We investigate \mathcal{F}-Borel topological spaces. We focus on finding out how a complexity of a space depends on where the space is embedded. Of a particular interest is the problem of determining whether a complexity of given space X is absolute (that is, the same in every compactification of X). We show that the complexity of metrizable spaces is absolute and provide a sufficient condition for a topological space to be absolutely $\mathcal{F}_{\sigma \delta}$. We then investigate the relation between local and global complexity. To improve our understanding of \mathcal{F}-Borel spaces, we introduce different ways of representing an \mathcal{F}-Borel set. We use these tools to construct a hierarchy of \mathcal{F}-Borel spaces with non-absolute complexity, and to prove several other results.