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Abstract 

Glutamate carboxypeptidase II (GCPII) usually called prostate specific membrane 

antigen (PSMA) is membrane bound metallopeptidase expressed mainly in prostate 

carcinoma (PCa). Agents targeting GCPII suitable for both imaging and treatment of PCa 

are in development and they show promising results in advanced clinical trials. Some studies 

showed that GCPII may serve also as PCa blood serum marker, but this has not been 

validated due to the lack of methods suitable for accurate detection of GCPII in human blood. 

Moreover, GCPII is also expressed in brain, where it cleaves inhibitory N-acetyl-α-L-

aspartyl-L-glutamate (NAAG) to release excitatory L-glutamate and GCPII inhibition has 

been shown to be neuroprotective in animal models of several neuropathies. Tight binding 

inhibitors of GCPII have been identified by rational design, but all have poor bioavailability 

and thus cannot be used in clinics. Identifying new scaffolds by 'brute force' screening 

methods is thus essential; however, no such method for GCPII has been developed so far. 

Glutamate carboxypeptidase III (GCPIII) is also expressed in brain and cleaves 

NAAG. It is thus an important protein for understanding of GCPII function as well as GCPII 

targeting in medicine. 

Here, we focused on development of novel methods for quantification of both enzymes 

and screening of their inhibitors. First, we developed qRT-PCR and radioenzymatic assays 

to quantify GCPII and GCPIII in human and mice tissues and proved lack of GCPII in murine 

prostate and intestine. We also developed several orthogonal assays for detection of GCPII 

in blood and determined GCPII blood levels in healthy and PCa individuals. Unfortunately, 

we showed that GCPII is not useful as a serum marker of PCa. Finally, we developed a novel 

method for enzyme detection (DIANA), which is based on dual recognition of the enzyme 

by immobilized antibody and DNA-linked inhibitor. We showed on the example of GCPII 

and CAIX, which is also a putative cancer marker and potential drug target, that this method 

is useful not only for ultrasensitive enzyme detection but also for screening of enzyme 

inhibitors without the need to purify the target enzyme. This makes DIANA a superior tool 

for biomarker detection and drug discovery.  



 

 

Abstrakt 

Glutamát karboxypeptidasa II (GCPII), známá také jako prostatický specifický 

membránový antigen (PSMA), je membránová metalopeptidasa exprimovaná zejména na 

buňkách karcinomu prostaty (PCa). Látky cílící GCPII pro zobrazování a léčbu PCa jsou ve 

vývoji a ukazují nadějné výsledky v pokročilých fázích klinického testování. Některé studie 

ukázaly, že GCPII by mohla být využita také jako krevní marker PCa, což ale zatím nebylo 

potvrzeno kvůli absenci metod vhodných pro přesnou detekci GCPII v krvi.  

GCPII je exprimována také v mozku, kde štěpí inhibiční N-Acetyl-α-L-aspartyl-L-

glutamát (NAAG) na excitační L-glutamát a inhibice GCPII je neuroprotektivní ve zvířecích 

modelech několika neuropatií. Silné inhibitory GCPII byly nalezeny pomocí racionálního 

vývoje, ale všechny vykazují nedostatečnou biodostupnost aby mohly být využity v klinické 

praxi. Nalezení nových strukturních motivů je tedy nezbytné, nicméně zatím nebyla vyvinuta 

žádná metoda vhodná pro účinné testování inhibitorů GCPII.  

V mozku se nalézá také málo prozkoumaná glutamát karboxypeptidasa III (GCPIII), 

která také štěpí NAAG. Její studium je tak nutné pro pochopení funkce GCPII a pro cílení 

GCPII v medicíně.  

V této práci jsme se zaměřili na vývoj nových metod pro kvantifikaci obou enzymů a 

pro hledání jejich inhibitorů. Nejprve jsme vyvinuli qRT-PCR a radioenzymové stanovení 

pro kvantifikaci GCPII a III v lidských a myších tkáních a ověřili, že GCPII se v myši na 

rozdíl od člověka nenachází v prostatě a tenkém střevu. Dále jsme vyvinuli několik vzájemně 

se doplňujících stanovení pro detekci GCPII v krvi a určili jsme jimi hladiny GCPII v krvi 

zdravých lidí a pacientů trpících PCa. Bohužel jsme ukázali, že GCPII patrně nelze využít 

jako sérový marker PCa. Nakonec jsme vyvinuli zcela novou metodu detekce enzymů 

DIANA založenou na vazbě enzymu na protilátku a jeho detekci skrze inhibitor navázaný na 

DNA oligonukleotid. Na příkladu GCPII a CAIX, což je další nádorový marker a potenciální 

terapeutický cíl, jsme ukázali, že tato metoda je vhodná nejen pro ultracitlivou detekci 

enzymů, ale také pro účinné hledání jejich inhibitorů bez potřeby purifikovaného enzymu. 

To dělá DIANA metodu výjimečným nástrojem pro detekci biomarkerů a vývoj léčiv.  
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1. Introduction 

1.1. Glutamate carboxypeptidases II and III (GCPII and 

GCPIII) 

Glutamate carboxypeptidase II (GCPII) is homodimeric type II integral membrane 

glycoprotein located on the cytoplasmic membrane with active site facing to the extracellular 

space (uniprot entry FOLH1_HUMAN). 

GCPII was first described independently as three distinct proteins: (i) as pteroyl-poly-

glutamyl hydrolase sequentially cleaving off the γ-glutamates from folyl-poly-γ-glutamate 

(FPG) isolated from human intestine in 1986 (hence its name folate hydrolase, FOLH1) [1], 

(ii) as N-acetylated-alpha-linked acidic dipeptidase cleaving N-acetyl-α-L-aspartyl-L-

glutamate (NAAG) to N-acetyl-L-aspartate (NAA) and L-glutamate isolated from rat brain 

in 1987 (hence its name NAALADase) [2] and (iii) as an antigen overexpressed in a prostate 

carcinoma cell line also in 1987 (hence its name prostate specific membrane antigen, 

PSMA) [3]. In the pre-genomics era, it took almost ten years for the scientific community to 

realize that all three represent an identical protein [4, 5]. PSMA remained the mostly used 

name despite recommendation of International Union for Biochemistry and Molecular 

Biology to call this enzyme GCPII. 

GCPII is in humans predominantly expressed in prostate [6-9] and its expression is 

confined to the secretory epithelial cells [6]. Prostate carcinoma is derived from these cells 

and carcinoma cells preserve the high expression of membrane bound GCPII [10, 11] (see 

Fig. 1 on page 10). It is also secreted to the seminal plasma [12]. GCPII has been observed 

also in neovasculature of non-prostatic solid tumors but not in normal vasculature [11, 13, 

14]. GCPII is also highly expressed in kidney [10] where it localizes to luminal side of the 

proximal tubules [6, 11, 15], in brain [6, 16] where it has been found on neurons [15] and 

astrocytes [16], and in jejunal brush border [1, 6, 17]. GCPII has been found also in liver, 

spleen [6, 9] and in some studies also in blood [18].  

GCPII represents a promising target for diagnosis and treatment of several diseases. 

An 111In-labeled anti-GCPII antibody known under the trade name ProstaScint is used for 

imaging of prostate carcinoma in vivo [19]. New generation of tracers consisting of small 
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molecule inhibitor conjugated to radionuclide, which are suitable not only for imaging but 

also for targeted treatment, are in clinical development [20, 21]. At the same time, GCPII 

serum levels may also be used for diagnostics [18]. Moreover, it has been shown that GCPII 

inhibition may be neuroprotective in some pathological conditions of central nervous system 

[22-24]. Recently, its role in the development of inflammatory bowel disease has been also 

proposed [25, 26]. To enable clinical exploitation of GCPII, high-affinity competitive 

inhibitors of GCPII have been identified by rational design [27-29]. However, they bear 

multiple negative charges and show poor bioavailability [30, 31] and therefore identifying 

new inhibitor scaffolds is essential to target GCPII in human brain. The possibilities of 

therapeutic targeting of GCPII will be described in more detail in later sections. 

 A    B    C 

    

Figure 1: GCPII expression in selected healthy and cancerous tissues 

Immunochemical staining of GCPII in selected tissues obtained from www.proteinatlas.org. (A) GCPII is 

expressed in proximal tubules of healthy kidney, (B) in secretory epithelial cell of prostate gland and (C) in 

prostate carcinoma cells (PCa), which are derived from the secretory epithelia. 

Glutamate carboxypeptidase III (GCPIII) is the closest homolog of GCPII. It is also 

a homodimeric integral membrane glycoprotein, which is also located on the cytoplasmic 

membrane and shares ~70% amino acid sequence identity and the same topology with GCPII 

(uniprot entry NALD2_HUMAN). 

GCPIII has been much less thoroughly studied than GCPII and it has been cloned and 

characterized only in 1999 for the first time. It has been shown that it also possesses N-

acetylated-alpha-linked acidic dipeptidase activity (hence its name NAALADase 2) [32]. 

This activity has been later confirmed also for murine GCPIII [33]. However, both studies 

used unpurified GCPIII in lysates of transfected cell. Purified recombinant human GCPIII 
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has been vigorously characterized later by Hlouchova et al. This study confirmed that human 

GCPIII cleaves NAAG, however with about 10 fold lower efficiency than GCPII. It also 

showed that GCPII inhibitors inhibited GCPIII with similar potency [34]. Recently, it has 

been shown that mouse GCPIII can cleave also β-citryl-L-glutamate (BCG) to form citrate 

and L-glutamate [35] and that it is identical to the membrane bound BCG hydrolase initially 

isolated from rat testis more than thirty years ago [36, 37]. 

GCPIII tissue expression is not well described, as antibodies selective for GCPIII are 

lacking. Using RT-PCR and northern blot, highest amount of GCPIII mRNA has been found 

in human testes and to a lesser extent in ovary, spleen, placenta and heart [32]. Northern blot 

analysis showed GCPIII in mouse ovary, testes and lung [33]. The highest BCG hydrolysis 

was observed in mouse testis, uterus and bladder and to a lesser extent also in kidneys, lungs 

and other tissues [35]. In rat, highest BCG hydrolyzing activity was observed in testis, lung 

and heart, but it was detected also in kidney, intestine, brain and other tissues [36]. 

Unfortunately, different sets of tissues were analyzed in these studies and direct comparison 

is not possible, however, they consistently showed GCPIII presence in reproductive system 

(testis, ovary and uterus). 

1.1.1. Substrates of GCPII and GCPIII and their physiological role 

1.1.1.1. N-acetyl-α-L-aspartyl-L-glutamate (NAAG) 

Both GCPII and GCPIII cleave neurotransmitter N-acetyl-α-L-aspartyl-L-glutamate 

(NAAG) to create N-acetyl-L-aspartate (NAA) and L-glutamate (Fig. 2 on page 12), though 

GCPIII with about ten fold lower efficiency [34, 38]. NAAG is present in brain in up to 

milimolar concentrations, which makes it one of the most abundant peptide neurotransmitters 

in human brain [39, 40]. Both GCPII and GCPIII are also expressed in the brain [16, 32] and 

human GCPII has been shown to be present on outer membrane of astrocytes in humans [16] 

in mice [41] and in rats [42]. Astrocytes are cells supporting neurons and their projections 

surround most glutamatergic synapses [43]. GCPII on astrocytic membrane can thus 

participate in the modulation of synaptic transmission by cleaving NAAG and producing 

another neurotransmitter glutamate, which is likely the physiological role of GCPII in the 

brain [38, 44]. The key to understand the physiological role of NAAG cleavage are the 

different effects of NAAG and glutamate within the brain [45] (Fig. 3 on page 14). 
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Figure 2: Cleavage of NAAG by GCPII or GCPIII in brain 

Neuroprotective NAAG is cleaved by both GCPII and GCPIII and N-acetyl-aspartic acid and excitatory L-

glutamic acid is produced.  

The excitatory role of glutamate 

Glutamate is an excitatory neurotransmitter, which activates both ionotropic and 

metabotropic glutamate receptors and excess of glutamate signaling leads to excitotoxicity. 

Ionotropic glutamate receptors are ligand gated ion channels and are subdivided into groups 

based on glutamate analogs activating them: NMDA (activated by N-methyl-D-aspartate), 

AMPA (activated by α-amino-3-hydroxy-5-methyl-4-isoxasolepropionate) and kainate 

receptors (reviewed in [46]). These receptors are located mostly on synaptic membrane of 

the downstream neuronal dendrite and are responsible for the transmission of the signal [46, 

47]. Metabotropic receptors are G-coupled proteins and are also divided into three classes: 

group I consisting of mGluR1 and 5, group II consisting of mGluR2 and 3 and group III 

consisting of mGluR4, 6, 7 and 8. They act via second messengers and their response to 

glutamate is thus more complex; group I is activatory and promotes glutamate release when 

present, group II and III inhibit release of glutamate. Group I receptors are mostly located 

postsynaptically, whereas group II and III presynaptically; mGluR3 and 5 are also present 

on astrocytes (reviewed in [48]). Under normal conditions, extracellular glutamate 

concentration in brain is very low (<1µM) and its concentration in the synaptic cleft rises to 

milimolar levels only after release of the presynaptic vesicles and is again rapidly lowered 

by the action of excitatory amino acid transporters (EAATs) on both neurons and astrocytes 

[47, 49, 50]. Excessive glutamate release leads to NMDA receptor mediated increase of 

calcium ions in postsynaptic neurons and consequently their death followed by additional 

release of glutamate, which starts cascade effect of cell death [51, 52]. This process is known 
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as glutamate-mediated excitotoxicity and its implication has been reported in several central 

nervous system (CNS) disorders, including ischemic stroke [50] and neurodegenerative 

disorders such as Parkinson disease, Alzheimer disease and Huntington disease [53]. These 

effects may be, in principle, counteracted by administration of NMDA receptor antagonists 

such as phencyclidine or ketamine. However, these compounds elicit severe side effects in 

animal models and it is unclear, whether NMDA receptor can be targeted [49, 54, 55]. 

The neuroprotective role of NAAG 

NAAG, on the other hand, has neuroprotective effects and is inactivated by GCPII. 

NAAG is synthetized in neurons from NAA and glutamate, is packaged to vesicles by sialin 

[56] and is released upon stimulus to the synaptic cleft [57]. Two reasons make the study of 

physiological role of NAAG very difficult: (1) contamination of NAAG preparations with 

glutamate, which activates with high-potency all glutamate receptors and (2) the presence of 

GCPII in neuronal tissues, which cleaves NAAG and produces glutamate. It is therefore 

necessary to use ultra-pure NAAG preparations and to employ GCPII inhibitors in 

physiological studies. The contamination of NAAG with glutamate may have been indeed 

responsible for some of the reported NAAG activities [44, 58-60]. Nevertheless, there is 

strong evidence that NAAG both in vitro and in vivo selectively activates mGluR3 and not 

other metabotropic receptors (reviewed in [24, 44, 57]). On neurons, NAAG activates 

presynaptic mGluR3 causing inhibition of glutamate release and thus providing a negative 

feedback loop [57, 61, 62]. mGluR3 is also present on the surface of astrocytes, where its 

activation by NAAG leads to secretion of transforming growth factor β (TGF-β) which has 

neuroprotective effects [63-66]. The role of NAAG in acting on NMDA receptors is less 

clear. Some studies showed that NAAG is not binding to NMDA receptors [60, 67], some 

showed it is an antagonist [68] and some showed it is even an agonist, which does not bind 

to other ionotropic glutamate receptors [69] and most recent study suggested that these 

effects may be pH dependent [70].  

After release, NAAG is cleaved by GCPII and resulting NAA and glutamate are 

removed from extracellular space by EAATs on both neurons and astrocytes; glutamate is 

then transported back to the neurons in the form of glutamine [57]. NAAG is thus acting as 

neuroprotective agent and inhibition of its inactivation by GCPII inhibitors has been shown 
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to be neuroprotective [22]. Importantly, beneficial effects of GCPII inhibition are abolished 

in mGluR3 KO but not in mGluR2 KO mice [24] and are blocked by the administration of 

mGluR3 antagonists (such as LY341495) in wild type animals [61, 71, 72], which confirm 

that NAAG acts via this receptor. 

 

Figure 3: Proposed mechanism of action of N-acetyl-α-L-aspartyl-L-glutamate (NAAG) 

During synaptic transmission, both glutamate and NAAG are released from presynaptic vesicles. Glutamate 

acts as excitatory neurotransmitter via its activation of ionotropic postsynaptical NMDA receptors. NAAG can 

activate mGluR3 both on presynaptic neuron, where it inhibits release of glutamate, and on glial cell, where it 

leads to secretion of neuroprotective transforming growth factor β (TGF-β). NAAG is inactivated by GCPII, 

which hydrolyzes NAAG to release L-glutamate and N-acetyl-L-aspartate (NAA), which are reabsorbed by the 

excitatory amino acid transporters (EAATs) on both neurons and glial cells. Adapted with changes from [73]. 

1.1.1.2. Folyl-poly-γ-glutamates (FPG) 

Poly-γ-glutamylated forms of folate (vitamin B9) are other substrates of GCPII [4, 74] 

and its cleavage by GCPII is essential for absorption of dietary folates [75, 76]. Folate is an 

essential enzyme cofactor serving as a source of single carbon units in different oxidative 

states in single carbon transfer. Humans cannot synthetize folate and the only source is thus 

dietary folate, which is present in the poly-γ-glutamylated form. The γ-linked glutamates are 

sequentially cleaved off at the jejunal brush border by GCPII in humans and pigs [75, 76] 

but not in rats and possibly also in other organism, in which they are cleaved by γ-glutamyl 

hydrolase (GGH) which is localized in the lysosomes of enterocytes [77, 78].  
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Cleavage of γ-glutamyl chain yields folate, which is the only form which can be 

transported by the enteral folate transporter in human and mouse (proton-coupled folate 

transporter, PCFT1; reviewed in [79]). Folate is then directly exported to bloodstream and 

later absorbed by the liver, where it is either transformed to the poly-γ-glutamylated form by 

folyl-poly-γ-glutamate synthetase (FPGS) and stored (γ-glutamyl chain may be later 

removed by the action of liver GGH) or transformed to 5-methyltetrahydrofolate (5MeTHF) 

by the action of dihydrofolate reductase (DHFR), serine hydroxymethyl transferase (SHMT) 

and methylenetetrahydrofolate reductase (MTHFR) and then exported to the bloodstream. 

Folate is absorbed by the peripheral tissues by reduced folate carrier (RFC) where it is stored 

in the form of poly-γ-glutamylated folate (reviewed in [79-81]) (see Fig. 4 on page 16 for 

summary). While 5MeTHF is the primary form of folate in blood plasma, the poly-γ-

glutamylated folate is present at about 50-fold higher concentration in red blood cells [82]. 

In case poly-γ-glutamylated folate would leak out of senescent red blood cells, then 

glutamates needs to be cleaved off before reabsorption; the GGH present in plasma probably 

cannot cleave at neutral pH [82] and GCPII expressed in renal tubules may thus play a role 

in reabsorption of such folates. 
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Figure 4: Metabolism of folate 

(A, B) Dietary folyl-poly-γ-glutamate (FPG) is cleaved in small intestine by GCPII and folate and L-glutamate 

is produced. (B) Folate is then transported by the enteral folate transporter (proton-coupled folate transporter, 

PCFT1) and then directly exported to bloodstream and later absorbed by the liver, where it is either transformed 

to the FPG form by folyl-poly-γ-glutamate synthetase (FPGS) and stored (γ-glutamyl chain may be later 

removed by the action of liver GGH) or transformed to 5-methyltetrahydrofolate (5MeTHF) by the action of 

dihydrofolate reductase (DHFR), serine hydroxymethyl transferase (SHMT) and methylenetetrahydrofolate 

reductase (MTHFR) and then exported to the bloodstream. Folate is absorbed by the peripheral tissues by 

reduced folate carrier (RFC) where it is stored in the form of FPG. 5MeTHF is the primary form of folate in 

blood plasma. Inspired by [81]. 

1.1.1.3. β-citryl glutamate (BCG) 

BCG has been recently identified as a novel substrate of murine GCPIII enzyme, but 

not murine GCPII [35] (Fig. 5 on page 17). BCG was first identified in newborn rat brain, 

where its concentration reaches up to 1 milimolar while decreasing with age [83]. High levels 
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of BCG were detected also in other organs of newborn rats such as kidneys, heart, intestine, 

testis and lung and its levels decreased with age with the exception of testes, where its 

concentration was higher in adult rats [84]. Physiological role of BCG is not known, but there 

is some evidence it may play an important role during neuronal development and 

spermatogenesis [84, 85] and that it could serve as metal chelator [86, 87].  

 

Figure 5: Cleavage of BCG by GCPIII. 

β-citryl-L-glutamic acid (BCG) is cleaved to citric acid and L-glutamic acid by the action of GCPIII. 

1.1.1.4. Biosynthesis of NAAG and BCG 

NAAG and BCG are synthetized by Ribosomal Modification Protein RimK Like 

Family Members A and B (RIMKLA and RIMKLB) and N-acetyltransferase 8 like protein 

(NAT8L) in mice. RIMKLA (also called NAAGS-II) and RIMKLB (also called NAAGS-I) 

share 85% sequence identity and both are able to ligate NAA and glutamate to NAAG by the 

consumption of ATP with similar effectivity, but only RIMKLB is able to ligate citrate and 

glutamate to form BCG (the efficiency of RIMKLA is about 100 fold lower) [88-90]. Even 

though both enzymes are able to prepare NAAG, this reaction can happen only at sites 

expressing simultaneously also NAT8L, which is synthetizing NAA [88, 89]. Additionally, 

it has been shown that RIMKLA is able to catalyze also ligation of two glutamates to NAA 

and thus forming tripeptide N-acetyl-α-L-aspartyl-α-L-glutamyl-L-glutamate (NAAG2), 

which is also present in mouse brain and is probably also substrate of murine GCPII [90]. 

The role of NAAG2 is completely unclear and it has to be noted that it is synthetized by 

RIMKLA with about 1000-fold lower efficacy than NAAG and its concentration in the 

mouse brain regions is about 100-fold lower than of NAAG [90-92]. 
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It is not much known about the expression profiles of these enzymes. By Northern blot, 

the highest expression of RIMKLA has been shown in mouse brain and spinal cord [90], 

while highest RIMKLB expression has been shown in mouse thymus [89]. Human RNA 

expression data shown at www.proteinatlas.org show high expression of NAT8L in cerebral 

cortex, adipose tissue, testis and kidney, highest expression of RIMKLA is observed in 

cerebral cortex while the expression in other tissues is low and RIMKLB is expressed quite 

ubiquitously, at highest levels in brain, smooth muscle, testis, endometrium and placenta. 

This putative RIMKLB tissue distribution coincides well with the reported GCPIII tissue 

profile [32]. 

1.1.2. Molecular structure of GCPII and GCPIII 

GCPII is a homodimeric integral membrane glycoprotein located on the cytoplasmic 

membrane [93, 94]. Each monomer consists of 750 amino acids that form short cytoplasmic 

tail at N-terminus (19 amino acids), a single pass transmembrane helix (24 amino acids) and 

a large extracellular part (707 amino acids) bearing the active site. It is heavily N-

glycosylated and molecular weight of each monomer is thus about 110KDa, deglycosylation 

leads to the complete loss of enzymatic activity [95-98]. 

This full-length protein usually called PSMA is the most prevalent form of GCPII but 

also truncated variant termed PSM' missing amino acids 1-59 was discovered. In contrast to 

membrane bound PSMA, PSM' protein is in the prostate carcinoma cell line LNCaP located 

in cytosol, but it is also able to cleave NAAG and is glycosylated. It is therefore product of 

posttranslational modification of the PSMA protein [99] rather than product of alternatively 

spliced mRNA variant, which is also called PSM' [100]. It is unclear, whether this soluble 

form is present in the blood and seminal plasma; however, GCPII was detected in these 

matrices by 7E11 antibody recognizing an intracellular epitope, which suggests that mostly 

the full-length protein is present [12, 18, 101, 102]. 

Crystal structure of the extracellular portion of GCPII (amino acids 44-750) has been 

solved and revealed active site with dinuclear zinc center coordinated by His377, Asp387, 

Glu425, Asp 453 and His553 and catalytic Glu424. It consists of three domains: apical 

(amino acids 117-351), C-terminal (591-750) and protease-like domain (57-116 and 352-

590) [103, 104] (Fig. 6 on page 19). Overall fold of all three domains is very similar to the 
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Transferrin receptor 1, which is not enzymatically active and shares ~25% amino acid 

sequence identity [105]. The fold of the protease-like domain and spatial organization of zinc 

coordinating residues and catalytic glutamate is common even with the distant human 

homolog Glutaminyl cyclase, which converts glutaminyl into pyroglutamyl peptides and 

shares as little as ~10% identity [106, 107]. The active site, which is formed by residues from 

all three domains, is deeply buried and is accessible via ~20Å long tunnel [104]. Catalytic 

mechanism has been modelled via QM/MM and confirmed by the crystal structure of the 

inactive mutant Glu424Ala in complex with NAAG. It showed carboxyl of Glu424 as proton 

shuttle and hydroxide anion coordinated by the zinc ions as the attacking group hydrolyzing 

the peptide bond. In the Michaelis complex, NAAG is bound by several positively charged 

residues (Arg210, Arg534, Arg536 and Lys699) [108]. Multiply positively charged active 

site represents a challenge for the design of non-polar inhibitors, which would be brain 

penetrant.  

 

Figure 6: Crystal structure of extracellular portion of GCPII in complex with inhibitor. 

Only extracellular part of GCPII homodimer is shown, one monomer is depicted in the cartoon and second in 

the surface representation. Each monomer consist of three domains: the C terminal (green), the apical (blue) 

and the protease like (pink). The deeply buried active site is created by residues from all three domains. The 

two zinc cations in the active site are represented as cyan spheres, calcium and chloride ions as red and magenta. 

Urea-based inhibitor with a polyethylene glycol linker reaching to the surface of the protein is depicted in ball 

and stick representation (carbon atoms in yellow, oxygen atoms in red and nitrogen atoms in blue). Structure 

PDB code: 4NGP [109].  
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GCPIII is also a homodimeric integral membrane glycoprotein. It shares also the same 

topology with GCPII: each monomer consists of a single transmembrane helix (24 amino 

acids) which connects short cytoplasmic N-termini (7 amino acids) with large extracellular 

part bearing the active site. Crystal structure of GCPIII has been solved and it showed very 

similar fold to GCPII and almost identical active site, with biggest differences being N509S 

substitution and lower occupancy of one of the zinc atoms [110]. This amino acid substitution 

between GCPII and GCPIII is common between human and mice and it is probably 

responsible for the ability of GCPIII to cleave BCG. Collard et al. showed that GCPII cannot 

cleave BCG and that S509N substitution in GCPIII completely abolish BCG cleaving activity 

but not NAAG cleaving activity [35]. 

1.1.3. Other putative functions of GCPII 

The role of GCPII in prostate is not known and it has been speculated that it could 

serve as a receptor for yet undiscovered ligand [111]. This is based on the observations that 

(1) GCPII has similar fold as Transferrin receptor [105], (2) it undergoes both constitutive 

and antibody induced internalization [94, 112] and (3) it is transported after endocytosis back 

to the cell surface via recycling endosomal vesicles [113] (analogously to Transferrin 

receptor). However, no ligand has been identified so far. 

GCPII was reported to participate in regulation of several cellular processes. In line 

with its expression in endothelial cells in neovasculature, GCPII has been shown to promote 

angiogenesis [114] and this regulation is linked to GCPII enzymatic activity via generation 

of pro-angiogenic peptides via cleavage of laminin peptides produced by the matrix 

metalloproteases [115, 116]. It has been also shown to promote cell proliferation [117] or to 

be associated with the anaphase-promoting complex [118] but these reports are still waiting 

to be validated by other groups. 

1.1.4. Mouse is an important model organism to study GCPII function 

Mouse represents an important model organism for study of physiological role of 

GCPII and of its possible role for treatment of different diseases. It has been most widely 

used for evaluating GCPII directed imaging agents of prostate cancer on xenografts (e.g. in 

[119-128]), for evaluating GCPII targeted therapy in prostate cancer (e.g. [20, 129-133]) and 
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for evaluating of beneficial effects of GCPII inhibition in several neurological disorders 

(reviewed in [57]). Mouse genome contains both GCPII and GCPIII orthologs, which share 

85 and 88% identity to its human counterparts. It has been shown that GCPII tissue 

expression profile is in mouse very similar to humans, which is important for its use as a 

model organism. Most notably, mice express high levels of GCPII in brain, kidney and testis 

[35, 38, 134], but not in prostate or small intestine [15, 134]. 

The role of GCPII has been also studied on mice with deleted GCPII. GCPII knockouts 

were prepared independently by three different groups. While the Coyle group reported that 

GCPII deletion lead to early embryonic death [135, 136], the Neale and Zhong groups 

reported mice with deleted GCPII developing normally to the adulthood [38, 137]. These 

studies clearly showed the absence of GCPII protein in the homozygous GCPII null mice 

and therefore there is no clear explanation for this striking discrepancy. Both studies also did 

not report any significant neurological defects of the knockout mice and they even reported 

that knockout mice were less susceptible to traumatic and ischemic brain injury [23, 38, 137, 

138]. These findings suggest that GCPII is likely a valuable target of therapeutic intervention 

in neurological disorders and that its targeting should not cause severe side effects. 

1.1.5. Inhibitors of GCPII 

Several classes of GCPII inhibitors have been discovered so far and all bind to the 

substrate cavity. Since the active site of GCPII is multiply positively charged and GCPII thus 

prefers acidic residues, the inhibitors also bear multiple negative charges [34, 104, 139]. The 

inhibitors also have a functional moiety, which binds to the dinuclear zinc center, while 

displacing the coordinated hydroxyl. Based on this group, GCPII inhibitors are divided into 

four major groups: phosphorus containing compounds (phosphonates, phosphinates and 

phosphoramidates) [27], urea derived compounds [28], thiol based compounds [29] and 

hydroxamates [140]. 

GCPII inhibitors can have low nanomolar to subnanomolar potency. This is not 

surprising as GCPII binds also its substrates tightly: KM value of NAAG is ~200nM and of 

FolGlu1 ~20nM; moreover, GCPII is also inhibited by the reaction product glutamate (Ki ~ 

20µM) and its analog quisqualate (Ki ~ 200nM). 2-phosphonomethyl-pentandioic acid (2-

PMPA, IC50 = 0.3nM) was the first synthetized subnanomolar inhibitor [27] and later also 
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phosphinate analogs with similar potencies were prepared [141]. More recently, also 

phosphoramidate inhibitors with mid nanomolar potency have been synthetized [142]. 

Several years after 2-PMPA, first urea based inhibitors with nanomolar potencies were 

synthetized [28], which turned out to be useful compounds due to straightforward synthesis 

and modularity [143]. Urea based compound ZJ-43 with subnanomolar potency was also 

synthetized [71, 72]. Later, a basic scaffold consisting of Lys-Urea-Glu was established 

[123]; amino group can be easily modified, which enabled easy radiolabeling of these 

compounds and fluorinated or iodinated compounds with mid to low picomolar potencies 

later called DCFPyl (see Fig. 8 on page 27) and DCIBzL were prepared [122, 144]. The first 

orally available inhibitor was 2-(3-mercaptopropyl)-pentandioic acid (2-MPPA; IC50 = 

90nM) [29]. Recently, hydroxamate inhibitor 4-Carboxy-α-[3-(hydroxyamino)-3-

oxopropyl]-benzenepropanoic acid with mid nanomolar potency was prepared [140, 145]. 

Detailed reviews of the development of GCPII inhibitors are in [146, 147], structures of 

discussed inhibitors are shown in Fig. 7. 

 

Figure 7: Structures of selected GCPII inhibitors 

Structures of inhibitors discussed in text are shown, see text for more details. Inhibition potencies expressed as 

IC50 or Ki are taken from publication IV for L-glutamic acid and quisqualic acid, from ref. [148] for 2-MPPA 

and 2-PMPA, from ref. [142] for phosphoramidate inhibitor, from ref. [72] for ZJ-43, from publication X for 

Ac-Lys-Urea-Glu scaffold, from ref. [144] for DCIBzL and from ref. [145] for hydroxamate inhibitor. 

1.1.6. GCPII is therapeutic target in brain 

The physiological role of GCPII inactivating neuroprotective NAAG and forming 

excitatory glutamate and thus modulating neuronal activity makes it an attractive target for 
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exploration as possible drug target. First, it has been shown that GCPII inhibitors decrease 

concentrations of extracellular glutamate after ischemia, while increasing NAAG; at the 

same time, high doses of GCPII inhibitors do not cause adverse behavioral changes or 

deficits in learning and memory in animals [22]. Later, it has been shown that deletion of 

murine GCPII leads to healthy phenotype, which is more resistant to brain damage after brain 

injury [23, 137]. Finally, positive effects of GCPII inhibition has been demonstrated over the 

past two decades in a number of animal models of different neurological conditions including 

stroke and traumatic brain injury, pain and peripheral neuropathy, drug addiction, 

schizophrenia and multiple sclerosis (reviewed in [23, 44, 57, 67, 149, 150]). 

However, development of human drugs targeting GCPII is challenging due to the 

molecular structure of known inhibitors. All potent GCPII inhibitors bear multiple negative 

charges, which leads to poor bioavailability. Even though fosfonate inhibitors (mainly 2-

PMPA) and urea based inhibitors (mainly ZJ-43) proved very valuable in studying role of 

GCPII in animal models of neuropathies [22, 71, 72, 151], none of them is orally available. 

Even the prodrug of ZJ-43 had to be administered intraperitoneally to mice [152]. The only 

orally available analogs are the thiol-based compounds [29, 153] and 2-MPPA (GPI-5693, 

Fig. 7) was administered in an exploratory Phase I study to 25 healthy individuals. This study 

showed that it was possible to achieve plasma exposures that were effective in animal model 

of neuropathic pain without severe side effects on the CNS. However, gastrointestinal side 

effects were observed more frequently (38% of cases) and this compound was not further 

clinically developed [30]. There are other ongoing efforts to achieve safe and efficient GCPII 

inhibitor plasma and CNS concentrations. One study examined CNS levels of the most potent 

GCPII inhibitor 2-PMPA (Fig. 7) after intranasal administration and showed higher brain 

penetrance compared to intraperitoneal administration [31]. Another promising approach to 

increase oral availability and brain penetrance being investigated in animal models is the 

administration of prodrugs producing thiol compounds [154] or 2-PMPA [155, 156] or even 

hydroxamate inhibitors [157]. 

None of these efforts fully solved the pharmacological issues of the GCPII inhibitors 

and the search for novel scaffolds is thus still relevant. Recently, one effort to identify novel 

scaffolds via high-throughput screening using fluorescence polarization assay was reported 
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[158]. However, this assay was unable to identify novel inhibitory scaffolds, which may be 

the result of its low sensitivity as seen on the used reference compounds. 

1.1.7. GCPII is theranostic target in prostate cancer 

Prostate carcinoma (PCa) is the most prevalent cancer in men in western world. 

Fortunately, it usually forms slow growing tumors and most of the PCa affected individuals 

does not die due to the disease. On the other hand, it readily forms metastases in other organs 

including bones, it does not respond to the most chemoterapeutics and growth of the tumor 

is usually reduced only by androgen-deprivation therapy. In the course of the treatment, the 

tumor stops to respond to this therapy and metastatic castration-resistant PCa (mCRPC) 

develops, which eventually kills the patient. The only curative treatment is surgical removal 

of prostate (radical prostatectomy), but it has to be performed before the disease has spread 

out of the prostate, otherwise it has no beneficial effect. Therefore, an early and accurate 

diagnosis and the ability to discover (micro) metastases in the lymph nodes and other organs 

is critical [159-161]. 

Accurate diagnosis and imaging of both primary and metastatic PCa is challenging. 

Most PCa are discovered by PSA test, but the disease have to be confirmed by prostate biopsy 

followed by histopathological examination [162]. The primary tumor cannot be accurately 

imaged by usual imaging techniques due to its slow metabolic rate and its diffuse growth, 

which is further complicated by the low blood flow in the prostate. The slow metabolic rate 

complicates also the detection of metastases. Clinicians are thus seeking for techniques, 

which would complement the anatomic information provided by MRI or CT and would 

enable to discover PCa lesions. Such functional information may be provided by bone scan 

or positron emission tomography (PET) or single photon emission computed tomography 

(SPECT). Bone scan usually gives two-dimensional information and uses either 18F-NaF or 

99Tc-MDP (methylenediphosphonate), can detect only bone lesions and suffers from low 

selectivity. On the other hand, PET provides three-dimensional information and is suitable 

for the whole body scan. However, 18F-FDG (fluoro-deoxyglucose), which is used for PET 

of other malignancies, does not perform well in PCa. Today, 11C and 18F choline derivatives 

are used as PCa tracers, but they suffer from several drawbacks and there is a clear need for 

the development of new tracers (reviewed in [160, 163]). 
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Development of a PCa targeted imaging agent would not only improve PCa diagnostics 

and disease staging; but it may also be used for targeted treatment when loaded with 

appropriate radionuclide. While the soluble PSA protein secreted by the prostate carcinoma 

cells has turned out to be a useful serum marker and an excellent tool to monitor residual 

disease after radical prostatectomy [161], membrane bound GCPII (PSMA) may be the ideal 

anchor to target imaging and/or therapeutic agents to the prostate carcinoma (reviewed in 

[160, 163-167]). Many agents suitable for both diagnostics and therapy of PCa (hence 

theranostic agents) are now in clinical development and are briefly discussed below. 

1.1.7.1. Imaging of prostate cancer 

Primary challenges of PCa imaging are: (1) to detect primary tumor in the prostate to 

facilitate an early diagnosis; (2) to detect (micro)metastases in lymph nodes and other organs 

to enable correct selection of patients suitable for radical prostatectomy and (3) to detect 

metastases in the patients after radical prostatectomy to enable early start of their therapy. 

Antibodies for PCa imaging 

First GCPII targeted imaging agents were radiolabeled antibodies. An 111In-labeled 

antibody 7E11 suitable for SPECT sold under the trade name ProstaScint is used for imaging 

of prostate carcinoma in vivo [19]. However, this antibody recognizes an intracellular 

epitope, which is hidden on live cells [102]. It is thus used only marginally in clinical praxis 

[168]. To overcome these limitations, antibody J591 recognizing an extracellular epitope was 

prepared [14]. Its conjugates with 111In and 89Zr suitable for imaging were prepared and 

tested in clinical trials [169, 170]. Even though the 89Zr labeled antibody showed promising 

sensitivity, interests of the clinicians moved to the development of small molecule imaging 

agents. They have at least one big advantage compared to antibodies: thanks to their fast 

pharmacokinetics, it is possible to image PCa shortly after injection of the tracer (few hours) 

[171], while it is necessary to wait several days after injection of antibody conjugates [170, 

172] and radioisotopes with much shorter half-life can be used, which minimizes the 

radiation dose (hours vs. days). 
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Small molecules for PCa imaging 

The use of radiolabeled GCPII inhibitors to target prostate cancer is being intensively 

studied during the recent few years. Fig. 8 on page 27 shows structures of selected 

synthetized and tested compounds, which are discussed in this text. They consist of the 

"targeting moiety" which is mostly the scaffold Lys-Urea-Glu and which is linked through a 

various linker to the halogenated or metal chelating moiety. The structure of the linker is 

important for the potency and biodistribution [127] and the metal chelator is usually either 

HBED-CC [128] or DOTA [126]. Mostly used radioligands are suitable either for SPECT 

(99Tc, or 111In or 123I) or for PET (18F, 68Ga, 124I). Several fluorinated agents have been 

synthetized: DCFBC [124], which is an example of targeting moiety distinct from the Lys-

Urea-Glu moiety used in all other compounds listed in Fig. 8, DCFPyl [144] and newer 

PSMA-1007 [173]. Several 99mTc containing compounds were also prepared: 99mTc-L1 

[123], series of compounds around MIP-1404 (Molecular insight pharmaceuticals code) 

[174, 175] and newest 99mTc-PSMA-I&S [176]. Iodinated compound DCIBzl (Fig. 7) and 

almost identical MIP-1095 were prepared with several different isotopes [122, 144, 177]. 

Finally, agents chelating 68Ga were also prepared: 68Ga-PSMA-HBED-CC also called as 

68Ga-PSMA-11 or 68Ga-DKFZ-PSMA-11 [128] and newer compounds with optimized linker 

moiety 68Ga-PSMA-617 [126, 127] or 68Ga-PSMA I&T [20], both with DOTA chelator 

enabling also binding of 177Lu or 225Ac for therapy (see Fig. 8). 

All these compounds were tested not only in animals, but also in human trials and many 

of them showed promising results. The state of the art is summarized for example in [160, 

163-165, 167] and only selected compounds and clinical trials will be discussed here. 



27 

 

 

Figure 8: Structures of small molecules for PCa imaging and treatment 

Structures of compounds discussed in text are shown, see text for more details. Tested radionuclides for each 

compound are also listed. 

Clinical evaluation of 68Ga-PSMA-11 

Definitely, the most tested agent is the 68Ga-PSMA-11 (Fig. 8) which is approaching 

phase III clinical trial. Many retrospective and prospective trials with imaging of tumor 
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metastases in patients with biochemically recurrent cancer (BCR, defined as the rise of PSA 

serum level above 0.2 ng/ml in patients after radical prostatectomy and meaning that further 

treatment is necessary) were done, each with tens to hundreds patients [178-183] in total with 

more than thousand patients [184]. These studies consistently showed detection of at least 

one lesion in ~90% of patients with PSA level above 2.0 ng/ml, in ~75% with PSA above 1 

ng/ml and in ~50% with PSA under 1.0 ng/ml or even 0.5 ng/ml. At the same time, no false 

positives were observed and specificity was virtually 100% [163]. A case study report 

comparing imaging by 68Ga-PSMA-11 and generic 18F-FDG is shown in Fig. 9 on page 31. 

Several studies also compared 68Ga-PSMA-11 performance side by side with the state 

of the art imaging with 11C or 18F choline derivatives [179, 181, 182, 185, 186]. 68Ga-PSMA-

11 was much more sensitive especially at low PSA levels: it was able to find up to 4-fold 

more lesions in patients with low PSA levels [181] and in most studies all choline positive 

lesions were positive also with 68Ga-PSMA-11 (with the exception of few lesions in [182]), 

while 68Ga-PSMA-11 was able to find lesions in up to 44% of choline negative patients [179]. 

However, the tracer shows also some background: intense staining is observed in kidney and 

salivary glands, moderate in lacrimal glands, liver, spleen, small and large intestine.  

These promising results lead to the evaluation, whether 68Ga-PSMA-11 may be useful 

even for the discovery of primary tumors, i.e. primary diagnosis. In these studies comprising 

almost 100 individuals, patients were imaged before radical prostatectomy and PET/MRI 

was correlated to the histopathological results and MRI. PET imaging had higher sensitivity 

of about 70-90% and specificity 90% [187-190].  

Finally, its ability to discover lymph-node metastases was also tested on a cohort of 

130 patients undergoing prostatectomy with pelvic lymphadenoctemy [191]. 68Ga-PSMA-11 

PET was superior to morphological imaging with CT or MRI and it was able to find ~68% 

of the histologically positive lymph nodes with 99% specificity. These data show 

consistently superior performance of this tracer and many clinical studies are currently under 

way, including Phase II/III study (clinicaltrials.gov ID NCT02678351). 

Clinical evaluation of other 68Ga ligands 

Another 68Ga tracer is the recently prepared 68Ga-PSMA-I&T (Fig. 8). It showed 

similar performance to 68Ga-PSMA-11 in first study with 83 patients [192]. It has been also 
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loaded with slower decaying isotope 111In for radioguided surgery. Such surgery could 

remove also small lymph node metastases during or after prostatectomy and lead to longer 

disease free survival. The proof-of-principle was shown on five patients (one with primary 

PCa, four with BCR) in [191]. Follow-up study with 31 patients with BCR (PSA level 0.5-

2.5) showed decrease of PSA level after surgery by at least 50% in 77% of patients, PSA 

dropped below 0.2 ng/ml in 60% of cases [193]. 

In addition, 68Ga-PSMA-617 tracer has been prepared (Fig. 8). It has been primarily 

designed for loading with 177Lu for treatment, but also 68Ga loaded variant was prepared. The 

linker region was thoroughly optimized, which lead to better biodistribution and, in contrast 

to PSMA-11, it does not accumulate in kidney or spleen (up to 50-fold decrease) and tumor 

get the highest dose [126, 127]. This is extremely important for its intended use for therapy. 

Clinical evaluation of 18F ligands 

Several 18F compounds have been prepared and tested. The first 18F-DCFBC (Fig. 8) 

was tested in small studies with less than 20 patients and it showed poor performance 

compared to the gallium tracers. Its high background is probably caused by its slow clearance 

from blood [194-196]. Nevertheless, there is at least one larger active study on 

clinicaltrials.gov (90 individuals, NCT03173924).  

Much better is the compound 18F-DCFPyL (Fig. 8) which showed better performance 

than 68Ga-PSMA-11 in sensitivity and tumor to background ratio. Its low background is 

probably thanks to its rapid renal clearance [197-199]. However, it has been tested only on 

limited number of patients (<50) but several clinical trials with hundreds of subjects are 

active (NCT03471650, NCT03160794, NCT03181867, NCT03173924 and NCT03232164).  

An even improved 18F tracer have been synthetized in 2017: 18F-PSMA-1007 (Fig. 8) 

is cleared from blood rapidly, but not via kidney and it does not accumulate in urinary 

bladder, which may be especially useful for finding primary tumors in prostate. It is cleared 

with similar rate as 68Ga-PSMA-11 (ideal signal to background is therefore 2-3 hours after 

tracer injection). Imaging of only ~10 patients has been reported so far [171] but also a case 

study has been reported showing the detection of micro metastasis in patient with PSA < 

0.08ng/ml [200]. Studies with larger number of patients will probably follow to evaluate the 

potential of 18F-PSMA-1007. 
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Clinical evaluation of other ligands 

The first imaging agents tested in human were the 123I loaded MIP-1072 and MIP-1095 

[201] (Fig. 8). The latter also showed very low renal clearance and retention of up to 48 

hours, which may be important for its possible therapeutic use with 131I [201]. Later, also 124I 

loaded MIP-1095 was tested with 28 patients and it showed high uptake only in salivary and 

lacrimal glands, whereas only moderate in kidney, liver and intestine [202]. 

Technetium loaded tracers were also prepared for SPECT imaging. 99mTc-MIP-1404 

showed good performance in patients [203] and now finishes Phase III study 

(NCT02615067) under the trade name Trofolostat (Fig. 8). 

There is also one another PCa tracer under clinical evaluation, which is not GCPII 

targeted: 18F-fluorocyclobutane-1-carboxylic acid (fluciclovine), which is a synthetic analog 

of L-leucine and is preferentially taken up by the PCa cells and gliomas via the amino acid 

transporter ASCT2. Such tracer may be useful in imaging of dedifferentiated PCa which have 

lost GCPII expression (reviewed in [163]) and there is indeed at least one active clinical trial 

evaluating simultaneous administration of 68Ga-PSMA-11 and 18F-fluciclovine 

(clinicaltrials.gov identifier NCT03515577). 

Finally, also fluorescent conjugates targeting GCPII made from both small molecules 

and antibodies have been developed and tested in animals [120, 125, 204]. They may find 

use in fluorescence guided surgery (see e.g. da Vinci system from Intuitive surgical, Inc.) 

which would be superior to the radio-guided surgery thanks to the real-time imaging [205]. 

In addition, certain nanoparticle based systems have been developed for both antibodies and 

small molecules targeting GCPII [206-208]. Some of these systems are designed to be useful 

also for therapy, nice example is the conjugate of GCPII inhibitor and maytansinoid 1 (DM-

1) loaded with 68Ga [133]. Any of these conjugates have yet been tested in human trials. 
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Figure 9: Case study of 18F-FDG vs. 68Ga-PSMA PET in metastatic prostate cancer 

Upper part shows intense staining of metastatic PCa with 68Ga-PSMA ligand while the bottom part shows very 

weak staining of metastatic PCa with 18F-FDG (fluoro-deoxyglucose). Note the intense staining of brain with 
18F-FDG vs. virtually no staining with 68Ga-PSMA. Adopted from ref. [166].  

1.1.7.2. Detection in blood serum 

While the targeting of GCPII for imaging of PCa is extremely promising, its possible 

role as a serum marker is unclear. Since we focused on this topic in the studies presented in 

this thesis, the current state of knowledge is thoroughly discussed later in the introduction to 

publication III as well as in discussion and is therefore skipped here. 

1.1.7.3. Treatment of prostate cancer 

There is only small step from targeted imaging agents to targeted therapy: to replace a 

positron emitting radionuclide suitable for PET having half-life of ~1-2 hours (18F, 68Ga) 

with toxic α (225Ac) or β- emitter (131I or 177Lu) having half life of ~5-10 days. The half-life 

of the isotope has to be shorter than the stability of the antibody in plasma to lower the 

toxicity. Another possibility is to ligate the antibody or targeting moiety to a toxic compound 

to form antibody drug conjugates (ADCs) or small molecule drug conjugates (SMDCs). 

Small molecules have some advantages: (1) they are not immunogenic (antibodies have to 

be humanized), (2) have shorter clearance time and non-selective toxicity due to the cleavage 
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of the conjugates is low and (3) have larger availability and tissue penetrance, which may be 

especially important in the prostate tissue which has low blood supply. 

Antibodies for PCa treatment 

First agents tested for targeted PCa therapy were antibodies. The antibody 7E11 labeled 

with 90Y was tested in phase I and phase II [209, 210] but it failed to elucidade any PSA 

decline while showing significant toxicity and its development has thus been stopped.  

The antibody J591 conjugated with 177Lu was tested in Phase II trial with 47 patients 

suffering from mCRPC. It elucidated both PSA decline and significantly higher overall 

survival (22 vs. 12 months in the group with lower dosis, p=0.03) in 32 patients treated with 

Phase I maximum tolerated dose (MTD) of 70mCi/m2, but many patients suffered from dose 

limiting toxicities (DLT): as much as ~50% suffered from grade 4 thrombocytopenia 

necessitating blood transfusions. At the same time, even slightly lower dose (65mCi/m2) 

showed much lower efficacy and the adverse side effect are thus limiting the use of this 

conjugate [211, 212]. Even though there are still several active trials evaluating J591 

antibody (unconjugated, 177Lu or 225Ac labeled) at clinicaltrials.gov, there was no Phase III 

trial and no approval. 

Also ADCs with various toxins were prepared and tested in human trials: e.g. (1) 

conjugate with DM-1 showed little efficacy and dose-limiting neurotoxicity in human trial, 

probably due to the cleavage of disulfide bond between antibody and toxin [129, 213]; (2) 

conjugate of monomethyl auristatin E (MMAE) [131, 132], which was recently tested on 

very limited number of patients (n=6) and four of them showed decline of PSA of at least 

30% but detailed results have not yet been disclosed (clinicaltrials.gov identifier 

NCT02020135). 

Small molecules for PCa treatment 

Most recent advances are in the field of small molecule conjugates and most thoroughly 

tested is the 177Lu-PSMA-617 conjugate (Fig. 8). It has been tested on several hundreds 

patients in different hospitals [214-224]. These studies on mCRPC showed up to 80% 

response rate, at least 50% decline in PSA level in 30-60% patients, up to 12 months 

progression free survival and some complete responders, while low serum levels of alkaline 
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phosphatase were predictive of better response and longer survival (see also [166]). The 

toxicity was acceptable, with grade 4 toxicities in less than 10%. Highest dose was reached 

in tumor, while the dose in kidney and parotid was about 3-fold lower [217]. Several trials 

with hundreds of patients are active (e.g. NCT03042468, NCT03042312 and 

NCT03454750). This conjugate was also prepared and tested with α-emitting 225Ac. First 

results look very promising showing similar response rate as with 177Lu and ~10% of 

complete responses lasting over two years [225-227]. 

A newer 177Lu-PSMA-I&T (Fig. 8) has been tested in 100 mCRPC patients. It showed 

acceptable toxicity with grade 4 in less than 10% with the most prevalent side effect being 

dry mouth. At least 50% decline in PSA level has been observed in 32% and median 

progression free survival was 4 months [21, 228]. These data suggest lower efficacy than 

with 177Lu-PSMA-617. Finally, 131I MIP-1095 (Fig. 8) was tested in two studies and it 

showed reduction in PSA of at least 50% in 60-70% patients and tolerable toxicity [202, 

229]. 

These data confirm that GCPII is a valuable target for targeted therapy and hopefully 

it is just a matter of time until anti-GCPII agents will help PCa patients. The possibility of 

both imaging and targeting the same protein is appealing, since it may be easy to select the 

most responsive patients in advance [230].  
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1.2. Methods for selective protein detection 

Many diseases are screened by detecting blood levels of selected target proteins, e.g. 

liver or heart damage or prostate cancer, and selective and sensitive detection of protein in 

complex biological matrices is thus major challenge in clinical analytics. 

1.2.1. Immunoassays 

Nowadays golden standard for selective protein detection in biological matrices are 

immunoassays with sandwich ELISA being the most prominent example [231]. They have 

been developed in 1960s and 1970s [232, 233]. Their huge impact is evidenced by the fact, 

that Rosalyn Yallow has been awarded with Nobel prize in 1977 for her pioneering work in 

the field of immunoassays, which enabled the first detection of insulin in human plasma 

[233]. Web of Science search for ELISA returns about 150,000 results (10,000 per year in 

recent years), which shows its extensive and persisting use in research. 

 In sandwich ELISA, an analyte is captured by an immobilized antibody, then probed 

with a second enzyme-linked antibody and quantified via a reaction catalyzed by the linked 

enzyme [231]. The linked enzyme is most commonly horseradish peroxidase and is detected 

mostly with chromogenic substrates such as OPD (o-phenylenediamine dihydrochloride) or 

TMB (3,3',5,5'-tetramethylbenzidine) [234] or with chemiluminescent substrate luminol (5-

amino-2,3-dihydro-1,4-phthalazinedione) [235]. Such detection usually yields detection 

limits as low as 10 pg/ml of target protein (see e.g. Quantikine ELISA for human CAIX from 

RnD Systems). In automated assays used in the clinics, the enzyme is usually substituted by 

acridinium esters which produce chemiluminescent signal upon addition of alkaline 

hydrogen peroxide [236]. Such automated immunoassays are capable of detecting several 

pg/ml of prostate specific membrane antigen (PSA) in blood serum (see e.g. Abbott Architect 

total PSA kit, IVD Ref. 7K70). 

To increase the sensitivity, enzyme-linked antibodies have been replaced by DNA-

linked antibodies allowing detection by quantitative polymerase chain reaction (qPCR) in 

the so called immuno-PCR methods [237] (Fig. 10 on page 35). Ruzicka et al. showed the 

use of non-covalent DNA-antibody conjugate [238] while Hendrickson et al. showed the use 

of covalent DNA-antibody conjugate [239]. A number of different immuno-PCR protocols 
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for a number of distinct targets have been developed [240, 241] and they have been shown 

to detect serum levels of PSA lower than 1 pg/ml [242]. 

In some cases ELISA tests do not provide the result with sufficient sensitivity and/or 

selectivity. In such cases, Western blot (WB) is commonly used. Typical example is the use 

of WB to confirm diagnosis of Lyme disease in which borrelia specific antibodies in patients 

serum are detected directly on antigens from lysed borrelia cultures [243-245]. WB was also 

the first diagnostic test for HIV detection and has long been used as confirmatory test for 

HIV infection [246, 247]. It has been also used in the early attempts to detect GCPII in human 

blood [101]. 

 

Figure 10: Sandwich ELISA and direct immuno-PCR 

Comparison of sandwich ELISA, where the amount of the assayed protein is determined via enzymatic reaction 

of horseradish peroxidase, which is covalently attached to the detection antibody. Peroxidase catalyzes either 

chemiluminescent or chromogenic reaction. In immuno-PCR, the enzyme has been replaced by a DNA 

oligonucleotide, which is determined in quantitative PCR (qPCR). 

1.2.2. Enzymatic assays 

In many cases, the target protein is an enzyme, which enables its direct quantification 

via its enzymatic activity. Notoriously known example is the detection of Alanine amino 

transferase (ALT) and Aspartate amino transferase (AST) to asses liver damage [248, 249]. 

These tests are usually simple spectrophotometric assays, while the detected chemical is 

usually formed from the target enzyme product via coupled (enzymatic) reactions [250]. 

Higher sensitivity and selectivity is achieved by the use of radiolabeled substrate enabling 
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direct quantification of the product [251]. The downside is the more complex protocol due 

to the necessity of separation of the product and the use of harmful radioisotopes. 

1.2.3. Detection of mRNA via qRT-PCR 

Alternatively, cellular or tissue expression of a target protein can be determined via the 

quantification of its messenger RNA (mRNA) via quantitative reverse transcription 

polymerase chain reaction (qRT-PCR). The advantages are sensitivity, selectivity and 

dynamic range and there is no need for target recognizing antibodies, while the downsides 

are complexity of the protocol as well as the fact that in some cases mRNA levels do not 

correlate to the protein level due to posttranslational regulation. The protocol consists of 

multiple steps: (1) tissue extraction, (2) tissue homogenization, (3) RNA isolation, (4) 

analysis of RNA degradation, (5) reverse transcription of mRNA into complementary DNA 

(cDNA) and (6) quantitative PCR (qPCR). In qPCR, the target cDNA is selectively amplified 

by a pair of primers and detected mostly either via SYBR Green (which fluorescence lights 

up after intercalation into double stranded DNA) or via double hydrolysis probe 

complementary to the amplified sequence (also called TaqMan probe, which fluorescence 

lights up after cleavage by the polymerase). Fluorescence is read during each PCR cycle and 

a threshold cycle (Ct) is determined as the cycle in which the fluorescence raised above 

arbitrary threshold, which is indirectly proportional to the logarithm of initial target DNA 

concentration [252, 253]. Newer and more reproducible way is determining of Cq via second 

derivative maximum introduced by Roche. The amount of target cDNA is then determined 

by comparing determined Cq to the serially diluted standard of known concentration. 

Unfortunately, many steps are prone to confounding errors and have to be performed 

in a standardized fashion. Tissues have to be processed or deep frozen immediately after 

dissection, otherwise changes in gene expression occur. The isolated RNA has to be pure and 

intact. Reverse transcription is inhibited by some tissue contaminants such as heparin and 

internal controls have to be introduced (most useful is the incorporation of reference genes). 

Finally, primers have to be designed and tested to selectively amplify the target sequence 

and not homologous sequences as well as genomic DNA [254].  
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1.3. Methods for screening of enzyme inhibitors and 

receptor ligands 

Enzymes and receptors are important targets in medicine due to their involvement in 

many human diseases [255]. There are numerous examples of diseases treated by enzyme 

inhibitors: high blood pressure, certain cancer types, several infectious diseases such as 

influenza, HIV or hepatitis etc. About half of the marketed drugs target five main protein 

families: proteases, kinases, ion channels, G-protein coupled receptors (GPCRs) and nuclear 

receptors (NRs) [256]. One of the major scopes of drug discovery is thus the search for 

enzyme inhibitors and receptor ligands, which is usually done by screening large libraries of 

low molecular weight compounds [257]. 

1.3.1. In vitro assays 

Inhibition potency of compounds toward an isolated enzyme is determined directly by 

measuring the change of its catalytic activity in the presence of the compound. Typically, 

pro-fluorescent peptides are used as probes for proteases [258, 259]. Signal producing 

product may be produced also by coupled enzymatic reactions, which is a strategy frequently 

used by kinases [260] and which is also commercially available (Kinase-Glo assays from 

Promega). The disadvantage of using coupled enzymatic detection is the appearance of false 

positives inhibiting these coupled enzymes and the necessity to run counterscreens on those 

enzymes [261]. An alternative way to detect ADP produced by kinases has been developed 

by Bellbrook labs [262]. In this approach, anti-ADP antibody binds fluorescently labeled 

ADP, which is outcompeted by the ADP produced by tested kinase, which result in the 

change of fluorescence polarization (FP). 

Binding potency of compounds toward enzymes and receptors can be determined also 

via detection of its ability to displace active site probe. Typically, such probe is fluorescently 

labeled and its displacement is measured by the changes in FP and unbound probe does not 

need to be separated from the protein [158, 263, 264]. Their simple protocol is compensating 

higher false positive rate of FP assays. Other ways of labelling the active site probe are also 

possible, but they usually necessitates immobilization of the target protein and separating 
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bound and unbound labeled probes. Such approaches are used due to their applicability to 

screen whole enzyme families such as kinases [265] or serine proteases [266]. 

Finally, the interaction between a purified protein and compound can be determined 

also based on the thermal stabilization of the protein after the binding of the compound in a 

thermal shift assay [267]. 

1.3.2. Cellular assays 

Unfortunately, assays listed in previous section require purified proteins, which can be 

a great obstacle, because (1) certain proteins cannot be prepared in purified form and (2) 

cellular context and binding partners are crucial for many targets. 

Therefore, cellular assays are becoming increasingly popular. Assays using fluorescent 

sensors measuring intracellular Ca2+ levels for measuring ion channel activation have been 

developed [268, 269]. Moreover, assays based on enzyme fragment complementation [270] 

or bioluminescence (fluorescence) resonance energy transfer; BRET (FRET) [271] have 

been developed for screening of ligands of GPCRs. In addition, phenotypic screens observing 

multiple parameters at once (i.e. high-content screening) are being commonly used [272, 

273]. 

Even though these assays proved to be a valuable addition to the screening toolbox, 

they sometimes suffer from low reproducibility due to the fact, that cells are living organisms 

influenced by environmental factors. 
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2. Results 

2.1. Aims of the thesis 

 

1. Development of qRT-PCR methods enabling selective detection of GCPII and its 

closest homolog GCPIII in human and mice and their quantification in a set of human 

and mice tissues. Comparison of GCPII tissue expression between human and mice. 

 

2. Development of several orthogonal assays enabling selective quantification of GCPII 

protein in human blood (sandwich ELISA, DIANA and radioenzymatic assay). 

Validation of the possibility to use GCPII as a blood serum marker of prostate cancer. 

 

3. Development of novel method for ultrasensitive detection of enzymes and screening 

for their inhibitors based on the use DNA-linked low molecular weight active site 

binders of target enzymes. Assessment of its performance on two model targets 

GCPII and CAIX, which are potential drug targets and potential cancer markers.  
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2.2.3. Publication 1: Comparison of human glutamate carboxypeptidases 

II and III reveals their divergent substrate specificities 

Motivation of the study 

GCPIII has been for a long time considered a twin-protein of GCPII. It has been shown 

that it has preference for similar N-acetylated dipeptides as GCPII and that it is also able to 

cleave NAAG, but with lower efficiency than GCPII [34, 274]. It has been also shown that 

it is responsible for a significant portion of NAAG cleaving activity in vivo [38]. Only 

recently, it has been shown that GCPIII cleaves BCG, which is not cleaved by the GCPII 

[35]. This novel observation may represent the physiological role of GCPIII and may also 

enable selective quantification of this enzyme in human tissues, which was not possible until 

now due to lack of selective antibodies. Since Collard et al. studied only the mouse proteins, 

we decided to examine whether his findings apply also to recombinant human purified GCPII 

and GCPIII. 

Summary 

Here, we determined kinetic parameters for human GCPII and GCPIII for all three 

known substrates of the two enzymes NAAG, BCG and γ-glutamylated folates (designated 

as FolGlux). We also examined, whether the GCPII and GCPIII activities show the same 

dependence on concentrations of selected bivalent cations as reported for their mouse 

counterparts [35]. We also made use of the determined substrate selectivities of GCPII and 

GCPIII to quantify both enzymes in homogenates of human tissues. Finally, we also 

determined amount of GCPII and GCPIII mRNA levels in human tissues via qRT-PCR. 

First, we have shown that both enzymes are able to cleave all three substrates, but with 

various efficiencies. Moreover, GCPIII displayed a strong dependence of activity on bivalent 

cations, which was dependent not only on the type of cation used but also on the substrate. 

BCG cleavage was activated ~100-fold by calcium or manganese cations but not by zinc 

cations, whereas NAAG cleavage was activated ~10-fold by manganese or zinc cations but 

not by calcium cations. The maximum catalytic efficiency for BCG was ~10-fold higher than 

the maximum efficiency for NAAG. On the other hand, GCPII activity was completely 

independent on the concentration of any of the bivalent cations tested. The magnitude of 
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GCPII NAAG cleaving activity equaled to the maximum BCG activity of GCPIII, while its 

BCG activity was about five orders of magnitude lower. GCPII was also more effective in 

cleavage of γ-glutamylated folates. 

To understand the mode of binding of BCG to both enzymes, we have also solved 

crystal structure of GCPII inactive form with bound BCG and built a QM/MM model of 

GCPIII in complex with BCG. In both cases, the glutamate moiety was bound to the S1' 

pocket as it is usual with other substrates. The crystal structure showed only few interactions 

of citrate moiety with GCPII, which may explain its low potency as a GCPII substrate. The 

QM/MM model showed more interactions of BCG with GCPIII than in with GCPII. We also 

tried to address the possibility of exchange of one of the active site zinc ions by calcium ion. 

This was suggested previously by Collard et al. and may explain the calcium dependent 

activation of BCG cleavage; however, our QM/MM model did not clearly answer this 

question. 

Finally, we have exploited the fact, that GCPIII catalyzed BCG cleavage is in the 

presence of calcium ions much faster than the NAAG cleavage and vice versa for GCPII 

catalyzed cleavage, to quantify the amount of both proteins in human tissue homogenates. 

We have found the highest GCPII amount in brain, kidney and prostate, while the highest 

concentration of GCPIII was in testis (Fig. 11 on page 44). To corroborate these results, we 

have developed selective qRT-PCR assays for both enzymes and quantified their amount in 

a panel of human tissue cDNA libraries obtained from Clontech (Human MTC Panel I and 

II). We have chosen this commercially available set, because this panel has been normalized 

to expression of several housekeeping genes and each tissue library was pooled from several 

individuals and should thus represent a population mean. Obtained expression profile 

corresponded well to the activity-based profile; highest GCPII expression was observed in 

prostate, liver, kidney and brain, while GCPIII was observed in testis, ovary and placenta. 
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Figure 11: GCPII/III protein and mRNA levels of in human tissues.  

(a) GCPII and GCPII levels in selected human tissues determined via NAAG and BCG hydrolyzing activity 

compared to total protein level in tissue homogenates. (b) Levels of GCPII and GCPIII mRNAs determined via 

qPCR. The “No. of transcripts” represents the amount of transcripts determined in 1.0 µL of 10-fold diluted 

tissue cDNA library obtained from Clontech (Human MTC Panel I and II), with values representing the mean 

from triplicate measurements. Error bars represent standard deviation. 

My contribution 

I developed the qRT-PCR assays for human GCPII and GCPIII, tested their selectivity 

and determined the amount of GCPII and GCPIII via qPCR in cDNA libraries. I also 

analyzed all amplification reactions on agarose gel electrophoresis. I contributed to the data 

analysis and writing of the manuscript.  
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2.2.4. Publication 2: Mouse glutamate carboxypeptidase II (GCPII) has a 

similar enzyme activity and inhibition profile but a different tissue 

distribution to human GCPII 

Motivation of the study 

GCPII is a promising target for multiple conditions and mouse is an important model 

organism. Mice have been used to study targeting of human prostate carcinoma xenografts 

in vivo as well as to study its role in brain. Murine GCPII knockouts have been developed to 

address the role of GCPII and the influence of GCPII inhibition in a variety of mouse models 

for neuropathologies have been examined (see section 1.1.4. for more details). 

It is therefore necessary to understand the biology of murine GCPII. Is it expressed in 

the same organs as in humans? Does it have the same substrate specificity? Do the inhibitors 

inhibit murine GCPII with the same potency as human GCPII? These are some of the 

questions, which have to be answered before the results of a mice study can be generalized 

to human biology. Such characterization was done for rat and pig orthologs [6] but only little 

information is available for mouse ortholog [35, 38, 134]. Most importantly, no direct 

comparison for mouse vs. human GCPII is available and we therefore decided to prepare 

purified recombinant murine GCPII and compare it to its human counterpart. 

Summary 

Here, we present an enzymological characterization of purified recombinant murine 

GCPII and a study of GCPII expression profile in mice tissues. 

First, we cloned, expressed and purified murine GCPII and determined its kinetic 

parameters, substrate specificity and inhibition profile. Both human and murine GCPII 

cleave NAAG and FolGlu1 substrates with the same kcat, while human GCPII has ~5-10 times 

lower KM values for both substrates and thus higher catalytic efficiencies. Both enzymes were 

more >10-fold effective in cleaving FolGlu1 compared to NAAG. They also cleaved 

randomized library of N-acetylated dipeptides with similar selectivity, however, the 

preference of glutamate in C-terminal position seemed more pronounced for the mouse 

ortholog. Moreover, our test set of inhibitors showed the same potency against both proteins. 

Both proteins thus showed a very similar enzyme characteristics and inhibition profiles. 
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We then focused on analysis of tissue expression via multiple orthogonal assays. We 

employed radioenzymatic assay, western blot, qRT-PCR and for selected tissues also 

immunohistochemistry. Multiple methods have been used, because the antibody-based 

methods cannot distinguish between GCPII and GCPIII due to the slight crossreactivity of 

the GCP-04 antibody with GCPIII (see publication VIII). Fortunately, radioenzymatic assay 

detecting NAAG cleavage is about 100-fold more sensitive for GCPII than GCPIII (see 

publication I for more details) and it has been shown that GCPII accounts for most of the 

NAAG activity in mouse [38]. Finally, data from these methods were correlated with qRT-

PCR determination, which was able to selectively detect both GCPII and GCPIII mRNAs. 

The expression profiles from all methods correlated well in most tissues. 

We have found highest GCPII expression in brain and kidney, which is consistent with 

previous reports [35, 38, 134] and corresponds to GCPII expression in human [6]. 

Interestingly, the expression in kidney is localized to proximal tubules, which suggest that 

GCPII may indeed play a role in reabsorbing folate from urine. We have also found 

significant amount in salivary glands, which corresponds well to the human, where high 

GCPII expression in the salivary glands was demonstrated by the high uptake of GCPII 

targeted radiotracers [165]. Generally, the GCPII expression correlated well to humans with 

two important exceptions: we observed no expression of GCPII in prostate, which is in line 

with previous reports [15, 134], and only little or no expression in small intestine, which may 

suggest that GCPII does not play important role in dietary folate absorption in mice. These 

discrepancies represent an important warning when considering mice as models for prostate 

cancer or when deciphering GCPII biological role from mouse models (Fig. 12 on page 47). 

Taken together, murine GCPII does not differ significantly in its enzymatic properties 

from human GCPII and its expression profile is similar to human in most tissues with the 

exception of prostate and small intestine. 
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Figure 12: Quantification of murine GCPII and GCPIII transcripts using qPCR. 

(a) Quantification of murine GCPII and GCPIII trascripts (designated as mGCPII and mGCPIII) using qPCR 

in commercial mouse tissue cDNA libraries from Clontech. The ‘No. of transcripts’ corresponds to the amount 

of transcripts in 1.0 µl of 10-fold diluted cDNA libraries. (b) and (c) Quantification of mGCPII and mGCPIII 

transcripts using qRT-PCR in cDNA libraries prepared from mouse tissues dissected from one female (b) and 

one male mouse (c). The ‘No. of transcripts’ corresponds to the amount of transcripts per 10 ng of total RNA 

as a starting material for cDNA synthesis. (a-c) Error bars show standard deviations from triplicate 

measurements. * Not determined. 

My contribution 

I was responsible for the qRT-PCR part of the study. I developed the qRT-PCR assays 

for murine GCPII and GCPIII, tested their selectivity and then determined GCPII and GCPIII 

amounts via qPCR in cDNA libraries and analyzed all amplification reactions on agarose gel 

electrophoresis. I also isolated RNA, tested its integrity and reverse transcribed it to cDNA. 

I contributed to the data analysis, discussion of the results and writing of the manuscript. 
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2.2.5. Publication 3: Detection and quantitation of glutamate 

carboxypeptidase II in human blood 

Motivation of the study 

Prostate cancer (PCa) is the most prevalent cancer among men and it is most commonly 

diagnosed via quantification of PSA in blood serum [275]. However, it suffers from false-

positives leading to unnecessary prostate biopsies [162]. It also cannot precisely distinguish 

patients who would benefit from radical prostatectomy treatment [276] and the reduction of 

the rate of death in patients who undergo treatment because of positive PSA test remains 

elusive [277-279]. PSA test in men without symptoms has thus been questioned by some 

authorities such as U.S. Preventive services task force [161]. 

Therefore, there is a strong need to discover new PCa markers with higher predictive 

value and GCPII might represent such marker. Initial studies determining GCPII levels in 

blood serum by western blot led to inconsistent results and some studies even claimed that 

there is no GCPII in human blood [17, 101, 280], however a newer study showed 

significantly elevated GCPII serum levels in PCa patients compared to healthy individuals 

[18]. However, this study analyzed only limited number of patients and relied on SELDI 

method, which is not suitable for diagnostics. Reliable methods has to be developed in order 

to validate those findings and potentially enable the use of GCPII for improving diagnostics 

of prostate carcinoma.  

We thus decided to develop several orthogonal assays suitable to detect GCPII in 

human blood samples, which we reported in this publication and publication IV.  

Summary 

In this report, we showed that the ability to cleave NAAG in human blood is unique to 

GCPII. We utilized this fact to develop radioenzymatic assay to quantify GCPII in human 

blood plasma samples. In this manner, we validated that GCPII is indeed present in human 

blood, but its levels are lower than reported in study by Xiao et. al [18]. 

First, we validated that GCPII is present in human blood and that we can detect NAAG 

hydrolyzing activity. The presence of GCPII was probed by immunoprecipitating the GCPII 

from blood plasma via our biotinylated 2G7 antibody and bound protein was then analyzed 
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on western blot and mass spectrometry. GCPII was detected in both methods: II-04 antibody 

showed intense band on western blot of expected molecular weight for full length GCPII 

(>100KDa) and mass spectrometry identified peptides covering 34% of the GCPII sequence 

including peptide covering intracellular part of GCPII. These results suggest, that GCPII is 

present in blood as a full length form. Next, we tested dilution series of three plasma samples 

and were able to detect NAAG hydrolyzing activity in all of them with linear dose response 

in the range of 10- to 100-fold diluted plasma. Moreover, we selected one sample and tried 

whether its activity can be inhibited by a series of known GCPII inhibitors. We found that 

the activity was almost completely inhibited by each compound, which provided us basic 

evidence that the activity comes from GCPII. 

We then determined the GCPII levels in plasma samples of 19 healthy individuals 

(4 women and 15 men) by measuring their NAAG activities and comparing them with a 

dilution series of our recombinant purified GCPII standard. The median concentration was 

1.7 ng/ml in women (range 1.3 to 4.3 ng/ml) and 3.2 ng/ml in men (range 1.3 to 17.2 ng/ml), 

see Tab. 1 on page 50 for more details. Interestingly, there is only weak difference between 

men and women and also these concentrations are 10 to 100 fold lower than determined by 

Xiao [18]. 

Finally, we wanted to confirm whether all of the NAAG activity comes from GCPII, 

or whether there is a contribution from another enzyme. The only other enzymes reported to 

have NAAG cleaving activity are GCPIII [34], and plasma glutamate carboxypeptidase 

(PGCP) [281]. We did several additional experiments to exclude those two enzymes. First, 

we tested the influence of 500 nM 2-PMPA, which is a potent known GCPII inhibitor (Ki = 

0.3 nM), and found out that the activity is completely abolished in all 19 individuals. 

Unfortunately, GCPIII is potently inhibited by 2-PMPA and other GCPII inhibitors as well 

[34]. To exclude GCPIII, we determined BCG hydrolyzing activity of all samples diluted in 

buffer containing 5 mM CaCl2. Under such conditions, GCPIII cleaves BCG with about 100 

fold higher efficiency than it cleaves NAAG (efficiency of NAAG cleavage is the same with 

or without calcium ions, see Table 2 in Publication I for more details). The observed BCG 

cleaving activity was in all samples much lower than the NAAG cleaving activity and GCPIII 

thus cannot be the enzyme responsible for NAAG cleavage. To exclude PGCP, we cloned, 

purified and characterized this enzyme. The PGCP protein showed a strong SerMet cleavage 



50 

 

activity as described previously [281, 282], but this activity could not be blocked by 500 nM 

2-PMPA. Moreover, we were not able to detect any NAAG cleaving activity, even by using 

5 µg of the purified PGCP (106 fold more than the amount of GCPII needed to produce 

significant activity).  

Taken together, we have shown evidence that the enzyme responsible for NAAG 

cleavage in human serum is indeed GCPII and that we are able to determine its levels by 

examining rate of NAAG hydrolysis with our radioenzymatic assay. 

Table 1: Radioenzymatic detection of GCPII levels in the blood plasma of healthy volunteers. 

 Age (years) GCPII in plasma (ng/ml) 

female 1 22 1.4 ± 0.3 

female 2 31 1.3 ± 0.3 

female 3 43 1.9 ± 0.3 

female 4 46 4.3 ± 0.3 

male 1 20 3.7 ± 0.6 

male 2 22 4.0 ± 0.6 

male 3 24 2.3 ± 0.4 

male 4 25 5.7 ± 0.8 

male 5 26 1.8 ± 0.3 

male 6 26 1.4 ± 0.3 

male 7 27 1.3 ± 0.3 

male 8 27 3.4 ± 0.7 

male 9 28 4.6 ± 0.7 

male 10 28 1.5 ± 0.3 

male 11 33 3.2 ± 0.5 

male 12 34 17.2 ± 5.0 

male 13 45 2.4 ± 0.6 

male 14 50 3.0 ± 0.4 

male 15 52 9.9 ± 1.0 

Quantification of NAAG cleaving activity was used to determine GCPII concentration in the heparin blood 

plasma samples of healthy volunteers. The samples were measured in duplicates in three separate experiments 

and the results are mean ± standard deviation. Recombinant extracellular GCPII was used as a standard of 

NAAG-hydrolyzing activity. No significant correlation between GCPII levels and the age or sex was observed. 

My contribution 

I conceived the study. I made first proof-of-principle experiments evaluating the 

possibility to detect low amounts of GCPII via enzymatic activity. I tested binding affinity 

of several novel anti-GCPII antibody clones, selected the 2G7 clone and optimized its 

purification protocol; this clone showed much better performance than our previous II-05 

clone. I also contributed to the data analysis and writing of the manuscript.  
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2.2.6. Publication 4: DNA-linked Inhibitor Antibody Assay (DIANA) for 

sensitive and selective enzyme detection and inhibitor screening 

Motivation of the study 

Enzymes are important targets in diagnostics and treatment due to their involvement 

in etiology of most human diseases. Currently, many diseases are diagnosed by quantification 

of disease-related enzymes in biological samples, with sandwich ELISA being the golden 

standard. Moreover, many diseases are treated by drugs inhibiting disease-related enzymes 

and therefore the search of such inhibitory molecules is one of the major scopes of drug 

discovery. To find these inhibitors, small-molecule libraries are commonly screened by 

methods based on enzyme kinetics or on displacement of fluorescent active site probe. 

However, such screens usually consume large amounts of purified enzyme, which is in some 

cases not possible to prepare. Therefore, we combined approaches used in both fields and 

attempted to develop "first assay of its kind" which would be suitable for both ultrasensitive 

enzyme quantification and screening of enzyme inhibitors and which would overcome the 

current state of the art technologies in sensitivity and its applicability to screen inhibitors 

with unpurified enzyme. 

Moreover, such method would be especially useful for our protein of interest, GCPII. 

Nowadays, there is no reliable and sensitive assay useful for detection of GCPII in blood in 

clinical setting and the development of such assay would facilitate validation of GCPII as 

prostate carcinoma serum marker. At the same time, novel GCPII inhibitors with improved 

pharmacokinetics are urgently needed for the development of brain penetrant neuroprotective 

agents, but no assay is available, which would enable sensitive screening of GCPII inhibitors 

(see section 1.1.6. for more details). 

Summary 

Here, we describe the development of a novel multi-well plate based method for 

ultrasensitive enzyme quantification and quantitative inhibitor screening and evaluation of 

this method on two putative cancer markers and potential drug targets: GCPII and CAIX. In 

the DNA-linked Inhibitor ANtibody Assay (DIANA), the target enzyme is captured by an 

immobilized antibody, probed with the detection probe consisting of a small-molecule 
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inhibitor attached to a reporter DNA, and subsequently detected by qPCR (Fig. 13A). The 

dual recognition by antibody and inhibitor provides selectivity, while qPCR provides 

sensitivity and broad linear range. Moreover, the detection probe binds to the active site of 

the enzyme, which can be used to evaluate the inhibition potency of other compounds. 

First, we prepared the detection probes recognizing GCPII and CAIX. We were able 

to covalently link known inhibitors of these enzymes to a DNA oligonucletoide without the 

loss of their activity. However, the affinity of original CAIX inhibitor was much lower than 

that of GCPII inhibitor. We thus prepared an oligonucleotide with two inhibitor moieties, 

which lead to an increase in potency of about 50 fold. Therefore, we used this bivalent probe 

for all CAIX experiments. The structures of the probes are shown in Fig. 13B. 

 

Figure 13: Schematic representation of enzyme detection by DIANA.  

(a) A covalent conjugate of an oligonucleotide (marked as reporter DNA) and low molecular weight 

competitive inhibitor of the target enzyme is used as a detection probe. This probe binds to the active site of 

the target enzyme, which has been captured on the solid support by an immobilized antibody. The amount of 

detection probe bound to the enzyme is detected by qPCR in terms of the threshold cycles (Cq), which are 

indirectly proportional to the logarithm of its concentration. (b) Structures of the detection probes used for 

quantification of GCPII (marked here as PSMA) and CAIX. Each probe consists of reporter DNA (green box) 

covalently attached via a linker region (black box) to a competitive inhibitor of GCPII or CAIX (magenta box). 
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Next, we tested the ability of the proposed sandwich of immobilized antibody and 

detection probe to quantify both target enzymes. We detected as little as 1.1 zeptomole of 

GCPII standard (100 ag) and as little as 46 zeptomoles (2.5 fg) of CAIX standard. The linear 

range was more than six orders of magnitude for GCPII detection and more than five orders 

of magnitude for CAIX detection (see Fig. 14A-B on page 54).  

Next, we analyzed the amount of GCPII and CAIX in serum samples from 12 healthy 

men, 12 men with prostate carcinoma (PCa), and 10 men and 2 women with clear cell renal 

cell carcinoma (ccRCC). GCPII concentrations in serum ranged from 0.10 to 6.0 ng/ml, with 

a median value of 0.45 ng/ml. Interestingly, mean concentration did not differ significantly 

among the three groups, suggesting that serum GCPII is not elevated in either ccRCC or PCa. 

CAIX concentrations ranged from 0.034 to 0.61 ng/ml, with a median value of 0.12 ng/ml. 

Mean CAIX concentration was significantly elevated not only in patients with ccRCC, which 

is in line with previous reports [283, 284], but also in PCa patients which is novel observation 

(see Fig. 14C-D on page 54).  

We also evaluated the sensitivity of DIANA assay in serum samples by outcompeting 

the selective binding of the probe by free inhibitor. In this manner, we estimated the average 

limit of detection of GCPII in a 1-µl sample to be 0.8 pg/ml (range 0.4 to 2.4 pg/ml) and of 

CAIX in a 10-µl sample to be 1.1 pg/ml (range 0.7 to 2.8 pg/ml). These detection limits were 

two to three orders of magnitude below the actual GCPII and CAIX enzyme concentrations 

for most of the analyzed clinical samples. To put this in context, the detection of GCPII via 

sandwich ELISA was about 100-fold less sensitive even though 10-fold higher volume was 

used, while CAIX sandwich ELISA was about 10-fold less sensitive by using 10-fold higher 

volume. The linear range of both ELISA assays was approximately two orders of magnitude. 

We have shown that DIANA assay can detect extremely low amounts of enzymes and 

with broad linear range in complex biological matrices. At the same time, it recognizes only 

the active form, because the probe binds to the intact active site. We therefore decided to 

explore also the possibilities to determine inhibition potencies of other compounds by 

incubating the target enzyme with the probe in the presence of such test compounds. Based 

on the superior performance characteristics, we proposed that we could be able to determine 

inhibition potency of the test compound by testing just a single well (Fig. 15A on page 55).   
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Figure 14: Ultrasensitive detection of GCPII (marked as PSMA) and CAIX by DIANA and 

comparison of their serum levels between healthy and diseased individuals. 

(a,b) Plots of average Cq values vs. amount of human recombinant purified GCPII standard diluted in buffered 

solution (a), or average Cq values vs. amount of human CAIX present in HT-29 cell lysate diluted in buffered 

solution (b). Upper x-axes indicate molar concentration, while lower x-axes indicate the corresponding molar 

amount per well. Horizontal lines show the average background signal; dashed horizontal lines show the 

average background signal plus 2 s.d. Error bars show s.d. of quadruplicate measurements. (c,d) Plots of GCPII 

(c) and CAIX (d) serum levels determined by DIANA in samples from 12 healthy males, 12 males with 

histologically proven PCa and 10 males and 2 females with histologically proven ccRCC. Horizontal lines 

indicate median concentrations; * indicates statistically significant differences between the groups with p < 0.05 

as determined by the two tailed Mann-Whitney test. 

First, we examined a dilution series of selected known inhibitors and calculated their 

potency from each tested concentration. The determined Ki values of GCPII inhibitors were 

constant over six orders of magnitude of the compounds' concentration. We have seen similar 
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behavior also for CAIX inhibitors, only the range of the useful inhibitor concentration was 

narrower due to the use of cell lysate containing only a little of endogenous CAIX and also 

due to the bivalency of the probe. These results confirmed the possibility of determining 

inhibitor potency just from single well, which we later evaluated on larger set of inhibitors. 

 

Figure 15: Determination of inhibitor potencies from single well by DIANA. 

(a) Detection probe was incubated with target enzyme in the presence of evaluated compound. In case the test 

compound binds to the enzyme, the amount of bound probe is lowered. This change in the amount of bound 

probe (determined as ΔCq between well with the compound and control well without any compound) and 

concentration of the compound were then used in calculation of its inhibition constant (Ki; formula valid for 

monovalent probe is shown): Ki = (2-ΔCq / (1 – 2-ΔCq)) * Itot / (1 + (Ptot / Kd)). Itot is the total concentration of the 

tested inhibitor, Ptot is the total concentration of probe and Kd is the dissociation constant of the probe. Constant 

is equal to the term 1 + (Ptot / Kd), which can be approximated by one if probe concentration Ptot is held below 

its Kd. (b) Plot of Ki values of 41 GCPII (marked as PSMA) inhibitors determined by titrating recombinant 

purified GCPII with inhibitor and measuring kinetics (x-axis) vs. Ki values determined by DIANA from a single 

well containing 100 µM inhibitor and recombinant purified GCPII (y-axis). (c) Plot of Ki values of 41 GCPII 

inhibitors determined by DIANA from a single well containing 100 µM inhibitor with recombinant purified 

GCPII (x-axis) vs. Ki values determined by DIANA from two measurements with unpurified endogenous GCPII 

in 1 µl of human serum in the presence of either 100 µM or 100 nM inhibitor (y-axis). (b-c) Lines show linear 

regression of log-transformed values; dashed lines indicate values that are 1.5-fold higher or lower than the 

linear fit. Error bars show s.d. of duplicate measurements in the case of DIANA, or s.e. of the titration in the 

case of enzyme kinetics. 
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Finally, we selected 41 known competitive inhibitors of GCPII and determined their 

Ki values by single-well measurements at a constant concentration of inhibitor (100 µM). We 

compared these values with values determined by regular substrate cleavage assay with serial 

dilution of inhibitor and HPLC readout (Fig. 15B). The two methods showed excellent 

agreement (R2 = 0.991) over the entire range of Ki values covering seven orders of magnitude 

from mid-picomolar to mid-micromolar. The high selectivity and sensitivity of DIANA even 

allowed us to determine Ki values for this set of GCPII inhibitors in the same manner using 

human serum rather than purified GCPII. The values measured in this way agreed well with 

those determined using recombinant GCPII (Fig. 15C) over the entire range of Ki values (R2 

= 0.989). We performed similar comparison of Ki values determined by single-well DIANA 

measurements and enzyme kinetics assay also for a set of known CAIX inhibitors and we 

observed good correlation as well. This showed us that DIANA accurately measures Ki 

values from a single inhibitor concentration and that purified enzyme is not needed. 

We have shown that DIANA is suitable for both ultrasensitive enzyme quantification 

and quantitative evaluation of inhibitors with unpurified enzyme, which overcomes the limits 

of current state of the art methodologies in sensitivity and linear range. It is multi-well plate 

based, automatable and it has the unique ability to determine the compound’s potency from 

a single well, which makes it an ideal candidate for screening of enzyme inhibitors in 

compound libraries. These performance characteristics make it a superior tool for disease 

detection and drug discovery.  

My contribution 

I designed the study. I developed the DIANA protocol and conducted all DIANA 

experiments. I derived the theoretical background for inhibitor screening and validated it 

experimentally. I also developed the sandwich ELISA for GCPII. I analyzed the data and 

wrote the manuscript. 
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3. Discussion and conclusions 

Selective quantification of GCPII and GCPIII in human and mice tissues 

In publication I, we have done thorough enzymatic characterization of human GCPII 

and GCPIII and exploited their divergent substrate specificities to determine their amounts 

in human tissues. We also determined their tissue expression by qRT-PCR assay. This study 

thus represents a first comprehensive quantification of both enzymes in human tissues at both 

mRNA and protein level. 

Results from both enzymatic assay and qRT-PCR assay were in a good agreement. 

GCPII levels were consistent with our previous data obtained by western blot [6] and with 

data available from other groups [10-12]. The expression of GCPIII mRNA in testis, ovary 

and placenta is in good agreement with previous report [32]. There are no previous data on 

quantification of human GCPIII in tissues at protein level, but the predominant expression in 

testis agrees well with GCPIII expression in mouse and even collocalizes with the BCG 

which has been also found predominantly in testes of rat adults [84]. Since GCPIII reaches 

its maximum BCG cleaving activity at near physiological two-milimolar concentration of 

calcium cations and collocalizes with BCG, the cleavage of BCG is likely the physiological 

function of GCPIII. 

In publication II, we presented an enzymological characterization of purified murine 

GCPII and a study of GCPII expression profile in mouse. We have shown that murine GCPII 

does not differ significantly in its enzymatic properties from human GCPII and its expression 

profile is similar to human in most tissues with the exception of prostate and small intestine 

as determined by several orthogonal methods. 

Using qRT-PCR and other methods, we have seen GCPII expression also in mouse 

testis, while we have not detected any GCPII in human testis (publication I). We speculate, 

that this may be connected to the lack of GCPII in mouse prostate and that it may represent 

a difference in mouse anatomy rather than in GCPII physiology. While human GCPII enters 

the seminal plasma via secretion in the prostate gland [6, 12], murine GCPII may enter 

seminal fluid at a different occasion in mouse, i.e. in seminiferous tubules, efferent ducts or 

epididymis and still play the same physiological role. 
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Using qRT-PCR, we have also quantified the amount of GCPIII in mouse tissues. We 

have found significant expression of GCPIII in testes, ovary, uterus, heart and embryo. This 

is in line with previous reports [33, 35] and corresponds to the expression of GCPIII in human 

tissues as we have seen in publication I and as was previously reported [32]. It also 

corresponds to the prevalence of BCG in mouse tissues [84]. 

Methods for GCPII quantification in blood and its role as PCa serum marker 

In publication III, we have developed a radioenzymatic assay to quantify GCPII in 

human serum. First, we have shown that NAAG cleaving activity in human serum is unique 

to GCPII as we excluded the only known possible enzymes having the same activity: GCPIII 

and PGCP. We then quantified the rate of NAAG hydrolysis in blood plasma samples drawn 

from 19 healthy individuals and calculated the amount of GCPII present in these samples, 

while using recombinant purified GCPII as standard. The median serum concentration was 

1.7 ng/ml in females (range 1.3 to 4.3 ng/ml) and 3.2 ng/ml in men (range 1.3 to 17.2 ng/ml). 

At the time we started working on methods for GCPII quantification, it was not only 

unclear, whether its concentration is elevated in prostate cancer patients, but even the fact 

that GCPII is present in human blood was not quite consistently demonstrated and the 

absolute GCPII level remained unclear. First reports using western blot yielded inconsistent 

results and they were not able to quantify the GCPII amount [17, 101, 280, 285, 286]. The 

only sandwich ELISA was reported by Sokoloff et al. [12]. Unfortunately, this report only 

stated that this ELISA is able to detect GCPII in blood, but did not showed any GCPII 

concentrations. Another report using SELDI assay was published by Xiao et al. and stated 

that GCPII is present in blood at 100 to 1,000 ng/ml and is significantly elevated in PCa 

patients compared to BPH group [18]. After we started working on this project, a plethora of 

new reports was published [287-293]. However, they did not shed light on the GCPII 

concentrations in blood, only few reached sufficient sensitivity and actually determined 

GCPII in blood, but they analyzed very limited number of samples (~10) [288, 289]. They 

confirmed the serum levels of about 100-1,000 ng/ml reported previously by Xiao et al. 

During the last years, we have developed several methods for GCPII quantification in 

human blood samples: radioenzymatic assay (exploiting NAAG cleavage and described in 

publication III), sandwich immunoassay recognizing native GCPII (ELISA described in 
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publication IV and XI) and DIANA assay recognizing active GCPII, which could be seen as 

a combination of previous methods (publication IV). We first compared the results from 

these methods to each other. The radioenzymatic assay gave on average about four fold 

higher blood concentrations than our sandwich ELISA, but otherwise these two methods 

correlated very well (these results are not part of this thesis, see page 65 for comparison of 

the two methods on blood samples from 110 human individuals in ref. [294]). At the same 

time, DIANA gave about 0.85 fold lower values than sandwich ELISA with perfect 

correlation between the two methods as tested on 36 human serum samples (publication IV). 

All three methods thus showed similar results and we therefore believe, that the 

concentrations of GCPII in human serum is in the range of approx. 0.10 to 10 ng/ml, with a 

median value below 1.0 ng/ml.  

These values are, however, about 100-fold lower than previously reported. There might 

be at least three reasons for such discrepancies: (1) use of different standards; we have used 

our own and well characterized recombinant purified GCPII or (2) all our methods recognize 

native protein, whereas previously reported methods may detect also denature protein or 

protein fragments, which may have lead to higher detected GCPII levels or (3) different 

handling of the blood samples. To investigate the second possibility, we developed a method 

for denaturing GCPII in blood serum and a sandwich ELISA consisting of our II-02 and II-

04 antibodies, which recognize epitopes on denature GCPII in near proximity in the 

extracellular domain (see publication VIII for epitope mapping). This sandwich is thus able 

to detect total GCPII amount including denature and/or fragmented species. We have then 

compared the results from native and denature sandwiches on 110 blood samples (both 

healthy and PCa affected individuals) and we have seen a perfect correlation between the 

two methods and the denatured sandwich gave about 70% of the levels of native sandwich 

(development and use of this ELISA recognizing denature GCPII is not part of this thesis, 

see results on page 66 in ref. [294]). To exclude the third possibility, we have tested the blood 

levels in all our subjects in heparin (radioenzymatic assay) and citrate (sandwich ELISA) 

plasma and in serum (DIANA assay) and have not seen any significant difference. 

Consequently, we have not identified the reason for the observed discrepancies of GCPII 

serum levels. 
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However, even such levels are quite high if we expect that blood GCPII comes from 

prostate. They are comparable to concentrations of PSA, which is actually used to diagnose 

PCa. Both PSA [295] and GCPII [6, 11] are expressed by the epithelial cells lining the 

secretory glands and are found in high concentration in the prostatic fluid, which becomes 

part of the seminal plasma. However, PSA is a soluble protein present in seminal plasma in 

concentration of about 1 mg/ml [296] whereas GCPII is a membrane bound protein and is 

present in seminal plasma at only 0.01 mg/ml [12]. As we have detected similar levels of 

GCPII in blood of men and women, which is in line with report from Sokoloff et al. [12] 

(unfortunately this study did not reported the absolute values), we speculate that the source 

of GCPII may be an extraprostatic tissue. 

To finally tackle the question, whether GCPII concentration is elevated in blood of PCa 

patients, we determined the GCPII blood levels in both patient samples and samples from 

healthy individuals. Using ELISA and DIANA, we determined GCPII levels in small groups 

of healthy individuals and PCa patients (12 individuals in each group) and we have not seen 

any difference between the groups (publication IV). To shed more light on this question, we 

collected and analyzed with our three methods (radioenzymatic assay, sandwich ELISA for 

both native and denature GCPII) 110 samples from generalized PCa cases (n=8), localized 

PCa cases (n=33), cases with benign prostate hyperplasia (BPH; n=23), healthy males 

(n=15), PCa cases after radical prostatectomy with undetectable PSA levels (n=11) and 

females (n=20); these results are not part of this thesis, see ref. [294] for more details. We 

have found out that median GCPII levels were around 0.8 ng/ml in first four groups and 

around 0.4 ng/ml in the last two groups, but these differences were not statistically 

significant. GCPII did thus not significantly decreased after surgical removal of the prostate 

even though the PSA levels dropped to undetectable values. To confirm these results, we 

collected paired samples from six patients drawn before and after prostatectomy, and we 

have not seen any decrease in GCPII levels even more than a year after surgery. We also 

made ROC analysis for the ability of PSA or GCPII to distinguish between PCa and BPH 

and while PSA worked quite well for our samples (cutoff 4.0 ng/ml with 90% sensitivity and 

35% false positives; area under curve 0.775), GCPII levels were not useful at all (area under 

curve 0.455). Taken together, these data strongly suggest that GCPII in blood originate from 

extraprostatic tissue and that its detection cannot be used for prostate cancer diagnosis. 
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DIANA assay for ultrasensitive detection of enzymes and screening for their inhibitors 

In publication IV, we reported the development of DIANA assay suitable for enzyme 

detection and screening of enzyme inhibitors. This assay is analogous to the immuno-PCR 

assay described in [239], in which the target protein is captured by an immobilized antibody 

and then probed by another DNA-linked antibody, which is detected in qPCR. In DIANA 

assay, the DNA-linked antibody has been replaced by detection probe consisting of a DNA 

oligonucleotide covalently linked to a small molecule that binds to the active site of a target 

enzyme. We showed that DIANA represents a powerful method with some important 

implications, which are discussed in following paragraphs. 

We showed that DIANA can detect very low amount of target enzyme in complex 

biological matrices and has very broad linear range. We detected (sub)femtogram amount of 

GCPII and CAIX which was by several orders of magnitude less than was detected with 

corresponding sandwich ELISA. Such sensitivity is comparable or even better to the most 

sensitive sandwich immunoassays, including immuno-PCR [239], immuno-PCR on gold 

nanoparticles (Bio-Barcode assay [242]), proximity ligation assay [297], and proximity 

extension assay [298]. The linear range of DIANA for GCPII and CAIX detection ranged 

between five and six orders of magnitude; this means that it is not necessary to test different 

dilutions of the samples, as it is sometimes necessary with sandwich ELISA. DIANA also 

selectively detects only the active form of the enzyme, which is likely to be the more 

clinically relevant form. 

The binding of the detection probe to the enzyme active site, the high sensitivity, 

selectivity and wide linear range of DIANA make it well-suited for screening of competitive 

inhibitors of target enzymes which ability to outcompete the detection probe is measured. 

We have shown that it is possible to accurately evaluate inhibitor potencies even when using 

untreated biological matrices such as human serum, which contains very low amounts of 

endogenous target enzyme. We have also shown that it is possible to accurately determine 

inhibitor potency from single well, which is unique to this method. We have also shown that 

both weak (up to submilimolar) and tight inhibitors (up to subnanomolar) are accurately 

ranked by DIANA. The solid-phase assay format also allows testing of notorious trouble 
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makers, such as fluorescent or colored compounds, since they are washed out before analysis 

and therefore cannot interfere with the qPCR readout. 

As with other ultrasensitive solid-phase assays, the sensitivity of DIANA is limited by 

non-selective adsorption of the detection probe, which leads to the necessity of using a high 

potency probes. In our hands, the non-selective adsorption of the probe was much lower than 

the non-selective adsorption of a DNA-linked antibody (unpublished data), which is likely 

the cause for higher sensitivity of DIANA compared to immuno-PCR. Nevertheless, this 

background binding still limited the sensitivity and subnanomolar probe affinity was needed 

to detect zeptomole amounts of GCPII. However, such potent ligands have been prepared 

only for a limited number of targets. As we showed here for CAIX, in some cases, tight-

binding probes can be prepared from weaker ligands by including several copies of the ligand 

moiety in order to induce multiple binding of the probe. Otherwise, the sensitivity will 

decrease in proportion to the decreasing affinity of the ligand, which may limit the use of 

weaker ligands for DIANA-based diagnostics. However, we propose that this will not limit 

the use of DIANA for screening of inhibitors and that up to micromolar ligands can be used 

to prepare the detection probe, as it is possible to use higher enzyme concentration. 

DIANA can be rapidly developed for a number of targets. Many potent class-specific 

inhibitors are known, e.g. pepstatin [299], staurosporin [265], or acetazolamide [300] and 

they can be used to prepare detection probes for screening of inhibitors. In such cases, 

recombinant target enzyme can be captured not only via selective antibody, but also via an 

expression tag, as we have shown on the example of GCPII and GCPIII, which enables 

straightforward development of DIANA for new targets. Detection probes prepared from 

promiscuous inhibitors are still useful for detection of enzymes in complex biological 

matrices, in such cases a selective antibody is used for capturing the enzyme, which 

complements the assay selectivity. We have shown that this works for highly homologous 

proteins and we were able to selectively detect GCPII and not GCPIII, though we used probe 

binding to both proteins. Similarly, we used a selective antibody for CAIX, which can 

distinguish this isoform from all other isoforms. Finally, we propose that DIANA can be 

used not only for enzymes, but also for any functional protein, including receptors or 

transporters, for which a sufficiently potent small-molecule ligand is available (details are in 

supplementary information of publication IV). 
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Besides assays for GCPII, GCPIII and CAIX shown in publication IV, we developed 

DIANA assay also for several other targets (unpublished data). We also partially automated 

DIANA and used it to screen for inhibitors of GCPII and CAIX at our IOCB facility and we 

indeed identified several novel scaffolds for both enzymes, which are now being further 

developed (unpublished data). During these screens, we confirmed that DIANA is very 

robust and is very sensitive in hit discovery and test compounds can be screened at lower 

concentrations than in other assays. At the same time, it has very low false positive rate. 

We therefore believe in a big potential of DIANA not only in diagnostics, but also in 

screening for enzyme inhibitors, where it can be applied to difficult targets, which are hard 

to tackle with other methods. Thanks to its multi-well plate based straightforward protocol, 

it can be run both manually and in automated setting. It can thus become a widely used 

method both in academic environment and in industrial applications. 
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4. Abbreviations 

2-MPPA  2-(3-mercaptopropyl)-pentandioic acid 

2-PMPA  2-phosphonomethyl-pentandioic acid 

5MeTHF  5-methyltetrahydrofolate 

ADC   Antibody drug conjugate 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxasolepropionate 

BCG   β-citryl-L-glutamate 

BCR   Biochemically recurrent (prostate) cancer 

BPH   Benign prostate hyperplasia 

CAIX   Carbonic anhydrase IX 

ccRCC   Clear cell renal cell carcinoma 

CNS   Central nervous system 

CT   Computed tomography 

DIANA  DNA-linked Inhibitor ANtibody Assay 

DHFR   Dihydrofolate reductase 

DM-1   Maytansinoid 1 

EAATs  Excitatory amino acid transporters 

ELISA   Enzyme-Linked ImmunoSorbent Assay 

FDG   Fluoro-deoxyglucose 

FOLH1  Folate hydrolase (GCPII) 

FDG    Fluoro-deoxyglucose 

FP   Fluorescence polarization 

FPG   Folyl-poly-γ-glutamate 

FPGS   Folyl-poly-γ-glutamate synthetase 

GGH   γ-glutamyl hydrolase 

GCPII (PSMA) Glutamate carboxypeptidase II (Prostate specific membrane antigen) 

GCPIII   Glutamate carboxypeptidase III 

GPCRs  G-protein coupled receptors 

mCRPC  Metastatic castration-resistant PCa 

mGluR3  Metabotropic glutamate receptor 3 

MTHFR  Methylenetetrahydrofolate reductase 

MRI   Magnetic resonance imaging 
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NAA   N-acetyl-L-aspartate 

NAAG   N-acetyl-α-L-aspartyl-L-glutamate 

NAALADase  N-acetylated-alpha-linked acidic dipeptidase (GCPII) 

NAALADase 2 N-acetylated-alpha-linked acidic dipeptidase 2 (GCPIII) 

NAT8L   N-acetyltransferase 8 like protein 

NMDA   N-methyl-D-aspartate 

PCa   Prostate carcinoma 

PCFT1   Proton-coupled folate transporter 

PET   Positron emission tomography 

PSA   Prostate specific antigen 

PSMA (GCPII) Prostate specific membrane antigen (Glutamate carboxypeptidase II) 

PSM'   Truncated form of PSMA (GCPII) 

qPCR   Quantitative polymerase chain reaction 

qRT-PCR  Quantitative reverse transcriptase and polymerase chain reaction 

RIMKLA   Ribosomal Modification Protein RimK Like Family Member A 

RIMKLB   Ribosomal Modification Protein RimK Like Family Member B 

RFC   Reduced folate carrier 

ROC   Receiver operating characteristics 

RT-PCR  Reverse transcriptase and polymerase chain reaction 

SHMT   Serine hydroxymethyl transferase 

SELDI   Surface-enhanced laser desorption/ionization 

SMDC   Small molecule drug conjugates 

SPECT  Single photon emission computed tomography 

TGF-β    Transforming growth factor β 
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