
MASTER THESIS

Bc. Petr Fejfar

Interactive crawling and data
extraction

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Pavel Ježek, Ph.D.

Study programme: Computer Science (N1801)

Study branch: Software Systems (2612T043)

Prague 2018





I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection
1 of the Copyright Act.

Prague, 20 July, 2018 Petr Fejfar

i



ii



I would like to thank to Mgr. Pavel Ježek, Ph.D. for his guidance, precision
and all the useful advices. Special thanks goes to my girlfriend Markéta for
her patience, support and countless weekends she needs to spent without
me. Thanks also go to my friend Jakub, for his support and motivation. Last
but not least, I feel grateful to my family for supporting me my whole life,
especially during the time of writing this thesis, even though I had so little
time for them.

Rád bych poděkoval Mgr. Pavlu Ježkovi, Ph.D. za jeho rady a věcné při-
pomínky, které mi pomohly napsat tuto práci. Velmi bych chtěl poděko-
vat přítelkyni Markétě za její podporu, trpělivost a nespočet víkendů, které
musela strávit beze mně. Rád bych také poděkoval mému dlouholetému
příteli Jakubovi pro jeho podporu a motivaci, kterou mi dal. V neposlední
řadě se citím být vděčen mé rodině za podporu, kterou, kterou mi projevují
celý život a obvzlášt v době psaní této práce, přestože jsem se jim tak málo
věnoval.

iii



iv



Title: Interactive crawling and data extraction

Author: Bc. Petr Fejfar

Author’s e–mail address: pfejfar@gmail.com

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and De-
pendable Systems

Abstract: The subject of this thesis is Web crawling and data extraction
from Rich Internet Applications (RIA).

The thesis starts with analysis of modern Web pages along with techniques
used for crawling and data extraction. Based on this analysis, we designed
a tool which crawls RIAs according to the instructions defined by the user
via graphic interface. In contrast with other currently popular tools for
RIAs, our solution is targeted at users with no programming experience,
including business and analyst users.

The designed solution itself is implemented in form of RIA, using the Web-
Driver protocol to automate multiple browsers according to user–defined
instructions. Our tool allows the user to inspect browser sessions by dis-
playing pages that are being crawled simultaneously. This feature enables
the user to troubleshoot the crawlers.

The outcome of this thesis is a fully design and implemented tool enabling
business user to extract data from the RIAs. This opens new opportunities
for this type of user to collect data from Web pages for use as primary data,
as well data for further analysis.

Keywords: Web crawling, Web data extraction, Web scraping, AJAX, RIA,
Rich Internet Application, browser automation

v

pfejfar@gmail.com


vi



Název práce: Interaktivní procházení webu a extrakce dat

Autor: Bc. Petr Fejfar

E–mailová adresa autora: pfejfar@gmail.com

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných a spoleh-
livých systémů

Abstrakt: Tato práce se zaměřuje na problematiku automatického procháze-
ní stránek a extrakce dat v kontextu moderních webových aplikací, obsahu-
jících vysoké množství aplikační logiky implementované v prohlížeči pomocí
JavaScriptu.

V práci je provedena analýza moderních webových stránek, spolu s tech-
nikami, které jsou bežně používany k extrakci dat. Na základě této analýzy
jsme navrhli nástroj, který moderní webové stránky prochází na základě
instrukcí zadaných uživatelem pomocí grafického prostředí. Narozdíl od
ostatních nástrojů na procházení a extrakci dat z moderních webových strá-
nek, náš nástroj umožnuje práci uživatelům, kteří nemají zkušenosti s pro-
gramováním.

Navhrhovaný nástroj je implementován jako webová aplikace a využívá pro-
tokolu WebDriver pro automatizaci více prohlžečů pro procházení a extrakci
dat z webových stránek pomocí uživatelem definovaných posloupností in-
strukcí. Náš nástroj umožňuje uživateli prozkoumat aktuální stav prohlížeče
extrahujícího data zobrazením aktuálně prochazené stránky. Toto umožní
uživatelům vyhledávat a ladit chyby jejich posloupností instrukcí, tak aby
extrahovaly data, které mají extrahovat.

Výstupem této práce je návrh a následná implementace nástroje pro ex-
trakci dat z moderních webových stránek pro uživatele bez schopnosti pro-
gramovat. Tento nástroj umožní sběr dat, který dříve nebyl možný. Tyto
data mohou být využity pro další analýzu nebo jako vstupní data do dalších
systému.

Klíčové slova: Web crawling, Web data extraction, Web scraping, AJAX, RIA,
Rich Internet Application, browser automation

vii

pfejfar@gmail.com


viii



Contents

I Introduction 5

1 Introduction 7
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Search state space explosion . . . . . . . . . . . . . . . 9
1.1.2 Page dynamism . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Captcha . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Challenges summary . . . . . . . . . . . . . . . . . . . 12

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . 15

II Background 17

2 Web technologies 19
2.1 World Wide Web and Web resources . . . . . . . . . . . . . . 19

2.1.1 HTML documents . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Rich Internet Application . . . . . . . . . . . . . . . . . . . . . 20
2.3 Same–origin policy . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 WebDriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Other technologies 23
3.1 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 RabbitMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III Analysis 25

4 Analyzing Web pages 27
4.1 Page categorization . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Categorization based on page dynamism . . . . . . . . 27
4.1.2 Categorization based on generative mechanism . . . . 29

4.2 Web page interpretation . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 HTTP programming . . . . . . . . . . . . . . . . . . . . 30
4.2.2 DOM interpretation and JavaScript execution . . . . . 31
4.2.3 Browser automation . . . . . . . . . . . . . . . . . . . . 32

1



4.2.4 Web interpretation summary . . . . . . . . . . . . . . . 32
4.3 Case study of Web pages crawling . . . . . . . . . . . . . . . . 33

4.3.1 Bucharest stock exchange . . . . . . . . . . . . . . . . 33
4.3.2 Bezrealitky . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Bloomberg . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Sbazar . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.5 Amazon . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Case study summary . . . . . . . . . . . . . . . . . . . . . . . 44

5 Web crawling and Web data extraction 45
5.1 Web data extraction categorization . . . . . . . . . . . . . . . 45

5.1.1 Web Wrappers . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Tree–based techniques . . . . . . . . . . . . . . . . . . 47
5.1.3 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Web crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 General RIA crawler . . . . . . . . . . . . . . . . . . . 48
5.2.2 Model–based crawler . . . . . . . . . . . . . . . . . . . 49

6 Analysis summary 51

IV Design 53

7 Solution design 55
7.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Solution overview and functionalities . . . . . . . . . . . . . . 56
7.3 Basic decomposition of solution . . . . . . . . . . . . . . . . . 57
7.4 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 Out of scope . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Data model 63
8.1 Stored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Crawler definition model . . . . . . . . . . . . . . . . . . . . . 64

9 Architecture 67
9.1 Front end application architecture . . . . . . . . . . . . . . . 67

9.1.1 Presentational layer . . . . . . . . . . . . . . . . . . . . 69
9.1.2 User interface application state . . . . . . . . . . . . . 69

9.2 Back end application architecture . . . . . . . . . . . . . . . . 70
9.2.1 Application interface . . . . . . . . . . . . . . . . . . . 71
9.2.2 Crawler definition process . . . . . . . . . . . . . . . . 71
9.2.3 Visual definition of locators . . . . . . . . . . . . . . . 73
9.2.4 Page mirroring . . . . . . . . . . . . . . . . . . . . . . . 74

9.3 Crawler runtime and algorithm . . . . . . . . . . . . . . . . . 75
9.3.1 Depth first search implementation . . . . . . . . . . . 77
9.3.2 Message queue technology selection . . . . . . . . . . 79

2



V Implementation 81

10 Implementation overview 83
10.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

11 Front end 85
11.1 Front end folder structure . . . . . . . . . . . . . . . . . . . . 85
11.2 React components . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.3 Application state . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.4 Fetcher component . . . . . . . . . . . . . . . . . . . . . . . . 88

12 Back end 89
12.1 Back end folder structure . . . . . . . . . . . . . . . . . . . . 89
12.2 Back end API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.3 Crawler store . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.4 Crawler runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 91
12.5 Session manager . . . . . . . . . . . . . . . . . . . . . . . . . 91

13 Deployment 93
13.1 Production environment . . . . . . . . . . . . . . . . . . . . . 93
13.2 Development environment . . . . . . . . . . . . . . . . . . . . 95

VI Conclusion 97

14 Comparison with other crawlers 99
14.1 Apache Nutch . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
14.2 Scrapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

14.2.1 Splash . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
14.2.2 Portia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

14.3 Import.io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
14.4 UiPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.5 Diffbot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.6 Comparative analysis summary . . . . . . . . . . . . . . . . . 102

15 Conclusion 103

16 Future work 105

Bibliography 109

VII Attachments 119

A Electronic attachments 121

B Legality and ethics of crawling 123

C User guide 125

3



C.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.2 Accessing solution . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.3 Page model creation and definition . . . . . . . . . . . . . . . 127

C.3.1 Adding command to page model . . . . . . . . . . . . . 127
C.4 Running crawler . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.5 Troubleshooting crawlers . . . . . . . . . . . . . . . . . . . . 130
C.6 Exporting results . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.6.1 Export to CSV and JSON . . . . . . . . . . . . . . . . . 131
C.6.2 Export to SQL table . . . . . . . . . . . . . . . . . . . . 132

4



Part I

Introduction

5





1. Introduction

Over the past years, World Wide Web has rapidly evolved in many respects.
One of the elements which have had a significant impact on transformation
of the Web is larger usage of client–side JavaScript, caused by the need of
Web page creators to provide richer user experience. These heavy client
side JavaScript pages are called Rich Internet Applications (RIA)1.

The number of RIAs – sources of significant portion of Web data – is con-
tinuously growing, however we can find the lack of crawling and extrac-
tion tools, which would provide the way to obtain information from Web
pages automatically. We believe, that this is caused by new technical chal-
lenges that go hand by hand with RIAs. Although, the topic of crawling and
data extraction of non–RIAs (static Web pages) has been covered almost en-
tirely and state of the art open source implementation can extract data from
pages efficiently (for example Apache Nutch [1]), we consider solutions for
crawling and data extracting from RIAs very immature. Crawlers and data
extraction tools need to evolve to adapt RIAs.

We believe that this gap can be filled by creating an interactive data extrac-
tion tool for RIAs. From the perspective of a user, this new tool would let
him or her visually2 define all the information for extraction from the Web
page (we call these information page model ). Such tool would provide the
user with an opportunity to crawl Web pages without knowledge of under-
lying Web technologies and technical details would stay hidden. Therefore
new type of user – the one without deeper technical knowledge or business
user – can manage this tool. The user would have a browsing–like experi-
ence and the difference between static Web pages and RIAs would remain
hidden. At the moment, mainly programmers are able to crawl and extract
data from RIAs by creating custom scripts. This tool would be a significant
improvement leading to the spread of Web crawling and data extraction
tools for RIAs, to help in various scenarios.

The idea for this large-scale solution arose from author’s own experience
with Web crawling and data extraction tools at IBM, where he experienced
a rising demand for a solution allowing to extract data from thousands of
websites, as well for one that remains on premise to avoid breach of cus-
tomer data.

Data obtained from the Web page by this proposed tool can be used in
countless use cases. The major ones are data and opinion mining, business
and competitive intelligence and extracting data from social networks to

1They are also called Web application, single page applications or dynamic pages.
2Visually means, that user sees rendered Web page and he/she selects elements on page

using mouse pointer.

7



further analysis, search engines, etc. Use cases remain the same for RIAs
as well as for static Web pages. We advise reader to explore other resources
to find more use cases. An example would be a survey about applications of
crawling and Web data extraction techniques, made by Ferrara et al. [2].

Considering the fact that RIAs are on the rise and there is currently no
efficient way to crawl them, it is worth focusing on this topic and creating
such tool, which lets the user define what data can be extracted from RIA
and then crawls this page according his/her definition. This tool would
enable to obtain data in structured format for specific Web sites. The user
would interact with crawler in following steps (step’s number corresponds
with numbers in Figure 1.1):

1. The user opens the tool and specifies page, which he/she wants to
crawl.

2. Crawler tool shows a preview of Web page to the user.

3. The user selects, which elements he/she wants to extract and how to
access these elements on different pages of Web site. We call these
information page model.

4. The user starts crawling based on page model.

5. The crawler uses the page model as source of information on what
part of Web page to extract.

6. During extraction step, crawler is accessing Web page and extract
data according to the page model.

7. The user can use extracted data to process it in other system.

This thesis goal is to create such tool. Tool will addresses challenges re-
lated to RIAs and create a platform for future development of universal
Web crawler.

1.1 Challenges

Rich Internet Applications present new challenges compared to static Web
pages. In this section, we will look into some of these challenges to present
an overview of problems, which is necessary to be solved when crawling
RIAs.

8



Figure 1.1: Crawler–user interaction – high–level view. This dia-
gram shows user’s interaction with crawler tool.

1.1.1 Search state space explosion

The characteristic of static Web pages is, that they are identifiable by URL.
Therefore crawler accesses page’s URL to obtain its content. State of crawl-
ing static pages can be represented as set of visited URLs and set of URLs
to visit. Whole process of crawling can be expressed as state space search,
where state is represented by URL and actions are represented by hyper-
link between two Web pages. This fact simplifies the problem of crawling
static pages.

However RIAs are not identifiable by URL. Web page can be shaped using
client–side JavaScript and content of the page can vary in time. JavaScript
code can fetch new content using HTTP calls any time. Actions caused
by the user (for example clicking on element or page scrolling) or actions
generated by JavaScript (see Figure 1.2 for illustration) can alter the page
content as well. URL does not need to change during these changes, there-
fore URL does not uniquely identify the content.

Crawling of RIA can be expressed as state space search3. Static page crawl-
ing can be expressed as state space search, however representation of state
space is more complicated. Following hyperlinks are no longer only circum-
stance to transition between states, additionally all JavaScript actions need
to be reflected. Actions in this state space search are any Javascript actions,
which can occur on the Web page. State is no longer identifiable by URL,
but all possible variations of Web page changed by JavaScript. Considering

3Formal definition of crawling can in found in article from Mesbah et al. [3]. It is defined
as search state space on graph. In this thesis there is no need to formally define crawling
of RIA, therefore we leave this definition for simplicity.

9



all these variation of single page caused by JavaScript results in state space
explosion.

Figure 1.2: Rich Internet Application crawling state space
search. Diagram represents example of Web page displaying
posts and comments. Transition between states of this Web page
are illustrated by dashed lines. One possible transition is caused
by executing click action when the user clicks on the button to
load next post. Another one is caused by received message (for
example notification from server via WebSocket) with new com-
ment. During the transition between these states, Web page
URL remains the same.

Execution of all possible JavaScript actions is not possible, because of the
state space size. However, majority of these possible actions will not obtain
new content of the Web page. These actions could also change the server
state. An example of such actions is sending an mail or adding new com-
ment to discussion. This can be even considered as malicious behavior and
it will not obtain new data when crawling. Therefore crawlers need to care-
fully pick actions to dispatch. This is not a problem while crawling static
page, because pages are designed by Web developers to show information,

10



not to change server state. State of the server is changed by submitting
Web forms in case of static pages.

1.1.2 Page dynamism

When dealing with RIAs, simple task such as load page becomes challenging
as crawler cannot determine when page is fully loaded. JavaScript actions
triggered by Web page JavaScript can fetch data from server via HTTP pro-
tocol and these actions can be trigger by any time. This results in challenge
that crawlers cannot recognize when page is fully loaded with data or if any
new event will generate new content.

The enormous search state space and a need to structured data output
are reasons why the system cannot be automated simply by executing all
JavaScript action on page and retrieve all content from page. Our proposed
tool exploits the domain knowledge of users, who will define which parts
of the Web page should be extracted to reduce this state space search size.
Additionally the user specifies which interaction with the browser should be
made to access more Web pages with content. We see limitation in fact, that
this user, who has domain knowledge about the Web page and knows which
parts of the page should be extracted, is not necessary a Web developer.
This user could have limited knowledge about Web technologies. Therefore
RIA crawler needs to reflect this fact and provide the user an experience,
which would hide technical details from him/her.

Web browser needs to be used to process crawled page correctly. Usage
of Web browsers will process JavaScript on page and handle all other re-
sources (for example data fetched via HTTP). We will elaborate more on
this in chapter 4.

Crawler of RIAs cannot rely on storing Web pages as Web Archive (WARC)
[4], which is well defined format for storing crawled pages. WARC stores
only HTML and other HTTP resources (images, CSS, etc.), because Web
ARChive is assuming that one URL identifies one page. Therefore new for-
mat needs to be developed.

1.1.3 Captcha

Some Web pages are protected by Turing test to differentiate between reg-
ular user and crawler. These tests prevent crawler to retrieve data automat-
ically. Very popular solution is to let the user read a character on image.
There are usually transformations applied to this image, so it is difficult

11



to make to use optical character recognition systems. These solutions are
usually called Captcha [5]. With rise of the deep learning techniques, these
image recognition systems have became more fragile to automated solving
by computers [6]. Also services providing manual Captcha solving became
generally available. Response time and accuracy is high when automated
Captcha solvers are combined with manual labor work. Authors of such
service, called Death by Captcha, claims: “An average response time of 11
seconds, with an average accuracy rate of 90% or more.” [7]. We think that
services with such accuracy, can be used efficiently to solve these image
recognition based Captchas.

Nowadays Turing test protecting page from crawling keeps evolving to
adapt current crawlers. Google reCAPTCHA v2 [8] is example of system
using artifical inteligence for behavioral analysis of user behaviour to de-
tect if user is a crawler. “This system uses Google’s AI to look for signs
of human behaviour. It runs in the background detecting movements of a
mouse, how long it takes to click on a page ...” [9]. According to Nan Jiang,
these Turing test based systems will fail completely in the future: “If we
have really good AI technologies these could be mimicked by some AI algo-
rithms we don’t really know yet. It’s a challenge between how we can retain
the usability of the Captcha scheme whist maintaining good security.” [9].
We believe that the protection from crawling will become more significant
in future and crawlers will need to adapt it. Especialy after data privacy
scandal, which are rising nowadays [10].

1.1.4 Challenges summary

This section showed major problems, which are connected with crawling
RIAs. Main challenges, which we will address in this work are search state
space explosion and optimization of crawler tool for non–technical user, as
he/she needs to provide domain knowledge about crawled Web pages. We
are not addressing Captcha system, as solutions for solving are already
available and can be integrated to crawler, however we want to emphasize,
that this challenge needs to be solved in future work. The integration with
these systems need further work, which is outside the scope of this thesis.

1.2 Goals

The main goal of this thesis is to analyze, design and implement solution,
which would enable user with domain knowledge about crawled Web page
to crawl and extract data from RIAs. The thesis will also analyze specific
Web pages suitable for crawling to illustrate challenges of crawling RIAs.

12



The thesis will analyze modern Web pages in general, existing approaches
to crawling and existing crawler solutions. The proposed new crawler tool
will comply with requirements designed to address RIAs crawling chal-
lenges stated in following section.

1.3 Requirements

In this section, we will describe requirements for RIA crawler, which are
based on challenges described earlier. These requirement are chosen by
author of this thesis and they are defining output of this thesis. Summary
of functional and non–functional requirements follows in next subsections.

In the first section, we introduced an idea of tool for crawling RIAs, which
allows user to crawl data (requirement FR1) with browser–like experience.
In the second section, we derived, that this user with domain knowledge
needs to define what parts of page needs to be extracted and how to crawl
all pages. Definition created by this user is called page model. User expe-
rience of the crawler is optimized for this user, because he/she will interact
with the system the most. This user is usually business analyst or data scien-
tist and has no deep knowledge about Web technologies. The user visually4

defines which elements are affected by commands (requirement FR2). This
will provide the user a browser–like experience, when creating page model.
Defining crawler on this level of abstraction will hide technical details.

If crawler crawls a Web page and it fail to extract data (for example when
Web page changed and element on which the crawler clicks does not exist
anymore), system will provide a way how to determine, what was the cause
of the problem. System will provide to the user a possibility of visual in-
spection of crawler run (requirement FR3). Visual inspection is that user
can look on exact state of the crawled page.

Data extracted by the crawler will be used to process in other systems such
as spreadsheets or business intelligence tools. Data need to be exportable
in format supported in these systems (requirement FR4).

The creation of RIA crawler from scratch is a challenging task and due to
limited scope of this thesis, it is not possible to fully finish it. The crawler
needs to reflect the fact, that it will be extended in the future, therefore it
should provide architecture for future expansion (requirement NR1).

Modern Web pages may contain large volume of data. Crawler needs to ex-
ecute large volume of actions to obtain all these data (requirement NR2). In

4In this context, visually means, that user can see Web page rendered in browser and
he/she selects element by mouse pointer.

13



section 4.3, there will be presented examples of real Web pages suitable to
crawling. To make rough estimation, how many action will crawler execute,
the reader should imagine Web page with e–shop page. If this page would
have 1000 pages with 50 shop items on each page and crawler would need
10 actions to extract all information about item, total number of evaluated
actions to extract all data from page is:

1000page · 50 item
page

· 10action
item

= 500k action

Another example is that crawling real estate page can take approximately
600k HTTP requests [11]. These two examples of Web pages imply, that
crawler need to be prepared for executing roughly hundreds of thousands
actions to crawl these pages. The crawler needs to incorporate these chal-
lenges to be able crawl Web page in short time.

To avoid accidental Denial of Service attack by accessing Web page too
many times in short period of time, the crawler needs to limit rate of ac-
cesses of the crawled Web page (requirement NR3).

Crawler will be used by other systems. To enable automation of the crawler,
it will expose an API (requirement NR4). This API will be used for several
tasks such as starting crawler by external scheduler or automatically trans-
fer data to another system.

List of functional requirements

FR1 System must be able to obtain data from Web page.

This is basic functionality of the system, which describes core sce-
nario. The user wants to extract data from Web page and he/she uses
crawler to achieve that.

FR2 System must let the user define page model visually.

When user is browsing Web pages, he/she is clicking on elements ren-
dered on the screen. This requirement ensures the user similar user
experience, therefore page model will be easy to create.

FR3 System must be able to let the user inspect current crawler state.

Page model is difficult to maintain as Web pages can change over time.
The user needs to have a way how to determine what search state is
crawler currently evaluating. This is used for troubleshooting page
models used for crawling.

FR4 System must be able to export extracted data

14



Users will exploit data for further analysis. This analysis can be done
in popular tools such as Microsoft Excel or business intelligence tools
such as Microsoft PowerBI.

List of non–functional requirements

NR1 Solution should have the crawling algorithm easily extended/changed.

Due to search state space explosion (mentioned in section 1.1), the
performance of the searching algorithm will have impact on perfor-
mance of whole solution. This algorithm will be changed in the future
for optimization and improvements, therefore crawler should be pre-
pared for extension of this algorithm.

NR2 System should be able to handle high volume of processed search
space states when running crawler. Rough estimation is hundreds of
thousands actions when crawling one Web page.

Current Web site contains large amount of data. Crawler need to ob-
tain all data in short time.

NR3 System needs to have option to limit frequency of HTTP accesses to
target page.

By adressing requirement NR2, crawler will optimize number of Web
page accesses in time. The crawler will obtain as much data as possi-
ble in short period of time. This can lead to Denial of Service attack
to crawled Web page server, which the crawler can avoid by setting a
limit of accessed to Web page.

NR4 System needs to be controllable by other system. Therefore external
API needs to be build.

Integration to other system is crucial to usability of RIA crawler.

1.4 Organization of thesis

The thesis is organized as follows. In Part I, author introduces challenges
coming with modern Web pages in context of crawling and data extraction.
Goals of the thesis are defined in the next section, followed by the require-
ments needed for the solution, which are the core part of this thesis. Part II
describes the preliminaries and technological background of modern Web
and the next part of the thesis, Part III, contains a short case study on mod-
ern Web pages. In the same chapter, we highlight common approaches to

15



crawling modern Web pages and popular implementations based on these
approaches. The design of the solution, which will fulfill the requirements
stated in the Part I, will be presented in Part IV. Implementation of the so-
lution is presented in the next part, Part V. Last part of the thesis, Part VI,
is the conclusion and it sets the basis for future work on the topic of Web
pages crawling and data extraction.

16



Part II

Background

17





2. Web technologies

This chapter describes technologies related to crawling and data extraction.
Main focus is on Web related technologies, which the reader needs to know
in order to understand concepts described later in the thesis. This chapter
can be omitted, if the reader is already aware of these technologies. Second
part of this chapter describes technologies used during implementation,
such as databases or runtime.

2.1 World Wide Web and Web resources

The World Wide Web (WWW, or simply Web) is usualy referred as “infor-
mation space” containing items of intererest, referred as Web resources,
which are identifiable by Uniform Resource Identifiers (URI). [12]

Web resources are various types of documents identified by MIME type
[13]. They are transfered using HTTP protocol [14] and mainly interpreted
by browser. Typical examples are Web page, pictures, JavaScript script or
JSON files. Web resources contain information, which is worth crawling.
Web pages on single domain are usually referred as website.

2.1.1 HTML documents

Most common type of Web resource is HTML document. Hypertext markup
language (HTML) is a markup language used to describe layout of the Web
page and current used version is HTML 5 [15]. HTML 5 specification [16]
defines series of interfaces using Web IDL [17]. These interfaces define
interaction with the Web page. Browsers usually use JavaScript as pri-
mary language to implement these IDLs [18]. RIAs normally use JavaScript
scripts interacting with these interfaces in order to provide interactivity to
the user.

2.1.2 DOM

Document Object Model (DOM) is the set of APIs used to manipulate tree–
like structure of Web page. This structure consists of nodes and node’s at-
tributes, which represent layout of the Web page. “DOM defines a platform-
neutral model for events, aborting activities, and node trees.” [19].

19



Part of DOM specification are selectors used to select subset of DOM tree.
Selectors were primaly used by Cascading Style Sheets (CSS) [20] to apply
visual properties (for example color, font size, borders, etc.) on set of HTML
nodes. Web extractor can use selector to define subset of page they want to
extract. Other option how to select subset of DOM tree is XPath [21]. These
selector are commonly used by data extractor to specify which part of page
to extract.

Another part of DOM specification that will be used during implementation
of our crawler is MutationObserver [22]. MutationObserver provides a way
how to listen for changes of DOM. When DOM is changed, MutationOb-
server is called with arguments representing change in DOM. Note that
MutationObserver evolved from events of specification DOM Level 3 Events
called MutationEvent and MutationNameEvent [23]. MutationObserver will
be used for implementing page mirroring (see more in subsection 9.2.4).

2.2 Rich Internet Application

Web pages originally were non–interactive pages using JavaScript for small
stylistic changes. This era is often called Web 1.0 [24]. User content was
rare in this era and pages were usually hand crafted. Programmers used
JavaScript to show and hide menus, dialogs, etc., but content of page re-
mained the same.

Rise of Web 2.0 [25] era brought us Web pages with user generated content.
Originally Web page was generated on server and sent to a browser with
user content. When user wanted to access another page, browser needed
to download the whole page again. Since interaction with DB storing data
has began to rise, refreshing all Web resources from server started to be
waste of bandwidth. Web developers are now starting to use Asynchronous
JavaScript and XML (AJAX) to fetch data from server and change content of
browsed page. These pages start to contain more application logic in client
side JavaScript. High amount of client side JavaScript results into Web
pages behaving more like an application than set of pages. This pattern is
called Web application, dynamic Web page, Single Page Application or Rich
Internet Application.

Nowadays Rich Internet Applications are mainly HTML 5 based. Other plat-
forms such as Flash or Silverlight are used, but they are on sunset [26, 27].

20



2.3 Same–origin policy

Client side JavaScript cannot fetch data from any server for security rea-
sons. This restriction is called same–origin policy. This policy restrict ac-
cess of client base script to potentially malicious documents. [28] By de-
fault, scripts can access only the same domain. This policy will affect page
mirroring in subsection 9.2.4 as we cannot simply embed page on different
domain to our tool.

2.4 WebDriver

WebDriver [29] is protocol for remote control of browsers. Interface of
the WebDriver enables other program to perform action, such as going
to specific URL or perform user action on Web page. Proposed crawler
will use WebDriver interface to interact with the Web page. Controlled
browser needs to support WebDriver by implementing the WebDriver inter-
face. These implementations are called drivers. For example for Chrome
browser there is ChromeDriver [30], for headless browser PhantomJS there
is embedded GhostDriver [31].

WebDriver can provide us with abstraction to use same automation script
with variety of browsers. This can be useful when Web page is not properly
rendered in particular browser or when Web page is trying to avoid crawl-
ing by detecting browser type [32]. Another powerful feature of WebDriver
is that it can inject JS code to execute arbitrary JavaScript code in context
of Web page [33]. By injecting JavaScript crawler has full access to DOM,
therefore any logic for crawler/data extractor can be implemented without
modifying commonly used browsers.

21



22



3. Other technologies

This chapter covers technologies used during implementation phase of the
solution. Used runtime, message queue and database is described in this
section. Full decision making process (why we chose these technologies) is
described in Part IV.

3.1 Docker

Proposed solution is dependent on several other technologies such as SQL
database, message bus or JavaScript engine, which brings challenges with
installing and maintaining solution on different servers. To overcome this,
crawler components are using Docker runtime to ensure that they will be
behaving same across the different servers.

Docker is container–based virtualization tool. Docker containers run as na-
tive processes within operating system and they are sandboxed from other
processes for security concerns. Docker containers have sandboxed file
system as well, which contains dependencies and binaries for the contain-
ers. Docker images are definition of Docker containers, which are runnable
as containers. Images can be built from Dockerfiles, Dockerfiles are text–
based, therefore ideal for development, as they can be versioned in Version
Control System. Using Docker helps to reproduce solution’s builds and run-
time on different machines.

Kubernetes is production ready platform for deploying, scaling and man-
aging Docker containers [34]. Kubernetes will help to manage crawler so-
lution in production environment. Proposed crawler will be composed of
several components such as Node.js application or database to persist data.
These components will be deployed as Docker containers into Kubernetes
cluster.

3.2 RabbitMQ

Proposed solution needs to handle several concurently running crawler in-
stances (more in section 9.3). A message queue is used to share data be-
tween these instances and schedule instances. RabbitMQ [35] is popular
open–source message broker which is suitable for proposed crawler. Rab-
bitMQ is able to scale to handle more messages in case crawler perfor-

23



mance demands will raise in future. Message can be persistent and Rab-
bitMQ can be deployed in cluster, therefore it can prevent data losses.

Message brokers can be used to decouple two systems and can handle huge
spikes in data quantity. Producer is enqueuing messages to message queue,
therefore if producer generates more messages than consumer can process,
messages are buffered in the queue and processed later.

3.3 PostgreSQL

Crawler needs to store data about page models, runtime of crawlers and
crawled information. Whole data model will be described in section 8.1,
but in summary, part of the model is relational and part is schemaless (JSON
alike) result from crawler. PostgreSQL is suitable database which can store
this type data. “PostgreSQL is a powerful, open source object-relational
database system. It has more than 15 years of active development and a
proven architecture that has earned it a strong reputation for reliability”
[36]. PostgreSQL is preferred over other SQL databases due to more ma-
turity of features [37]. There are other SQL databases such as Microsoft
SQL Server, MySQL, SQLite, MariaDB, IBM DB2, etc., which would be also
sufficient option for crawler.

In this thesis, SQL database will be used for object–relational mapping to
provide abstraction on top of the database provided by library Sequelize
[38]. A programmer will have an access to objects stored in the database
using JavaScript classes, which simplifies the development.

24



Part III

Analysis

25





4. Analyzing Web pages

This section will focus on analysis of modern Rich Internet Applications.
Such analysis is necessary for understanding of crawling techniques and
data extraction presented in chapter 5. To start with, the categorization of
Web pages will be presented, followed by the elaboration of method used
to interpret Web pages. This chapter will be finished by a case study. First
two parts will a help reader to understand, how modern Web pages look
like and the last part will give reader an overview about approaches used
for crawling.

4.1 Page categorization

Raghavan et al. [39] present categorization, which gives basic overview
about Web page types. Authors present categorization of the most common
types of Web pages with an analysis of how these categories of pages are
crawlable. The article contains a major categories list and despite the fact
that modern pages can be in multiple categories, this taxonomy provides
useful summary of Web pages to the reader. Authors make categorization
of Web pages according to two criteria: type of dynamism and generative
mechanism.

Each category of Web pages is crawled by different type of crawler (see
Figure 4.1). Note that based on requirements we set in section 1.3, our pro-
posed crawler needs to be crawler for pages with Embedded code (client-
side execution) generative mechanism, therefore it is field of no existing
crawlers according to Raghavan et al. [39]. Other crawler types will be
described in chapter 5.

4.1.1 Categorization based on page dynamism

Content of Web page is usually not the same all the time. Content of the
page can vary based on several factors such as time of page load or based
on interaction with the page. Following subsection contains description of
different types of this page dynamism.

27



Figure 4.1: Categorization of crawler according page dynamism
and page generative mechanism. Table is taken from [39].

Static Web pages

Static Web pages do not change after creation. This category of pages is
the easiest one to crawl, as crawler need to access the page only once to
crawl and crawler does not need interact with the page in any way.

Temporal dynamism

Pages with temporal dynamism are the pages that can vary over time. If
page is retrieved in a different time interval, it may show different content.
For example, it can be a page showing current stock value or current news.
We usually need to crawl these pages several times or infinitely in a loop,
to obtain all content of the page.

Client-based dynamism

This is a category of pages, which have content generated per each client.
Typical cause of this is page personalization. This can be achieved for ex-
ample by analyzing user cookies. The problem with pages with client-based
dynamism is that crawlers usually start crawling with no stored cookies,

28



therefore the crawler might not obtain personalized content and it cannot
obtain all content from Web page.

Input dynamism

The content of some pages is dependent on submission of a form. Typical
example is search engine, which is showing content according to the input
query. Typical problem with crawling of these pages is to determine what
values should be filled in the form to access right content. Another example
is the user login. The crawler needs to have stored user credentials in order
to log as a user and obtain data from the page.

4.1.2 Categorization based on generative mechanism

The way how pages are generated change techniques of crawling. There
are two main ways how to generate a page: on the server or in the client
environment. The server–side generation is splitted into more categories,
based on generative process. In the following subsections we will focus on
these categorization in more detail.

Stored files

Static HTML files are stored on server. They are provided to client and they
are not changed in any way. Crawlers can simply load the HTML document
to obtain all content of the page.

Server-side programs

Server–side program generate all content of Web page on the server. This is
typically done by Common Gateway Interface scripts (CGI), Java Servlets or
similar technologies. These pages may not be HTML documents, but they
can be simple plain text documents. Usage of server–side program was
popular in the past. Nowadays this approach is usually not used for Web
pages themselves, rather for their underlying HTTP API. API is used for
accessing database from underlying page with client–side executed script.

29



Embedded code with server-side execution

The server contains static HTML files and embedded code snippets in var-
ious script languages. Difference from server–side programs is that only
part of page is generated, not this page as a whole. HTML–like template
is usually used for basic layout of the page and data are injected into this
template. The crawler needs to load only HTML page to obtain its con-
tent. These pages are input, client-based or temporally dynamic, therefore
crawler needs to obtain the page several times or crawler needs to submit
forms to obtain all content of whole website.

Embedded code with client-side execution

The server provides static HTML template with embedded (or linked) code.
The code is executed in client (browser) environment. Scripts can be writ-
ten in JavaScript, developed as Java Applets, ActiveX, etc. These technolo-
gies raise new challenges as crawler need to interpret them. Based on goals
set in chapter 1, we will focus only on HTML5 and JavaScript based pages
in this thesis. The crawler needs to interpret Web page in browser, in order
to let client-side script fill page with data.

4.2 Web page interpretation

Technologies used for modern Web pages were discussed in chapter 2. This
section focuses on different tools used by crawler in order to obtain all
content from the Web page. Although users interact with the Web page by
using the browser, crawlers use different suite of tools to interact with Web
pages. For example HTTP programming, DOM interpretation or browser
automation.

4.2.1 HTTP programming

Web pages are served on top of HTTP protocol. Crawlers can use this
fact to download Web resource via HTTP. Crawlers which are using this
approach are usually focused only on downloading Web resources with con-
tent – HTML documents. HTML documents obtained by using this method
need to be processed to extract relevant data only. These documents of-
ten contain menus, buttons, advertisements, visual elements such as back-
ground images and other elements, not containing any useful information.
Extraction of relevant data can be achieved by using regular expressions,

30



interpretation HTML document as XML, together with using XPath to re-
trieve relevant elements. It can be achieved by program with custom logic
written in general purpose language as well. Programs which use this ap-
proach are GNU Wget [40]1, curl [42] or any HTTP client library of any
programming language.

Solutions based on HTTP programming works only on pages without em-
bedded code (client–side execution). This happens because they do not
interpret JavaScript. These solutions are usually fast, as they do not imple-
ment DOM, but they are limited only to subset of Web pages.

4.2.2 DOM interpretation and JavaScript execution

More advanced approach than HTTP programming is to interpret HTML as
DOM. When DOM APIs (more in subsection 2.1.2) are present, JavaScript
script can be executed to change Web page in the client environment. Li-
braries using this approach such as JSDOM, implement DOM API on its own.
They are also using own JavaScript engine to interpret client scripts. In case
of JSDOM, which is Node.js library is for implementation of DOM API and
for interpreting client–side script used internal Node.js JavaScript engine.
Other JavaScript engine can be used, such in case of libarary HtmlUnit,
which is headless Java library for Web page interpretation. It implements
subsection of DOM API and uses JavaScript engine Rhino [43].

However, JavaScript execution is complicated as these libraries do not im-
plement all methods from DOM API (for example part of navigation API is
usually missing [44]). Cookies are usually not handled as well, therefore
user scenarios such as cookie-based login are not possible.

These solutions do not layout Web page as well, therefore they cannot ac-
cess Web page’s visual information such as size and position of elements.
With no information about page layout, they cannot take screenshot of ele-
ments or Web page as a whole. Some of visual crawling techniques are not
possible with this page interpretation. Another downfall of this approach
is that Web developers commonly optimize JavaScript code to work with
major Browser and JavaScript code may not execute properly.

In general, this approach is slower and more resource demanding than
HTTP programming, however it can handle Web page with simple client–
side scripts.

1Wget has embedded crawler, which can be used for crawling static pages out of the
box [41].

31



4.2.3 Browser automation

The most universal approach of Web pages interpretation is to use Web
browser during crawling. Browsers can be automated using different mech-
anisms. One way to automate browser is to use WebDriver protocol (more
in section 2.4). For every Web browser, there is program called driver,
which implements WebDriver API for that particular browser. An exam-
ple of driver is ChromeDriver [30] which is implementation of WebDriver
API for Google Chrome. Drivers automate browsers as they are, therefore
they render browsed page on the screen. Rendering of the Web page on
screen is not necessary for crawlers and it consumes computer resources
such as memory and processing time. Headless browsers overcome this
issue, by not rendering anything to screen. PhantomJS is popular headless
browser built on top of WebKit [45]. It provides JavaScript API to inter-
act with browser and it has also embedded GhostDriver which implements
WebDriver API.

Although WebDriver is a popular way to automate browsers, there are other
option how to automate them, such as Puppeteer for Google Chrome. This
browser provides native JavaScript API for browser automation called Pup-
peteer [46]. This is relatively new solution, compared to PhantomJS, but it
is getting quite popular, as it is maintained by Google company and Phan-
tomJS development is freezed [47].

The benefit of browser automation approach is that crawler has access to
full scale DOM implementation. Therefore crawler and Web extractor can
select elements by CSS selector, XPath, determine position and size of el-
ements, inspect elements visually (for example make screenshots), and so
on. JavaScript is executed in browser, therefore Rich Internet Application
based on HTML5 and JavaScript can be processed.

4.2.4 Web interpretation summary

Based on requirements set in chapter 1, proposed crawler needs to auto-
mate browser in order to fully support RIAs. PhantomJS is used in this
thesis, because it is mature technology fully supporting RIAs. Other ap-
proaches such as HTTP programming would not obtain data from RIAs cor-
rectly.

Practical difference between HTTP programming and browser automation
can be found in work of Brunelle et al. [48]. Authors used headless browser
to download Web resources when crawling. With this approach, browser
executed JavaScript, therefore it was able to download data from any cus-
tom HTTP calls. They measured that while using HTTP programming (Her-

32



itrix crawler [49] and wget) they missed 19.70 times more content per URI,
then if they used browser. On the other hand this solution was 12.13 times
slower. This result shows that using browser is an approach, which obtains
most of the data from Web pages, but it is the slowest one.

In the following section we will present an example of typical modern Web
pages together with validation of different Web interpreting techniques.

4.3 Case study of Web pages crawling

In the previous chapters, this thesis was working with the premise, that
there are RIAs containing useful information. In this section, selected Web
pages and their case studies to confirm that RIAs are worth crawling will
be presented. Architecture of each Web page and elements structure of the
page will be described. This knowledge let us define strategy for extracting
elements from these Web pages. To set baseline for this strategy, we will
define CSS selectors, which choose important information from the Web
page. These CSS selectors will be used to create heuristic algorithm defin-
ing them visually (more in subsection 9.2.3). We selected RIAs and static
page as well, because our crawler needs to crawl both RIAs and static pages
to be universal.

Note that if you would like to crawl these pages, you should first read terms
and conditions of the site. Authors of particular page can prohibit crawling
of their data. More about topic of legality and ethics of crawling can be
found in Appendix A.

4.3.1 Bucharest stock exchange

Bucharest Stock Exchange website [50] contains current information about
the exchange rates and various news related to companies, which are part
of this stock exchange. This website is typical example of source data for
further analysis. As we can see on Figure 4.2, Bucharest Stock Exchange
website consists of press releases published by stock exchange media divi-
sion. These releases are useful source of information, which can be used
for business analysis of these companies. Such analysis could extract enti-
ties (such as company names) from the releases and shows mentions of the
company over time, which would give insight about company. Another pos-
sible application of crawler is to periodically crawl releases and notify user
when new press release about specific company is released. This will save
time to the user, because he/she does not need to check press releases for
new information and it will provide competitive advantage, because infor-

33



mation about the company can be retrieved faster than accessing website
as regular user.

Custom crawler which would download press releases would have following
structure:

1. Go to http://www.bvb.ro/AboutUs/MediaCenter/PressReleases.

2. In order to choose years of release, click on button with CSS selector
button[data-id=ctl00_ctl00_body_rightColumnPlaceHolder].

3. Click on all anchors with CSS selector div.dropdown-menu.open a in
order to visit all pages with press releases.

4. Download document which is referenced by anchor identified by CSS
selector a.title-comunique.

5. If there is no element with CSS a.paginate_button.next.disabled
click on element with CSS selector a.paginate_button.next and go
to step 4.

Crawler will download press releases as documents, because there are not
only HTML documents (PDF, Excel documents, etc.). During runtime of this
custom crawler URL of Web page remains the same. This fact implies that
Bucharest stock exchange is RIA and client-side script needs to be executed
in order to access all content.

From prespetive of categorization in chapter 4 this is page with client–side
embedded code and temporal content dynamism. Therefore if we want to
crawl this Web page, we need to use client, which execute embedded code
(browser) and crawl the page periodically to obtain new data. To handle
pagination, we need to execute command to select all years and visit all
pages.

4.3.2 Bezrealitky

Bezrealitky website [51] is providing platform for advertising real estate of-
fers. Bezrealitky provides a wide range of houses and flat profiles dedicated
for purchase or rent. It provides the user possibility to view property for
sale of rent according to selected criteria such as location, price or living
area size. These information can be used for further analysis on real es-
tate market. Such analysis can indicate actual average price of real estate,
which can be used for making decision during purchase of a flat [11].

34

http://www.bvb.ro/AboutUs/MediaCenter/PressReleases


(a) Stock exchange homepage

(b) List of press releases

Figure 4.2: Bucharest stock exchange. Highlighted element on
subfigure (a) is link to page with press releases. On subfigure
(b), there is page with press releases from stock exchange office.
Highlighted elements are buttons which show press releases for
particular year and in case there are more than ten press re-
leases on the page, they control pagination.

35



(a) Homepage with search form

(b) List of flats to buy

(c) Flat to buy detail

Figure 4.3: Bezrealitky.cz Highlighted element on subfigure (a)
is search form for finding real estate in particular ares. On sub-
figure (b), there is list of found real estates in the area. High-
lighted button on left bottom part of page shows loads more re-
sults. Subfigure (c) shows detail of flat offer.

36



The home page contains search form for searching offers (see Figure 4.3).
Figure 4.3b shows list of first fifteen offers returned for search. For obtain-
ing more searched offers, crawler needs to click on button Zobrazit více
nabídek, which load more offers to Web page. URL in this case remain
same, which indicate that this page is RIA. Each offer page (Figure 4.3c)
has unique URL and it is showing information about offer and photograph
of offered flat/house. To obtain all photographs, crawler need to click on
arrows, whick load other images on same page without changing URL. This
suggest that page is RIA as well.

Custom crawler, which obtains price of each offer in particular area:

1. Go to https://www.bezrealitky.cz/.

2. Fill location of requested offers into input identifiable by CSS selector
input#location.form-control.form-control-md.

3. Click on button button.btn.btn-primary.b-intro__submit to per-
form search.

4. Follow link with CSS selector a.product__link.js-product-link.

5. Click until there are new result on the page on button with CSS selec-
tor span.icon-svg.icon-svg-double-arrow.

6. Obtain offer price, which is inner text of element with CSS selector
p[data-fancybox-price].

To handle pagination, crawler needs to click repeatedly on button Zobrazit
více nabídek and for obtaining all images of the offer, crawler needs repeat-
edly click on arrows on image.

From prespetive of categorization in chapter 4 this is page with client–side
embedded code and temporal content dynamism. Therefore crawler needs
to use client, which execute embedded code (browser) and crawl the page
periodically to obtain new data.

4.3.3 Bloomberg

Bloomberg [52] is news agency, which is publishing and reselling news ar-
ticles to other news agencies. They post some of their technology realted
articles on website https://www.bloomberg.com/technology, which is typ-
ical example new agency website. Published articles can be interesting
source of information for finding what are the hot topic in technology (with

37

https://www.bezrealitky.cz/
https://www.bloomberg.com/technology


help of entity extraction algorithms). Other application of articles automat-
ically crawled from news agency website could be automatic alerting on a
company name appearance in news.

News agency websites commonly contain two types of page: homepage
with thumbnails of articles and separate page for every article. On home-
page of Bloomberg website (see Figure 4.4) there are many thumbnails of
articles with different visual styles. Different visual styles typically means,
that HTML elements will have different CSS classes, therefore extracting
CSS rules is harder as more than one rule needs to be defined. This is typ-
ical issue with these kind of websites. Bloomberg homepage has a lot of
animated (interactive) element, however all are advertisements and initial
HTML contains all link to articles and articles can be access by URL. This
mean that page is generated on the server.

Custom crawler, which obtains news articles:

1. Go to https://www.bloomberg.com/technology.

2. Follow all links with a.highlights-v6-story__headline-link and
a.story-package-module__story__headline-link CSS selector.

3. Download page with article.

Notably on home page there is no easy way to select all article thumbnails
using single CSS. For illustration we presented only two CSS rules. Page is
with embedded client code, but effectively it can be treated as server code
as all data are generated on server. Therefore crawler can use HTTP pro-
graming. Web page is changing in time, therefore is temporal by presented
categorization.

4.3.4 Sbazar

Sbazar [53] is the site for advertising personal advertisements. User’s of
sbazar advertise items, which they want to sell to other users. If this data
are crawled, they can be used for alerting and price analysis of sold items.

Website structure is very simple. Website (Figure 4.5) shows list of adver-
tised items on landing page. Each item has separate detail page. Landing
page offers to the user full text search or filter particular category.

This website is static Web page. In theory, it can be crawled using current
static Web page crawlers, however proposed RIA crawler should be able to
crawl as well to be universal and hide technical details from user.

38

https://www.bloomberg.com/technology


(a) Homepage

(b) Article detail

Figure 4.4: Bloomberg Subfigure (a) is showing homepage of
the website. On this page there are thumbnails of articles. On
figure (b) is an article in detail view.

39



(a) List of items to sale

(b) Item detail

Figure 4.5: Sbazar.cz On subfigure (a), there is list of advertised
items to sell. Highlighted element is thumbnail of one particular
item. Highlighted button on left bottom part of page shows loads
more results. Subfigure (c) shows detail of adverised item.

40



Custom crawler which extract price and name of advertised items:

1. Goto http://www.sbazar.cz/.

2. From inner text of element with selector span.c-item__name-text
extract item name.

3. From inner text of element with selector b.c-price__price extract
item price.

4. Click infinetely on link a.atm-button.c-prev-next__link to access
all pages.

From perspective of our presented categorization this Web page is gener-
ated on server (server–side embedded code) and it is temporal dynamism as
advertisements are created by users continuously and it is input dynamism
as there is full text search capability, when searching for advertisement.
Therefore crawler needs to crawl this page periodically to obtain fresh
data and HTTP programing methods can be used as HTML is generated
on server and it contains all data.

Note that http://www.sbazar.cz/ gone complete graphical redesign during
time of writing this thesis. Page accessed nowadays look different, than on
Figure 4.5. Other implication is that CSS rules defined above, will not work
for crawling anymore. Crawler needs to be updated in order to crawl re-
designed Sbazar page. This process is commonly called crawler adaptation
and will be discussed in chapter 16.

4.3.5 Amazon

Amazon [54] is an e–commerce platform used by third party sellers to sell
their products on–line. It contains enormous number of advertised items.
These items have price, description and customer’s comments. Amazon
advertises today’s deals, which are item in special sale – today’s deals will
be

These data can be used for example for competitive analysis or crawler ex-
tracting today’s deal can alert user about interesting deals. User comments
are good source of data for sentiment analysis to determine which products
are well received by customers.

Homepage of Amazon website (Figure 4.6) shows disambiguation of items
categories, so user can choose only category of items he/she is interested in.
On homepage there are also search bar for full text search on specific item

41

http://www.sbazar.cz/
http://www.sbazar.cz/


on Amazon page. For case study purpose, we choose analyze today’s deals.
Page with today’s deals can be opened by button in top menu on homepage.
Today’s deal page show list of today’s deals including item name, price and
sale.

Custom crawler, which extracts today’s deals from Amazon would look like:

1. Go to https://www.amazon.com/gp/goldbox/.

2. Extract item price from element identifiable by following CSS selector
span.a-size-medium.a-color-base.inlineBlock.unitLineHeight.

3. Click indefinetely on element with CSS selector a#next to access all
pages with items.

Amazon Web page has relatively complicated CSS rules. HTML document
with today’s deals contains all data, however all data are inside <script>
tag. This script injects the data into DOM after page is loaded in browser.
Given categorization from subsection 4.1.1 this Web page is generated on
server (server–side embedded code) and also processed on client (server–
side embedded code) it is temporal dynamism as advertisements are cre-
ated by users continuously and it is input dynamism as there is full text
search capability, when searching for shop item. Therefore crawler needs
to crawl this page periodically to obtain fresh data and DOM interpretation
or browser automation methods are need to be used. HTTP programming
techniques can not be used for scraping, as JavaScript needs to be executed
to extract data from HTML. DOM interpretation techniques with JavaScript
execution can not be used as well, because Amazon has no obfuscated URL,
therefore crawler can not easily obtain URL of next page with items. Exam-
ple of such URL is below:

https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-
4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%
252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%
252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:
4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-
4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=
gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=
UTF8

Although there is part of URL page_4, crawler cannot generate URL for
page 5 simply by incrementing URL. Obfuscation mechanism of Web pages
is preventing that. We assume that other parts of URL needs to be change
in order to go to next page. However we do not know which one.

42

https://www.amazon.com/gp/goldbox/
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8
https://www.amazon.com/gp/goldbox/ref=gbps_ftr_s-4_d724_page_4?gb_f_deals1=dealStates:AVAILABLE%252CWAITLIST%252CWAITLISTFULL%252CEXPIRED%252CSOLDOUT%252CUPCOMING,includedAccessTypes:GIVEAWAY_DEAL,page:4,sortOrder:BY_SCORE,dealsPerPage:32&pf_rd_p=695f29ac-ec28-4005-ae23-4a6ff667d724&pf_rd_s=slot-4&pf_rd_t=701&pf_rd_i=gb_main&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=4WJ81ASEPJAF0PDNMPTS&ie=UTF8


(a) Amazon homepage

(b) List of today’s deals

Figure 4.6: Amazon On subfigure (a) there is Amazon home page
and on subfigure (b) there is page with today’s deals.

43



4.4 Case study summary

The intention of this study was to show that there are RIAs with useful
information for the business users. Several pages with description of the
data usage was presented to give reader idea, how modern Web pages look
like. There are more of Web pages, however we choose only these five
examples presented in this section to show that RIA crawler is needed.

Case study showed how CSS is structured as well, so reader has better view
on how are CSS usually structured. It will be used during designing algo-
rithm, which interfere CSS selector from selected element on screen. This
algorithm will be essential in our crawler as it will allow user extract data
visually (more in subsection 9.2.3). CSS selector are not only way to select
relevant elements on the screen, however given fact that CSS selectors in
this study could express all extracted elements, gives us confidence, that
we can use CSS selector for data extraction.

44



5. Web crawling and Web data
extraction

In context of Web page classification presented in previous chapter (nicely
illustrated in Figure 4.1, proposed crawler will focus on crawling page with
embedded code (clien–side execution). Regarding to work Raghavan et al.
[39] this are is labelled as “no existing crawlers”. Our solution is required
to be universal (as stated in chapter 1), therefore crawler will handle static
page and server–side embedded code generated page with temporal dy-
namism (Raghavan et al. refers it as “traditional crawler”). Page with client
based dynamism will be handled as well (restricted crawlers). Only cate-
gory our crawler will not handle is “hidden web”, these page are required
user input. Proposed crawler can be submit input, however user needs to
define exact values of this input.

To satisfy requirements stated in section 1.3, that proposed tool should ex-
tract data from the Web pages without overloading users technical with
technical details, crawler needs to navigate Web pages as well. Therefore
proposed tool will be a hybrid system between Web data extractor and Web
crawler. Different approaches of crawling and data extraction from Web
pages will be presentend in this chapter to let us select the most suitable ap-
proach for our crawler. Web data extractors categorization based on work
of Laender et al. [55], Ferrara et al. [2] is following this section and crawler
categorization based on work of Choudhary et al. [56]. This categorization
will complete full view on this topic.

5.1 Web data extraction categorization

Web data extractor is program used to extract information from Web page.
Data on the page are usually not provided in structured form1, but more
often as a HTML–like structure, which is rendered to a visual form to be
readable by human. Web data extractor is used to mine data from Web
page in structured way. Typical example of usage is e–shop page with a list
of items – Web data extractor is used to extract all items and its metadata
in format, which can be used by other systems. Another problem Web Data
Extractors are solving is how to extract only important part of the page.
Web page often consists of advertisements and menus, which are not intend
to be extracted.

1Meaning that information has predefined structure.

45



Ferrara et al. [2] divide Web data extractors to three main categories: Web
wrappers, tree–based techniques and hybrid systems. We believe this cate-
gorization is good for understanding all techniques.

5.1.1 Web Wrappers

Web wrapper is a procedure implementing any algorithm, which extract un-
structured or semi–structured data from a Web page into structured format
to provide a way to further process these data in other systems [2]. Due to
this vague definition, Web wrappers applies for all mentioned types of Web
pages, however they usually need to be hand crafted to specific site.

Web wrappers are created in many different ways. The most simple ap-
proach is to manually write a program in some Generic Purpose Language
or Domain Specific Language [57, 58]. Advanced techniques will be men-
tioned in next subsection. When wrapper is created and Web page is
changed (new version of page is deployed or layout of page is changed)
wrapper may stop working. This problem is called wrapper resilience and
adaptation and will be elaborated in the last subsection.

Wrappers generation

Wrapper can be created from labeled sample of Web pages using induction
algorithm [59]. With this approach, there is no need for developer to create
wrapper, however a labeled data set is needed to be created.

Annotated Web samples can be obtained automatically based on simple
rules like user defined regular expression. Using these rules is not accu-
rate method and it is generating many false results. These inaccurate data
are used as labeled data set, which with a noisy tolerant induction algorithm
is used to generate wrapper [60]. This approach reduces work needed to
implement wrapper in contrast with wrapper implemented in GPL.

Another approach how to generate wrapper is based on visual information
from Web page. These wrappers can exploit visual information (size, color
and style of text) extracted from page to increase accuracy of extraction,
when it automatically clusters Web elements [61, 62].

46



Wrapper execution and maintenance

When Web wrappers are generated or inducted, they can extract data by
executing itself on extracted Web page. In case that structure of the Web
page remain same, wrapper will return relevant data. In case Web page
change its structure, executed wrapper can return irrelevant data. Avoiding
this outcome of page change is called Web wrapper adaptation. In our best
knowledge best approach to adaptation is make wrapper generation noisy
tolerant.

5.1.2 Tree–based techniques

Tree–based techniques are exploiting tree structure of Web pages. Typical
example of these techniques is using addressing elements by XPath. Limita-
tion of this approach is that XPath only selects elements in Web page HTML
tree and it does not represent transition in page state (clicking on button,
filling form, etc.). Extension of this approach is OXPath [63] with support
for user interactive actions and more stable selectors of page elements. An-
other extension of OXPath is designed for handling collections of elements
– Kleene star operator for extraction sets of data is provided.

Another approach is to take HTML tree structure with labeled data to ex-
tract and partially align it with extracted Web page HTML tree [64]. Align-
ment is achieved by comparing minimal tree edit distance. Jindal et al. [65]
are addressing problem of tree matching of elements containing nested list.
Nested list can lower matching score due the variable length. Authors are
proposing enhancement of tree matching algorithm by grammar generation
for the tree.

Last mentionable approach of tree–based techniques is system proposed
by Zhang et al. [66]. Authors propose method which take presumption,
that modern Web pages are generated using only a few templates. Using
only tree structure method generate wrapper and distinct between different
templates.

Tree–based techniques can be used on modern Web pages, as they are com-
monly using HTML templates.

5.1.3 Hybrid systems

These techniques are also called techniques of learning based wrapper gen-
erations. In recent literature they are differentiated from Web wrappers as

47



they differs in two aspect: degree of automation and amount of human en-
gagement.

First example of hybrid systems is template–based matching. This approach
is based on idea, that modern pages are generated from template. It takes
at least two pages generated by same template and induct wrapper from
similarity of templates.

Another examples are systems exploiting spatial reasoning. These tech-
niques exploits computer vision to identify data for extraction on the page.
Machine learning can be used to identify what needs to be extracted on pre-
pared human annotated data set. This approach is used in work of Gogar
et al. [67], authors are using convolutional neural networks to incorporate
visual and spatial information to create universal Web wrapper for text ex-
traction.

These hybrid systems can be used on modern pages, however they are usu-
ally crafted only to specific types of Web pages (e–shops, forums, etc.).

5.2 Web crawling

Web crawler is program designed to retrieve complete Web pages based
on given seed (starting page). Commonly, crawlers are traversing pages
based on hyperlinks. With rise of RIAs, crawlers need to also traverse by
interacting with page elements such as buttons, which trigger JavaScript
action, which may traverse to other page or load new data. This fact brings
new challenges to this area (more was elaborated in section 1.1).

This section is focused on RIA crawlers. Choudary et al. [56] divide
RIA crawlers to two categories: general RIA crawlers and model–based
crawlers. We believe this categorization is good for understanding all pos-
sible techniques.

5.2.1 General RIA crawler

General RIA crawler dispatchs all possible actions to visit all states of the
page. Duda et al. make search application for crawling dynamic Web
[68, 69]. They defined Ajax crawling problem and challenges. Main prob-
lem is that crawler cannot say if states are equal, therefore crawl visit one
state many times. They using caching of resources and removing duplicated
states based heuristic to optimize crawler performance.

48



Another example of general RIA crawler for inspiration is work of Mesbah et
al. Authors propose crawler using DOM deltas and creating state machine.
The solution can be run concurrently and it is scriptable. Solution is called
Crawljax [70, 3].

5.2.2 Model–based crawler

Choudary et al. discuss approaches to determine state equivalence which
is very important for crawler performance [71] of RIA crawler. Another
challenge is optimize how many time crawler needs to reset to initial state
during crawling. This is referred as reset cost [56]. Model–based crawlers
is category of RIA crawler which are optimizing performance by making
assumption about crawled page structure (model).

First model Choudary et al. defines is probabilistic model. Authors defines
probabilistic model as set of all dispatchable actions, which are dispatch
with particular probabilities. These probabilities are set at default value
during crawler initialization and they are adjusted during crawler runtime
in order to reflect how many new states can particular action discover.

Choudhary et al. uses probabilistic model with heuristic information about
typical Web application pattern to increase speed of visiting all application
state. Pattern is called “menu” and it is based on observation that a lot
of events in different state of application direct in same state [72]. For
example when page has a menu with categories “home” and “about us”,
clicking on any of these categories ends in that category nevertheless, in
which application state Web page is. Another model is “hypercube”. This
model is based on hypothesis that events can be dispatched in any order to
explore same set of states.

49



50



6. Analysis summary

Page case study in last chapter showed that there are RIAs containing data
worth to crawl. Study demonstrated that these data can be extracted us-
ing CSS selector, but these CSS selector are too complicated to manual
creation for non–technical user. To overcome this limitation, crawler will
use algorithm, which generate this CSS selector for user. Algorithm will be
presented in subsection 9.2.3.

In Web crawling and Web data extraction techniques categorization, differ-
ent approaches was presented to let reader understand, what are nowadays
common approaches for Web crawling and extraction. Proposed solution
will be hybrid approach of crawler and data extractor to satisfy require-
ments declared in section 1.3. Our proposed tool will be Web wrapper using
user generated CSS selector and it will be model–based RIA crawler. CSS
selectors and model will be defined by user. This will comply with require-
ment, that user which domain knowledge about page will have opportunity
to extract data he/she want to extract.

51



52



Part IV

Design

53





7. Solution design

In first part of this thesis (chapter 1), there was introduced an idea of uni-
versal crawler, which let user to crawler Web page regardless if page is
RIA or static page. In previous part, modern Web pages were analyzed and
theoretical approaches to crawling and data extraction were described. Ap-
propriate approach of crawling modern RIA and static pages was chosen
based on requirements set in section 1.3.

In this chapter, there will be propose crawler solution, which fulfill stated
requirements from first part of the thesis. First, there will be defined user
roles and basic functionalities will be described based on requirements from
section 1.3. User interface will be designed and solution will be decom-
posed into basic components.

Data model and architecture of proposed solution will follow in following
chapters. Implementation will be described in Part V.

7.1 Roles

In order to design solution, users and their roles needs to be understand.
Three major roles interacting with the system are end user, administrator
and developer.

End user

The most important user of the system. He/she has business needs for
obtaining data from the internet and he/she will use crawler tool to retrieve
such data1. This user will use crawler to make page model. End user will be
able to run crawler and export results. End user has no specific knowledge
of modern Web technologies, but he/she can use browser to access Web
pages in his/her daily life.

System administrator

System administrator is user of the system, who is maintaining the system
and its infrastructure. Administrator needs to be able to deploy and setup

1In other words, end user knows the domain of crawled page.

55



system in production environment. Administrator will be able to monitor
system and scale components if needed. Administrator needs to have pos-
sibility to inspect running crawler in case of error (end user can not debug
crawler itself as he/she has no technical background).

Developer

Developer is a user who will maintain the code base and extends the so-
lution. Because of time constraints of master thesis, this solution will be
extended in future. Selection of developer as recognized role is important
in our opinion, because we believe, that active development effort will be
needed after finishing this thesis to reflect change of Web and provide fu-
ture optimizations.

7.2 Solution overview and functionalities

Because crawler needs to let user define page model visually (require-
ment FR2), crawler needs to be Rich Internet Application (trait T1). RIA
front end will also supply other requirements for managing and trou-
bleshooting crawlers.

Conclusion of last chapter was to use browser automation in order to
crawl RIAs. Automated browsers will be controlled via WebDriver protocol
(trait T2). WebDriver protocol will decouple crawler from browser, there-
fore multiple versions of browser can be used to crawl Web pages. Cloud
based clusters of browser can be used as well. Separation of browsers can
be convinient in case, crawler needs to rotate an IP address to avoid geo–
blocking or other networking issues.

Solution is aiming to provide universal way of crawling Web pages by cre-
ating model of specific page. This page model is configuration for crawler
how to mine data from Web page. Typical user browses page in linear or-
der, therefore page model should be defined as sequence of commands2

(trait T3).

This page model is defined visually by user of the system. Commands in
page model interact with page elements. User will define these elements by
selecting them using mouse pointer. WebDriver can select elements only by
CSS selector or XPath, therefore page model needs to use these selectors.

2Commands are high level action such as clicking on Web pages, filling forms, extraction
text from Web page, etc. Commands will be defined in following sections.

56



These selector will be althought defined visually (trait T4). This choice let
user define selector as CSS selector manually.

Crawling larger pages is very computing resources expensive operation (ev-
ery browser requires a lot of CPU time and memory). Crawlers should be
able to run among more browser instances (trait T5).

Extracted data by crawler should be further processed in other systems.
System must be able to export extracted data as file in CSV or JSON for-
mat. System needs to be able let other system use extracted data using
shared SQL table. CSV is convenient format for importing data to variety
of tools such as Microsoft Excel. Majority of business inteligence tools can
be connected to SQL database. JSON format is popular to exchanging data
between Web application. These types of data export will satisfy the most
of integration scenarios with other systems (trait T6).

Summary of desired functionalities follows:

T1 System should be Rich Internet Application.

T2 System should be able to run crawler on own infrastructure (for ex-
ample single PhantomJS [73]) and on infrastructure provided by cloud
providers using WebDriver protocol.

T3 System must be able to let user define page model as sequence of
commands.

T4 System must be able to let the user define page model using CSS selec-
tors or XPath. Commands in page model interact with page elements.
User will define these elements using CSS selectors or XPath.

T5 System should be able to parallelize crawler between more browser
instances.

T6 System must be able to export extracted data as file in CSV or JSON
format. System needs to be able let other system use extracted data
using shared SQL table.

7.3 Basic decomposition of solution

This section describes decomposition of solution to smaller component. This
decomposition will help to establish terminology and split functionalities
according to single responsibility principle.

Solution is RIA, therefore client–server architecture. We will use term client
as front end and term server as back end in rest of the thesis. In high

57



level decomposition of the solution there are four main components in this
solution. These components are front end, crawler store, crawler runtime
and session manager (see Figure 7.1).

Front end Crawler store

Crawler runtimeSession manager

Figure 7.1: Component model. On diagram, there are compo-
nents of the system. Big rectangles represent component. Line
between components means that components are communicat-
ing (share information) with each other.

Front end

Front end component is user interface. It enables to user to interact with
the system. Front end is Web application accessible by browser. Basic
capabilities are described per each screen in section 7.4.

Crawler store

Crawler store component is a storage for all data. Detail of the data model is
in section 8.1. This component is server application with REST API interface
(for more detail see section 12.2). This component has a single purpose –
storing and retrieving data. Business logic of application is stored in the
client (front end) and crawler runtime component.

Crawler runtime

Crawler runtime manages execution of crawlers. Crawler runtime has re-
sponsibility for running and stopping crawler. It uses crawler store to re-
trieve crawler definition and it has its own persistent message queue for
handling crawler computation (more in section 9.3). When crawler re-
trieves new results it is stored in the crawler store.

58



Session manager

Crawler is using a browsers for crawling. Session manager is handling cre-
ation of session within this browser. This component also injects scripts to
the running session to mirror page in browser (more in subsection 9.2.4).
Mirroring is used by front end during crawler definition or when trou-
bleshooting the crawler.

7.4 User interface

System will provide both input and output thought user interface. Input
(page model ) will be created by the end user, though Web application.
Output of the system is data extracted from Internet and will be viewable
through user interface.

Application will have several screens (see Figure 7.2). User interface should
be intuitive as the end user does not need to have technical background and
usually works with other Web application with advanced user experience.

/ /crawler_list /browser_sessions

/crawler_run/crawler_detail/:crawlerId

EditCrawler #2 Run

Browser #1
- State: open
- Session params

Browser #2
- State: open
- Session params

Welcome

Run #1 Output:
JSON #1
JSON #2
JSON #3

Crawler SessionCrawler #1

Action #1
Action #2
Action #3

Crawl

Add crawler

Page preview

Add action

/browser_sessions/:sessionId

Browser #1

preview

preview

Page previewRun #2

EditCrawler #1 Run

Figure 7.2: Application screens. Rectangles represent appli-
cation screens, captions of rectangle represents URL path to
screen. Dashed arrows mean from which screen we can go to
other screens. Gray smaller rectangles represents buttons.

59



Crawler definition screen

Crawler definition screen is allowing live visualization on page we are
crawling. This is important feature to graphically express all information
on the page. Running crawler is also auditable by checking which page is
currently open while crawling. On the crawler definition screen, there will
be current sequence of commands showed, together with small wizard to
add new command. If command needs to have element as an input (click
on element, etc.), user can specify interacted element on the page visual-
ization.

Crawler list screen

Crawler list screen will show a user defined crawler and let him/her run,
delete or edit the crawler.

Crawler job screen

Crawler job screen will show user defined crawler and let him/her start and
stop crawler job. The user will see how many results were returned by
crawler and progress of the crawler.

Welcome screen

Welcome scree is used for a notification of user about new version and
change release. We included button for adding new crawler as well, be-
cause it is the most used feature.

7.4.1 Out of scope

Solution is not aiming to curate or transform extracted data. Incremental
crawling is also not in the scope (“What changed on page since last time?”),
although it can be achieve by proposed solution. Deduplication of docu-
ments is solved on page hierarchy level only. This means that crawler is
not checking if there are any duplicates in extracted data. This can lead to
a situation when the item is moved during crawling from page 1 to page 2
(for example new item is added) and this item is crawled twice. Crawler
will work with CSS selector for selecting data on the page. This will pre-
vent to crawl pages with random generated CSS class names, however case

60



study introduced in section 4.3 suggests, that pages are not using random
generated CSS class names often.

61



62



8. Data model

Crawler store will be storing data. This chapter contains description of
data, which will be stored. Data model needs to contain definition of page
model (crawler definition) and support for crawler runtime (data structures
for storing internal state of runtime).

To give complete picture to the reader, we will describe runtime informa-
tion, which are not stored in crawler store such as opened browser session
and their internal state.

These entities needs to be used in order to satisfy requirements such as
running or storing definition of crawler.

8.1 Stored data

Stored data in crawler store has three parts: crawler store, crawler runtime
and open sessions.

All data created and defined by the end user are kept in Crawler store.
There are kept crawler definitions and crawler definition states. Crawler
definition consists of crawler definition model (more details in section 8.2).
Crawler definition state (more in subsection 9.2.2) is used for storing state
of variables during creation of model and storing id of the session used for
definition of crawler. It is used for front end specific action, but needs to
be persisted as front end can be closed/reopen any time. Diagram with full
crawler store data model can be found in Figure 8.1.

The core entity of crawler runtime is crawler job. Crawler job repre-
sents crawler run with specific input and on specific crawler. Crawler job
contains snapshot of crawler definition model, therefore model cannot be
changed during crawling. Crawler job can be in “started” or “stopped”
state. Crawler job can produce new crawler run state and process it ac-
cording to given algorithm (more in section 9.3). Crawler run state has
no defined schema and can be any shape (JSON). States are stored and
queued by persistent message queue, therefore state remains if any of com-
ponent disappears or is scaled to different number of instances. Crawler job
progress is expressed as two numbers: count of processed state and count
of states waiting to process. This caused by fact the fact that crawler does
not know, how many results/pages it needs to process to complete the job.

63



Figure 8.1: Data model. Rectangles represent entities and line
represent associations between two entities. Rectangles with
folder corner are comments.

Browser sessions have their own life cycle as they are handled by browsers
themselves. If any other component creates new session, it is on respon-
sibility of component to close it. If these components crash or does not
behave properly, there can be memory leak with opened session. Sessions
are volatile and they can be closed any time, therefore components need
to check if session is opened before any operation. Session can be also
reused. Session can reuse session state, if target browser provides such
action. Browser sessions also open WebSocket channel per each session to
send mirror session content (more in subsection 9.2.4).

8.2 Crawler definition model

Crawler definition model is used to crawl particular page. End user of the
system creates this model of Web page using our solution. Model of the

64



page is defined as a sequence of commands. This sequence is interpreted
by crawling algorithm to extract data from the Web page during crawling.

Figure 8.2: Crawler definition data model. Rectangles represent
entities and line represent associations between two entities.
Rectangles with folder corner are comments.

Commands (Table 8.1) are based on WebDriver specification1. Each of these
commands have input and output parameters and they can use variables to
pass data between commands2. For example, find element command de-
fines the variable “name” in which it stores element id of element it selects.
This element id can be used as input to other command. For example com-
mand element click, which can be evaluated using element id retrieved in
previous step. Crawler is storing what variables to export when crawler
yields result.

1There is no need to define new protocol, when there is one stable specification avail-
able. WebDriver is suitable for reuse as it contains low level command for Web manipula-
tion.

2Note that variable are interpreted as string with one exception – array of string. Com-
mand can return array on as result (E.g. command Find elements returns array of element
ids). This concept is used to process collections. Command which takes this array as input
takes only one element of array as input, but whole process is forked to process all array
elements simultaneously.

65



Special control flow command yield is also defined. Yield command is used
to mark when crawler should emit result. Emitted result are exported vari-
ables with their current state.

Command name Input variables Output variables

Go to url url

Get url url

Get title title

Find element locator elementId

Find elements locator [elementId]

Find element from
element

locator, elementId elementId

Find elements from
element

locator, elementId [elementId]

Get element attribute elementId, name value

Get element text elementId text

Get element tag name elementId name

Get element rectangle elementId x, y, width, height

Element click elementId

Element send keys elementId, keyCode

Get page source html

Executing script jsCode output

Take screenshot screenshot

Take element
screenshot

elementId screenshot

Table 8.1: Supported user command. List of commands which
can be used for definition of crawler. Input variables needs to
be supplied to command in order to execute action and obtain
results. Commands are subset of WebDriver specification [29].
Only those commands, which are relevant to end user during
crawler definition are chosen.

66



9. Architecture

In this chapter architecture of the solution is described. Description of main
algorithms used in the system follows. We advise to the reader to look at
Figure 9.1 first to get holistic picture of the solution.

9.1 Front end application architecture

Before description of front end architecture, we will explain why we chose
to make a client as Rich Internet Application in the first place. Page mir-
roring feature requires some kind of mechanism to render DOM received
from WebDriver session. Therefore there is a need of having embedded Web
browser engine in the crawler solution. There are four possibilities how to
achieve that:

• Custom native client application with embedded browser, for example
it could be Qt application with Webkit (QtWebkit).

• Implementing Web browser extension.

• Using native UI framework interpreting DOM, which is similar embed-
ded browser (for example Electron [74]).

• Creating custom Rich Internet Application, which will be served via
browser.

First three options have one thing in common – hard dependency on one
version of browser. As modern Web pages and browsers change and evolve,
crawler needs to have the most recent version of Web browser engine to
be compatible with Web pages, that is crawling. For that reason we chose
fourth option – Rich Internet Application with mirroring developed using
iframe (more in subsection 9.2.4). This option has newest possible Web
browser engine, because browsers are updated frequently.

For presentational layer React library [75] and for components library Ma-
terial UI [76] is used. As framework Next.js [77] framework is used, be-
cause it provides application with initial setup of project (Webpack, etc.). It
is also providing server side rendering and hot module replacement out of
the box. We believe that these features are useful for developers of the page
and will improve user experience during loading of the page. We chose this
technology stack after research on modern Web technologies. There are
many other options how to achieve our goal, this is only one of possible

67



Figure 9.1: Architecture. Solid items represent parts of solution,
which were developed for crawler. Dashed items are platforms,
databases or message brokers, which were installed and config-
ured only. Arrows connecting two items represent interaction
between this two items. Note that React itself was not devel-
oped, but UI components using React were developed.

68



stacks. Front end component is written using Typescript [78] as main lan-
guage as it will provide static typings, therefore more bugs will be found
during compile time. We believe that static typing is important to scale
large applications.

9.1.1 Presentational layer

React library is specialized on page rendering. It let compose UI from com-
ponents implemented as JavaScript class and JavaScript function. This is
used to modularize application. Components have internal state and prop-
erties set by their parents. When state or properties is changed, component
and its children are re–rendered. One of main features of React is usage
of virtual DOM1, which construct tree structure of JS objects correspond-
ing to original DOM. When there is a change, virtual DOM is changed at
first, then difference from previous DOM are calculated and finally original
DOM is updated only where DOM has changed. This will save process-
ing time of unnecessary DOM updates, which are slow, because browser
needs to change layouting, recalculate CSS style, re–render DOM, etc. This
principle has synergy with Redux. Redux is used for managing presenta-
tional layer internal state (more in next subsection). When Redux state
changes, whole React application will simply re–render and React will op-
timize DOM changes. React-redux [79] library provides a way how to set
specific part of Redux state are rendered in which React component using
connect(mapStateToProps, mapDispatchToProps) function. Screens are
separated by application path using standard Next.js routing.

9.1.2 User interface application state

State management of front end is handled by Redux library [80]. As there
are many HTML forms in our system we use library Redux Form [81] to
handle these forms. For async operation front end is using redux-observable
[82], which will also fit in crawler technology stack as back end is using RxJS
reactive streams.

Redux library presents principle of singleton store (typically represented
by single JavaScript/JSON object) containing whole state of UI application.
This state cannot be changed directly, but action (single JS object) needs
to be dispatched in order to change state. Dispatched action is processed
by reducers, which change the state. Reducers are programmer–defined
function with signature (state, action) => state. These functions take

1https://reactjs.org/docs/faq-internals.html

69

https://reactjs.org/docs/faq-internals.html


state as argument, alter it according to action, which was dispatched and
returned new altered state.

9.2 Back end application architecture

Given the fact that front end application is based on JavaScript, we chose
JavaScript for back end as well. Technology stack remains JavaScript, which
helps to simplify development. “JavaScript stack” is proven technology for
Web development, therefore is suitable for crawler development. As front
end needs to be JavaScript application (only language browsers support),
only one programming language for purpose of this thesis needs to be un-
derstand. This will save us time spent in learning phase, therefore more
features can be implemented during development phase.

All solution’s components on back end side are one Node.js [83] applica-
tion, which are exposing REST API using Express library [84] (more in sec-
tion 12.2) and using WebSocket server library called ws [85].

In back end there is large asynchronous code base. RxJS reactive streams
[86] are used for handling asynchronous operations.

“Back end JavaScript” is hard to scale bigger project. In “front end
JavaScript” module structure, naming conversion, etc. was determined
using opinionated libraries like Next.js. We found is harded to scale and
maintain pure JavaScript code, so we decided to use Typescript as main
programmatic language. It will add compile time type safety and it is com-
piled to JavaScript.

Underlying storage of data in crawler storage component is PostgreSQL.
Component use ORM library Sequelize to map runtime objects to database.
Relational database was chosen, because data model is mainly relational
in nature (as was mentioned in chapter 8). Exporting data from crawler is
implemented using table to share data of crawler result. SQL database let
listen on new data, therefore extracted data from crawler can be sent to
other system in real time.

Running browsers is demanding on server memory. Crawler needs to use
more instances of browser in order to let computation distribute over more
than one machine. WebDriver is used to make abstraction for controlling
the browsers. Crawler runtime use WebDriverIO [87] client to operate Web-
Driver protocol.

Page mirroring mechanism requires, that mirrored page open WebSocket
connection to session manager (see subsection 9.2.4 for more details). Ses-

70



sion manager inject code which opens the connection using WebDriver
method. Code is writen in TypeScript, however TypeScript is not na-
tively executable in browser. This problem occurs on two places: injection
our custom code and injection MuttationSummary library code. Custom
code, which is written is serialized to string and inject JavaScript func-
tion. Therefore even if this function is written in TypeScript code it need
to compliant with JavaScript (see file /backend/src/session.ts and func-
tion pageScriptStub() for detail). For library MuttationSummary, which
is written in TypeScript, solution needs to transpile code into JavaScript
during build process. Session manager inject JavaScript transpiled source
code, not original TypeScript code.

Crawler job is using RabbitMQ to coordinate distributed runtime of (more
was be elaborated in section 9.3 and reason of picking RabbitMQ as technol-
ogy to implement coordination of runtime is described in subsection 9.3.2).

9.2.1 Application interface

Back end is exposing REST API, which is used by front end. REST API is
common practise in world of Rich Internet Applications. Other systems can
use this API to automatize crawler as well. This API is meant to be usable
by other systems to integrate with our system. For example if other system
wants to run a crawler to retrieve its result, it simply calls endpoint called
run crawler.

Exported data are intended to be processed with other software systems.
Crawler is supporting one time export of CSV or JSON file with results.
JSON file is array of objects and every object in this array represents one
result.

Other possibility to export data is using PostgresSQL table. Data are inter-
nally saved in a database table. Column called data type is JSONB and it is
filled with resulting data. Exporting in such way also enables listening on
newly received data.

9.2.2 Crawler definition process

Creation of crawler is complicated process, which needs three components
to cooperate: crawler store, front end and session manager. In this section,
whole process will be described in a detail. The process will be described
from end user point of view to give a reader better insight.

71



Crawler definition state consist of session id of WebDriver session and cur-
rent state of variables. WebDriver session is used to simulate end user’s
action and visualize state of Web page action user defined.

Process of crawler creation can be described as follows (pseucode can be
found in algorithm 1). For crawler definition is used separate screen called
crawler definition screen. When user clicks on button to create new crawler,
he/she enters crawler name and default input of the crawler. Then crawler
store create new empty crawler definition and crawler definition state with
empty variables state. New browser session is opened and session id is
stored in crawler definition store. Next crawler definition is initialized to
default input by adding command go to url and executing it with default
input. It this phase, end user can see initialized crawler and current opened
Web page. The user can start editing the crawler.

Algorithm 1 Crawler definition. This pseudo code describes process of
defining crawler definition from perspective of the system. Process itself
is a loop which takes new command set by end user and update state of
definition: variables and browser session.
1: procedure CrawlerDefinition(cra_def ,brow_sess,var_state,new_cmd)
2: cra_def ←add(cra_def ,new_cmd)
3: (brow_sess,cmd_result)←run(brow_sess,new_cmd)
4: var_state←update(var_state,cmd_result)
5: return cra_def
6: end procedure
7: state←emptyState()
8: while new_cmd←userInput() do ▷ Comment: Until user ends program
9: state←CrawlerDefinition(state,new_command)

10: end while

End user can add commands during crawler definition. After selecting new
command he/she needs to set input and output parameters. Parameters can
be saved/loaded from variables. Another option is that in case of input pa-
rameter it can be set as literal value. Some of the commands have special
inputs. Special input can be predefined set of string constants (for example
Find elements has five selector strategies: css selector, link text, partial
link text, tag name and xpath ). It can be also css rule which select spe-
cific elements. The system is providing way how to define these css rules
visually. More information can be found in subsection 9.2.3. If command
taking array of string as input is executed, system choose the first element
of array.

When Crawler is defined, end user can still edit crawler using same screen.
In some cases (garbage collection of non used session, system crashes, etc.)
session associated with crawler definition could be deleted. In that case sys-
tem will open new session and execute all commands in crawler definition
to get session state synchronized with crawler definition state.

72



9.2.3 Visual definition of locators

Page case study in page case study in section 4.3 showed, that CSS selec-
tor are powerful enough to represent important elements in modern pages.
These CSS selectors are defined visually to satisfy requirement FR2. This
subsection described algorithm to interfere CSS selector visually. Note that
this algorithm is heuristic and based on hypothesis we made based on page
case study. This algorithm will be extended in future, however more ad-
vanced study needs to be done. We suggest to make study on page crawled
by proposed tool by real users. For that crawler should store data about
selected elements for future analysis. This subsection present current ap-
proach for visual definition of locators.

Task of visual selection of CSS selector can be expressed as function
(selected DOM element, DOM root element) → CSS selector. User
will be selecting DOM elements by mouse pointer (hover over the element),
DOM root element represent whole Web page HTML tree as DOM root ele-
ment contains pointers to its childrens. Algorithm will interfere CSS selec-
tor and show visually to the user, which elements are selected by this CSS
selector (will draw border around elements). Note that by hovering mouse
over one element, more than one element can be highlighted as CSS selec-
tor could select more elements. This behavior is for set of elements such as
tables.

Any algorithm interfering CSS selector based on one selected element by
mouse will be only heuristic, because DOM can change in any way and we
based algorithm on hypothesis, that Web page structure remains same (or
at least similar).

During testing of different heuristic algorithm, we found several ap-
proaches does not work:

• Structuring selector as full path of child combinator2 (for example div
> span > a) does not work, when there element has more than one
child element of same type this selector choose all of them, not only
highlighted one.

• Selecting by position of children of elements (for example
div:nth-child(3)3 > span:nth-child(1) > a:nth-child(1)), but
it is not robust approach. When any node in DOM is added this selec-
tor is no longer valid. Unfortunately nodes are changing often. Note
that this approach is very similar to using XPath (example above in
XPath is //div[3]/span[2]/a[1]).

2Child combinator in form a > b selects all elements b, that are child of a.
3Nth-child pseudo–class :nth-child(x) select only x-th children of element.

73



• Selecting element by its id (for example div#id1234) is avoiding dis-
advantages of previous two approaches: it is more resilient to change
in DOM tree and it can handle multiple elements of same type. Unfor-
tunately this approach fails when element’s ids are generated on the
server. This was case for SBazar.cz Web page in case study.

Algorithm used for implementation in this thesis is based on hypothesis that
Web designers use CSS classes to change style of important elements. Al-
gorithm constructs CSS selector by selecting element that has defined class
by selector tag.class1.classN. If selected element has no class algorithm
traverse to its parent a make the check for class same as for selected ele-
ment. This step is repeating until element with class is found. Traversed
elements are used for second part of selector as simple select by tag name.
Example of founded CSS selector is div.class1.class2 span a.

9.2.4 Page mirroring

Page mirroring takes important place in system, because it is used for cre-
ation and troubleshooting of the crawlers. Mirroring is hard to implement
as it depends on several technologies. Therefore we chose to describe in
this subsection in greater detail.

Main idea is to have an iframe in the front end which will make duplicated
DOM tree of DOM tree in session. Because DOM in session usually varies in
time, DOM is synchronized using WebSocket. Mirror is listening for DOM
changes emitted by MutationObserver (see more in subsection 2.1.2). DOM
changes are transferred from session to front end where they are applied
to current DOM tree in iframe (Figure 9.2).

Because mirror interacts with session using only WebDriver, it has no di-
rect access to DOM. It is using injected custom script which is interpreted
in page context. Injection is done by executing script WebDriver method
[88]. Script establishes WebSocket connections to session manager. One
channel is used for sending commands to open new DOM streaming chan-
nel to the session. As there can be any number (even zero) of page mirroring
clients we need to have same amount of DOM changes streaming channel
as clients.

When session receives new WebDriver command which changes page exe-
cution context (for example go to url command), session will lose WebSock-
ets connection and MutationObserver object is also deleted. In that case,

4Note that # operator does not support character _ in identificator. In case that iden-
tificator contains this character crawler needs to use attribute operator (for example
div[id=id_123]).

74



Figure 9.2: Page mirroring components. Page mirroring inter-
acts with three entities: front end, session manager and ses-
sion itself. Front end shows mirror streams DOM changes from
session manager WebSocket. Individual WebSocket connection
is opened for each front end mirror. Session itself is injected
with JavaScript code, which starts streaming DOM changes to
session manager. This injection is done ad–hoc, when mirror is
created.

session manager detect lost of connection and reinjects scripts again. See
Figure 9.3 for illustration.

When copy of DOM is mirrored to front end page served from different do-
main, there is problem with same origin policy. DOM element like fonts,
scripts, images, etc. are loaded in a standard way. This means that fonts
from other domains will not load as they are on another domain. Images
with absolute source url will also load from original server, not from mir-
rored session. To prevent reevaluation of script on the page, mirroring is
replacing <script> tag with <noscript> tag.

Note that mirroring is dependent on Web browser engine implementation
it is using. Each Web browser core (Webkit, Gecko, Edge, etc.) can display
pages differently. For example when WebDriver session is using PhantomJS,
but front end is mirroring in Google Chrome. We are not reflecting this
in our implementation, as crawled pages are usually optimized for major
browsers.

9.3 Crawler runtime and algorithm

Interpretation of crawler is process (Figure 9.4) where each command is
taken from sequence and evaluated it in open browser session. Current
variable state is tracked during this process. In the beginning of the pro-
cess, only input variable is assigned. This variable is filled with actual input
of the crawler. In case input is an array, we will run crawler for each value

75



:Crawler 
 runtime 

:Session
Manager

:Browser
Session:Client

open session

run crawler
open session

request mirroring

inject script

open websocket

send dom changes

go to url

send dom changes

dom changes

dom changes

First
connection

Running
crawler

Websocket
deletion 

Websocket
deletion 

inject script

Figure 9.3: Page mirorring. This sequence diagram is describ-
ing common interaction between components, when session is
initiated and mirror is requested. Note that when session moves
to a different url, it drops whole DOM and therefore WebSocket
connection with Session manager is lost. Session manager de-
tect lost of connection and reinject the script.

of crawler as input. When command is evaluated, its input parameters are
filled with values according to current variable state with one exception –
when input variable has a value of array (this special case is described in
following paragraph). After command is evaluated, the result is taken an
stored to given variables. If command is “yield”, then crawler yields cur-
rent values of exported variables. If there is no command left, crawler is
considered ended.

When command has an input parameter taking array as value (for exam-
ple when clicking on multiple elements), then only one element of the in-
put array is evaluated, however whole process is forked to process rest of
the elements (handling several processed is described in subsection 9.3.1).
Forked process runs in separate WebDriver session. Forked process needs
to synchronize its WebDriver session and variable state by running com-
mands from the beginning. This could have performance impact on crawler
runtime as crawler needs to create new WebDriver session and spend time
on command re–execution. There are possible optimizations of this issue
and they will be elaborated in chapter 16.

Changing algorithm of processing these parallel computations and way how
algorithm “backtrack” has huge effect on crawler efficiency. Algorithm it-

76



Figure 9.4: Lifecycle of running job. This diagram describes
flow of running job. Diagram is divided to three parts crawler
runtime, message queue and crawler runner. When activity or
conditional check is drew in one of these part, it means that this
activity or check is executed in corresponding component.

self is set of routines, which take crawler and the state as parameters and
return new state. Implementation of this algorithm is not hard coded and
schema of the algorithm state is not explicitly defined. Algorithm can be
implemented and added to the system by changing these routines. Each
algorithm instance interprets state in its own way. When its forking it emits
new state to message queue and message queue delivers this state to new
algorithm instance (see Figure 9.5). Sample implementation of this algo-
rithm using depth first search is described in subsection 9.3.1.

Crawler limits parallelism (how many algorithm instances are processing
command sequence) using set max count of algorithm instances. This will
save system resources and protect crawled Web page from accidental De-
nial of Service attack.

9.3.1 Depth first search implementation

Depth first search algorithm is implemented to satisfy basic crawling sce-
nario. This algorithm can be easily changed in future versions of crawler
(see possible optimizations in chapter 16).

77



Process of executing depth search is following (see Figure 9.5). In the step
one, previous state of the algorithm is taken from queue. In the step two,
command with only one value is evaluated and cell is marked as “done”.
During step three, command which results in array is evaluated. Index of
first value in array is marked to current state. In the step four, rest of the
command sequence for this state is evaluated in current session. Step five
generates new states for rest of values from previous state. They have last
cell filled as index of value in the array. In the step six, new states are
enqueued. Process then returns to step one.

Figure 9.5: State expansion. This diagram shows the difference
between processing command which results in one value and
processing command which results in array of values. Solid col-
ored cells represent state value which were already evaluated.
Each cell is corresponding to command in sequence and it is con-
taining information if command which was already evaluated. In
case command has an input array of values, then cell is index of
value which was taken.

When algorithm calculation encounters command which results in more
than one output value, algorithm will finish only one (first) value within
current session. Other values are planned to execute later. They are ex-
ecuted in new sessions, which need to be synchronized to the same state
(rerun previous commands on new session) when process is forked.

To support forking of the process, crawler define state of algorithm as fol-
lows. Each state is array of values. This array corresponds to command
sequence of running crawler. This array represents history of execution.
When command is executed, it marks special value (“done”) in correspond-
ing array. When command takes as input array, index of taken input value
is marked. This state shape mimics stack memory for standard depth first

78



search algorithm with the difference, that it does not store all possible val-
ues, but only one. This happens because backtrack is not possible5, there-
fore whole state will be executed from the beginning in other session (reset
session and rerun all commands).

When new state is received through message queue to new worker, history
is evaluated to get session to the same state as it was during branching.
After that, crawler can execute rest of the commands and potentially branch
when other commands have array as an input. Whole process of branching
using state expansion is described in Figure 9.5.

9.3.2 Message queue technology selection

In prototype version of crawler we used PostreSQL table to synchronize
distributed crawler runtime. PostreSQL table served as queue for crawler
algorithm states. We found easy to query table to extract information such
as count of remaining states in queue, however we found difficult to write
queuing logic using SQL.

We found much easier and maintainable to implement message queue using
RabbitMQ. The scaling of the solution is easier as well. One of the features
message queue system need to offer is detection when queue is empty. In
SQL case it was easily implementable as crawler could query DB and de-
termine if there is any message inside. In RabbitMQ, this method is not in
standard API. Rabbit Extension management API [89]6 can be used instead.
One downfall of this approach is that these statistics are counted every five
seconds [90], which effectively means, that crawler can detect that it ended
with five seconds delay. We find this delay acceptable.

5We would needs have defined reverse action to be able to backtrack.
6Method called /api/queues/:vhost/:name can be used to solve this issue.

79



80



Part V

Implementation

81





10. Implementation overview

The entire solution is stored in one monolithic git repository. It contains
two folders: one for front end called /frontend and one for all back end
components (crawler store, crawler runtime, session manager, etc.) called
/backend. These two folders are standalone Node.js projects. Front end is
JavaScript Rich Internet Application and back end is written using Node.js.
There are configuration files provided to run solution on Kubernetes plat-
form.

Markdown readme file /Readme.MD is entry point of documentation for de-
veloper, who wants to maintain the project. Documentation for JavaScript
code is written in JSDoc and it is generated in /doc folder. JSDoc can be
generated using /generate_docs.sh. In the same folder REST API is de-
scribed using Swagger file.

Developer experience is optimized for Linux–like system (and it is tested
on MacOS). Solution itself is supported to run on Kubernetes on x86-64
architecture.

Both back end and front end are standalone Node.js Web server, therefore
they can run on different IPs and listen to different ports. As browser has
Same Origin Policy, which prohibits calling back end on different domain
than front end is, crawler addresses this issue by using NGINX reverse
proxy to serve application on one host only.

10.1 License

To let community use proposed crawler, we chose publish our work under
open–source license. We chose MIT license in version published in website
https://choosealicense.com/ [91], because it is short and simple. License
is used in following version:

MIT License

Copyright (c) 2018 Petr Fejfar

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or

83

https://choosealicense.com/


sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

84



11. Front end

Front end is React application, using Redux to manage application state
and it is using Next.js as platform. Crawler’s React components use UI
components from Material UI. Redux–form library is used for handling any
forms on the screen.

11.1 Front end folder structure

List of important folders and files within /frontend follows.

• /package.json, /package-lock.json and /tsconfig.json.

These files are definition of JavaScript and TypeScript project. They
contain basic project metadata and project dependencies.

• /nginx.conf

NGINX configuration files for reverse proxy used for development en-
vironment (see more in chapter 13).

• /Dockerfile

Dockerfile is used for building production container with front end
application.

• /pages

This folder contains Web application entry points: /index.tsx,
/browser_sessions.tsx, /crawler_jobs.tsx, /crawler_list.tsx
and /crawler_definition.tsx. These files are implementation of
user interface screens defined in section 7.4 and they will be described
in next section in more detail.

• /components

React components used for UI. Note that this folder’s subfolder are or-
ganized by feature. Each feature has UI file with React component and
file with suffix Store which contains implementation of Redux Store
and all needed Redux–observables.

• /store

Top level implementation of Redux store. It imports all stores from
/components folder.

85



• /fetcher

Customly developed component for fetching REST API and serving
result of these query to Redux store.

• /static

Static files served by Next.js. For example custom icons are in this
folder.

• /styles

Initialization of Material UI styles.

11.2 React components

By Next.js conventions entry points of application are in folder /pages.
These entry points are top level React components. List of all entry point is
in Table 11.1.

Screen name URL path React components

Welcome screen / index.tsx

Crawler definition /crawler_detail crawler_definition.tsx

Crawler list /crawler_list crawler_list.tsx

Crawler job /crawler_run crawler_jobs.tsx

Browser sessions /browser_sessions browser_sessions.tsx

Table 11.1: Mapping screens to source code and URL. Screen
name corresponds to screen defined in section 7.4. React com-
ponents are stored in folder /pages.

Other non–root level components are stored in folder /componets/. These
components are used by root level components and they are in sep-
arate files in order to let developers easily navigate in code writ-
ten in React. These components1 have corresponding file with name
<component_name>Store.ts, which contains Redux store for the compo-
nent.

Every root level component needs to be wrapped in
/components/AppWrapper.tsx in order to top application bar with ap-
plication menu. Every root component needs to be wrapped with function
withRoot and withRedux in order to properly initialize Redux store, Next.js
and Material UI.

1With exception of withRoot component

86



In component’s folder /components/, components are divided by features.
This helps hold semantically similar code close together.

In file /components/formComponents.tsx, there are stored render func-
tions for Redux form. Render functions enable to Redux form use custom
UI components. In this case, we are using Material UI components.

11.3 Application state

Each React application needs to define strategy for managing its inter-
nal state. In proposed solution state is managed by Redux. In files
/store/{Action,Reducer,State,Store}.ts there is defined Redux store
as well with redux-observable epics in variable rootEpit. For making easier
work with asynchronous Redux actions implemented by redux-observale,
an utilization function waitUntil is prepared. This function is returning
promise, which will be resolved when particular action is dispatched. This
is especially useful in getInitialProps, when component logic wants fetch
data on server and render component on server when data arrives.

Reducers are defined for every component in its corresponding
<component_name>Store.ts file and /store/Reducer.ts only com-
bined them together. File /store/State.ts defines TypeScript
type for Redux state, however implementation is stored in each
<component_name>Store.ts file.

Crawler redux state shape is illustrated in Listing 11.1.

Listing 11.1: Redux state shape. Note that this is not valid JSON,
this is for illustration of Redux store state schema.

1 {
2 "fetcher": {
3 /* state fetcher for several endpoints */
4 [endpoint]: {
5 isFetching: boolean,
6 data: any | null,
7 error: string | null
8 }
9 },

10 "uiState": {
11 "addCrawlerDefinitionState":
12 { /* state of UI of dialog addCrawlerDefinition */ },
13 "crawlerDefinition": { /* UI state of screen

crawlerDefinition */ }
14 },

87



15 "crawlerDefinition": { /* state of crawler definition */ }
16 "crawlerDefinitionState": { /* state of crawler definition

state */ },
17 "form": { /* Redux-form internal state */ }
18 }

11.4 Fetcher component

Data from back end are fetched by customly developed module, which
fetches data automatically. It is using redux-observable streams and it
stores data in the Redux store. Endpoints needs to be declared explicitly.
Source code is located in /frontend/fetcher folder.

Fetcher component needs to have explicitly provided API method
for fetching the result in file /frontend/fetcher/api/API.ts also
define name of redux action associated with this endpoint in file
/frontend/fetcher/Fetcher.ts. After redux action which match end-
point name is dispatched fetcher will automatically start fetching data from
endpoint and dispatch action with suffix _FETCHED when fetched is com-
pleted. In case that an error occurs, action with suffix _ERROR is dis-
patched. Fetched data, error message when error occured and fetching
state is stored in redux store in property fetcher.

88



12. Back end

Back end is server Node.js application. Entry point of this application is
main.js, which is Node.js script. Unlike front end’s entry points, which are
Web pages.

12.1 Back end folder structure

• /package.json, /package-lock.json and /tsconfig.json.

These files are definition of JavaScript and TypeScript project. They
contain basic project metadata and project dependencies.

• /src

Folder with all source code for backend. It contains Express.js config-
uration and Session manager WebSocket server.

• /src/routers

Definition of custom routes for Express.js REST API.

• /src/model

Definition for Sequelize ORM model.

• /src/runner

Implementation of Crawler runner component.

• /src/server_files

Folder with files, which are served statically. These files are used for
page mirroring. It contains copy of muttation-summary library [92],
which is served as static files, which are injected to session (more was
elaborated in subsection 9.2.4).

12.2 Back end API

The crawler has two exposed API: REST API and WebSocket for page mir-
roring. REST API is used by front end and it is potential extension point
of the solution. WebSocket API used to internal communication for page
mirroring feature.

89



REST API is exposed by Express.js server and consists of three major
parts: session management, crawler definition management and crawler
job management. API methods are described in Swagger documentation
enclosed to the thesis in folder /doc/. Express server is defined in file
/src/server.ts and all routes are located in files in folder /src/routers/.

WebSocket server belongs to component session manager. It receives con-
nections from front end and from sessions themselves. Messages are in
JSON format and they contain property type, which can be one of these
values: setBase, initialize, applyChanged, heartbeat and start. De-
tail of protocol can be found in Table 12.1. Connections coming from
session to register itself are accessing HTTP resource with URL end
with /register/:sessionId. All other connections for exchanging DOM
changes are accessing /register/:mirrorId.

Message type Sender/receiver Description

Start new mirror session manager→ session This message
instantiate new
mirror and returns
new mirrorId.

DOM changes session→ session manager DOM changes
emitted by browser
session.

DOM changes session manager→ front end DOM changes
received from
session, which needs
to be applied in
browser.

Heartbeat front end→ session manager This message keeps
WebSocket alive.

Heartbeat session→ session manager This message keeps
WebSocket alive.

Table 12.1: WebSocket protocol for page mirroring.

12.3 Crawler store

Crawler store component stores crawler related entities (entities were de-
fined in chapter 8) in database. Crawler store is using PostreSQL as under-
lying storage. Object–relational mapper (Sequelize library) is used to map
underlying storage data to JavaScript objects, which can be used in Node.js
code. Whole model of Sequelize ORM is in file /src/model/store.ts. When

90



this model is synchronized with PostgreSQL, corresponding table are cre-
ated, therefore developer does not need to manage PostgreSQL in any way
expect installing. ORM model created in /src/model/store.ts is used for
data manipulation from Node.js code.

12.4 Crawler runtime

Whole implementation of DFS algorithm correspoding to subsection 9.3.1 is
in file /src/runner/job_runner.ts. The most import method is runQueue
this method is called by crawler, when user starts crawler job. Pur-
pose of this method is to start listening on RabbitMQ channel with name
task_queue_<crawlerJobId> and start executing command in order to
crawl new data from Web page (process in detail was described in sec-
tion 9.3).

12.5 Session manager

Session manager is managing browser sessions. Whole implementation is
in file /src/session.ts. Another functionality of session manager is to
provide page mirroring functionality described in subsection 9.2.4. For
page mirroring there are important three parts of code: file with Mut-
tationSummary library in folder /src/server_files/, injected function
pageScriptStub() and Session Node.js wrapper class Session.

Folder /src/server_files/ contains all files, which are injected to ses-
sion in order to support MuttationSummary in browser automated ses-
sion. In function pageScriptStub() there is code which handle connect-
ing opened session to session manager. This code is injected to the session
every time session changes URL (see subsection 9.2.4 for more details). On
Node.js server there is created instance of Session for every automated
browser session. This object handles injection of code to session and open-
ing/closing mirroring WebSocket as well.

91



92



13. Deployment

Solution is supporting two types of deployment: production and develop-
ment. Development environment is used by developer and it is optimized
for speeding up the development process. Production is environment is
managed by system administrator and it is used for running application in
stable manner.

13.1 Production environment

Production components are Docker containers deployed on Kubernetes.
There are five different Docker images that solution is using. Front end,
back end, PhantomJS, RabbitMQ and PostgreSQL (see Figure 13.1). De-
ployment manifest is file /deployment/kubernetes.yaml.

Back end image consist of Crawler runner, Crawler storage and Session
manager, which are implemented as one Node.js project stored in /backend.
Its Dockefile is placed in /backend, it is builded by npm run and run by npm
start.

Front end image is running npm build; npm start on start. Its Dockefile
is placed in /frontend and it is inspired by this blog article [93].

XNGINX image contains configuration of proxy. It is defined in deployment
manifest.

Docker image with PostgresSQL is initialized by ORM (Sequelize), therefore
clean image is sufficient. It is defined in deployment manifest.

Kubernetes will manage runtime of components - it will restart them in
case of crash and also it will let scale components (Phantom.js, RabbitMQ)
increasing number of Kubbernetes replicas.

Process of deployment is consist of these steps:

1. Install Kubernetes.

See https://kubernetes.io/docs/setup/ for details.

2. Build Docker images for front end and back end.

93

https://kubernetes.io/docs/setup/


Figure 13.1: Production deployment model.

For building image there are prepared scripts in
/deployment/build_docker_images.sh, which uses
/frontend/Dockerfile and /backend/Dockerfile.

3. Deploy crawler to Kubernetes.

Run kubectl create -f <work_dir>/deployment/deployment.yaml
to create deployment.

4. Enable managment API for RabbitMQ.

Connect to RabbitMQ CLI and run rabbitmq-plugins enable
rabbitmq_management.

5. Test deployment.

Visit http://<kubernetes_ip>:8080/. If deployment was successful,
welcome page of crawler should be shown.

94

http://<kubernetes_ip>:8080/


13.2 Development environment

Development environment let develepor use comfort of hot module replace-
ment for React and continuous compilation of TypeScript sources. Develop-
ment environment needs installed PostgresSQL and RabbintMQ1.

In order to setup developement environment, run set of scripts script for
developer needs to run four command listed below. We recommend run
these commands in terminal multiplex (for example tmux [94]) in multiple
terminal pane. Output of these commands is important to developer as it
contains logs and compile messages. Example setup using iTerm2 [95] is
shown on Figure 13.2.

• /watch_backend.sh

This command starts to compile source TypeScript files *.ts into
JavaScript code *.js. It will watch source files for change and it
will recompile it, therefore if developer make change, he/she does not
need to trigger compilation.

• /watch_frontend.sh

This command starts to compile source TypeScript files *.ts and

*.tsx into JavaScript code *.js. It will watch source files for change
and it will recompile it, therefore if developer make change, he/she
does not need to trigger compilation.

• /start_frontend_dev.sh

For development developer can use Next.js dev script called by com-
mand npm run dev for starting front end. Afterwards he/she will not
use generated files from build but Next.js will start dev server which
provide him/her with hot module replacement [96]. Node that back
end and front end is listening on different ports. To overcome prob-
lems with Same Origin Policy this script runs NGINX proxy defined in
/frontend/nginx.conf.

• /start_backend_dev.sh

This run back end in developer mode. It mean, that it can be debugged
by for example Visual Studio Code debugger, because in listening for
remote debugger on default port.

1We recommend use Docker image library/rabbitmq and library/postgres for de-
velopment environment. Using Docker will save time, because developers do not need to
install PostgreSQL and RabbitMQ from scratch.

95



Figure 13.2: iTerm2 based working environment.

96



Part VI

Conclusion

97





14. Comparison with other
crawlers

This chapter compares proposed solution with other available crawlers.
Goal of this chapter is to show difference of proposed solution from others
and put proposed crawler in context. Each crawler is discussed in context
of requirements set in section 1.3.

14.1 Apache Nutch

Apache Nutch[1] is mature crawler for static Web pages. It is based on
Apache Hadoop data structures for batch processing (crawling process is
implemented using MapReduce jobs). Nutch is designed to be highly scal-
able in distributed environment and it is created for massive parallel pro-
cessing. Apache Nutch is typically good for crawling of large portions of
publicly indexable Web.

Apache Nutch is internally representing found pages by URL, which dis-
qualifies Nutch for fully support crawling of RIAs. There is extension for
pre–rendering HTML page by PhantomJS, however no action on page is in-
voked afterwards. Apache Nutch is following all links in HTML, which is
good strategy for obtaining large amount of pages, however users cannot
define other custom strategy (definitely not visually).

14.2 Scrapy

Scrapy [97] is popular Python framework for crawler creation based on
principle of HTTP programming (therefore not supporting RIA). It can be in-
tegrated to other systems extensively and it is highly customizable, however
developer effort is required. Elementary techniques used for data extrac-
tion are simple CSS/XPath selectors [98]. Developer cannot define these
selectors visually. Developer can also find convenient methods prepared for
link extraction for developer’s convenience.

An internal queue for processing tasks is provided, however it is using mem-
ory or file–system to store pending task and therefore it cannot scale to
more then one server. Scrapy is open source software and there is cloud
based service providing Scrapy with infrastructure called ScrapingHub.

99



14.2.1 Splash

Splash [99] is a service used for helping Scrapy dealing with RIAs. Splash
acts as proxy for Scrapy. It loads Web page in headless browser, waits until
JS is executed, other resources are loaded and then returns a page in format
of HTML to Scrapy. Therefore only initial render of the page is performed,
but crawler can interact with the page in any way. Splash is not a crawler,
it is rather powerful extension for Scrapy.

14.2.2 Portia

Portia [100] is Web application used for visual definition of Web data ex-
tractor. It is using live preview of the Web page to let user visually define
which data to extract from one specific page. When Portia crawls website,
it is starting at specified seed page and it is following all links to obtain all
pages of website. For every page retrieved this way, Portia tries to extract
data by visually defined extractor.

Portia is built on top of Scrapy, therefore it is using queue of URL to crawl
all pages of website. It can handle initial load of JavaScript via Splash, but
not whole RIA.

14.3 Import.io

Import.io is online tool for definition of Web data extractor. It can handle
Web page initialization (by loading in headless browser), however it can-
not manage RIAs. Web extractor is created visually, also Import.io presents
special Magic extractor. This extractor tries to extract data from the page
without user interaction. The magic extractor is not working all times, how-
ever it can handle majority of websites. Implementation of this extractor
is following: “The Magic algorithm looks for the biggest list (with the most
data) on the page. It then uses that list to auto-generate the rows and
columns and bring them into a table. In some cases it can even get the
subsequent pages.” [101]

Import.io use similar strategy for crawling website as Portia. It access all
page by following all links on page and then executes extractor on these
pages. Other option how to obtain all pages with data, is to generate its
URL by regular expression provided by user.

100



Import.io cannot crawl RIAs and it is on cloud solution with closed source
code.

14.4 UiPath

UiPath is a program for solving task called Robotic Process Automation
(RPA). RPA is trying to automate GUI systems which does not have API.
These systems does not need to be browser, but even native applications.
RPA is simulation real user interacting with system. To select the ele-
ment for interaction, RPA uses several techniques from simple “click on
x,y-cooridnate on screen” up to XPath when automating browsers.

As RPA automate browsers they can be used for crawling and data extrac-
tion task as well. This also concludes that RPA handles RIAs. Downside of
RPA is that they are not designed for crawling and data extraction natively,
therefore they provide only basic techniques for selecting elements. Other
downside of UiPath is that it is using virtualized OS with full browser (not
head–less). This will negatively impact demands on CPU a RAM, especially
when crawling in parallel.

UiPath (in general even other RPA) are closest to our crawler. UiPath can
crawl RIA and provide user browser–like experience when defining crawler.
Despite this fact UiPath is not perfect solution of our problem. One reason is
that due its complexity is very demanding on computational resources and
also time to learn how to work with UiPath is much longer than with our
crawler. Other reason is bad extensibility in context of crawling algorithm
a visual selection algorithm. We planned to extend these functionalities in
future and UiPath is not suitable for extension this way.

14.5 Diffbot

Diffbot [102] is crawler and Web data extractor using visual information to
extract data. Differently from previous presented solutions, Diffbot uses
machine learning techniques to find element on page to extract. It is using
WebKit underhood [103] to render page, therefore initial load of page is
handled even if JavaScript is present. Diffbot is using human annotated
dataset to train machine learning model to extract finite set of pages types:
“We’ve identified roughly 20 types of pages that all the Web can fall into.
Article pages, people pages, product pages, photos, videos, and so on. So
one of the fields we return will be what is the type of this thing. Then,
depending on the type, there are other fields.” [104]

101



Limitation of Diffbot is that it cannot handle page of different type than
indentified 20 types. However big advantage of this approach is that Diffbot
does not need any user configuration for crawling pages it is supporting.

14.6 Comparative analysis summary

None of the solutions in this comparison (see Table 14.1 for feature matrix
of these solutions) can optimally solve problems that we decided to deal
with in this thesis (requirements are in section 1.3). There are other so-
lution, which lets the user define crawler and extractor visually however
none of these fully support crawling RIAs. The closest solution to our pro-
posed one is UiPath. UiPath is a program focusing on different task and it
is heavy–weight for crawling RIA. We believe that our solution brings better
potential for crawling as many optimization can be done (see chapter 16).
Immediate added value to our solution in comparison to UiPath is usage of
headless browser, which brings better performance than provisioning whole
OS with browser.

A
p

a
c
h

e
N

u
tc

h

S
c
ra

p
y

S
p

la
sh

P
o
rt

ia

Im
p

o
rt

.i
o

U
iP

a
th

D
if

fB
o
t

O
u

r
so

lu
ti

o
n

Custom crawler logic ✓ n/a ✓ n/a ✓

Custom extractor logic ✓ n/a ✓ ✓ ✓ ✓

Handle RIA ?(1) ?(2) ?(2) ✓ ✓

Visual definition of extractor ✓ ✓ ✓ ✓

High performance ✓ ✓ ✓ ✓ n/a n/a ✓

Crawler extendability ✓ ✓ ✓

On premise ✓ ✓ ✓ ✓ ✓ ✓

Open source ✓ ✓ ✓ ✓ ?(3)

Table 14.1: Comparision of crawlers. (1) Apache Nutch has in-
stallable extension for pre–rendering page HTML by PhantomJS.
(2) Note that Splash and Import.io handles only initial load of
RIA as well, therefore they do not fully support RIA. (3) Source
code will be released on page of the university after thesis re-
lease.

102



15. Conclusion

The purpose of this thesis was to develop a tool that allows user to crawl
Web pages with no programming experience; at the same time, the tool ren-
ders the static Web pages and RIAs indistinguishable. As a result, the tool
provides the user with browsing–like experience when setting up crawler,
and further, the tool supports crawling RIAs.

At the beginning of the thesis, we outline requirements for this new crawler
to ensure that it has features of a universal tool for crawling RIAs. The fol-
lowing part was dedicated to relevant Web technologies and to the analysis
of modern Web pages. We found Web pages which are problematic to crawl
using regular crawlers, but which the proposed crawler will be able to crawl
easily. We also described static pages crawlable with ordinary crawler to
understand portfolio of pages which needs to be crawlable. In the next
part, we presented theoretical approaches for implementation of universal
crawler and we found out that although the problem has been described in
theory, practical implementations for crawling static pages and RIAs were
missing.

Combining our analysis of modern Web pages with analysis of theoretical
crawling approaches, we have put forward a hybrid approach using Web
wrappers defined by CSS selector and model–based crawling. Based on
these chosen techniques, we have designed a crawler tool which would
let user visually extract data from a page. First, the user specifies the
model of the page, which is a sequence of commands executable in the
context of Web page (mouse clicks, keyboard hits, etc.). Second, this model
is used as an input for the crawler and data extractor, which executes these
commands and retrieves data from the page.

The proposed tool was implemented as RIA as well, therefore it provides
user graphical interface and it is convenient for displaying crawled page to
the user. Troubleshooting crawlers is a challenging process and displaying
current state of crawled Web page to the user helps identify the issue with
the crawler faster. Architecture and design of our tools is described in this
thesis.

During design and implementation phases, we found that our solution can
be extended/optimized in ways that we have elaborated on in the next chap-
ter; however, we believe that implementation of this optimization is beyond
the scope of this thesis, mainly because of time constraints. Possible future
extensions and optimizations are elaborated on in the next chapter to let
the reader understand how to extend the solution in the future.

103



104



16. Future work

The proposed tool fulfilled all requirements declared in section 1.3, which
was stated as goal of the thesis. Therefore, the tool is able to help non–
technical users to crawl and extract data from RIAs and these users does
not need to understand difference between static pages and RIAs to suc-
cessfully crawl them.

However, we believe that our tool could help users with crawling Web pages
more. During testing of our tool on Web pages, we found three areas for
future improvements: optimization of crawler performance, automation of
page model creation and page model adaptation.

Performance optimization

Crawler runtime can take a lot time when crawled website is big. There are
many factors influences performance. During testing our tool on Web page,
we identified two main reasons: crawler resets and time need to execute
one command step.

Crawler reset happens, when crawler needs to fork during processing com-
mand with array of values as input (was described in section 9.3). New
forked processes need to re-execute all previous commands from beginning
– this is call the reset. Re-executing commands during the reset is slow.

Possible optimization of time spent on resets:

• When crawler changes URL during processing of command, crawler
can make a reset to page with this URL. However this optimization
has assumption that this URL identifies this page uniquely. Therefore
algorithm for determining if URL represents page uniquely needs to
be developed.

• Reseting session and the start from beginning during reset could be
sometimes slower, than backtracking. Backtracking would be done
by hitting history button. This possible optimization has assumption
that backtracking return crawler in state when it was before execut-
ing command. Therefore algorithm for determination of state uniques
needs to be developed.

• Previous two optimizations have an assumption that crawler needs to
return to same RIA state. In theory this state can be copied as DOM
can be serialized and executed JavaScript state can be snapshotted.

105



Making a copy of DOM and making snapshot of v8 is costly operation1,
however it can be faster than full reset (especially with slow network
request).

• Another methods is developed method by Choi et al. [105]. Authors
are creating model of page using learning algorithm trying to mini-
mize number of restarts this model determines states of RIA and its
equivalence and optimize crawler specifically for this model.

Second reason for slow crawler performance is long time needed to exe-
cute one command. First possible optimization is to not interpret page via
browser. Some page could be interpret via HTML programming, which will
save resources of the server. This optimization has assumption that page is
not RIA (or at least some of command are not JavaScript actions). Crawler
can determine this by executing command sequence using HTTP program-
ming and browser automation in parallel and compare its results. If they
are the same, HTTP programming can be used.

Current implementation is waiting defined constant time to let command
execute. Waiting between command takes a lot of extra time. Problem is
crawler itself cannot determine if command has ended (it is NP–hard prob-
lem). However user can define condition how to recognize that command
has ended.

Automation of page model creation

Creation of page model is time consuming task, specially when more than
one page needs to be crawled. Our tool provides a way to select extracted
elements visually, which help to speed up the process of definition, but we
believe, that our tool could help more user with page model definition in
the future.

Selecting interesting element to crawl by mouse pointer is a easy task for a
person as he/she can see elements he/she wants to select. Current progress
in machine learning, more specifically with convolutional neural network,
helps to solve data processing tasks. This model could be trained for extrac-
tion of data from Web page or at least advising which elements on page is
worth to extract/which element is intend to interact with. Similar approach
was used by Gogar et al. [67], in future work we can expand this by using
their solution.

Machine learning can be used more in future of the crawling. Reinforce-
ment learning could be used in the entire crawling process (transfers on

1And difficult to implement.

106



the page and data extraction). Input for this machine learning task would
be description of data to extract and output extracted data. Initiative to au-
tomate Web robot in similar way has already started, for example Karpathy
et al. [106] created dataset for training reinforcement learning model for
specific Web task. However, no solution is ready yet.

Adaptation of page model

During creating section 4.3 with page case study, we encountered a prob-
lem, when Web design of Sbazar.cz website changed. During website layout
redesign the CSS classes changed and page model was no longer corre-
sponding to Sbazar.cz page, therefore crawler was not able to extract data
from the page using this page model. Solution of this issue is to create new
page model, which requires user interaction. This issue costs users some
time as they need to check regularly if crawler is extracting correct data.
Changing model automatically to reflect site change is called Web wrapper
adaptation and it can be used to make our tool maintenance–free.

107



108



Bibliography

[1] Apache Nutch Highly extensible, highly scalable Web crawler. http:
//nutch.apache.org/, 2018. [Online; accessed 01-February-2018].

[2] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert
Baumgartner. Web data extraction, applications and techniques: A
survey. Knowledge-based systems, 70:301–323, 2014.

[3] Ali Mesbah, Arie Van Deursen, and Stefan Lenselink. Crawling Ajax-
based web applications through dynamic analysis of user interface
state changes. ACM Transactions on the Web (TWEB), 6(1):3, 2012.

[4] The WARC File Format (Version 0.16). http://
archive-access.sourceforge.net/warc/warc_file_format-
0.16.html#anchor1, 2018. [Online; accessed 05-February-2018].

[5] The Official CAPTCHA Site. http://www.captcha.net/, 2018. [On-
line; accessed 05-February-2018].

[6] How to break a CAPTCHA system in 15 minutes with Machine Learn-
ing. https://medium.com/@ageitgey/how-to-break-a-captcha-
system-in-15-minutes-with-machine-learning-dbebb035a710,
2018. [Online; accessed 05-February-2018].

[7] CAPTCHA Bypass done right. http://www.deathbycaptcha.com/,
2018. [Online; accessed 05-February-2018].

[8] reCAPTCHA Protect your site from spam and abuse. https://
developers.google.com/recaptcha/, 2018. [Online; accessed 05-
February-2018].

[9] Wired Captcha is dying. This is how it’s being reinvented for
the AI age. http://www.wired.co.uk/article/captcha-automation-
broken-history-fix, 2018. [Online; accessed 05-February-2018].

[10] The New York Times Facebook Says Cambridge Analytica Harvested
Data of Up to 87 Million Users. https://www.nytimes.com/2018/04/
04/technology/mark-zuckerberg-testify-congress.html.

[11] Jakub Kudela. First nerdy steps in buying an apartment.
https://www.linkedin.com/pulse/first-nerdy-steps-buying-
apartment-jakub-k%C3%BAdela/, 2017. [Online; accessed 05-
February-2018].

[12] Architecture of the World Wide Web, Volume One W3C Recommen-
dation 15 December 2004. https://www.w3.org/TR/webarch/, 2018.
[Online; accessed 06-February-2018].

109

http://nutch.apache.org/
http://nutch.apache.org/
http://archive-access.sourceforge.net/warc/warc_file_format-0.16.html#anchor1
http://archive-access.sourceforge.net/warc/warc_file_format-0.16.html#anchor1
http://archive-access.sourceforge.net/warc/warc_file_format-0.16.html#anchor1
http://www.captcha.net/
https://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-dbebb035a710
https://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-dbebb035a710
http://www.deathbycaptcha.com/
https://developers.google.com/recaptcha/
https://developers.google.com/recaptcha/
http://www.wired.co.uk/article/captcha-automation-broken-history-fix
http://www.wired.co.uk/article/captcha-automation-broken-history-fix
https://www.nytimes.com/2018/04/04/technology/mark-zuckerberg-testify-congress.html
https://www.nytimes.com/2018/04/04/technology/mark-zuckerberg-testify-congress.html
https://www.linkedin.com/pulse/first-nerdy-steps-buying-apartment-jakub-k%C3%BAdela/
https://www.linkedin.com/pulse/first-nerdy-steps-buying-apartment-jakub-k%C3%BAdela/
https://www.w3.org/TR/webarch/


[13] Media Type Specifications and Registration Procedures. https:
//tools.ietf.org/html/rfc6838, 2018. [Online; accessed 06-
February-2018].

[14] Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/
html/rfc2616, 2018. [Online; accessed 06-February-2018].

[15] Usage Statistics and Market Share of HTML for Websites, Febru-
ary 2018. https://w3techs.com/technologies/details/ml-html5/
all/all, 2018. [Online; accessed 06-February-2018].

[16] HTML 5.2 W3C Recommendation, 14 December 2017. https://
www.w3.org/TR/html52/, 2017. [Online; accessed 06-February-2018].

[17] WebIDL Level 1 W3C Recommendation 15 December 2016. https:
//www.w3.org/TR/WebIDL-1/, 2016. [Online; accessed 06-February-
2018].

[18] WebIDL bindings Implementing WebIDL using Javascript
. https://developer.mozilla.org/en-US/docs/Mozilla/
WebIDL_bindings#Implementing_WebIDL_using_Javascript, 2018.
[Online; accessed 06-February-2018].

[19] DOM Living Standard — Last Updated 3 February 2018. https://
dom.spec.whatwg.org/, 2018. [Online; accessed 06-February-2018].

[20] Selectors Level 4 W3C Working Draft, 2 February 2018. https://
www.w3.org/TR/selectors-4/, 2018. [Online; accessed 06-February-
2018].

[21] Document Object Model XPath. https://www.w3.org/TR/2004/NOTE-
DOM-Level-3-XPath-20040226/xpath.html, 2004. [Online; accessed
06-February-2018].

[22] Mutation observers DOM, Living Standard — Last Updated 3 Febru-
ary 2018. https://dom.spec.whatwg.org/#mutation-observers,
2018. [Online; accessed 06-February-2018].

[23] UI Events Legacy MutationEvent events, W3C Working Draft,
04 August 2016. https://www.w3.org/TR/uievents/#legacy-
mutationevent-events, 2016. [Online; accessed 06-February-2018].

[24] Is there a Web 1.0? https://computer.howstuffworks.com/web-
101.htm, 2018. [Online; accessed 06-February-2018].

[25] Tim O’reilly. What is web 2.0. http://www.oreilly.com/pub/a/
web2/archive/what-is-web-20.html, 2005. [Online; accessed 01-
February-2018].

110

https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://w3techs.com/technologies/details/ml-html5/all/all
https://w3techs.com/technologies/details/ml-html5/all/all
https://www.w3.org/TR/html52/
https://www.w3.org/TR/html52/
https://www.w3.org/TR/WebIDL-1/
https://www.w3.org/TR/WebIDL-1/
https://developer.mozilla.org/en-US/docs/Mozilla/WebIDL_bindings#Implementing_WebIDL_using_Javascript
https://developer.mozilla.org/en-US/docs/Mozilla/WebIDL_bindings#Implementing_WebIDL_using_Javascript
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://www.w3.org/TR/selectors-4/
https://www.w3.org/TR/selectors-4/
https://www.w3.org/TR/2004/NOTE-DOM-Level-3-XPath-20040226/xpath.html
https://www.w3.org/TR/2004/NOTE-DOM-Level-3-XPath-20040226/xpath.html
https://dom.spec.whatwg.org/#mutation-observers
https://www.w3.org/TR/uievents/#legacy-mutationevent-events
https://www.w3.org/TR/uievents/#legacy-mutationevent-events
https://computer.howstuffworks.com/web-101.htm
https://computer.howstuffworks.com/web-101.htm
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html


[26] Wired Adobe finnaly kills Flash. https://www.wired.com/story/
adobe-finally-kills-flash-dead/, 2018. [Online; accessed 01-
February-2018].

[27] Microsoft Developer Silverlight Support Roadmap. https:
//blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-
support-roadmap/, 2018. [Online; accessed 01-February-2018].

[28] Same-origin policy MDN web docs. https://
developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy, 2018. [Online; accessed 28-January-2018].

[29] WebDriver W3C Candidate Recommendation 30 March 2017. https:
//www.w3.org/TR/webdriver/, 2018. [Online; accessed 28-January-
2018].

[30] ChromeDriver WebDriver for Chrome. https://sites.google.com/
a/chromium.org/chromedriver/, 2018. [Online; accessed 06-
February-2018].

[31] Ghost Driver. https://github.com/detro/ghostdriver, 2018. [On-
line; accessed 06-February-2018].

[32] Evan Sangaline. It is *not* possible to detect and block chrome head-
less. https://intoli.com/blog/not-possible-to-block-chrome-
headless/, 2018. [Online; accessed 06-February-2018].

[33] Evan Sangaline. JavaScript injection with selenium, puppeteer,
and marionette in chrome and firefox. https://intoli.com/blog/
javascript-injection/, 2018. [Online; accessed 06-February-
2018].

[34] Kubernetes Production-Grade Container Orchestration. https://
kubernetes.io/, 2018. [Online; accessed 20-March-2018].

[35] RabbitMQ. https://www.rabbitmq.com/, 2018. [Online; accessed 06-
February-2018].

[36] PostgreSQL The world’s most advanced open source database.
https://www.postgresql.org/about/, 2018. [Online; accessed 06-
February-2018].

[37] Cybertec Why favor postgresql over MariaDB / MySQL. https:
//www.cybertec-postgresql.com/en/why-favor-postgresql-
over-mariadb-mysql/, 2018. [Online; accessed 06-February-2018].

[38] Sequelize. http://docs.sequelizejs.com/, 2018. [Online; accessed
20-March-2018].

[39] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden
web. Technical report, Stanford, 2000.

111

https://www.wired.com/story/adobe-finally-kills-flash-dead/
https://www.wired.com/story/adobe-finally-kills-flash-dead/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
 https://www.w3.org/TR/webdriver/
 https://www.w3.org/TR/webdriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://github.com/detro/ghostdriver
https://intoli.com/blog/not-possible-to-block-chrome-headless/
https://intoli.com/blog/not-possible-to-block-chrome-headless/
https://intoli.com/blog/javascript-injection/
https://intoli.com/blog/javascript-injection/
https://kubernetes.io/
https://kubernetes.io/
https://www.rabbitmq.com/
https://www.postgresql.org/about/
https://www.cybertec-postgresql.com/en/why-favor-postgresql-over-mariadb-mysql/
https://www.cybertec-postgresql.com/en/why-favor-postgresql-over-mariadb-mysql/
https://www.cybertec-postgresql.com/en/why-favor-postgresql-over-mariadb-mysql/
http://docs.sequelizejs.com/


[40] GNU Wget. https://www.gnu.org/software/wget/, 2018. [Online;
accessed 11-February-2018].

[41] How to crawl website with Linux wget command. http:
//www.tupp.me/2014/06/how-to-crawl-website-with-linux-
wget.html, 2018. [Online; accessed 11-February-2018].

[42] curl command line tool and library for transferring data with URLs.
https://curl.haxx.se/, 2018. [Online; accessed 11-February-2018].

[43] Rhino. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/Rhino, 2018. [Online; accessed 30-March-2018].

[44] JSDom Executing scripts. https://github.com/jsdom/
jsdom#executing-scripts, 2018. [Online; accessed 30-March-
2018].

[45] WebKit A fast, open source web browser engine. https://
webkit.org/, 2018. [Online; accessed 30-March-2018].

[46] Puppeteer Headless Chrome Node API. https://github.com/
GoogleChrome/puppeteer, 2018. [Online; accessed 11-February-
2018].

[47] Github ariya/phantomjs Issue: Archiving the project: suspending
the development. https://github.com/ariya/phantomjs/issues/
15344, 2018. [Online; accessed 30-March-2018].

[48] Justin F Brunelle, Michele C Weigle, and Michael L Nelson. Archiving
Deferred Representations Using a Two-Tiered Crawling Approach.
arXiv preprint arXiv:1508.02315, 2015.

[49] Heritrix Wiki page. https://webarchive.jira.com/wiki/spaces/
Heritrix/overview, 2018. [Online; accessed 11-February-2018].

[50] Bucharest Stock Exchange. The Stock Exchange is for the people!
http://www.bvb.ro/.

[51] bezrealitky.cz prodej a pronájem nemovitostí bez provize. https://
www.bezrealitky.cz/.

[52] Bloomberg European Edition. https://www.bloomberg.com/europe.

[53] Sbazar.cz Bazar a inzerce zdarma. https://www.sbazar.cz/, 2018.
[Online; accessed 27-April-2018].

[54] Amazon.com Online Shopping for Electronics, Apparel, Computers,
Books, DVDs & more. https://www.amazon.com/, 2018. [Online; ac-
cessed 27-April-2018].

112

https://www.gnu.org/software/wget/
http://www.tupp.me/2014/06/how-to-crawl-website-with-linux-wget.html
http://www.tupp.me/2014/06/how-to-crawl-website-with-linux-wget.html
http://www.tupp.me/2014/06/how-to-crawl-website-with-linux-wget.html
https://curl.haxx.se/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://github.com/jsdom/jsdom#executing-scripts
https://github.com/jsdom/jsdom#executing-scripts
https://webkit.org/
https://webkit.org/
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/ariya/phantomjs/issues/15344
https://github.com/ariya/phantomjs/issues/15344
https://webarchive.jira.com/wiki/spaces/Heritrix/overview
https://webarchive.jira.com/wiki/spaces/Heritrix/overview
http://www.bvb.ro/
https://www.bezrealitky.cz/
https://www.bezrealitky.cz/
https://www.sbazar.cz/
https://www.amazon.com/


[55] Alberto HF Laender, Berthier A Ribeiro-Neto, Altigran S Da Silva,
and Juliana S Teixeira. A brief survey of web data extraction tools.
ACM Sigmod Record, 31(2):84–93, 2002.

[56] Suryakant Choudhary, Mustafa Emre Dincturk, Seyed M Mirta-
heri, Ali Moosavi, Gregor Von Bochmann, Guy-Vincent Jourdan, and
Iosif Viorel Onut. Crawling Rich Internet Applications: the state of
the art. In Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research, pages 146–160. IBM
Corp., 2012.

[57] Tomáš Novella. Web Data Extraction, Master Thesis, Univerzita
Karlova, Matematicko-fyzikální fakulta. 2016.

[58] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state trans-
ducers for semi-structured data extraction from the web. Information
systems, 23(8):521–538, 1998.

[59] Nicholas Kushmerick, Daniel S Weld, and Robert Doorenbos. Wrap-
per induction for information extraction. 1997.

[60] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. Automatic wrap-
pers for large scale web extraction. Proceedings of the VLDB Endow-
ment, 4(4):219–230, 2011.

[61] Tomas Grigalis and Antanas Čenys. Generating XPath expressions for
structured web data record segmentation. Information and Software
Technologies, pages 38–47, 2012.

[62] Tomas Grigalis and Antanas Čenys. Unsupervised structured data
extraction from template-generated web pages. Journal of Universal
Computer Science (J. UCS), 20(3):169–192, 2014.

[63] Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart,
and Andrew Sellers. OXPath: A language for scalable data extrac-
tion, automation, and crawling on the deep web. The VLDB Journal,
22(1):47–72, 2013.

[64] Yanhong Zhai and Bing Liu. Web data extraction based on partial
tree alignment. In Proceedings of the 14th international conference
on World Wide Web, pages 76–85. ACM, 2005.

[65] Nitin Jindal and Bing Liu. A generalized tree matching algorithm
considering nested lists for web data extraction. In Proceedings of
the 2010 SIAM International Conference on Data Mining, pages 930–
941. SIAM, 2010.

[66] Shuyi Zheng, Ruihua Song, Ji-Rong Wen, and Di Wu. Joint optimiza-
tion of wrapper generation and template detection. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 894–902. ACM, 2007.

113



[67] Tomas Gogar, Ondrej Hubacek, and Jan Sedivy. Deep Neural Net-
works for Web Page Information Extraction. In IFIP International
Conference on Artificial Intelligence Applications and Innovations,
pages 154–163. Springer, 2016.

[68] Cristian Duda, Gianni Frey, Donald Kossmann, and Chong Zhou.
Ajaxsearch: crawling, indexing and searching web 2.0 applications.
Proceedings of the VLDB Endowment, 1(2):1440–1443, 2008.

[69] Cristian Duda, Gianni Frey, Donald Kossmann, Reto Matter, and
Chong Zhou. Ajax crawl: Making ajax applications searchable. In
Data Engineering, 2009. ICDE’09. IEEE 25th International Confer-
ence on, pages 78–89. IEEE, 2009.

[70] Crawljax Crawling Ajax-based Web Applications. http:
//crawljax.com/, 2018. [Online; accessed 28-January-2018].

[71] Suryakant Choudhary, Mustafa Emre Dincturk, Gregor V Bochmann,
Guy-Vincent Jourdan, Iosif Viorel Onut, and Paul Ionescu. Solving
some modeling challenges when testing Rich Internet Applications
for security. In Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, pages 850–857. IEEE,
2012.

[72] Suryakant Choudhary, Mustafa Emre Dincturk, Seyed M Mirta-
heri, Gregor von Bochmann, Guy-Vincent Jourdan, and Iosif-Viorel
Onut. Model-Based Rich Internet Applications Crawling: “Menu” and
“Probability” Models. J. Web Eng., 13(3&4):243–262, 2014.

[73] PhantomJS Full web stack No browser required. http://
phantomjs.org/, 2018. [Online; accessed 28-January-2018].

[74] Electron Build cross platform desktop apps with JavaScript, HTML,
and CSS. https://electronjs.org/, 2018. [Online; accessed 28-
January-2018].

[75] React A JavaScript library for building user interfaces. https://
reactjs.org/, 2018. [Online; accessed 28-January-2018].

[76] Material-UI React components that implement Google’s Material De-
sign. http://www.material-ui.com/, 2018. [Online; accessed 28-
January-2018].

[77] Next.js Framework for server-rendered or statically-exported React
apps. https://github.com/zeit/next.js/, 2018. [Online; accessed
28-January-2018].

[78] TypeScript JavaScript that scales. https://
www.typescriptlang.org/, 2018. [Online; accessed 28-January-
2018].

114

http://crawljax.com/
http://crawljax.com/
http://phantomjs.org/
http://phantomjs.org/
https://electronjs.org/
https://reactjs.org/
https://reactjs.org/
http://www.material-ui.com/
https://github.com/zeit/next.js/
https://www.typescriptlang.org/
https://www.typescriptlang.org/


[79] React Redux Official React bindings for Redux. https://github.com/
reactjs/react-redux, 2018. [Online; accessed 28-January-2018].

[80] Redux Redux is a predictable state container for JavaScript apps.
https://redux.js.org/, 2018. [Online; accessed 28-January-2018].

[81] Redux Form The best way to manage your form state in Redux.
https://redux-form.com/, 2018. [Online; accessed 28-January-
2018].

[82] redux-observable RxJS 5-based middleware for Redux. Compose and
cancel async actions to create side effects and more. https://
redux-observable.js.org/, 2018. [Online; accessed 28-January-
2018].

[83] Node.js. https://nodejs.org/, 2018. [Online; accessed 28-January-
2018].

[84] Express Node.js web application framework. https://
expressjs.com/, 2018. [Online; accessed 28-January-2018].

[85] ws Simple to use, blazing fast and thoroughly tested WebSocket
client and server for Node.js. https://github.com/websockets/ws,
2018. [Online; accessed 28-January-2018].

[86] RxJS 5 A reactive programming library for JavaScript. https://
github.com/ReactiveX/rxjs, 2018. [Online; accessed 28-January-
2018].

[87] WEBDRIVERI/O WebDriver bindings for Node.js. http://
webdriver.io/.

[88] WebDriver, W3C Candidate Recommendation 30 March 2017 Exe-
cute script. https://www.w3.org/TR/webdriver/#execute-script.

[89] RabbitMQ Management HTTP API. https://rawcdn.githack.com/
rabbitmq/rabbitmq-management/v3.7.2/priv/www/api/
index.html.

[90] RabbitMQ Management Plugin Statistic interval. https://
www.rabbitmq.com/management.html#statistics-interval.

[91] Choose an open source license. https://choosealicense.com/.

[92] rafaelw/mutation-summary rafaelw/mutation-summary. https://
github.com/rafaelw/mutation-summary.

[93] Hasura An Exhaustive Guide to Writing Dockerfiles for Node.js
Web Apps. https://blog.hasura.io/an-exhaustive-guide-to-
writing-dockerfiles-for-node-js-web-apps-bbee6bd2f3c4.

[94] Welcome to tmux! https://github.com/tmux/tmux/wiki.

115

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://redux.js.org/
https://redux-form.com/
https://redux-observable.js.org/
https://redux-observable.js.org/
https://nodejs.org/
https://expressjs.com/
https://expressjs.com/
https://github.com/websockets/ws
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
http://webdriver.io/
http://webdriver.io/
https://www.w3.org/TR/webdriver/#execute-script
https://rawcdn.githack.com/rabbitmq/rabbitmq-management/v3.7.2/priv/www/api/index.html
https://rawcdn.githack.com/rabbitmq/rabbitmq-management/v3.7.2/priv/www/api/index.html
https://rawcdn.githack.com/rabbitmq/rabbitmq-management/v3.7.2/priv/www/api/index.html
https://www.rabbitmq.com/management.html#statistics-interval
https://www.rabbitmq.com/management.html#statistics-interval
https://choosealicense.com/
https://github.com/rafaelw/mutation-summary
https://github.com/rafaelw/mutation-summary
https://blog.hasura.io/an-exhaustive-guide-to-writing-dockerfiles-for-node-js-web-apps-bbee6bd2f3c4
https://blog.hasura.io/an-exhaustive-guide-to-writing-dockerfiles-for-node-js-web-apps-bbee6bd2f3c4
https://github.com/tmux/tmux/wiki


[95] iTerm2: iTerm2 is a terminal emulator for MacOS that does amazing
things. https://www.iterm2.com/.

[96] Hot Module Replacement Webpack documentation. https://
webpack.js.org/concepts/hot-module-replacement/.

[97] Scrapy An open source and collaborative framework for extracting
the data you need from websites. In a fast, simple, yet extensible way.
https://scrapy.org/, 2018. [Online; accessed 09-February-2018].

[98] Selectors Scrapy 1.5.0 documentation. https://docs.scrapy.org/
en/latest/topics/selectors.html, 2018. [Online; accessed 1-
April-2018].

[99] Splash Lightweight, scriptable browser as a service. https://
scrapinghub.com/splash, 2018. [Online; accessed 1-April-2018].

[100] Portia Visual scraping with Portia. https://scrapinghub.com/
portia, 2018. [Online; accessed 1-April-2018].

[101] Import.io Magical new tool: The fastest way to get data from
the web. https://www.import.io/post/magical-new-tool-the-
fastest-way-to-get-data-from-the-web/, 2018. [Online; ac-
cessed 5-April-2018].

[102] Diffbot Turn Websites Into Data in Seconds. https:
//www.diffbot.com/, 2018. [Online; accessed 3-April-2018].

[103] Xconomy Diffbot Is Using Computer Vision to Reinvent the Se-
mantic Web. http://www.xconomy.com/san-francisco/2012/
07/25/diffbot-is-using-computer-vision-to-reinvent-the-
semantic-web/#, 2018. [Online; accessed 3-April-2018].

[104] Xconomy: Diffbot Is Using Computer Vision to Reinvent the Se-
mantic Web. https://www.xconomy.com/san-francisco/2012/
07/25/diffbot-is-using-computer-vision-to-reinvent-the-
semantic-web/3/.

[105] Wontae Choi, George Necula, and Koushik Sen. Guided GUI testing
of Android apps with minimal restart and approximate learning. In
Acm Sigplan Notices, volume 48, pages 623–640. ACM, 2013.

[106] Andrej Karpathy. Mini World Of Bits benchmark. http://
alpha.openai.com/miniwob/index.html, 2016. [Online; accessed 15-
August-2017].

[107] TypeDoc A documentation generator for TypeScript projects. http:
//typedoc.org/.

[108] Swagger: World’s Most Popular API Framework. https://
swagger.io/.

116

https://www.iterm2.com/
https://webpack.js.org/concepts/hot-module-replacement/
https://webpack.js.org/concepts/hot-module-replacement/
https://scrapy.org/
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://scrapinghub.com/splash
https://scrapinghub.com/splash
https://scrapinghub.com/portia
https://scrapinghub.com/portia
https://www.import.io/post/magical-new-tool-the-fastest-way-to-get-data-from-the-web/
https://www.import.io/post/magical-new-tool-the-fastest-way-to-get-data-from-the-web/
https://www.diffbot.com/
https://www.diffbot.com/
http://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/#
http://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/#
http://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/#
https://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/3/
https://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/3/
https://www.xconomy.com/san-francisco/2012/07/25/diffbot-is-using-computer-vision-to-reinvent-the-semantic-web/3/
http://alpha.openai.com/miniwob/index.html
http://alpha.openai.com/miniwob/index.html
http://typedoc.org/
http://typedoc.org/
https://swagger.io/
https://swagger.io/


[109] FindLaw: Controversy Surrounds Screen Scrapers: Software
Helps Users Access Web Sites But Activity by Competitors Comes
Under SCrutiny . http://corporate.findlaw.com/law-library/
controversy-surrounds-screen-scrapers-software-helps-
users.html.

[110] Quora: What is the legality of web scraping? https://
www.quora.com/What-is-the-legality-of-web-scraping.

[111] Salvador Rodriguez. U.S. judge says LinkedIn cannot block startup
from public profile data. http://www.reuters.com/article/us-
microsoft-linkedin-ruling-idUSKCN1AU2BV?il=0, 2017. [Online;
accessed 15-August-2017].

[112] Reuters, Factbox: Who is Cambridge Analytica and what did it
do? https://www.reuters.com/article/us-facebook-cambridge-
analytica-factbox/factbox-who-is-cambridge-analytica-and-
what-did-it-do-idUSKBN1GW07F.

[113] Wikipedia, Web scraping, Legal issues. https://en.wikipedia.org/
wiki/Web_scraping#Legal_issues.

[114] Mike Thelwall and David Stuart. Web crawling ethics revisited: Cost,
privacy, and denial of service. Journal of the Association for Informa-
tion Science and Technology, 57(13):1771–1779, 2006.

[115] About /robots.txt In nutshell. http://www.robotstxt.org/
robotstxt.html.

[116] ArsTechnica: Some websites turning law-abiding Tor users into
second–class citizens. https://arstechnica.com/tech-policy/
2016/02/some-websites-turning-law-abiding-tor-users-into-
second-class-citizens/.

117

http://corporate.findlaw.com/law-library/controversy-surrounds-screen-scrapers-software-helps-users.html
http://corporate.findlaw.com/law-library/controversy-surrounds-screen-scrapers-software-helps-users.html
http://corporate.findlaw.com/law-library/controversy-surrounds-screen-scrapers-software-helps-users.html
https://www.quora.com/What-is-the-legality-of-web-scraping
https://www.quora.com/What-is-the-legality-of-web-scraping
http://www.reuters.com/article/us-microsoft-linkedin-ruling-idUSKCN1AU2BV?il=0
http://www.reuters.com/article/us-microsoft-linkedin-ruling-idUSKCN1AU2BV?il=0
https://www.reuters.com/article/us-facebook-cambridge-analytica-factbox/factbox-who-is-cambridge-analytica-and-what-did-it-do-idUSKBN1GW07F
https://www.reuters.com/article/us-facebook-cambridge-analytica-factbox/factbox-who-is-cambridge-analytica-and-what-did-it-do-idUSKBN1GW07F
https://www.reuters.com/article/us-facebook-cambridge-analytica-factbox/factbox-who-is-cambridge-analytica-and-what-did-it-do-idUSKBN1GW07F
https://en.wikipedia.org/wiki/Web_scraping#Legal_issues
https://en.wikipedia.org/wiki/Web_scraping#Legal_issues
http://www.robotstxt.org/robotstxt.html
http://www.robotstxt.org/robotstxt.html
https://arstechnica.com/tech-policy/2016/02/some-websites-turning-law-abiding-tor-users-into-second-class-citizens/
https://arstechnica.com/tech-policy/2016/02/some-websites-turning-law-abiding-tor-users-into-second-class-citizens/
https://arstechnica.com/tech-policy/2016/02/some-websites-turning-law-abiding-tor-users-into-second-class-citizens/


118



Part VII

Attachments

119





A. Electronic attachments

This thesis has attached electronic materials with source codes for pro-
posed tool and electronic version of this text. Whole electronic attachment
is folder, which is organized as follows:

• /Readme.MD

Description of content of electronic attachment folder.

• /source/

Folder containing all source for whole solution additionally all script
used for building Docker images and running solution.

• /source/backend/

Source code for back end. See section 12.1 for more details.

• /source/frontend/

Source code for front end. See section 11.1 for more details.

• /source/deployment/

Folder which contains Dockerfiles for creation Docker images with
back end and front end. This folder contains deployment.yml file used
for Kubernetes deployment.

• /source/docs/

This folder contains documentation for source code generated using
TypeDoc [107]. This documentation contains comments for all class
and functions used in solution. Folder also contains Swagger [108]
description of REST API exposed by our solution.

• /thesis/

Source LATEX files for this text. These source files can be build using
/thesis/Makefile. This folder also contains PDF version of this text
in file /thesis/master_thesis_fejfar_2018.pdf.

121



122



B. Legality and ethics of
crawling

Web crawlers usually crawls data publicly available on Internet. This im-
plies, that crawler cannot obtain data, which would not be obtainable by
regular user. However owners of Web pages often claims right to con-
tent they share and they do not want their data to be processed in mas-
sive and automated manner. This creates controversy, because crawlers
can be used by commercial entities to gain competitive advantage, how-
ever legislation is in this matter unclear if this behavior is illegal [109].
Good starting point for reader on this topic is this Quora thread https:
//www.quora.com/What-is-the-legality-of-web-scraping. In nutshell
scraping for indexing is usually tolerated behavior, however scraping for
“such as denial of service attacks, competitive data mining, online fraud,
account hijacking, data theft, stealing of intellectual property, unauthorized
vulnerability scans, spam, and digital ad fraud” [110] is considered bad. We
leave reader to decide interpretation of following legal/ethics questions.

There are examples of judgment, which allow companies to crawl publicly
available data [111], however whole topic still creates enormous contro-
versy. One of recent example is company Cambridge Analytica [112], which
took attention by using dataset of personal information about enormous
count of users to provide insight to these user behavior. They are accused
of interfering to presidential election in USA.

Note that legislation is different in every country and therefore crawlers
needs respect origin of crawled Web page in order to satisfy legal con-
straints [113]. We advise to the users not to crawl Web page, if they do
not have explicit permission from website content owners. We advise to the
user to seek more information in work of Thelwall et al. [114] as this thesis
is not focusing on this topic and cannot provide full view on the problematic.

Techniques for prevention of crawling exists, but from technical perspective
they do not prevent is completely. The easiest option is to write term and
condition on the Web site, which prohibits to crawl. Crawler’s user need to
respect these conditions to prevent crawling. More automatized approach
is to expose standardized file robot.txt [115], which is machine readable
by crawlers. Crawlers can read these files automatically before crawling
Web page and stop crawling of parts of website, which is prohibited by
robot.txt. These two techniques are not forced in any way and it is only
on consideration of crawler if they follow them.

There are techniques to ban IP address from which crawler accesses the
website. This techniques can be evade by using VPN, rotating IP addresses

123

https://www.quora.com/What-is-the-legality-of-web-scraping
https://www.quora.com/What-is-the-legality-of-web-scraping


or using Tor. Some website therefore restrict access from Tor network
[116].

124



C. User guide

This document is intended for user of crawler to understand, how to control
proposed crawler. This guide is showing all step needed to use this crawler
tool to extract data from Web pages. Crawler let user define how to extract
data from Web page and automate it.

Crawler is supported on Chrome v67 and newer on computers with resolu-
tion at least 1280x1024px. Note that other browsers will probably work as
well, however crawler is not tested to run smoothly on these browsers.

Crawler can crawl HTML5 Web pages both static and dynamic (with client–
side JavaScript). Crawler enables to define instructions, how to crawl end
extract data from particular Web page. Extracted data can be obtained as
CSV/JSON file or loaded from SQL table.

Note that some Web pages have term and condition, which prohibits au-
tomated crawling and data extraction. Although is can be not forced to
prohibit pages by crawler, it may be illegal in some country to do so. In
any case it is considered as fair/moral behavior to respect term and condi-
tions of the Web page. More information can be found in Appendix B of this
thesis.

C.1 Terminology

There are several often occurring terms used in this guide. Understanding
of these term is important to effectively work with this guide.

Crawler is program which is used to automate interaction with a Web page.
It is used for navigation on Web page and extraction data from the Web
page.

Command is one specific instruction of crawler. For example it can be click
on button or extraction of text from elements on Web page.

Page model is sequence of commands, which is defined by user. Page model
is used by crawler as instructions for crawl data from Web page. Page model
contains information about starting URL and what portion of data to export.

Crawler variables are used during running crawler to store value gener-
ated by commands. Variable can be used as input to other command. For
example command which select element by CSS select returns id of this

125



elements, which can be stored to variable called “a”. Next command can
click on element with id stored in “a”, therefore on element selected by CSS
selector in previous step.

Crawler job represents running of crawler. Job can be started or stopped.
Crawler job which is running is producing result, which can be downloaded
by the user or stored in SQL DB.

Browser session Crawler is automating browser to obtain data from Web
pages. When crawler is connected to browser it is open session, which is
corresponds which one user interacting with browser. This session opens
one browser tab and it is able to execute crawler runtime’s command. This
session can be also mirrored to crawler tool UI in anytime.

C.2 Accessing solution

Crawler tool can be accessed using browser. Administrator of the system
provide user URL on which is tool served. After loading this URL, user
should see Welcome screen (Figure C.1). Welcome screen contains intro-
duction information about tool and shortcut for creating new crawler in
bottom right corner.

Figure C.1: Welcome screen.

In top left corner, there is a menu (Figure C.2), which can be accessed
by hamburger button. Menu enables to the user navigate between main
screens: crawler list, crawler jobs and browser session.

126



Figure C.2: Menu

C.3 Page model creation and definition

By click on plus button on welcome screen or plus button on crawler list
screen, user can create new page model. Crawler will show dialog form
(Figure C.3) with two text fields: Crawler name and default input. User will
set these and click on create.

Figure C.3: Add crawler dialog.

Crawler then creates page model with instruction go to URL which is set to
default input and navigate to crawler definition screen (Figure C.4).

User can see preview of the crawled web page on right side, exported vari-
ables and current variable state on the left upper side. On left bottom side,
user can see sequence of commands of currently defined page model.

C.3.1 Adding command to page model

Page model is sequence of command, which are displayed in left panel dur-
ing model definition (Figure C.5). Adding of new command is process user
will spend most of the time of page model definition. Commands can be
added manually or visually.

127



Figure C.4: Crawler definition screen.

By clicking on “add adv. command” user can set any command from Ta-
ble C.1. This let user set all input and output parameters manually, which
enable low level manipulation with Web page.

In command panel (Figure C.5), there is list of used variables. Variables
shows its current value and can be selected for export by switch button.
Exported variables are used as output of crawler.

If user clicks “yield result” command “yield” will be added to page model.
When this command is executed during crawler runtime, crawler will yield
new result with value of exported variables.

If user click “click on element”, “extract elements” or “extract element’s
link” visual mode will be started. During visual mode (Figure C.6), user
can select element he/she wants to interact in preview of the crawled page.
Selected elements will be highlighted. CSS selector which is representing
selected element/s is displayed in top above the page preview. When user
confirm selection of the element series of new commands is added to page
model. For example when “click on element” is invoked command “find
elements” with input variable “locator” set to CSS selector is added to page
model. Output of this command is stored in variable “lastClicked” and it is
used as input for next command “element click”.

128



Figure C.5: Crawler definition screen detail.

Figure C.6: highlighting.

C.4 Running crawler

Created crawlers can be showed on crawler list page (Figure C.7). Crawler
can be run simply by hitting button “run”. Shortcut how to run crawler
is from crawler definition screen (Figure C.4). When crawler is run, new
crawler job is created. Progress of crawler job is displayed on crawler jobs
screen (Figure C.8). Crawler can be stopped in crawler job detail page by
hitting button “stop”.

129



Command name Input variables Output variables

Go to url url

Get url url

Get title title

Find element locator elementId

Find elements locator [elementId]

Find element from
element

locator, elementId elementId

Find elements from
element

locator, elementId [elementId]

Get element attribute elementId, name value

Get element text elementId text

Get element tag name elementId name

Get element rectangle elementId x, y, width, height

Element click elementId

Element send keys elementId, keyCode

Get page source html

Executing script jsCode output

Take screenshot screenshot

Take element
screenshot

elementId screenshot

Table C.1: List of advanced commands. Input variables needs to
be supplied to command in order to execute action and obtain
results.

C.5 Troubleshooting crawlers

On page browser session, user can find list of all opened browser sessions.
These sessions can be opened and showed to the user (by page mirroring).
Preview of browser session shows current state of crawled page, therefore
user is able to determine what is problem with crawler, if any.

C.6 Exporting results

During runtime of crawler user can watch crawler status on crawler jobs
page (Figure C.8). First five results are shown and total count of results
as well. When crawler stops or when user decides there is enough results,

130



Figure C.7: Crawler list screen.

he/she can export data for further analysis or for checking that crawler
works properly.

Figure C.8: Crawler jobs screen.

C.6.1 Export to CSV and JSON

In crawler job detail there is button “show results”, which will show results
in specified format.

131



C.6.2 Export to SQL table

Most advanced export of crawled data is to use SQL table, which is used
to store results. This is not typically done by end user of crawler, but
rather by developer, who want to integrate crawler with other system.
Table content can be retrieved using simple SQL query SELECT * FROM
results_<crawler_job_id>. Credentials of SQL database will provide ad-
ministrator of crawler.

132


	I Introduction
	Introduction
	Challenges
	Search state space explosion
	Page dynamism
	Captcha
	Challenges summary

	Goals
	Requirements
	Organization of thesis


	II Background
	Web technologies
	World Wide Web and Web resources
	HTML documents
	DOM

	Rich Internet Application
	Same–origin policy
	WebDriver

	Other technologies
	Docker
	RabbitMQ
	PostgreSQL


	III Analysis
	Analyzing Web pages
	Page categorization
	Categorization based on page dynamism
	Categorization based on generative mechanism

	Web page interpretation
	HTTP programming
	DOM interpretation and JavaScript execution
	Browser automation
	Web interpretation summary

	Case study of Web pages crawling
	Bucharest stock exchange
	Bezrealitky
	Bloomberg
	Sbazar
	Amazon

	Case study summary

	Web crawling and Web data extraction
	Web data extraction categorization
	Web Wrappers
	Tree–based techniques
	Hybrid systems 

	Web crawling
	General RIA crawler
	Model–based crawler


	Analysis summary

	IV Design
	Solution design
	Roles
	Solution overview and functionalities
	Basic decomposition of solution
	User interface
	Out of scope


	Data model
	Stored data
	Crawler definition model

	Architecture
	Front end application architecture
	Presentational layer
	User interface application state

	Back end application architecture
	Application interface
	Crawler definition process
	Visual definition of locators
	Page mirroring

	Crawler runtime and algorithm
	Depth first search implementation
	Message queue technology selection



	V Implementation
	Implementation overview
	License

	Front end
	Front end folder structure
	React components
	Application state
	Fetcher component

	Back end
	Back end folder structure
	Back end API
	Crawler store
	Crawler runtime
	Session manager

	Deployment
	Production environment
	Development environment


	VI Conclusion
	Comparison with other crawlers
	Apache Nutch
	Scrapy
	Splash
	Portia

	Import.io
	UiPath
	Diffbot
	Comparative analysis summary

	Conclusion
	Future work
	Bibliography

	VII Attachments
	Electronic attachments
	Legality and ethics of crawling 
	User guide
	Terminology
	Accessing solution
	Page model creation and definition
	Adding command to page model

	Running crawler
	Troubleshooting crawlers
	Exporting results
	Export to CSV and JSON
	Export to SQL table




