FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

étépén Simsa
Online scheduling of multiprocessor jobs
with preemption

Computer Science Institute of Charles University

Supervisor of the master thesis: prof. RNDr. Jiri Sgall, DrSc.
Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In date signature of the author

I would like to thank my supervisor, Jifi Sgall, for the amount of time he gave
me. Both throughout the last two years during (more or less) regular sessions
and especially for the time when writing this thesis when he responded very
quickly with reviews on developing parts of the thesis and with answer to all my
questions.

I would also like to thank my fiancée, Bara Dolejsi, for her support, care and
understanding when I had to put all my focus on writing up this thesis.

Last but not least, I would like to thank my family, especially my parents, for
my upbringing in a scientific environment, leading me to this point of my life.

i

Title: Online scheduling of multiprocessor jobs with preemption
Author: étépén Simsa
Institute: Computer Science Institute of Charles University

Supervisor: prof. RNDr. Jiri Sgall, DrSc., Computer Science Institute of Charles
University

Abstract: The thesis is devoted to the problem of online preemptive scheduling
of multiprocessor jobs. It gives a summary of previous work on this problem. For
some special variants of the problem, especially if we restrict the sizes of jobs to
one and two, new results are given, both in the terms of lower bounds and in the
terms of competitive algorithms. A previously published lower bound is showed
to be computed incorrectly and it is replaced by a correct lower bound in this
thesis. An algorithm is presented for the special case of four processors and sizes
of jobs one and two that is conjectured to achieve the best possible competitive
ratio.

Keywords: scheduling, online algorithms, preemption, multiprocessor jobs

1ii

Contents

(Introductionl

[Basic definitions
(1.1 Approximation and online algorithms
(1.2 Scheduling

2 Previous workl
[2.1 ~Offline schedulingl
(2.2 Online schedulingl

(3 Optimal schedules|
[3.1 Optimum for jobs without release times[.

3.2 Offfine scheduled

[4.1 Lower bounds on the competitive ratio]
4.1.1 Lower bound 9/8 form =4
4.1.2 Lower bound 1 +2/(3m+4) for meven|
4.1.3 Lower bound 1 +2/(5m +8) formodd|.
[4.2 Lower bounds for the speedup model|
4.2.1 Lower bound 8/7 form =4
4.2.2 Lower bound 1+ 2/(3m +2) for meven|
4.2.3 Lower bound 1+ 2/(5m +2) formodd|.

[5> Algorithms|

5.1 LPTIS: m/(m — 1)-speedup|.
5.2 LPTIS+: (m +1)/m-speedup for meven|
5.3 LPTISK: m/(m — k + 1)-speedup for size; < k|
[5.4 Optimal algorithm conjecture]

Conclusion

(Bibliography|

N

Ne)

14
14
16
23

25
25
25
27
28
29
29
30
30

32
37
39
42
43

48

50

Introduction

In this thesis we approach the problem of online Preemptive Scheduling of Multi-
processor Jobs (PSMJ) where the goal is to minimize the makespan. That means
we have a system of m processors and there are jobs that arrive over time. The
jobs have a size (sometimes called width) that is equal to the number of pro-
cessors that are required to run the job, a processing time (how long we need
to run the job to finish it) and a release time. An algorithm for this problem
needs to assign pending jobs (i.e., the jobs that are not yet done but were already
released) to the processors such that each job is assigned either to zero processors
or to the number of processors corresponding to its size, and every processor has
at most one job assigned to it. Preemption is allowed, i.e., job processing can
be interrupted and resumed later, possibly on a different set of processors. But
in total the algorithm needs to schedule each job for as long as is its process-
ing time. The goal of the algorithm is to produce a schedule with the smallest
possible makespan where makespan is the time of completion of the last job.

It is an example of an online problem, a problem where the algorithm does not
know the whole instance in advance and needs to do decisions continuously, only
based on the history and on the part of the instance already revealed. Often, there
is no optimal online algorithm, as a decision might be good or bad depending on
the future input. In that situation, the goal is to come up with an algorithm with
a guarantee not as strong as optimality. We say that an algorithm is c-competitive
if its output is at most c-times worse (so in the case of a minimization problem, as
in PSMJ, at most c-times bigger) than is the optimum constructed from the whole
instance (i.e., constructed by all-powerful algorithm that can guess the future).
For this competitive ratio we can provide lower bounds (by showing instances on
which no algorithm can achieve better guarantee) and upper bounds (by finding
algorithms that achieve this guarantee).

Many variants of this problem were studied before, as we will see in more
detail in Chapter 2l For us, the most relevant works are [Sgall and Woeginger
[2015] and Johannes [2006] as they contain results related to PSMJ specifically.
The former gives a classification for existence of 1-competitive algorithm based
on the set of allowed sizes of jobs (see Theorem [2.7|later). The later gives a lower
bound 6/5 on the problem (see Claim [2.12)). We show that this lower bound is
actually not computed correctly (see Corollary . Johannes| [2006] also gives
a simple (2 — (1/m))-competitive algorithm which can be viewed as a starting
point that this thesis was supposed to surpass.

As we said, the work of [Sgall and Woeginger| [2015] answers the question for
what sets of allowed sizes of jobs there is a 1-competitive algorithm but it does
not say anything about the competitive ratio for the other cases. And that is
exactly what we approach in this thesis. Specifically, we focused on the smallest
such example, that is when we have 4 processors and the jobs have allowed sizes
only 1 or 2. The small cases usually give insights to the general problem and it
is naive trying to solve a general problem if we are not able to solve small cases
first.

Unfortunately, we were unable to find a matching lower bound and algorithm
but we have some partial results. Specifically, we proved a lower bound of 9/8 (see

Theorem [4.4) and an algorithm with competitive ratio 5/4 (see Corollary .
We think that the lower bound could be tight and we support this by providing
an algorithm we conjecture could match the lower bound (see Section . Many
of the results also generalize for any fixed number of processors (see for example

Theorems , Corollary or even to sizes of jobs bounded by any constant
(see Corollary [5.15)).

The structure of the thesis is as follows. In Chapter [I| we go over the defini-
tions and notation we will use throughout the thesis. In Chapter [2f we summarize
previous work in this area, focusing on the results directly connected to our meth-
ods. In Chapter 3| we reformulate some of the previously known theorems and
introduce some new theorems and observations, regarding optimal schedules, that
we believe are important for PSMJ. In Chapter [4] we discuss the lower bounds for
PSMJ, most notably, providing a correct lower bound for PSMJ that replaces the
incorrect lower bound claimed by |Johannes [2006]. Finally, Chapter [5| contains
algorithms that achieve better competitive ratio than the ones known previously.
We start with m/(m — 1)-competitive algorithm (see Corollary that we en-
hance into a (m + 1)/m-competitive algorithm for m even (see Corollary
and generalize to m/(m — k+ 1)-competitive algorithm for jobs of sizes at most k
(see Corollary . In the last section of the chapter, Section , we introduce
an algorithm we conjecture matches the lower bound 9/8 for m = 4.

1. Basic definitions

1.1 Approximation and online algorithms

Before we will formally define variants of PSMJ approached in this thesis and their
corresponding notation, we will define the notions of approximation and online
algorithms.

Definition 1.1 (Combinatorial optimization problem). A combinatorial opti-
mization problem is a quadruple (Z,F,o,qg) where I is the set of instances, for
instance I € I, F(I) is the set of feasible solutions, function o is the objective
function and for I € Z,S5 € F,o(l,S) is the objective value of the solution. At
last, g is the goal function and is either min or max.

The goal is to find for some instance I € T an optimal solution S* such that

o(1,5%) =g{o(1,5)| S e F(I)}.

We call o(I,S*) the optimal value of the problem and denote it by OPT(I) or
OPT if the instance is clear from the context.

Definition 1.2 (Approximation algorithm). Let us have a combinatorial opti-
mization problem (Z,F,o0,g). We say that algorithm ALG is an a-approximation
algorithm for the problem if for any instance I € I the algorithm returns a feasi-
ble solution S € F(I) in polynomial time and its objective value ALG(I) = o(I, S)
satisfies the inequalities

We see that based on the goal function g only one of the inequalities is mean-
ingful, the second one follows from the fact that the solution is feasible.

Next we define an online algorithm. In online problems, instance is given by
parts and the algorithm needs to construct the solution on the go, without the
knowledge of the future parts. The definition that follows is given in the online-
time model where the algorithm decides what to do at every time point ¢t € R{.
In different definitions the instance is given by a finite sequence of instance parts
and the online algorithm is only invoked once for each of them. As we will see
later, the distinction is mostly formal for our problem (see Theorem .

Definition 1.3 (Online algorithm, competitive ratio). Let us have a combinato-
rial minimization problem (I, F, o0, min) such that I € T is a function I(t),t € R{.
Online algorithm for such problem receives I1(t) and then generates S(t) at every
time point t without knowing I(t') for t' > t.

This way, algorithm ALG generates a solution S = S(t) and if it is feasible, its
objective value is ALG(I) = o(1,S). We say that ALG is c-competitive (or that it
achieves a competitive ratio c) if for any instance I the inequality

ALG(]) < ¢- 0PT(I) + o

is true, where o does not depend on 1. We say it is strictly c-competitive if o = 0.
A (strict) competitive ratio of a problem is the minimum c such that there
exists a c-competitive algorithm for that problem.

4

For maximization problem the definition would be analogous.

In this thesis, we will focus on strict competitiveness as is often the case with
scheduling. There is an informal observation that supports this. The scheduling
instance can be scaled up arbitrarily and one would expect reasonable algorithm
to do the same, return a solution that is just scaled up. But then, if ALG(]) =
¢ - OPT(I) + € for some ¢ > 0, we can scale I up to I’ by s = (o + 1)/e and get
ALG(I') = s - ALG(I) = s - (¢-O0PT({)) + s-€ = c-OPT(I') + (aw + 1). So ALG is
not c-competitive. This shows the additive factor does not help, at least with the
forementioned assumption about algorithms.

Further on, we will usually omit the word strict for strict competitiveness and
always use non-strict for the other case.

1.2 Scheduling

In this section we will provide all necessary definitions related to PSMJ that we
will use throughout the thesis. Notice that the following definitions and notation
are focused on PSMJ specifically which means they do not necessarily capture all
other variants of scheduling.

Definition 1.4 (Job, Instance). Job j is determined by three numbers, s; is its
size, p; its processing time and r; its release time. We say that j is a copy of
[s,p,r], or j < [s,p,7], if s;, =s,pj =p and r; = 1.

The volume of a job j, denoted by Vol (j) is s; - pj. The volume of a set of
jobs J is Vol (J) = 32, Vol (j).

An instance I for an (online) scheduling problem is a finite set of jobs and the
instance part released at time t is a set I(t) ={j € I | r; =t}.

By Longest (J, k) we denote the k-th longest processing time in a set of jobs J
or zero if |J| < k.

For any set of jobs J, by J* we denote the set {j | j € J,s; =k} of jobs in J
of size k.

We will also say that one job is longer than another job if its processing time
is bigger.

Definition 1.5 (Schedule, Makespan). A schedule for m processor system and
instance I is a function S = S(t) that assigns a set of jobs to any time point
t € Ry. The occurrence of a job j in the schedule is a set ST = {t | j € S(t)}
and we require that S7 is a union of a finite number of intervals [t,t') (we allow
only finitely many preemptions). By |S?| we denote the sum of lengths of these
intervals.

The schedule is feasible if for every t,3;csw) sj < m (jobs fit on the proces-
sors), S(t) C Up<, I(t') (jobs were already released) and |S?| < p; (job was not
running after it was finished).

The schedule is complete if it is feasible and for all jobs j € I it is true that
|S9| = p;. Otherwise the schedule is incomplete.

The completion time of a job j in a complete schedule is C;(S) = sup{t|j €
S(t)}.

The makespan (or a length) of a complete schedule is Cyqr(S) = max{C;(S) |
jel}.

Definition 1.6 (Restricted schedule, Remaining instance). By restricting the
schedule S to a time interval [t,t") we get a schedule Sy such that Sy (t") =
St"+1t) if t" < t' —t and Sy (t") = 0 otherwise. Moreover, we denote by
S<t = S the schedule up to a time t.

The remaining processing time of a job j at time t (with respect to some
schedule S) is p;(S,t) = p; — |S%].

The remaining instance at time t is the set of jobs

R(‘S?t) - {](Sv t) — [Sjvpj(sj)vrj} |] S U I(t/)apj<‘9= t) > O}

<t
We call the jobs in R(S,t) pending.

A feasible schedule is complete if there is a time ¢ such that the remaining
processing time p;(.5,t) is zero for every job j in the instance. The makespan of
the schedule is the minimum such t.

In literature on scheduling we often meet a three field notation a | 8 | «y for the
various scheduling problems. The problem PSMJ can be written in the three field
notation as P | sizej, r;, pmtn | Cyq,. Here a = P means that the processors have
the same speeds. Other possibilities, such as o = @), = R indicate problems
were the processors have different speeds, possibly in a different way for every
job. We will also use @« = Pm to indicate that the number of processors m is
a constant, rather than given to the algorithm at the beginning. In g we have
several components, size; stands for the fact that the jobs are multiprocessor,
i.e., their sizes can be bigger than 1, r; indicates that jobs have release times and
pmtn means that preemption is allowed. In different problems, § can include
other indicators such as d; to denote jobs have deadlines. At last, v is the
optimization part and v = ()4, means we want to minimize the makespan of the
schedule. Other possible objective functions are for example maximum latency
or average completion time.

Let us now formally define the problems we approach in this thesis.

Problem 1.7 (PSMJ, P | size;,rj,pmin | Cpas). The problem is a minimization
problem defined by a quadruple (Z, F, o0, min) as seen by the Deﬁm’tz’on. HereZ
is the set of all instances, where instance contains also the number of processors m
given to the algorithm at the beginning, F is the set of complete schedules for m
processor system and o is the function that returns Ciuq, for such schedule. See

Definitions for the definitions of instance, complete schedule and Chyqy.

We consider this problem both in the offline and online models. The online
model we consider is as defined in the Definition [1.3|and corresponds to the online
scheduling model jobs arriving over time. Other online scheduling models are not
included in this thesis, see for example Sgall [1996] for their definitions.

Often our results apply only to some special cases of PSMJ, i.e., with some
restrictions on the allowed instances. We will denote such special cases with
PSMJ(restrictions). E.g., PSMI(m = 5,p; = 1,size; € {1,2},7; = 0) corresponds
to the problem P5 | size; € {1,2},p; = 1, pmin | Cpay.

Our main focus in this thesis will be on the following two special cases of PSMJ.

Problem 1.8 (PSMJ(m const., size; € {1,2})). The same as Problem[1.7 but the
number of processors m is a constant and sizes of jobs are restricted to one and
two. In the the three field notation this is Pm | size; € {1,2},rj, pmitn | Cyas.

6

Problem 1.9 (PSMJ(m = 4, size; € {1,2})). The same as Problem[1.§ for m = 4.
In the three field notation it is P4 | size; € {1,2},r;,pmin | Chay.

Notice that any theorem that can be stated for Problem i.e., universally
for every m, also applies to the Problem with m = 4. In these cases we will
only state the result for the former, more general, problem.

Our goal is to find online algorithms for these problems with competitive
ratios as good as possible. To avoid some technicalities and make the goal of
finding an algorithm a bit easier, we will relax our requirements on the algorithm
and we will focus on nearly online algorithms.

Definition 1.10 (Nearly online algorithm). For scheduling problems with jobs
arriving over time, including problem PSMJ, a nearly online algorithm is an online
algorithm that is, at any time, also given the next release time of future jobs in
the instance.

In the context of nearly online algorithms, online algorithms from the Defini-
tion are sometimes called fully online. Of course, giving an algorithm more
knowledge gives it more power. But to see that the advantage is insignificant,
refer to the following theorem mentioned in Sgall [1996].

Theorem 1.11. For any non-strictly c-competitive nearly online algorithm ALG
for PSMJ there is a non-strictly c-competitive fully online algorithm ALG’ for PSMJ.

For any strictly c-competitive nearly online algorithm ALG for PSMJ there is
a strictly (c + €)-competitive fully online algorithm ALG’ for PSMJ.

Proof. We will choose some 6 > 0 and adjust the instance by adding a job with
zero processing time at every integer multiple of 9. Furthermore we will delay
the release time of every job in the original instance by §. We can easily make
both of these adjustments to the instance online and at any time point, we know
what is the next release time. So we can run the nearly online algorithm in
the background. The optimum makespan of the adjusted instance is longer by
exactly 0 and so our algorithm returns a schedule of length at most ¢+ (OPT+0) +
a=c-0PT+ (c- 0+ «). We allow an additive factor independent of the instance
so our algorithm is again non-strictly c-competitive. This proves the first part of
the statement.

In the second case we can wait until the first job j is released and then set
d = (¢/c) - p; and continue by the same algorithm as above. The makespan of the
received schedule will be at most

c-(0PT+6)=c-0PT+c-0=c-0PT+e€-p; <c-0PT+e€-0PT = (c+e¢)-OPT.
and the second part of the statement is also proved. O

Fully online and nearly online algorithms would also become equivalent if we
allowed infinite number of preemptions or some other form of time-sharing (more
jobs using the same processor at reduced speed).

In the following text, when we speak about algorithms to online problems,
we will mean nearly online algorithms, unless specified otherwise. Notice that by
allowing nearly online algorithms, we could change the Definition of online
algorithms to contain only finitely many interactions. Then interaction would

7

consist of giving the algorithm newly released jobs and the next release time (if
there is any) and the algorithm would return a schedule from now until the next
release time.

The following definition is an example of a resource augmentation. In the
case when solving the original problem is too hard, for example when there is no
constant competitive algorithm, we may provide our algorithm additional power
over the offline optimum that is used for comparison with our algorithm when
computing the competitive ratio. This can mean providing our algorithm with
additional processors, or, as in our case, providing faster processors.

Definition 1.12 (Speedup model). Let v > 1. We call this number a speedup.

Let I be an instance of PSMJ. By I}, we denote a downscaled instance by
a factor of v, i.e., the same instance but with processing times of jobs multiplied
by 1/v.

We say that a schedule is complete for I in the v-speedup model if it is a
complete schedule for Iy,. This corresponds to the fact that on v-times faster
processors all jobs are finished.

An algorithm for PSMJ in the v-speedup model is c-competitive if it always
returns a complete schedule in the v-speedup model with makespan at most c-
times the optimal offline makespan.

We also define the remaining processing time in the v-speedup model of a job j
at time t with respect to schedule S as p}”(S, t)=p;,—v- 1S2,| and the remaining
mstance as

RY(S,t) = {57(S,t) + [s; 0" (S,), m5) | 5 € U 1(t'),p}" (S, 1) > 0}.
t'<t

We see that a remaining processing time of a job in the v-speedup model
reflects the fact that the processors are v-times faster. Complete schedules again
correspond to feasible schedules for which there is some ¢ such that the remaining
processing times at time ¢ are zero for all jobs in the instance.

Speedup model is an interesting resource augmentation model on its own but
for us it will be mostly a tool for finding c-competitive algorithms, as enabled by
the following theorem.

Theorem 1.13. For any algorithm ALG for PSMJ that is 1-competitive in the
v-speedup model, there is a v-competitive algorithm ALG’ for PSMJ.

Proof. We will describe ALG’ directly. We will run ALG in memory at slower rate
and return the schedule of this algorithm. More specifically, at time ¢ we will
return S’(t) = S(t/v), where S is the schedule produced by ALG and S’ is the
schedule produced by ALG’. We can do this because at time ¢t we know the input
I(t/v), as v > 1. From l-competitiveness of ALG we know that the makespan of S
is at most OPT and so S_gpr = S. That means that for every job 7 we have

1S om) = v |SLopr| = v+ 8] = v- L = p,

The first equality follows from the fact that Sg(v.t) ={v-t'|t e S} and
one before last equality follows from the fact that S is a complete schedule in the
v-speedup model.

This means that the makespan of ALG’ is at most v - OPT and so ALG’ is
v-competitive. 0

2. Previous work

In this chapter we discuss previous work related to the problem PSMJ. As there
are so many variants of scheduling, there is a lot of results in this area and there
is not enough space in this thesis to capture the state of the art for all of it. So
we will focus only on the results that are strongly connected to PSMJ. Either
because they speak about this problem directly or because we use them, or the
techniques from their proofs, in our results later in the thesis. With this in mind,
we will only include the proofs if they are simple enough and relevant and we
will edit the statements and the proofs, compared to what can be found in the
original work, so that it matches our needs as much as possible.

Drozdowski [1996] gives a nice overview of multiprocessor scheduling. Later,
several books were written to capture the state of the art of scheduling. For
example the Handbook of scheduling by |Leung| [2004] and most notably its chapter
on Online scheduling by Pruhs et al|[2004], a chapter on On-line scheduling by
Sgall [1996] in the book Online algorithms, state of the art and Scheduling for
parallel processes by Drozdowski [2009).

As we said, we will focus only on problems highly relevant to PSMJ. Specifi-
cally, we will include only the results about problems that have the same objective,
i.e., minimizing the makespan and where preemption is allowed.

We only focus on preemptive scheduling as the non-preemptive version be-
haves very differently. For example consider the problem of scheduling sequential
jobs (jobs with size 1) without release times, i.e., P | (pmitn) | Cpar. Whereas
the preemptive version can be solved optimally even online (with release times,
see Sahni and Chol [1979]), its non-preemptive counterpart is strongly NP-hard
(by a reduction from 3-partition).

The following results are split into two sections, offline and online scheduling.

2.1 Offline scheduling

The study of offline algorithms is very important for the online version of the
problem, as we will see later on. It should not be too surprising as we compare
the online algorithms to offline optimums and so offline algorithms can give us
insights for the analysis of our algorithms.

The following result from McNaughton| [1959] is one of the first in the area
and it has been used in many later results. It will be, along with its proof, of
a considerable importance in this thesis as well.

Theorem 2.1 (McNaughton). Let us have a set of sequential jobs J with release
times 0, i.e., an instance of PSMI(size; = 1,7; = 0), or equivalently P | p;, pmin |
Cinaz- Then there exists a schedule of length | if and only if p; <1 for every j € J
and Vol (J) <m - 1.

Proof. 1t is clear that both conditions are necessary. For the other direction, let
us construct the schedule by adding the jobs to it one by one. By induction, we
will prove that at any point the schedule is feasible and some of the processors are
entirely filled up, some are entirely empty and at most one processor is partially
filled and it is filled in the time interval [0,¢) for some t. Let us denote the jobs

9

J1,J25 - - - jn. Before adding the first job, the schedule is empty and therefore the
induction hypothesis is true. Let us now suppose it is true after adding jobs with
indices 1,...,7 — 1 and now we want to add a job j;. Because Vol (J) < m - we
know there is enough space in the schedule for the job, so specifically, at least
one processor is not entirely filled up. Let P be the processor that is partially
filled, or if it does not exist, one of the empty processors. Let ¢ be the number
such that P is filled on the time interval [0,).

If p;, <1 —t then we can schedule job j; on P on the interval [t,t + pj,).

In the other case, if p;, > | —t we choose t' = p;, — (I —t) and we schedule j;
on P on the interval [¢,1) and on @ on the interval [0,¢"). The schedule is feasible
because t' =p;, — (I —t) <l - (Il —-t) =t

In both cases job j; is now in the schedule, the schedule is still feasible and at
most one processor (P in the first case and) in the second case) is only partially
filled on some interval [0,¢). This concludes the induction and also the proof. [

Let us highlight the scheduling algorithm from the proof above, as it will be
used later in this thesis. It is called McNaughton’s rule algorithm and it schedules
the jobs one by one, putting them on the processors from top to bottom, from
left to right and wrapping them around the edges when necessary.

The following result moves us closer to PSMJ, as it solves the offline version of
the problem, at least for a constant number of processors. [Blazewicz et al.| [1986]
provide a linear program for the problem Pm | sizej, pmtn | Cpqq. Its complexity
is O(poly(n™)) as it contains a variable for any set of jobs that can be scheduled
on m processors at the same time. Although originally the LP formulation does
not account for release time, it can be easily adjusted to contain them (this is
mentioned in Drozdowskil [2009)]).

Later, Jansen and Porkolab| [2000] came up with a more subtle technique,
again based on linear programming, that achieves a better performance of O(n +
poly(m)) for the same problem. For us, the important part is just the following
theorem.

Theorem 2.2. Problem PSMI(m const.), i.e., Pm | size;,rj,pmin | Cpa, can be
solved offline in polynomial time.

Notice that if m is part of the input, rather than a constant, the problem
becomes NP-hard. Actually, the problem remains NP-hard even in the case of
sequential jobs and in the absence of release times, as shows the following theorem
by Drozdowski [1995].

Theorem 2.3. Problem PSMI(size; = 1,7; =0), d.e., P | size;,pmtn,p; = 1 |
Crnaz 18 NP-hard.

This suggests the problem becomes considerably harder when m becomes
part of the input. Therefore, in this thesis we focus only on the case when m is
a constant.

There are some results even if we restrict the problem PSMJ further, in the
direction towards Problems and with the condition size; € {1,2}. Even
though the problem is solved from the computational complexity view by the
Theorem even without this restriction, the following results are of importance

10

for us. The problem with the linear programming solution in the Theorem is,
as is often the case with linear programming, opaque and does not shed any light
on how to solve the online version of the problem. On the contrary, the following
results provide us with combinatorial insight into the problem, which we will use
later in this thesis.

Specifically offline version of PSMI(size; € {1,2},r; = 0), i.e., the problem of
preemptive scheduling of multiprocessor jobs without release times with jobs of
sizes in {1, 2}, is solved in Blazewicz et al.|[1984]. That was later generalized to
sizes {1, k} in Blazewicz et al|[1986]. These results were further generalized in
Blazewicz et al. [1990], resp. Blazewicz et al. [1994], to uniform duo-processor,
resp. k-processor, systems, in which processors are in groups of two, resp. k,
processors with the same speeds within the group but with different speeds across
the groups.

The following results are all from Blazewicz et al.| [1986].

Theorem 2.4 (A-schedule). Let I be an instance of PSMI(size; € {1,k},r; = 0),
i.e., P|size; € {1,k},pmin | Cpayp. An A-schedule is a (preemptive) schedule of
some length | that we get when we apply McNaughton’s rule first on the I* jobs
on the time interval [0,1) and then on the I' jobs (for every job in I' we start
processing it at the first time t with the least number of used processors and when
moving from left to right or wrapping around the edge, we always schedule the
current job on the topmost empty processor).
For any feasible schedule there exists an A-schedule of the same length.

Theorem 2.5. Let I be an instance of PSMI(size; € {1,k},r; =0), or equiva-
lently P | size; € {1,k},pmitn | Crap. Also, let

Vol (1*)
Y - T,
C = max {VOTITL(]) , };, Longest (1, 1)} ,
7]
Y
r=1la

(i —mq)Y + 3% _, Longest (I',4)
(z—ml)f—i—z .

If f = |m/k] then the length of the optimal preemptive schedule is C¥,,,. = C.

max
Otherwise it is

*
C - maX{O, le_l,_]_, le_;’_Q, e ,Om1+k_1}.

max

Combining these two theorems we get the following corollary that there is
a fast and simple algorithm for the problem PSMI(size; € {1,k},r; =0). First
compute the value C* from Theorem and then construct an A-schedule of

max

this length according to Theorem [2.4]

Corollary 2.6. There is an O(n) algorithm for PSMI(size; € {1,k},r; =0), i.e.,
P | size; € {1,k}, pmin | Cpas.

11

2.2 Online scheduling

As in the section on offline scheduling we start with a result on sequential jobs.
This already brings us close to the PSMJ problem as omitting release times would
bring us back to the offline section. Already in [Sahni and Cho| [1979] we can
find a nearly online 1-competitive algorithm for the problem @ | r;, pmtn | Cpqa,
that is on a uniform multiprocessor system — a system of processors that can
have different speeds. Later, for the case when processors are identical, i.e., for
P | rj,pmtn | Chaq, this was improved to fully online 1-competitive algorithm
by Hong and Leung| [1992]. Both of these algorithms know the optimal offline
makespan but they only use it for testing of infeasibility.

The result of Hong and Leung [1992] is now only a special case of the following
theorem by |Sgall and Woeginger| [2015]. This theorem characterizes, for every m,
for what sets of allowed sizes there exists a 1-competitive nearly and fully online
algorithm.

Theorem 2.7. For a number m of machines and a size s, we define the rank of s
relative to m as R(s,m) = [m/s]. In other words, R(s,m) denotes the maximum
number of jobs of size s that can be processed simultaneously on m machines.

A size s is called fat for m machines if s > 5 (so that s has rank 1), and it is
called skinny if s < % (so that s has rank at least 2). For a set S C {1,2,...,m},
we denote by S~ C S its skinny elements and by ST C S its fat elements. Jobs
are called fat respectively skinny if their size is fat respectively skinny.

Let m > 1 be the number of machines and let S C {1,2,...,m} be the set of
possible job sizes. There exists a 1-competitive nearly online scheduling algorithm
on m identical parallel machines with job sizes in S, if and only if the following
two conditions are both fulfilled:

(c1) All a,b € S~ satisfy R(a,m) = R(b,m); in other words, all skinny sizes in
S have the same rank relative to m.

(c2) All a,b € S~ and all ¢ € ST satisfy R(a,m — ¢) = R(b,m — ¢); in other
words, whenever a fat job blocks some of the machines, then all the skinny
sizes in S have the same rank relative to the number of remaining machines.

Furthermore there exists a 1-competitive fully online scheduling algorithm on m
identical parallel machines with job sizes in S, if and only if conditions (c1) and
(c2) together with the following condition (c¢3) are fulfilled:

(¢3) Allc € ST and all a € S~ satisfy R(a,m —c¢) =0 or R(a,m) = 2.

The result gives us the following corollary, that also serves as a justification
for us to focus on the problem PSMJ(m = 4, size; € {1,2}) in this thesis.

Corollary 2.8. There is a 1-competitive nearly online algorithm for the problem
PSMI(m < 3).
There is no 1-competitive algorithm for PSMI(m = 4, size; € {1,2}).

The Theorem does not say anything more specific about the competitive
ratios when there exists no 1-competitive algorithm. Some competitive ratios
are known nevertheless. Specifically, |Johannes| [2006] shows that List Scheduling

12

is (2 — 1/m)-competitive for PSMJ. The List Scheduling algorithm dates all the
way back to (Graham| [1966] and a competitive ratio of (2 — 1/m) was proven
in that paper (with a different terminology, though, as the definitions of online
algorithms and competitiveness were not used at that time) but only for the case
of sequential jobs and non-preemptive schedules.

The List Scheduling algorithm takes the jobs in an arbitrary order (adding
newly released jobs at the end of the list) and whenever there is some event (a job
finishes or a new job arrives), first m jobs in the list are scheduled.

Theorem 2.9. The algorithm s;-list-scheduling is a List Scheduling algorithm
that always sorts the list of available jobs in a non-increasing order by their sizes.

For an instance of PSMJ, the length of the schedule constructed by s;-list-
scheduling algorithm is at most 2 — % times the optimal makespan.

This can be applied directly to problems PSMI(m const., size; € {1,2}) and
PSMJ(m = 4, size; € {1,2}).

Corollary 2.10. The competitive ratio of PSMI(m const., size; € {1,2}) is at
most 2—1/m. The competitive ratio of PSMI(m = 4, size; € {1,2}) is at most 7/4.

The competitive ratio of the s;-list-scheduling algorithm is exactly 2 —1/m as
can be seen by the construction provided already by (Graham [1966]. Let us have
m(m — 1) sequential jobs with processing time one and one job with processing
time m. The optimal schedule is of length m but as the long job is the last one,
the schedule produced by the s;-list-scheduling algorithm will have a makespan
of length 2m — 1.

Johannes| [2006] also provides an example that proves that no non-preemptive
List Scheduling algorithm (no matter how the list is sorted) can have a competi-
tive ratio better than 2 — 2/m.

Last but not least, |Johannes [2006] also gives a lower bound using the following
example.

Example 2.11. There are four processors. Consider the instances

I~ = {A«[1,2,0],B, « [2,1,0], B « [2,1,0]},
I = I"U{C+«[3,21]}

Recall that [s,p,r| stands for a job with size s, processing time p and release
time 1.

Claim 2.12. Any online algorithm achieves a competitive ratio no less than 6/5
on at least one of the instances I~ I from Example|2.11]

As we will see later in Corollary [4.5] this claim is actually false.

13

3. Optimal schedules

In this section we present several results regarding offline and online optimums.
The purpose is to make the analysis of both lower bounds and algorithms simpler.
We also introduce some kind of “normal form” for schedules, called P-schedules.
It is a set of rules the schedule needs to comply with, chosen such that any
schedule can be transformed into a P-schedule without making it any longer and
such that it is as simple as possible.

We start with a section on optimum for jobs without release times, for the case
m = 4. We interpret previously known results in a more usable way. Then there
are two sections, on offline and online schedules, that examine the restrictions

we can put on optimal schedules, leading to the already mentioned definition of
P-schedules.

3.1 Optimum for jobs without release times

One reason why the problem P | pmitn | C,q is so simple is because the makespan
of the optimal schedule can be described as max(Longest (/,1), Vol (I)/m), an
easy and descriptive formula. When we move to jobs with arbitrary sizes there is
probably no such nice description of the makespan. Even if we restrict the sizes
of jobs to two values 1 and k, the description we get, see Theorem [2.5] is not as
nice. But if the sizes are 1 and 2 and m = 4, the situation gets better.

Definition 3.1 (Lower bound values). Let I be an instance for the problem
PSMJ(m = 4, size; € {1,2},7; =0). We call the following values lower bound val-
ues

By(I) = Longest (I',1) (3.1)
Br(I) = Longest ([2, 1) (3.2)
Vol (1
By(1) = Y2 (33)
Vol (I?) + 2 - Longest (I', 1
By (1) = z) 1 gest (1, 1) (3.4)
Vol (I?) + 2 - (Longest (I', 1) + Longest (I*,2) + Longest (I, 3))
By yy(l) = 6
(3.5)

When the instance is clear from the context, we omit it and write just B
instead of Bj(/) and the same for the other lower bound values.

We call By, By, By, Byz2,;, By2.3 lower bound values because, as the next
theorem states, they provide a lower bound on the makespan of a schedule for
instance 1. We already know this is true for B;, By and By, the length of the
schedule needs to be at least as long as the longest job and also the volume of
the jobs needs to fit in the space on the processors. We will interpret By2,; and
By, 3 as well, it will be just a little bit more complicated.

The value By2y; corresponds to the case when we have one job of size 1 much
longer than the other jobs of size 1. E.g., if there is just one job of size 1. For

14

HU-
= =

Figure 3.1: On the left we can see an instance I and on the right a schedule S*
with optimal makespan for this instance. Notice that B;, By, By and By2,; are all
smaller than the makespan of this schedule but the schedule cannot be made any
shorter. It is an example of an instance where the optimal makespan is defined
by the value By2, 3.

the sake of computing a lower bound, we now forget the remaining jobs of size 1.
Then because m is even and all the remaining jobs have size 2, whenever we run
this job, there is at least one empty processor. So it is the same as if we had this
job twice in the instance. If we apply bound By on this adjusted instance we
get exactly Byz2,;. We can compute that the idle time on instance [is at least
Byz24; — By = Longest (I',1) — 332, Longest (I, k) (this is the amount of time
we need to run the longest job and no other job of size 1).

For the interpretation of the value By, 3 consider the following instance. The
jobs I? have volume Vol (I?) < 2 - C* . and they are on the first two processors
on the interval [0,¢) for ¢ = Vol (I?)/2 (we can assume that they are only on
the first two processors because otherwise we can swap parts of the schedule to
achieve this) and we have three small jobs ji, j2, j3 such that p;, = pj, = pj; >
2Vol (I?). Notice that in this instance By, Br, By24; < By. So if there is some
idle time in this instance it is because of a different reason than the reason behind
By, By, By2,;. And there is some idle time in the instance because in the time
interval [t,C},.) there are four processors but only three jobs that can run on
them. See Figure for an example of instance where By, 3 defines the optimal
makespan.

To understand the exact value of By23 we denote X = Vol (I?) (sot = X/2)
and Y = Longest (I',1) + Longest (I',2) + Longest (I',3). We see that Y/3 is
the average of the three longest jobs and that is certainly a lower bound on
Crue- Now we have to take X into account. Notice that when jobs of size 2 are
running, only two instead of three processors can be used to run the three jobs of
size 1. So to process the whole volume Y the schedule needs to be long at least
t+ (Y —2-1)/3=X/64+Y/3 = By2,3.

We informally showed that the lower bound values are really lower bounds
for the makespan for an instance of PSMJ(m = 4, size; € {1,2},7; = 0). In fact,
the makespan is determined by these values which is stated in the next theorem.

This result is a direct consequence of Theorem [2.5| by Blazewicz et al.| [1986].

15

Theorem 3.2 (Offline optimum with lower bound values). Let I be an instance
of PSMI(m = 4, size; € {1,2},r; =0). Then

C, = maX(BbBLaBV7BV2+lyBV2+3l)'

max

PT'OOf. Let C' = maX(Bl, BL, Bv, BVQ-H? BV2+3l)'
We apply Theorem [2.5] In the notation of this theorem we have

2
v — VOIQ(I)’ (3.6)

C = maX(Bl, BL, Bv), (37)

Y
r=lel (3.8)
mi=m-—(f+1)-2, (3.9)
mi1+1 -
oy = Y + > Longest (17, 1)7 (3.10)

f—i—m1+1

where the term Y/(|m/k]) is missing from the maximum when computing C
because the term is at most By. Obviously f is either 0, 1 or 2. If f = 2 then
Vol (I') = 0 and by Theorem Cr .. = C. On the other hand, in this case
By2,; < By and By2,3 < By so C = C' and we have C, . = C'" as we wanted.

If f < 2 then C},, = max(C,Cp,41). First let f = 1. Then m; = 0
and Cp,, 41 = C; = (Y + Longest (I',1))/2 = By24;. So to have C* = ('
we just need to show Bya,y < C¥ . From f = 1 we have Y > C or also

Vol (I?) > 2C > 2By = Vol (I?)/2 + Vol (I')/2 so Vol (I?) > Vol (I'). Using this
we get

2 . 1 3 2\ | 3 1
Vol (1)+62 Vol (1) < 5 Vol (1):3—2\/01 (I') _ By <Cc<Cn
Now let f = 0. Then m; = 2 and C,,, 11 = C5 = By2,3. So we just need
to show Byzy; < Cf,... But f = 0 means Y < C' < By or also Vol (I%)/2 <

By2yg <

(Vol (I*) + Vol (I')) /4, so Vol (I?) < Vol (I'). If Vol (I') < 2-Longest (I',1) then
By24; < (Vol (I') 42 - Longest (I',1))/4 < 4 - Longest (I',1)/4 = B, < C?*, .. and
otherwise Byz,; < (Vol (I%) + Vol (I'))/4 = By < C: O

max*

Now we know how to compute the optimal makespan in a way that provides
some structural insight. We are still missing understandable offline algorithm
for the problem PSMJ(m =4, size; € {1,2}), though, as the previous theorem
does not account for release times. We might not be able to construct such an
algorithm but in the following section we at least make some assumptions on how
the optimal schedule will look. That in turn can help us when we design an online
algorithm with similar properties because in the analysis of the algorithm we can
compare to this offline optimum and the common properties will hopefully make
the analysis of the algorithm simpler.

3.2 Offline schedules

When we are deciding what jobs to run, it makes sense to run the longest jobs, as
long jobs can have big completion times and that in turn leads to big makespan.
This idea is supported by the following lemma.

16

Lemma 3.3 (Convexity). Let I = J U {j1 < [s,p1,0], 72 < [s,p2,0]} and I' =
J U] < [s,01,0], 75 < [s,15,0]} be two instances of PSMJ, such that py > p} >
Py > pa and p1 + pe = py + ph. For every complete schedule S for I there is
a complete schedule S’ for I' with the same makespan.

Proof. Let K = S71\ 572 be the parts of the schedule where j; is scheduled and j,
not and L = S/t N S72 the parts of the schedule with both of the jobs scheduled.
We know |K| = |S7t\ §%2| = |S7t| — |S7t N S%2| = p; — |L| > p} — |L|. Note that
Py —|L| > pi—p2 > 0, so there exists a time ¢ such that |[K'N[0,¢)| = p| —|L|. We
create S” as a copy of S (jobs ji and j} are scheduled at the same places as j; and
Jo in S) and only change the processing of job j| to jj for every t € K N [t, 00).
We get |S71] = |S¥1\ S¥2| + |57 N S72| = |K N[0,t)| +|L| = p| and because the
overall amount of processing of jobs ji and 7} remained the same as the overall
amount of processing of jobs j; and js and because p}| + py = p; + p2, we know
also |S"2| = pl,. The schedule is feasible as we only changed the processing of the
job 71 to j5 in the time intervals not yet containing j5. O]

This can be also interpreted as follows.

Corollary 3.4. Let I and I' be as in Lemmal[3.5 Than C;,,,(I') < Chhop(1).

max max

This shows that among the jobs of the same size, it is always better to run
a longer job than a shorter one. This can be generalized to more than two jobs,
we can use it to say what are the best jobs to run if we know how many processors
should be reserved for every size of jobs. Before stating and proving this result
formally, we will need some definitions.

Intuitively, we try to imagine what is the best option for the offline optimum
so that the remaining instance has the smallest possible makespan. The convexity
tells us that we do not want long jobs and small jobs but rather jobs of equal
length. So the “best thing to do” is to run the longest job until it is equal to
the second longest job, than run both of these until they have the same length
as the third longest job etc. Of course if we are creating a part of the schedule of
length A, we cannot run any job longer than that and we cannot process more
volume than m - A. With this in mind we can define a requested instance for a
set of jobs, representing the best possible choice of jobs to run.

Definition 3.5 (Level, requested instance). Let J be a set of jobs, m > 1 be an
integer and A > 0 be a real number.
We define a level L, to be the smallest non-negative real number such that

V(L) :==> max(0,s; -min(A,p; — L)) =m - A, (3.11)

jedJ

or LX =0 if does not have a solution for L > 0.

For every job j € J we call ¢y = max(0,min(A,p; — L)) its requested
processing time.

Let V{ = V(LX) denote the requested processing volume.

Let T = {i\ < [sj,qr,7] | 7 € J} denote the requested instance.

17

Theorem 3.6. We can compute the value LL in polynomial time.

Proof. For every j € J we try to set L to the two numbers p; and p; — A. In
both cases we check the value V(L) and compare it to m - A. The function
V(L) is non-increasing so whenever it is bigger than m - A, we know L is too
small and otherwise it is too big. This in turn indicates if qJA =0, qJA =s5;-A
or q£ = s;-(p; — L) so becomes just a linear equation in L or L gets
cancelled. In the second case if we get false equation, it means does not
have a solution and we return Li = 0. Otherwise we know ¢t < L < t' (where ¢
and t’ are some of the values we tried to substitute for L, ¢ can also be co) and
we return L{ = t. O

Notice that the previous algorithm can be implemented in O(|.J|log|J|) time
if we sort the set of numbers {p;,p; — A | j € J} and then binary search the
neighbouring values in this set between which L lies.

Theorem 3.7 (Requested instance properties). Let J, A, L, qa, V{ and ZX be
as in the Definition|3.5. Then

Longest (Zi, 1) <A (3.12)
Vol (74) = V4. (3.13)

Vol (Z) <m - A. (3.14)
pj—qr < LA = ¢4 =0, VjeJ (3.15)
pi—qr > LA = qh=A VjeJ (3.16)

Proof. For (13.12) we notice that
q]A = min(maX(()? A)7 maX(07pj o Li)) = min<A7 maX(Oupj o Li))?

so ¢ < A for every j € J. Thus Longest (Ii, 1) = max{q\ | j € J} <A.

The equation follows straight from the definitions.

Now we will prove (3.14). If LA > 0 the inequality holds (with equality)
directly from the Definition . So we can assume L = 0. Suppose for con-
tradiction that does not hold, i.e., V(0) = V(LX) > m - A. From the
Definition 3.5 this means V(L) = m - A does not have any solution for L € Ry .
Obviously if L > p; for every j € J we have V(L) = 0. And the function V is
continuous so by intermediate value theorem there is L’ such that V(L") =m- A
and that is a contradiction.

For we know ¢4 = min(A, max(0,p; — LL)) < max(0,p; — LX) and
from the assumption ¢’ > p; — L4, so qi < 0 and so it is zero.

We are left with . We write ¢ = min(A, max (0, p; — L)) and from the
assumption ¢i < p; — LA we know ¢ < max(0,p; — L4), so ¢h = A. O

We will define the notion of ideal schedule to be a schedule that can process all
the jobs from the requested instance with a makespan of at most A. The definition
also accounts for a v-speedup model which will be useful later in Chapter [5]

Definition 3.8 (Ideal schedule). Let J be a set of jobs, A > 0 and v > 1.
Furthermore let I be as in the Definition .

We call a schedule S ideal for J and A (in the v-speedup model) if it is a
complete schedule for IX (in the v-speedup model) and its makespan is at most A.

18

Creating an ideal schedule for a set of jobs of different sizes is not always
possible. E.g., imagine m = 2, there are two jobs A < [1,2,0], B < [2,1,0] and
A = 1. Then ¢gi = 1 and ¢§ = 1/2, so it is not possible to create an ideal
schedule for this instance (without speedup) because we cannot run jobs A and
B at the same time. On the other hand if all jobs have the same size and m is a
multiple of this size, we can always create an ideal schedule.

Theorem 3.9. Let J be a set of jobs that all have some size k. Let m =k - [.
Then for any A > 0 we can create an ideal schedule for J and A.

Proof. As all jobs have the same size k and the number of processors m is divisible
by k, we can simply use Theorem , i.e., McNaughton’s rule (it is stated for
sequential jobs but we can imagine the jobs are sequential and we have only
I = m/k processors). The assumptions of the theorem are satisfied because of

(3-12) and (3.14)) from the Theorem [3.7] O

So in general it is not possible to create an ideal schedule but it is possible
for jobs of the same size. If we knew how many processors to assign to each size
of jobs, we would be able to create a schedule that consists of ideal schedules for
each of theses sizes and that in turn would lead to the best possible remaining
instance, in terms of convexity. We will state this formally in Theorem but
first, we need one more definition.

Definition 3.10 (Size signature). Let J be a set of jobs. Then 7y, called the size
signature of J, is defined as a function ;5 : k— |{j | s; = k}|, so for an integer
k it returns the number of jobs in J with size k.

Theorem 3.11. Let I be an instance of PSMJ and S some complete schedule
for I. Alsolet 0 =ty < t; < ty < -+ < tp = Cpaa(S) be time points such
that every job in I is released at some t; and for every i < x and t; < t' < t;1q
we have 15y = Tsu,). Then there exists a schedule S for I with makespan
C’mm(g) = Chnaz(S) such that Tw) = TS(t) for every t > 0 and for every t;, the
schedule S[tiyti+1)
consists of k - 75,y (k) processors and they contain an ideal schedule for R(S,t;)*
and A = ti+1 — tz

can be split into groups of processors, where for k > 1 the group

Proof. We will proceed by induction on z. If x =0 the schedule is empty and
then empty schedule meets the requirements for S. ’

Now z > 0. Let A = t1 —to, J = {Juou) < [85: [Shyuplsms] | 7 € I} and
let 7 = Tgt) (k). For every k > 1 we create an ideal schedule on my = k- 7
processors for I* and A as part of g[to,tl) using Theorem . First we will prove
that for every k these processors are full. For that we only need to verify that
Vol (IK) — V" =my - A. This is equivalent to showing that V(0) > my, - A for
V from . Notice that the schedule S has the same signature 7% everywhere
on [to,t1) and so it uses exactly my, processors for jobs of sizes k at any point in
this time interval, i.e., Vol (J’“) = my - A. As no job j € J¥ is longer than A
we know V(0) > Vol (J"“’) = my - A. This means Vol (Iik) = Vol (J"“’) and so

Vol (R(S,t1)F) = Vol (R(S,:)*).

19

Now we will proceed by a second induction, on the number of jobs j € I such
that p;(S.11) £ py(S,t).

If this number of such jobs is zero, the remaining instances R(S,t;) and
R(S’ ,t1) at time t; are the same and we can use the induction hypothesis for
r—1on S, o) to get g[thoo) (we need to shift the instance to the left, i.e., change
t; to t; — t; and also subtract ¢; from all the release times in R(S,t1)).

Now let the number of such jobs be nonzero and let j be the job in I such that
pj(S',tl) # p;(S,t1) and such that p;(S,¢;) is the largest among these jobs. Let
k = s;. We will prove that p;(S,t;) > p;(S,t). It makes sense because S’[tmtl)
was constructed such that the longest jobs are shortest possible.

Suppose for contradiction that p;(S.t1) < pj(g, t1). Then there is j' € I*

such that p;(S,t,) > p;(S,t;) because Vol (R(g tl)k) = Vol (R(S ty)* i That

means pj (S t1) < py (S, tl) < pj, ie. qA > 0. From the property (3.
Theorem [3.7| we know pj (S,ty) > LA and from the maximality of j we have
pj(57t1) > pg(Satl) > pyr (S7t1A) > pyr (Satl) > LI . But from " p](Svtl)
LY means g = A and so p;(S,t) =p; — A <p; — Pjug.eyy = Pi(S,11) which is a
contradiction. R

Now we know p;(S,t1) > p;(S,t1). Then there is j' € I* such that p;/(S,t;) <
p;(S,1;) because Vol (R(g,tl)k> = Vol (R(S, tl)’“). From (3.16)), if p;/(S,t,) >
LIAk then qg = A and so pj/(g,tl) =pj — A <py— Pif o) = p;j(S,t1) and that

is a contradiction. So p;/(S,t;) < LK. Now p,(S,t1) < p;(S,t1) < p;, 50 ¢4 > 0
and from (3.15) LY < p;(S,t1). So p;(S,t1) > p;s(S,t1). Together we have

15)) from

pj(S, tl) > pj(g, tl) > pj/(g,tl) > pj/(S, tl). (317)
Let

§ = min(p; (S, t,) — p;(S,t1),p

(S,) Py (S, t1)) (3.18)
- mln(q ~ Piyy,, fl)’pjt) JA)
Now let fl to,tl)’ f2 to,t1)7 fl [8f1 7'pf1 + 6’ rf1] and fé A [3f27pf2 - 5’ er]'
Notice that py; = pp, +0 =pj, , , +6 < gy < Aandpy =pp, —0 < Piy oy S A.
Furthermore, let J' = J\ {f1, fo} U{f1, f5}. We see that J' satisfies the
conditions

Longest (J',1) < max(Longest (J,1), psr, pp) < A,
Vol (J') = Vol (J) = py, — pp, + pgy + pgy = Vol (J) <y - A,

so we can use Theorem [2.1| to create a complete schedule S[’t) of jobs J'.

We want to use Lemma (convexity) to create Sp,) out of Sy, o). We
will prove the assumptions of this lemma are satisfied for the remaining instance
at R(S,t;) and R(S’,t;) and jobs j; = j(S,t1),752 = 7(S,t1), 7 = 7(5',t;) and
Jby = j(S’,t3). Let these jobs have processing times pi, po, p}, ph respectively.
First notice that R(S’,t1) = R(S,t1) \ {j1, 72} U {4}, j5} so we only need to prove
p1 > Py > phy > pe and p) + ph = p1 + po (the lemma is stated only for instances
with release times zero but we as all the jobs ji, ja, J1, 74 Were released before time
t1, we can assume that). We see that p; = p;, = p,(S,t1),p2 = pj, = py(S,t1)

20

and p} = p; (S, t1) = p;(S,t1) — 0, py = pyr(S',t1) = pj/(S,t1) + 6. So obviously
P+ 1y = p1+ e
By combining (3.17)) and (3.18)) we get

pi(S,t1) > pi(S,t1) — 6 > p;(S,t1) > py(S,t1) = py(S,ta) +6 > py(S, 1),

ie., p1 >py > p;i(S,t1) > py(S,t1) > ph > pa.

We see that the assumptions of Lemma are satisfied and so we get S[’thoo)
of the same makespan as S|,). Now because of the choice of § we will have
cither p;(S',t1) = p;(S,t1) or p;: (S, 1) = p;s(S,t1). In both cases the number of
jobs with different processing times at time ¢; is smaller by one and we can use
induction hypothesis on S’ to get S, 0

The previous theorem shows that if somebody gave us the size signature of
an optimal schedule, we could construct a (possibly different) schedule with the
optimal makespan. So the search for an optimal algorithm narrows down to
deciding a correct size signature. For the problem PSMJ(m = 4, size; € {1,2}) we
can narrow it down even more.

Theorem 3.12. Let I be an instance for the problem PSMI(m = 4, size; € {1,2})

and let S be a complete schedule for I. There exists a schedule S with a makespan
of at most Ci,q.(S) that for every t satisfies

Vol (R(8,)?) >0 = S(t)N 1% # 0.

Proof. We split the schedule S into maximal intervals [¢, ') such that S(t") = S(t)
for every t” € [t,t') and release time of every job is not in the middle of any
interval. Let B(S) C I? be the set of jobs of sizes two such that for j € B(S)
there is a nonempty set of intervals TW(j) on which j is scheduled and such
that for each w € W(j) there is a nonempty set of intervals V(w) such that
every [t,t') € V(w) is between r; and w and only small jobs are in S(t). Let I
be fixed and let us have any ordering on I2. We will proceed by induction on
(|IB(S)|, [W(5)],]V(w)|) where we compare the triplets lexicographically, j is the
first job in B(S) (in the chosen ordering) and w is the first interval in W ().

If |[B(S)| = 0 then S satisfies the conditions for S.

Otherwise let j € B(S) be the first job in b, w = [ty,t3) the first interval in
W(j) and v = [tg,t;) the first interval in V(w). Let 6 = min(t3 — to,t1 — to)
and w' = [t3 — d,t3) and V' = [to,to +). We denote t, = t3 — 0. Notice that
by the choice of § either w' = w or v/ = v. Let S(ty) = {a1,as,as,as} be the
four jobs of size one (if there are less than four jobs running, we will create
imaginary jobs representing the idle time). As j € S(t}) and j & S(tg) we know
|S(to) N S(t5)] < 2. So at least two of the jobs ay,as, as, as are not in S(¢,) and
we can swap their occurrence in v" with 7 in w’ to get a schedule S’.

If w = w' this means that |[W(j)| is smaller by one (or if it is zero, |B(S")] is
smaller by one). Otherwise w # w’ and v = v' means that |V (j)| is smaller by
one (or if it is zero, |W(j)| or potentially |B(S)| is smaller by one). In all the
cases we can use induction hypothesis on S’ to get the required schedule S. O

This means that whenever there is at least one job of size 2 available, the
schedule will contain at least one such job. So to provide an optimal algorithm

21

for the offline version of PSMJ(m = 4, size; € {1,2}) we only need to decide, at
any time point, whether to run two jobs of size 2 or one job of size two with two
jobs of size one.

Notice that by applying Theorem [3.11]to some schedule S we obtain a schedule
with the same size signature at ever time point. This means we can combine the

Theorems and to construct even more specific schedule.

Definition 3.13 (P-schedule). Let I be an instance of the problem PSMI(m = 4,
size; € {1,2}). A schedule S is called a P-schedule if it is feasible and if for every
two consecutive release times t and t' (and for the pair (t,t' = Cpaz(S)) where t
is the last release time) there are numbers t < t; <ty < t' satisfying

(i) If t1 > t, the schedule in [t,t1) contains at any time point two jobs of size
two and Spy,) is an ideal schedule for R(S,t).

(it) If to > t1, the schedule in [t1,t2) contains at any time point one job of size
two and Sy, 1,y s an ideal schedule for R(S,t).

(iii) Ift' > ty, there are no jobs of size two at time ty, i.e., R(S,t3)?> = 0 and the
schedule Sp, 4y is an ideal schedule for R(S,t;).

We call the schedule a P-schedule because if we imagine the jobs of size two
in the schedule between any two consecutive release times, they have the shape
of the letter P.

Theorem 3.14. Let I be an instance of PSMI(m = 4, size; € {1,2}). There is a
P-schedule S* with optimal makespan.

Proof. Let S be any schedule for I with the optimal makespan. First we apply
Theorem to obtain a schedule S from S. Let ¢ and ' be any two consecutive
release times (or last release time and the makespan of S”). From the properties
of S’ there is a time ¢, such that at least one big jobs runs at all times in the
time interval [t,t5) and if £, < ¢’ we have R(S’,t5)? = (). Now we can easily swap
subsets of [t,?2) to achieve that in the first part there are always two jobs of size
two running and in the second part only one job of size two is running. By doing
this for every such interval [¢,#) we obtain a schedule S”. This schedule satisfies
all conditions apart from the conditions that the individual intervals [t, t1), [t1, t2)
and [to,t') are ideal schedules for the remaining instance at the corresponding
start of the interval.

Now we can use Theorem on S” with all the time points ¢,t1,ts,t to
obtain S*. This does not change the size signature at any time point and the
requested parts of the schedule are ideal schedules for the corresponding remaining
instances. [

We did not find an optimal offline algorithm for PSMJ(m = 4, size; € {1,2})
(better then the linear programming formulation from Theorem but we have
proved that we can make many assumptions on the shape of the optimal schedule.
That can be useful when analyzing a performance of an online algorithm.

22

3.3 Online schedules

In this section we show that the result from Theorem describing the offline
optimal schedule can also be obtained in the online setting.

Theorem 3.15. For any c-competitive (nearly) online algorithm for the problem
PSMI(m = 4, size; € {1,2}) there is a c-competitive nearly online algorithm that
always produces a P-schedule.

Proof. Let I be the instance on the input and S the schedule produced by the
algorithm we are given. As we are constructing a nearly online algorithm, we
can, at any point, compute the schedule S up to the next release time. We will
construct a P-schedule S.

We will change the schedule S into S. in the same way as described in the
proof of Theorem 3.12] Of course we do not know how the original schedule looks
in the future so we need to make some adjustments. We remember some order
of jobs of size two and whenever new jobs are released, we add them at the end
in some arbitrary order. If S(t) contains at least one job of size two, nothing
changes and we return S.(t) = S(¢). Now suppose it contains only jobs of size
one. If there are no pending jobs of size two, we return S (t) = S(t). Otherwise
we already know what is the job j of size two that we will swap to this ¢, it is
the smallest job in our ordering that was already released and that is not yet
completed. So we can replace it for two jobs of size one from S(t). We do not
know which two so we make a guess, later we will show it is not important. We
will remember this swap. Now at the first timd|#’ such that j € S(#') we need to
finish the swap. So we will remove j from the schedule and include two jobs from
S(t). We will ignore the guess we made and swap j with the two jobs such that
S.. is feasible — we need to change also S.(t) to achieve feasibility of S.. This
change of history is only for our future decisions (we want S. to remain feasible),
of course we cannot change what the algorithm already returned.

By the above procedure we generate some schedule S’ online which is equal
to S with the exception that some jobs of sizes one are different in the sched-
ules. The schedule S” may be even unfeasible. But it is important that the size
signature at any time point is the same in both schedules.

Let t be the current release time and ¢’ the next release time. We will change
S’ to S” by rearranging subsets of [t,t’) so that in [¢, #;) there are always two jobs
of size two scheduled, in [t1, t5) one job of size two and in [t3, ") no jobs of size two.
Actually, thanks to the way we generated S’, we only need to rearrange [t,t5).
We can do this online because at time ¢ we can access S'(t") for any t” € [t,t) as
no new jobs are released in this interval.

Finally, we change S” to S using Theorem , always for t¢,t,,to,t'. This
procedure is again almost online, only using S”(¢”) for t” < t' at time ¢, which is
fine.

Now we need to prove that S is a P-schedule with at most the same makespan
as S. For this we define S” from S. in the same way as we defined S” from S’ and

I Technically, in Theorem we are not swapping with the first time that contains job j
but with the last time so that we can still perform all swaps. But this is still possible to do
online. At ¢’ we remember the remaining processing time of job j that also counts with the
swaps. We start swapping j back when this processing time is zero.

23

S form S” in the same way as S was defined from S”. We already mentioned
that S’ and S/, have the same size signature at any time point. But when we
generate S” and S” we only decide based on the size signatures, so the same is
true for these two schedules as well. Finally, when generating S and S, we only
use the size signatures from the input schedules. So S = 5. But we know S
a P-schedule with makespan at most C,..(S) because it was generated from S
in the same way as S in Theorem .

O

The power of this theorem is not in the fact that we can transform algo-
rithms so that they produce some specific schedule, it is more of an existential
significance. We know that whatever is the competitive ratio of the problem
PSMJ(m = 4, size; € {1,2}), there is an algorithm having this competitive ratio
and following the above rules. This makes our task for finding an optimal algo-
rithm easier, as it is enough to only consider algorithms of some specific type.
Moreover, the prescribed rules for the algorithm are simple, thus guiding us to-
ward a simpler, rather than more complex, optimal algorithm. In Chapter we
introduce an algorithm following these rules that we conjecture might have the
best possible competitive ratio.

24

4. Lower bounds

In this chapter we discuss the lower bounds for problem PSMJ, specifically for its
variants PSMJ(m const., size; € {1,2}) and PSMJ(m = 4, size; € {1,2}). Lower
bounds are an important part of finding a competitive ratio of a problem. Not
only it is one of the two necessary parts, as we know that no 1-competitive
algorithm exists, but they also help us design the algorithms. If one has a weak
lower bound he might be trying to come up with an algorithm that cannot exist.
Also if we believe that a lower bound is tight and we want to design an algorithm
matching this bound, it puts a restriction on the algorithm — we know how it
needs to behave on the example that gave us the lower bound.

We start with lower bounds on competitiveness and then we move onto lower
bounds for the speedup model, always starting with the case m = 4 and then gen-
eralizing the example for larger m. Theorem [1.13] states that for a 1-competitive
algorithm in a v-speedup model there is v-competitive algorithm. But the reverse
does not need to hold and it would be quite surprising if it did. Especially if we
view the speedup model through the following equivalent definition.

Definition 4.1 (Delay model). An algorithm in a d-delay model is an algorithm
for PSMJ that at time t - d receives the instance part I(t) (i.e., the jobs are delayed
by a factor of d). It is c-competitive in this model if it creates a complete schedule
with a makespan of length at most c¢-d - Cy,..., where C, .. is the optimal offline
makespan.

Theorem 4.2 (Equivalence of speedup and delay models). There exists an al-
gorithm for PSMJ that is c-competitive in the d-delay model if and only if there
exists an algorithm that is c-competitive in the d-speedup model.

Proof. We can change the algorithm for the d-delay model to the d-speedup model
simply by internally dividing the current time, all release times and processing
times of jobs by d.

The other direction is analogous. O]

With this in mind, it would be surprising if a c-competitive algorithm could
be easily adjustable into a 1-competitive algorithm in the c-delay model, as the
only difference in these models is that c-delay model receives jobs with a de-
lay of factor c. So the same example that is used to show a lower bound for
competitiveness could provide us with a better bound for the speedup model.

In both of the following sections, lower bounds on the competitive ratio and
lower bounds for the speedup model, we will always start with the case m = 4
and then generalize the result for m > 4.

4.1 Lower bounds on the competitive ratio

4.1.1 Lower bound 9/8 for m =4

We start with a lower bound for PSMJ(m = 4, size; € {1,2}). Our starting point
will be Example by |Johannes| [2006]. We cannot use it directly as in the
instance I there is a job of size 3. We will use the following adjusted example.

25

Example 4.3. There are four processors. Consider the instances

I; = {A«[1,2,0], B < [2,1,0], By < [2,1,0]},
I = I; U{C « [2,2,1],D + [1,2,1]}.

Theorem 4.4. Any online algorithm for PSMJ(m = 4, size; € {1,2}) achieves a
competitive ratio no less than 9/8 on at least one of the instances I, , I from

Ezample[4.3.

Proof. In the time interval [0, 1) the algorithm only sees the instance I, = I, (0)
so it will create the same schedule S.; in this time interval for both instances.
Now we distinguish two cases.

Case 1, |S2,| < x = 2: Let S be the schedule for instance I;. We know
Craz(S) > Ca(S) > 1+ pa(S,1) > 1+2—2 =3 — 2. On the other hand
Cras = 2 as can be seen in Figure So in this case, algorithm achieves
a competitive ratio of at least Cy0x(S)/Chaw = (3 —2)/2 =9/8.

Case 2, |S4,| > = 3: Let S be the schedule for instance I7. Let R, =

1
R(S,1) be the set of remaining jobs at time 1. We know that along the job A

at most one job of size 2 can be running in S-; and so Vol (R?) > Vol ((Ij)z) —
2r — 4(1 — z) = 4+ 2x. From Theorem |3.2] we know that

Vol (R?) + 2 - Longest (R, 1)

Cmax(S) > 1+ BV2+1(R1) =14+

4
442 2.2
21+(+x)+ —34 2
4 2
From Figure4.1| we see that C;, .. = 3 and so the algorithm achieves a competitive
ratio of at least Cy00(5)/Chpw = (3+12/2)/3 =9/8. O

From the proof and also from the Figure we can see that Example
cannot provide us with a better bound. On the Figure |4.1| we can also see that
if we merged the jobs C and D into a job of size 3, obtaining Example [2.11
by |Johannes [2006], we could change the schedules easily without making them
any longer. That leads us to the following corollary.

Corollary 4.5. The Claim (2.1 by |Johanned [2006] does not hold.

Proof. We will provide one such contradicting algorithm ALG. Notice that it is
enough to define its behaviour so that it constructs a feasible schedule for the
instance I~ and I™. Suppose it is given one of these instances.

It will schedule the jobs according to the bottom part of the Figure [.1], with
C' and D merged into one job. It is important that the schedule for I~ and I
is the same in the time interval [0, 1) so these schedules can really be produced
by the same algorithm. We see, that for z = 3/4 the schedule lengths for both
instances are only 9/8 apart from the optimal makespans. O

The mistake that was in the proof of |Johannes [2006] was in the Case 2 of the
proof of Theorem above (with the slight difference that in their proof there
was © = 3/5). They stated that Cy,..(S) > 3 + x instead of the correct bound
Crnaz(S) > 3+ x/2.

26

OPT

Iy If
C
Bi B> D

ALG

Figure 4.1: In the top part of the figure there are optimal schedules for scenarios
I7,I]. In the bottom part we can see the schedules that can be produced by
some algorithm ALG and that have a makespan only 9/8-times bigger than the
optimum. The value of z is 3/4.

4.1.2 Lower bound 1+ 2/(3m + 4) for m even

We will generalize Example [4.3

Example 4.6. There are m = 2n processors. Consider the instances

I, = {A+[1,2,0],B;+ [2,1,0] |[i=1,...,n},
I = I, U{Ci«+ [2,2,1,D « [1,2,1] |i=1,...,n—1}.

Theorem 4.7. Any online algorithm for PSMI(m const., size; € {1,2}) withm =
2n > 4 achieves a competitive ratio no less than 1+ 2/(3m + 4) on at least one
of the instances I, I, from Ezample .

Proof. In the time interval [0, 1) the algorithm only sees the instance I, = I3, (0)
so it will create the same schedule S_; in this time interval for both instances.
Now we distinguish two cases.

Case 1, |S2,| < 2 = 3m/(3m + 4): Let S be the schedule for instance I,
We know Ci,0.(S) > Ca(S) > 1+ pa(S,1) > 1+2—2 =3 —x. On the other
hand C* = 2, so in this case algorithm achieves a competitive ratio of at least

Crnaz(S)/Ch e = (3 —1x)/2 =1+4+2/(3m + 4).

Case 2, |S4,| > x = 3m/(3m+4): Let S be the schedule for instance I3,. At
time 1 we have exactly two jobs of size 1, one of length pa(S,1) < 2 — z and one
of length pp(S,1) = 2. As the total number of processors is even, when job D is
running and job A is not, at least one processor is idle, so there will be at least
x units of idle time after time 1. There is also at least x units of idle time in

the time interval [0, 1) when job A is running. That gives us the following lower

27

bound on the makespan of the schedule

Vol (I4,) +27 3m + 22

>
Cmam(s) = m m

—34+2%
m

So the algorithm achieves a competitive ratio of at least

Crnaz(S) _ 3+2% o 2
> mo— 14 SmHd .
C = 3 T3 +3m+4

max

4.1.3 Lower bound 1+ 2/(5m + 8) for m odd

For m odd the generalization of Example is not that straightforward. The
problem is that in the proofs above we used the fact that when m is even and
we have only one job of size one then whenver it is running there is at least one
empty processor. For m odd this does not hold.

On the other hand, for m odd we know that at least one job of size one will
always be running if there is such a pending job. If we added a job of size equal
to the optimal makespan it would fill the extra processor and even number of
processors would be remaining for the rest of the schedule. At first glance this
works and we get the same lower bound as for m — 1 but unfortunately it is
not correct. By this we would give the algorithm some extra information (the
length of the optimal makespan) so the algorithm could, for example, distinguish
between I~ and I* at time t = 0.

Instead, we will have an algorithm choose to run either two long jobs of size
one and have one processor empty or to run only one long job of size one and
have no idle time.

Example 4.8. There are m = 2n + 1 processors. Consider the instances

Iy = {A1 < [1,2,0], Ay [1,2,0], B; < [2,1,0] | i =1,...,n},
I =I5 U{C + [2,3/2,1),D « [1,3/2,1] | i=1,...,n— 1}.

Theorem 4.9. Any online algorithm for PSMI(m const., size; € {1,2}) withm =
2n +1 > 5 achieves a competitive ratio no less than 1+ 2/(5m + 8) on at least
one of the instances Iy, 1, I3, .1 from Ezample .

Proof. First we will compute the optimal schedules for the two instances.
We know C, .. (I5,,1) > Longest (I{nH, 1) = 2. Now consider the following

max

schedule. In the time interval [0,1) schedule jobs A;, Ay and By, Bs,..., B, 1
and in the time interval [1,2) schedule Ay, As, B,,. All jobs are done at t = 2 and
C;na:c(IQ_n-l-l) = 2.

We know Cf,..(I3, 1) > Vol (I;;Hrl)/m = 5/2. Now consider the follow-
ing schedule. In the time interval [0,1/2) schedule jobs A; and By, Bs, ..., B,,
in the time interval [1/2,1) jobs As, By, Bs,..., B, and in the time interval
[1,5/2) schedule Ay, Ay, D,C1,Cy,...,Cp_q. All jobs are done at t = 5/2 and

Cr*naz(IQJ;L-i-l) = 5/2

28

Now let S be the schedule created on one of the instances I, ; or I3 ;.
In both cases S.; will be the same and let p = |Sfi N Sfﬂ be the amount of
processing time with jobs A; and A, running at the same time.

Case 1, p < x =5m/(5m + 8): Let S be the schedule for instance I5,,,. We
know

Crnaz(S) > max(Cya, (S), Ca,(S)) > max(1 + pa,(S,1), 14 pa,(S,1))
ba, (57 1) + DA, (57 1)

> 1+ :
4 Pyt Pay = 2058 0 5G| — |SE\ S| — 196\ 5
2
4—2p—(1—p) 3—p_H—=x
>1 =1 > .
> 1+ 5 t—5 2
We know CF . = 2, so in this case algorithm achieves a competitive ratio of at

least Cpor(S)/Chipe = B —2)/4 =14+ (1 —2)/4=1+2/(5m + 8).

Case 2, p > x = 5m/(5m + 8): Let S be the schedule for instance I3, ;. We
know that there is at least p units of idle time in the schedule because when both
A; and A, are running, there are m — 2 = 2n — 1 processors left for jobs of size
2. 50 Crnaz(S) = (Vol (IQZH) +p)/m=5/2+p/m >5/2+x/m.

In this case algorithm achieves a competitive ratio of at least Cy,q.(S)/C,
(5/24+x/m)/(5/2) =14 2z/(bm) = 1+ 2/(5bm + 8).

ar —

]

The lower bound we achieved for m odd is not as good as for m even. The
difference compared to m even is that in the Case 2 we can create a schedule
such that Sj ¢,,..(s)) has no idle time.

4.2 Lower bounds for the speedup model

In this section we use the same examples as in the section above but the bounds
we obtain are stronger. The fact that we get stronger lower bounds for this model
is not the only reason to compute them. As we will see later, in Chapter [5] we
use the speedup model to design competitive algorithms. And so it is useful to
know the limits of this model.

4.2.1 Lower bound 8/7 for m =4

Theorem 4.10. If there exists an algorithm for PSMI(m = 4, size; € {1,2}) that
is 1-competitive in the v-speedup model, then v > 8/7.

Proof. We will use the instances I, I,” from Example 4.3

Let S be the schedule constructed by this algorithm on one of these instances,
we will specify later on which one. But in both cases the partial schedule S is
going to be the same. Again, we distinguish between two cases.

Case 1, |S4,| <z =3/4: Let S be the schedule for instance I; . Because the
algorithm in question is 1-competitive, we know 2 = C* > C}0.(S) > Ca(S) >

max

1+p(S,1)/v>1+(2—vz)/v=1+2/v—zandsov>2/(1+z)=8/T.

29

Case 2, |S4,| > x = 3/4: Let S be the schedule for instance I;”. As in the
proof of Theorem [4.7] we know that there will be at least 2z units of idle time
in the schedule. Including this idle time, processors need to run, altogether, for
Vol (Ij)/v + 2z = 12/v + 2x units of time and so

12
=4+2r 3 «x
320* >Omaa:5>v - a0

which leads to v > 3/(3 — z/2) = 8/7. O

4.2.2 Lower bound 1+ 2/(3m + 2) for m even

Again, we will use the same example as for the lower bound on competitive factor
for m even, that is Example [4.6]

Theorem 4.11. Let m = 2n > 4 and v > 1. If there exists an algorithm for
PSMJ(m const., size; € {1,2}) that is 1-competitive in the v-speedup model, then
v>142/(3m+2).

Proof. Let I, I} be the instances from Example |4.6]

The proof to this theorem is analogous to the proof of the Theorem In
here we choose z = 3m/(3m + 4).

In Case 1 we know 2 = C . > Cpax(S) > Ca(S) > 1+ 2/v — . That gives

usv >2/(14+x)=1+2/(3m+2).
In Case 2 we know

Vol (13,
— -+ 2 3 2
3= Oy > Ca(5) > — 2 5 2T
m voom
That gives us
> 3 1+ 2
U = .
3—2 3m+2

4.2.3 Lower bound 1+ 2/(5m + 2) for m odd

We will use the same example as for the lower bound on competitive factor for
m odd, that is Example {4.8|

Theorem 4.12. Let m =2n+1>5 and v > 1. If there exists an algorithm for
PSMJ(m const., size; € {1,2}) that is 1-competitive in the v-speedup model, then
v>142/(bm+2).

Proof. Let I, .y, I3, be the instances from Example [4.8]
The proof to this theorem follows the same structure as the proof of the
Theorem {410} In here we choose & = 5m/(5m + 4). Let p = |S2 N S22

In Case 1, p < x, we know

Pl (S, 1) +pl (S, 1)

2= O > Craa(S) > max(Cla, (S), Cuy(S)) > 1+ .

max

21+4—2pv—2(1—p)v:3_11(192—1—1) 23—v(x;1)~

30

That givesus v > 2/(14+z) =14+ (1—2z)/(1+2)=1+2/(bm +2)
In Case 2, p > x, we know there is at least p idle time and so

Vol (13, , 1)
) ——< 4+ 5 x
—=C" >Chp(S)> —%— = — + —.
2 maxr — ()— m 2U+m
That gives us
5 2
> 2 =1 .
U_%—% +5m—|—2

31

5. Algorithms

In the following three sections we provide 1-competitive algorithms for the prob-
lem PSMI(m const., size; € {1,2}) in the m/(m —1)-speedup model, for the same
problem but only for m even in the (m + 1)/m-speedup model and for the prob-
lem PSMJ(m const., size; < k) in the m/(m — k + 1)-speedup model. They are
called LPTIS, LPTIS+ and LPTISK, where LPTIS stands for Longest Processing
Times Ignoring Sizes. The idea behind these algorithms is that jobs with long
processing times are potential problems for constructing short schedules. If at all
times we were somehow able to have all jobs shorter than the optimum, we would
surely create a schedule at most as long as the offline optimum. Of course this is
not possible as we do not know what the optimum, we are comparing to, will do.
But if we relax this requirement just a bit, now requiring that our longest job is
at most as long as the longest job of the optimum, the same being true for the
sum of processing times of the two longest jobs, three, four, etc. (the invariant
is going to be a bit different as we need to handle the job sizes correctly), we are
still able to construct a schedule at most as long as the optimum. And this is
something we can achieve with the right amount of speedup.

To achieve this we start this chapter with some definitions and theorems that
will be used in all of these three algorithms.

As said above, there is an invariant that the LPTIS algorithms will keep
throughout their computation that somehow expresses that the remaining in-
stance of the algorithm has shorter jobs then the remaining instance of any opti-
mal schedule. The invariant is following. We sort the jobs in the non-increasing
order by their processing times and create a sequence of these processing times,
repeating every processing time as many times as is the size of the job. This ex-
plains the part ignoring sizes in the name of the algorithms, as in this sequence we
forget what were the original sizes of jobs. The invariant states that the sequence
created from the remaining instance of the algorithm is, in some sense, smaller
than the sequence created from the remaining instance of the offline optimum we
are comparing to.

Definition 5.1 (Sequence ignoring sizes). Let J be a set of jobs and let the jobs in
J be a(1),...,0(n), ordered by their non-increasing processing times, ties broken
arbitrarily. We define a sequence ignoring sizes for J to be an infinite sequence
a = a(J) such that

i—1 7

aj = Po(i) for 1<i<n and 1+ Z Sok) < J < Z So(k)s
k=1 k=1
a; =0 for Jj> Z Se(k)-
k=1

For two infinite sequences a,b we write a < b and say a is smaller than b if

k

Notice that the definition of a([) is sound because the sequence is going to be
the same no matter how we broke the ties when ordering the jobs.

32

As we mentioned above, LPTIS algorithms will behave in such a way, that the
sequence ignoring sizes created from its remaining instance is going to be smaller
than the sequence ignoring sizes of some offline optimum. For this invariant to
make sense, we need it to hold after new jobs are released. This is formally stated
in the Theorem [5.3| below. But first we need the following lemma.

Lemma 5.2. Let a,b: N — R be two infinite sequences of real numbers and let
m: N — N be a permutation such that b = a o and b is non-increasing. Then
a<b.

Proof. Let k > 1. We want to prove 2% a; < ¥ b Let [k] = {1,2,...,k}.
We denote M = 7~ !([k]) and we construct a bijective function r : M — [k] that
returns a rank of 7 in M when M is sorted in the ascending order. Now for every
i € M we have r(i) <, so b; < b,(;) and therefore

Z a; = Z bﬂfl(i) = Z b; < Z br(i) - Z bi.
ic[k] i€[k]

i€[k] ieM ieM
[

Theorem 5.3. Let I,I' and J be pairwise disjoint sets of jobs such that a(I) <
a(I"). Then also a(IU J) < a(I" U J).

Proof. We will prove the theorem by induction on the size of the set J. If J is
empty the statement is trivial.

Now let J = {j},a = a(I),b = a(I'),a’ = a(I U J) and ¥ = a(I' U J). If
p; = 0 the statement is trivial. Otherwise, let k& be the index such that a; > p;
and a1 < p;. Then

a; ng,
(lg: Dj]{Z‘i‘lélgk‘i‘é‘],
Aj—s; ’L.>k3—|—8j.

Similarly to this, we create a sequence b':

b i<k
b;: Dj /{:—i—lSZS/{:—l—SJ,
bi—s]- i >k+ Sj.
From a < b we clearly have also o/ < V. But V' is a permutation of » and '
is a non-increasing sequence so by Lemma we also know b < b’. Together
a’ < b < b and the base case of induction is done.

Finally suppose |J| = k > 1 and let J = J'U{j}. By the induction hypothesis
a(IUJ") < a(I’"UJ’) and once again by the induction hypothesis

a(TUJ) = a((TUTYU{}) < al(T'UT) UL = a(I' V).

33

In order for LPTIS algorithms to preserve the invariant we mentioned, we need
to run longer jobs with higher priority. We try to imagine what is intuitively the
best option for the offline optimum, in order to make its sequence ignoring sizes
as small as possible. In the ordering of the infinite sequences we defined, the
first terms of the sequence have the most impact on the ordering. This can be
observed by the fact that if we take infinite sequences a and o’ that differ only on
positions 7 and j and we know a; < a; and a; + a; = a; + a, then a < a’. So we
want to primarily make a; as small as possible, secondarily make ay as small as
possible etc. Of course, running the job corresponding to a; such that a; becomes
smaller then a;,; does not help us because the sequence ignoring sizes is always
sorted. So when processing times of two jobs are equalized, we want to run them
at the same speed, possibly sharing the time between more jobs on the available
processors. Equalizing jobs in this way is exactly what the Definition does.
In the Chapter 3| we only used it for jobs of the same size and we said that it is
not always possible to create an ideal schedule otherwise. But when we consider
enough speedup, it is possible. Using the Definition [3.5| on the whole remaining
instance exactly corresponds to running the longest jobs, ignoring sizes.

If we are able to construct an ideal schedule from the Definition B.8 and if
we prove that no algorithm (without speedup) can achieve a smaller sequence
ignoring sizes than by running the jobs for the time equal to their requested
processing times, we can easily create an algorithm that maintains our invariant.

The following theorem, although it is quite technical, is the core of the LPTIS
algorithms. It states that by creating an ideal schedule, the invariant remains
true. This can be interpreted as an informal statement that running jobs accord-
ing to the requested instance leads to the smallest possible new sequence ignoring
sizes than any, i.e., also the optimal, algorithm can achieve without speedup.

Theorem 5.4. Let I be an instance of the problem PSMJ and let v > 1. Let S
and S" be two feasible schedules for I and 0 <t < t' be two numbers such that
I(t") =0 for every t <" <t'. Denote A =t —t.

Suppose that a(R™(S,t)) < a(R(S',t)) and that the schedule Sy is ideal for
R™(S,t) and A in the v-speedup model. Then a(R™(S,t)) < a(R(S',t)).

Proof. By Theorem we know that adding new jobs does not change the in-
equality. So we can assume I(t') = () as well.

Let J = R'™(S,t), a = a(R™(S,t)),b = a(R(5,t)),a’ = a(R"™(S,t)) and
b = a(R(S',t)). Also let L% and ga be defined as in the Definition [3.5] Because
Sit,wy is an ideal schedule for J and A in the v-speedup model we know that
p}”(S, t) = p}”(S, t) — q£ for every j € J.

First we need to show that whenever p;"(S,t) > p;/'(S,t) then also p;"(S,t') >
pj-,” (S,t"). We will split the proof into three cases.

Case I: p;"(S,t') < LX. Then by from the Theoremwe know ¢y =0
and so p}f’(S, t") < pjy/(S,t) < p;°(S;t) = p}”(S, t').

Case II: p;°(S,t') > LA and p;/(S,#') < LA. Then trivially p;"(S,t') > LA >
pjT}U(S, t).

Case III: p;"(S,t') > L} and p;/(S,t') > LX. Then by (3.16) we have A=A
and also pl“(S,t) > pl/(S,t) = pl/(S,') + A > LL + A and so ¢} = A as well.

34

We see that both of the numbers are decreased by the same amount, so their
order is preserved.

Because of this lemma, when we construct the sequence o’ = a(R™(S,t')),
the jobs can have the same order as when we constructed the sequence a =
a(R™(S,t)). So

a; = a; — max(0, min(A, a; — L})).

Let 7 : N — N be a permutation such that b;(i) corresponds to the processing
time of the same job as b;. From Lemma [5.2| we know that for every j > 1

Z by < Z b, (5.1)

Now we can prove the theorem itself. We start with the case LX = 0. Then
a; = a; — A for a; > A and a} = 0 otherwise. Let k be the largest index such that
a; > 0. Then it is enough to show that > a; < S, b; for j < k, for larger j
it follows from the case j = k as we only add zeros to the left hand side. From
, because no job can run for longer than A and from the assumption a < b
we have the required inequality

SUED SANES SURINES YURINE o

=1 i=1 =1 =1

Now LL > 0. From the Definition [3.5 we know that (3.11)) holds and using
(13.13) we get

Sai= Yol = Vol (57 00) VIO — A= Y b= Yo (5
=1 =1 =1 =1

because no schedule on m processors of length m can process more volume than
m - A.
Suppose for contradiction that

J J
doai> Db (5.3)
=1 1=1

and j is the smallest such index. From the minimality of j we have 0} < a’.
If o, > LA then a} > L and so aj = a; — A fori € {1,...,j} by (3.16). That

gives us

and that is a contradiction with ([5.3)).
This means b < LA. Let k be the largest index such that aj < ay. If k < j,
then using the assumption a < b and ([5.2)) we get

J J J J o0 J) J
Yoai=) ai—) (ai—a) =) ai— Y (ai—a) <y bi— Y (b —b) < b,
=1 =1 =1 =1 =1 =1 =1 =1

35

Algorithm 5.1 Schema for LPTIS algorithms. It depends on the speedup v > 1
and a procedure Schedule.

1: t+0

2: S < empty schedule

3: I < instance available at time 0

4: while not all jobs released or I # () do

5. if not all jobs released then

6 t' < get next release time

7. else

8 t' < t + max (Longest (1,1), VC’?ITEI))
9: end if

10: Spwy < Schedule(/,t' —t)

11: I < change I according to schedule S|, and speedup v
12: if not all jobs released then

13: I < add jobs to I received at time ¢/

14: end if

15: end while

16: return S

which is again a contradiction with (5.3)). So & > j. Then by the contrapositive
ofwehavea’l_ - >ap, > LA >V, >V, > - > b and so aj > b for
j+ 1 <1 < k. Using this, the assumption a < b and (. we have

g
E
|
IoF
Y
I
M~
5
|
S

@
Il
—_
-
Il
_
.
Il
—

j k
i—Zai Z a;

I

=1 =1 1=7+1
k j k
<D b= bi— > b
i=1 i=1 i=j+1
k
= (b — 1)
i=1
=1 =1
which is a contradiction with (5.2)). m

Now we are prepared to present the schema that all the LPTIS algorithms
follow. It is recorded using pseudocode in Algorithm [5.1] The differences between
the algorithms are in the problem they are trying to solve, in the way how they
construct the ideal schedule and in the speedup v they use. The following theorem
states that creating an ideal schedule is the only missing part to obtain a 1-
competitive algorithm in the v-speedup model for the problem PSMJ.

Theorem 5.5 (LPTIS schema). Let us have an algorithm following the schema
of Algorithm with some v > 1. Furthermore, suppose that the Schedule
procedure called with parameters I and A returns an ideal schedule for these
parameters in the v-speedup model. Then the algorithm is 1-competitive for PSMJ
in the v-speedup model.

36

Proof. Let Iy be the instance on the input. Let S* be some feasible schedule with
optimal makespan for 5. Let T be the set containing 0 and all the release times
of jobs in Iy. By induction on T" we will prove that for any ¢ € T the schedule
S, is feasible and a(R™(S,t)) < a(R(S*,t)). It is true for ¢ = 0. If it is true for
t, by Theorem it is also true for the following release time and the claim is
true.

Now let ¢ be the last release time. We know that a(R™(S,t)) < a(R(S*,t)).
Let I and t' have the values as in the Algorithm on line 8 so I = R™(S,1)
and t' = max (t + Longest (1,1),t + %(I)) Also, let I* = R(S*,t) be the set of
jobs remaining in the schedule S* at time . We know that

t + Longest (I,1) =t +a(I); <t+a(l*); =t + Longest (I*, 1),
and

Vol (1) 4 >y a(l); <4 > a(l*); o Vol([*).

m m m m

t+

Both values on the right side are lower bounds on the length of the schedule
Ckue = Craz(S*) so for their maximum t” it is true that ¢’ < C The

max max*

maximum of the left sides is ¢’ so ' <" < C” .

Finally we will prove that Cp,q,(S) < t'. As the schedule Sj 1 is ideal for 1
and A = t'—t in the v-speedup model, let ZX be the corresponding ideal instance.
We will prove that I and ZX are equivalent instances (their jobs have the same
parameters). The theorem then follows because Sj) is complete for Z} in the
v-speedup model and so if Z and I are equivalent, Si,y is also complete for 1
in the v-speedup model and so ¢’ is an upper bound on the makespan of S.

We know L4 = 0 because by putting L = 0 into the left hand side of we
get V(0) < Vol (I) < m-A because of A =t/ —t > %(I) As V' is non-increasing,
the smallest value L for which V(L) = m - A either does not exist or is L = 0.

This means ¢y = min(A, p;) for j € I. But from A =t —t > Longest (I, 1)
we also know A > p;. This proves ZJ is equivalent to I.

We proved Cpeq(S) <t < CF, .. so the considered algorithm is 1-competitive.

m

Now it suffices to create an ideal schedule. That is what are the follow-
ing three sections about. Note that we did state all the previous theorems
for the problem PSMJ even though our primary motive was solving the prob-
lem PSMJ(m const., size; € {1,2}). We present two algorithms for this problem
and then we exploit the generality of the previous theorems and provide one
algorithm for the problem PSMJ(m const., size; < k).

5.1 LPTIS: m/(m — 1)-speedup

In this section we describe the algorithm LPTIS that is 1-competitive for the
problem PSMJ(m const., size; € {1,2}) in the m/(m—1)-speedup model. As men-
tioned above, we only need to design the procedure Schedule with this speedup.
For that we will closely follow the McNaughton’s rule algorithm.

37

Algorithm 5.2 Procedure Schedule for LPTIS algorithm.

read [and A

J < (ZA) o

S < empty schedule

z 4 [(Vol (J%)/2)/A]

add jobs J? to S using McNaughton’s rule on processors 1,. .., 2z
add jobs J! to S using McNaughton’s rule on processors 2z, ..., m
return S

Theorem 5.6. Let I be an instance of PSMI(m const.,size; € {1,2}), also let
v=m/(m—1) and A > 0. We can construct an ideal schedule for I and A in
the v-speedup model.

Proof. Let J = (Z4);,. We need to construct a complete schedule for J of
makespan at most A.

We create the schedule using McNaughton’s rule algorithm. First we schedule
the big jobs J? and then the small jobs J?.

We can schedule the big jobs J? using the McNaughton’s rule because if we
scale their sizes to 1 (denote the new instance as J') and the number of processors
to m' = |m/2| we can use Theorem [2.1| directly. We just need to verify the two

conditions. By (3.12)) from Theorem [3.7]

Longest (Z4,1 A
Longest (J',1) < Longest (J, 1) = & (=) < — <A, (5.4)
v v
and by (BT9)
1(J2 1 Vol (Z4 A 1
Vol(J’):VO(J)gvo(J): (A)Sm _m A<l A
2 2 2v 2v 2

Now we want to add the small jobs J! to the schedule. We would like to
continue using McNaughton’s rule but in the proof of Theorem the invariant,
that ensured that the schedule can be finished, was that there is at most one
partially filled processor. Now there are at most two such processors. But we
can ignore the remaining space on one of them (or fill it with an imaginary job).
Then there is only one partially filled processor. Moreover, exactly as in
we know Longest (J*,1) < A so we just need to check that the jobs fit into the
remaining space. As we threw away at most A units of space in the schedule, the
jobs will fit in the remaining space if Vol (J) < (m — 1) - A. This again follows

from (3.14]) in Theorem

Vol (zg) me A

Vol (J) =

]

The algorithm for creating an ideal schedule occurring in the proof of the
previous theorem is described in Algorithm [5.2]
Theorems [5.5 and [5.6] give us directly the following corollary.

38

Corollary 5.7. The algorithm defined by Algorithms|[5.1] is 1-competitive for
PSMI(m const., size; € {1,2}) in the m/(m — 1)-speedup model.

Using Theorem this gives us also the following corollary.

Corollary 5.8. The competitive ratio of PSMI(m const., size; € {1,2}) is at most
m/(m —1).

5.2 LPTIS+: (m+1)/m-speedup for m even

In the proof of Theorem there is one place with strict inequality, even when
non-strict equality is needed. Specifically, we needed Longest (J,, 1) < A but in
(5.4) we showed even Longest (J,, 1) < %. The reason is simple, we need to run
the longest jobs for at least as long as the optimum. That means for at least A.
But because of the speedup, it only needs to occupy % units in the schedule.

So the question is if we can do better. We can, at least for m even. The
reason why we need the speedup at all is because we cannot run the longest
jobs and also ensure that we use all processors. So we guarantee the use of only
m — 1 processors and the speedup ensures we process enough volume. To make
the speedup smaller, we will create part of the schedule by running jobs that fill
all m processors and rest of the schedule by running the longest jobs as previously.
And because of the non-tightness of we will still process enough units of the
long jobs.

The bound from (5.4 also guides us how long should be these parts of the
schedule. For bound to still hold (with non-strict inequality) we need the
second part of the schedule to be at least A/v long. Then the first part will be
long (1 —1/v)-A.

A lemma follows that we will use to construct the first part of the schedule.

Lemma 5.9. Let v = (m+1)/m, t,=1—1/v =1/(m+ 1) and let m > 4 be
even. Also let J be a set of jobs and A > 0 such that Longest (J,1) < A and

Vol(J) >v-(m—1)-A. (5.5)

There is a schedule S of length t = t,,- A such that p;(S,t) < p;/v for every j € J
and there is no idle time in the schedule.

Proof. Let the jobs in J be o(1),0(2),...,0(n) ordered by p, from the largest
to the smallest value. Let a = a(J) and let ¢(i) be the index of the job which
corresponds to a;. We distinguish between two cases.

First suppose a,, > t,-A. Then the jobs o(1),...,0(c(m)) all satisty p; > t,A.
If ¢(m) # c¢(m + 1) the sum of the sizes of the jobs o(1),...,0(c(m)) is precisely
m. So we can schedule these jobs, each on its corresponding number of processors
in the time interval [0, ¢, - A). Otherwise ¢(m) = ¢(m + 1). The sum of sizes of
jobs o(1),...,0(c(m)) is then m + 1 which is an odd number and so one of these
jobs is of size 1. The remaining jobs have sum of sizes equal to m and we can
create the schedule out of them, scheduling each on the time interval [0,t, - A).

Now suppose a,, < t, - A. Let

J' = {0'(i) = [so(), min(po(iy, tud), 03] | 0(i) € J]}.

39

Notice that

— 1A
Vol (.J') EVOI(J)—(m—l)-A-(l—tv)Zv-(m—l)-A—(mv)
(2m+1)(m —1) m+ 2
= CA>— A= 2 -t - A]
m(m + 1) “m+1 (m+2)-1-4, (5.6)
where the first inequality is true because the jobs ¢’(1),...,0’'(¢(m) — 1) of sum

of sizes at most m — 1 lose at most p; — min(p;,t,A) < (1 —¢,)A (as p; < A)
of their processing time each and the remaining jobs do not lose any processing
time, the second inequality is from the assumption and the last inequality
is equivalent to m? — 3m — 1 > 0 which is true for m > 4.

We will create a schedule of length ¢, - A using McNaughton’s rule. We can
do that because for every job o'(i) € J', poriy <ty - A. We start by scheduling
all the jobs of size 2. If we do not fill the whole schedule, at most two processors
will be partially filled. We throw away what is scheduled on them and schedule
jobs of sizes 1 on these and the following processors. Now we will certainly fill all
processors because we threw away at most 2-¢,- A volume and Vol (J')—2-t,-A >

m'(tv'A) by " L

We will generalize the key part of the proof of Theorem [5.6] into the following
lemma.

Lemma 5.10. Let I be an instance, A > 0 and v > 1. Suppose that Vol (I) <
v-(m—1)-A and Longest (I,1) < v-A. Then there is a complete schedule for
I and A in the v-speedup model of makespan at most A.

Proof. The proof goes along the same lines as the proof of Theorem [5.6, We put
jobs va to the schedule using McNaughton’s rule which we can do because

L 1,1 Vol (I}, 1(1
Longest ([fv, 1) < Longest (7,1) <A and g ¢) < V02<) < V;J A
v v

At this point at most two processors are partially filled. We will fill one of
them with imaginary job (that creates an idle time of at most A units) and then
use McNaughton’s rule on the jobs Ijv. It will fit in the schedule because

Vol (1)

v

+A<m-A.

Longest (]jv, 1) <A and Vol(I,)+A<

O

Theorem 5.11. Let I be an instance of PSMI(m const., size; € {1,2}), also let
v=(m+1)/m, A >0 and m > 4 be even. We can construct an ideal schedule
for I and A in the v-speedup model.

Proof. Let J = ZL. We need to construct a complete schedule for J in the
v-speedup model of makespan at most A.
First suppose that holds. Let t, = 1—1/v = 1/(m + 1) and create
a schedule Sy, .a) using Lemma Let J' = R™(S,t, - A). By (3.12) from
Theorem B.7] we know that
Longest (J',1) < Longest (J,1) < A =wv- f

Y

40

Algorithm 5.3 Procedure Schedule for LPTIS+ algorithm.
1: read [and A
2. J (Ii)iv
3: S < empty schedule
4: if Vol (J) >wv-(m —1)- A then
5.ty 1—1/v

6: if a(J), > t,A then

7: 2 < minimum number such that the sum of sizes of the first x longest
jobs is at least m

8: X < set of x longest jobs

9: if >°,cx s; > m then

10: delete from X a job of size 1

11: end if

12: Spo,t,a) < schedule jobs in X on the whole interval [0,¢,A)

13: else

14: J' = {7« [sj,min(p;, t,A),r;] | j € J|}

15: x <+ | (Vol (J?)/2)/(t,A)]

16: add jobs J? to Sio,t,a) using McNaughton’s rule on processors 1,. .., 2z
until they are full

17: add jobs J' to Sjps,a) using McNaughton’s rule on processors (2z +
1),...,m until they are full

18: end if

19: create schedule Sy, a a) using Algorithm [5.2(on R™(S,t,A)
20: else

21: create schedule Sp a) using Algorithm on [

22: end if

23: return S

and because Sc(t,.a) is filled completely, by (3.14) from Theorem [3.7|and because

v-m-t, =1 we also know that

Vol (J') = Vol (J) —v-m - (t, - A) Sm-A—(v~m-tv)-A:v-(m—1)-?.
This means that by Lemmal[5.10|for J' and A /v we can create a complete schedule
Slty-Aty-A+A/w) = Si-a,a) for J in the v-speedup model. So S is a schedule of
makespan A that is complete for J in the v-speedup model.

On the other hand, if does not hold, we can use Lemma directly for
J and A and obtain the whole schedule Sjy a).]

We capture the Schedule algorithm from the proof of previous theorem in

Algorithm [5.3]
Theorems [5.5 and give us the following corollary.

Corollary 5.12. For m > 4 even the algorithm defined by Algorithms[5.1], [5.9 is
1-competitive for PSMI(m const., size; € {1,2}) in the (m+1)/m-speedup model.

Using Theorem this gives us also the following corollary.

Corollary 5.13. The competitive ratio of PSMI(m const., size; € {1,2}) for even
number of processors m > 4 is at most (m + 1)/m.

41

Algorithm 5.4 Procedure Schedule for LPTISK algorithm.
read [and A
J < (ZA) o
S < empty schedule
p<+0
for | =k to1do
add jobs J' to S using McNaughton’s rule starting on processor p
if [#1 then
p < first processor that is not full
if p is partially full then
mark the empty space on processor p as thrown away
p+p+1
end if
13: end if
14: end for
15: return S

_ = =
NP2

The natural question is whether we can do better with this approach. For
m odd the problem is in Lemma [5.9} If we had (m + 1)/2 jobs of size 2 and no
job of size 1 we could not create a schedule without idle time. And as we do not
know anything about the job sizes of the optimal solution we are comparing to,
in general it could have a job of size 1 and create a schedule without idle time.
For m even Lemma [5.9 works fine and we could even create a longer schedule
without idle time, the bounds used in the proof are not all tight. Though imagine
the algorithm has an instance with the longest job of size 1 and then m/2 jobs
of size 2. The only possibility for the first part of the schedule to be without idle
time is to not run the longest job and if we made this part of the schedule any
longer than in LPTIS+, the optimum could, on principle, process more units of
this longest job. So the invariant would not hold.

5.3 LPTISK: m/(m — k + 1)-speedup for size; < k

In this section we generalize the algorithm LPTIS from Section to the problem
PSMJI(m const., size; < k). In LPTIS we are running the longest jobs and we can
guarantee to always run jobs on at least m — 1 machines (if there are enough jobs
remaining). The m/(m — 1)-speedup than guarantees that we process enough
volume. So if we allow sizes of jobs to be at most k, hopefully we can guarantee
that at least m — k+ 1 machines are used at all times and so with m/(m —k+1)-
speedup we again process enough volume.

The following theorem uses the same ideas as the corresponding Theorem
for LPTIS.

Theorem 5.14. Let I be an instance of PSMI(m const., size; < k), also let v =
m/(m —k+1) and A > 0. We can construct an ideal schedule for I and A in
the v-speedup model.

Proof. Let J = (ZL);,- We need to construct a complete schedule for J of
makespan at most A. We will do that using Algorithm [5.4]

42

By induction we will prove that jobs J*, J*=1 ... J' fit into the schedule,
after adding them, if [> 1, there is at most (kK — [+ 1)A idle time in the schedule
that is marked as thrown away. Counting this idle time as being occupied by
jobs, there are either zero or [— 1 partially full processors.

The base case is [= k+1. There are no jobs (they fit into the schedule), there
is no idle time marked as thrown away and there are no partially full processors.

Now suppose jobs J*, ..., J*1 are already in the schedule, there is at most
(k —)A idle time marked as thrown away and apart from that either zero or [
partially full processors. We will schedule the jobs J! by McNaughton’s rule. As
they are either zero or [partially full processors, we can use it. The longest job
is at most A so we just need to verify that the volume of the jobs is at most the
empty space in the schedule.

When scheduling the jobs by McNaughton’s rule we continue scheduling from
left to right, wrapping around the edges, at the place we finished with jobs of size
[+ 1. There will be no idle time but at most [— 1 last processors may be unusable
as they do not fit a job of size [. So we just need to check that the space that is
already thrown away, the volume of jobs of sizes k,k —1,...,l and (I — 1)A for
the unusable processors is at most the total space in the schedule mA. We can
see it is true

(k —1)A + Vol (ij JZ) + (I —1)A<Vol(J)+ (k—1)A

1=l

Vol (Z4
Z(A>+(k:—1)A
v
SWZ}AJr(k—l)A
= mA.

This means that jobs J! fit into the schedule. If [= 1 the whole theorem is
proven. Otherwise we need to prove the rest of the induction hypothesis. If there
are no partially full processors, the induction step is proved. Otherwise there are
exactly [partially filled processors. We mark the remaining space on the first of
them as thrown away and we see that the induction hypothesis holds again. [

Theorems [5.5 and give us the following corollary.

Corollary 5.15. The algorithm defined by Algorithms is 1-competitive
for PSMI(m const., size; < k) in the m/(m — k + 1)-speedup model.

Using Theorem this gives us also the following corollary.
Corollary 5.16. The competitive ratio of PSMI(m const., size; < k) is at most
m/(m—k-+1).
5.4 Optimal algorithm conjecture

In this section we propose an algorithm for PSMJ(m = 4, size; € {1,2}) that we
conjecture to be 9/8-competitive, thus matching the lower bound 9/8 from the
Theorem 4.4 We will call jobs of size one small and jobs of size two big.

43

Algorithm 5.5 Algorithm LPTDS. It has a parameter a.
1: I, R < empty instance
2: S < empty schedule
3:t+0
4: g0
5. while schedule is not complete do

6: if new jobs released at time ¢ then

7: add new jobs to [and R

8 [< compute minimum makespan for I using Theorem
9 g1l -a

10: end if

11: signature < BIG-BIG
12: if Longest (R? 1) = 0 then

13: signature < BIG-SMALL

14: else if Longest (R? 2) =0 then

15: stgnature < SMALL-SMALL

16: end if

17 if signature = BIG-BIG and (t + Bi(R) = g or t + By2,3(R) = g) then
18: signature < BIG-SMALL

19: end if

20: t' < o0
21: if not all jobs received then

22: t' < get next release time

23: end if

24: if signature = SMALL-SMALL then
25: my, mo <— 4,0

26: else if signature = BIG-SMALL then
27: my, Mo <— 2,2

28: t' < min(¢', Vol (R?)/2)

29: else if signature = BIG-BIG then

30: my, me <— 0,4

31: t' < min(¢', Vol (R?)/4)

32: t' < min(t', (Vol (R?) — 2 - Longest (R?,1))/2)
33: t' < min(¢, g — Longest (R', 1))

34: t' < min(t',3g — 3By2,3(R) — 2t)
35 end if

36: A<+t —t

37: Spuy < create ideal schedule for R' and A on m; processors

38 Spy < merge with ideal schedule for R? and A on mgy processors
39: R <« edit the remaining instance

40: t+t

41: end while

42: return S

We call the algorithm LPTDS(«) which stands for Longest processing time,
delay small and it is described in pseudocode in Algorithm [5.5] It has a param-
eter o that is the competitive ratio it is trying to achieve. Using Theorem
it computes the current offline optimal makespan and sets a goal makespan by

44

multiplying this value by «. It is constructing a P-schedule (see Definition ,
so it only needs to decide when to stop running two big jobs and run one big
job with two small jobs instead. At any time t, we say that a signature at t is
BIG-BIG (or that algorithm at ¢ runs according to BIG-BIG) if it runs two big
jobs, it is BIG-SMALL if it runs one big job with at most two small jobs and
SMALL-SMALL if it runs only small jobs.

The decision when to change the signature from BIG-BIG to BIG-SMALL is
based on the goal it has set and on the lower bound values B; and By2,3 from
the Definition [3.1} Specifically, it runs according to BIG-BIG while it has two big
jobs in the remaining instance, until the next release time or until time ' such
that ' + B; or t’ + By2_3; is equal to the current goal. Then it runs according to
BIG-SMALL while it has big jobs and until the next release time. If there are no
big jobs in the remaining schedule, it runs according to SMALL-SMALL.

To compute the time ¢ when t' + By or ¢’ + By2,3 is equal to the current
goal g is simple if we suppose that the algorithm will run according to BIG-BIG
until then. For the first case we just compute t' = g — B; because B; will not
decrease. For the second case we know By, 3 will decrease by 2/3 per a unit of
time as we are running two big jobs. So if the current time is ¢ then we want ¢/
such that ¢’ + (By2,3 — (t' —t) - 2/3) = g. This is a linear equation that can be
solved easily.

Now we try to reason why we think this algorithm could match the lower
bound 9/8 (for o = 9/8). Of course we should check what does the algorithm do
on the 9/8 lower bound example. The following claim can be easily verified by
running the algorithm on the instances I, and I .

Claim 5.17. LPTDS(9/8) achieves a competitive ratio 9/8 on Iy and I from
Example[4.5,

We will try to intuitively explain why we think the algorithm is good. It
constructs a P-schedule and by Theorem it a is the competitive ratio of
PSMI(m = 4, size; € {1,2}) then there is an a-competitive algorithm that con-
structs a P-schedule. So the question is if the way how it decides when to change
the signature from BIG-BIG to BIG-SMALL is good. We see that for the in-
stances I; and I; it chooses this time correctly. Notice that there is only one
possible time at which the switch from BIG-BIG to BIG-SMALL can happen to
achieve a ratio of 9/8 on both instances I, and I,

We see that LPTDS makes the switch as late as possible. It cannot do it later
because it would not finish by the computed goal and hence would not achieve
the required competitive ratio. The disadvantage of running according to BIG-
SMALL is that if there is only one small job, we have idle time in the schedule.
Perhaps in the future a new small job arrives and so if we did not run according to
BIG-SMALL now, we could run the old and new job of size one at the same time
and have no idle time in the schedule. Also, if we have the decision to run either
two small jobs or one big job, it makes sense to get rid of the big job because two
small jobs can easily run at the same time imitating a big job but they can also
run independently. So by having more small jobs rather than big jobs we have
more possibilities in the future.

Now we consider yet another angle. Using the Theorem we can compute
the minimum length of the schedule according to the current remaining instance.

45

We can look on the speed by which the lower bound values decrease depending
on the signature. If it is BIG-BIG, the values B, By and By2y; all decrease
as much as they can, By and Byz,; with derivative 1 (the numbers decrease by
one per unit of time) and By can decrease slower (if at least the three longest
big jobs have equal processing times) but still faster than when the signature is
BIG-SMALL. So the only two numbers that do not decrease at their maximum
speeds are B; and Byz,3. If we lose on volume, compared to the optimum, a lot
of jobs can arrive, the value By gets to the maximum and our deficit shows up.
On the other hand, deficit for B; does not really cause problems. If at some point
a new job arrives that changes Bj, it also changes the value B; of the optimum
to the same value. When no such job arrives, we know that B; is going to be
zero by the time g, thanks to line [I7in Algorithm [5.5] The value By2,3 is more
complicated. If new big jobs arrive, then the value changes by the same amount
for the LPTDS and for the optimum. If small jobs arrive, they are either so short
that they do not influence the value of By2,3 or they are long and then they are
also quite big for the optimum — we are trying to run big jobs primarily and so
our small jobs should not be much shorter than the small jobs of the optimum.

Of course these observations are only informal and do not prove anything. We
present one formal result as well, a theorem stating that LPTDS algorithm finishes
in time if there are no new jobs arriving.

Theorem 5.18. Let R(t) be the remaining instance of LPTDS at some point t
and g be the goal of LPTDS such that t + CJ,,.(R(t)) < g. Then the algorithm
finishes the jobs by the time g. Also if t' is a next release time but there are no
new jobs arriving (resp. jobs with processing time zero), then at time t' for the

remaining instance R(t') we know t' + C}, .. (R(t")) < g.

Proof. We can prove the second part of the statement only, as the first part
follows from it by choosing ¢’ = g. We will prove that for each of the lower bound
values, if it is currently equal to the maximum of all the lower bound values, it
is decreasing with derivative one. Then the maximum is also always decreasing
with derivative one and we are done.

Let R be the current remaining instance. First suppose B; = Ci4.. Then
the condition on line [17]in Algorithm is true and the signature is not BIG-
BIG. First suppose that Vol (R?) > 0. Then the signature is BIG-SMALL. For
contradiction, suppose that Longest (R, 1) = Longest (R, 2) = Longest (R, 3) = .
Then By2,3 = (Vol (R?) +2(l +1+1))/6 > | = B, and that is a contradiction.
So at most the two longest jobs have equal processing times and so we can run
them at the two available processors with speed 1. Now suppose Vol (R?) = 0.
Then the signature is SMALL-SMALL. From B; > By we know that at most four
longest jobs have equal processing times and we have four processors available so
we can run all the longest jobs at speed 1.

Now let By, = C,,4z, then the signature is BIG-BIG or BIG-SMALL. From
B, > By we know that at most two longest big jobs have equal processing times.
So if the signature is BIG-BIG, we run the longest big jobs with speed one. Now
let the signature be BIG-SMALL. If the two longest big jobs do not have equal
processing times we can run the longest job at speed one. If they have equal
processing times we know that Vol (R') > 0 (otherwise the signature type could
not be BIG-SMALL) and so By = (Vol (R?)+ Vol (R'))/4 > (2-Longest (R?, 1)+
2 - Longest (R?,2))/4 = By, and that is a contradiction.

46

Now let By = Ciqe- If the signature is BIG-BIG we have at least two big jobs
and the volume decreases with derivative one. If the signature is BIG-SMALL,
then from By > Byz2,; we know that Vol (R') > 2 - Longest (R', 1) and so there
are at least two small jobs and at least one big job (otherwise the signature would
be SMALL-SMALL) so the volume decreases with derivative one. If the signature
is SMALL-SMALL, form By > B; we know there are at least four small jobs and
again the volume decreases with derivative one.

Let By2y; = Cpgq. If the signature is BIG-BIG then there are at least two
big jobs and the value decreases with derivative one. If the signature is BIG-
SMALL then we have at least one big job and at least one small job (otherwise
By2,; = Br/2 < Br). The three longest small jobs cannot have the same length
because then By > (Vol (R?) + 3 - Longest (R',1))/4 > By2,;. So we run some
big job and at most two longest small jobs and the value decreases with derivative
one. The signature cannot be SMALL-SMALL because that would mean By2,; =
B, / 2 < B,.

Finally, let By2,3 = Cpqe. Then the condition on line [17)in Algorithm is
true and the signature is not BIG-BIG. First let the signature be BIG-SMALL.
If the four longest small jobs have the same length [then

1(R?) +4 1(R? 1(R?
BVZVO (R4)+ l:VOiR)+l>VOéR>—I—Z
Vol (R?) + 2(Longest (R', 1) 4+ Longest (R', 2) + Longest (R', 3))
B 6

= By,

and that is a contradiction. So at most three longest small jobs have equal
processing times and we run them with speed 2/3 (resp. we switch between pairs
of them). We also run one big job and so the value decreases with derivative
(24 2(2/3+2/3+2/3))/6 = 1. If the signature is SMALL-SMALL we can run
the three longest jobs all at speed one unless we need to share between five small
jobs. But if the five longest small jobs have processing times equal to [, then
By > 5l/4 > | = By2,3, a contradiction. O

This means that we just need to prove that when adding a job, the makespan
of our remaining instance increases by at most 9/8 of the increase of the makespan
of the remaining instance of optimum. To prove this we would probably need some
sort of invariant on the lower bound values (something stronger than that they
are all smaller than the goal time minus current time) that holds throughout the
run of the algorithm. Unfortunately, we were not able to find such an invariant.

Notice that the Theorem above works also with a = 1, so it is an optimal
algorithm for PSMJ(m = 4, size; € {1,2},r; = 0). It still uses the LP program for
computing the optimal makespan but in the case without release times this could
be replaced by computing the maximum of the five lower bound values, i.e., by

using Theorem

47

Conclusion

In this thesis we study the online version of PSMJ, i.e., preemptive scheduling of
multiprocessor jobs. We focus primarily on its special cases when jobs have sizes
only one or two and the number of processors is either a general constant m or
m = 4.

After we define the notion of online algorithms and scheduling, we explore
previous results in the area, with main focus on results directly relevant to this
thesis.

We devote the next chapter to better understanding of optimal schedules.
Focusing on the special cases of PSMJ, we derive a more comprehensible way for
computing offline optimums without release times than are the previously known
results. We also prove the existence of optimal schedules following some specific
rules, the so called P-schedules. This helps with the goal of finding a combinato-
rial algorithm for computing offline optimum. Also we get an optimum of a very
special form and if we decide to compare an online algorithm to this optimum
we can use many of its properties. In this chapter we also generalize the result
to online algorithms, showing that we can focus only on the algorithms creating
P-schedules, without decreasing the optimal competitive ratio.

Then there is a chapter on lower bounds for PSMJ(m const., size; € {1,2}).
First we show that for m = 4 we get a lower bound of 9/8. |Johannes [2006]
claimed a lower bound of 6/5 for this case but there was a mistake in the proof
that we detect. We use practically the same example and derive the correct
bound. We also generalize the lower bound for other m, getting a lower bound
of 1 4+2/(3m + 4) for m even and 1 + 2/(5m + 8) for m odd. Then we use the
same examples to derive new bounds, on the minimum speedup of 1-competitive
algorithms in the v-speedup model. For m = 4, m even and m odd we receive
bounds 8/7, 1 +2/(3m + 2) and 1 + 2/(5m + 2), respectively. We see that the
lower bounds for m even and m odd differ significantly. We believe that at least
when sizes of jobs are only one or two, these problems are significantly different.
The following observations also point in this direction. For m even having one
job of size one means that we will have idle time in the schedule, which is not
true for m odd. On the other hand, for m odd we know that at least one job of
size one will be scheduled at all times if it exists.

In the last chapter we provide several online algorithms, focusing especially
on the problem PSMJ(m const.,size; € {1,2}). We start with a 1-competitive
algorithm in the m/(m — 1)-speedup model called LPTIS. This algorithm is
based on the idea that at every release time we want our algorithm to have, in
some sense, shorter jobs than any optimum. To achieve this, it uses the speedup
to run the longest jobs, not caring about the sizes. This way, it can guarantee
to fill only m — 1 processors out of m but because of the speedup, the amount of
processed volume is as if it filled all m processors without speedup.

The following section describes an algorithm LPTIS+, an enhanced version
of LPTIS for m even. It is a 1-competitive algorithm in the (m + 1)/m-speedup
model. The key observation is that in the schedule of LPTIS we have unnecessarily
enough space for long jobs. So we split the schedule into two parts. In the first
part we schedule the jobs in such a way that all m processors are filled. In the

48

second part we schedule the longest jobs again. This way we can afford smaller
speedup and still guarantee that enough volume is processed. Notice that for
m = 4 this gives us a 5/4-competitive algorithm and so it puts the competitive
ratio of PSMJ(m = 4, size; € {1,2}) somewhere in the interval [9/8,5/4].

The next presented algorithm is LPTISK and it is a generalization of LPTIS
for problem PSMJ(m const., size; < k). It achieves the 1-competitiveness with
m/(m — k + 1)-speedup. This means that for jobs with sizes bounded by a
constant we approach a 1-competitive algorithm for m — oc.

Last presented algorithm, LPTDS, is an algorithm we conjecture matches the
lower bound 9/8 for PSMJ(m = 4, size; € {1,2}). We provide an intuition why
we think it is good and prove that if it is in a feasible state (the goal it is trying
to reach can be met with the remaining instance of the algorithm) it will remain
in a feasible state throughout the run of the algorithm, until the goal is met or
until new jobs are released. So to prove this algorithm is 1-competitive in the
9/8-speedup, we only need to prove that it does not change its state to unfeasible
when new jobs arrive.

For future work there are several directions to follow. First would be to deter-
mine whether LPTDS is really 9/8-competitive and then hopefully generalize it to
other special cases of PSMJ. If we could generalize it to 9/8-competitive algorithm
for m < 7 then we would have 9/8-competitive algorithm for PSMJ(size; € {1,2})
as for m = 8 we could use LPTIS+ and for m > 8 LPTIS to guarantee this ratio
(these algorithms are stated for m constant but their time complexity is only
polynomial in m, so we could really use them). Another possible direction would
be to use the LPTIS schema in Algorithm together with Theorem [5.5 to design
algorithms for further special cases of PSMJ, for example when sizes of jobs are
restricted to powers of two.

49

Bibliography

Jacek Blazewicz, Jan Weglarz, and Mieczyslaw Drabowski. Scheduling indepen-
dent 2-processor tasks to minimize schedule length. Information Processing
Letters, 18(5):267-273, 1984.

Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz. Scheduling multipro-
cessor tasks to minimize schedule length. IEEE Transactions on Computers,

35(5):389-393, 1986.

Jacek Blazewicz, Maciej Drozdowski, Giinter Schmidt, and Dominique De Werra.
Scheduling independent two processor tasks on a uniform duo-processor system.
Discrete Applied Mathematics, 28(1):11-20, 1990.

Jacek Blazewicz, Maciej Drozdowski, Giinter Schmidt, and Dominique de Werra.
Scheduling independent multiprocessor tasks on a uniform k-processor system.
Parallel Computing, 20(1):15-28, 1994.

Maciej Drozdowski. On the complexity of multiprocessor task scheduling. Bulletin
of the Polish Academy of Sciences Technical Sciences, 43(3):381-392, 1995.

Maciej Drozdowski. Scheduling multiprocessor tasks—an overview. FEuropean
Journal of Operational Research, 94(2):215-230, 1996.

Maciej Drozdowski. Scheduling for parallel processing. Springer, 2009.

Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45(9):1563-1581, 1966.

Kwang Soo Hong and Joseph Y.-T. Leung. On-line scheduling of real-time tasks.
IEEE transactions on Computers, 41(10):1326-1331, 1992.

Klaus Jansen and Lorant Porkolab. Preemptive parallel task scheduling in
o(n)+poly(m) time. In D. T. Lee and Shang-Hua Teng, editors, Algorithms
and Computation, 11th International Conference, ISAAC 2000, Proceedings,
volume 1969 of Lecture Notes in Computer Science, pages 398-409. Springer,
2000.

Berit Johannes. Scheduling parallel jobs to minimize the makespan. Journal of
Scheduling, 9(5):433-452, 2006.

Joseph Y.-T. Leung. Handbook of scheduling: algorithms, models, and perfor-
mance analysis. CRC Press, 2004.

Robert McNaughton. Scheduling with deadlines and loss functions. Management
Science, 6(1):1-12, 1959.

Kirk Pruhs, Jit{ Sgall, and Eric Torng. Online scheduling. In Joseph Y.-T. Leung,
editor, Handbook of scheduling: algorithms, models, and performance analysis,
chapter 15, pages 320-362. CRC Press, 2004.

Sartaj Sahni and Yookun Cho. Nearly on line scheduling of a uniform processor
system with release times. SIAM Journal on Computing, 8(2):275-285, 1979.

90

Jifi Sgall. On-line scheduling. In Amos Fiat and Gerhard J. Woeginger, editors,
Online Algorithms, The State of the Art, volume 1442 of Lecture Notes in
Computer Science, pages 196-231. Springer, 1996.

Jit1 Sgall and Gerhard J. Woeginger. Multiprocessor jobs, preemptive schedules,
and one-competitive online algorithms. In Evripidis Bampis and Ola Svensson,
editors, Approximation and Online Algorithms — 12th International Workshop,
WAOA 201/, Revised Selected Papers, volume 8952 of Lecture Notes in Com-
puter Science, pages 236-247. Springer, 2015.

51

	Introduction
	Basic definitions
	Approximation and online algorithms
	Scheduling

	Previous work
	Offline scheduling
	Online scheduling

	Optimal schedules
	Optimum for jobs without release times
	Offline schedules
	Online schedules

	Lower bounds
	Lower bounds on the competitive ratio
	Lower bound 9/8 for m=4
	Lower bound 1 + 2/(3m+4) for m even
	Lower bound 1+2/(5m+8) for m odd

	Lower bounds for the speedup model
	Lower bound 8/7 for m=4
	Lower bound 1+2/(3m+2) for m even
	Lower bound 1+2/(5m+2) for m odd

	Algorithms
	LPTIS: m/(m-1)-speedup
	LPTIS+: (m+1)/m-speedup for m even
	LPTISK: m/(m-k+1)-speedup for sizej≤k
	Optimal algorithm conjecture

	Conclusion
	Bibliography

