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ABSTRACT 

Tau protein, a microtubule-associated protein localized in axonal projections of neurons, 

is a key molecule in the pathology of Alzheimer´s disease (AD), the most common cause  

of dementia in the elderly population. Tau belongs to the group of natively unfolded proteins 

without globular structure and is prone to numerous posttranslational modifications (PTMs). 

Under pathological conditions, abnormal PTMs and misfolding of tau protein occurs and leads  

to oligomerization and aggregation into paired helical filaments forming neurofibrillary tangles, 

the histopathological hallmark of AD. 

Currently available drugs applied in AD treatment can only slow the disease progression 

and those, which halt the AD-specific neurodegenerative processes, are still missing. Very 

promising and evolving therapeutic approach is immunotherapy, and even immunomodulation  

by administration of intravenous immunoglobulin (IVIG) products, a reservoir of natural 

antibodies from the plasma of healthy donors, has been already tested. The discovery of naturally 

occurring antibodies directed to tau (nTau-Abs) in body fluids of both AD and healthy subjects 

and their presence in IVIG begin the investigation of their therapeutic potential. Considering  

a wide range of possible modifications of tau and of various tau species (oligomers, aggregates 

etc.), the characterization of nTau-Abs is crucial step in understanding their physiological role 

and possible involvement in AD pathogenesis. 

The main project goal was to isolate natural tau-reactive Abs from the plasma of AD 

patients, healthy controls, and IVIG product and compare them. Differences in IgG subclass 

distribution, avidities, and reactivity with various tau protein forms among these tau-reactive 

antibodies obtained from AD and healthy controls were revealed and discussed. 

Phosphorylation is the most studied PTM of tau significantly participating in the 

modulation of its function and interactions. Abnormal phosphorylation is tightly connected  

with alterations of tau biology associated with the formation of neurotoxic tau species and 

aggregates.  Thus, the second aim of the project was to prepare tau protein phosphorylated  

at residues specific for AD in high purity, which could further serve as a model protein  

in sensitive immunoassays applied with natural tau-reactive antibodies studies. Kinase-loaded 

magnetic beads prepared and characterized in our lab were applied for sequential in vitro 

phosphorylation of tau. 

The thesis gives an overview about the biology of tau protein, enzymes involved in its 

(hyper)phosphorylation or truncation, and naturally occurring antibodies directed to tau as well as 

contains an experimental part composed from four key publications summarized our basic 

research regarding tau properties, phosphorylation, and its naturally occurring antibodies.  
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ABSTRAKT 

Tau protein je s mikrotubuly asociovaný protein, který se nachází v axonech neuronů.  

Je klíčovou molekulou  podílející se významně na patogenezi Alzheimerovy nemoci (AN), která 

je nejčastější příčinou stařecké demence. Tau patří do skupiny tzv. přirozeně nesbalených 

proteinů postrádajících globulární strukturu a vysoce náchylných k post-translačním 

modifikacím. Za patologických podmínek je tau protein abnormálně modifikován a chybně 

sbalován, což v důsledku vede k jeho oligomerizaci a agregaci do párově helikálních filament, 

které jsou základní jednotkou neurofibrilárních klubek, histopatologických útvarů typických  

pro AN. 

Současné léky používané v léčbě AN neurodegenerativní procesy pouze zpomalují a lék 

zcela zastavující vlastní rozvoj nemoci stále chybí. V současnosti je velmi slibným a rozvíjejícím 

se terapeutickým přístupem imunoterapie. Testována je také imunomodulace pomocí 

intravenózních imunoglobulinových preparátů (IVIG), které obsahují velké množství přirozených 

protilátek běžně se vyskytujících u zdravé populace. Objevení přirozeně se vyskytujících 

protilátek reaktivních s tau proteinem (nTau-Ab) v tělních tekutinách u pacientů s AD, zdravých 

kontrol, i jejich přítomnost v IVIG preparátech odstartovaly snahy lépe pochopit jejich úlohu  

u AN a jejich potenciální terapeutické využití. Vezme-li se v úvahu, že tau protein podléhá 

mnoha modifikacím a existuje v různých formách (oligomery, agregáty atd.), je nezbytné nejprve 

tyto protilátky lépe charakterizovat a definovat jejich zapojení v patogenezi AN.  

Hlavním cílem projektu proto bylo tyto protilátky izolovat z plazmy pacientů s AD, 

zdravých kontrol a IVIG preparátů a porovnat jejich vlastnosti a reaktivitu. Byla u nich zjištěna 

různá míra rozdílů v distribuci IgG podtříd, aviditě a reaktivitě s několika formami tau proteinu. 

Fosforylace je ve vztahu ke správné buněčné funkci a interakcím tau proteinu jeho nejvíce 

studovanou post-translační modifikací. Abnormální fosforylace úzce souvisí s poruchami 

v biologii tau proteinu, protože má za následek tvorbu toxických tau forem a agregátů. Dalším 

cílem projektu byla příprava fosforylovaného tau proteinu ve vysoké čistotě, aby se mohl 

následně využít v imunoanalytických metodách pro studium charakteru a účinku nTau-Ab.  

Pro tento účel byly připraveny magnetické částice s navázanými kinázami a optimalizovány 

podmínky pro postupnou fosforylaci tau vícero kinázami. 

První část dizertační práce obsahuje rešerši recentních poznatků o biologii tau proteinu, 

enzymech podílejících se na jeho (hyper)fosforylaci nebo krácení a také o výskytu a významu 

přirozeně se vyskytujících tau-reaktivních protilátek. V druhé části práce jsou formou  

4 odborných článků shrnuty výsledky a závěry vlastního výzkumu zaměřeného na charakterizaci 

a vlastnosti tau proteinu jako významného biomarkeru AN a také na průkaz a charakterizaci tau-

reaktivních protilátek nacházejících se v lidské plazmě. 
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aa  amino acid 

Ab  antibody 

Aβ  amyloid beta 

AEF  asparaginyl endopeptidase 

ApoE  apolipoprotein E 

ATP  adenosine triphosphate 

AD  Alzheimer´s disease 

CaMK  Ca2+/calmodulin-dependent protein kinase 

Cdk  cyclin-dependent kinase 
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CK  casein kinase 

CNS  central nervous system 

DYRK  dual-specificity tyrosine-regulated kinase 

ERK  extracellular signal-regulated kinase 

GSK3  glycogen synthase kinase 3 

IDP   intrinsically disordered 

Ig  immunoglobulin 

IVIG  intravenous immunoglobulin 

JNK  c-Jun amino-terminal kinase 

MAP  microtubule associated protein 

MAPK  mitogen-activated protein kinase 

MARK microtubule-affinity regulating kinase 

MCI  mild cognitive impairment 

MT  microtubule 

MTBD  microtubule binding domain 

nAb  naturally occurring antibody 

nTau-Ab naturally occurring antibodies directed to tau protein 

NFT  neurofibrillary tangle 

NPDPK non-proline-directed protein kinase  

PDPK  proline-directed protein kinase 

PHF  paired helical filament 

PK  protein kinase 

PhK  phosphorylase kinase 

PNS  peripheral nervous system 

PP  protein phosphatase 

PSA  puromycin sensitive aminopeptidase 

PTM  posttranslational modification 

TK  tyrosine kinase 

TTBK  tau-tubulin kinase 
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INTRODUCTION 

 

 

 

Alzheimer´s disease 

As populations age, due to increasing life expectancy, the prevalence of age-associated 

neurodegenerative diseases has markedly increased. It is estimated that 46.8 million people 

worldwide living with dementia and it is assumed that this number increases almost threefold  

to 131.5 million in 2050 (http://www.alz.co.uk/research/world-report-2016).  

The most common cause of dementia in mild-aged and elderly population is Alzheimer´s 

disease (AD). But dementia with all clinical symptoms that affect a person’ ability to perform 

everyday activities is the final stage of AD progression which is preceded by two other clinical 

AD stages. The pre-clinical phase is characterized by some AD pathomorphological changes  

in brain tissue (depositions of amyloid beta (Aβ) peptides etc.) but individuals in this stage are 

cognitively normal. The second one is a prodromal phase of AD, referred to as mild cognitive 

impairment (MCI), characterized by the onset of the earliest cognitive symptoms including 

memory dysfunctions and other cognitive domains impairments which gradually shift  

to dementia, the third phase of AD (Jack et al., 2010). 

Besides the gradual clinical decline, pathological processes leading to irreversible 

detrimental changes in AD brain also occur progressively, however, are detectable decades 

before the earliest clinical manifestation (Fig 1). The main two histopathological hallmarks 

occurring in AD brain tissue are represented by characteristic extracellular senile plaques 

composed of aggregated amyloid beta peptides (Aβ) and intraneuronal neurofibrillary tangles 

(NFTs) containing abnormally modified molecules of tau protein (Ittner and Gotz, 2011). 

Neurodegenerative changes manifested by gliosis and neuronal loss in cortical and subcortical 

regions leading to brain atrophy are also significant features observable in post-mortem brains  

of AD patients (Serrano-Pozo et al., 2011).  

http://www.alz.co.uk/research/world-report-2016
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Figure 1: Model of development of clinical manifestations and dynamics of biomarkers in time 

(Aβ as Aβ42 in cerebrospinal fluid or PET amyloid imaging, tau-mediated neuronal injury 

identified from tau levels in cerebrospinal fluid or fluorodeoxyglucose-PET imaging, brain 

structure based on structural MRI), adapted from (Jack et al. 2010) 

 

Despite the fact that AD affects a considerable part of the aging population and is 

ultimately fatal, neither definitive antemortem diagnostic method nor cure, which halts the 

disease progression, is currently available. AD is likely a multifactorial disease without a specific 

etiological agent and the pathogenesis has not yet been fully understood, thus more precise 

diagnostic biomarkers and specific drugs are still missing. Nevertheless, as indicated extensive 

scientific literature, several genetic risk factors and environmental factors playing role  

in pathogenesis and progression of AD have been described. Familial early-onset AD forms are 

associated with mutations in genes of proteins involved in the production of neurotoxic Aβ 

species, presenilin1/2 and amyloid precursor protein (Bateman et al., 2011). The late-onset AD 

that accounts for more than 95% cases is a sporadic form. Several genes are also associated  

with more severe pathological features in sporadic AD forms, for instance, carriers of the allele 

for ApoE4 have worse Aβ clearance mechanism than carriers of ApoE3 alleles (Laws et al., 
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2003). Besides hereditary predispositions, the most discussed environmental factors connected 

with sporadic AD forms include metal ions accumulation (Wang and Wang, 2017), diet and 

malnutrition (Maruszak et al., 2014), brain trauma injury (Lye and Shores, 2000) and infectious 

agents (Itzhaki et al., 2016, Ghannad et al., 2016). 

Also, many hypotheses of early events occurring in the development of AD have been 

suggested (reviewed by Armstrong, 2013). In the early nineties, Hardy and Higgins formed 

amyloid cascade hypothesis, the most dominant model of the molecular pathology of AD (Hardy 

and Higgins, 1992). This hypothesis accepts excessive depositions of Aβ peptides as a causative 

agent of AD pathology where hyperphosphorylated tau accumulation, neuronal loss, and 

cognitive decline are consequences resulting from the occurrence of toxic Aβ species (Selkoe and 

Hardy, 2016). A different, also very influential, hypothesis of AD initial pathological events was 

proposed in 2004 by Swerdlow and Khan as a mitochondrial cascade hypothesis. Mitochondrial 

dysfunction related to decreasing of ATP production and to increased oxidative stress leads  

to impaired protein clearance mechanisms, activation of the innate immune system and total 

imbalance of neuronal homeostasis with all the fatal consequences for post-mitotic neurons 

(Swerdlow and Khan, 2004). Also, defects in autophagy pathways, including mitophagy, and 

lysosomal proteolytic failure have been discussed in relation to neurodegenerative changes  

in AD. The underlying mechanisms of observed abnormalities in autophagy that are gradually 

revealed have a huge impact on new therapeutic strategies (Nixon and Yang, 2011). More 

suggested theories based on various key molecules explaining AD neurodegenerative events 

include, among others, cerebrovascular damage, degeneration of anatomical pathways as in case 

of cholinergic hypothesis (Francis et al., 1999), GSK3 hypothesis (Hooper et al., 2008), tau 

hypothesis (Maccioni et al., 2010) etc. The list of theories explicative molecular basis and 

mechanisms of AD pathophysiology is far from complete. All these hypotheses have been 

formed to better understand the molecular basis of AD initial events in an effort to find effective 

therapeutic tools, but a lot of questions associated with the concept highlighting one specific 

molecular factor has to be answered.  

To date, there is a predominant view that a sum of many aspects, including genetic risk 

factors, environmental factors, and various altered molecular mechanisms contribute to AD in 

varying degrees and the pathophysiology is a consequence of more complex interrelated events. 
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Tau protein, a biomarker of Alzheimer´s disease 

Tau protein is a key component of one of the histopathological hallmarks occurring  

in affected areas of AD brains called neurofibrillary tangles (NFTs) and is therefore investigated 

as a protein involved in disease mechanism as well as a potential diagnostic and therapeutic target 

of AD.  

Tau protein was the first member of microtubule-associated proteins (MAPs) family 

described forty years ago (Weingarten et al., 1975). Tau protein is a heat stable factor essential 

for axonal microtubules' assembly promoting and stabilizing. Since its discovery in 1975, tau 

biochemical characterization, its biological function and distribution as well as the gene cloning 

and isoforms characterization followed and were successfully uncovered by several research 

groups in the last century (e.g.: Cleveland et al., 1977a, b; Binder et al., 1985; Drubin and 

Kirschner, 1986; Neve et al., 1986; Lee et al., 1988; Goedert et al., 1989; Goedert and Jakes, 

1990). In a parallel with a deeper understanding of tau protein structure and properties, tau 

protein was identified as a protein subunit of NFTs localized in AD brain tissues by antibody 

reactivity (e.g.: Delacourte and Defossez, 1986; Wood et al., 1986). AD and other neurological 

disorders manifesting with a variety of clinical syndromes are characterized by tau deposition  

in the brain and are collectively known as tauopathies (Kovacz, 2015; Lebouvier et al., 2017). 

Taken together, tau is a protein of major interest and to better understand its role under both 

physiological and pathological conditions is an essential step in research of AD and tauopathies 

in general. 

In the following introduction text, I attempt to briefly summarize the current knowledge 

about tau protein, including its structure, functions, and modifications. Also, the current 

knowledge about naturally occurring tau-reactive antibodies has been included. 
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Tau structure 

Tau gene and isoforms 

Human tau protein is encoded by a single MAPT gene located on chromosome 17q21 

consisting of 16 exons in total (Neve et al., 1986). In human CNS, six tau isoforms of 37-46 kDa 

molecular weights are yielded by alternative splicing of 2, 3, and 10 exons from mRNA transcript 

possessing 11 exons (Table 1). Exons 9-12 of MAPT gene encode four highly conserved 

imperfect repeats of 30 – 31 amino acids, which are part of the microtubule-binding domain  

of tau. The six isoforms differ by the presence or absence of two N-terminal inserts of 29 amino 

acids each generating 0N, 1N or 2N tau isoforms and of the second repeat in C-terminal part 

encoded by exon 10 to form 3R or 4R isoforms (Fig 2).  

 

Figure 2: Schematic representation of the human tau gene, the human tau primary transcript and 

the six human CNS tau isoforms forming by alternative splicing and occurring in the central 

nervous system. Adapted from (Buee et al., 2000) 
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The distribution of individual tau isoforms varies and significantly depends on brain 

development stage as well as brain region (Goedert and Jakes, 1990; Takuma et al., 2003, Hanes 

et al., 2009). Also, differences in tau isoform distribution are described among animal species 

(Takuma et al., 2003). Several tau isoforms also referred to as a high molecular weight tau or  

a “big tau” of 110-120 kDa, corresponding to 2N4R tau with moreover exclusively transcribed 

exons 4a, 6 and 8, are abundant in human PNS (Georgieff et al. 1991; Couchie et al., 1992; 

Goedert et al., 1992). 

 

Table 1: Isoforms of tau protein and their characteristics in the human central nervous system 

Clone Inserts/Repeats 
Alternative 

exons included 

Number of 

amino acids 
Actual MW* 

Apparent 

MW** 

htau40 2N4R 2+3+10 441 45.850 67.0 

htau39 2N3R 2+3 410 42.967 59.0 

htau34 1N4R 2+10 412 40.007 52.0 

htau37 1N3R 2 381 42.603 62.0 

htau24 0N4R 10 383 39.720 54.0 

htau23 0N3R - 352 36.760 48.0 

* Actual MW (molecular weight) is a theoretical molecular weight calculated from amino acids of protein sequence 

** Apparent MW calculated from retention of tau molecules on polyacrylamide gel electrophoresis in the presence 

of sodium dodecyl sulfate (SDS-PAGE) 

 

 

Tau domains and biochemical properties 

The full-length tau protein (2N4R, 441 aa) is a molecule of overall hydrophilic (55% 

amino acids are polar) with the resulting properties such as natively unfolded structure, heat 

stability and high water solubility. Since tau protein was discovered as an essential factor  

for microtubule assembly (Weingarten et al., 1975), the two main domains of tau were identified 
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as a projection domain (Hirokowa et al., 1988) located in N-terminal part and a microtubule 

assembly domain in C-terminal part by chymotrypsin cleavage at Y197 (Steiner et al., 1990).  

At present, molecule of tau protein (2N4R) can be divided into four main domains differing  

by their biochemical properties: N-terminal acidic domain with amino acids 1-150, which 

contains two N-terminal inserts, proline-rich domain with amino acids 151-243, microtubule 

binding domain (MTBD) of amino acids 245-369 containing four imperfect repeated regions 

(~31 aa each) separated by flanking regions, and C-terminal tail of 370-441 amino acids. Tau 

protein has an overall basic character with an asymmetry in charges distribution influencing its 

interactions. However, this dipole character of tau molecule can be altered by posttranslational 

modifications (Kontaxi et al., 2017). The N-terminal part is more acidic (pI ~ 3.8), the following 

proline-rich domain is of a basic character (pI ~ 11.4) and the C-terminal region is also positively 

charged (pI ~ 10.8) (Sergeant et al., 2008). The amino acid sequence with polar amino acid 

labeled and domains of full-length tau are illustrated in (Fig 3A). 

Tau protein is a representative of natively unfolded proteins, also termed as “intrinsically 

unstructured proteins”, characterized by a random structure in solution and minimal content  

of secondary structure (Schweers et al., 1994; Skrabana et al., 2006). As is illustrated in (Fig 3B) 

adapted from (Mandelkow and Mandelkow, 2012), several amino acid short sequences localized 

in MTBD (K274-L284, S305-D315, and Q336-D345) transiently populate β-sheet conformation 

and regions with sequences L114-T123 and L428-A437 transiently assume α-helix formation.  

In the proline-rich region, three short sequences of amino acids T175-S184, P216-P223, and 

P232-A239 are prone to form transient polyproline II helical conformation (Mukrasch et al., 

2009). All these transient secondary conformation structures significantly participate in tau 

physiological functions, interactions with binding partners and proper molecule folding as well as 

pathological tau aggregation (Gamblin, 2005). 

Due to the hydrophilic character and very low content of secondary structures, tau protein 

is a natively unfolded protein with highly flexible conformation in physiological buffers but 

retains some inherent structure, which can be destroyed by denaturation with 2 M guanidine 

hydrochloride. The global transient folding of tau protein was revealed as folding back of N- and 

C-terminal domains over the repeat domain whereby reminds a paperclip-like suprastructure 

(Jeganathan et al., 2006). 
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Figure 3: Tau protein. A) The amino acid sequence of human full-length tau (isoform 2N4R,  

1-441 aa). Tau protein contains 243 polar amino acids (basic are dark red, uncharged red, and 

acidic yellow), and 198 non-polar hydrophobic amino acids (black). Two N-terminal inserts of 29 

amino acids (N1 and N2) and imperfect repeated regions (~31 aa each, R1-R4) are underlined. 

B) Tau domains and structural elements deduced from NMR. The unfolded sequences are 

represented as black lines intermittent with a few transient elements of secondary structures (red 

for α-helix, yellow for β-sheets, and green for poly-proline helix), B adapted from (Mandelkow 

and Mandelkow, 2012) 
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Physiological distribution and functions of tau protein 

Tau protein is a member of MAPs localized predominantly in axonal projections  

in neurons of peripheral and central nervous system (PNS and CNS, respectively) (Binder et al., 

1985; Peng et al., 1986; Kanai and Hirokawa, 1995). In a lesser extent, tau mRNA and protein 

were also detected in oligodendrocytes and astrocytes (Couchie et al., 1985; LoPresti et al., 1995; 

Muller et al., 1997; Klein et al., 2002). Tau subcellular distribution and the expression  

of different tau isoforms are strictly regulated during the neuronal development. In CNS, tau 

isoform with three tandem repeats (3R) at the C-terminal part is predominantly represented in the 

early stages of brain development providing more plasticity in microtubule network formation. 

During neuronal maturation, the tau isoform with four repeats (4R) begins to occur and 

dominates in adult neuronal axons (Pizzi et al., 1995; Takuma et al., 2003). The sorting 

mechanisms of tau into an axonal compartment in mature neurons are not fully understood. But 

some mechanisms for both mRNA (Litman et al., 1993; Aronov et al., 2001; Malmqvist et al., 

2014) and protein level (Hirokawa et al., 1996; Konzack et al., 2007, Scholz and Mandelkow, 

2014) have been proposed. A minor part of tau protein is also detected in the somatodendritic 

compartment (cell body, dendrites, nuclei, and mitochondria) which gradually reveal its new 

potential physiological functions. Interestingly, this subcellular distribution of tau protein  

in neurons seems to be isoform-dependent (Liu and Gotz, 2013; Zempel et al., 2017). 

Tau protein was discovered as a protein factor essential for microtubule assembly  

by Kirschner group in 1975 (Weingarten et al., 1975). Tau interacts with microtubules through 

the repeat domains and flanking regions located at microtubule assembly domain at C-termini 

(Steiner et al., 1990), as shown in Fig 4. It thereby stabilizes microtubules (Kadavath et al., 

2015), promotes their assembly and participates in the reorganization of the cytoskeleton  

via dynamic interactions with microtubules (Kempf et al., 1996; Elie et al., 2015). Moreover, 

interactions of microtubules with tau participate in the regulation of axonal transport by several 

different mechanisms (Trinczek et al., 1999; Dixit et al. 2008).  
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Figure 4: Tau interactions with a microtubule. Human tau isoforms 0N4R, 1N4R, and 2N4R 

contain four imperfect repeat domains (R1-R4) that are parts of microtubule assembly domain 

and participate in interaction with microtubules. Also, tau isoforms 0N3R, 1N3R, and 2N3R that 

lack R2 domain interacts with microtubules. Adapted from (Choi et al., 2011) 

The N-terminal projection domain of tau protein, which is not involved in interactions 

with MTs, associates with membranes and may serve as a mediator of microtubule-plasma 

membrane interactions during the process outgrowth (Brandt et al., 1995). Interestingly, the 

proline-rich region in N-terminal part of tau binds with membrane-associated signaling molecules 

containing SH3 domains (for instance src-family tyrosine kinase Fyn) in phosphorylation-

dependent manner that shows its potential role in intracellular signaling pathways (Lee et al., 

1998; Arrasete et al., 2000; Reynolds et al., 2008).  

The evidence of the physiological location of tau protein in dendrites and synapses was 

proved in several papers, which are summarized in review (Regan et al., 2017). The physiological 

function of dendritically situated tau has been under intensive investigations. So far, tau protein 

may play a role in the regulation of morphological plasticity of dendrites (Chen et al., 2012; 

Pallas-Bazarra et al., 2016). Nuclear tau protein (Loomis et al., 1990; Brady et al., 1995) is 

implicated in maintenance of genome and chromosomal stability (Rossi et al., 2008) and 

protection of both nucleic acids, DNA and RNA, respectively (Violet et al., 2014). Recently, it 

was proven that gene expression may be partly regulated via the interaction of nuclear tau  

with DNA molecules and via tau participating in ribosomal RNA processing (Frost et al., 2014), 

but the mechanisms are still poorly understood. 
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The physiological localization of tau protein is essential for its proper functions that are 

briefly summarized above. Under pathological conditions, missorting of tau protein 

accompanying by pathological post-translational modifications and aggregation leads to losing its 

normal functions and to neurodegenerative processes inside the stricken neurons. Thus, the next 

chapter is devoted to post-translational modifications of tau protein, which play a crucial role  

in both physiological tau properties as well as disease-associated changes. 

 

Post-translational modifications of tau protein 

Co-/post-translational modifications (PTMs) are a biological mechanism by which the 

functional diversity of proteins is expanded. Especially, intrinsically disordered proteins (IDPs) 

demonstrate vulnerability to be abundantly post-translationally modified and thereby may 

significantly change their structural properties affecting binding promptness and functions (Bah 

and Forman-Kay, 2016). Tau protein as a typical representative of IDPs is highly regulated by  

a variety of PTMs. Phosphorylation, truncation and conformational changes leading to tau 

oligomerization and aggregation are most studied PTMs of tau protein in relation to form tau 

pathological forms observed in brain tissue of AD patients and are discussed in more details later 

in this chapter. Otherwise, additional numerous PTMs of tau protein are also known and their role 

in tau function has been intensively studied (Morris et al., 2015) and excellently reviewed in the 

literature (Pevalova et al., 2006; Martin et al., 2011; Kontaxi et al., 2017). Even though each 

PTM is formed by a distinct mechanism utilizing different enzymes, cofactors and chemical 

groups to modify amino acid residues, their overlapping has a great impact on tau function, its 

cellular localization, and turnover (Venne et al., 2004; Gong et al. 2005; Yang and Seto, 2008). 

Multiple lysine residues occurring in tau protein molecule (44 lysine residues in human full-

length tau variant 2N4R) may be modified with lysine-directed PTMs (glycation, acetylation, 

ubiquitination, sumoylation, and methylation) which play role in tau assembly and toxicity via 

participating in electrostatic and hydrophobic interactions (Kontaxi et al., 2017). N-glycosylation, 

O-GlcNAcylation, prolyl-isomerization, nitration, polyamination, and oxidation are other PTMs 

discussed in relation to the tau-mediated pathogenesis of AD. 
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Tau phosphorylation 

Tau is a multiply phosphorylated protein as was demonstrated at the turn of 70
th

 and 80
th

 

of the last century in relation to its ability to modulate cytoskeleton dynamics (Cleveland et al. 

1977; Selden and Pollard, 1983; Lindwall and Cole, 1984). As tau properties in both 

physiological/pathological circumstances have been gradually discovered, phosphorylation has 

become the most studied PTM. As in case of tau isoform expression (Goedert et al., 1989), site-

specific phosphorylation of tau protein is developmentally regulated. Fetal tau protein is 

phosphorylated in higher rates than tau in mature neurons (Brion et al., 1993; Yu et al., 2009). 

Although only 0N3R tau variant is found in the fetal brain, its increased phosphorylation has  

a partial contribution to the weakened affinity of tau to MTs, in this case reflecting the period  

of active neurite outgrowth and neuronal polarization (Yu et al., 2009). In mature neurons, tau 

PTMs, including phosphorylation, are likewise dynamically processed and participate in proper 

functions and physiological maintenance of neurons. Tau phosphorylation state may influence 

also additional features connected with MT dynamics and stability, such as axonal transport and 

synaptic plasticity (Tatebayashi et al., 2004; Mondragón-Rodríguez et al., 2012). In general, tau 

phosphorylation has a great impact on tau interactions with binding partners, its localization, and 

function. 

In AD and other related tauopathies, the occurrence of altered tau protein 

hyperphosphorylated in a site-specific manner results in decreased MT binding leading to tau 

missorting and aggregation into neurofibrillary deposits (review: Wang et al., 2013). Tau protein 

is a natively unfolded protein and contains 85 phosphorylatable residues (45 serines, 35 

threonines, and 5 tyrosines calculated for human full-length tau 1-441 aa), thus is considered as 

an ideal substrate for multiple kinases and phosphatases. The imbalance in tau kinase and 

phosphatase activities may trigger the non-physiological tau phosphorylation with all the 

consequences leading to neurodegeneration (Billingsley and Kincaid, 1997; Gong et al., 2006). 

The fact that tau protein is highly phosphorylated in AD brains versus control brains has been 

documented. Normal brain tau has 2-3 mole of phosphate per mole of protein, but AD brains also 

contain tau with an approximately three-fold greater stoichiometry of mole of phosphate/mole  

of tau (Kopke et al., 1993). So far, 45 phosphorylation sites were detected in insoluble aggregates 

of tau extracted from AD brain, herein referred to PHF-tau (Fig 5), several of them are strictly 
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AD-specific and some of them are shared with tau isolated from control brains (Martin et al., 

2013; Noble et al., 2013). The phosphorylation of tau protein is a highly dynamic process, thus, 

even though multiple phosphorylation sites were detected in tau from both in control and AD 

brains (Martin et al., 2013), tau phosphorylation order and alterations have been still under 

continual investigation. Moreover, in some phosphorylation clusters (e.g. S210-T217, T231-

S238), there was proven hierarchical phosphorylation, meaning that phosphorylation occurs 

sequentially with specific initial phosphorylation sites which prime for further phosphorylation  

in nearby residues (Goedert et al., 1994; Hanger et al., 2007). The phosphorylation sites in PHF-

tau are predominantly located in the proline-rich domain and the regions flanking the 

microtubule-binding domain (Morishima-Kawashima et al., 1995; Hanger et al., 1998; Vega et 

al., 2005; Hanger et al., 2007, Noble et al., 2013) and are involved in alterations in tau-

microtubule binding dynamics and interactions with other reactive partners. So far, four 

phosphorylated residues occurring specifically in PHF-tau have been identified in MBD region 

(S258, S262, S289, and S356) and were shown to have a substantial impact on the reduction  

of tau binding to microtubules (Biernat et al., 1993; Ando et al., 2016). 

 

 

Figure 5: Phosphorylation sites (45) detected in insoluble aggregates of tau extracted from AD 

brain referred as PHF-tau, with color-coded domains. 

 

A large number of kinases and phosphatases are able to phosphorylate tau as was shown in many 

in vitro experiments. The kinases may be divided into three main groups; first, two belongs  

to Ser/Thr kinases: 1) proline-directed protein kinases (PDPKs), 2) non-proline-directed protein 
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kinase (NPDPKs), and 3) tyrosine kinases (TKs). But it is necessary to bear in mind that not all 

the kinases phosphorylating tau in vitro have yet been proven to phosphorylate tau in vivo and 

may only indirectly regulate tau phosphorylation (Johnson and Stoothoff, 2004). Individual 

kinases and phosphatases, which are considered to be involved in (de)phosphorylation of tau and 

may contribute to AD pathology, are described in more details below. 

Proline-directed protein kinases 

There are at least three different PDPKs families involved in tau-based AD pathology: 

GSK3, MAP kinases, and Cdks showing slightly different substrates´ preferences. 

Glycogen synthase kinase-3 (GSK-3) 

GSK3 is ubiquitously expressed mammalian proline-directed Ser/Thr kinase, which is  

a key regulator of multiple signaling pathways phosphorylating numerous protein substrates 

(reviewed by Frame and Cohen 2001; Woodgett, 2001). Two isoforms of GSK-3 were identified, 

GSK-3α and GSK-3β (Woodgett, 1990). There are two peculiarities linked to GSK-3  

in comparison to other kinases. Firstly, GSK-3 is constitutively active (phosphorylated at T216) 

in most tissues and its activity is mostly regulated by inhibitory phosphorylation at S9 (Harwood, 

2001). Secondly, GSK-3β is more prone to phosphorylate primed substrates (pre-phosphorylated 

on particular Ser/Thr residues) with sequences S/T-X-X-X-pS/pT (Fiol et al., 1987). This priming 

of the substrate is not strictly required but greatly increases the efficiency of GSK-3-mediated 

substrate phosphorylation. Tau protein is a suitable GSK-3 substrate in both primed and 

unprimed state, though they differ in microtubule binding after GSK-3-mediated phosphorylation 

(Sengupta et al., 1998; Cho and Johnson, 2003). Thus, tau phosphorylation by multiple kinases 

may diversely affect tau properties and influence its roles in physiology and AD pathology. 

Among kinases involved in tau pathology, GSK3 is associated with the largest amount of putative 

phosphorylation sites at tau molecule. Approximately 40 residues were identified to be 

phosphorylated by GSK-3 in vitro; 13 of them were exclusively found in PHF-tau (T69, T153, 

T175, S184, S185, S210, S214, S237, S258, S262, S289, S356, and S409, respectively) 

(reviewed by Hanger and Noble, 2011). Levels of active form (GSK-3-pT216) are increased  

in AD brain where accumulate with tau deposits in neurons (Leroy et al., 2007). As GSK-3 

regulates many cellular signaling pathways, it is regarded that active GSK-3 has an impact  



22 

 

on more aspects of AD development and progression (reviewed by Llorens-Maritin et al., 2014), 

which even led to establishing the GSK3 hypothesis of AD (Hooper et al., 2008). Much discussed 

topics are GSK-3 as a mechanical link between two major pathological hallmarks, tau deposits 

and Aβ toxicity (Terwel et al., 2008; Dunning et al., 2015) and GSK-3 as a promising therapeutic 

target in AD treatment (reviewed by Maqbool et al., 2016). 

Mitogen-activated protein kinases (MAPKs) 

Another proline-directed S/T kinase family investigated in relation to tau-associated AD 

pathology are three MAPK groups: extracellular signal-regulated kinases (ERKs), c-Jun amino-

terminal kinases (JNKs), and p38 (Atzori et al., 2001; Ferrer et al., 2001). All these MAPK 

subfamilies contain several isoforms. Two ERKs isoforms are known as ERK1 (p44-MAPK, 

MAPK3) and ERK2 (p42-MAPK, MAPK1), respectively (Boulton et al., 1991; Childs and Mak, 

1993). JNKs, also known as stress-activated protein kinase or SAPK, exist in several alternatively 

spliced isoforms JNK1-3 (Gupta et al., 1996), and p38 isoforms α, β, γ, and δ have been 

identified so far (Cuenda and Rousseau, 2007). Multiple MAPK pathways, activated by both 

extracellular and intracellular stimuli, regulate diverse key cellular activities (cell proliferation, 

differentiation, apoptosis, synaptic plasticity etc.) via mediated phosphorylation of their 

substrates (reviewed by Roux and Blenis, 2004; Thomas and Huganir, 2004). Tau protein is 

phosphorylated by MAPK in physiological manners as well as under pathological circumstances 

(Drewes et al., 1992). In AD brains, all three MAPK subfamilies (ERK, JNK, and p38) have been 

demonstrated to be differentially expressed in association with tau deposits in neurons. Moreover, 

active forms of MAPKs are increased in AD compared to controls (Trojanowski et al., 1993; 

Hensley et al., 1999; Atzori et al., 2001; Ferrer et al., 2001; Pei et al., 2001; Zhu et al., 2001). 

Eleven tau S/T residues found in PHF-tau were identified to be phosphorylated by all three 

MAPK subfamilies: T175, T181, S202, T205, T212, T217, S231, T235, S396, S404, and S422. 

Individually, ERK phosphorylates tau at S46, T50, T69 and 153, and p38 at T245, S305, and 

S356, respectively (Reynolds et al., 2000; Martin et al., 2013; Wang et al., 2013). All these 

published data indicate that MAPKs are kinases playing their role in tau pathology under stress 

conditions and may be possible targets for therapeutic interventions (Harper and Wilkie, 2003). 
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Cyclin-dependent kinase 5 (Cdk5) 

Cdk5, a member of cyclin-dependent kinases (Cdk), is a proline-directed Ser/Thr kinase. 

In contrast to other Cdks actively operating in proliferating cells, Cdk5 is predominantly 

activated in post-mitotic neurons via binding with its neuron-specific activators p35 or p39 (Lew 

et al., 1994). Since soluble Cdk5 is highly expressed in neurons, the kinase activity is mainly 

determined by accessible levels of activators, which are rapidly degraded by ubiquitin-

proteasome pathway (Minegishi et al., 2010). Under stress conditions, the calpain-mediated 

truncation of membrane-associated p35 subunit releases the C-terminal fragment p25 with a 

longer half-life that is translocated from membranes and causes overactivation of Cdk5 (Patrick 

et al., 1999; Lee et al., 2000). This hyperactivated complex Cdk5-p25 is thought to be involved  

in abnormal tau phosphorylation in AD (Imahori and Uchida, 1997; Cruz and Tsai, 2004). Some 

of tau S/T residues were approved to be phosphorylated by Cdk5 in vitro, namely S202, T205, 

S235 and S404 (Imahori and Uchida, 1997), all detected in both PHF-tau and physiological tau 

(Martin et al., 2013). Besides major in vitro Cdk5 sites of tau, also several more tau 

phosphorylation sites are listed in other publications (Paudel et al., 1993; Liu et al., 2002).  

To date, the studies focusing on determination of activator p25 levels in AD post-mortem brains 

and the effect of Cdk5-p25 complex on NFT formation in transgenic animal models have given 

controversial results (critically reviewed at Giese et al., 2005; Giese, 2014). The complex Cdk5-

p25/p35 also phosphorylates proteins involved in synaptic plasticity and memory formation, 

plays a role in neuronal differentiation and cross-talks with GSK-3β (Tsai et al., 1993; Fischer et 

al., 2005; Engmann and Giese, 2009). These are only several examples of pathways, which Cdk5 

orchestrates, and it is necessary to better understand the role of Cdk5 and its co-activators under 

both physiological and pathological circumstances. 

Non-proline-directed protein kinases 

cAMP-dependent protein kinase 

cAMP-dependent protein kinase (PKA) was the first protein kinase which structure was 

determined and since that over 370 substrates have been identified. PKA belongs to non-proline 

directed S/T protein kinases within the AGC kinase subfamily. The inactive PKA 

heterotetrameric R2C2 complex is composed of two catalytic (C) and two regulatory (R) 
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subunits. In PKA signaling pathways, the binding of second messenger 3',5'-cyclic adenosine 

monophosphate (cAMP) to the R subunits is responsible for C subunits release and a subsequent 

substrate phosphorylation (Taylor et al., 1990; Shabb, 2001; Pearce et al., 2010). The ubiquitous 

distribution of PKA and its diverse cellular localization mediated via multidomain scaffolding 

proteins result in a large number of potential PKA substrates affecting physiological functions. 

Tau protein has been intensively studied as a physiological PKA substrate since about a third  

of tau Ser/Thr sites were identified as a target for in vitro PKA-mediated phosphorylation. Nine 

of them are supposed to be strictly AD-specific phosphorylation sites: S208, S210, S214, S258, 

S262, S356, S409, S422, and S435 (Jicha et al., 1999; Hanger et al., 2007; reviews: Sergeant et 

al., 2008; Hanger et al., 2009; Martin et al., 2013; Wang et al., 2013). PKA was also confirmed as 

an effective priming kinase for GSK-3 residues specificity, which facilitates tau further 

phosphorylation by GSK-3 at multiple sites (Liu et al., 2004; Liu et al., 2006). The mechanism  

of priming tau protein has not been yet fully understood, but in contrary, two from ten putative 

GSK-3 phosphorylation sites in PKA-prephosphorylated tau are inhibited, also there is the totally 

distinct effect of PKA prephosphorylation on Cdk5-mediated tau phosphorylation (Liu et al., 

2006). The cooperation of various kinases and priming mechanisms may lead to different site-

specific preferences of kinases, which subsequently phosphorylate primed tau protein. 

Casein kinase 1 superfamily 

Casein kinase 1 superfamily contains casein kinase 1 (CK1, isoforms: α1, α2, γ1, γ2, γ3, 

δ, and ε), tau-tubulin kinase (TTBK, isoforms 1 and 2), and vaccinia-related kinase (VRK, 

isoforms 1, 2 and 3) (Manning et al., 2002; Ikezu and Ikezu, 2014). Within this kinase 

superfamily, CK1δ and both TTBK1/2 were proven to be involved in tau phosphorylation  

in PHF-tau manner. CK1δ is S/T specific kinase that phosphorylates cytoskeletal structures like 

α/β tubulin and MAPs, including tau protein (Behrend et al., 2000). In vitro study, Ck1δ-

mediated tau phosphorylation generates several PHF-associated sites and disrupts microtubule 

binding (Li et al., 2004). The elevated levels of CK1δ protein and mRNA, respectively,  are 

found in affected areas of AD brains (Ghoshal et al., 1999; Yasojima et al., 2000) and are 

associated with pathological tau accumulation in brains of AD and other several tauopathies 

(Schwab et al., 2000). TTBK1 is neuronal specific S/T/Y protein kinase which expression is 

upregulated in AD brains (Sato et al., 2008) and co-localized with pre-tangle S422-
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phosphorylated tau formations (Lund et al., 2013). Tau protein is a substrate for both TTBK1 and 

2 isoforms phosphorylated tau at PHF-specific sites in vitro; Tyr197, S198, S199, S202, and 

S422 by TTBK1 (Sato et al. 2006), and S208 and S210 by TTBK2, respectively (Tomizawa et 

al., 2001). 

Dual-specificity tyrosine-regulated kinases 

Mammalian dual-specificity tyrosine-regulated kinases (DYRKs) subfamily consists of 5 

members Dyrk1A, Dyrk1B, Dyrk2-4 with genes located on different chromosomes (Becker et al., 

1998). The dual specificity is characterized by their ability to auto-phosphorylate tyrosine in the 

catalytic loop for self-activation and to phosphorylate target proteins on S/T residues. They play 

regulatory roles in signaling of cell proliferation, survival, and development. The most studied 

Dyrk linked to neurodegeneration is Dyrk1A because of its gene location on chromosome 21 

(Kentrup et al., 1996) which is associated with neurodevelopmental alterations in Down 

syndrome (review: Park et al., 2009) and involvement in brain development (Dierssen et al., 

2006; Guedj et al., 2012). In AD, Dyrk1A mRNA level is elevated (Kimura et al., 2006), and the 

alterations in expression of constitutive Dyrk1A in the cytoplasm and nuclei of neurons also 

occur (Ferrer et al., 2005). Dyrk1A participates on tau phosphorylation at position Thr212  

in vitro, which primes tau to be phosphorylated by GSK-3β at S208 (Woods et al., 2001),  

a position identified as a strictly AD-specific phosphorylation site (Martin et al., 2013). 

 

 

Ca
2+

/calmodulin dependent protein kinase II (CaMKII), microtubule-affinity regulating 

kinases (MARKs), phosphorylase kinase (PhK), protein kinases PKN and PKC, and protein 

kinase B (PKB/Akt) are other non-PDPKs associated with tau pathology. They can directly 

phosphorylate non-S/T-P motifs mostly located in MTBDs of tau or indirectly affect other kinase 

activities (Correas et al., 1992; Singh et al., 1996; Paudel, 1997; Kawamata et al., 1998; Sironi et 

al., 1998; Ksiezak-Reding et al., 2003; Matenia and Mandelkow, 2009). 
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Tyrosine kinases 

Most published studies about phosphorylation involved in tau-based AD pathological 

changes are dedicated to serine/threonine residues in tau protein and the role of tau tyrosine 

phosphorylation and searching for potential tyrosine kinases in AD pathogenesis have only 

recently emerged. All six tau isoforms located in human CNS possess five tyrosine residues: 

Y18, Y29, Y197, Y310, and Y394 (numbered according to the longest human tau isoform 2N4R, 

1-441 aa). The increasing evidence of tyrosine kinases involvement in AD has been documented 

in relation to their altered levels, missorting localization, and occurrence within tau deposits  

in AD brains compared to control subjects (Shirazi and Wood, 1993; Ho et al., 2005). Moreover, 

particular tyrosine phosphorylated tau was proved to be a part of PHF-tau and tau deposits (Lee 

et al., 2004; Vega et al., 2005). Src family, TTBK1, and c-Abl are the most intensively discussed 

tyrosine kinases contributing to tau phosphorylation. 

Src family of non-receptor tyrosine kinases (SFKs) containing SH3 domains are 

ubiquitously expressed. Interestingly, tau is a suitable substrate candidate for interactions  

with SFKs since possessing seven potential SH3 binding motifs (PxxP) at the proline-rich region 

in N-terminus (Lee et al., 1998). The family members Src, Fyn, Lck, and Lyn are found in brain 

neurons (Cooke and Perlmutter, 1989; Umemori et al., 1992; Omri et al., 1996; Yanagi et al., 

2001) and linked with phosphorylation of tyrosine residues at tau (Lee et al., 1998). The major 

tau tyrosine residue phosphorylated by SFKs is Y18 (Lee et al., 2004; Lebouvier et al., 2008). 

This phosphorylation residue seems not to alter interactions of tau with MTs but is a part of PHF-

tau and occurs in NFT-bearing neurons (Lee et al., 2004). Later, a study published MS analysis  

of in vitro tau phosphorylation detected more phosphorylated tau tyrosine residues by Src family 

members: Y18, Y197, Y310, and Y394 in reaction with Lck, and Y18 and Y197 phosphorylated 

with Fyn (Scales et al., 2011). 

Tau phosphorylated at Y197 was detected in AD brains (Vega et al., 2005). Sato and 

colleagues proved that tau-tubulin kinase 1 (TTBK1) in addition to several S/T residues occurred 

in PHF-tau also directly phosphorylates tau at Y197 residue in vitro (Sato et al., 2006). TTBK1 is 
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a neuron-specific dual kinase, which phosphorylates S/T/Y and belongs to casein kinase 1 

superfamily as was mentioned previously in this chapter.  

Phosphorylation of tau at position Y394 has been also investigated since Y394-

phosphorylated tau was found both in PHF-tau isolated from AD brains and in human fetal brain 

tau (Derkinderen et al., 2005). The kinases which were so far shown to phosphorylate tau at Y394 

are c-Abl and Arg (Abl-related gene, also known as Abl2) (Tremblay et al., 2010); both belong  

to Abl family of mammalian non-receptor tyrosine kinases and are implicated in cellular 

responses, mostly apoptosis, oxidative and other types of stress (Sun et al., 2000; Cao et al., 

2001). 

Taken together, phosphorylation of tyrosine residues in tau protein may have a role in AD 

progression and more investigation on this topic is certainly needed. 

 

Phosphatases 

Abnormal phosphorylation of tau protein in site-specific manners is associated with loss 

of tau biological function accompanied by aggregation into PHFs. Since these filamentous 

structures composed mostly of hyperphosphorylated tau form various intracellular deposits  

with gain the toxic function, the balance between tau kinases and phosphatases activities is 

supposed to be a crucial mechanism, by which the state of tau phosphorylation is controlled. 

Besides kinases participating in abnormal tau phosphorylation, several phosphatases involved  

in tau biology have been identified and the failure in their physiological activity is suggested. 

Protein phosphatases types 1, 2A, 2B (known also as calcineurin), and 5 (PP1, PP2A, PP2B, and 

PP5, respectively) are the major protein phosphatases responsible for regulation of tau 

phosphorylation state in brain (Yamamoto et al., 1988; Drewes et al., 1993; Gong et al., 1994 a-c; 

Liu et al., 2005a, b; and excellently reviewed by Liu et al., 2006). Phosphatases have generally 

wider substrate-specificities in comparison to most kinases, thus each phosphatase 

dephosphorylates numerous phosphorylated S/T residues in PHF-tau but with various efficiencies 

toward different sites (Liu et al. 2006). 
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Importantly, in 2005, Liu and coworkers published an outstanding original article 

regarding the contribution of individual phosphatases on the regulation of tau phosphorylation. 

The results show that PP1, PP2B, and PP5 accounted together for approximately 30% of the total 

tau phosphatase activity of human brain (11% for PP1, 7% for PP2B, and 10% for PP5, 

respectively) and the remaining 71% of total tau phosphatase activity is provided by PP2A (Liu et 

al., 2005b). This conclusion is in agreement with data that PP2A is the major phosphatase that 

regulates tau phosphorylation to the extent that MT assembly promoting the activity of tau is 

significantly decreased by specific inhibition of PP2A (Sontag et al., 1996; Gong et al., 2000). 

The activity of all phosphatases involved in tau dephosphorylation were shown to be 

compromised in AD (Gong et al. 1993, Sontag et al. 2004, Liu et al. 2005 a-c), but it is evident 

that the partial contribution of individual phosphatases has to be included to fully understand the 

overall effect of each phosphatase on regulation of tau phosphorylation state in AD pathology.  

In summary, abnormal tau phosphorylation in AD is not only a result of altered kinase activities, 

but the impairment in regulation and activity of phosphatases may also significantly contributed 

to the formation of PHF-tau and their impact on tau phosphorylation state should not be 

underestimated. 

 

Tau truncation 

Various structure types of aggregated tau forming intracellular deposits is  

a histopathological hallmark of neurodegenerative disorders named tauopathies, including AD. 

Besides phosphorylation, tau truncation is another important PTM that participates along  

with conformational changes in initiation and/or acceleration of tangle formation (Binder et al., 

2005; de Calignon et al., 2012; Mead et al., 2016). Tau protein is a natively unfolded protein and 

therefore sensitive to protease cleavage both in vitro and in vivo, summarized in reviews (Wang 

et al., 2010; Chesser et al., 2013). To date, endogenous proteases involved in tau fragmentation 

and precise cleavage sites have been only partially known. But better understanding of the 

formation and action of tau truncated species is needed for several reasons; (1) active forms  

of several endogenous proteases implicated in tau cleavage are elevated in AD brains (Rohn et 

al., 2002; Ramcharitar et al., 2013), (2) tau fragments might be intrinsically toxic to neurons  

per se and/or possess enhanced tau pro-aggregation properties (Zilka et al., 2006; de Calignon et 
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al., 2012); (3) occurrence of several fragmented tau species correlates with AD progression 

(Basurto-Islas et al., 2008), and (4) amyloid and tau pathology may be mechanically linked  

to activity of several proteases (Cotman et al. 2005; Park and Ferreira, 2005).  

To date, caspases and calpains have been the most intensively studied endogenous 

proteases in relation to tau fragmentation leading to tangle formation. Caspases belong to a 

family of cysteine-dependent aspartate-directed proteases and their activation is a key 

biochemical event in a programmed cell death pathway termed apoptosis (Lazebnik et al., 1994; 

Alnemri et al., 1996). Though caspases are proteases mainly associated with apoptosis, there is 

evidence of non-apoptotic caspases´ roles, which may lead to cleavage of many cellular proteins 

and contribute to neuronal pathology prior to cell death (Hyman, 2011; Hyman and Yuan, 2012). 

Moreover, elevated caspase activity in AD brains and its correlation with AD pathology were 

proven (Rohn et al., 2001; Su et al., 2001; Guo et al., 2004). Tau protein was identified as one  

of many caspase substrates (Canu et al. 1998; Fasulo et al., 2000; Gamblin et al., 2003). The only 

caspase-mediated tau cleavage site validated both in vitro and in vivo is at D421 position (D421-

S422 calculated for tau 1-441 aa) mediated by multiple caspases, most likely by caspase-3 

(Gamblin et al., 2003; Rissman et al., 2004). This C-terminally truncated form of tau, also called 

TauC3, is implicated in tau aggregation and seeding activity linked to cell toxicity (Nicholls et 

al., 2017). Other putative cleavage sites for caspases may occur in both C-terminal and N-

terminal parts, for instance, Asp13 at its N-termini cleaved by caspase 6 (Horowitz et al., 2004). 

Active forms of calpains (forms calpains-1 and -2), calcium-activated neutral proteinases, were 

also found to be increased in AD-affected brains (Saito et al., 1993). This phenomenon might be 

explained as a consequence of disturbances in calcium influx and decreased levels of calpastatin, 

a calpain endogenous inhibitor, both events described in AD (Rao et al., 2008; Magi et al., 2016). 

Calpain-mediated tau cleavage generates 17kDa tau fragment with intrinsic toxic effect (Park and 

Ferreira, 2005; Reinecke et al., 2011). Ferreira´s group detected its occurrence only in AD- and 

other tauopathies-affected brains compared to controls (Ferreira and Bigio, 2011). In these works, 

the amino acid sequence of 17kDa fragment was determined as residues 45-230 due to the 

predicted calpain-cleavage sites (Canu et al., 1998). In Mandelkow´s laboratory, the amino acid 

sequence of calpain-mediated 17kDa cleavage tau product was determined to comprise residues 

125–230 (Garg et al., 2011). And, in contrary, they detected this fragment even in control brains 

and did not confirm its cytotoxic effect in the cell-based system (Grag et al., 2011). The Aβ-
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induced generation of 17kDa tau fragment via calpain activation was proven in both laboratories, 

but its role in AD pathology has not been yet fully evaluated. 

Thrombin, a serine protease, and its precursor prothrombin are also localized in brain 

tissue. Thrombin was shown to be elevated in the brain and cerebral microvasculature in AD, and 

also thrombin-positive NFTs were detected by immunohistochemistry (Arai et al., 2006; Yin et 

al., 2010). Thrombin was proven to degrade tau protein in vitro from its N-terminus  

by proteolysis on multiple arginine and lysine sites, including R155-G156, R209-S10, R230-

T231, K257-S258, and K340-S341 (Arai et al., 2005). The first thrombin cleavage site was 

identified at R155-G156 bond yielding a 25-kDa C-terminal fragment (Olesen, 1994) which is 

continuously degraded (Arai et al. 2005). 

In AD, several other tau fragments have been identified but the process of their formation 

has not yet been clearly established. One of the intensively studied truncations of tau protein is at 

position Glu391 since such a fragmented tau has been found to be a part of PHFs forming NFTs 

(Harrington et al., 1991). Glu391-cleaved tau fragment was detected in both early deposits  

of abnormal tau in cells vulnerable to NFTs degeneration in AD brains (Mena et al., 1991; Mena 

et al., 1996; Abraha et al., 2000) as well as in NFTs present in certain brain areas at late stages  

of AD where even corresponds with the severity of tau pathology (Garcia-Sierra et al., 2001; 

Garcia-Sierra et al., 2003; Basurto-Islas et al., 2008). The in vitro polymerization experiments 

with glu391-truncated tau revealed increased rates of polymerization stimulated by inductors 

such as arachidonic acid in comparison to full-length tau (Abraha et al., 2000). Even this site-

specific truncation of tau protein is associated with tau pathology propagation, endogenous 

proteases responsible for cleavage of tau at position E391 has not yet been identified. Novak´s 

group identified truncated tau species with a conformational state different from normal healthy 

tau which may play a pivotal role in AD neurofibrillary degeneration. These structurally different 

tau species, truncated at amino acid positions 151-391/421 and specifically reactive with a 

conformational DC11 antibody, may promote the neurofibrillary pathology of AD type in vivo 

(Vechterova et al., 2003; Zilka et al., 2006).  

Tau protein, which is primarily located in cytosol, is degraded and eliminated  

by proteasomal system (David et al., 2002; Grune et al., 2010) and autophagy machinery (Wang 

et al., 2009), but both these degrading pathways are prone to be altered under pathological 
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circumstances such as found in AD (Keller et al., 2000; Nixon and Yang, 2011; Wang and 

Mandelkow, 2012; Lee et al., 2013). Puromycin-sensitive aminopeptidase (PSA),  

an aminopeptidase cleaving their substrates from the N-termini, and asparaginyl endopeptidase 

(AEF), which cleaves protein substrates on the C-terminal side of asparagine, are described as 

other potential proteases implicated in tau fragmentation. PSA is an alanyl peptidase with high 

activity in brain tissue (McLellan et al., 1988) and is able to proteolyze tau in vitro (Karsten et al. 

2006; Sengupta et al., 2006). On contrary, other studies do not confirm tau protein as a direct 

substrate for PSA, but they suggest PSA as an indirect modulator of tau levels (Chow et al., 2010; 

Kudo et al., 2011) more likely by promoting tau clearance and involving in autophagy pathway 

(Chesser et al., 2013). Levels of activated AEP, lysosomal cysteine proteinase, are significantly 

increased in AD brains and even its translocation from neuronal lysosomes to the cytoplasm is 

enhanced in AD neurons (Basurto-Islas et al., 2013; Zhang et al., 2014). AEF cleaves tau protein 

at N255 and N368 residues. Tau with the second cleavage site increased aggregation rate and was 

shown to be elevated in AD brains and to have a cytotoxic effect on neurons (Zhang et al., 2014). 

Another group of lysosomal proteases, cathepsins, are also associated with tau fragmentation but 

more data are needed to better understand their role in tau aggregation and clearance (Bednarski 

and Lynch, 1996; Kenessey et al., 1997; Wang et al., 2009).  

The coordination between tau proteolytic processing and clearance of tau by degrading 

pathways is essential for maintaining appropriate tau intracellular levels and its functional 

properties (Chesser et al., 2013). Fragmentation, polymerization, and clearance of tau are 

interconnected processes and their balance is inevitable for neuronal survival, as well as its 

disruption, may trigger detrimental events leading to neurodegeneration. 

 

Tau aggregation and paired helical filaments 

The fibrils observed in neurons of cerebral cortex in AD were termed paired helical 

filaments (PHFs) in 1963 (Kidd, 1963) and were characterized as a left-handed double helices  

of subunits resembling ribbon-like structures with a periodicity of ~ 65–70 nm and thicknesses  

of ~ 9–18 nm (Wischik et al., 1985; Wegmann et al., 2010). Tau protein was identified as their 

main component (Kosik et al., 1986; Ihara et al., 1986). Since that, chemical and physical 
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properties of tau molecule that contribute to aggregation have been gradually revealed. Tau 

protein is natively unfolded protein of rather a hydrophilic character lacking stable secondary 

structure/rigid globular domain in solution (Skrabana et al., 2006). The fact that tau is a 

representative of proteins with intrinsically disordered character does not necessarily mean that 

tau is a total random coil. Tau rather retains a global hairpin folding structure in solution 

(Jeganathan et al., 2006) but still preserves substantial flexibility prone to self-assembling and 

disorder/order transitions depending mostly on ambient conditions, PTMs and specific 

interactions. The critical point when physiologically active tau molecule becomes a part  

of pathological PHFs has not yet been fully understood and seems to depend on numerous 

factors. Studies about PHF formation and tau aggregation could be divided into two main 

approaches; (1) presence of certain sequence motifs in tau possessing enhanced propensity for β-

structures as elements responsible for the abnormal tau aggregation to PHFs called “pro-

aggregation motifs”, (2) PTMs, mostly abnormal truncation and phosphorylation, contributing  

to changes in conformational state of tau leading to detaching from MTs, misfolding and self-

aggregation. Both approaches complement each other. 

The minimal protease resistant tau unit, named PHF core, responsible for tau fibrillization was 

identified as a 93–95 amino acid residues long tau fragment within the MT-binding domain  

of sequence beginning in the vicinity of H268 and ending E391at C-terminus (Wischik et al., 

1988; Jakes et al., 1991; Novak et al., 1993). Thus, specific pro-aggregation motifs most studied 

in the context of PHF formation are located within the MT-binding domain at tau C-termini 

(Okuyama et al., 2008; Sugino et al., 2009). Two candidate hexapeptides clustering the strong β-

sheet inducing residues V, I, Y, and Q  are of sequences 275-VQIINK-280 (PHF6*) and 306-

VQIVYK-311 (PHF6) and localize at the beginning of R2 and R3 domains, they were defined  

as minimal interaction motifs with predicted β-conformation responsible for assembly of tau  

into PHFs (von Bergen et al., 2000), shown in Fig 6. Mainly, PHF6 peptide seems to be 

responsible for the nucleation phase in fibrillization and the positively charged K311 may be 

essential amino acid in this process (Li and Lee, 2006).  
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Figure 6: Full-length tau (2N4R, 1-44 aa) with highlighted minimal protease resistant tau unit, 

named paired helical filament (PHF) core, responsible for tau fibrillization. Especially, two 

motifs predicted to possess β-sheet conformation within this PHF core has pro-aggregation 

properties and are supposed to be the minimal interaction motifs during PHF formation, 306-

VQIVYK-311 (PHF6 motif) and 275-VQIINK (PHF6* motif). 

 

With the onset of anti-tau antibodies specifically recognizing newly exposed and 

discontinuous epitopes, truncated forms and sequences with pathological phosphorylation 

residues, the evolution of PHFs started to be investigated also from the perspective  

of conformational changes and PTMs (summarized in: Binder et al., 2005; Mondragon-Rodriguez 

et al., 2008; Bibow et al., 2011). It is suggested that tau protein has to undergo numerous 

conformational changes at the beginning of aggregation and that PHFs are dynamic structures 

subjected to maturation changes associated with truncation and phosphorylation during the 

polymerization process. The aim of such concepts is explanation of the ordered series of events  

in NFTs evolution observed by immunohistochemical studies (Augustinack et al., 2002; Garcia-

Sierra et al., 2003; Binder et al., 2005) and supported also by in vitro tau polymerization assays 

(Abraha et al., 2000; Berry et al., 2003). Under physiological conditions, tau protein is bound  

to MTs and/or takes very flexible suprastructure resembling global hairpin folding in soluble 

form (Jeganathan et al., 2006). From the very beginning of tau switching into pathological 

aggregation forms, tau protein is progressively abnormally phosphorylated at several specific 

amino acid residues (Braak et al., 1994; Augustinack et al., 2002) which contributes to its 

detaching from MTs and misfolding (Ding et al., 2006). At least, two conformational changes 
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detected by monoclonal antibodies recognizing discontinuous epitopes have been identified.  

In pre-tangle neurons, the phosphorylation may act as an inducer of the first conformational 

change where the extreme N-terminus folds and contacts the MTBD (Carmel et al., 1996; Jicha et 

al., 1997; Jicha et al., 1999). The sequential tau truncation both at C-terminal site D421 

(Guillozet-Bongaarts et al., 2005) and also at N-terminus may facilitate formation of the later 

conformational change of tau where proline-rich region is in close proximity to MTBD (Ghoshal 

et al., 2001; Garcia-Sierra et al., 2003) followed by additional cleavage events such as E391 

truncation (Skrabana et al., 2004). All these changes in tau molecule seem to be specific for the 

formation of pathological tau aggregates and contribute to tau fibrillization associated with toxic 

consequences. 

 

Naturally occurring tau-reactive antibodies 

Naturally occurring antibodies (nAbs) of IgG, IgM, and IgA subclasses produced 

independently of the introduction of foreign antigens constitute approximately two-thirds  

of serum immunoglobulins (Igs) repertoire. These natural Abs are germline gene-coded Abs 

occurring in physiological serum characterized by polyspecificity (polyreactivity) and associated 

with variable, predominantly low, antigen-binding affinities as they are not subjected to affinity 

maturation and thus contain none or very few somatic mutations (Willis et al., 2013). A subset  

of natural antibodies generated against various intracellular constituents, plasma proteins, cell-

surface antigens, neoantigens, and their altered forms are natural autoantibodies with a wide 

range of affinity values often cross-reacting with several antigens, including self-antigens 

(Avrameas, 1991).  

Circulating naturally occurring (auto)antibodies are assumed to have many crucial 

physiological roles. They provide the preliminary innate immune response against exogenous 

pathogens by several mechanisms, such as activation of the complement system, direct 

neutralization of pathogens, the formation of antigen-antibody immunocomplexes, and thus 

modulate the course of onset of infection by participating in nonspecific defense (Ochsenbein and 

Zinkernagel, 2000). Moreover, their role in immunoregulation has been well documented  

by binding and clearance of apoptotic cells as well as potentially harmful self-antigens, altered 
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molecules, to prevent disproportionate activation of other components of immune system.  

The anti-idiotypic network consistent from nAbs is beneficial in the suppression of an inadequate 

response of various serum autoantibodies to avoid development of exaggerated immune response 

leading to autoimmune pathology (Rossi et al., 1989; Kieber-Emmons et al., 2012). Thus, nAbs 

significantly contribute to the maintenance of normal immune homeostasis. Beside these 

predominantly beneficial natural antibodies, autoantibodies characteristic for various autoimmune 

disorders can be formed under pathological conditions when a disbalance in immune system 

occurs (Scofield, 2004; Lleo et al., 2010). These harmful autoantibodies are almost exclusively 

monoreactive with higher affinities to particular self-antigens. Several hypotheses explaining how 

a part of autoantibody repertoire switches into genuine pathogenic autoantibodies have been 

suggested and still vividly discussed. The dysregulation of physiological immune processes may 

lead to defective immune clearance of immunocomplexes and their subsequent deposition  

in various tissues with pathological consequences. Also, aberrant presentation of previously 

hidden or chemically altered molecules as newly recognized self-antigens to components of the 

immune system gives rise to autoantibodies with a toxic gain of function. Molecular mimicry, the 

sharing of common antigenic structures by exogenous pathogens and host molecular structures 

may cause an inaccurate cross-reactive response of autoantibodies with self-antigens and trigger 

the chain of events leading to inadequate immunological response and even development  

of autoimmune diseases, reviewed in (Atassi et al., 2008). Thus, due to the generalized 

assumption that low-affinity polyreactive natural antibodies have numerous beneficial functions 

and high-affinity monoreactive autoantibodies appearing in high titers under pathological 

conditions are harmful; it is still discussed whether the function of serum natural (auto)antibodies 

directed to brain antigenic entities is more protective or rather pathological in neurological 

disorders (Levin et al., 2010; Loeffler, 2014).  

Circulating naturally occurring tau-reactive antibodies (nTau-Abs) of both IgG and IgM 

isotype has been detected in serum and CSF of Alzheimer’s disease patients as well as in healthy 

controls (Rosenmann et al., 2006; Fialova et al., 2011; Bartos et al., 2012; Klaver et al., 2017; 

Krestova et al., 2017; Kuhn et al., 2018). To date, it has not been fully established whether these 

immunoglobulins are generated as antibodies after the stimulation of immune system by tau 

protein as a specific antigen or whether they are naturally occurring antibodies mostly with the 

poly-/cross-reactive profile.  
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Interestingly, tau protein was confirmed to be present in plasma samples of healthy 

donors, MCI and AD patients, although in concentrations hundred times smaller than in CSF, 

with elevated levels in those of AD patients (Zetterberg et al., 2013). Even, tau oligomers which 

are considered to be the most toxic tau species have been detected in the human serum of healthy 

donors, MCI and AD patients, with lower levels in MCI samples (Kolarova et al., 2017). Several 

systems of protein clearance from brain tissue have been known, some of them are appropriate  

to explain how neuronal intracellularly localized tau protein can occur in peripheral blood 

circulation, reviewed in (Tarasoff-Conway et al., 2015). Thus, tau protein in various 

modifications present in the periphery may serve as an antigen stimulating immunological 

response to produce tau-reactive antibodies. On the other hand, Kuhn et al. observed no 

significant differences in levels of tau-reactive antibodies in children sera compared to those  

of adults showing tau-reactive antibodies as to be the pool of naturally occurring antibodies 

whose formation is mostly antigen-independent (Kuhn et al., 2018). Also, the intrathecal 

synthesis seems to be a partial source of tau-reactive Abs (Fialova et al., 2011; Bartos et al., 

2012).  

To evaluate the significance of nTau-Abs under physiological conditions as well as 

pathological circumstances is a difficult task. In general, their presence in sera of healthy 

individuals and intravenous immunoglobulin (IVIG) products suggests that they are unlikely  

to be harmful (Smith et al., 2013). But to date, it can only be speculated whether they have a 

protective effect against tau pathology, such as participating in clearance of modified and 

misfolded tau molecules, blocking tau polymerization, degrading tau aggregates, and/or 

inhibiting tau oligomer neurotoxicity, suggested their specific mechanisms of action  

in immunotherapy (Schroeder et al., 2016). Hence, from this perspective, alterations in fulfilling 

their physiological role may significantly contribute to tau pathology. Also, different, more 

specific tau-reactive Abs may be generated as a result of presentation of disease-specific 

modified tau forms as newly presenting self-antigens, and contribute to immune imbalance, 

inflammation and AD progression. In all studies regarding detection of naturally occurring tau-

reactive antibodies in sera, relative antibodies levels were determined by enzyme-linked 

immunosorbent assays (ELISA) in which human recombinant full-length tau (Rosenmann et al., 

2006; Kuhn et al., 2018), purified bovine tau (Fialova et al., 2011; Bartos et al., 2012), or tau 

fragments, 195–213 aa phosphorylated at 202/205 (Rosenmann et al., 2006) and 196-207, 
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phosphorylated/non-phosphorylated at 199/202, respectively, (Klaver et al., 2017) were applied 

as assay antigens. Surprisingly, no statistically significant differences were found in levels of sera 

tau-reactive Abs of IgG isotype between groups of healthy controls and AD patients.  

Considering a huge range of variations in physiological and pathological modifications  

of tau protein, the pool of tau-reactive Abs occurring in body fluids is likely to be constituted 

from a heterogeneous mixture of antibodies against various tau epitopes with distinct and specific 

characteristics. Thus, more detailed evaluation of their quality in sense of their character (such as 

reactivity profile against various tau species, avidity, IgG subclasses distribution, and potential 

protective effect against tau pathology) should give us much more valuable information about 

their physiological role as well as their potential contribution in AD development and 

progression. This challenging topic has become more and more important since a relatively new 

encouraging strategy for AD therapy is an administration of IVIG products prepared from plasma 

of healthy donors representing a huge reservoir of natural antibodies. Numerous beneficial 

immunomodulatory and anti-inflammatory effects of IVIG and their application in the treatment 

of several immune-mediated neurological disorders has been described (Durandy et al., 2009; 

Zivkovic, 2016). Unfortunately, the clinical trials phase III with IVIG in AD treatment has not 

supported the promising results obtained in the initial phases I and II (Relkin et al., 2014). 

Despite these disappointing results so far, several other IVIG clinical trials are ongoing 

(Cummings et al., 2017). Moreover, a considerable effort is devoted to the investigation of the 

potential mechanisms of action of IVIG and better characterization of AD-specific antibodies 

occurring in various IVIG products.  

To the best knowledge, to date, five studies regarding the presence of tau-reactive Abs  

in IVIG products have been published. Loeffler´s group investigated mostly variations in levels 

of naturally occurring anti-tau Abs in different IVIG products. The first evidence of presence  

of naturally occurring Abs directed to recombinant human full-length tau in three IVIG products 

was published in 2013 (Smith et al., 2013), followed by determination of levels of Abs against 

various tau fragments representing tau regions differing in effect on tau aggregation (Smith et al., 

2014) and AD-specific phosphorylation (Loeffler et al., 2015). In all three works, all tested IVIG 

products contain nAbs reactive to tau antigens and their levels significantly varied among some 

IVIG products, which could reflect variations in specific antibody concentrations between the 
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donor pools used for plasma collection and/or the procedures used for antibody isolation and 

purification (Lejtenyi and Mazer, 2008; Smith et al., 2013), Also, the artefactual phenomenon  

for low-affinity antibodies determined by in vitro binding assays as was suggested by (Cattepoel 

et al., 2016) may be a source of these variations.  Polyvalent binding of immunoglobulins, which 

has to be an account in order to determine specific natural antibody concentrations in complex 

samples such as serum, plasma, and IVIG, was also discussed (Loeffler and Klaver, 2017).   

As an alternative approach of AD treatment is suggested the use of AD-specific IVIG 

preparations with all their beneficial immunomodulatory and anti-inflammatory effects enriched 

with polyclonal AD antigen-specific antibodies (Loeffler, 2014). To support this approach, 

isolation of these AD protein-specific nAbs from IVIG products is needed to characterize 

whether they may have a potential to reverse the protein pathology. More work in this field has 

been done with nAbs directed to Aβ peptides (reviewed in a book chapter: Bach and Dodel, 

2012). But an interest in tau-based immunotherapy, mostly supported by the fact that tau 

pathology better correlates with AD progression and may be independent on Aβ accumulation, 

has been increasing (Arriagada et al., 1992; Nelson et al., 2012). The first data regarding in vitro 

characterization of tau-reactive nAbs isolated from IVIG product was published by our group  

in 2016 (Hromadkova et al., 2015). The comparison of their reactivity profile with nTau-Abs 

isolated from pooled plasma samples from AD patients and healthy controls was followed 

(Krestova et al., 2017). Both studies revealed that isolated tau-reactive Abs can recognize 

abnormally modified tau forms and vary in many characteristics. Effects of these tau-specific 

nAbs on prevention of formation and/or clearance of pathological tau forms have to be evaluated 

in the further investigation with cell-based and animal model systems. 
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AIMS OF THE THESIS 

 

The experimental part of this thesis could be divided into two main aims.  

 

The first goal was to evaluate tau-reactive antibodies isolated from plasma samples, 

including IVIG product. Within this aim, the specific properties of tau protein as a natively 

unfolded protein were also investigated for further applications in mass spectrometry analysis.  

The second task was the preparation of tau protein with defined phosphorylated sites  

in high purity for in vitro applications. 

 

 

To fulfill these tasks, specific sub-goals were set 

1) To evaluate the basic characteristics and reactivity of tau-reactive antibodies isolated  

from different pooled plasma samples utilizing various tau protein forms. 

 

2) To optimize methods of epitope mapping considering specific aggregation-prone 

properties of tau protein enhanced by in vitro fragmentation. 

 

3) To prepare kinase-loaded magnetic beads as a reusable system for sequential in vitro tau 

phosphorylation to produce highly pure defined product for further applications. 
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Scheme of the main aims of the thesis 
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Research Article

Difficulties associated with the structural
analysis of proteins susceptible to form
aggregates: The case of Tau protein as a
biomarker of Alzheimer’s disease

Mass spectrometry coupled with bioaffinity separation techniques is considered a powerful
tool for studying protein interactions. This work is focused on epitope analysis of tau pro-
tein, which contains two VQIXXK aggregation motifs regarded as crucial elements in the
formation of paired helical filaments, the main pathological characteristics of Alzheimer’s
disease. To identify major immunogenic structures, the epitope extraction technique uti-
lizing protein fragmentation and magnetic microparticles functionalized with specific an-
tibodies was applied. However, the natural adhesiveness of some newly generated peptide
fragments devalued the experimental results. Beside presumed peptide fragment specific to
applied monoclonal anti-tau antibodies, the epitope extraction repeatedly revealed inter alia
tryptic fragment 299-HVPGGGSVQIVYKPVDLSK-317 containing the fibril-forming motif
306-VQIVYK-311. The tryptic fragment pro-aggregation and hydrophobic properties that
might contribute to adsorption phenomenon were examined by Thioflavin S and reversed-
phase chromatography. Several conventional approaches to reduce the non-specific frag-
ment sorption onto the magnetic particle surface were performed, however with no effect.
To avoid methodological complications, we introduced an innovative approach based on
altered proteolytic digestion. Simultaneous fragmentation of tau protein by two immobi-
lized proteases differing in the cleavage specificity (TPCK-trypsin and �-chymotrypsin) led
to the disruption of motif responsible for undesirable adhesiveness and enabled us to obtain
undistorted structural data.
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1 Introduction

Recently, many clinicians and biochemists are interested in
the structure and immunogenic properties of proteins, which
seem to be a key element in the formation of aggregates that
threaten healthy tissue. This interest is also due to the con-
stantly growing number of patients suffering from various
neurodegenerative diseases, which have been in common
classified as conformational disorders containing aggregates
with a predominance of a single protein/peptide type in brain
tissues [1–3]. Alzheimer’s disease (AD), the most common
neurodegenerative disease, is ranked among tauopathies due
to the formation of intracellular aggregates based on paired
helical filaments (PHF) consisting of modified and misfolded
tau protein [4]. In the microtubule-binding (MTB) domain of
tau protein, there are hot-spot amino acid sequences suscep-
tible to form �-sheet and �-helix structures and to initiate
aggregation [5]. In association with tau pro-aggregation prop-
erties, much attention has been dedicated especially to the two
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regions at the N-termini of R2 and R3 repeats within MTB
domain, PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-
311) [6]. The significant portion of AD therapeutic research
is focused on antibody response with the potential to abolish
the progression of tau pathology, mostly by preventing the
oligomerization and the PHF formation.

The substantial effort is incurred for the development of
antibodies distinguishing among various tau protein forms
(phosphorylated, truncated, misfolded, pre-aggregated, ag-
gregated, etc.). Thus, the verification of such anti-tau an-
tibody specificity is crucial and different epitope mapping
approaches are needed [7, 8]. In recent years, epitope map-
ping techniques for the identification of continuous epi-
topes have achieved considerable development due to peptide
library technologies [9]. Even so, the approaches based on
proteolytic fragmentation of antigens, such as epitope extrac-
tion and epitope excision combined with MS detection are
still favored and affordable alternatives [10–12]. In the basic
protocol of epitope extraction technique, the target protein
is digested by a proteolytic enzyme(s) and generated frag-
ments are subsequently incubated with specific antibodies
(monoclonal, polyclonal, patient) bound to the solid phase.
After washing steps, the fragments interacting with binding
sites of antibodies are eluted and identified by MS [13, 14].
MS combined with magnetic-bead-based epitope mapping is
the most efficacious methodological approach for such anal-
ysis [15–18].

To use this technique for structural analysis of intrinsi-
cally disordered proteins containing pro-aggregated motifs, it
is necessary to take into account their increased adhesivity to
the solid surface. The handling tau protein, which is a typical
representative of such proteins, is tricky during analytical and
separation steps [19,20]. In this paper, a monoclonal antibody
with defined immunogenic epitope was applied as a model
system to verify the validity of epitope extraction method with
tau protein and to show difficulties connected with tryptic tau
peptides having attributes associated with aggregation and hy-
drophobicity even further exacerbated. The advanced epitope
extraction procedure using two proteolytic enzymes differing
in cleavage specificity offers the smart solution. This paper
emphasizes the difficulties linked with a structural analysis
of proteins susceptible to form aggregates and highlights the
possible way how to obtain relevant data.

2 Materials and methods

2.1 Reagents and equipment

Recombinant tau protein (human 2N4R variant) was
supplied by Enzo Life Sciences (Farmingdale, NY,
USA). Synthetic peptide with amino acid sequence
299-HVPGGGSVQIVYKPVDLSK-317 was obtained from
Apronex (Prague, Czech Republic). Sera-Mag carboxylate-
modified Magnetic SpeedBeads (0.816 �m, hereinafter
referred to as MPs) were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). Monoclonal anti-tau anti-

body clone 7E5 was purchased from AJ Roboscreen (Leipzig,
Germany). BSA, L-1-tosylamido-2-phenylethyl chloromethyl
ketone (TPCK)-treated trypsin (EC 3.4.22.2, 12,700 IU/mg
solid), �-chymotrypsin from bovine pancreas (EC 3.4.21.1,
57.24 IU/mg solid), dithiothreitol (DTT), iodoacetamide
(IAA), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
hydrochloride (EDAC), Tris, N�-benzoyl-DL-arginine
p-nitroanilide hydrochloride (BApNA), Thioflavin S (ThS),
heparin sodium salt from porcine intestinal mucosa,
N-succinyl-L-phenylalanine-p-nitroanilide (SUPHEPA),
2-(N-morpholino)ethane sulfonic acid (MES), acetonitrile
(ACN), ethylene glycol, benzamidine, and diammonium
hydrogen citrate (DAHC) were produced by Sigma–Aldrich
(St. Louis, MO, USA). N-Hydroxysulfosuccinimide sodium
salt (sulfo-NHS) and TFA were obtained from Fluka (Buchs,
Switzerland). A Micro BCA protein assay reagent kit was
purchased from Pierce (Rockford, IL, USA). M-PEG-NH2
(30 kDa) was obtained from Laysan Bio (Huntsville, AL, USA)
and m-PEG-NH2 (2 kDa) from Fluka (Buchs, Switzerland).
The MS matrices �-cyano-4-hydroxycinnamic acid (CHCA)
and 2,5-dihydroxybenzoic acid (DHB) were from LaserBio
Labs (Sophia-Antipolis, France). All other chemicals were of
reagent grade.

A magnetic separator (Dynal, Carlsbad, CA, USA), high-
resolution MALDI tandem mass spectrometer linear trap
quadrupole (LTQ) Orbitrap XL (Thermo Fisher Scientific,
Waltham, MA, USA), and SpeedVac RVC 2–18 from Christ
(Osterode am Harz, Germany) connected to a vacuum
pump from KNF Neuberger (Freiburg, Germany) were used.
POROS Oligo R3 reversed-phase material was purchased
from Life Technologies (Carlsbad, CA, USA). GELoader tips
were from Eppendorf (Hamburg, Germany). RP Ascentis R©

Express Peptide ES-C18, 2.7 �m particles were from Sigma–
Aldrich (St. Louis, MO, USA). A 96-well plate Nunclon
Delta Surface was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Microplate reader Infinite M200 was
obtained from Tecan Trading (Mannedorf, Switzerland).

2.2 Proteolytic digestion of tau protein

TPCK-treated trypsin or �-chymotrypsin was covalently
bound to the MPs using a carbodiimide one-step method
while adding EDAC (120 mM) and sulfo-NHS (20 mM) that
was adapted from [21]. The activity of immobilized enzymes
was determined in a 96-well plate by hydrolysis of chro-
mogenic substrates: BApNA for TPCK-treated trypsin [22]
and SUPHEPA for �-chymotrypsin [23].

Tau protein was unfolded by reductive alkylation using
DTT and IAA [24] in 50 mM ammonium bicarbonate solu-
tion. Unfolded protein was digested for 2 h at 37�C under
mild stirring by immobilized TPCK-trypsin or by immobi-
lized TPCK-trypsin and �-chymotrypsin simultaneously in
molar ratios E/S of 1:20 for both enzymes. The mixture of
generated tau fragments was used for epitope extraction. The
efficiency of enzymatic digestion was verified by Tricin/SDS-
PAGE electrophoresis [25] and by MALDI-Orbitrap MS.
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2.3 Epitope extraction procedure

For capturing specific tau fragments, immunosorbent was
prepared by immobilization of monoclonal anti-tau anti-
body (20 �g, clone 7E5) to MPs (500 �g) preactivated by
EDAC/sulfo-NHS chemistry [21]. The control MPs coated by
BSA (500 �g) were also prepared by the same chemistry.
The amount of antibody bound to magnetic particles was
estimated from the protein mass balance among the initial
solution, the binding fraction, and the first washing frac-
tion by BCA test according to the manufacturer´s instruc-
tions. In some cases, the surface of MPs was modified by
ethanolamine/Tris according to [26] or by PEG (2 or 30 kDa)
according to [ 27].

Tryptically digested recombinant tau protein (5 �g per re-
action) was added to washed biofunctionalized MPs (500 �g).
Immunoprecipitation was carried out for 3 h at room tem-
perature (RT) under mild stirring. Washing steps followed:
15 times with 1 mL of 0.1 M phosphate buffer pH 7.0 (con-
taining 0.2 M and then 1 M NaCl), three times with 1 mL
of 0.01 M phosphate buffer pH 7.0, and finally twice with
1 mL of ultrapure water. Elution of immunoprecipitated pep-
tides was performed three times using 0.2 mL 0.05% TFA for
20 min at RT under mild stirring. Pooled eluted fractions were
dried in the SpeedVac and analyzed by MALDI-Orbitrap MS.

The incubation with 8 M urea as an additional step to
suppress protein–protein interactions was inserted after the
last washing cycle with 0.01 M phosphate buffer pH 7.0 for
10 min and the washing with 1 mL of ultrapure water followed
five times.

2.4 MALDI-MS analysis

2.4.1 Desalting and concentration of peptide

samples

Custom-made chromatographic reversed-phase (POROS
Oligo R3) microcolumns used for desalting and concentra-
tion of peptides were prepared using GELoader tips as previ-
ously described [28]. Dried peptides (5 �L of elution fractions)
were diluted in 0.1% TFA and applied onto POROS Oligo
R3 microcolumns using gentle air pressure. The columns
were washed with 15 �L of 0.1% TFA. The retained peptides
were directly eluted onto MALDI-target with 1 �L CHCA
(5 mg/ml in 60% ACN/0.1% TFA + 2 mM DAHC) or DHB
solution (10 mg/mL in 50% ACN/0.1% TFA). A MALDI-
Orbitrap MS measured in positive mode with a resolution of
100 000 full width at half maximum (FWHM) at m/z 400.
Peptides were identified using high mass accuracy and using
MS/MS analysis of selected peaks with manual interpreta-
tion.

2.4.2 RP-LC separation using a simple microgradient

device

A home-made RP capillary column (21 mm long, 250 �m ID)
packed in FEP tubing was prepared as previously described

[29] with slight modifications. A piece of capillary (360 �m
od and 50 �m id) 15 mm in lengths was inserted into FEP
tubing (1/16´´ OD × 0.25 mm ID) 35 mm long and column
was packed with core–shell C18 particles (Ascentis R© Express
peptide ES-C18, 2.7 �m). This reversed-phase microcolumn
was used for chromatographic separations of the tryptic digest
of tau protein before MALDI-Orbitrap MS detection. The col-
umn was first wetted with 80% ACN/0.1% TFA and then equi-
librated with 20 �L of 2% ACN/0.1% TFA v/v. Tau protein
(20 pmol) digested by immobilized TPCK-trypsin or simul-
taneously by immobilized TPCK-trypsin and �-chymotrypsin
was aspirated into a 25 �L microsyringe and loaded onto
the column. The microsyringe was filled consecutively by six
ACN/0.1% TFA mobile phases with decreasing ACN content:
4 �L of 35, 28, 21, 14, 7, 2% ACN (all v/v). Peptides were eluted
using a nonlinear gradient of acetonitrile/water mixture (2–
35%) containing 0.1% TFA directly onto 24 MALDI spots.
Eluted samples were covered with 0.7 �L of matrix solution–
CHCA (5 mg/mL in 60% ACN/0.1% TFA + 2 mM DAHC) or
DHB (10 mg/mL in 50% ACN/0.1% TFA) and then analyzed
by MALDI-Orbitrap MS. After separation, the entire system
was washed consecutively with 20 �L of 80% ACN/0.1% TFA
v/v and 20 �L of pure ACN and then separation was repeated
with a blank. The results were confirmed with synthetic
tau peptide analogue 299-HVPGGGSVQIVYKPVDLSK-317.
A MALDI-Orbitrap MS was used in a positive mode with
resolution 60 000 FWHM at m/z 400.

2.5 ThS fluorescence measurement

The synthetic peptide 299-HVPGGGSVQIVYKPVDLSK-317
was dissolved in 1 mM DTT in PB pH 7.0. To minimize
the formation of disulfide bonds, the mixture was incubated
30 min at 37�C. The 15 min sonication followed to reduce
aggregated intermediates before the assay. Fibrillization of
20 �M synthetic tau peptide was carried out in epitope
extraction solutions and 25% ACN/0.1% TFA containing
10 �M ThS at RT in the presence or absence of 10 �M heparin
sodium salt. The fluorescence signal was followed at 490 nm
(emission bandwidth of 20 nm) with excitation at 440 nm
(excitation bandwidth of 9 nm). Kinetics was determined at
20 min intervals for 24 h. Each sample and the correspond-
ing blank were measured in triplicate. The corresponding
controls (the absence of synthetic peptide) were subtracted.

3 Results

One of the procedures enabling identification of the main
continuous immunogenic epitopes of the analyzed proteins
is known as epitope extraction and consists of two steps:
enzymatic fragmentation of protein and immunoextraction
of desired peptides with epitopes by specific antibodies [15].
For final epitope identification, MS is applied. This strat-
egy was applied for identification of the main immunogenic
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structure of tau protein, a typical representative of proteins
with aggregation motifs.

3.1 Enzymatic cleavage of tau protein

Tau protein (human tau-F isoform, 441 amino acids) was
cleaved either by immobilized TPCK-trypsin (995.68 IU/mg
of MPs) or simultaneously by immobilized TPCK-trypsin and
�-chymotrypsin (59.3 IU/mg of MPs) according to a standard
protocol (see Section 2.2). The generated mixture of tryptic
fragments represents the starting material for epitope extrac-
tion procedure. Tricin/SDS-PAGE electrophoresis provided
us information about the purity and homogeneity of recom-
binant tau protein to be digested (Supporting information,
Fig. SI1).

The digestion was efficient, 63.3% sequence cover-
age was achieved, based on peptide mass fingerprinting
search using MS-Fit tool against NCBI database (HUMAN
taxonomy). Mass tolerance was set at 10 ppm and spe-
cific cleavage with trypsin and chymotrypsin (C-term to
K/R/F/Y/W, not before P) with up to two missed cleav-
ages was used for database search. The occurrence of the
fragment 299-HVPGGGSVQIVYKPVDLSK-317 (theoretical
m/z 1980.0912) generated by immobilized TPCK-trypsin di-
gestion of tau protein as well as its cleavage products by
�-chymotrypsin were identified by MS analysis (Support-
ing information, Fig. SI2). Table 1 provides information
about these fragments generated in silico enzymatic diges-
tion (C-term to K/R/F/Y/W/M/L, not before P) with calcu-
lated theoretical m/z values which were used for the proper
identification of specific peptides in trypsin/chymotrypsin
digests. In addition to the specific fragments stated in
Table 1, the semi-specific peptide 301-PGGGSVQIVY-310
originating from 299-HVPGGGSVQIVYKPVDLSK-317 was
also observed in mass spectra (Supporting Information
Fig. SI2). The identity of fragments was confirmed by MS/MS
analysis (data not shown).

3.2 Immunoextraction of tau peptides

To implement the epitope extraction procedure for tau pro-
tein, the immunosorbent with anti-tau mAb clone 7E5 was
prepared. The amount of immobilized IgG was 16.41 �g/
0.5 mg of the carrier (estimated by BCA assay). The sequence
of epitope reacting with monoclonal anti-tau mAb (7E5) de-
clared by the manufacturer is 155-RGAAPPGQKGQA-166;
theoretical epitope-containing tryptic and chymotryptic frag-
ments, which should be observed in elution fractions, are
summarized in Supporting Information Table SI1.

Tau fragments generated by TPCK-trypsin or simulta-
neously by TPCK-trypsin and �-chymotrypsin were applied
to the specific immunosorbent or unmodified/BSA-modified
MPs (negative controls). After the immunocapturing, wash-
ing steps with increasing ionic strength of NaCl (0.2–1.0 M)
were performed to remove all tau tryptic fragments that did

not react with the specific mAb. Elution of immunocaptured
tryptic peptides by 0.05% TFA followed. All acquired fractions
were subsequently analyzed by MALDI-Orbitrap MS.

Regardless of the applied immunosorbent specificity,
we repeatedly found in MS spectra of elution frac-
tions a tryptic fragment corresponding to tau amino acid
sequence 299-HVPGGGSVQIVYKPVDLSK-317 (theoretical
m/z 1980.0912; Fig. 1A). We observed this fragment also in
fractions eluted from the unmodified carrier (negative con-
trol, data not shown). Due to its high relative intensity, this
adhesive fragment negatively affected the interpretation of
MS spectra.

Therefore, we introduced several conventional alterations
to avoid this nonspecific adsorption. An additional coating of
MPs surface by inert protein BSA was applied, but the ad-
hesive fragment still occurred in all elution fractions (Sup-
porting information, Fig. SI3). Even the brief incubation
with 8 M urea during the washing phase, a step commonly
used to prevent nonspecific protein–protein interactions, was
not effective (Fig. 1B, Supporting Information Fig. SI3B).
To minimize the adhesivity of magnetic-bead-based carri-
ers, we blocked the remaining reactive groups on the MPs
surface by ethanolamine/Tris or we reduced the hydropho-
bicity of beads by polymers m-PEG-NH2 of 2 or 30 kDa
molecular weight. Epitope extraction experiments performed
with these enhanced carriers and synthetic peptide analogue
299-HVPGGGSVQIVYKPVDLSK-317 did not prevent the oc-
currence of the adhesive fragment in elution fractions (Sup-
porting information Fig. SI4). Moreover, elution of synthetic
peptide analogue using 0.05% TFA from MPs modified by
m-PEG-NH2 (2 kDa) was accompanied by the excessive re-
lease of contaminating PEG residues (Fig. SI4A).

As an alternative step, we tested the effect of tau pro-
tein fragmentation simultaneously by two immobilized pro-
teases, TPCK-trypsin and �-chymotrypsin. Tryptic digestion
was maintained to obtain fragments of a length appropri-
ate for MS analysis. Chymotrypsin was selected based on
its cleavage preferences that enable to cleave peptide bond
310-YK-311 solely in the PHF6 minimal interaction motif.
This multi-enzymatic approach appeared to be efficient for
the elimination of the non-specifically interacting tau frag-
ment in eluted fractions, whereby specific fragments encom-
passing the epitope (m/z 1423.7461 and 1249.6355 for mAb
clone 7E5) remained detectable in the spectrum (Fig. 1C),
and distinctly improved the spectra interpretation. All mod-
ifications of epitope extraction protocol for tau protein are
summarized in Scheme 1.

3.3 RP-LC separation of tau fragments

RP-LC separation using a simple microgradient device was
the next procedure wherein we observed the inadequate ad-
hesivity of 299-HVPGGGSVQIVYKPVDLSK-317 fragment.
The unusual behavior of adhesive peptide can be demon-
strated by its permanent leakage from RP-LC column during
separation of tryptic fragments observed in the 9th elution
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Table 1. Basic characteristics of adhesive tau fragment generated after tryptic digestion and newly-formed fragments after tryp-
tic/chymotryptic digestion

Applied immobilized enzymes Generated peptide sequence [M+H]+ Missed cleavage pI

TPCK-trypsin 299-HVPGGGSVQIVYKPVDLSK-317 1980.0912 0 8.5
TPCK-trypsin + �-chymotrypsin 299-HVPGGGSVQIVYKPVDL-315 1764.9643 1 6.7

299-HVPGGGSVQIVY-310 1212.6371 0 6.7
301-PGGGSVQIVY-310 * 976.5098 0 6.0
311-KPVDLSK-315 786.4720 1 8.6
311-KPVDL-315 571.3450 0 5.8

*Semi-specific sequence experimentally verified by MS/MS analysis (data not shown).

Figure 1. (MALDI)-Orbitrap spectra of elution
fractions obtained by epitope extraction us-
ing 7E5 monoclonal antibodies in combina-
tion with: (A) tau protein (human tau-F iso-
form) digested with immobilized TPCK-trypsin,
(B) tau protein (human tau-F isoform) digested
with immobilized TPCK-trypsin and an addi-
tional 8 M urea washing, and (C) tau pro-
tein (human tau-F isoform) digested with im-
mobilized TPCK-trypsin and �-chymotrypsin.
Peptides belonging to adhesive tryptic frag-
ment 299-HVPGGGSVQIVYKPVDLSK-317 are
marked with an asterisk. Amino acid sequence
156-GAAPPGQKGQANATR-170 with theoreti-
cal m/z 1423.75 (circled) contains the epitope
155-RGAAPPGQKGQA-166 specific to mAb,
clone 7E5.

fraction (Fig. 2A) and persistent to the 24th elution fraction
(data not shown). Even after the intensive washing and fi-
nal regeneration of the chromatographic column, the adhe-
sive peptide was still identified in all eluates. In contrast,
after the digestion of tau by immobilized TPCK-trypsin and
�-chymotrypsin simultaneously, the newly formed peptides
corresponding to 299-HVPGGGSVQIVYKPVDLSK-317 (for
m/z see Table 1) have lost the adhesive properties of the orig-
inal fragment and disappeared (Fig. 2B).

3.4 Thioflavin S assay

Protein aggregation and clustering are also mentioned in rela-
tion to nonspecific protein–surface adsorption phenomenon
[30]. Thus, a ThS assay was performed for monitoring the
aggregation behavior that could be caused by the minimal in-
teraction motif PHF6 (306-VQIVYK-311) [31]. The principle

of this method is based on non-covalent probing of �-sheet
structures by ThS detected as an increased fluorescence sig-
nal. To evaluate aggregation predispositions of the tryptic tau
fragment 299-HVPGGGSVQIVYKPVDLSK-317, a synthetic
peptide analogue was used. These fibrillization experiments
were performed in working solutions same as for the epi-
tope extraction procedure (0.1 M PB buffer pH 7.0, 0.1 M
PB buffer pH 7.0 with 0.2 M/1 M NaCl, 0.01 M PB buffer,
ultra-pure water and 0.05% TFA) and in one of the eluent
solutions used in microscale RP-LC (25% ACN/0.1% TFA),
with or without heparin as an inducer. The aggregation be-
havior of tau fragment was observed both in the presence and
absence of heparin with differences in the �-sheet assembly
rate (ThS fluorescence at 490 nm) (Fig. 3). The presence of
NaCl in 0.1 M phosphate buffer pH 7.0 reduces the frag-
ment assembly (Fig. 3B and C). The acidic solutions show
much higher ThS fluorescence in comparison to washing
solutions in the presence of heparin, but the self-assembly
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Scheme 1. (A) Epitope extraction technique with additional steps (text in red color) to suppress the non-specific adsorption of the tryptic
fragment 299-HVPGGGSVQIVYKPVDLSK-317. In the upper half of the scheme A, the conventional approaches for sorption suppression are
illustrated. In the lower half of the scheme A, our innovative approach utilizing two immobilized enzymes is represented. The red arrows
show the location of the adhesive fragment in MS spectra. (B) The simplified figure of human full-length tau protein (htau40) with the most
important regions (I – insert domain, P – proline-rich domain, R – repeat domain). The tryptic cleavage and tryptic/chymotryptic cleavage
sites are illustrated for the fragment with epitope 155-RGAAPPGQKGQA-166 corresponding to mAb clone 7E5 and the adhesive tryptic
fragment 299-HVPGGGSVQIVYKPVDLSK-317 occurring in MS spectra.

(no inducer added) was not proven in this case (Fig. 3F,
dashed lines).

4 Discussion

Specific properties of a protein observed in vitro are naturally
associated with their behavior in vivo and may contribute to
the pathology–morphological processes causing various dis-
eases (e.g., tauopathies, synucleinopathies). However, these
characteristics may be responsible for difficulties in numer-
ous analytical method; for example in epitope extraction, a
technique using immobilized proteases and carrier with co-
valently bound specific antibodies enabling identification of
the main immunogenic structures of studied proteins. As has
been mentioned previously in the case of tau protein we can
face unexpected difficulties. Within our epitope extraction
experiments performed with anti-tau mAb clone 7E5 (de-
clared specificity 155-RGAAPPGQKGQA-166), we expected
one major peak with the highest relative intensity in MS spec-
tra corresponding to peptide fragment containing specific
epitope. However, on the contrary, we identified the adhe-
sive fragment 299-HVPGGGSVQIVYKPVDLSK-317 contain-
ing PHF6 (306-VQIVYK-311) motif as the most intense peak
complicating the interpretation of our results. Even though

several different types of monoclonal and polyclonal anti-
tau antibodies were used for epitope extraction approach,
the adhesive fragment was identified in final MS spectra de-
spite epitope specificity of the antibody (data not shown).
As we have discovered this fragment had already been ob-
served as a high-intensity peak in MS spectra in other studies
(e.g., Refs. 32,33). To eliminate the distorted results due to the
increased non-specific adhesivity of the contaminating pep-
tide, three additional approaches were tested: (i) increased salt
molarity of washing solution and additional incubation with
chaotropic agent, (ii) surface solid phase treatment to increase
the biocompatibility of carrier and (iii) simultaneous frag-
mentation of tau protein by two proteases differing in speci-
ficity. In the case of tau protein, we demonstrated that the
conventional approaches (i, ii) how to suppress non-specific
sorption on MPs surface were not sufficient [26,27,34]. More-
over, the PEGylation of MPs in epitope extraction protocol
using the acidic elution does not bring into any effect and
is not convenient due to the polymer washout (Supporting
information Fig. SI4).

Repeatedly observed non-specific adsorption of the ad-
hesive peptide on MPs surface led us to the detailed in-
vestigation of its characters. We focused mainly on its hy-
drophobic and pro-aggregation properties. One of the most
important features of tau as a naturally unfolded protein is low
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Figure 2. (MALDI)-Orbitrap spectra of the ninth RP-
LC separation fraction of: (A) the second wash-
ing cycle after RP-LC separation of tau protein (hu-
man tau-F isoform) digested by immobilized TPCK-
trypsin using a simple microgradient device, and
(B) the second washing cycle after RP-LC separa-
tion of tau protein (human tau-F isoform) digested
by immobilized TPCK-trypsin combined with im-
mobilized �-chymotrypsin using a simple microgra-
dient device. The adhesive tryptic fragment 299-
HVPGGGSVQIVYKPVDLSK-317 is marked with an as-
terisk.

content of the hydrophobic amino acids I, W, L, F, and V al-
together amounting to 15% [35], but the 13-residue stretch
306-VQIVYKPVDLSKV-318 is considered to be the most hy-
drophobic region of the 441-residue tau protein molecule [36].
Moreover, tau protein’s high surface activity has been pro-
posed as the reason for its adsorption propensity at the hy-
drophobic air/water interface [37]. Perret-Liaudet and cowork-
ers published a study about the effect of the used collection
tube types on the concentration of CSF biomarkers. The ra-
tio of hydrophobic amino acid residues to protein/peptide
length may significantly affect the adsorption predisposition
as illustrated the conclusions of their paper [38]. We set up a
microscale RP-LC experiment using the core–shell C18 solid
phase for an indirect testing of the hydrophobic character of
the adhesive fragment [39]. We repeatedly confirmed its hy-
drophobic behavior by exhibiting the greatest affinity to the
hydrophobic C18 solid phase. MS spectra of mobile phase
aliquots after the second washing cycle with 80% ACN/0.1%
TFA or 100% ACN (Fig. 2A) confirmed this phenomenon.

The self-aggregation is known to be closely linked with ad-
sorption processes [40,41]. The adhesive tryptic tau fragment
299-HVPGGGSVQIVYKPVDLSK-317 contains the hexapep-
tide 306-VQIVYK-311 established as a minimal interaction
motif of PHFs (called PHF6) with a predicted � conforma-
tion [6, 35, 42, 43]. It was demonstrated that PHF6 sequence
has a high ability to fibrillize in the presence as well as in the
absence of added inducers in vitro [44]. Subsequently, the pep-
tides 309-VYK-311 and 308-IVYK-311 of the C-termini end of
PHF6 sequence were considered as the shortest potential nu-
cleation sites forming PHFs [45, 46]. For detecting amyloid
structures characterized by �-sheet formation the ThS assay
was performed [47]. The assembly of molecules of synthetic
peptide analogue in the presence of heparin in working solu-
tions was confirmed (Fig. 3). These results correspond to the
previous papers documenting the assembly of longer pep-

tides containing the PHF6 sequence in the presence of an
inducer [44,48]. A modest assembly rate in the absence of in-
ducer was also shown (except non-buffered acidic solutions
and solutions with increased ionic strength) (Fig. 3). It is
assumed that aggregated structures/clusters presented in so-
lution can affect the adsorption rate by unspecific depositions
of fragment molecules arising from these aggregates/clusters
on the solid surface [30,40]. The data obtained from ThS assay
indicate a possible mechanism how the assembly properties
may contribute to the nonspecific adsorption in solutions
used in the epitope extraction procedure.

Although the results of previous tests confirmed the un-
desirable properties of the adhesive peptide, we have found
a procedure how to eliminate the adhesivity of peptide with
aggregation motif and identify the main immunogenic struc-
ture of studied protein. The strategy using immobilized
trypsin and �-chymotrypsin together proved to be very ef-
fective since �-chymotrypsin can cleave the peptide bound
310-YK-311 within the critical PHF6 motif of a tryptic frag-
ment 299-HVPGGGSVQIVYKPVDLSK-317. The significant
reduction of adsorption properties of newly formed chy-
motryptic fragments was observed (Fig. 1C, Supporting
information Fig. SI3C).

5 Conclusions

This study shows pitfalls of epitope extraction technique with
tau protein, a biomarker of Alzheimer´s disease. We pro-
vided information about the adhesive character of the tryp-
tic tau fragment 299-HVPGGGSVQIVYKPVDLSK-317 con-
taining PHF6 minimal aggregation motif and the most hy-
drophobic tau region. We did not prove the direct relation-
ship of adsorption properties with characteristics of the frag-
ment mentioned above, but even though it seems that these
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Figure 3. Thioflavin S assay: the
curves represent the assem-
bly of synthetic peptide 299-
HVPGGGSVQIVYKPVDLSK-317 in
the presence (solid lines) or absence
(dashed lines) of heparin as an inducer
in different solutions (used in epitope
extraction protocol and RP-LC). In
F) acidic solutions: the black lines
represent 0.05% TFA and the gray lines
25% ACN/0.1% TFA. The measurement
was carried out in triplets and con-
tained blanks (solution environment
contained no tau fragment). The mean
values represented in the graph are
after subtraction of blank mean values.

characteristics might be associated with significant risk to
complicate the structural analysis of tau protein and give re-
sults leading to the erroneous interpretation. Our findings
show the significance of negative controls and offer the so-
lution how to overcome the difficulties associated with the
adhesiveness of peptides linked with specific sequence mo-
tifs effectively.

Theoretically estimated peptide fragments of tau protein
(human tau-F isoform) including aggregation PHF6 motif
and generated by in-silico enzymatic digestion with trypsin
and with subsequent digestion of the tryptic fragment by
�-chymotrypsin (C-term to F/Y/W/M/L, not before P). The
amino acid sequence of the PHF6 motif is highlighted in
bold.
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The latest therapeutic approaches to Alzheimer disease are using intravenous immunoglobulin (IVIG) products.
Therefore, the detailed characterization of target-specific antibodies naturally occurring in IVIG products is ben-
eficial.Wehave focused on characterization of antibodies isolated against tau protein, a biomarker of Alzheimer's
disease, from Flebogamma IVIG product. The analysis of IgG subclass distribution indicated skewing toward IgG3
in anti-tau-enriched IgG fraction. The evaluation of their reactivity and avidity with several recombinant tau
forms was performed by ELISA and blotting techniques. Truncated non-phosphorylated tau protein (amino
acids 155–421) demonstrated the highest reactivity and avidity index. We provide the first detailed insight
into the reactivity of isolated natural antibodies against tau protein.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The concept that humoral immunity may play a particular role
during the development and progression of Alzheimer disease (AD)
has an effect on trends in AD therapeutic strategies. Especially, the
antibody-based immunotherapy focused on structurally modified
forms of amyloid peptide and tau protein has gained a greater impor-
tance mainly since AD is considered as a protein conformational disor-
der (Carrell and Lomas, 1997; Soto, 1999). The fact that numerous
natural antibodies reactive with different neuronal proteins have been
proved both in AD and control serum increases general interest in re-
vealing their relevance and therapeutic potential (Bahmanyar et al.,
1983; Bartos et al., 2012; Levin et al., 2010; Rosenmann et al., 2006;
Terryberry et al., 1998; Watts et al., 1981).

As a relatively new encouraging strategy for AD, therapy proposed
the use of intravenous immunoglobulin products (IVIG) prepared
from plasma of healthy donors, which represent a reservoir of natural
autoantibodies comprising approximately two-thirds of the human im-
mune repertoire of IgG (Pul et al., 2011). A notable property of most

natural antibodies is their polyreactivity (polyspecificity) and the
associated variable, predominantly low, antigen-binding affinities
(Avrameas and Ternynck, 1993; Jianping et al., 2006; Sedykh et al.,
2013; Szabo et al., 2010). These polyclonal antibodies recognize multi-
ple epitopes, and more likely have stronger therapeutic effects than
the passive immunization with monoclonal antibodies (Kayed et al.,
2011). Another fact supporting IVIG products in AD therapy originates
from their potent immunomodulatory and anti-inflammatory effect
beneficial in many diseases, e.g. immune deficiency, autoimmune to
cancer diseases, and even in a number of immune-mediated neurologi-
cal disorders (Fuchs et al., 2008; Kajii et al., 2014; Seite et al., 2008;
Stangel and Pul, 2006). Numerous studieswith various results of natural
anti-Aβ antibody levels in IVIG have been published (Balakrishnan et al.,
2010; Dodel et al., 2002; Du et al., 2003; Klaver et al., 2010a,b, 2013;
Szabo et al., 2008).

In recent years, interest in tau protein as a therapeutic target in AD
has increased. This trend is supported by facts that tau pathology better
correlates with AD progression and that it may be an independent pro-
cess from Aβ accumulation (Arriagada et al., 1992a, 1992b; Braak et al.,
1999; Gomez-Isla et al., 1997). Two papers about natural anti-tau anti-
bodies in IVIG are currently known (Smith et al., 2013, 2014). They
have proved that three IVIG products exhibit different concentrations
of anti-tau specific antibodies and even high variability in percentage
of antibodies against different tau fragments relative to total levels of
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anti-tau antibody contained in these products (Smith et al., 2013, 2014).
It is reasonable to characterize the target-reactive antibodies in IVIG
products whether their anticipated therapeutic effect could be signifi-
cantly influenced by their concentration or even by the abundance of
antibodies preferentially binding with particular epitopes of pathologi-
cal protein forms.

In this study, we focused on the characterization of isolated natu-
ral antibodies against tau protein (nTau-Abs) from IVIG product
Flebogamma DIF (5 g/100 ml, Grifols Biologicals Inc., Los Angeles,
CA, USA). We isolated antibodies against human full-length form of
tau protein by low-pressure affinity chromatography. The IgG sub-
class distribution was assessed. Subsequently, we compared the re-
activity of all fractions of the isolation procedure with different
non-phosphorylated/phosphorylated human full-length and truncated
tau forms by ELISA. Blotting techniques were applied to assess the reac-
tivity of isolated nTau-Abs in comparison with two anti-tau antibodies;
monoclonal tau46.1 and polyclonal rabbit anti-tau antibodies. More-
over, the avidity index of isolated antibodies was measured against
full-length and truncated tau forms by using chaotropic reagent in
ELISA and dot-blot assays.We observed the highest reactivity and avid-
ity index of isolated antibodies with the truncated non-phosphorylated
form, tau 155–421. Our study can partly contribute to clarify the natural
antibody diversity in pooled, highly concentrated immunoglobulin
product Flebogamma, which is now examined in ongoing phase III
trial (Grifols Biologicals Inc., 2015).

2. Materials and methods

2.1. Materials

cDNA of recombinant human tau proteins and tau monoclonal
antibody (tau-46.1) were a generous gift from Dr. Francisco Garcia-
Sierra (Mexico City, Mexico) and Dr. Lester I. Binder (Chicago,
USA). Recombinant human tau protein (isoform 2N4R) was pur-
chased from rPeptide (Bogart, GA, USA). Escherichia coli strain BL21
(DE3) (E. coli B F− dcm ompT hsdS(rB− mB−) gal λ(DE3) comes
from Stratagene (San Diego, CA, USA). The IVIG product Immune
Globulin Intravenous (Human) Flebogamma DIF (5 g/100 ml) was or-
dered from Grifols Biologicals Inc. (Los Angeles, CA, USA). Recombinant
protein kinase ERK2 (401 000 U/mg) andmouse cAMP-dependent pro-
tein kinase (catalytic subunit Cα, PKA, N15 U/mg) were ordered from
Biaffin GmbH & Co KG (Kassel, Germany). Glycogen Synthase Kinase 3
(GSK-3, 500 000 U/ml) and adenosine 5′-triphosphate (ATP, 10 mM)
were acquired from New England Biolabs (Ipswich, MA, USA). Mono-
clonal mouse phospho-PHF-tau pSer202/Thr205 antibody (AT8) and
phospho-PHF-tau pThr231 antibody (AT180) were purchased from
Thermo Scientific (Waltham, MA, USA) and polyclonal rabbit anti-tau
phospho-Ser396 from GenScript (Piscataway, NJ, USA). F(ab′)2-goat
anti-human IgG (Fc specific, highly cross adsorbed/HRP conjugate)
was purchased from Novex, Life Technologies (Carlsbad, CA, USA) and
goat anti-rabbit IgG (HRP conjugate) from Sigma-Aldrich (St. Louis,
MO, USA). Isopropyl-β-thiogalactopyranosid (IPTG), bovine serum al-
bumin (BSA; 98% electrophoresis), tetramethylbenzidine (TMB; 98%
TLC), DL-dithiothreitol (DTT), ethylene glycol tetraacetic acid (EGTA)
and NH4SCN (p.a.) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). PVDF membrane (Immuno-Blot PVDF Membrane, 0.2 μm), nitro-
cellulose membrane (0.2 μm), Precision Plus Protein™ WesternC™
Standard as a molecular marker, Clarity Western ECL substrate and
Immun-Blot Opti-4CN Colorimetric kit were acquired from Bio-Rad
(Hercules, CA, USA). BCA protein assay kit was obtained from Ther-
mo Scientific (Waltham, MA, USA). All other chemicals were of re-
agent grade. The IgG Subclass ELISA Kit was obtained from Invitrogen
(Camarillo, CA, US).

Resin Labiomer 300 was ordered from Labio (Prague, Czech
Republic), and Ni Sepharose 6 Fast Flow resin was acquired from GE
Healthcare (Wilmington, MA, USA). Empty Econo-Pac Chromatography

columns and Trans-Blot® SD Semi-Dry Transfer Cell were obtained
from Bio-Rad (Hercules, CA, USA). Amicon® Ultra 15 ml filters 30K
(30 kDa molecular weight cut-off) were purchased from Merck
Millipore (Billerica, MA, USA). 96-well microplates (Nunc Immuno-
plate F96 Maxisorp) were provided by Nunc, Thermo Scientific
(Waltham, MA, USA). Dot-blot DHM-96 unit manifold was purchased
from Scie-Plast (Cambridge, UK). Spectrophotometer Eppendorf 6131
was from Eppendorf (Hamburg, Germany).

2.2. Methods

2.2.1. Isolation of naturally occurring antibodies against tau protein from
IVIG

We purified antibodies against tau protein from Flebogamma IVIG
product by low-pressure affinity chromatography. The columnwas pre-
pared as follows: 25 mg of His-tagged tau 1–441 protein was reacted
with 5 ml of pre-packed resin (Labiomer 300, epoxy-activated, 50 μm
bead size in Econo-Pac column of 14 cm length and 1.5 cm diameter),
residual reactive epoxide groups were blocked with 0.2 M ethanol-
amine overnight at 4 °C and then the column was equilibrated with
PBS buffer (Hermanson, 2013). IVIG (8 ml, Flebogamma) were loaded
on a column by flow0.1ml/min andflow-through fraction in an amount
of 15 ml was collected. The column was washed with 45 ml PBS buffer
and immunocaptured Abs were eluted by 10.5 ml 0.1 M glycine-HCl
buffer pH 2.6. Eluted fraction was immediately neutralized by 1 M
Tris-base until pH 8–9. Purified Abswere then concentrated in centrifu-
gal filter units (Amicon-Ultra 30K) to 2 ml final volume and stored in
PBS pH 7.2 with 50% glycerol at protein concentration 0.8 mg/ml at
−20 °C. The IgG amount in initial IVIG fraction, flow-through fraction
and concentrated isolated fraction (prior to the addition of glycerol)
was spectrophotometrically determined at absorbance 280 nm with
parallel to PBS buffer as a blank. Percentages of IgG subclasses were
assayed using an IgG Subclass ELISA Kit, according to themanufacturer's
instructions, for initial IVIG and isolated antibody samples.

2.2.2. Reactivity evaluation of isolated antibodies with tau proteins
We tested the reactivity of isolated natural antibodies with several

tau forms (their preparation in Supplementalmaterials) by two blotting
immunoassays,Western blot and dot-blot.Western blotwas carried out
to confirm the reactivity with both unphosphorylated and phosphory-
lated tau forms. Whereas the dot-blot immunoassay was carried out
with only unphosphorylated recombinant tau forms due to reactivity
comparison with rabbit anti-tau antibodies isolated from immunized
serum.

2.2.2.1. Western blot immunoassay. Unphosphorylated and phosphory-
lated tau samples (Suppl): tau 1–441 rPeptide, His-tagged tau 1–441,
and truncated His-tagged forms: tau 155–421 and tau 13–391 (5 μg of
each) mixed with reducing sample buffer in the volume ratio 1:1,
were loaded into Tricine polyacrylamide gel (10% T, 3% C) and then
transferred onto nitrocellulose membrane. The membrane was blocked
by 5% defattedmilk in PBS-0.1% Tween 20 (PBS-T) for 1 h at RT. Isolated
anti-tau antibodies (1:250) were added in PBS-T with 1% BSA and incu-
batedwith themembrane overnight at 4 °C. Theunbound IgGmolecules
were removed by PBS-T washing five times (each 5 min). The
membrane was incubated with goat anti-human IgG antibody HRP-
conjugate at 1:15 000 dilution in PBS-T with 1% BSA for 2 h at RT and
subsequently washed by PBS-T five times (each 5min). The chemilumi-
nescence detection by Clarity western ECL substrate according to the
manufacturer's instructions followed. ChemiDoc™ XRS+ Imaging
System with Image Lab™ Software (Bio-Rad, Hercules, CA, USA) was
applied for documentation.

2.2.2.2. Dot blot immunoassay.Dot-blot analysis was performedwith col-
orimetric 4-CN detection that is more suitable for subsequently used
avidity dot-blot immunoassay. Additionally, for comparison purpose
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we applied in this experiment our rabbit polyclonal anti-tau antibody
raised against His-tagged tau 1–441 protein form (Kristofikova et al.,
2014), and purified by low-pressure affinity chromatography using
tau 1–441 rPeptide without His-tag. Three different unphosphorylated
recombinant tau proteins listed in Suppl and tau 1–441 rPeptide (for
each: 1 μg and 0.5 μg/100 μl 0.1 M PBS pH 7.0) were spotted onto
PVDFmembrane using a Dot-blot DHM-96 unit manifold and incubated
in Opti-4CN kit blocking solution in PBS-T for 1 h at RT. Anti-tau anti-
bodies isolated from IVIG (1:250) or immunized rabbit serum (1:250)
were added in PBS-T with 1% BSA and incubated with the membrane
for 1 h at RT. The unbound IgGmoleculeswere removed by PBS-Twash-
ing three times. The membrane was incubated with goat anti-human
IgG antibody HRP-conjugate/goat anti-rabbit antibody HRP-conjugate
(1:1000) in PBS-T with 1% BSA for 1 h at RT and subsequently washed
by PBS-T three times. The spots were visualized by Opti-4CN kit accord-
ing to themanufacturer's instructions. ChemiDoc™ XRS+ Imaging Sys-
tem with Image Lab™ Software was applied for documentation and
spot density analysis.

2.2.3. Quantification of anti-tau natural antibodies by ELISA immunoassay
Levels of antibodies against four forms of tau protein (tau 1–441

rPeptide, His-tagged tau 1–441 and truncated tau 155–421 and tau
13–391 protein forms) in both unphosphorylated/ phosphorylated
states were measured in initial IVIG fraction, flow-through fraction
and eluted fraction by ELISA. All samples were measured in duplicates.
Tau antigen in 0.1 M carbonate buffer pH 9.5 was applied to microplate
(0.2 μg/50 μl per well) and incubated overnight at 4 °C. Then the wells
were blocked by 1% BSA in PBS-T for 1 h at room temperature (RT).
Subsequently, the microplate was washed 3 times by 0.1% BSA in
PBS-T. Initial IVIG fraction, flow-through fraction and eluted fraction
were diluted as follows 1:100, 1:300, 1:900, 1:2700, 1:8100, 1:24 300,
1:72 900 by 1% BSA in PBS-T. Diluted antibodies (0.1 ml/well)
were added into the plate and incubated 2 h at RT. The unbound
molecules were removed by five times washing with 0.1% BSA in
PBS-T. Incubation with 0.1 ml/well of goat anti-human IgG antibody
HRP-conjugate at dilution 1:10 000 for 30 min at RT followed
and then the microplate was washed five times as above. Final incu-
bation with 0.1 ml/well of TMB substrate was performed for 30 min
at RT in the dark. The reaction was stopped by 0.1 ml of 1 M H2SO4

per well, and the absorbance was measured by Elisa Reader
Multiskan EX (Thermo Scientific) at 450 nm and 620 nm as a reference
wavelength.

2.2.4. Measurement of avidity index
The avidity index of isolated anti-tau antibodies from IVIG product

as well as from immunized rabbit serumwas determined by chaotropic
agent ammonium thiocyanate (NH4SCN) in two independent methods,
ELISA and dot-blot immunoassay. The experimental conditions as in
Sections 2.2.2.2 and 2.2.3 were retained with extra incubation step. In
ELISA experiment, after washing of unbound anti-tau antibody mole-
cules which were applied in dilution 1:250 against recombinant tau
proteins (0.1 μg/well), additional 10 min incubation with NH4SCN in
PBS pH 7.0 within molarity range 0–2.1 M was included (Pullen et al.,
1986). In avidity dot-blot immunoassay, for avidity evaluation of isolat-
ed anti-tau antibodies (dilution 1:200) against recombinant tau pro-
teins (1 μg of tau 155–421 His-tag, 5 μg of tau 1–441 His-tag or tau
13–391 His-tag), additional 5 min incubation step with NH4SCN in
PBS pH 7.0 within molarity range 0–2.1 M was included after washing
of unbound IgG molecules (Svobodova et al., 2013). All samples were
measured in duplicates for ELISA and in triplicates for dot blot analysis.
Avidity index is defined as molar concentration of thiocyanate solution
(M) that causes the decrease of initial sample signal (incubation in PBS
buffer pH 7.0 without NH4SCN) on the value of 50% in ELISA and dot-
blot avidity immunoassay. The thiocyanate molarity corresponding to
50% reduction in the initial sample signal was calculated from the linear
regression equation of logarithmic transformed values of % signal

intensity relative to initial signal for each thiocyanate molar concentra-
tion (i.e., log (signal / initial signal) × 100).

2.2.5. Statistics
Data were analyzed with GraphPad Prism software Version 5.0 from

GraphPad (SanDiego, CA, USA). For comparison of antibody levels against
various tau forms in all fractions collected within the purification proce-
dure we chose values at absorbance 0.5 as these lie in linear range of
the curve in ELISAmeasurements (Y=Bmax ∗X / (Kd+X)+C). Student
t-test was used for analysis of specific IgG levels among initial IVIG frac-
tion (Flebogamma), flow-through fraction and elution fraction for all
used tau antigens. Ap-valueb 0.01was considered statistically significant.

3. Results

3.1. Purification of natural antibodies with specificity against tau protein

In previously published papers, the Flebogamma IVIG product
characterization revealed that IgG content is more than 99 % with the
percentage of individual IgG subclasses similar to normal serum values,
IgM and IgA are present in only trace amounts (Ballow, 2009; Jorquera,
2009). Based on these data, we expected that the isolated antibodies be-
long to IgG class at least in 99% purity. We obtained approximately
3.2 mg IgG molecules by acidic elution which represents 0.8 % from
400mgof total IgG amount contained in IVIG fraction applied to the col-
umn and transferred them into PBS buffer by Amicon 30K filters. Subse-
quently, we determined the IgG subclass distribution in the initial IVIG
product and the fraction containing antibodies isolated against tau pro-
tein (elution fraction) by ELISA kit. IgG1 constitutes the major subclass
proportion in the two samples, 61.7% and 57.6% respectively, and IgG4
represents the least abundant IgG subclass, 1.9% and 1.7% respectively.
A fourfold increase in IgG3 proportion (4.3% to 16%) and slight decrease
of IgG2 amount (32.1% to 24.8%)were observed in the elution fraction in
comparison to the initial IVIG product (Fig. 1A, B). The purity and integ-
rity of IgG molecules were verified by non-reducing SDS-PAGE electro-
phoresis (Fig. 2). The molecular weight ranges from 150 kDa to more
than 250 kDa which may be attributed to anomalous behavior of IgG
during SDS-PAGE (Fasler et al., 1988) and to dimers occurrence in IVIG
(Miescher et al., 2005; Vassilev et al., 1995; Wymann et al., 2008). By
densitometric analysis with ImageLab 4.0 software, IgG fragments or
contaminants in elution fraction corresponding to molecular weights
of 92 kDa and 53.5 kDa were determined below 1% from the line total
density (Fig. 2 — position 3).

3.2. Reactivity evaluation of purified antibodies by blotting techniques

The reactivity of isolated nTau-Abs with unphosphorylated and
phosphorylated forms of four tau proteins (tau 1–441 rPeptide and
three His-tagged forms: tau 1–441, tau 13–391, and tau 155–421, see
Supplemental materials) was evaluated by Western blot analysis
(Fig. 3). The results revealed that the reactivity of isolated nTau-Abs
with the phosphorylated formof His-tagged tau 1–441was significantly
decreased comparing with its non-phosphorylated form (Fig. 3 — posi-
tions 3, 4). Therefore, the sufficiency of electrotransfer of all full-length
tau antigens was verified by reprobing the same nitrocellulose mem-
brane with mAb tau 46.1 (epitope 428–441; (Garcia-Sierra et al.,
2003). The Western blot analysis using nTau-Abs also provided us
with additional information about applied tau molecules. In addition
to information about molecular weights with respect to fragmentation
level and distribution of monomers, dimers and highermolecular struc-
tures, the shift in molecular weight caused by posttranslational modifi-
cations, herein by phosphorylation, is also illustrated.Moreover, we can
see that the truncated tau proteinmolecules weremore prone to aggre-
gation also under the reducing conditions (Fig. 3— positions 5–8). This
is probably caused by conformational changes of the fragments due
to the phosphorylation and truncation at Asp421 or Glu391 which
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facilitates assembly into aggregates (Ding et al., 2006; Gamblin et al.,
2003; Garcia-Sierra et al., 2008; Guillozet-Bongaarts et al., 2005; Hanger
and Wray, 2010; Kolarova et al., 2012).

Dot-blot immunoassay was carried out with two anti-tau antibod-
ies; human natural anti-tau antibodies isolated from IVIG and rabbit
anti-tau antibodies isolated from serum immunized with His-tagged
tau 1–441. Despite the fact that nTau-Abs from IVIG were purified
using the His-tagged tau 1–441, the spot signal was the weakest
with this antigen form (Fig. 4, A — position 2) in comparison with
His-tagged truncated tau forms (tau 13–391 and tau 155–421)
(Fig. 4, A — positions 3, 4). Tau 1–441 rPeptide (Fig. 4, A — position
1) was used as control antigen to demonstrate that tag composed
of 6 histidines is not the immunodominant epitope and has a mini-
mal effect on enhancement of immunoreactivity in this case. This
corresponds with our conviction that His-tag structure is not natu-
rally occurring antigenic motif in the human body, and thus the epi-
topes reactive with nTau-Abs are located within tau molecule
sequence. Moreover, this idea is supported by the reactivity of poly-
clonal anti-tau antibody from rabbit immunized by His-tagged tau
1–441 and purified by tau 1–441 rPeptide which provides the
highest signal with immunogenic tau 1–441 containing His-tag irre-
spective of the ligand used in affinity chromatography, tau 1–441
rPeptide (Fig. 4, B — positions 1, 2).

3.3. Evaluation of anti-tau antibodies amount by ELISA

Initial IVIG fraction (Flebogamma, 50 mg IgG/ml; IF), flow-through
fraction (IgG passed through the columnwith covalently bound antigen
tau 1–441 His-tag, 7.9 mg IgG/ml; FTF) and elution fraction (affinity pu-
rified IgG fraction retained in the columnwith covalently bound antigen
tau 1–441 in His-tagged form, concentrated after the elution by Amicon
30K filter device to final concentration of 0.8 mg IgG/ml; EF) were
applied in ELISA. Graphical representation of antibody reactivity with
His-tagged tau 1–441 expressed as the relationship between detected
signal (absorbance at 450 nm) and the logarithm of antibody dilution
was used to evaluate the efficiency of natural anti-tau antibody isolation
procedure. As can be seen in Fig. 5we isolated and concentratedmost of
the nTau-Abs against human full-length tau protein from IVIG product
into elution fraction comparing to minimal signal in flow-through
fraction.

Subsequently, we carried out ELISA assay to measure the levels of
natural antibodies occurring in IVIG productwithin the purification pro-
cedure. We used His-tagged tau forms (preparation method in Suppl
1.1) and commercial tau 1–441 rPeptide aswell as their phosphorylated
equivalents (phosphorylationmethod in Suppl 1.2). The dilution factors
of reactive antibodies for each tau form giving OD 0.5 at absorbance
450 nmwere calculated according to 2.2.5. The graphical representation
allowed us to evaluate the difference in levels of reactive antibodies
with particular tau forms among purification steps. Slight differences
were apparent in the reactivity of initial IVIG fraction and elution
fraction with phosphorylated tau forms caused by tau ligand used in
purification procedure. Especially, the isolated antibodies showed
much lower dilution to get OD 0.5 for phosphorylated His-tagged tau
155–421 form (Fig. 6A) in contrast to non-phosphorylated form. On
the other hand, this fragment was highly antigenic as we can see high
reactivity with all fractions and this reactivity was abolished by
phosphorylation of this fragment in all fractions, respectively. We also
observed a decrease in dilution factor for a flow-through fraction in
comparisonwith initial IVIG and elution fractions for all antigens except
His-tagged tau 155–421.

In order to express variation in reactive antibody concentrations
among purification fractions, we calculated the amount of reactive IgG
molecules (μg/well) based on spectrophotometrically determined con-
centration in each fraction giving OD 0.5 in ELISA measurements.
Then, we were able to observe statistically significant differences in an-
tibody levels at OD 0.5 for various tau forms among particular fractions.
Moreover, these data indicated that antibodies interactingwith tau pro-
teins are concentrated in elution fraction (Fig. 6B). We found a signifi-
cant decrease of IgG amounts required to get OD 0.5 in elution fraction

Fig. 1. The IgG subclass distribution in the initial IVIG product (A) and the fraction of antibodies isolated against tau protein (B). IgG subclass percentageswere determinedby ELISAkit. The
IgG1 and IgG4 distribution is comparable in both samples. The percentage of IgG3 increases four times and of IgG2 slightly decreases in isolated antibody fraction in comparison to the
initial IVIG fraction.

Fig. 2. SDS-PAGE electrophoresis of initial IVIG fraction (1), a flow-through fraction
(2) and elution fraction containing natural antibodies in PBS pH 7.2 with 50% glycerol
(3) followed by silver staining.Molecularmarker 10–250 kDa (MM)was applied to deter-
mine themolecularweight of isolated IgG. Arrowedbands represent N250 kDaband of IgG
dimers, 149.2 kDa band of IgGmonomers. Bands of 92 kDa and 53.5 kDamolecularweight
are supposed to be IgG fragments or contaminants representing 1% of total content deter-
mined by density analysis (3).
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in contrast to initial IVIG and flow-through fractions. The measured
values expressed as both dilutions, and total amounts of natural anti-
tau antibodies in elution fraction against all used tau protein forms are
summarized in Table 1.

3.4. Avidity index determination of isolated natural anti-tau antibodies

After comparing the levels of nTau-Abs in all sample fractions, we
focused on determination of avidity index for isolated IgG molecules
against all three His-tagged tau antigens; two truncated tau forms
(tau 13–391 and tau 155–421) and tau 1–441 as an antigen through
which specific antibodies were purified. In the graphical representa-
tion, the signal intensity [%] of antibodies represents the percentage
decrease in the binding as a function of the thiocyanate molar con-
centration (Fig. 7). The calculation of avidity index from the log-
transformed curve is mentioned in 2.2.6. Avidity index of nTau-Abs
with His-tagged tau 155–421 gave the greatest values and did not
significantly vary between dot blot and ELISA techniques, particular-
ly 1.67 M/1.61 M of NH4SCN. All avidity indexes for isolated natural
anti-tau antibodies are summarized in Table 1. The decrease in signal
intensity with increasing NH4SCN molarity is presented in a graphic
form for both methods; ELISA and avidity dot-blot immunoassay
(Fig. 7A, B). Avidity dot-blot immunoassay was also carried out
with polyclonal rabbit anti-tau antibodies (Fig. 7C). The avidity of
polyclonal rabbit anti-tau antibodies was higher for all three tau iso-
forms in contrast to nTau-Abs. Moreover, the signal intensity did not
decrease by 50% in the range of 0–2.1 M NH4SCN to evaluate avidity
index for these His-tagged tau forms, tau 1–441 (the immunogen)
and truncated tau 155–421. The avidity index of rabbit antibodies
with truncated from tau 13–391 His-tag was determined as 1.36 M
of NH4SCN.

4. Discussion

It is acknowledged that neurofibrillary tangle (NFT) formation is a
dynamic process in which tau protein becomes modified and changes
its conformational state. Amino acid site-specific phosphorylation and
truncation at both N- and C-termini have been considered as the main
post-translation modifications of tau protein in AD (Buee et al., 2000;
Ding et al., 2006; Mondragon-Rodriguez et al., 2014; Novak, 1994).
These post-translational modifications are able to significantly change
the paperclip-like model of tau protein in a soluble form and promote
the aggregation (Kovacech and Novak, 2010; Mandelkow et al., 2007;
Wang et al., 2010). Truncation in C-terminal part of tau protein at cleav-
age points Asp421 (Fasulo et al., 2000; Gamblin et al., 2003) and Glu391
(Novak et al., 1993) was well defined and is even considered as a trig-
gering factor in development of tau pathology (de Calignon et al.,
2010; Garcia-Sierra et al., 2001; Mena et al., 1996; Rissman et al.,
2004; Zilka et al., 2009). Moreover, the Asp421 cleavage always pre-
cedes Glu391 truncation in NFT formation (Basurto-Islas et al., 2008).
To date, some facts are also known about the truncation in N-terminal
part (Arai et al., 2005; Horowitz et al., 2004; Olesen, 1994). It was prov-
en that truncation is a very early event in tangle formation, and that
truncated tau phosphorylated at few specific sites even occurs before
hyperphosphorylated form (Rissman et al., 2004). Some studies even
postulated that phosphorylation of tau protein is a protective response

Fig. 3.Western blot analysis performedwith isolated natural Abs to evaluate their specific reactivitywith tau antigens in non-phosphorylated (np-) and phosphorylated form (p-): np-tau
1–441 rPeptide (1), p-tau 1–441 rPeptide (2) and His-tagged tau forms; np-tau 1–441 (3), p-tau 1–441 (4), np-tau 155–421 (5), p-tau 155–421 (6), np-tau 13–391 (7), p-tau 13–391 (8).
The cross-reactivity with soluble kinases from kinase cocktail was disproved by kinases loading in the same ratio and no reactivity with applied Abs was detected (9). After reprobing the
nitrocellulose membrane, the full-length tau forms (1, 2, 3, 4) were immunostained with mAb tau-46.1 (epitope 428–441 aa) to verify the sufficiency of electrotransfer (1′, 2′, 3′, 4′).

Fig. 4.Dot-blot immunoassay for evaluation the specific reactivity of isolated natural anti-
tau Abs (A) and polyclonal rabbit anti-tau Abs (B) against tau with respect to used non-
phosphorylated antigens: tau 1–441 rPeptide (1) and His-tagged tau forms: tau 1–441
(2), tau 13–391 (3), tau 155–421 (4) directly loaded onto PVDFmembrane in the amount
of 1 μg in left dot and 0.5 μg in right dot for each antigen. The formed immunocomplexwas
detected by Immun-Blot Opti-4CN Colorimetric kit.

Fig. 5. Isolation efficiency of natural anti-tau antibodies from IVIG estimated by ELISA. Se-
rial dilution of each purification fractionwas probed against His-tagged tau 1–441 antigen.
The detected signal is expressed as absorbance at wavelength 450 nm depending on the
logarithm of samples dilution. His-tagged tau 1–441 form as antigen is coated onto a
well in concentration 0.2 μg/50 μl in 0.1 M carbonate buffer pH 9.5. Initial Flebogamma
IVIG fraction (50 mg/ml), flow-through fraction (IgG fraction passed through the col-
umn with covalently bound antigen tau 1–441 in His-tagged form with no retention,
7.9 mg/ml), elution fraction (IgG fraction retained in the column with covalently bound
tau ligand, concentrated to final concentration 0.8 mg/ml due to transfer into PBS buffer
by Amicon 30K filters) are illustrated.
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to prevent the assembly of tau into filaments (Luna-Munoz et al., 2013;
Schneider et al., 1999).

Tau protein occurs in numerous post-translationally modified forms
in brain tissue. Especially site-specific phosphorylation and truncation
are connected with the balance between physiological and pathological
tau function. Thus, we included several tau forms varying in length and
phosphorylation to characterize our isolated anti-tau antibodies natu-
rally occurring in the commercial product of intravenous immunoglob-
ulin Flebogamma. The IVIG is now in the spotlight because of ongoing
clinical trials for AD therapeutic interventions. It has been proven that
these products contain antibodies against neuronal tau protein (Smith
et al., 2013) but their reactive character has been established only partly
(Smith et al., 2014).

We have been able to isolate significant amount of these natural IgG
molecules reacting with human recombinant full-length tau protein;
namely 3.2 mg IgG molecules representing 0.8% of total amount of
400 mg IgG/8 ml Flebogamma IVIG product. To evaluate IgG subclass
profile, we investigated the IgG subclass distribution in the initial IVIG
product and the elution fraction. To our expectations, IgG1 constitutes
the major subclass and IgG4 the last abundant subclass proportion in
the two samples. We observed a slight decrease of IgG2 amount in the

elution fraction in comparison to the initial IVIG product. Surprisingly,
the result indicates skewing toward IgG3 in the elution fraction.
The IgG3 subclass belongs to potent pro-inflammatory antibodies
in early response to protein and viral antigens with a shorter half-
life (Michaelsen et al., 2009; Vidarsson et al., 2014). It is also sug-
gested that natural IgG Abs are IgG3 subclass-specific (Panda and
Ding, 2015). Aforementioned findings may explain the low avidity
profile of isolated antibodies reactive with tau protein. We used
non-modified recombinant protein as a ligand for isolation of natural
antibodies from IVIG to maximize the yield. We supposed that using
post-translationally modified protein may decrease the isolation
yield of Abs in detectable amounts. On the other hand, the amount
of isolated antibodies against truncated and phosphorylated tau
forms can be affected by using non-phosphorylated full-length tau
as an antigen and these antibodiesmay not be sorted out during our iso-
lation procedure. Thus, we would like to prepare more “native” like tau
protein and repeat the isolation procedure as well.

The isolated naturally occurring anti-tau antibodies were subse-
quently characterized. Firstly, we would like to point out to results
obtained with His-tagged tau 1–441 considering its phosphorylated
state when comparing data from ELISA and Western blot. The

Fig. 6. Reactivity of natural Abs presented in individual IVIG purification fractions, initial Flebogamma IVIG fraction (50 mg/ml), flow-through fraction (7.9 mg/ml) and elution fraction
(0.8 mg/ ml), against different forms of tau protein. The comparison is expressed as a dilution of each fraction (A) and the amount of IgG (B) required to obtain OD 0.5 at wavelength
450 nm. Bars represent mean value from duplicate wells. Statistical analysis was performed by Student t-test at significant p levels 0.01 (**), 0.001 (***).

Table 1
Summary table of basic characterization of isolated natural anti-tau antibodies from Flebogamma IVIG product.

Isolated natural anti-tau antibodies from Flebogamma IVIG against

Antigen characteristics
Tau form

Tau 1–441
rPeptide

Tau 1–441
His-tagged

Tau 13–391
His-tagged

Tau 155–421
His-tagged

His-Tag at NH2-terminal position − + + +

Reactivity

Dot-blot immunoassay ++ + ++ +++
Western blots
non-phosphorylated/phosphorylated

++/+ ++/± +/+ ++/+

ELISAa:
Dilution (IgG amount in ng/well)
Non-phosphorylated/phosphorylated

1:880 (93)/1:830 (97) 1:700 (114)/1:500 (169) 1:910 (88)/1:660 (121) 1:2400 (35)/1:290 (283)

Avidity indexb
Dot-blot immunoassay ND 0.74 0.46 1.67
ELISA ND 0.20 0.24 1.62

The qualitative level of isolated IgGmolecules reactivity with different tau antigens loaded on PVDFmembrane (dot-blot immunoassay) and transferred onto nitrocellulosemembrane by
semi-dry technique (Western blot) is illustrated as very weak (±), weak (+), intermediate (++) and strong (+++).
ND = not determined.

a ELISA results are expressed as a dilution of IgGmolecules reactingwith antigen (0.1 μg/well) to reachOD0.5 at 450 nm (working concentration of isolated IgGmoleculeswas 0.8mg/ml).
b Avidity index is expressed as molarity of ammonium thiocyanate (M) that causes the decrease of initial sample signal (in the absence of thiocyanate) on the value of 50%.
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reactivity of isolated natural anti-tau Abs with phosphorylated tau
1–441 His-tag was significantly decreased in comparison with its
non-phosphorylated form in Western blot analysis. In ELISA experi-
ment, the reactivity difference between these two full-length tau
forms was not as conspicuous as in blotting assays. We attribute
this fact to a different level of protein structural quality changes dur-
ing analysis which may substantially affect results revealing the im-
munoreactivity. In ELISA arrangement, the recombinant full-length
tau containing His-tag has the conformation presumably closer to
native state in comparison with altered conformation achieved by
reducing SDS-PAGE electrophoresis prior to electrotransfer in Western
blot.

One of the quotable findings in this studywas that the nTau-Abs iso-
lated from IVIG product containing IgG molecules pooled from several
thousand healthy donors are not exclusively phospho-specific as they
can recognize protein with and without this post-translational modifi-
cation. This was verified by Western blot and ELISA. This corresponds
with the study of Rosenmann's group in which no significant differ-
ences were observed in reactivity of circulating serum IgG with non-
phosphorylated full-length tau and pathologically phosphorylated tau
peptide (Rosenmann et al., 2006). We also took into consideration
that the epitope preferences could be changed by acidic elution as
was demonstrated in several publications (Djoumerska-Alexieva et al.,
2010). On the other hand, we observed similar reactivity trends of nat-
ural antibodies in all fractions differing in buffer composition so we do
not attribute great importance to acidic elution as the main factor of
resulting reactivity of isolated nTau-Abs with various tau forms.

Interestingly, the occurrence of natural Abs reactive with phosphor-
ylated and truncated tau forms, which are believed to be the main part
of NFTs, was revealed by both ELISA andWestern blot techniques. Some
more remarkable results with amodified tau form, particularly with tau
155–421, were obtained. Especially, isolated anti-tau antibodies dem-
onstrate the strongest signal on the spot with truncated form of His-
tagged tau155–421 in dot blot immunoassay.Moreover, in ELISA exper-
iments we can observe that this truncated form has high antigenicity
since all IVIG fractions (Initial, Flow-through, and Elution) showed

strong reactivity against it. Therefore, this fragment may reveal or
even bear some pathological features since the immune system shows
such a strong response against it, which was also supported by highest
avidity of isolated nTau-Abs to this fragment in contrast to other forms.
This fragment contains all four repeat domains that are prone to aggre-
gate as we have seen inWestern blots. The latest studies have revealed
that aggregated oligomeric tau forms are the toxic species of this pro-
tein. They can spread tau pathology and are responsible for cognitive
impairment in ADmousemodelswhich can be alleviated by passive im-
munotherapy specifically targeting tau oligomers (Castillo-Carranza
et al., 2014a,b, 2015). In the future experiments would be, therefore,
desirable to explore the reactivity of our polyclonal tau-reactive an-
tibodies from IVIG products with thoroughly characterized oligomeric/
aggregated tau forms. It was surprising that the reactivity of our nTau-
Abs was partly abolished by phosphorylation since the phosphorylated,
namely hyperphosphorylated, tau protein is contained in pathological
NFTs in AD brains (Iqbal et al., 2005).

5. Conclusions

To conclude our study, we proved the existence of specific natural
anti-tau Abs in plasma IVIG from healthy donors that could refer to im-
mune involvement as a regulatorymechanismofmodified and toxic tau
fragment occurrence. More experiments are needed to evaluate our hy-
pothesis. For instance, it would be interesting to compare the reactivity
profile of antibodies isolated from other IVIG products or even from
pooled AD samples with the reactivity of these isolated antibodies
from Flebogamma IVIG product. Nowadays, it is also discussed if crude
IVIG products or only specific Abs isolated from IVIG against particular
antigenic epitopes should be used for therapeutic approaches. There-
fore, epitopemapping of these target-reactive Abs could also be helpful.
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A B S T R A C T

The presence of natural tau-reactive antibodies was reported in human blood. In this study, we isolated and
characterized natural tau-reactive antibodies occurring in IVIG product Flebogamma, plasma of patients with
Alzheimer's disease (AD) and older cognitively normal persons (controls). Using blotting immunoassays and
ELISA, we showed reactivity of antibodies obtained from IVIG and controls against a recombinant fragment of
tau (155–421 aa) and aggregates present in brains of AD patients. In contrast, antibodies isolated from plasma of
AD patients reacted mainly with the recombinant full-length tau form and tau monomeric forms in brain tissue.

1. Introduction

Nowadays, the therapeutic potential of antibodies in neurodegen-
erative diseases is being studied quite intensively (Schroeder et al.,
2016). Several research groups have focused on the treatment of Alz-
heimer's disease (AD) using specific monoclonal antibodies, polyclonal
intravenous immunoglobulins (IVIG) and vaccines (Castillo-Carranza
et al., 2015; Davtyan et al., 2016; Dodel et al., 2004; Gu et al., 2013;
Kayed, 2010; Knight and Gandy, 2014; Kontsekova et al., 2014;
Sigurdsson, 2009; Steinitz, 2009). The IVIG products attracted a lot of
attention as a possible treatment of neurological disorders (Fuchs et al.,
2008) and even AD (Dodel et al., 2010; Kile et al., 2015; Neff et al.,
2008; Relkin, 2014). However, the clinical trials for treatment of AD
failed for two of the IVIG products, Octagam and Gammagard (Baxter
U.S., 2013a, 2013b; Dodel et al., 2013). Another two clinical trials with
Flebogamma® from Grifols (AMBAR, phase III, NCT01561053) and
Sutter Health's IVIG NewGam™ (phase II, NCT01300728) are still under
investigations (Grifols Biologicals Inc., 2015; Kile et al., 2015). How-
ever, the NewGam™ IVIG trial reported that a short course of IVIG
administered in the MCI stage of AD reduces brain atrophy, prevents
cognitive decline in late stage of MCI and delays conversion to AD
dementia for at least 1 year (Kile et al., 2015). In the light of these
findings, the characterization of reactivity of specific antibodies against
either amyloid beta or tau protein present in these products

(Balakrishnan et al., 2010; Dodel et al., 2004; Klaver et al., 2013; Smith
et al., 2014, 2013) could clarify their contribution to the effect of these
treatments. Notably, when we consider the use of AD-specific IVIG
preparations enriched by antibodies specific for tau, amyloid-beta,
complement, cytokines and other factors as was discussed by (Loeffler,
2014).

In the previous work, we showed specificity of plasma antibodies
obtained from Flebogamma IVIG product against fragment 155–421 aa
of tau protein (Hromadkova et al., 2015). The fragment 155–421 aa is
cleaved at the Asp421 which is an early event in the pathological as-
sembly of truncated tau in the neurofibrillary tangles (NFTs) evolution
(Basurto-Islas et al., 2008). Moreover, tau comprises thrombin cleavage
site at Arg155 and the products of thrombin proteolysis are potentially
pathogenic (Chesser et al., 2013; Hanger and Wray, 2010) and both
thrombin and its precursor prothrombin, are expressed by neurons and
glia, and accumulate in NFTs in AD (Arai et al., 2006). Thus, our
findings point towards the involvement of immune system in control-
ling the occurrence of pathological proteins under physiological con-
ditions. However, an investigation of the characteristics and reactivity
of naturally occurring antibodies in plasma against native physiological
and pathological forms of tau protein is needed. In this study, we used
homogenates of brain tissue from AD patients and control subject to
reflect the reactivity of naturally occurring antibodies against native
forms of tau protein. Moreover, in spite of the effort, little is known
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about the naturally occurring tau-reactive antibody profile in serum of
patients with diagnosed AD and old, but cognitively normal individuals.
Therefore, we looked into the reactivity profiles of antibodies found in
the pool of plasma samples from patients with diagnosed AD and age-
matched cognitively normal individuals with non-inflammatory neu-
rological diseases. We isolated three fractions of natural tau-reactive
antibodies from IVIG (nTau-IVIG), plasma of AD patients (nTau-AD)
and cognitively normal control subjects (nTau-Ctrl). Their reactivity
was investigated by ELISA and blotting techniques against recombinant
non-phosphorylated/phosphorylated full-length (1–441 aa) form and
fragment (155–421 aa) of tau protein and native tau proteins present in
the homogenates of brain tissue.

2. Materials and methods

2.1. Participants

The research was approved by the Ethics Committee of the
University Hospital Kralovske Vinohrady and conducted according to
the Declaration of Helsinki and the Laws 129/2003 and 130/2003 of
the Czech Republic. Informed consent was obtained from all individual
participants included in this study.

Plasma samples were obtained from 11 patients from the
Department of Neurology or Memory Clinic of the Charles University,
Czech Republic. Their cognitive functions were evaluated using an
updated Czech version of Addenbrooke's Cognitive Examination
Revised (ACE-CZ) (Bartoš et al., 2011; Mioshi et al., 2006). We were
then able to derive MMSE scores (range 0–30) from the ACE-CZ (score
range 0–100). Four aged men and three elderly women were recruited
as in-patients from the Department of Neurology and classified as
cognitively normal. They had normal ACE-CZ (cut-off ≥ 79) and MMSE
scores (cut-off ≥ 28). They mostly presented with non-inflammatory
conditions such as polyneuropathy and peripheral Bell's facial palsy and
the rest presented with a variety of diseases (e.g. a headache, trigeminal
neuralgia and transient unconsciousness). Four AD patients (two men
and two women) were diagnosed according to the NIA-AA criteria
(McKhann et al., 2011).

Plasma samples were collected, centrifuged, and aliquoted in 1 ml
polypropylene tubes and stored (on average within 1.5 h of sampling)
at −80 °C until analysis. The specimens were thawed just before ex-
periments. All participants signed an informed consent.

Human brain tissues of one control individual (79 years old man
whose cause of death was myocardial infarct) and two AD patients (two
men at the age of 82 and 83 whose cause of death was cardiac in-
sufficiency) were obtained by autopsy. Brains were evaluated using
silver staining technique, dissected and stored according to the study of
(Kriştofikova et al., 1995). The control subject was described as a
nondemented and nonpsychotic patient (no marked histological
changes indicative of AD pathology). The AD patients had clinically
diagnosed dementia with a number of senile plaques and tangles in
given areas of the cortex and in the hippocampus higher than would be
expected for age. The criteria for the postmortem assessment of de-
mentia and control subjects were consistent with those standardized by
Dr. S. S. Mirra et al. from VA Medical Center, Department of Pathology
and Laboratory Medicine (Decatur, GA) (Mirra et al., 1991).

2.2. Preparation of tau protein forms

2.2.1. Recombinant tau forms
The reactivity of isolated anti-tau antibodies was examined by using

four recombinant His-tagged tau forms. The preparation of His-tagged
full-length human tau 1–441 amino acids (tau 1–441 aa) and His-tagged
human truncated tau form (tau 155–421 aa) was performed as pre-
viously described (Hromadkova et al., 2015). Both tau forms (52 μg
each) were also phosphorylated by kinase mixture (500 U of GSK-3
from New England Biolabs (Ipswich, MA, USA), 125 U of ERK2 and
750 U of PKA from Biaffin GmbH&Co KG (Kassel, Germany)) in 200 μl
of 40 mM HEPES buffer pH 7.2 with 5 mM MgCl2, 5 mM EGTA, 2 mM
DTT, and 1 mM ATP for 20 h at 30 °C. The phosphorylation was stopped
by heat-denaturation of kinases (95 °C, 10 min). The phosphorylation
state of tau proteins was confirmed by a mobility shift in SDS-poly-
acrylamide gel and by Western blots with specific anti-phospho-tau
antibodies as described previously (Hromadkova et al., 2015). For all
subsequent experiments, tau protein forms were transferred into PBS
buffer by using Amicon® Ultra 0.5 ml filters (10 K, Merck Millipore,
Billerica, MA, USA).

2.2.2. Tau protein forms in brain tissue homogenates
The reactivity of isolated anti-tau antibodies was also investigated

using human brain homogenates where tau protein occurs in various
native forms. The detailed characterization of the three used brain
samples is summarized in the section ‘Participants’. Sections of left
hemisphere hippocampi from two AD patients and one control were
homogenized in 1 × PBS buffer containing 2 × inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA), 1 mM EDTA and 0.02% NaN3 or
with additional 2% SDS in 1:3 w/v dilution followed by 10,000 × g
spin. Supernatants were collected and the total protein content of all
homogenized samples was determined by BCA test according to man-
ufacturer's instructions (Thermo Scientific, Waltman, MA, USA).

2.3. Isolation of natural tau-reactive antibodies

The antibodies were purified against tau protein by low-pressure
affinity chromatography as previously described (Hromadkova et al.,
2015). New column was prepared as follows: 4 mg of His-tagged tau
1–441 aa protein was reacted with 2 ml of pre-packed resin (Labiomer
300, epoxy-activated, 50 μm bead size in Econo-Pac column of 14 cm
length and 1.5 cm diameter), residual reactive epoxide groups were
blocked with 0.2 M ethanolamine overnight at 4 °C and then the
column was equilibrated with PBS buffer (Hermanson, 2013). IVIG
(3 ml, Flebogamma® 5% DIF (5 g/100 ml), Grifols Biologicals Inc., Los
Angeles, CA, USA), plasma pool of samples from seven cognitively
normal control subjects (3 ml; 108.5 mg/ml) and four patients with AD
(3.5 ml; 107.3 mg/ml) were diluted to 10 ml in PBS and loaded onto the
column. General characteristics of donors of plasma samples are listed
in Table 1. The amount of protein in the initial fractions, flow-through
(F-T) fractions and concentrated eluted fractions (before the addition of
glycerol) was determined by BCA assay according to manufacturer's
instructions (Thermo Scientific, Waltman, MA, USA).

Table 1
General characteristics of donors of plasma samples.

Groups n Sex (M/F) Age (years) MMSE (0−30) ACE (0−100) Aβ42 (pg/ml) Total Tau (pg/ml) Phospho-Tau181 (pg/ml)

Controls 7 4/3 70 ± 8 28.5 ± 1 88 ± 5 737 ± 126 240 ± 65 37 ± 7
AD 4 2/2 76 ± 5 17.5 ± 11* 66 ± 14* 835 ± 279 638 ± 140** 52 ± 3**

Data are presented as the mean ± SD. Statistically significant differences highlighted in bold were calculated with respect to controls (Mann-Whitney test, * p < 0.05, ** p < 0.01, ***
p < 0.001).
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2.4. ELISA

2.4.1. Isolation efficacy
The process of isolation and titres of antibodies were assessed by

ELISA as previously described (Hromadkova et al., 2015). Briefly, His-
tagged tau 1–441 aa in 0.1 M carbonate buffer (pH 9.5) was applied to a
microplate (0.1 μg/50 μl per well) and incubated overnight at 4 °C.
After blocking, initial IVIG product (Flebogamma) and AD and control
plasma pool, flow-through fractions and eluted fractions were serially
diluted as follows 1:100, 1:200, 1:400, 1:800, 1:1600, 1:3200, 1:6400
with 1% BSA in PBS-T. The experiment was repeated with adjustment
of initial Ctrl plasma pool, F-T and eluted fractions to dilutions 1:25,
1:50, 1:100, 1:200, 1:400, 1:800, 1:1600 by 1% BSA in PBS-T. Diluted
antibodies (0.1 ml/well) were added to the plate in duplicates and in-
cubated 2 h at RT. The bound nTau antibodies were detected by adding
0.1 ml/well of F(ab´)2-goat anti-human IgG (Fc specific) antibody HRP-
conjugate (Novex, Life Technologies, Carlsbad, CA, USA) at dilution
1:10,000 for 30 min at RT followed by washing and a final incubation
with 0.1 ml/well of TMB substrate for 30 min at RT in the dark. The
non-specific binding of antibodies to empty blocked wells was eval-
uated for initial and eluted fractions. There was non-specific binding
present in the lowest dilution of initial fractions (highest OD 0.254), but
it was negligible in the isolated (eluted) antibodies (OD 0.057). The
non-specific signal was subtracted from the signal obtained from coated
wells.

2.4.2. Reactivity of nTau antibodies against recombinant tau forms
Reactivity of all isolated antibodies against two recombinant forms

of tau protein (His-tagged tau 1–441 aa and truncated tau 155–421 aa
forms) was measured by ELISA. Tau antigens in 0.1 M carbonate buffer
(pH 9.5) were applied to microplate (0.1 μg/50 μl per well) and in-
cubated overnight at 4 °C. BSA in concentration 1 μg/50 μl per well was
used as an irrelevant protein to evaluate specificity of isolated anti-
bodies. Then the wells were blocked with 1% BSA in PBS-T for 6 h at
4 °C. Subsequently, the microplate was washed once with 0.1% BSA in
PBS-T. The isolated antibodies were diluted as follows nTau-IVIG
(1:500), nTau-Ctrl (1:250) and nTau-AD (1:250) with 1% BSA in PBS-T.
Diluted antibodies (0.1 ml/well) were added to the coated wells with
tau and BSA as well as to empty blocked wells of the plate in duplicates
and incubated overnight at 4 °C. The unbound molecules were removed
by washing three times with 0.1% BSA in PBS-T. Incubation with
0.1 ml/well of goat anti-human IgG antibody HRP-conjugate at a di-
lution of 1:10,000 for 30 min at RT was followed by washing the mi-
croplate three times as mentioned above. Final incubation was per-
formed for 12 min at RT with 0.1 ml/well of TMB substrate in the dark.
The reaction was stopped by 0.1 ml of 1 M H2SO4 per well, and the
absorbance was measured by Elisa Reader Multiskan® EX (Thermo
Scientific, Waltman, MA, USA) at 450 nm and 620 nm as a reference
wavelength.

2.4.3. IgG isotyping
Percentages of IgG subclasses were assayed using an IgG Subclass

ELISA Kit according to the manufacturer's instructions (Invitrogen,
Camarillo, CA, USA).

2.5. Blotting techniques

2.5.1. Western blot immunoassays
Western blot immunoassays were carried out with all four re-

combinant forms of tau protein and brain-derived proteins obtained
from homogenates to compare the reactivity profile of isolated tau-re-
active antibodies and anti-tau antibodies with defined epitopes.
Antibodies used in Western blots were: isolated natural tau-reactive
antibodies (nTau-IVIG, nTau-AD and nTau-Ctrl (1:150) also in their
biotin-conjugated forms (1:300)), rabbit polyclonal anti-tau antibody
(1:250 (Kristofikova et al., 2014)), Tau 46.1 and Tau 5 antibody

(generous gift from Dr. Francisco Garcia-Sierra, 1:60,000 and 1:30,000,
respectively), phospho-PHF-tau pThr231 antibody (AT180, Thermo
Scientific, Waltman, MA, USA, 1:2000), rabbit polyclonal anti-tau
phospho-Ser396 (GenScript, Piscataway, NJ, USA, 1:1000) and detec-
tion anti-mouse /anti-rabbit /anti-human IgG antibody HRP-conjugate
(Sigma-Aldrich, St. Louis, MO, USA, 1:15,000). All four recombinant
His-tagged forms of tau (tau 1–441 aa and tau 155–421 aa in phos-
phorylated and non-phosphorylated forms, 4 μg of each) were mixed
with non-reducing and reducing (2% β-mercaptoethanol) sample
loading buffer (Bio-Rad, Hercules, CA, USA) and loaded onto Tricine
polyacrylamide gel (10% T, 3% C). In the case of brain homogenates,
25 μg of total protein from supernatants per lane was loaded onto the
MINI-PROTEAN® TGX™ 10% precast gels (Bio-Rad, Hercules, CA, USA)
and 2 μg of tau 1–441 aa and tau 155–421 aa served as positive con-
trols. Gels were transferred onto nitrocellulose membrane and protein
transfer was checked by Ponceau S staining. Membranes were blocked
with 10% non-fat dried milk in PBS with 0.1% Tween-20 (PBST) or 5%
BSA in PBS-T, antibodies were added in PBS-T with 1% BSA and
membranes were incubated overnight at 4 °C. After PBS-T washing
steps (five times, each 5 min), membranes were incubated with detec-
tion HRP-conjugated IgG antibody or STREP-TACTIN®-HRP Conjugate
(Bio-Rad, Hercules, CA, USA, 1:15,000) in PBS-T with 1% BSA for 2 h at
RT and subsequently washed with PBS-T (five times, each 5 min).
Chemiluminescence signal detection was performed with Clarity™
Western ECL substrate (Bio-Rad, Hercules, CA, USA) and documented
by Chemidoc™ XRS + Imaging System with Image Lab™ Software (Bio-
Rad, Hercules, CA, USA).

2.5.2. Determination of avidity index by dot-blot immunoassay
To determine the avidity index of isolated anti-tau antibodies, we

applied the dot-ELISA affinity test (Hromadkova et al., 2015) with
slight modification. Tau protein (1 μg of tau 1–441 aa or tau
155–421 aa per 100 μl PBS) were spotted onto PVDF membrane and
blocked with 5% BSA in PBS-T for 1.5 h at RT. Subsequently, incubation
of membranes with isolated tau-reactive antibodies (nTau-IVIG/−AD/
−Ctrl, 1:150) in PBS-T with 1% BSA followed for 1.5 h at RT. The
unbound IgG molecules were removed by washing twice with PBS-T.
Then, 5 min incubation with NH4SCN in PBS (pH 7.0) within a molarity
range of 0–2.1 M was included. After washing with PBS-T (twice, 5 min
each), membranes were incubated with goat anti-human IgG antibody
HRP-conjugate (1:10,000, Sigma-Aldrich, St. Louis, MO, USA) in PBS-T
with 1% BSA for 1 h at RT and subsequently washed with PBS-T (three
times, 5 min each). The spots were visualized by Clarity™ Western ECL
Substrate (Bio-Rad, Hercules, CA, USA) according to the manufacturer's
instructions. Chemidoc™ XRS + Imaging System with Image Lab™
Software (Bio-Rad, Hercules, CA, USA) was applied for documentation
and spot density analysis. All tau samples were spotted in triplicates.
The thiocyanate molarity corresponding to 50% reduction in the initial
sample signal (referred as avidity index) was calculated from the linear
regression equation of logarithmically transformed values of % signal
intensity relative to initial signal for each thiocyanate molar con-
centration (i.e., log ((signal/initial signal) × 100).

3. Results

3.1. Occurrence of natural tau-reactive antibodies in IVIG product
Flebogamma and plasma of old cognitively normal individuals versus AD
patients

To assess the characteristics of naturally occurring antibodies in the
plasma that are reactive to tau protein (nTau antibodies), we simulta-
neously performed isolation of new batch of nTau antibodies from the
IVIG product Flebogamma, the plasma of cognitively normal older
controls and AD patients. In this pilot study, we pooled plasma samples
from seven cognitively normal older individuals and four AD patients
that were established to have low, medium and high plasmatic antibody
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titers according to ELISA performed with the full-length tau and
155–421 aa tau fragment as antigens (data not shown). The antibodies
were purified as described previously (Hromadkova et al., 2015) with
newly prepared column. We isolated 8.3 mg of natural tau-reactive
antibodies from IVIG product Flebogamma (hereinafter referred to as
nTau-IVIG without the intent to generalize for other IVIG products),
3.8 mg of natural AD plasma tau-reactive antibodies (nTau-AD) and
5 mg of antibodies reactive to tau protein from cognitively normal older
subjects (nTau-Ctrl), estimated by BCA test. The isolation process was
assessed by ELISA in all fractions of isolation (Fig. 1) and purity of
isolated antibodies by SDS-PAGE electrophoresis (Fig. 2).

The isolated nTau-Ctrl and nTau-AD antibodies contained im-
purities or contaminants that represent> 50% of the total protein
content. Therefore, the portion of nTau-Ctrl and nTau-AD antibodies
was estimated to be approximately 0.4% of total protein amount from
the initial pooled sample (Fig. 2). The content of isolated nTau-IVIG
antibodies was calculated as 5% of total protein amount from the initial
Flebogamma product.

3.2. IgG subclass distribution in the isolated fraction of natural tau-reactive
plasma antibodies

We performed an isotyping of IgG subclasses in the isolated tau-
reactive antibodies from all three plasma pools. The pools of plasma
samples contained the usual distribution of IgG subclasses (data not
shown) (Listì et al., 2006; Lock and Unsworth, 2003). We found that the
IgG1 and IgG2 subclasses were the most abundant in all three samples
of isolated antibodies. The isolated nTau-Ctrl antibodies were threefold
enriched with IgG4 subclass in comparison to nTau-AD antibodies and
twofold as compared to the nTau-IVIG antibodies. In agreement with
our previous finding (Hromadkova et al., 2015), the newly isolated
nTau-IVIG antibodies showed enrichment of IgG3 subclass in compar-
ison to the Flebogamma IVIG product. Interestingly, the IgG3 subclass
was present in the nTau-AD and nTau-Ctrl antibodies only in trace
amount (Fig. 3). We do not attribute the differences in the distribution
of IgG subclasses to gender influence because the plasma pool of con-
trols was prepared by mixing samples from four men, and three women
and the plasma pool of AD patients contained samples from two men
and two women.

3.3. Different reactivity of isolated plasma nTau antibodies against various
recombinant forms of tau protein

Firstly, we evaluated the reactivity of isolated plasma antibodies
against various recombinant forms of tau protein. All four tau forms
were also detected and evaluated using monoclonal and polyclonal
anti-tau antibodies with known epitopes. These antibodies revealed and
confirmed the upward electrophoretic shift of phosphorylated tau
proteins on the gel in comparison with their non-phosphorylated forms
(Fig. 4a–c). After optimization of western blot experiments and due to
the presence of other proteins than IgG in the isolated nTau-AD and
nTau-Ctrl fractions and anti-idiotypic antibodies in the nTau-IVIG

Fig. 1. Isolation efficiency of natural anti-tau antibodies from IVIG, plasma pools of AD
patients and cognitively normal older controls estimated by ELISA. Serial dilution of each
fraction was probed against His-tagged tau 1–441 aa antigen. The detected signal is ex-
pressed as absorbance at 450 nm wavelength depending on the logarithm of samples
dilution. His-tagged tau 1–441 aa antigen was coated onto a well at a concentration of
0.1 μg/50 μl in 0.1 M bicarbonate buffer pH 9.5. Initial plasma pool fraction, flow-
through fraction (IgG fraction passed through the column with covalently bound His-
tagged tau 1–441 aa antigen with no retention), elution fraction containing isolated Tau
-reactive antibodies (antibodies fraction retained in the column with covalently bound
tau ligand) are illustrated.

Fig. 2. Verification of purity of isolated antibodies. SDS-PAGE electrophoresis (4–15%
Mini-PROTEAN® TGX™ Precast Protein Gels (BioeRad)) of elution fractions containing
natural Tau -reactive antibodies from IVIG Flebogamma product (nTau -IVIG) (1-non-
reducing, 1′-reducing conditions), plasma of older cognitively normal controls (nTau
-Ctrl) (2, 2′) and AD patients (nTau -AD) (3, 3′) in PBS pH 7.2 followed by Coomassie
staining Bio-Safe™ Coomassie Stain (Bio-Rad). Arrowed bands represent 150 kDa band of
IgG monomers. Bands below 150 kDa are supposed to be IgG fragments or contaminants.

Fig. 3. The distribution of IgG subclasses in isolated anti-
bodies. Isolated antibodies against tau protein from the
intravenous immunoglobulin product Flebogamma (a), the
pool of plasma samples from seven cognitively normal
older subjects (b) and four AD patients (c). Percentages of
IgG subclasses were determined by ELISA. The distributions
of IgG1 and IgG2 were comparable in all three isolated
antibodies with a small deviation in nTau -IVIG. The IgG3
subclass was barely at a detectable level in nTau -AD and
nTau -Ctrl in comparison to nTau -IVIG. The isolated anti-
bodies from older individuals showed enrichment of IgG4
subclass threefold in comparison to antibodies from AD
patients and twofold as compared to IVIG.
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fraction, all three isolated antibodies were used at the same initial di-
lution without previous adjustment to the same concentration. All
isolated antibodies fractions applied were less reactive to phosphory-
lated tau protein forms, but aggregates of tau with higher molecular
weight (HMW) were stained (Fig. 4). Recombinant tau protein, both
full-length and fragment form aggregates which are partly disintegrated
under reducing conditions (Fig. 4). The nTau-IVIG and nTau-Ctrl anti-
bodies reacted with both tau 1–441 aa and tau 155–421 aa and they
also produced a strong signal with HMW aggregates. In contrast, nTau-
AD antibodies stained only non-phosphorylated tau 1–441 aa both in
the monomeric and aggregated form (Fig. 4g).

We also assessed the specificity of isolated nTau antibodies for
various forms of tau by ELISA. The results confirmed the findings from
Western blot where we observed preference of nTau-AD antibodies
towards the tau 1–441 aa as compared to the antibodies isolated from
older controls and IVIG (Flebogamma) (Fig. 5).

We evaluated the strength of binding of each isolated nTau antibody
with both the full-length (tau 1–441 aa) and truncated (tau 155–421 aa)
forms of tau protein by measuring the Avidity index using Dot blot
technique. The avidity of nTau-AD antibodies against the His-tagged

Fig. 4. Reactivity of isolated nTau antibodies against recombinant forms of tau protein on Western blot. The reactivity of isolated nTau antibodies were verified by Western blot against
various recombinant His-tagged forms of tau protein in non-phosphorylated (np-) and phosphorylated form (p-) under non-reducing and reducing (−mercaptoethanol) conditions: np-tau
1–441 aa (1), p-tau 1–441 aa (2), np-tau 155–421 aa (3), p-tau 155–421 aa (4), np-tau 1–441 aa - mercaptoethanol (6), p-tau 1–441 aa - mercaptoethanol (7), np-tau 155–421 aa -
mercaptoethanol (8) and p-tau 155–421 aa - mercaptoethanol (9). The nitrocellulose membrane was reprobed with monoclonal anti-tau antibodies: Tau 5 (210–241 aa), Tau 46.1
(epitope 428–441 aa) and a polyclonal rabbit anti-tau antibody raised against the tau 1–441 His-Tag antigen (171–194 aa).

Fig. 5. Reactivity of isolated nTau antibodies against recombinant forms of tau protein in
ELISA assay. The specificity of binding of naturally occurring antibodies isolated from
IVIG Flebogamma product (nTau -IVIG), plasma of older cognitively normal controls
(nTau-Ctrl) and AD patients (nTau -AD) was assessed by ELISA assay against various
forms of tau protein. 0.1 μg of tau protein (various forms) were detected with 1:250 of
nTau -Ctrl or nTau -AD and 1:500 of nTau -IVIG antibodies.
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tau 1–441 aa form was found to be low (0.29 M of NH4SCN) in contrast
to tau fragment 155–421 aa (1.50 M of NH4SCN). The nTau-Ctrl and
nTau-IVIG antibodies showed comparable high avidity against both
forms of tau protein (Table 2). The characteristics of isolated human
plasma tau-reactive antibodies are summarized in Table 2.

3.4. Reactivity of plasma nTau antibodies against tau protein forms present
in brain tissue

Reactivity of all the isolated plasma nTau antibodies was also ver-
ified against native proteins present in the homogenates of human
hippocampi obtained from two AD patients and one control subject.
The samples were prepared as PBS-soluble protein fractions and SDS-
soluble protein fractions from brain homogenate. By Western blot, the
samples were probed with well-known monoclonal and polyclonal an-
tibodies specific for different epitopes/forms of tau protein that were
found to bind monomeric isoforms of tau in control brain and patho-
logical forms in AD brains (Fig. 6g, h, i, j). According to the reactivity of
pSer396 and pThr231 specific antibodies to homogenates of brain tissue
from two AD patients (Fig. 6i, h), these two patients were at different
stages of the disease. We observed a slight reactivity of pThr231 specific
antibody towards recombinant proteins. The antibody cross-reacts with
normal native tau but not with the non-phosphorylated recombinant
tau protein, thus this reactivity could be attributed to some non-specific
signal.

All isolated nTau antibodies reacted similarly with brain-derived
proteins from tissue homogenates with a preference towards higher
molecular weight (HMW) proteins (Fig. 6a, c and e). We conjugated all
three isolated fractions of human antibodies to biotin to avoid added
signal from secondary anti-human IgG antibody alone (Fig. 6b, d and f),
which we have observed (data not shown). This resulted in an at-
tenuation of the signal against HMW proteins in the isolated antibodies
from IVIG Flebogamma and AD plasma and an increased binding of
lower molecular forms, especially in the case of nTau-AD antibodies.
The biotinylated nTau-AD antibodies showed similar staining pattern as
Tau 5 antibody and the rabbit polyclonal anti-tau antibody, which was
raised against the recombinant His-tagged tau 1–441 aa (Fig. 6d, g and
j). However, the biotinylated nTau-Ctrl antibodies retained the re-
activity against the HMW forms and also recognized the lower mole-
cular weight forms of tau protein. The detection of HMW proteins with
nTau-Ctrl antibodies was comparable to monoclonal antibody AT180

which has specificity to phospho-Thr231 of tau molecule (Fig. 6f and
h).

4. Discussion

Recent studies reported the physiological release of endogenous tau
protein from neurons into the interstitial fluid (ISF) which is mediated
by neuronal activity (Pooler et al., 2013; Yamada et al., 2014). The
secreted or passively released tau could be washed out of ISF through
“glymphatic” pathway into the blood (Iliff et al., 2014, 2012) where it
can be subjected to fast degradation by proteases and targeted by nat-
ural antibodies. As described previously (Bartos et al., 2012;
Hromadkova et al., 2015; Klaver et al., 2013; Rosenmann et al., 2006;
Smith et al., 2014, 2013), plasma/serum of cognitively healthy in-
dividuals and AD patients contains tau-reactive antibodies and their
levels are comparable between these groups. To our knowledge, the
isolation of tau-reactive antibodies from human plasma samples with
subsequent characterization has not been reported previously. We
aimed to isolate and characterize the reactivity profile of these systemic
naturally occurring antibodies not only by using recombinant tau
forms, but also with native forms present in homogenates of brain
tissue. We have been able to isolate 8.3 mg of nTau-IVIG antibodies that
constitute 5% of the total amount of IgG in initial Flebogamma IVIG
product. In contrast, the isolation yield was approximately 0.4% for
nTau-AD and nTau-Ctrl antibodies from initial plasma pools when the
same isolation procedure and the same 4 mg of full-length tau protein
1–441 aa bound column were used. The reported high content of spe-
cific tau-reactive antibodies in the IVIG product Flebogamma is un-
likely. We suppose that anti-idiotypic antibodies (Ab2α) (López-
Requena et al., 2014) that recognize an idiotype but not a paratope of
antigen-specific antibodies, could be isolated as a complex with tau-
reactive (antigen-specific) antibodies. Eventually, this complex is dis-
sociated during the acidic elution of antigen-specific antibodies from
the column. This assumption is supported by the Western blot with
biotinylated nTau-IVIG antibodies in which we observed attenuation of
the signal compared to result with non-biotinylated antibodies. In this
experimental setup supposedly only antibodies that recognize tau pro-
tein can be visualized by streptavidin conjugated to HRP. The fractions
of isolated antibodies from pooled plasma samples contained im-
purities. Although the purification of IgG through protein A or G resin
would have given purer fractions, we used the unpurified isolated nTau
antibodies for our experiments due to the varying affinity of protein A
or G towards different IgG subclasses (Page and Thorpe, 2002), which
could skew the consequent IgG isotyping. However, this pilot study
should be repeated with the inclusion of more individuals to better
reflect the distribution of antibodies in the population of AD patients
and age-matched controls.

Interestingly, we have found substantial reactivity of nTau anti-
bodies to a fragment of tau protein 155–421 aa. The strength of binding
was confirmed by avidity measurements where we observed higher
avidity index of these antibodies (~1.6 M) for tau 155–421 aa fragment
as compared to the full-length form. This antigenicity was partly
abolished by phosphorylation of this fragment pointing out to epitopes
within MTBR domain or related to truncation of tau protein rather than
phospho-specificity. This finding corresponds with our previous study
(Hromadkova et al., 2015) and study of Rosenmann's group where they
observed no significant differences in reactivity of circulating serum
IgG against full-length tau and pathologically phosphorylated tau
peptide (Rosenmann et al., 2006). However, the isolation procedure
was carried out against non-phosphorylated full-length form of tau
protein, thus phospho-specific antibodies may not be sorted out. In
recent paper, Loeffler et al. showed that Flebogamma IVIG product
contains antibodies specific to short peptides of tau protein with
phosphorylated sites Ser199 and Ser202 (Loeffler et al., 2015). Addi-
tional epitope mapping of these antibodies would provide a better un-
derstanding of their reactivity.

Table 2
The quantitative data of isolated antibodies reactivity with different tau antigens estab-
lished by ELISA and Dot-blot immunoassay.

Isolated natural anti-Tau antibodies from
human plasma against

Tau 1–441
His-tagged

Tau 155–421
His-tagged

Reactivity
ELISA: dilution at
OD 0.5a

nTau -IVIG
Abs

1:195 1:173

nTau -AD
Abs

1:756 1:595

nTau -Ctrl
Abs

1:67 N/A

Avidity indexb

Dot-blots
nTau -IVIG
Abs

1.54 1.78

nTau -AD
Abs

0.29 1.50

nTau -Ctrl
Abs

1.27 1.56

a The results are expressed as a dilution of antibodies reacting with antigen (0.1 μg/
well) to reach OD 0.5 at 450 nm.

b Avidity index is expressed as molarity of ammonium thiocyanate (M) that causes the
decrease of initial sample signal (in the absence of thiocyanate) on the value of 50%. N/
A = not applicable.
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To obtain insight into the reactivity of these isolated antibodies with
native proteins, we probed brain homogenates of histopathologically
diagnosed AD patients and controls with nTau antibodies and other
selected polyclonal and monoclonal anti-tau antibodies by Western

blot. The most interesting result was the reactivity of nTau antibodies to
higher molecular weight forms of tau protein present in the PBS-soluble
protein fractions of brain homogenates that were also recognized by the
pThr231-tau specific antibody. Its reactivity is described to occur early

Fig. 6. Reactivity of isolated nTau antibodies against native proteins from brain homogenates. Western blot analysis of human brain homogenates (25 μg of total protein/lane) was
carried out using naturally occurring Tau -reactive antibodies isolated from IVIG (nTau -IVIG Abs) product Flebogamma (a), nTau -IVIG Abs conjugated to biotin (b), naturally occurring
Tau -reactive antibodies from plasma of AD patients (nTau -AD Abs) (c), nTau -AD Abs conjugated to biotin (d), naturally occurring Tau -reactive antibodies from plasma of older
cognitively normal subjects (nTau -Ctrl Abs) (e), nTau -Ctrl Abs conjugated to biotin (f) and rabbit polyclonal anti-tau antibody (g), monoclonal phospho-PHF-tau (pThr231) antibody
(AT180, early stage of AD) (h), polyclonal pSer396-tau antibody (late stage of AD) (i) and monoclonal Tau 5 antibody (j). Left hemisphere hippocampi of one control brain and two
histopathologically proven AD patient's brain were homogenized in PBS buffer (C- control brains and AD- AD brains) or PBS buffer containing 2% SDS (C'- control brains and AD'- AD
brains), respectively. A recombinant fragment of Tau 155–421 with the theoretical molecular weight of 30 kDa (2 μg/well) (PC2) and recombinant full-length form of Tau protein
(1–441 aa) appearing on the gel around 75 kDa (PC1) were included as positive controls. The exposure was kept constant for all plasma antibodies and membranes.
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during the formation of NFT in the brain, in the structures that are not
yet positive for thiazine red (Hawkins et al., 2013; Luna-Muñoz et al.,
2007). Moreover, the latest studies have revealed that aggregated oli-
gomeric forms of tau protein may be the most neurotoxic species (Ren
and Sahara, 2013; Sahara and Avila, 2014). They can spread tau pa-
thology and are responsible for the cognitive impairment in tauopathy
mouse models which can be alleviated by passive immunotherapy
specifically targeting tau oligomers (Castillo-Carranza et al., 2014;
Yanamandra et al., 2015). However, to rule out both the possible ad-
ditional signal contributed by the endogenous IgG(s) present in the
brain homogenates (Diamond et al., 2013, 2009) and their appearance
in the similar molecular weight range on the membrane; the nTau-Abs
were biotinylated. The conjugation resulted in different reactivity of
nTau-AD and nTau-IVIG antibodies in comparison to antibodies
without biotinylation and pointed to the presence of IgG in the homo-
genates and occurrence of anti-idiotype antibodies in the isolated
fraction of antibodies. However, the conjugation of biotin could also
interfere with the reactivity of antibody by binding to the lysine re-
sidues present on the Fc fragment and in the hinge region of IgG mo-
lecules limiting the flexibility of two antigen binding sites (Michaelsen
et al., 1977). This effect could be more pronounced at nTau-IVIG an-
tibodies with the content of IgG3 subclass, where the Fc fragment can
contribute to their ability to bind antigen (Dillon et al., 2016). On the
contrary, the nTau-Ctrl antibodies maintained the reactivity towards
HMW forms of tau even after the conjugation (Fig. 6f) possibly also due
to the limited lysine content in the hinge region of IgG4 in comparison
to other subclasses (Davies and Sutton, 2015).

4.1. Conclusions

Our findings of different reactivity profile of plasma antibodies from
cognitively normal individuals and AD patients to different forms of tau
protein with the hypothesis of peripheral sink in mind may indicate the
participation of adaptive immune system in clearance of the aggregated
and truncated tau structures from the brain as was suggested by
(Castillo-Carranza et al., 2014) and others (d'Abramo et al., 2013;
Yanamandra et al., 2015). This explanation would warrant im-
munotherapy as a promising approach for the treatment of AD via
antibody-associated enhanced clearance of toxic tau aggregates, which
is insufficient in AD patients. Although, from our experiments we
cannot state whether these antibodies are functioning as opsonization
factors for phagocytosis by macrophages or can directly participate in
the degradation of formed aggregates. More experiments are also
needed to evaluate and characterize these HMW forms.
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Kinase-loaded magnetic beads for sequential
in vitro phosphorylation of peptides and proteins†
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Zuzana Bilkova a and Marcela Slovakova *a

Post-translational modifications, including phosphorylation, greatly impact the physiological function of

proteins, especially those that are natively unfolded and implicated in many neurodegenerative diseases.

However, structural and functional studies of such proteins require fully defined phosphorylation, including

those that are not physiological. Thus, the kinases ERK2 and GSK-3β were immobilized to various superpara-

magnetic beads with carboxylic, aldehyde, Ni2+, or Co3+ functional groups, with a view to efficiently phos-

phorylate peptides and proteins in vitro. Full phosphorylation of specific synthetic peptides confirmed that

beads were successfully loaded with kinases. Remarkably, enzymes covalently immobilized on carboxylated

SeraMag beads remained active upon reuse, with residual activity after 10 uses 99.5 ± 0.34% for GSK-3β and

36.2 ± 2.01% for ERK2. The beads were also used to sequentially phosphorylate recombinant tau, which

in vivo is a biomarker of Alzheimer’s disease. Thus, a system consisting of two fully active kinases immobi-

lized to magnetic beads is demonstrated for the first time. In comparison to soluble enzymes, the beads are

easier to handle, reusable, and thus low-cost. Importantly, these beads are also convenient to remove from

reactions to minimize contamination of phosphorylated products or to exchange with other kinases.

Introduction

The advantages of immobilized enzymes in comparison to
soluble forms cannot be overstated, in light of the massive
expansion in the use of the latter in biotechnology. Indeed,
immobilized enzymes are now used as recoverable, stable, and
specific catalysts in basic biochemical and biotechnological
research,1–4 as well as pharmaceutics.5 For example, immobi-
lized enzymes are employed to modify or decorate target sub-
strates under controlled conditions to produce bioactive mole-
cules with the desired structure and function.6 The two-phase
structure of such systems also simulates enzyme function

in vivo, enables studies of the effects of environmental con-
ditions,7,8 and facilitates substrate and inhibitor profiling
in vitro.9,10 Immobilized enzymes can also be separated easily
from reactions if necessary, such as in cases where inhibition
of enzymatic activity is required prior to subsequent appli-
cations. For instance, immobilized kinases can, in theory, be
used to phosphorylate recombinant proteins or peptides
in vitro in a controlled manner, and then purified away to
generate phosphorylated products with minimal enzyme con-
tamination compared with those obtained with soluble
kinases, which are preferentially used today.11,12 An enzyme
immobilized to magnetic beads removed by magnetic separ-
ation can be gently and repeatedly used, which improves the
sample handling and economics of such processes.13,14 We
note that phosphorylation is a reversible post-translational
modification that significantly impacts the biological activity
of many proteins, and is a crucial event in numerous signal-
ling pathways.15 Therefore, phosphorylation of recombinant
proteins may be required to uncover unique biological pro-
perties or even achieve function.

In humans, a repertoire of kinases (i.e., the kinome),
including the proline-directed kinases GSK-3β (glycogen
synthase kinase 3β) and ERK2,16,17 modulates cellular signal-
ling and many regulatory pathways.18,19 ERK2 is a cytoplasmic
Ser/Thr kinase ubiquitously expressed, especially in the central
nervous system.20 Indeed, a growing body of evidence indicates
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that ERK2 phosphorylates clinically relevant biomarkers.21,22

Similarly, GSK-3β is a Ser/Thr kinase expressed in all mamma-
lian tissues, and abundantly so in the developing brain.23

GSK-3β kinase strongly prefers pre-phosphorylated substrates
with motif SXXXpS, where S is a serine, X is any residue, and
pS is a phosphorylated serine.24,25 Of note, both kinases facili-
tate the production of various phosphorylated forms of tau, a
potential biomarker of Alzheimer’s disease, as reviewed in
ref. 26. Moreover, tau pre-phosphorylated by ERK2 is a more
favourable substrate for subsequent phosphorylation by
GSK-3β.27,28

We now describe the selection of an optimal strategy to
immobilize ERK2 and GSK-3β on magnetic beads to generate
reusable biocatalysts of protein phosphorylation. To our best
knowledge, only affinity immobilization of recombinant GST-
tagged GSK-3β on GSH-functionalized magnetic beads has
been attempted to date.10 On the other hand, we report for the
first time that covalent immobilization of ERK2 and GSK-3β
produces highly reusable, stable kinases. These immobilized
systems were tested against recombinant tau, a clinically rele-
vant model protein, to obtain sequentially phosphorylated pro-
ducts of high purity, as assessed by western blotting and mass
spectrometry.

Experimental section
Reagents and chemicals

Recombinant, active, His-tagged rabbit GSK-3β (19 841
U mg−1) was purchased from Sigma-Aldrich (St Louis, MO,
USA). Active rabbit muscle GSK-3β (5 000 000 U mg−1), isolated
from E. coli overexpressing it, was obtained from New England
Biolabs (Ipswich, MA, USA). Recombinant, active human
ERK2/MAPK1 (401 000 U mg−1), hereafter referred to as ERK2,
was produced by Biaffin GmbH & Co KG (Kassel, Germany).
Nonporous superparamagnetic SiMAG-IDA and SiMAG-IDA/
Ni2+ particles (1 µm diameter, number of functional groups
unknown) were purchased from Chemicell GmbH (Berlin,
Germany), while superparamagnetic aldehyde-modified
BcMag beads (1 µm diameter, ∼210 µmol aldehyde per g, ∼40
EMU g−1) were obtained from BioClone Inc. (San Diego, CA,
USA). Carboxylated SeraMag SpeedBeads (superparamagnetic,
0.816 µm diameter, ∼507 µmol carboxylate per g, ∼25
EMU g−1) were procured from Thermo Scientific (Fremont, CA,
USA). Magnetic suspension agitations and separations were
performed using a Grant Bio PTR-30 rotator (Wolf-
Laboratories, Pocklington, York, UK) and a Dynal MPC-S mag-
netic separator (Biotech, CZ). Low molecular-weight substrates,
namely phosphopeptide CREB (1796.0 Da, sequence
KRREILSRRPpSYR), ε-eIF2B (1991.0 Da, sequence
RRRAAEELDSRAGpSPQL), and synthetic TH 24-33 (1085.6 Da,
sequence KQAEAVTSPR) were obtained from New England
Biolabs (Ipswich, MA, USA), Enzo Life Sciences (Farmingdale,
NY, USA), and Calbiochem (San Diego, CA, USA), respectively.
Tau 46.1, an antibody to tau (1 : 60 000) was a generous gift
from Dr F. Garcia-Sierra (Mexico), while AT180, an antibody to

tau phosphorylated at T231 (1 : 2000) was obtained from
Thermo Fisher Scientific (Waltham, MA, USA). Antibodies to
tau phosphorylated at S356 (1 : 2000) and S396 (1 : 2000) were
obtained from Assay Biotech (Sunnyvale, CA, USA) and
GenScript (Piscataway, NJ, USA). Anti-mouse or anti-rabbit IgG
conjugated to horseradish peroxidase (1 : 15 000) were
obtained from Sigma-Aldrich.

Immobilization of kinases to magnetic beads

Oriented immobilization of His-tagged GSK-3β. His-tagged
GSK-3β was immobilized by affinity to nonporous magnetic
SiMAG-IDA particles decorated with Ni2+ and Co3+. The
enzyme was immobilized on SiMAG-IDA/Ni2+ beads according
to ref. 29, with slight modification. Briefly, 50 U (52.1 pmol) of
the enzyme was mixed for 30 min at room temperature with
0.5 mg washed beads in 0.1 M HEPES buffer pH 8.0 and 0.5 M
NaCl. The beads were then washed three times in the same
buffer. Similarly, the enzyme was bound to magnetic
SiMAG-IDA/Co3+ beads according to ref. 30 and 31. In brief,
0.5 mg SiMAG-IDA particles were washed with ultrapure water
and charged for 3 min at room temperature with 1 mL 0.2 M
CoCl2. After washing with ultrapure water and 0.1 M phosphate
buffer pH 7, the beads were incubated for 90 min at room
temperature with 1 mL 0.05% hydrogen peroxide prepared in
the same buffer, washed with buffer, incubated overnight at
4 °C with 50 U (52.1 pmol) His-tagged GSK-3β in buffer, and
washed another three times with buffer.

Non-oriented covalent immobilization of GSK-3β and ERK2.
Untagged recombinant kinases were immobilized via free
amine groups to aldehyde-modified BcMag beads and carboxy-
lated SeraMag particles. Briefly, 0.6 mg BcMag-aldehyde beads
were washed with 0.1 M phosphate buffer pH 7, and incubated
overnight at room temperature with 5000 U (21.3 pmol)
GSK-3β in the same buffer, but supplemented with 24 mM
NaCNBH3 to reduce Schiff bases32 formed between terminal
autoreactive aldehydes in beads and free amines in proteins.
The beads were then washed five times with buffer. On the
other hand, EDC/sulfo-NHS chemistry33 was applied to co-
valently immobilize kinases onto carboxylated SeraMag par-
ticles. In brief, 0.6 mg beads were washed in 0.05 M MES
buffer pH 6, activated for 30 min at room temperature with
120 mM EDC and 20 mM sulfo-NHS in the same buffer, and
washed another time with buffer. The beads were then incu-
bated overnight at 4 °C with 5000 U (21.3 pmol) GSK-3β or 822
U (47.9 pmol) ERK2 in buffer, washed three times with 0.05 M
MES buffer pH 6, and then three times with 0.04 M HEPES
buffer pH 7.2.

Phosphorylation of low-molecular weight substrates

Phosphorylation of substrates with SXXXpS motif by
GSK-3β. Soluble or immobilized GSK-3β was assayed for 5 or
6 h at 30 °C against 1 µg of the low-molecular weight phospho-
peptides CREB and ε-eIF2B in 50 µL (for soluble kinase) or
200 µL (for 0.2 mg beads) of Reaction Buffer I (NEBuffer™ for
Protein Kinases purchased from New England BioLabs) or in-
house Reaction Buffer II, which consists of 0.04 M HEPES pH
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7.2, 5 mM MgCl2, 2 mM DTT, and 5 mM EGTA. All reactions
were supplemented with 1 mM ATP (New England Biolabs).
Similarly, 1 µg of low molecular-weight substrates in 50 µL was
phosphorylated with the supernatant collected after immobil-
ization to investigate residual unbound GSK-3β.
Phosphorylation was assessed by mass spectrometry, and reac-
tions without GSK-3β were used as negative control. To evalu-
ate stability, SeraMag loaded with GSK-3β was assayed for 6 h
at 30 °C against 1 µg of ε-eIF2B in Reaction Buffer I and 1 mM
ATP, washed three times with 40 mM HEPES buffer pH 7.2,
and stored at 4 °C until reused in a subsequent reaction.

Phosphorylation of low-molecular weight substrates by
ERK2. ERK2 was assayed according to ref. 34, with slight modi-
fication. Briefly, the enzyme, soluble or immobilized to
SeraMag beads, was incubated for 6 h at 30 °C with 1 µg TH
24-33 in 50 µL (for soluble kinase) or 200 µL (for 0.2 mg
beads) of Reaction Buffer I or II supplemented with 1 mM ATP.
Supernatants collected after immobilization were also assayed
against 1 µg TH 24-33 in 50 µL Reaction Buffer I to investigate
residual unbound ERK2. In all cases, phosphorylation was
examined by mass spectrometry, and substrates incubated
without ERK2 or reacted with heat-inactivated ERK2 were used
as negative control.

Operational stability of kinase-loaded SeraMag beads

To characterize operational stability, SeraMag beads loaded
with ERK2 or GSK-3β were assayed twice daily, 12 h apart, over
five days. In brief, 0.2 mg enzyme-loaded was incubated at
30 °C with 1 µg of the corresponding low molecular-weight
substrate in Reaction Buffer II with 1 mM ATP. Beads were
washed three times between assays with 40 mM HEPES buffer
pH 7.2.

Sequential phosphorylation of recombinant tau

SeraMag beads (0.4 mg) loaded with ERK2 were washed five
times with 40 mM HEPES buffer pH 7.2, and reacted for 20 h
at 30 °C with 5 µg recombinant tau isoform 2N4R (amino
acids 1–441, rPeptide, Bogart, GA, USA) in 0.2 mL Reaction
Buffer II and 1 mM ATP. Subsequently, the phosphorylated
product was incubated for 20 h at 30 °C in 0.2 mL Reaction
Buffer II, 1 mM ATP, and 0.4 mg SeraMag beads loaded with
GSK-3β and pre-washed in 40 mM HEPES buffer pH 7.2. The
final product was analysed by western blotting35 and by mass
spectrometry.

Preparation of tau phosphopeptides

Digestion of phosphorylated tau. Recombinant tau phos-
phorylated in Reaction Buffer I with 1 mM ATP was incubated
for 60 min at 37 °C with 25 mM DTT in 50 mM NH4HCO3, and
reacted for 30 min at room temperature in the dark with
50 mM iodoacetamide in 50 mM NH4HCO3. The reaction was
quenched by adding DTT in 50 mM NH4HCO3 to a final con-
centration of 50 mM, and incubating for 15 min at room temp-
erature. Finally, the mixture was digested overnight at 37 °C
with 1 : 50 w : w sequencing-grade trypsin (Promega, Madison,

WI, USA) in 50 mM NH4HCO3. Digestion was terminated by
adding 5% trifluoroacetic acid to pH 2–3.

Enrichment of using TiO2. Peptides from phosphorylated
tau were enriched in batch mode using 1 mg TiO2 particles
(10 μm, Titanspehere™ TiO Bulk Material, GL Sciences,
Japan), which was equilibrated with 200 µL of 80% aceto-
nitrile/0.1% trifluoroacetic acid, and then with 200 µL of 80%
acetonitrile/5% trifluoroacetic acid/1 M lactic acid digested
phosphorylated tau was then suspended in the latter, and
mixed with particles for 1 h. Subsequently, particles were
washed twice with 80% acetonitrile/5% trifluoroacetic acid/
1 M lactic acid, twice with 80% acetonitrile/0.1% trifluoro-
acetic acid, and once with 20% acetonitrile/0.5% trifluoroace-
tic acid. Phosphorylated peptides were then eluted with 1%
ammonia over 15 min, acidified with 5% trifluoroacetic acid to
pH 2–3, and stored until analysis.

Mass spectrometry

Samples were prepared according to standard protocols with
slight modification, and analysed on MALDI-LTQ Orbitrap XL
(Thermo Fisher Scientific, Waltham, MA, USA), Autoflex II
MALDI-TOF/TOF (Bruker Daltonics, Billerica, MA, USA), or
4800 MALDI/TOF/TOF Analyzer (Applied Biosystems/MDS
SCIEX, Foster City, CA, USA).

Desalting. For analysis on MALDI-LTQ Orbitrap XL,
reversed-phase microcolumns for desalting and concentration
were prepared in-house using GELoader tips (Eppendorf,
Hamburg, Germany) and POROS Oligo R3 (Life Technologies,
Carlsbad, CA, USA) as previously described.36 Briefly, peptides
were loaded using gentle air pressure to pre-washed and pre-
wetted microcolumns, which were then washed with 15 µl
0.1% trifluoroacetic acid. Subsequently, peptides were eluted
directly onto the MALDI target with 0.75 µl of 10 mg mL−1

DHB matrix, allowed to dry, and analysed. For analysis on
4800 MALDI/TOF/TOF Analyzer, samples were also desalted
with the same microcolumns, but eluted into a vial using
10 μL 60% acetonitrile/0.1% trifluoroacetic acid, mixed with
an equal volume of 5 mg mL−1 DHB matrix, spotted onto the
MALDI sample plate, allowed to dry, and analysed. For analysis
on Autoflex II MALDI-TOF/TOF, samples were desalted using
ZipTip microtips from Millipore (Bedford, MA, USA). Eluates
were mixed with an equal volume of 20 mg mL−1 DHB matrix,
spotted onto the MALDI sample plate, left to dry, and ana-
lysed. For all samples, the DHB matrix was prepared in 50%
acetonitrile/0.1% trifluoroacetic acid/1% H3PO4 v/v/v.

MALDI-LTQ Orbitrap mass spectrometry after simple chrom-
atography. To detect a higher number of phosphorylated pep-
tides, samples of digested tau were separated prior to mass
spectrometry using a home-made RP microcolumn (length
25 mm, internal diameter 250 µm) packed with 2.7 µm
Ascentis® Express Peptide ES-C18 particles (Sigma-Aldrich,
St Louis, MO, USA). These microcolumns were fitted in an FEP
tubing (length 40 mm, outer diameter 1/16″, internal diameter
0.25 mm) and terminated with a short piece of fused silica
capillary (360 µm outer diameter, 50 µm inner diameter) in
one end, as previously described.37 A 25 µl gas-tight micro-
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syringe (Hamilton, Reno, NV, USA) was used to load solvents
and samples to a column that had been washed with 20 µL
80% acetonitrile/0.1% trifluoroacetic acid and equilibrated
with 20 µl 2% acetonitrile/0.1% trifluoroacetic acid v/v. After
loading, peptides were eluted by a non-linear gradient of aceto-
nitrile created by aspiration of 4 µl each of a series of solvents
containing 0.1% trifluoroacetic acid and a decreasing concen-
tration of acetonitrile (32%, 26%, 20%, 14%, 8% and 2%) into
the syringe. Eluates were directly spotted onto 24 spots on the
MALDI sample plate and covered with 10 mg ml−1 DHB matrix
prepared as described, dried, and analysed on MALDI-LTQ
Orbitrap XL.

Data acquisition and evaluation. Prepared samples were ana-
lysed on MALDI-LTQ Orbitrap XL in positive mode with resolu-
tion 60 000 FWHM at m/z 400. Spectra were processed in
mMass, an open-source software (http://www.mmass.org), and
mapped using MS-Fit, a component of ProteinProspector
v5.18.1 (http://prospector.ucsf.edu/prospector/mshome.htm),
with mass tolerance 5 ppm. Microtubule-associated tau
isoform 2 (Pubmed Protein accession no. 6754638) was used
as reference, and results were manually validated by searching
for neutral losses of phosphoric acid(s), and by direct compari-
son of peptides from phosphorylated and unphosphorylated
tau.

Semi-quantitative evaluation of phosphorylation rate. For
each low-molecular weight substrate, the relative intensities of
unphosphorylated and phosphorylated forms were extracted
from mass spectra, summed, and set as 100%, to which the
proportion of unphosphorylated and phosphorylated forms
was normalized.38 Experiments were performed at least thrice,
and data are reported as mean ± SD. The phosphorylated and
unphosphorylated forms of CREB, a substrate of GSK-3β, have
m/z 1796.98 and 1876.94, respectively. For ε-eIF2B, another
GSK-3β substrate, these forms have m/z 1991.98 and 2071.94,
respectively. For TH 24-33, a substrate of ERK2, the unphos-
phorylated form has m/z 1086.59, while the phosphorylated
form as m/z 1166.56. The analysis of variance (ANOVA) was per-
formed to determine operational and storage stability of ERK2-
loaded and GSK-3β-loaded magnetic SeraMag beads expressed
as residual activity (%). The statistical analysis was performed

in R software for statistical computing,39 version 3.1.1. The sig-
nificance level was set at <0.05.

Results and discussion
Kinase immobilization and activity against peptide substrates

Immobilized enzymes have been investigated with consider-
able interest due to several advantages over soluble forms or
alternative technologies. Such advantages include reusability,
higher stability, low cost, easy separation by magnet and high
final product purity, although these also depend on the type of
solid phase used, the enzyme, and the immobilization strat-
egy.40 To obtain functionally active magnetic beads that phos-
phorylate peptides and proteins with all of these advantages,
the proline-directed kinases ERK2 and GSK-3β were immobi-
lized to various superparamagnetic particles. Immobilization
was achieved either by affinity to beads decorated with Ni2+ or
Co3+, or by covalent bonding of amine groups in proteins to
beads functionalized with carboxylic or aldehyde groups.

Kinase-specific low molecular-weight substrates were used
to test activity following immobilization. In particular, phos-
phopeptides corresponding to CREB (KRREILSRRPpSYR,
1796.0 Da) and ε-eIF2B (RRRAAEELDSRAGpSPQL, 1991.0 Da)
were used to assay GSK-3β, which phosphorylates the first
serine in the phosphopeptide sequence SXXXpS. On the other
hand, a peptide corresponding to tyrosine hydroxylase amino
acids 24-33, sequence KQAEAVTSPR (1085.6 Da), was used to
test ERK2, which phosphorylates S31.

Since only pmols of kinase was immobilized per mg of
magnetic beads, conventional analytical methods such as
bicinchoninic acid assay are not suitable to determine the
amount of enzyme bound to magnetic beads. Thus, we empha-
size that phosphorylation rates calculated from mass spec-
trometry, as described in Experimental section, are mainly
semi-quantitative. Nevertheless, we found that nearly 100%
kinase activity was retained immediately following immobiliz-
ation, as summarized in Table 1. Notably, little or no residual
unbound kinase activity was detected in supernatants after
immobilization (Fig. 1, 2 and 4), suggesting that nearly all pro-

Table 1 Kinase activity immediately after immobilization to magnetic particles, as measured against specific low-molecular weight substrates

Recombinant
kinase

Magnetic
particles Enzyme bounda

Phosphorylation
conditions

Phosphorylation
rateb [%]

His-tagged GSK-3β, rabbit, 19 841
U mg−1 (Sigma-Aldrich)

SiMAG-IDA/Ni2+, number of functional groups
unknown (Chemicell GmbH)

20 U (20.84 pmol/
0.2 mg beads)

5 h, 30 °C ∼90.0

His-tagged GSK-3β, rabbit, 19 841
U mg−1 (Sigma-Aldrich)

SiMAG-IDA, number of functional groups
unknown (Chemicell GmbH), Co3+ modified

20 U (20.84 pmol/
0.2 mg beads)

5 h, 30 °C ∼90.0

GSK-3β, rabbit, 5 000 000 U mg−1

(New England Biolabs)
Aldehyde-modified BcMag beads, ∼210 µmol
aldehyde per g (BioClone Inc.)

1667 U (7.1 pmol/
0.2 mg beads)

5 h, 30 °C ∼95.0

GSK-3β, rabbit, 5 000 000 U mg−1

(New England Biolabs)
Carboxylate-modified SeraMag SpeedBeads,
∼507 µmol carboxyl per g (Thermo Scientific)

1667 U (7.1 pmol/
0.2 mg beads)

6 h, 30 °C 96.6 ± 2.79

ERK2/MAPK1, human, 401 000
U mg−1 (Biaffin GmbH & Co KG)

275 U (15.97 pmol/
0.2 mg beads)

6 h, 30 °C 91.9 ± 3.78

a Same as the amount of enzyme added to beads, since no kinase activity was detected in the supernatant collected after immobilization.
b Calculated according to ref. 38 as described in Experimental section, and is reported as mean ± SD.
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Fig. 1 Representative mass spectra of unphosphorylated and phosphorylated CREB, a specific low-molecular weight substrate of GSK-3β. (A)
Unphosphorylated CREB. CREB was then phosphorylated for 5 h at 30 °C in Reaction Buffer I containing (B) 0.2 mg SiMAG Ni2+ beads loaded with
GSK-3β, (C) supernatant collected after immobilization of GSK-3β to Ni2+ beads, (D) 0.2 mg enzyme-loaded Ni2+ beads stored for six days at 4 °C, (E)
soluble His-tagged GSK-3β, (F) 0.2 mg Co3+ beads loaded with GSK-3β, (G) supernatant collected after binding GSK-3β to Co3+ beads, and (H)
0.2 mg of enzyme-loaded Co3+ beads stored for six days at 4 °C. Unphosphorylated peptides are marked with green dashed circles, while phos-
phorylated forms are circled in red. All spectra were obtained on Autoflex II MALDI-TOF/TOF.

Fig. 2 Representative mass spectra of unphosphorylated and phosphorylated CREB and ε-ILF2, which are specific low-molecular weight substrates
of GSK-3β. CREB was phosphorylated for 5 h at 30 °C in Reaction Buffer I containing (A) soluble GSK-3β, (B) 0.2 mg BcMag beads loaded with
GSK-3β, (C) supernatant collected after loading GSK-3β to BcMag beads, and (D) 0.2 mg enzyme-loaded BcMag beads stored for six days at 4 °C. (E)
Unphosphorylated ε-elF2B. ε-elF2B was also phosphorylated for 6 h at 30 °C by (F) soluble GSK-3β, (G) 0.2 mg enzyme-loaded SeraMag beads, and
(H) supernatant collected after immobilizing GSK-3β to SeraMag beads. Unphosphorylated CREB and ε-elF2B are marked with green dashed circles,
while phosphorylated forms are circled in red. Spectra A–D were obtained on Autoflex II MALDI-TOF/TOF and E–H were obtained on MALDI-LTQ
Orbitrap XL.
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teins were successfully immobilized. We note that the amount
of functional groups on magnetic beads, when known, was
generally in excess compared to the amount of kinase loaded
(Table 1). Taken together, we conclude that kinases were suc-
cessfully immobilized with negligible loss of function, and
fully phosphorylate kinase-specific substrates under con-
ditions described in Experimental section.

Affinity immobilization of His-tagged kinases

To our knowledge, GSK-3β has been immobilized only via
affinity between a GST tag and glutathione-modified magnetic
beads.10 Indeed, since site-specific immobilization via a
protein tag would likely affect enzyme activity only minimally,
we first attempted to immobilize recombinant kinases with a
histidine anchor, which confers strong affinity to SiMAG-IDA
magnetic particles charged with bivalent metal ions such as
Ni2+ or Co2+.41 However, to avoid direct contact between the
kinase and an oxidizing agent and thereby increase stability,
beads charged with Co2+ were first oxidized to Co3+ prior to
kinase immobilization.31 Co3+ forms exchange-inert complexes
with bound proteins to generate a stable “irreversible”
linkage.30

Immobilized His-tagged GSK-3β was evaluated against a
CREB peptide, using mass spectra of unphosphorylated pep-
tides and peptides phosphorylated by soluble His-tagged
GSK-3β as controls (Fig. 1A+E). Complete phosphorylation of
the substrate was achieved from Ni2+ and Co2+ beads immedi-
ately after loading with His-tagged GSK-3β (Fig. 1B+F and
Table 1). Kinase activity was not detected or detected only in
trace amount (less than 5% of phosphorylated substrate) in
the supernatant recovered after binding, confirming that the
enzyme was captured quantitatively (Fig. 1C+G). However, Ni2+

beads loaded with enzyme lost kinase activity after six days at
4 °C (Fig. 1D), while His-tagged GSK-3β immobilized via Co3+

was stable (Fig. 1H).
Of note, site-specific immobilization via protein tags was

previously reported to enhance the stability and catalytic
activity of several enzymes.42,43 Thus, His-tagged ERK2 was
immobilized on SiMAG-IDA/Co3+ magnetic particles for the
first time, as described in ESI (Method S1†). However, immo-
bilization did not enhance phosphorylation of TH 24-33, a
specific substrate peptide, in comparison to soluble His-
tagged ERK2, even after reactions were extended to 16 h (ESI,
Method S1, Fig. S2A+B†).

Covalent immobilization

To the best of our knowledge, covalent immobilization of
GSK-3β and ERK2 to magnetic particles without loss of activity
has not been reported previously. Thus, we attempted to co-
valently attach these enzymes to two types of magnetic beads
via free primary amines, as described in Experimental section.
The enzymes were then assayed after immobilization against
specific low-molecular weight substrates as described. For
GSK-3β, unphosphorylated CREB and ε-eIF2B peptides were
used as control, along with peptides phosphorylated by
soluble GSK-3β (Fig. 2A+E+F).

GSK-3β was immobilized onto aldehyde-modified BcMag
beads by NaCNBH3 reduction of Schiff bases formed between
autoreactive aldehyde groups in beads and free amino groups
in the enzyme. Similarly, the enzyme was attached to carboxy-
late-modified SeraMag beads using one-step carbodiimide
chemistry. Kinase activity was minimal in the supernatant
obtained after immobilization to BcMag and SeraMag beads
(less than 3% of phosphorylated substrate), respectively,
suggesting that GSK-3β was completely captured (Fig. 2C+H).
On the other hand, 0.2 mg BcMag and SeraMag beads col-
lected immediately after GSK-3β immobilization fully phos-
phorylated CREB (Fig. 2B) and ε-eIF2B peptides, respectively
(Table 1). However, enzyme-loaded BcMag beads lost activity
after storage for six days at 4 °C (Fig. 2D), while enzyme-
loaded SeraMag beads remained fully active even after 42
days at 4 °C (Fig. 3). There was no statistically significant
change of activity of GSK-3β-loaded magnetic SeraMag beads
during the storage as determined by one-way ANOVA (p =
0.8021).

The excellent reusability of GSK-3β covalently bound to
carboxylate-modified SeraMag beads led us to test the same
immobilization strategy for ERK2. The activity of soluble and
SeraMag-immobilized tag-free ERK2 was confirmed by phos-
phorylation of the TH 24-33 peptide in Reaction Buffers I
(data not shown) and II (Fig. 4, Table 1).

Operational stability of kinase-loaded SeraMag beads

The operational stability of kinases immobilized to carboxy-
lated SeraMag beads was tested twice a day, 12 hours apart,
over five days. After 10 assays, the activity of immobilized
GSK-3β was essentially intact at 95.5 ± 0.34% of soluble
activity, as calculated from fractions of singly phosphory-
lated ε-eIF2B peptide with m/z 1991.98, and of the doubly

Fig. 3 Stability of SeraMag beads loaded with GSK-3β and stored at
4 °C. Kinase activity was evaluated in terms of the relative intensities of
peaks with m/z 1991.98 (unphosphorylated ε-eIF2B) and 2071.94 (phos-
phorylated ε-eIF2B). These intensities were summed and set as 100%, to
which the proportion of phosphorylated substrates was normalized.
Data were collected in triplicate, and are reported as mean ± SD. There
was no statistically significant change of GSK3 enzyme activity during
the storage as determined by one-way ANOVA (p = 0.8021). Inset: Axis y
zoomed.
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phosphorylated peptide with m/z 2071.94 (Fig. 5A). We
observe a slight increase of enzyme activity with the number
of cycles performed, namely the phosphorylate rate (%)
varies in the range of approximately 4% (Fig. 5A). This
phenomenon can be explained by activation and stabiliz-
ation of immobilized form of GSK-3β by its substrate, which
we also observed with other enzymes previously.44 In con-
trast, ERK2-loaded SeraMag beads were less operationally
stable, with activity decreasing to 36.2 ± 2.01% in the tenth
assay, as calculated from the fractions of non-phosphory-

lated TH 24-33 peptide with m/z 1086.59, and of the phos-
phorylated peptide with m/z 1166.56 (Fig. 5B). There was a
statistically significant change of activity of both kinase-
loaded magnetic SeraMag beads when they were used
repeatedly in cycles (operational stability) as determined by
one-way ANOVA (p < 0.001).

Phosphorylation of tau by immobilized kinases

While SeraMag beads with covalently attached kinases are
clearly reusable against low-molecular weight substrates, mass
transfer effects may have nevertheless affected the quality of
immobilized enzymes. Thus, enzyme-loaded beads were tested
against full-length microtubule-associated tau, a natively
unfolded protein, the phosphorylation of which has been
intensively characterized as the main post-translational modifi-
cation implicated in physiological and pathological pro-
cesses.26 Of note, altered GSK-3β activity is associated with
abnormal hyperphosphorylation of tau, highlighting its suit-
ability as a model substrate.45 In addition, GSK-3β has
enhanced affinity for pre-phosphorylated substrates with motif
SXXXpS, where S is serine, X is any residue, and pS is phospho-
serine.24,25 Accordingly, pre-phosphorylation by ERK2, for
instance, may influence GSK-3β activity against Ser/Thr resi-
dues in tau.26

Sequential phosphorylation by several soluble kinases often
requires denaturation steps between cycles to quench the
activity of the previous enzyme. However, such steps may also
alter the properties and structure not only of the enzyme, but
also of the substrate.46,47 For example, heat denaturation of
ERK2 prior to addition of GSK-3β (ESI, Method S3†) resulted in
slight differences in the mobility and band intensity of the
final product on western blots (Fig. 6A–D, lanes 2–3), in com-

Fig. 4 Representative MALDI-LTQ Orbitrap mass spectra of (A) non-
phosphorylated TH 24-33, an ERK2-specific low-molecular weight sub-
strate, and TH 24-33 phosphorylated, for 6 h at 30 °C in Reaction Buffer
II supplemented with (B) soluble ERK2, (C) 0.2 mg ERK2-loaded SeraMag
beads, and (D) supernatant obtained after ERK2 immobilization onto
SeraMag beads. Non-phosphorylated peptides are marked with a green
dashed circle, and phosphorylated forms are circled in red circle.
Spectra A–C were obtained on MALDI-LTQ Orbitrap XL.

Fig. 5 Operational stability of SeraMag beads loaded with (A) GSK-3β
and (B) ERK2. GSK-3β activity was measured in terms of the relative
intensities of singly and doubly phosphorylated ε-eIF2B with m/z
1991.98 and 2071.94, respectively. Similarly, ERK2 activity was measured
in terms of the relative intensities of unphosphorylated and phosphory-
lated TH 24-33 with m/z 1086.59 and 1166.56 respectively. The relative
intensities of phosphorylated and non-phosphorylated forms were
summed and set as 100%, to which the proportion of phosphorylated
forms was normalized. Data were collected in triplicate, and are plotted
as mean ± SD. There was a statistically significant change of both
enzyme activities in time as determined by one-way ANOVA (p < 0.001).
Inset: Axis y zoomed.

Fig. 6 Detection of phosphorylated tau 1-441 by western blot using (A)
monoclonal mouse antibody to tau (tau 46.1, 1 : 60 000), (B) monoclonal
mouse antibody to tau phosphorylated at Thr231 (AT180, 1 : 2000), (C)
polyclonal rabbit antibody to tau phosphorylated at Ser356 (S356,
1 : 2000), and (D) polyclonal rabbit antibody to tau phosphorylated at
Ser396 (S396, 1 : 2000). Lane 1, tau 1-441; 2–3, tau 1-441 phosphory-
lated by soluble ERK2 and soluble GSK-3β with (2) or without (3) an
intermediate denaturing step at 95 °C for 10 min; 4, tau 1-441 phos-
phorylated by ERK2-loaded SeraMag particles, and then by SeraMag
beads loaded with GSK-3β.
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parison to products obtained without an intermediate dena-
turation step.

In this case, separation of phosphorylated products from
kinase-loaded magnetic particles would be an easier and
helpful alternative. Thus, tau was phosphorylated sequentially
with SeraMag beads loaded with ERK2 and GSK-3β.
Phosphorylation of specific positions T231 (Fig. 6B, lane 4),
S356 (Fig. 6C, lane 4), and S396 (Fig. 6D, lane 4) in tau protein
was confirmed by western blot using antibodies to tau and
phosphorylated tau characterized in Experimental section
(Fig. 6). In addition, tryptic digestion, TiO2 enrichment, and
microgradient separation of the final product generated 26
phosphopeptides on mass spectrometry, 20 of which con-
tained two or more phosphorylations (data not shown).
Mapping of phosphorylation sites is ongoing.

Conclusions

We have loaded superparamagnetic beads with functionally
active and stable enzymes that phosphorylate target peptides
and proteins in vitro. In particular, GSK-3β and ERK2 co-
valently immobilized to carboxylated SeraMag beads have suit-
able operational stability as reusable kinases against low mole-
cular-weight substrates. Importantly, the magnetic beads
enable sequential phosphorylation of proteins without inter-
ference among kinases, thereby preserving enzyme activity and
specificity. We anticipate that our approach can be adapted for
other protein substrates where the reaction with MAP kinases
is also required to pre-phosphorylate substrates for efficient,
subsequent phosphorylation by GSK-3.48,49 In addition,
kinases immobilized to magnetic beads are easily removed to
stop reactions or to minimize contamination of phosphory-
lated products, and are low-cost due to reusability. Thus,
enzyme-loaded magnetic beads may prove effective as a tool to
modify various recombinant proteins that require phosphoryl-
ation for folding, stability, and biological activity. In some
cases, proteins with well-defined phosphorylation at multiple
sites may facilitate studies of specific pathological processes.
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DISCUSSION 

 

Tau protein is intensively studied protein as its abnormally modified and misfolded forms 

are the main component of paired helical filaments (Wood et al., 1986; Delacourte and Defossez, 

1986). These aggregated filamentous structures form intracellular neurofibrillary tangles, beside 

Aβ-composed senile plaques, the most relevant histopathological hallmark of Alzheimer´s 

disease (AD) (Ittner and Gotz, 2011). To date, no cure for AD is available so far. Since the 

immune system involvement in AD is the strongly discussed topic, antibody-based 

immunotherapy is under investigation as one of the promising approaches in AD therapy. 

Especially, natural antibodies reactive with both Aβ peptides and tau protein are in the forefront 

of interest (Wisniewski and Goni, 2015). Their potential functions in AD progression have to be 

better established and the clarification whether their occurrence is beneficial or rather harmful is 

still missing.  

The main aim of this thesis was a characterization of natural antibodies against tau protein 

occurring in IVIG preparation Flebogamma and in pooled plasma samples of AD diagnosed 

patients as well as of age-matched healthy controls. Related to this topic, properties of tau as a 

natively unfolded protein and the behavior of some specific tau fragments after in vitro digestion 

were also investigated.  

The presence of naturally occurring tau-reactive antibodies (nTau-Abs) in sera  

of cognitively normal individuals as well as of AD patients was proven in several publications 

(Rosenmann et al., 2006; Fialova et al., 2011; Bartos et al., 2012; Klaver et al., 2017; Krestova et 

al., 2017a; Kuhn et al., 2018). Moreover, antibodies directed to tau protein were also detected  

in intravenous immunoglobulin (IVIG) products (Smith et al., 2013; Smith et al., 2014; Loeffler 

et al., 2015; Hromadkova et al., 2015; Krestova et al., 2017a) which are widely used in treatment 

of variable range of diseases, from impaired autoimmunity to neurological disorders (Durandy et 

al., 2009; Zivkovic, 2016). Especially, since AD was proposed to be a protein conformational 

disorder, antibody-based immunotherapy directed against altered structurally modified and 

aggregated proteins become a spotlight in ongoing therapeutic approaches (Wisniewski and Goni, 

2015). IVIG products have been tested in several clinical trials with AD and MCI patients, some 
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of these studies are still ongoing (Boada et al., 2016; Cummings et al., 2017). The pathological 

changes occurring during MCI and AD progression are more complex and not strictly tied to one 

particular molecular mechanism as well as IVIG products contain immunoglobulins from 

thousands of healthy donors which represent the reservoir of natural plasma antibodies directed  

to many antigens, including numerous self-antigens. Even so, completed trials with IVIG for AD 

treatment did not provide satisfactory results (Relkin et al., 2014; Relkin et al., 2017). This has 

triggered the desire for a deeper knowledge of naturally occurring antibodies presented in IVIGs 

that are specifically directed to AD pathologically relevant proteins. This understanding may also 

help to contribute to the concept of the production of so-called AD-specific IVIG preparations 

suggested as an alternative approach for AD treatment (Loeffler, 2014). When we consider 

structurally modified toxic forms of Aβ peptides and tau protein are the main molecules targeted 

by AD therapies, it is crucial to evaluate whether natural antibodies directed to these proteins 

may have a beneficial effect. Until recently, more work in this field was dedicated to natural Aβ 

peptide-reactive antibodies which were isolated and their mechanism of action tested in cell-

based systems as well as in animal models (reviewed in book chapter Bach and Dodel, 2012).  

On the other hand, tau pathology is partly an independent process from Aβ biology alterations 

and better correlates with AD progression (Peterson and Sigurdsson, 2015). Thus tau protein is  

at a forefront of interest as a therapeutic target. Both monoclonal and polyclonal anti-tau 

antibodies have been produced and intensively tested for their putative protective mechanism 

whether they may halt tau-associated AD pathology via participating in clearance of altered 

misfolded tau forms, degradation of oligomeric and aggregated tau species, inhibition of tau 

polymerization and prevention of neurotoxicity (Schroeder et al., 2016).  

To our best knowledge, we provide the first insight into the character and reactive profile 

of nTau-Abs directly isolated from IVIG product (Hromadkova et al., 2015; Krestova et al., 

2017a, b). Flebogamma DIF (Grifols Biologicals Inc., Los Angeles, CA, USA), IVIG preparation 

(Flebogamma DIF 5%, Grifols Biologicals Inc., Los Angelos, USA) examined in ongoing phase 

III trial (https://clinicaltrials.gov/ct2/show/NCT01561053), was selected for isolation of nTau-

Abs by affinity chromatography with human full-length tau (1-441 aa) as a ligand (Krestova et 

al., 2017b). The comparison of IgG subclasses distribution in original IVIG sample and isolated 

fraction indicates skewing toward IgG3 in IgG fraction enriched in nTau-Abs. These results may 

be interesting due to the fact that IgG3 subclass generally belongs to potent pro-inflammatory 
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antibodies in early response to an antigen with a short half-life and natural Abs are mostly IgG3 

subclass-specific (Panda and Ding, 2015). Since NFT formation is known as a dynamic process 

in which tau protein is abundantly post-translationally modified, the reactivity of isolated nTau-

Abs was examined against several recombinant tau forms. Truncation and phosphorylation have 

been considered as the main tau PTMs enhancing the development of tau pathology in AD. 

Reasonably, recombinant human full-length tau proteins differing by the presence of 6x histidine-

tag and two truncated forms corresponding to tau amino acid sequences 13-391 and 155-421  

in both non-phosphorylated/phosphorylated states, respectively, were applied. Interestingly, the 

non-phosphorylated tau fragment (155-421 aa) demonstrated the highest reactivity and even 

avidity index with isolated nTau-Abs. The pro-aggregation truncation at Asp421 mediated  

by caspases, mostly by caspase-3, always precedes Glu391 cleavage event and is linked to cell 

toxicity (Nicholls et al., 2017). Much less is known about the N-terminal truncation occurring  

in tau molecule but thrombin seems to be an endogenous protease candidate of tau cleavage  

at Arg155 as was proven in vitro (Olesen, 1994). This fragment had high reactivity  

with antibodies in all tested antibody fractions (original IVIG sample, flow-through fraction and 

elution fraction enriched with nTau-Abs) thus we can assume that this truncated tau form 

containing proline-rich regions and microtubule-binding domain with all four repeat domains 

prone to aggregate (Okuyama et al., 2008; Sugino et al., 2009) could be highly antigenic also  

in healthy population. 

Based on the latest studies which revealed that oligomeric forms of altered tau molecules 

may be the most toxic species significantly contributing to spreading of tau pathology (Guerrero-

Munoz et al., 2015), the investigation of the characteristics and reactivity of plasma nTau-Abs 

against native physiological and pathological tau forms is needed. We extended our previous 

study with nTau-Abs to investigate their reactivity with native tau proteins present in brain 

homogenates of controls and histopathologically proven AD patients (Krestova et al., 2017a).  

We isolated a new batch of nTau-Abs from IVIG product Flebogamma (nTau-IVIG Abs), and 

furthermore from pooled plasma samples obtained from patients with diagnosed AD (nTau-AD 

Abs) and age-matched cognitively normal individuals, referred to healthy controls (nTau-Ctrl 

Abs). Results with natural Abs isolated from IVIG and controls confirmed the previous findings 

with tau fragment (155-421 aa) in its non-phosphorylated form showing stronger reactivity.  

In contrary, nTau-AD Abs has higher reactivity with recombinant human full-length tau.  
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To our surprise, the avidity index was approximately the same for all three newly isolated nTau-

Abs fraction (nTau-IVIG, nTau-AD, and nTau-Ctrl Abs) and previously isolated nTau-Abs  

from IVIG with this tau fragment 155-421. More interestingly, we observed differences  

in reactivity of isolated nTau-Abs with brain homogenates. The nTau-AD Abs reacted mostly  

to monomeric tau forms in brain homogenates in comparison to nTau-IVIG and nTau-Ctrl Abs, 

which preferably bound to more aggregated tau forms. These results support the concept that 

immune system may be involved in controlling of occurrence of pathological protein forms under 

physiological conditions. To date, the physiological release of endogenous tau protein into the 

peripheral blood system mediated by neuronal activity and with the participation of glymphatic 

pathway was described (Iliff et al., 2014; Benveniste et al., 2017). Tau protein occurring  

in a periphery is likely to be subjected to fast degradation and elimination by natural antibodies 

and this potential mechanism may be altered during the development of AD. But more studies are 

needed to prove the hypothesis suggesting impaired repertoire of naturally occurring antibodies 

against misfolded and oligomeric/aggregated forms of proteins playing a crucial role, which are 

gained to toxic function in AD pathology.  

In connection with the project of natural tau-reactive antibodies, we optimized epitope 

mapping methods to determine the precise localization of interaction sides between tau protein 

and selected tau-reactive antibodies. In our published original paper, we applied two magnetic-

bead-based epitope mapping approaches as a part of the quality evaluation of monoclonal anti-tau 

antibodies for immunomagnetic purification of native tau protein (Jankovicova et al., 2014; 

Jankovicova et al., 2015). These methodological approaches were epitope extraction and epitope 

excision, both based on bioaffinity separation techniques coupled with final mass spectrometry 

(MS) analysis. In epitope extraction protocol suitable for determination of linear epitopes,  

the target protein is digested by immobilized proteolytic enzyme(s) and generated fragments are 

subsequently incubated with specific antibodies bound to the solid phase. Whereas in epitope 

excision approach used in the identification of both linear and conformational epitopes the 

immunocomplex formation between entire protein molecules and immobilized antibodies occurs 

first, followed by protein fragmentation. After washing steps, the epitope-containing fragments 

interacting with the antibody binding sites are released by acidic elution in both protocols and 

identified by MS (Jeyarajah et al., 1998; Jankovicova et al., 2008; Paraschiv et al., 2013). 

Interestingly, despite applied immunosorbent specificity, a tryptic fragment corresponding to tau 
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amino acid sequence 299-HVPGGGSVQIVYKPVDLSK-317 (theoretical m/z 1980.0912) also 

occurred in all elution fractions (Jankovicova et al., 2014; Hromadkova et al., 2016). Its peak 

with high relative intensity complicated the interpretation of MS spectra and was detected even  

in epitope extraction and excision procedure carried out with negative controls (magnetic beads 

without bound antibody molecules). Thus, we assumed its presence in elution fractions may be 

caused by a non-specific sorption linked to its adhesive character. Moreover, these adhesive 

properties are likely to be responsible for aggregation of tau pathological forms into PHFs. Thus, 

this study also partly reveal how this behavior of protein observed in vitro studies could be 

associated with events occurring during protein misfolding and aggregation in vivo. 

Based on the above considerations, if we would like to apply magnetic-bead-based 

epitope mapping to the determination of tau-reactive antibodies with unknown epitope reactivity 

as in case of isolated nTau-Abs, the first step has to be avoiding of false positive and negative 

results from MS analysis (Hromadkova et al., 2016). To preclude the non-specific sorption of this 

adhesive fragment, we tested several conventional alterations to suppress or significantly reduce 

the non-specific sorption of this fragment to magnetic particles (MPs) and plastic tubes; 

modification of MPs surface by BSA or by 30kDa polyethyleneglycol and reductive amination  

of remaining reactive groups on MPs by Tris or ethanolamine (Hermanson, 2013; Kucerova et 

al., 2014). The fact that self-aggregation propensity can contribute to non-specific adsorption,  

we also applied an additional 8M urea incubation step in epitope extraction protocol to disturb the 

protein-protein interactions participating in aggregate formation.  

None of the aforementioned approaches brought the desired effect to eliminate the non-

specific sorption and the adhesive fragment 299-HVPGGGSVQIVYKPVDLSK-317 was still 

present in MS spectra as a high intensive peak. Thus, we focused more on the character of this 

peptide because it contains the most hydrophobic residue stretch 306-VQIVYKPVDLSKV-318 

(Mukrasch et al., 2009) and the most studied pro-aggregation motif PHF6, 306-VQIVYK-311,  

of tau protein (von Berger et al., 2000, Li and Lee, 2006). We confirmed the hydrophobic 

character and pro-aggregation propensity of the adhesive fragment by a microscale RP-LC 

experiment (Fekete et al., 2015) and Thioflavin S assay (Chirita et al., 2015). We supposed that 

both these characteristics can be enhanced after tryptic digestion and contribute to adsorption on 

MPs surface (Hromadkova et al., 2016).  
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To support our hypothesis, we suggested a proteolytic system which can abolish both the 

pro-aggregation motif as well as the concentrated hydrophobic amino acids formation.  

The combination of immobilized trypsin and α-chymotrypsin tau cleavage was introduced since 

trypsin still provides proper fragments´ length to cover the tau sequence and α-chymotrypsin 

effectively cleaves the peptide bound 310-YK-311 within the critical pro-aggregation motif 306-

VQIVYK-311. The formation of newly cleaved fragments reduces the adsorption, and the 

interpretation of MS data is more valid for evaluation of anti-tau antibody epitope specificity.  

In this already cited paper (Hromadkova et al. 2016), we provided information about the adhesive 

character of the tryptic tau fragment 299-HVPGGGSVQIVYKPVDLSK-317, containing PHF6 

minimal aggregation motif and the most hydrophobic tau region, which was also seen in other 

papers publishing data with tryptically digested tau (Becker et al., 2007; Becker and Przybylski, 

2007).  

It seems to be necessary to take into consideration tau-specific properties, which can be 

enhanced after protein fragmentation and then be associated with significant risk to complicate 

the structural analysis of tau protein and to give results leading to the erroneous interpretation. 

These findings are considered in an ongoing project focusing on characterization of natural tau-

reactive antibodies where a part is dedicated to epitope mapping to reveal some potential 

differences in their reactivity depending on their source, particularly isolated from IVIG 

preparation, sera of AD and age-matched cognitively normal controls.  

 

In both studies regarding isolated naturally occurring antibodies directed to tau protein,  

it was surprising that phosphorylation partly abolished their reactivity with all recombinant tau 

forms applied (Hromadkova et al., 2015; Krestova et al., 2017a) despite the fact that abnormally 

phosphorylated tau protein is a main component of NFTs in AD brains (Grundke-Iqbal et al., 

1986). Tau protein belongs to the group of microtubule-associated proteins maintaining 

numerous physiological functions in neurons. Its natively unfolded character possessing only  

a few sequences with a tendency to take secondary structures gives tau unique properties in sense 

of variable folding/unfolding states and binding dynamics depending on a huge range  

of posttranslational modifications (PTMs) (Bah and Forman-Kay, 2016). Phosphorylation is the 

most significant PTM of tau protein since full-length human tau (2N4R isoform, 1-441 aa) has  
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85 putative phosphorylation sites. As many studies reported, the site-specific phosphorylation  

of tau is closely related to the balance between tau physiological and pathological functions. Tau 

is phosphorylated under both physiological and AD-associated pathological conditions but the 

phosphorylation rate and specific phosphorylated residues significantly differ (Kopke et al.; 1993, 

Martin et al., 2013; Noble et al., 2013). Moreover, truncation of tau phosphorylated only in a few 

specific sites rather than hyperphosphorylated form is considered to be a very early event  

in tangle formation (Mondragon-Rodriguez et al., 2008). Moreover, tau phosphorylation  

at certain residues may have a protective effect and prevent the assembly of tau into filamentous 

structures (Schneider et al., 1999). To date, there is no commercially available recombinant tau 

protein phosphorylated in a defined manner that could be applicable in biochemical and 

immunoanalytical sensitive assays. Also, it is necessary to admit the main limitation of our 

studies - the use of recombinant human full-length tau protein as a ligand in antibody isolation 

procedure. Thus, the amount of nTau-Abs directed to more specific phosphorylated forms may be 

affected and more native-like tau protein is needed for the isolation process itself in future 

studies.  

All these above-mentioned reasons led us to figure out a task how to obtain tau protein 

with well-defined phosphorylated sites. The first goal, which is also included as a part of this 

thesis, was to prepare a valid tool for producing of various recombinant full-length/truncated tau 

proteins with fully defined phosphorylation in a high purity that would serve as ligands  

in isolation procedures or as antigens in sensitive immunoanalytical assays. We have developed 

kinase-loaded magnetic particles (MPs) applicable for in vitro phosphorylation of tau protein, 

particularly ERK2 and GSK-3β-loaded magnetic beads (Hromadkova et al., 2018).  

To our knowledge, the preparation of a system with active forms of both kinases covalently 

bound onto MPs with great operational and storage stability has not been reported previously. 

The list of benefits of using such a biotechnological tool comprises the ease of sample handling 

when kinases immobilized onto magnetic beads can be gently removed, stability and reusability 

connected with economics and acquisition of phosphorylated products with minimal enzyme 

contamination compared to those using soluble kinase forms (Li et al., 2015). Also, hierarchical 

phosphorylation of tau with specific phosphorylation sites priming for further phosphorylation  

in nearby residues and various kinase interactions, which influence their specificity (Goedert et 

al., 1994; Hanger et al., 2007), can be better control by utilizing kinase-loaded MPs.  
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We selected two proline-directed kinases GSK-3β and ERK2 which are involved in tau 

phosphorylation under both physiological and pathological circumstances (Hanger and Noble, 

2011, Drewes et al., 1992). Moreover, tau pre-phosphorylated by ERK2 is a more favorable 

substrate for subsequent phosphorylation by GSK-3β (Goedert et al., 1994; Zhang et al., 2003), 

which prefers pre-phosphorylated substrates with motif S/T-XXXpS (Fiol et al., 1987).  

First of all, we evaluated the maintenance of activity of our kinase-loaded MPs and their stability 

by using specific low-molecular-weight substrates. By western blot and mass spectrometry 

analysis connected with TiO2 enrichment of phosphopeptides and microgradient separation,  

we proved the successful phosphorylation of recombinant tau protein where 26 phosphopeptides 

were identified (Hromadkova et al., 2018). The precise mapping of phosphorylated sites under 

various reaction conditions is ongoing. 

 

The thesis summarizes some promising results of the project which is still ongoing. 

Future plans based on the research with isolated natural tau-reactive antibodies will address their 

epitope mapping and study of their mechanisms of actions in situ in cell-based systems modeling 

neurodegeneration. Also, the subclass distribution of these antibodies will be more investigated  

in relation to their function. In the subproject regarding tau phosphorylation by kinase-loaded 

magnetic beads, using of magnetic beads decorated with other different kinds of active kinases 

and their characterization have been investigated (for instance, manuscript regarding PKA-loaded 

MPs is in preparation). Precise localization of phosphorylated amino acid residues in tau protein 

by novel nanoscale LC-MS approaches in phosphoproteomics and the effect of various reaction 

conditions to obtain well-defined phosphorylated tau antigens for further applications are the 

main questions. 
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CONCLUSION 

The main theme of this thesis is tau protein, one of the most relevant biomarkers of AD.  

The thesis is mainly focused on basic characterization of naturally occurring tau-reactive 

antibodies (nTau-Abs) isolated from plasma samples. We successfully isolated nTau-Abs  

from pooled plasma obtained from AD patients, age-matched cognitively normal individuals, and 

from IVIG product Flebogamma. Among these three groups, the basic characterization showed 

differences in reactivity with applied tau forms varied in their most pathologically relevant post-

translational modifications; truncation, phosphorylation, and aggregation, respectively.  

Our results partly support the concept that the repertoire of nTau-Abs is a natural part of the 

humoral immune system. This project is ongoing to confirm our hypothesis that the function  

of nTau-Abs is rather protective via their participation in clearance of putative toxic tau forms 

and this system is altered in AD as may indicate these results so far. Thus, introduction and 

optimization of epitope mapping approaches which may unravel the main antigenic structure  

of modified and misfolded tau are also included. It is necessary to bear in mind that tau protein is 

natively unfolded protein possessing several regions with the pro-aggregation tendency.  

We showed that pro-aggregation and hydrophobic properties of tau regions may be enhanced  

by tau fragmentation which is widely used in proteomic studies and may lead to non-specific 

sorption of such fragments and erroneous interpretation of results. Thus, we suggested disturbing 

the key pro-aggregation sequences by a combination of proteases to suppress non-specific 

sorption of such fragments to obtain more relevant results.  

The last sub-project of this thesis was to develop a reusable system for sequential in vitro 

tau phosphorylation to produce highly pure defined product applicable in isolation procedures 

and sensitive immunoassays with nTau-Abs. For this purpose, we introduced the preparation  

of kinase-loaded magnetic beads with numerous advantages, such as their reusability with respect 

to economic aspect, the more controllable process of phosphorylation, and a high purity of final 

phosphoprotein because of easy removal of active enzyme molecules. This system was 

successfully applied with tau protein. This part of the project is ongoing and is promisingly 

developed. 
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Back to the title “Tau protein, a biomarker of Alzheimer´s disease: in vitro 

phosphorylation and tau-reactive antibodies characterization”, the main aims and goals  

of the thesis were fulfilled. The discussed results provide novel information about tau protein and 

natural tau-reactive antibodies in relation to tau posttranslational modifications and Alzheimer´s 

disease as well as give raise numerous new questions for the further research in this area. 
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87. GARCÍA-SIERRA, F., et al. Accumulation of C-terminally truncated tau protein associated 

with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in 

Alzheimer's disease. Journal of Chemical Neuroanatomy, 2001, 22.1: 65-77. 

88. GARCIA-SIERRA, F., et al. Conformational changes and truncation of tau protein during 

tangle evolution in Alzheimer's disease. Journal of Alzheimer's Disease, 2003, 5.2: 65-77. 

89. GARG, S., et al. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 

kD fragment. Neurobiology of Aging, 2011, 32.1: 1-14. 

90. GEORGIEFF, I. S., et al. High molecular weight tau: preferential localization in the 

peripheral nervous system. Journal of Cell Science, 1991, 100.1: 55-60. 

91. GHANNAD, M. S., et al. Alzheimer's disease and the role of infectious Agents: A review. 

Journal of Chemical and Pharmaceutical Sciences, 2016, 9.1: 46-53. 

92. GHOSHAL, N., et al. A new molecular link between the fibrillar and granulovacuolar lesions 

of Alzheimer's disease. The American Journal of Pathology, 1999, 155.4: 1163-1172. 

93. GHOSHAL, N., et al. Tau‐66: evidence for a novel tau conformation in Alzheimer's disease. 

Journal of Neurochemistry, 2001, 77.5: 1372-1385. 

94. GIESE, K. P.; RIS, L.; PLATTNER, F. Is there a role of the cyclin-dependent kinase 5 

activator p25 in Alzheimer's disease?. Neuroreport, 2005, 16.16: 1725-1730. 

95. GIESE, K. P. Generation of the Cdk5 activator p25 is a memory mechanism that is affected in 

early Alzheimer’s disease. Frontiers in Molecular Neuroscience, 2014, 7. 



99 

 

96. GOEDERT, M., et al. Cloning and sequencing of the cDNA encoding an isoform of 

microtubule-associated protein tau containing four tandem repeats: differential expression of 

tau protein mRNAs in human brain. The EMBO Journal, 1989, 8.2: 393. 

97. GOEDERT, M.; JAKES, R. Expression of separate isoforms of human tau protein: correlation 

with the tau pattern in brain and effects on tubulin polymerization. The EMBO Journal, 1990, 

9.13: 4225. 

98. GOEDERT, M.; SPILLANTINI, M. G.; CROWTHER, R. A. Cloning of a big tau 

microtubule-associated protein characteristic of the peripheral nervous system. Proceedings of 

the National Academy of Sciences, 1992, 89.5: 1983-1987. 

99. GOEDERT, M., et al. Epitope mapping of monoclonal antibodies to the paired helical 

filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. 

Biochemical Journal, 1994, 301.3: 871-877. 

100. GONG, C.-X., et al. Phosphoprotein phosphatase activities in Alzheimer disease brain. 

Journal of Neurochemistry, 1993, 61.3: 921-927. 

101. GONG, C.-X., et al. Alzheimer's Disease Abnormally Phosphorylated τ Is Dephosphorylated 

by Protein Phosphatase‐2B (Calcineurin). Journal of Neurochemistry, 1994, 62.2: 803-806. a 

102. GONG, C.-X.; GRUNDKE-IQBAL, I.; IQBAL, K. Dephosphorylation of Alzheimer's disease 

abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience, 1994, 61.4: 765-

772. b 

103. GONG, C.-X., et al. Dephosphorylation of microtubule-associated protein tau by protein 

phosphatase-1 and-2C and its implication in Alzheimer disease. FEBS Letters, 1994, 341.1: 

94-98. c 

104. GONG, C.-X., et al. Phosphorylation of microtubule-associated protein tau is regulated by 

protein phosphatase 2A in mammalian brain implications for neurofibrillary degeneration in 

Alzheimer's disease. Journal of Biological Chemistry, 2000, 275.8: 5535-5544. 

105. GONG, C.-X., et al. Post-translational modifications of tau protein in Alzheimer’s disease. 

Journal of Neural Transmission, 2005, 112.6: 813-838. 

106. GONG, C.-X., et al. Dysregulation of protein phosphorylation/dephosphorylation in 

Alzheimer's disease: a therapeutic target. Journal of Biomedicine and Biotechnology, 2006, 1-

11. 

107. GRUNDKE-IQBAL, I., et al. Abnormal phosphorylation of the microtubule-associated 

protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy 

of Sciences, 1986, 83.13: 4913-4917. 

108. GRUNE, T., et al. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 

20S proteasome under normal cell conditions. Archives of Biochemistry and Biophysics, 2010, 

500.2: 181-188. 

109. GUEDJ, F., et al. DYRK1A: a master regulatory protein controlling brain growth. 

Neurobiology of Disease, 2012, 46.1: 190-203. 

110. GUERRERO-MUÑOZ, M. J.; GERSON, J.; CASTILLO-CARRANZA, D. L. Tau oligomers: 

the toxic player at synapses in Alzheimer’s disease. Frontiers in Cellular Neuroscience, 2015, 

9: 464. 

111. GUILLOZET-BONGAARTS, A. L., et al. Tau truncation during neurofibrillary tangle 

evolution in Alzheimer's disease. Neurobiology of Aging, 2005, 26.7: 1015-1022. 

112. GUO, H., et al. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic 

plaques, and neurofibrillary tangles of Alzheimer's disease. The American Journal of 

Pathology, 2004, 165.2: 523-531. 



100 

 

113. GUPTA, S., et al. Selective interaction of JNK protein kinase isoforms with transcription 

factors. The EMBO Journal, 1996, 15.11: 2760. 

114. HANES, J., et al. Rat tau proteome consists of six tau isoforms: implication for animal models 

of human tauopathies. Journal of Neurochemistry, 2009, 108.5: 1167-1176. 

115. HANGER, D. P., et al. New phosphorylation sites identified in hyperphosphorylated tau 

(paired helical filament‐tau) from Alzheimer's disease brain using nanoelectrospray mass 

spectrometry. Journal of Neurochemistry, 1998, 71.6: 2465-2476. 

116. HANGER, D. P., et al. Novel phosphorylation sites in tau from Alzheimer brain support a 

role for casein kinase 1 in disease pathogenesis. Journal of Biological Chemistry, 2007, 

282.32: 23645-23654. 

117. HANGER, D. P.; ANDERTON, B. H.; NOBLE, W. Tau phosphorylation: the therapeutic 

challenge for neurodegenerative disease. Trends in Molecular Medicine, 2009, 15.3: 112-119. 

118. HANGER, D. P.; NOBLE, W. Functional implications of glycogen synthase kinase-3-

mediated tau phosphorylation. International Journal of Alzheimer’s disease, 2011, 2011: 

352805. 

119. HARDY, J. A.; HIGGINS, G. A. Alzheimer's disease: the amyloid cascade hypothesis. 

Science, 1992, 256.5054: 184. 

120. HARPER, S. J.; WILKIE, N. MAPKs: new targets for neurodegeneration. Expert Opinion on 

Therapeutic Targets, 2003, 7.2: 187-200. 

121. HARRINGTON, C. R., et al. Measurement of distinct immunochemical presentations of tau 

protein in Alzheimer disease. Proceedings of the National Academy of Sciences, 1991, 88.13: 

5842-5846. 

122. HARWOOD, A. J. Regulation of GSK-3: a cellular multiprocessor. Cell, 2001, 105.7: 821-

824. 

123. HENSLEY, K., et al. p38 kinase is activated in the Alzheimer's disease brain. Journal of 

Neurochemistry, 1999, 72.5: 2053-2058. 

124. HERMANSON, G. T., Bioconjugate Techniques, Academic Press, New York 2013, pp. 227–

228. 

125. HIROKAWA, N.; SHIOMURA, Y.; OKABE, S. Tau proteins: the molecular structure and 

mode of binding on microtubules. The Journal of Cell Biology, 1988, 107.4: 1449-1459. 

126. HIROKAWA, N., et al. Selective stabilization of tau in axons and microtubule-associated 

protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal 

proteins in mature neurons. The Journal of Cell Biology, 1996, 132.4: 667-679. 

127. HO, G. J., et al. Altered p59 Fyn kinase expression accompanies disease progression in 

Alzheimer's disease: implications for its functional role. Neurobiology of Aging, 2005, 26.5: 

625-635. 

128. HOOPER, C.; KILLICK, R.; LOVESTONE, S. The GSK3 hypothesis of Alzheimer’s 

disease. Journal of Neurochemistry, 2008, 104.6: 1433-1439. 

129. HOROWITZ, P. M., et al. Early N-terminal changes and caspase-6 cleavage of tau in 

Alzheimer's disease. Journal of Neuroscience, 2004, 24.36: 7895-7902. 

130. HROMADKOVA, L., et al. Identification and characterization of natural antibodies against 

tau protein in an intravenous immunoglobulin product. Journal of Neuroimmunology, 2015, 

289: 121-129. 

131. HROMADKOVA, L., et al. Difficulties associated with the structural analysis of proteins 

susceptible to form aggregates: The case of Tau protein as a biomarker of Alzheimer's 

disease. Journal of Separation Science, 2016, 39.4: 799-807. 



101 

 

132. HROMADKOVA, L., et al. Kinase-loaded magnetic beads for sequential in vitro 

phosphorylation of peptides and proteins. Analyst, 2018, 143.2: 466-474. 

133. HYMAN, B. T. Caspase activation without apoptosis: insight into A [beta] initiation of 

neurodegeneration. Nature Neuroscience, 2011, 14.1: 5-6. 

134. HYMAN, B. T.; YUAN, J. Apoptotic and non-apoptotic roles of caspases in neuronal 

physiology and pathophysiology. Nature Reviews Neuroscience, 2012, 13.6: 395-406. 

135. IHARA, Y., et al. Phosphorylated tau protein is integrated into paired helical filaments in 

Alzheimer's disease. The Journal of Biochemistry, 1986, 99.6: 1807-1810. 

136. IKEZU, S.; IKEZU, T. Tau-tubulin kinase. Frontiers in Molecular Neuroscience, 2014, 7. 

137. ILIFF, J. J., et al. Impairment of glymphatic pathway function promotes tau pathology after 

traumatic brain injury. Journal of Neuroscience, 2014, 34.49: 16180-16193. 

138. IMAHORI, K.; UCHIDA, T. Physiology and pathology of tau protein kinases in relation to 

Alzheimer's disease. The Journal of Biochemistry, 1997, 121.2: 179-188. 

139. ITTNER, L. M.; GÖTZ, J. Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease. 

Nature Reviews Neuroscience, 2011, 12.2: 67. 

140. ITZHAKI, R. F., et al. Microbes and Alzheimer’s disease. Journal of Alzheimer's disease, 

2016, 51.4: 979. 

141. JACK, J. R., et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological 

cascade. The Lancet Neurology, 2010, 9.1: 119-128. 

142. JAKES, R., et al. Identification of 3-and 4-repeat tau isoforms within the PHF in Alzheimer's 

disease. The EMBO Journal, 1991, 10.10: 2725. 

143. JANKOVICOVA, B., et al. Epitope mapping of allergen ovalbumin using biofunctionalized 

magnetic beads packed in microfluidic channels: The first step towards epitope-based 

vaccines. Journal of Chromatography A, 2008, 1206.1: 64-71. 

144. JANKOVICOVA, B.arbora, et al. Quality evaluation of monoclonal antibodies suitable for 

immunomagnetic purification of native tau protein. Scientific Papers of the University of 

Pardubice Series A, Faculty of Chemical Technology, 2014, 20: 147-163. 

145. JANKOVICOVA, B., et al. Benefits of Immunomagnetic Separation for Epitope 

Identification in Clinically Important Protein Antigens: A Case Study Using Ovalbumin, 

Carbonic Anhydrase I and Tau Protein. Universal Journal of Biomedical Engineering, 2015, 

3: 1-8. 

146. JEGANATHAN, S., et al. Global hairpin folding of tau in solution. Biochemistry, 2006, 45.7: 

2283-2293. 

147. JEYARAJAH, S., et al. Matrix-assisted laser desorption ionization/mass spectrometry 

mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited 

polyclonal antibody. Journal of the American Society for Mass Spectrometry, 1998, 9.2: 157-

165. 

148. JICHA, G. A., et al. Alz‐50 and MC‐1, a new monoclonal antibody raised to paired helical 

filaments, recognize conformational epitopes on recombinant tau. Journal of Neuroscience 

Research, 1997, 48.2: 128-132. 

149. JICHA, G. A.; BERENFELD, B.; DAVIES, P. Sequence requirements for formation of 

conformational variants of tau similar to those found in Alzheimer's disease. Journal of 

Neuroscience Research, 1999, 55.6: 713-723. 

150. JICHA, G. A., et al. cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s 

disease. Journal of Neuroscience, 1999, 19.17: 7486-7494. 

151. JOHNSON, G. V. W.; STOOTHOFF, W. H. Tau phosphorylation in neuronal cell function 

and dysfunction. Journal of Cell Science, 2004, 117.24: 5721-5729. 



102 

 

152. KADAVATH, H., et al. Tau stabilizes microtubules by binding at the interface between 

tubulin heterodimers. Proceedings of the National Academy of Sciences, 2015, 112.24: 7501-

7506. 

153. KANAI, Y.; HIROKAWA, N. Sorting mechanisms of tau and MAP2 in neurons: suppressed 

axonal transit of MAP2 and locally regulated microtubule binding. Neuron, 1995, 14.2: 421-

432. 

154. KARSTEN, S. L., et al. A genomic screen for modifiers of tauopathy identifies puromycin-

sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron, 2006, 

51.5: 549-560. 

155. KAWAMATA, T., et al. A protein kinase, PKN, accumulates in Alzheimer neurofibrillary 

tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau 

protein. Journal of Neuroscience, 1998, 18.18: 7402-7410. 

156. KELLER, J. N.; HANNI, K. B.; MARKESBERY, W. R. Impaired proteasome function in 

Alzheimer's disease. Journal of Neurochemistry, 2000, 75.1: 436-439. 

157. KEMPF, M., et al. Tau binds to the distal axon early in development of polarity in a 

microtubule-and microfilament-dependent manner. Journal of Neuroscience, 1996, 16.18: 

5583-5592. 

158. KENESSEY, A., et al. Degradation of tau by lysosomal enzyme cathepsin D: implication for 

Alzheimer neurofibrillary degeneration. Journal of Neurochemistry, 1997, 69.5: 2026-2038. 

159. KENTRUP, H., et al. Dyrk, a dual specificity protein kinase with unique structural features 

whose activity is dependent on tyrosine residues between subdomains VII and VIII. Journal 

of Biological Chemistry, 1996, 271.7: 3488-3495. 

160. KLEIN, C., et al. Process outgrowth of oligodendrocytes is promoted by interaction of fyn 

kinase with the cytoskeletal protein tau. Journal of Neuroscience, 2002, 22.3: 698-707. 

161. KIDD, M. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature, 

1963, 197.4863: 192-193. 

162. KIEBER-EMMONS, T., et al. The promise of the anti-idiotype concept. Frontiers in 

Oncology, 2012, 2: 196. 

163. KIMURA, R., et al. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical 

region, bridges between β-amyloid production and tau phosphorylation in Alzheimer disease. 

Human Molecular Genetics, 2006, 16.1: 15-23. 

164. KLAVER, A. C., et al. Specific serum antibody binding to phosphorylated and non-

phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and 

Alzheimer’s disease subjects: an exploratory study. Translational Neurodegeneration, 2017, 

6.1: 32. 

165. KOLAROVA, M., et al. Tau oligomers in sera of patients with Alzheimer’s disease and aged 

controls. Journal of Alzheimer's Disease, 2017, 58.2: 471-478. 

166. KONTAXI, C.; PICCARDO, P.; GILL, A. C. Lysine-Directed Post-translational 

Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies. Frontiers in 

Molecular Biosciences, 2017, 4: 56. 

167. KONZACK, S., et al. Swimming against the tide: mobility of the microtubule-associated 

protein tau in neurons. Journal of Neuroscience, 2007, 27.37: 9916-9927. 

168. KOPKE, E., et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-

paired helical filament pool in Alzheimer disease. Journal of Biological Chemistry, 1993, 

268.32: 24374-24384. 



103 

 

169. KOSIK, K. S.; JOACHIM, C. L.; SELKOE, D. J. Microtubule-associated protein tau (tau) is a 

major antigenic component of paired helical filaments in Alzheimer disease. Proceedings of 

the National Academy of Sciences, 1986, 83.11: 4044-4048. 

170. KOVACS, G. G. Invited review: neuropathology of tauopathies: principles and practice. 

Neuropathology and Applied Neurobiology, 2015, 41.1: 3-23. 

171. KRESTOVA, M., et al. Characterization of isolated tau-reactive antibodies from the IVIG 

product, plasma of patients with Alzheimer's disease and cognitively normal individuals. 

Journal of Neuroimmunology, 2017, 313: 16-24. a 

172. KRESTOVA, M.; HROMADKOVA, L.; RICNY, J. Purification of Natural Antibodies 

against Tau Protein by Affinity Chromatography. Natural Antibodies: Methods and 

Protocols, 2017, 33-44. b 

173. KSIEZAK-REDING, H., et al. Akt/PKB kinase phosphorylates separately Thr212 and Ser214 

of tau protein in vitro. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 

2003, 1639.3: 159-168. 

174. KUCEROVA, J., et al. PEGylation of magnetic poly (glycidyl methacrylate) microparticles 

for microfluidic bioassays. Materials Science and Engineering: C, 2014, 40: 308-315. 

175. KUDO, L. C., et al. Puromycin-sensitive aminopeptidase (PSA/NPEPPS) impedes 

development of neuropathology in hPSA/TAUP301L double-transgenic mice. Human 

Molecular Genetics, 2011, 20.9: 1820-1833. 

176. KUHN, I., et al. Serum titers of autoantibodies against α-synuclein and tau in child-and 

adulthood. Journal of Neuroimmunology, 2018, 315: 33-39. 

177. LAWS, S. M., et al. Expanding the association between the APOE gene and the risk of 

Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in 

APOE transcription. Journal of Neurochemistry, 2003, 84.6: 1215-1236. 

178. LAZEBNIK, Y. A., et al. Cleavage of poly (ADP-ribose) polymerase by a proteinase with 

properties like ICE. Nature, 1994, 371.6495: 346-347. 

179. LEBOUVIER, T., et al. The microtubule-associated protein tau is phosphorylated by Syk. 

Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2008, 1783.2: 188-192. 

180. LEBOUVIER, T.; PASQUIER, F.; BUÉE, L. Update on tauopathies. Current Opinion in 

Neurology, 2017, 30.6: 589-598. 

181. LEE, G.; COWAN, N.; KIRSCHNER, M. The primary structure and heterogeneity of tau 

protein from mouse brain. Science, 1988, 239.4837: 285-288. 

182. LEE, G., et al. Tau interacts with src-family non-receptor tyrosine kinases. Journal of Cell 

Science, 1998, 111.21: 3167-3177. 

183. LEE, G., et al. Phosphorylation of tau by fyn: implications for Alzheimer's disease. Journal of 

Neuroscience, 2004, 24.9: 2304. 

184. LEE, M.-S., et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 2000, 

405.6784: 360-364. 

185. LEE, M. J.; LEE, J. H.; RUBINSZTEIN, D. C. Tau degradation: the ubiquitin–proteasome 

system versus the autophagy-lysosome system. Progress in Neurobiology, 2013, 105: 49-59. 

186. LEJTENYI, D.; MAZER, B. Consistency of protective antibody levels across lots of 

intravenous immunoglobulin preparations. Journal of Allergy and Clinical Immunology, 

2008, 121.1: 254-255. 

187. LEROY, K.; YILMAZ, Z.; BRION, J.‐P. Increased level of active GSK‐3β in Alzheimer’s 

disease and accumulation in argyrophilic grains and in neurones at different stages of 

neurofibrillary degeneration. Neuropathology and Applied Neurobiology, 2007, 33.1: 43-55. 



104 

 

188. LEVIN, E. C., et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and 

may be linked to pathology in the context of blood–brain barrier breakdown. Brain research, 

2010, 1345: 221-232. 

189. LEW, J., et al. A brain-specific activator of cyclin-dependent kinase 5. Nature, 1994, 

371.6496: 423-426. 

190. LI, G.; YIN, H.; KURET, J. Casein kinase 1 delta phosphorylates tau and disrupts its binding 

to microtubules. Journal of Biological Chemistry, 2004, 279.16: 15938-15945. 

191. LI, W.; LEE, V. M.-Y. Characterization of two VQIXXK motifs for tau fibrillization in vitro. 

Biochemistry, 2006, 45.51: 15692-15701. 

192. LI, Y., et al. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese 

medicines using enzyme-immobilized magnetic beads combined with high-performance 

liquid chromatography. Journal of Chromatography A, 2015, 1425: 8-16. 

193. LINDWALL, G.; COLE, R. D. Phosphorylation affects the ability of tau protein to promote 

microtubule assembly. Journal of Biological Chemistry, 1984, 259.8: 5301-5305. 

194. LITMAN, P., et al. Subcellular localization of tau mRNA in differentiating neuronal cell 

culture: implications for neuronal polarity. Neuron, 1993, 10.4: 627-638. 

195. LIU, C.; GÖTZ, J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in 

brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform 

being enriched in the nucleus. PLoS One, 2013, 8.12: e84849. 

196. LIU, F., et al. Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and 

GSK‐3β. FEBS Letters, 2002, 530.1-3: 209-214. 

197. LIU, F., et al. Dephosphorylation of tau by protein phosphatase 5 impairment in Alzheimer's 

disease. Journal of Biological Chemistry, 2005, 280.3: 1790-1796. a 

198. LIU, F., et al. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the 

regulation of tau phosphorylation. European Journal of Neuroscience, 2005, 22.8: 1942-1950. 

b 
199. LIU, F, et al. Truncation and activation of calcineurin A by calpain I in Alzheimer disease 

brain. Journal of Biological Chemistry, 2005, 280.45: 37755-37762. c 

200. LIU, F.; LIANG, Z.; GONG, C. X. Hyperphosphorylation of tau and protein phosphatases in 

Alzheimer disease. Panminerva medica, 2006, 48.2: 97. 

201. LIU, F., et al. PKA modulates GSK‐3β‐and cdk5‐catalyzed phosphorylation of tau in site‐and 

kinase‐specific manners. FEBS Letters, 2006, 580.26: 6269-6274. 

202. LIU, S. J., et al. Tau becomes a more favorable substrate for GSK-3 when it is 

prephosphorylated by PKA in rat brain. Journal of Biological Chemistry, 2004, 279.48: 

50078-50088. 

203. LLEO, A., et al. Definition of human autoimmunity—autoantibodies versus autoimmune 

disease. Autoimmunity Reviews, 2010, 9.5: A259-A266. 
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