γ = 0

and i(x⃗) = (x⃗, β, 0⃗, W⃗ (x⃗)) and c(x⃗; γ, y⃗, z⃗) = γ,

Goal(x⃗; y⃗) = |⃗y| ≤ p⃗(|⃗x|) ∧ A(x⃗, y⃗)

It is easy to see that this new data is a PLS(≺β+1) problem and its answer is y⃗
where |⃗y| ≤ p⃗(|⃗x|) ∧ A(x⃗, y⃗).

We believe that the notation system introduced in [5] actually provides a
polytime representation of the ordinal ϵ0. Given this fact, as a corollary we will
have:

Corollary 2.5.17. (i) ([3]) TFNP(PA) ≡PV
⋃

β≺ϵ0 PLS(≺β).

(ii) Let α be an ordinal and ϵ(α) be the least ϵ number after α with a polynomial-
time representation. Then

TFNP(PA + TI(α)) ≡PV
⋃

β≺ϵ(α)
PLS(≺β)

115

Bibliography
[1] M. Ardeshir, B. Hesaam, An introduction to Basic Arithmetic, Logic Jnl

IGPL (2008) 16 (1): 1-13.

[2] S. Artemov, Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic, 7(1):1-36, 2001.

[3] A. Beckmann, A Characterisation of Definable NP Search Problems in Peano
Arithmetic, Logic, Language, Information and Computation, 16th Interna-
tional Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009.

[4] A. Beckmann and S. R. Buss, Characterization of Definable Search Problems
in Bounded Arithmetic via Proof Notations, Ontos Verlag, 2010, pp. 65-134.

[5] A. Beckmann, S. R. Buss, C. Pollett, Ordinal Notations and Well-Orderings
in Bounded Arithmetic, Annals of Pure and Applied Logic 120(2002), 197-
223.

[6] A. Beckmann and S. R. Buss, Polynomial local search in the polynomial
hierarchy and witnessing in fragments of bounded arithmetic, Journal of
Mathematical Logic, 9 (2009), pp. 103-138.

[7] G. Boolos, The logic of provability, Cambridge University Press, 1993.

[8] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986.

[9] S. R. Buss, The modal logic of pure provability, Notre Dame Journal of
Formal Logic, vol. 31 (1990), no. 2, pp. 225-231.

[10] A. Chagrov and M. Zakharyaschev, Modal Logic, Oxford University Press,
1997.

[11] H. Friedman and S. Sheard, Elementary descent recursion and proof theory,
Annals of Pure and Applied Logic 71 (1995) 1–45.

[12] K. Gödel, Eine Interpretation des Intuitionistichen Aussagenkalküls, Ergeb-
nisse Math Colloq. Vol. 4 (1933), pp. 39-40.

[13] L. A. Kolodziejczyk, P. Nguyen, and N. Thapen, The provably total NP
search problems of weak second-order bounded arithmetic, Annals of Pure
and Applied Logic, 162 (2011).

[14] J. Krajicek, P. Pudlak, G. Takeuti, Bounded arithmetic and the polynomial
hierarchy, Annals of Pure and Applied Logic, 52: 143-53.

[15] S. Kripke, Semantical considerations on modal logic, Acta Philosophica Fen-
nica, vol. 16 (1963), pp. 83-94.

[16] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Springer, 2010.

116

[17] W. Ruitenburg, Basic logic and Fregean set theory. In H. Barendregt, M.
Bezem, J.W. Klop (editors). Dirk van Dalen Festschrift. Quaestiones In nitae
Vol. 5, Department of Philosophy, Utrecht University, 1993, 121-142.

[18] H. Schwichtenberg, A. Troelstra, Basic Proof Theory, Second Edition, Cam-
bridge University Press, 2000.

[19] A. Skelley and N. Thapen, The provably total search problems of bounded
arithmetic, Proceedings of the London Mathematical Society, 103 (2011),
pp. 106-138.

[20] R. Solovay, Provability interpretations of modal logic, Israel Journal of Math-
ematics, vol. 25 (1976), pp. 287-304.

[21] N. Thapen, Higher complexity search problems for bounded arithmetic and
a formalized no-gap theorem, Archive for Mathematical Logic, Vol 50:7-8,
pages 665-680, 2011.

[22] A. Visser, A propositional logic with explicit fixed points. Studia Logica 40
(1981), 155-175.

117

	Provability Interpretation of Propositional and Modal logics
	Introduction
	BHK Interpretation
	The Main Idea and the Main Results

	Preliminaries
	Sequent Calculi for Modal Logics
	Propositional Logics
	Solovay's Theorems

	Provability models
	Definitions and Examples
	Discussion

	The Logic K4
	Soundness
	Completeness

	The Logic KD4
	The Logic S4
	Soundness
	Completeness
	Uniform and Strong Completeness

	The Logics GL and GLS
	The Case GL
	The Case GLS

	The Extensions of KD45
	A Remark on the Logic of Proofs
	BHK Interpretations

	Computational Flows in Arithmetic
	Introduction
	Preliminaries
	Non-deterministic Flows
	Non-deterministic Reductions and Reduction Programs
	Non-deterministic Flows
	Applications

	Deterministic Flows
	Reductions and Flows
	The Main Theorem
	Applications

	Ordinal Flows

	Bibliography
	References

